Exercise sheet no5 Local fields

Exercice 1 – Let K be a complete discrete valuation field with *perfect* residue field k_K of characteristic p.

- 1) Show that if $a, b \in O_K$ are such that $a \equiv b \pmod{\mathfrak{m}_K}$, then $a^{p^n} \equiv b^{p^n} \pmod{\mathfrak{m}_K^n}$ for each $n \geq 1$.
- 2) Let $\xi \in k_K$. For any $n \geq 1$, let $a_n \in O_K$ denote a lifting of $\xi^{p^{-n}}$ under the reduction map $O_K \to k_K$. Show that the sequence $(a_n^{p^n})_n$ converges in O_K to an element $[\xi]$ which does not depend on the choice of $(a_n)_n$.
- 3) Show that $[\xi]$ is a lifting of ξ and that $[\xi_1\xi_2] = [\xi_1][\xi_2]$ for all $\xi_1,\xi_2 \in k_K$.
- 4) Assume, in addition, that $\operatorname{char}(k_K) = p$. Show that K contains a subfield isomorphic to k_K and that $O_K \simeq k_K[[X]]$. Deduce that K is isomorphic to $k_K((X))$.

Exercice 2 – Let K be a complete discrete valued field. Fix an algebraic closure \overline{K}/K . Let k/k_K be a Galois extension.

- 1) Recall why there exists a unique subfield $L \subset \overline{K}$ such that L/K is unramified with residue field k.
- 2) Show that L/K is a Galois extension and $Gal(L/K) \simeq Gal(k/k_K)$.

Exercice 3 — Let K be a complete discrete valued field. Let $L, M \subset \overline{K}$ be finite extensions of K. Assume that L/K is unramified. Show that LM/M is unramified.

Exercice 4 — Let $L \subset \overline{\mathbf{Q}}_p$ be a finite extension of \mathbf{Q}_p . Prove that there exists a finite extension K of \mathbf{Q} such that $K \subset L$, $[K : \mathbf{Q}] = [L : \mathbf{Q}_p]$, and $L = K\mathbf{Q}_p$.

Exercice 5 – Let $P(X) = X^3 - 17 \in \mathbf{Q}_3[X]$.

- 1) Compute P(5) and give the degrees of the irreducible factors of P in $\mathbb{Q}_3[X]$.
- 2) Show that the 3-adic absolute value on \mathbf{Q} has exactly two extensions to $\mathbf{Q}[\sqrt[3]{17}]$.

Exercice 6 – Let C denote the completion of an algebraic closure $\overline{\mathbf{Q}}_p$ of \mathbf{Q}_p . Let $v: C \to \mathbf{R} \cup \{+\infty\}$ denote the extension to C of the standard p-adic valuation on \mathbf{Q}_p ; hence v(p) = 1. We write O_C for its ring of integers and \mathfrak{m}_C for the maximal ideal of O_C . Consider the formal power series

$$\exp(X) = \sum_{n=0}^{\infty} \frac{X^n}{n!}, \qquad \log(1+X) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{X^n}{n}.$$

We assume that the following formulas hold true in $\mathbf{Q}[[X,Y]]$:

$$\exp(X+Y) = \exp(X)\exp(Y), \quad \log((1+X)(1+Y)) = \log(1+X) + \log(1+Y).$$

(They can be proved by a direct computation involving binomial coefficients.)

- 1) Show that $\log(1+X)$ converges on \mathfrak{m}_C .
- 2) Let $U_C^1 = \{x \in O_C \mid x \equiv 1 \pmod{\mathfrak{m}_C}\}$. Show that the rule $x \mapsto \log(x)$ defines a morphism $\log : (U_C^1, *) \to (C, +)$.
- 3) Show that the series $\exp(X)$ converges on the set

$$\left\{ x \in O_C \mid v(x) > \frac{1}{p-1} \right\}.$$

- 4) Show that the multiplicative group $(1 + p^2 O_C)^*$ is isomorphic to the additive group $p^2 O_C$.
- 5) Let $\mu_{p^{\infty}} = \bigcup_{n=0}^{\infty} \mu_{p^n}$, where μ_{p^n} denotes the group of p^n th roots of unity. Show that $\ker(\log) = \mu_{p^{\infty}}$.

Exercise 7 — Let K be a finite extension of \mathbf{Q}_p with the residue field k_K . Fix a uniformizer π of K and denote by v_K the discrete valuation on K such that $v_K(\pi) = 1$. Let e denote the ramification index and f the residue degree of K over \mathbf{Q}_p . For each $i \geq 1$, set $U_K^{(i)} = \{x \in K \mid v_K(x-1) \geq i\}$.

- 1) Show that for each $i \geq 1$, the set U_K^i is a multiplicative subgroup of U_K .
- 2) Show that $U_K/U_K^{(1)}$ is isomorphic to the multiplicative group k_K^* .
- 3) Show that $U_K^{(i)}/U_K^{(i+1)}$ is isomorphic to the additive group $(k_K,+)$ for each $i \geq 1$.
- 4) Let $a \in \mathbf{Z}_p$. Write a as $a = \lim_{n \to +\infty} a_n$ with $a_n \in \mathbf{Z}$. Show that for each $x \in U_K^{(1)}$, the sequence x^{a_n} converges to some element $x^a \in U_K^{(1)}$, which does not depend on the choice of (a_n) . Check that the rule $(a, x) \mapsto x^a$ equips $U_K^{(1)}$ with a structure of \mathbf{Z}_p -module.
- **5)** Show that the group $U_K^{(i)p}=\{x^p\mid x\in U_K^{(i)}\}$ coincides with $U_K^{(i+e)}$ if $i>\frac{e}{p-1}$.
- **6)** Let $\{\theta_i\}_{i=1}^f$ denote a lifting of a basis of k_K over \mathbf{F}_p under the reduction map $O_K \to k_K$. Show that the family

$$\{1 + \theta_i \pi^j \mid 1 \le i \le f, \quad 1 \le j \le \frac{pe}{p-1}\}$$

is a system of generators of the \mathbf{Z}_p -module $U_K^{(1)}$.

Exercice 8 -

- 1) Show that $U_{\mathbf{Q}_p}^{(1)}$ is a free \mathbf{Z}_p -module of rank one if $p \neq 2$. Show that $U_{\mathbf{Q}_2}^{(1)} = U_{\mathbf{Q}_2}$ is isomorphic to $\mathbf{Z}_2 \times \{\pm 1\}$ as \mathbf{Z}_2 -module.
- 2) Compute the index $(\mathbf{Q}_p^* : (\mathbf{Q}_p^*)^2)$ for each prime p.
- 3) Show that \mathbf{Q}_p has 3 quadratic extensions if $p \geq 3$ and 7 quadratic extensions if p = 2.

Exercice 9 – Show that there exists exactly two non-isomorphic extensions of \mathbf{Q}_2 of degree 3.