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CHAPTER 1

Preliminaries

1. Non-archimedean fields
1.1. We recall basic definitions and facts about non-archimedean fields.

DEerINITION. A non-archimedean field is a field K equipped a non-archimedean
absolute value that is, an absolute value | - |k satisfying the ultrametric trinagle
inequality

Ix+ylx < max{|xlg, [ylx}, Yx,y € K.
We will say that K is complete if it is complete for the topology induced by | - |k.

To any non-archimedean field K can associate its ring of integers

Ok ={xeK||xlx < 1}.
The ring Ok is local, with the maximal ideal
sz{x€K||x|K< 1}
The group of units of Ok is
Uk = (xe K | Ixlx = 1),
The residue field of K is defined as
k[( = OK/mK.

THEOREM 1.2. Let K be a complete non-archimedean field and let L/ K be a
finite extension of degree n = [L : K]. Then the absolute value | - |k has a unique
continuation | - | to L, which is given by

x|, = |NL/K(X)’;(/n,

where Nk is the norm map.

Proor. See [2, Ch. 2, Thm 7]. Another proof (valid only for locally compact
fields) can be found in [5, Chapter II, section 10]. O

This theorem allows to extend | - |x to the algebraic closure of K. In particular,
we have a unique extension of | - | to the separable closure K of K.

ProposiTioN 1.3 (Krasner’s lemma). Let K be a complete non-archimedean
field. Let @ € K and let @ = a,ay,...,qa, denote the conjugates of a over K. Set

dy =minfla—a;lgx | 2<i<n.
If B € K is such that | —B| < dy, then K(a) C K(B).

5



6 1. PRELIMINARIES

Proor. We recall the proof (see, for example, [24, Proposition 8.1.6]). Assume
that @ ¢ K(B). Then K(a,B)/ K(@ is a non-trivial extension, and there exists an
embedding o : K(a,5)/K(B) — K/K(B) such that ¢; := o(a) # @. Hence

|B—ailk =lo(B-a)lk = B-alk <dy
and
la —ailk = (@ —B)+ (B—a)lk < max{la—Blk, |8 - ailk} < dq.

This gives a contradiction. O

ProposiTion 1.4 (Hensel’s lemma). Let K be a complete non-archimedean field.
Let f(X) € Ox[X] be a monic polynomial such that

a) the reduction f(X) € kx[X] of f(X) modulo my has a root & € kg;

b) f'(@) # 0.

Then there exists a unique @ € Ok such that f(a@) =0 and @ = @ (mod mg).

Proor. See, for example [19, Chapter 2, §2]. O

1.5. Recall that a valuation on K is a function vk : K — RU {+00} satisfying
the following properties:

1) vk(xy) =vg(x) +vk(y), Yx,y € K,

2) vg(x+y) 2 min{vg (x), v (»)}, Yx,y € K

3) vg(x) =0 © x=0.
For any p €]0, 1[, the function |x|, = p"¥ ™) defines an ultrametric absolute value on
K. Conversely, if | - |x is an ultrametric absolute value, then for any ¢ the function
ve(x) = log, |x|k is a valuation on K. This establishes a one to one correspondence
between equivalence classes of non-archimedean absolute values and equivalence
classes of valuations on K.

2. Local fields
2.1. In this section we review the basic theory of local fields.

DEerINITION. A discrete valuation field is a field K equipped with a valuation vk
such that vi(K*) is a discrete subgroup of R. Equivalently, K is a discrete valuation
field if it is equipped with an absolute value | - |g such that |K*|x C Ry is discrete.

Let K be a discrete valuation field. In the equivalence class of discrete val-
uations on K we can choose the unique valuation vg such that vg(K*) = Z. An
element g € K such that vk (mx) = 1 is called a uniformizer of K. Every x € K* can

be written in the form x = n}g((x)u with u € Uk, and one has:

K* ~{(ng)x Uk, mg = (k).
We adopt the following convention.

DeriniTION. A local field is a complete discrete valuation field K whose residue
field kk is finite.
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Note that many (but not all) results and constructions of the theory are valid
under the weaker assumption that the residue field kg is perfect.
We will always assume that the discrete valuation

vk + K > ZU{+o00}
is surjective.

Proposition 2.2. Let K be a local field. Then the groups Ok, my and Uk are
compact.

Proor. One can easily prove the sequential compacteness of Ok considering
finite sets Og/mY. Since mg = ngOk and Uk C Ok is closed, this proves the
lemma. =

2.3. If L/K is a finite extension of local fields, we define the ramification
index e(L/K) and the inertia degree f(L/K) of L/K by
e(L/K) =v(rk), f(L/K) = [kp : kk].
Recall the fundamental formula
J(L/K)e(L/K) =[L: K]
(see, for example, [2, Ch. 3, Thm 6] ).
2.4. Let K be alocal field, g = |kg]|.

ProposiTiON 2.5. i) For any x € ki there exists a unique [x] such that x = [x]
mod g and [x]9 = [x].

i) The multiplicative group of K contains the subgroup 1,1 of (q— 1)th roots
of unity and the map

[-]:kk — Hg-1.
x = [x]

is an isomorphism.

iii) If char(K) = p, then [ -] gives an inclusion of fields kx — K.

Proor. The statements i-ii) follow easily from Hensel’s lemma, applied to the
polynomial X7 —X.
iii) If char(K) = p then for any x,y € kg
(Ix]+ D7 = [x]7 + 17 = [x] + [y]

(use binomial expansion). By unicity, this implies that [x +y] = [x] + []. O

CoROLLARY 2.6. Every x € Ok can be written by a unique way in the form

i=0
Exercise 1. Let x € kg and let x € Ok be any lift of x under the map Ox — k.
a) Show that the sequence " YpeN converges to an element of Og which
doesn’t depend on the choice of x.
b) Show that [x] = lim_,4e0 X7 .
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TueoreM 2.7. Let K be a local field and p = char(kg).

i) If char(K) = p, then K is isomorphic to the field kx((X)) of Laurent power se-
ries, where kg is the residue field of K and X is transcendental over k. The discrete
valuation on K is given by

v (f(X)) = ordx f(X).

Note that X is a uniformizer of K and Ok =~ kg [[X]].

ii) If char(K) = 0, then K is isomorphic to a finite extension of the field of p-
adic numbers Q. The absolute value on K is the extension of the p-adic absolute
value
a x| _ -k
R =r . plab.

p

Prook. i) Assume that char(K) = p. By Corollary [2.6] we have a bijection

K — kg ((X)),
X x= ZaiXi, where x = Z[ai]ﬂ%.
i=0 i=0

By Proposition [2.5]iv), this map is an isomorphism.

ii) Assume that char(K) = 0. Then Q C K. The absolute value |- |x induces
an absolute value on Q. By Ostrowski theorem, any non archimedean absolute
value on Q is equivalent to the p-adic absolute value for some prime p. Since K is
complete, this implies that Q, C K. Since ki is finite, [kg : F,] < +o0. Since v is
discrete, e(K/Q)) = vk(p) < +oo. This implies that [K : Q] < +oo.

o

2.8. The group of units Uk is equipped with the exhaustive descending filtra-
tion

UY =1+7L0x, n>0.
Proposrtion 2.9. i) The map
Uk — k., x> x:=x (mod mg)

induces an isomorphism UK/U%I) ~ k.
ii) For any n > 1, the map

Ug’) — kg, l+mex— X
induces an isomorphism U;?)/ U}?H) ~ k.
Proor. The proof is left as an exercise. O

DEeriniTiON 2.10. One says that L/ K is
i) unramified if e(L/K) = 1 (and therefore f(L/K)=[L: K]);
ii) totally ramified if e(L/K) = [L : K] (and therefore f(L/K)=1).
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2.10.1. The unramified extensions can be described entirely in terms of the
residue field kx. Namely, there exists a one-to-one correspondence

{finite extensions of kg } «— {finite unramified extensions of K}

which can be explicitly described as follows. Let k/kg be a finite extension of
kg. Write k = kx(a) and denote by f(X) € kx[X] the minimal polynomial of a.
Let f(X) € Ok[X] denote any lift of f(X). Then we associate to k the extension
L = K(a@), where @ is the unique root of ]T(X) whose reduction modulo my, is @. An
easy argument using Hensel’s lemma shows that L doesn’t depend on the choice of
the lift £(X).

Unramified extensions form distinguished classes of extensions in the sense
of [21]. In particular, for any finite extension L/K one can define its maximal
unramified subextension Ly, as the compositum of all its unramified subextensions.
Then one has

JL/K) = [Lur : K], e(L/K)=[L: Lul.
The extension L/Ly; is totally ramified.

2.10.2. Assume that L/K is totally ramified of degree n. Let m;, be any uni-

formizer of L and let

FX) = X"+ ap X"+ +a1 X +ag € Og[X]
be the minimal polynomial of ;. Then f(X) is an Eisenstein polynomial, namely
vk(ai) > 1 for0<i<n-1,and vg(ag) = 1.

Conversely, if @ is a root of an Eisenstein polynomial of degree n over K, then
K(a)/K is totally ramified of degree n, and « is an uniformizer of K(a).

DerintTioN 2.11. One says that an extension L/K is
i) tamely ramified, if e(L/K) is coprime to p.
ii) totally tamely ramified, if it is totally ramified and e(L/K) is coprime to p.

Using Krasner’s lemma, it is easy to give an explicit description of totally
tamely ramified extensions.

ProposiTion 2.12. If L/K is totally tamely ramified of degree n, then there exists
a uniformizer ng € K such that

L=K(np), ny = ng.

Proor. Assume that L/K is totally tamely ramified of degree n. Let I1 be a
uniformizer of L and f(X) = X" +---+ a1 X + ag its minimal polynomial. Then f(X)
is Eisenstein, and g := —ay is a uniformizer of K. Let ¢; € K (1 <i < n) denote the
roots of g(X) := X" +ap. Then

lg(IDI|x = g(ID) - f(IDIk < | max 1|aiHi|K <lmklx

SIsn—

n n

Since |g(IT)|g = [[d1—«a;) and IT = (—1)"[]a;, we have

i=1 i=1

n n
[ [m-ailk <] ek
i=1 i=1
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Therefore there exists iy such that
(D - aj |k <lailk-

Set ;= - Then

[ Jore—an =g/ Gro) = n) "
i#ip

Since (n,p) =1 and |7 — @;|x < |7L|k, the previous equality implies that

dy, :=minlng — ailg = |nrlk.
1#1)

Together with (T, this gives that
|H—a/,~0|K < d;rL-

Applying Krasner’s lemma we find that K(7r;) C L. Since [L: K] =[K(nz) : K] =n,
we obtain that L = K(;rz), and the proposition is proved.
O

Exercise 2. Show that Q,( ”3/=p) = Q,({,), where (), is a primitive pth root
of unity.

Exercise 3. Let K be a local field and ng and 7, be two uniformizers of K.
Show that

K" ({fmk) = KM({7%), for any (n, p) = 1.

Deduce that the compositum of two tamely ramified extensions is tamely ramified.

2.13. The following useful proposition follows easily from Krasner’s lemma.

ProposriTion 2.14. Let K be a local field of characteristic 0. For any n > 1 there
exists only a finite number of extensions of K of degree n.

Proor. See [[19, Chapter 2, Proposition 14]. Since there exists only one unram-
ified extension of given degree, it is sufficient to prove that for each n there exists
only a finite number of totally ramified extensions of degree n. Each such extension
is generated by a root of an Eisenstein polynomial of degree n. The map

f(X) =X" +an_1X"_1 +-+a1 X+ag (ap-1,...,a1,ap)
defines a bijection
{Eisenstein polynomials of degree n} «— mg X .- Xmg X Uk.

By Krasner’s lemma, for each Eisenstein polynomial f(X), there exists an open
neighborhood V of f(X) such that the roots of any g(X) € V generate the same ex-
tensions of K as the roots of f(X). Now the proposition follows from compacteness
of mg X---XmgxUkg. O

Remark 2.15. A local field of characteristic p has infinitely many separable
extensions of degree p. It could be proved using Artin—Schreier extensions (see for
example |21, Chapter VI,§6] for basic results of Artin—Schreier theory).
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3. The different

3.1. Let L/K be a finite separable extension of local fields. Consider the
bilinear form

(2) tyk : LXL— K, 1k (x,y) = Trr/k(xy),
where Try/x is the trace map. It is well known that this form is non degenerate.
The set
022= {XGLllL/K(X,y)EOK, VyEOL}
is a fractional ideal, and
Dk =07 == {xeL|x0, c O}

is an ideal of Oy..

DerINtTION. The ideal Dy k is called the different of L/ K.

If K c L c M is a tower of separable extensions, then

3) Om/k = OmyL k-

(see, for example, [19, Chapter 3, Proposition 5]).
Set

vi(Drx) =inf{vr(x) | x € Dk}

Proposition 3.2. Let L/K be a finite separable extension of local fields and
e = e(L/K) the ramification index. The following assertions hold true:

i) If O = Oklal, and f(X) € Ok[X] is the minimal polynomial of «, then
Dk =(f'(@).

ii) Dk = Ot if and only if L/ K is unramified.

i) vi(®rx) 2 e—1.

iv) vi(Dr k) =e—1if and only if L/ K is tamely ramified.

Proor. The first statement holds in the more general setting of Dedekind rings
(see, for example, [19, Chapter 3, Proposition 2]). We prove ii-iv) for reader’s
convenience (see [19, Chapter 3, Proposition 8] for more detail).

a) Let L/K be an unramified extension of degree n. Write k; = kg (&) for some
@ € kr. Let f(X) € kx[X] denote the minimal polynomial of @. Then deg(f) = n.
Take any lift f(X) € Og[X] of f(X) of degree n. By Proposition (Hensel’s
lemma) there exists a unique root a € Oy of f(X) such that @ = @ (mod mg). It’s
easy to see that Oy = Og[a]. Since f(X) is separable, f'(@) # 0, and therefore
f'(@) € Ur. Applying i), we obtain that

Dk = (f' (@) = Oy.

Therefore ©y,x = Or if L/K is unramified.

b) Assume that L/K is totally ramified. Then Oy = Ok[r.], where ny is any
uniformizer of Oy. Let f(X) = X¢ + o1 XV + -+ a1 X + ag be the minimal poly-
nomial of 7. Then

f(rp) = ens +(e—Da175 2+ +ay.
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Since f(X) is Eisenstein, vy (a;) > e, and an easy estimation shows that vy (f' (7)) >
e—1. Thus

vi(Drx) =vi(f (@) > e—1.
This proves iii). Moreover, vi(f’(@)) = ¢ — 1 if and only if (e, p) = 1 i.e. if and only
if L/K is tamely ramified. This proves iv).

c) Assume that D7,k = Or. Then vi(Dr/x) = 0. Let L,, denote the maximal
unramified subextension of L/K. By (3)), a) and b) we have

vi(®rx)=vi(®r/,)ze—1.
Thus e = 1, and we showed that each extension L/K such that ©r,x = Oy, is un-

ramified. Together with a), this proves i). O

Exercise 4. Let L/K be a finite extension of local fields. Show that O; = Og[«a]
for some a € Oy. Hint: take a = [£]+ 7, where kg = kg (£).

4. Ramification filtration
4.1. In this section, we determine Galois groups of unramified extensions.

Proposition 4.2. Let L/K be a finite unramified extension. Then L/K is a
Galois extension and the natural homomorphism

r : Gal(L/K) — Gal(kr/kk)
is an isomorphism.

Proor. a) Write k; = kx (&) and denote by f(X) the minimal polynomial of &.
Let f(X) € Ox[X] be a lift of f(X). Then Oy, = Ok[€] where f(€) =0 and & =€
(mod nrp) Since kz /kk is a Galois extension, all roots &1,...,&, of f(X) lie in k;. By
Hensel’s lemma, there exists unique roots a, ... ,E,, € Or of f(X) such that &; = g
(mod 7;). This shows that L/K is a Galois extension.

b) Let g; € Gal(L/K) be such that g;(€) = &. Then r(g;)(€) = &. This shows that
r is an isomorphism. O

Recall that Gal(ky /kk) is the cyclic group generated by the automorphism of
Frobenius:
ka/kK(x) = x”, Vx e kL.
DerintTiON. We denote by Frjx and call the Frobenius automorphism of L/ K

the pre-image of fi, jk, in Gal(L/K). Thus Fpk is the unique automorphism such
that

FL/K(X) =x? (mod 7TL).

4.3. Let L/K be a arbitrary finite Galois extension, and let L, denote its
maximal unramified subextension. Then we have an exact sequence

{1} —= Ik — Gal(L/K) — Gal(L,/K) — {1}
The subgroup I1/x = Gal(L/L,,) is called the inertia subgroup of Gal(L/K).
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4.4. Let L/K be a finite Galois extension of local fields. Set G = Gal(L/K).
For any integer i > —1 define

Gi={geGlvp(gx)—x)=i+1, VxeOr}.
DermNtTiON. The subgroups G; are called ramification subgroups.

We have a descending chain
G=G_10GyD>G;D:--DG, ={1}

called the ramification filtration on G (in low numbering). Below we collect some
basic properties of these subgroups.

1) G_1 =G and GO = IL/K-
Proor. We have

g€Gy e gx)=x (mod ) & g€l k.

O
2) G; are normal subgroups of G.
Proor. Let g € G; and s € G. Then
ve(s™ gs(x) = x) = vi(s™ gs(x) = 7 s(x)) = vi(gs(x) = 5(x).
O
3) For each i > 0 one has
G, = {g €G| vL(l - g(m) > i}.
L
Proor. We have
g(p) —ny = () —my = (g(ar) ~m)a,  a€Oy
Since g acts trivially on Teichmiiller lifts, this implies that
geGov(glny)—m) =i+ 1.
This implies the assertion. O

Proposrtion 4.5. i) For all i > 0, the map
) si + Gi/Gis1 » U UL,
which sends g =g mod Gy to s;(g) = % (mod U(Lm)), is a well defined monomor-

phism which doesn’t depend on the choice of the uniformizer g, of L.
ii) The composition of s; with the maps ([2.9) gives monomorphisms

5 0o : Go/G1 — k¥, 0i : Gi/Gis1 — k*, foralli>1.

Proor. The proof is straightforward. See [28, Chapitre IV, Propositions 5-
7]. O

CoroLLARY 4.6. The Galois group G is solvable for any Galois extension.

COROLLARY 4.7. Ly = L9 is the maximal tamely ramified subextension of L.



14 1. PRELIMINARIES
To sup up, we have the tower of extensions

(6) L

G

Go Ltr

Go/Gy

G/Gy

K

DerintTioN 4.8, The group Prjx := G| is called the wild inertia subgroup.

4.9. The different Dk of a finite Galois extension can be computed in terms
of the ramification subgroups.

ProposriTion 4.10. Let L/K be a finite Galois extension of local fields. Then
(7) vL(Dryk) = Y (G- 1),
i=0

Proor. Let Op = Ok[a] and let f(X) be the minimal polynomial of «. For any
g € G setipk(g) =vi(g(a)— ). From the definition of ramification subgroups it
follows that g € G, if and only if i;/x(g) > i+ 1. Since

fi@ =] J@-g@,

g#1

we have

V() =vi(f (@) = Y vilae—g@) = Y ink(®) = ) i+ )G~ Ginl)
g#1 g#l i=0

= >+ DG = 1) = (Gisil = 1) = Y (Gl - 1).
i=0 i=0

O

5. The upper ramification

5.1. This section is an introduction to Herbrand’s theory of upper ramifica-
tion. It is convenient to define G, for all real u > —1 setting

G;=G;, where iis the smallest integer > u.



5. THE UPPER RAMIFICATION 15
For any finite Galois extension the Hasse—Herbrand functions are defined as fol-
lows

u if-1<u<0,
or/k(u) = f dt ifus0
0o (Go:Gy)

Wiik() = @p ).

®)

From definition it follows that they are inverse to each other.

5.2. Let K C F C L be a tower of finite Galois extensions. Set G = Gal(L/K)
and H = Gal(L/F). It is clear that

G,NH=H;, Viz-—1.

We want to describe the image of G; in G/H under the canonical projection G —
G/H.

TueoremM 5.3. i) (Herbrand). For any u >0
G,H/H = (G/H)¢L/F(u)-
i) r/k = @r/k o PLF and Y g =Y /F oWE/k.

Proor. 1) See [28, Chapter IV, §3].
1) We deduce ii) from 1). We have

1
(G/H)o : (G/H)gyp(x) - (Ho : Hy)

(@rik o prir) (X) = @k (Qr/r (X))@ p(X) =

and
(G/H)ch/p(x) = GxH/H = Gx/(Hm Gx) = Gx/Hx-
This implies that
((G/H)o : (G/H)yyp(x) = (Go : Gx)/(Ho : Hy),
and therefore

1 ’
GGy P

This implies ii). O

(er/k o @riF) (x) =

DEeriNtTION. The ramification subgroups in upper numbering are defined as fol-
lows:

GV = GlﬁL/K(v)
or equivalently G*LxW) = G,
THEOREM 5.4.

G/ =G"/GY"H,  VYv=0.
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Proor. We have (G/H)" = (G/H)y, () and
GG NH = Gy, )/ Gypyv N H.
Setting x = ¢1/x(v), we have
GV/GY'NH=G,/G,nH
and (G/H)" = (G/H)g,,.(x)- Now we apply Theorem o
ProposiTION 5.5. One has

if-1<v<0,

1%
wuﬂ”:{jnc®:é%m ifu>0.
0

Proor. Since ¢ x(v) = goz/l «(v), we have
, 1
U1 k(eLk) = ——— = (Go : G,) = (G : Gk,
SOL/K(M)
Setting 7 = ¢k (1), we obtain that ¢} / k(= (GO : GY). This proves the proposi-

tion. O

5.6. Hebrand’s theorem allows to define the ramification filtration for infinite
Galois extensions. Namely, for any (finite or infinite) Galois extension of local
fields M/K define

Gal(M/K)™ = lim Gal(L/K)"
L/Ia)ite

In particular, we can consider the ramification filtration on the absolute Galois
group G of K. This filtration contains fundamental information about the field K.

5.7. Formula (7)) can be written in terms of upper ramification subgroups:

THeOREM 5.8. Let L/K be a finite Galois extension. Then

0 1
D = 1———|dv.
vi(Dr/k) \L ( |G(V>|) v

Proor. By (7)), we have

_vi®yx) 17 B
vk(Dp k) = LK) Gl j:l (1Gul = Ddu.

Setting u = Y1/ k(v) and taking into accout that / kM= (GO : G we can write:
1 © ,
(i = o 1G] 10 0
1Gol J-1

1 [ 00 1
=— G- 1)(G? : GMd =f‘1— dv.
Gol L (6= 1X =)\ ieo v

O
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In this form, it can be generalized to arbitrary finite extensions as follows. For
any v > 0 define

oy
THEOREM 5.9. For any finite extension L/K one has
© 1
© vk(Dp/x) = f [1 - ——m)dv
-1 [L:LNK 7]
Proor. See [6, Lemma 2.1]). O

Exercise 5. 1) Let {,» be a p"th primitive root of unity. Set K = Q,({;») and
G = Gal(K/Q)). We have isomorphism
Xn: G=Z[P"LY, gl =05

SetI'=(Z/p"Z)*. Let T ={a e (Z/p"Z)* |a=1 (mod p™)} (in particular ¥ =
(Z/p"Z)* and T™ = (1}).
a) Show that
xn(G) =T where m is the unique integer such that p"~! <i < p™.

b) Give Hasse—Herbrand’s functions ¢x/q, and Yk/q,-
c) Set
r® =pm where m is the smallest integer > v.

Show that the upper ramifiation filtration on G is given by
Xn(G(V)) =T,

2) Let ({pn)n>1 denote a system of p"th primitive roots of unity such that £ g,, =
$o1. Set Ky = Qp(¢pn), Koo = UlK" and G = Gal(Kw/Qp). Let Uq, = Z;, be the
nz

group of units of Q,. We have the isomorphism:

-G~ _ (8
X G = UQp’ g(é’p") “bpr s Vn > 1.
For any v > 0 set
U 8) =U 81 ), where m is the smallest integer > v.
P y
Show that
G =Uy),  Wv>0.
P

6. Galois groups of local fields

6.1. The maximal unramified extension. In this section, we review the struc-
ture of Galois groups of local fields. Let K be a local field. Fix a separable closure
K of K and set Gg = Gal(K/K). Since the compositum of two unramified (respec-
tively tamely ramified) extensions of K is unramified (respectively tamely ramified)
we have the well defined notions of the maximal unramified (respectively maximal
tamely ramified) extension of K. We denote these extension by K" and K" respec-
tively.
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For each n there exists a unique unramified Galois extension K, of degree n,
and we have a canonical isomorphism Gal(K,,/K) ~ Z/nZ. which sends the Frobe-
nius automorphism Fg /x onto 1 mod nZ. If n | m, the diagram

Gal(K,,/K) — Z/mZ

L

Gal(K,,/K) —— Z/n’Z
commutes. Passing to projective limits, we et

ur 1 S~ 7
Gal(K" /K) = limGal(K,/K) = Z,

n
where Z = l(ﬂln Z./nZ. To sum up, the maximal unramified extension K" of K is
procyclic and its Galois group is generated by the Frobenius automorphism Fk:

Gal(K""/K) — Z,
Fg 1.
Fg(x) = x9%  (mod ng), Yx € Ogur.
Exercises 6. 1) Let £ be a prime number. Show that yﬂlk 7057 ~7,.
2) Show that Z ~ []Z;.
3) Let K be a local[ﬁeld with residue field of characteristic p. Show that

K"= U K().
1 (Zn)

6.2. The maximal tamely ramified extension. Passing to direct limit in the
diagram (6)), we have:

(10) K
Pk
Ix Ktl‘
KUI'
Z
K

Consider the exact sequence
an 1 — Gal(K"/K") — Gal(K"/K) — Gal(K""/K) — 1.
Here Gal(K"'/K) ~ Z. From the explicit description of tamely ramified extensions

(see also Exercise 3), it follows that K" is generated over K" by the roots n}{/ "

(n, p) = 1 of any uniformizer ng of K. Since

Gal(K“r(n;(/") /K") ~Z/nZ (not canonically)



6. GALOIS GROUPS OF LOCAL FIELDS 19

this immediately implies that
(12) Gal(K"/K") ~ Z ~ nz,.
t#p

For any (n,p) =1set L, = K (g“n,zr}(/”). It’s easy to see that Gal(L,/K) is generated
by the automorphisms F, and 7, such that

2 - 1 1
Filke = Freoxs Fard" =",

: 1 1
Tk =idke),  Talmd™) = Lmd"

These automorphisms are related by the unique relation
Fpt, = TZKFna qxk = lkgl.
Passing to projective limit, we obtain:

ProrositioN 6.3 (Iwasawa). The group Gal(K"/K) is topologically generated
by two automorphisms Fx and tx with the only relation

—~ —~-1
(13) FrgrgFry =14
Proor. See [24, Theorem 7.5.3] for more detail. O

6.4. Local class field theory. We say that a Galois extension L/K is abelian
if Gal(L/K) is an abelian group. It’s easy to see that the compositum of two
abelian extensions is abelian. Denote by K* compositum of all abelian exten-
sions of K. Then Gal(K®/K) is canonically isomorphic to the abelianization G"I‘(b =
G /[Gk,Gk] of the absolute Galois group Gg = Gal(f/ K). Local class field theory
gives an explicit description of Gal(K®/K) in terms of K.

THEOREM 6.5. here exists a canonical group homomorphism (called the reci-
procity map) with dense image

Ok : K* — Gal(K®/K)
such that
1) For any finite abelian extension L/K, the homomorphism 0 induces an
isomorphism
Ou/k : K*/NLjk(L") = Gal(L/K),

where Nk : L — K is the norm map.

ii) If L/K is unramified, then for any uniformizer ng € K* the automorphism
01k () coincides with the arithmetic Frobenius F k.

iii) For any x € K*, the automorphism 0k (x) acts on K™ by

Ok ()| gor = F1KD.

RemMark 6.6. Local class field theory was developed by Hasse. The modern
approach bases on the cohomology of finite groups (see (28] or [S, Chapter VI],
written by Serre).
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It can be shown, that the reciprocity map is compatible with the ramification
filtration. Namely, for any real v > O set U;(v) = Ug’), where 7 is the smallest integer
> v. Then
(14) 0k (UY) = Gal(K*®/K)™, Vv >0.

For the classical proof of this result, see [28, Chapter XV].

6.7. Ramification jumps.

DeriniTION. Let L/ K be a Galois extension of local fields (finite or infinite). We
say that v > —1 is a ramification jump of L/ K if

Gal(L/K)"*® # Gal(L/K)", Ve > 0.

From it follows that the ramification jumps of K®/K are the integers
voi==1,vp=0,vi=1,....

If L/K is an abelian extension with Galois group G, then by by Galois theory
G = G?}’ /H for some closed normal subgroup H C G*[‘?. From Herbrand’s theo-
rem we have GV = (G‘}}’)(V) /HN (G?}’)(V). Therefore from the jumps of the
ramification filtration on G are integers (theorem of Hasse-Arf). Let denote them

by vo <vi < vy <.... Then from Proposition {.5] i) it follows that the quotients
G") |G+ are p-elementary abelian groups (each non trivial element has order

p)-

6.8. Example: ramification in Z ,-extensions. We illustrate this theorem on
the following example.

DerNITION. A Z,-extension is a Galois extension L/K with Galois group iso-
morphic to Z,,.

Let L/K be a Z,-extension. Set I' = Gal(L/K). For any n, p"Z,, is the unique
open subgroup of Z, of index p" and we denote by I'(n) the corresponding sub-
group of I'. Set K, = L'™_ Then K, is the unique subextension of L/K of degree
p" over K. We have

L=K:= UlK"’ Gal(K,/K) ~7Z/p"Z.
nz
Let (v;)i0 denote the increasing sequence of ramification jumps of L/K. Since
I' 2 Z,, and all quotients [ /T are p-elementary, we obtain that
" =p'Z,  Vi>O.
ProposiTioN 6.9 (Tate [30]). Let K be a finite extension of Q, and let Ko/ K
be totally ramified Z,-extension. Let (v;)i>1 denote the increasing sequence of

ramification jumps of K« /K. Then
i) There exists iy such that

Viy] = Vi + ek, Yi > .
ii) There exists a constant ¢ such that for all n > 1
vk (D, k) = ekn+c+a,p™",

where (ay);s1 is bounded.
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We first prove the following auxiliary lemma:

Lemma 6.10. Let K/Q), be a finite extension and let ex = e(K : Q). Then
i) The series

log(1+x)= > (- il
m=1 m
converges for all x € mg.
ii) The series

o0 xm
expt0 =Y
=0 m.

ex
converges for all x such that vg(x) > T

iii) For any integer n > <% we have isomorphisms
p—1

log : U}?) — my, exp : my — U}?)

which are inverse to each other.

Proor. We have
vi(m) < ex log,,(m),

and

exgm
vi(m!) = e (Im/pl+[m/p*1+--) < ——.
p—1
This implies the convergence of the series. Other assertions can be proved by
routine computations. O
. e
CoroLLARY 6.11. For any integer n > pTK1
(m\P _ gslnteg)
() =ugre.
(m\P (n+ex) :
Proor. (U pe ) and Uy have the same image under log. O

PRrOOF OF PROPOSITION.
Step 1. Let I = Gal(L/K). By Galois theory, I' = G’;‘?/H, where H is a closed
subgroup. Consider the exact sequence

{1} > Gal(K*®/K"") — G 2 Gal(K""/K) — {1}

Since K, /K is totally ramified, (K®)H N K = K, and s(H) = Gal(K""/K). There-
fore
I ~ Gal(K*®/K")/(H N Gal(K™®/K"™)).
By local class field theory, Gal(K®/K") ~ Uk, and there exists a closed subgroup
N C Uk such that
I'~Ug/N.
The order of Uk /U}g) =~ ky is coprime with p. Therefore the index of Ug)/ (NN
Ug)) in Ug/N is coprime with p. On the other hand, Ux /N ~T is a pro-p group.
Therefore
U I(NnUY) = Ug/N.
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and we have an isomorphism
p:T=UD/NnUY).
Step 2. To simplify notation, set
2 =UQINOUY), WL
By (14)) and Theorem[5.4]
pMN = yx1.

Let y be a topological generator of I". Then y,, = y”" is a topological generator
of I'(n). Let iy be an integer such that

P()’io) € %(m())’

with some integer mg > ;TKI. Fix such iy and assume that, for this fixed iy, my is the
biggest integer satisfying these conditions. Since y;, generates I'(ip), this means
that

p(ip)) = %(mo)’ but o(T(ip)) # %(m0+1).
Therefore my is the ip-th ramification jump for K. /K, i.e.
mo = Vijy.

We can write p(y;,) = X, where X = x (mod (NN U}m"))) and x € U;m(’) \ U}m"H). By

Corollary [6.11]

xpn c Ugnmexn) \ U§?10+e,<n+l)’ Vn>0.
Since p(yiy+n) = X7 " and Yio+n generates I'(mg + n), this implies that
p([(ip+n)) = qy (motnex)  put o(I(ip +n)) # gy (motneg+1)

This shows that for each integer n > 0 the ramification filtration has a jump at
mg +neg and

[0+ = (i + n).
In other terms, for any real v > v;, = mo we have
I =T(Gy+n+1) if Vi, +heg <v < v, +(m+1eg.

This shows that v; ., = v;, + exn for all n > 0, and the assertion 1) is proved.

Step 3. We prove ii) applying Theorem [5.8] For any n > 0, set G(n) = I'/T'(n).

We have
0 1
vk (D, K)=f (1——)dv.
T I6mo)

By Herbrand’s theorem, G =T™ /(T (n)NTM). Since I'™ =T'(n), the ramifi-
cation jumps of G(n) are vp,vy,...,v,—1, and we have

Pl ifvio <v <,

1, ifv>v,

(15) IG(m)™)| = {
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(for i = 0 we set v;_; := 0 to uniformize notation). Assume that n > iy. Then

Vn-1 1
D =A+ 1—-—|dv,
vik(Dk,/k) fv ( |G(n)<V>|) v

0

Vi 1
where A = f ’ 1 — ——— |dv. We evaluate the second integral
-1 IG(m)™)|

Vn—1
f (1 - ;)dv =
" IG(m)™)]

0

n—1 1 n—1 1
e P

i=ip+1 l:lo+1

(here we use i) and (15). An easy computation gives

- 1 e 1
§ eK(l— .):eK(n—io—1)+ K (1— )
P p-1

n—ip—1
i=ig+1 V4

Setting c = A —eg(ip+ 1)+ peTKl, we see that for n > iy
1

VK(DK,,/K) =Cc+ exgn— W
This implies the proposition.

O

6.12. The absolute Galois group. The structure of the absolute Galois group
Gk of a local field of characteristic p case can be determined easily. One sees
that the wild ramification subgroup Pk is pro-p-free with a countable number of
generators. This allows to describe Gk as an explicit semidirect product of the tame
Galois group Gal(K"/K) and Pk (see [24, Theorem 7.5.13]). The characteristic 0
case is much more difficult. If K is a finite extension of Q,, the structure of the
Gk in terms of generators and relations was first described by Yakovlev [32]] under
additional assumption p # 2. A simpler description was found by Jannsen and
Wingberg in [18]].

The ramification filtration (G(I? ) on G has a highly nontrivial structure. Abrash-
kin [1] and Mochizuki [23] proved that a local field can be completely determined
by its absolute Galois group together with the ramification filtration.






CHAPTER 2

Almost étale extensions

1. Norms and traces

1.0.1. The results proved in this section are technical by the nature, but they
play a crucial role in our discussion of deeply ramified extensions and the field of
norms functor. They can be seen as a first manifestation of a deep relation between
characteristic 0 and characteristic p cases. In this section, we assume that L/K is a
finite extension of local fields of characteristic 0.

LemMma 1.1. One has
Trp/x(my) = m,

VL(DL/K)+H]

where r = [ OI)

Proor. From the definition of the different if follows immediately that Dz/l k18
the maximal fractional ideal such that

TrL/K(DZ}K) = Og.
Set 6 = v (Dr/k) and e = e(L/K). Then
TI‘L/K(mIZmI_(r) = TrL/K(m’ZmZ”) C TrL/K(m’Z_(6+")) = TrL/K(EZ/IK) = Ok,

and therefore Try x(m}) € m%. Conversely, Trz/x(m}) is an ideal of Ok, and we
can write in in the form Try x(m}) = m%. Then Trz g (m] m?) = Ok and therefore
mymf C DZ/I k- This implies that

n—ae > —9o.

Therefore a < ["—:‘5] =rand my C Trz /x(m}). The lemma is proved.
O

1.1.1. Assume that L/K is a totally ramified Galois extension of degree p.
Set G = Gal(L/K) and denote by ¢ the maximal natural number such that G, = G
(and therefore G;,; = {1}). Formula reads:

(16) vi(®rx) = (p— D@+ 1).
Lemma 1.2. Then for any x € m}
NL/K(I +x) =1 +NL/K()C)+TI‘L/K(X) (mod m;(),

where s = [—(p_D(HI)JrZ"].

p
25



26 2. ALMOST ETALE EXTENSIONS

Proor. Set G = Gal(L/K) and for each 1 < n < p denote by C, the set of all
n-subsets {g1,...,8,} of G (note that g; # g; if i # j). Then

Npk(1+x) = 1_[(1 +8(x) =1+ N g(x)+Trpx(x)
geG

Y @@t Y i) gy (),
{g1.821€C2 {g15--8p-11€Cp-1
It’s clear that the rule

gx{g1,....8} =1881,--.,88n}

defines an action of G on C,,. Moreover, from the fact that |G| = p is a prime number,
it’s easy to see that all stabilizers are trivial, and therefore each orbit has p elements.
This implies that each sum

Z g1(x)---gn(x),  2<n<p-1
{81,--8n}€Cy

can be written as the trace Trz x(x,) of some x;, € m%”. From |i and Lemma
it follows that Try/x(x,) € my.. The lemma is proved. O

Lemma 1.3. For any x e m}
NL/K(I +x)=1 +NL/K(X)+TI'L/K(X) (mod mf(),

(p=1)(t+1)+2n ]
— |

Proor. Set G = Gal(L/K) and for each 1 < n < p denote by C, the set of all
n-subsets {g1,...,g,} of G (note that g; # g; if i # j). Then

where s = [

Ny +2) = [ [(1+ () = 1+ Nuy (o) + Trr ()
geG

Y a@n@E Y i) gy (),
{gl,gZ}ECZ {glv'"gp*l }EC,F]
It’s clear that the rule

gx1{g1,....8nt =1881,-..,88n)

defines an action of G on C,,. Moreover, from the fact that |G| = p is a prime number,
it’s easy to see that all stabilizers are trivial, and therefore each orbit has p elements.
This implies that each sum

D g g, 2<n<p-1
{gl ,...g,,}ECn
can be written as the trace Trz/x(x,) of some x;, € m%”. From and Lemma
it follows that Tryx(x,) € my.. The lemma is proved. O

CoroLLARY 1.4. Let L/K is a totally ramified Galois extension of degree p.

Then " 1
k(N k(1 +3) = 1= Npj(x)) > =2 .
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Proor. From Lemmas and if follows that
(p—D(@+1)

’

vE(Np/g(1+x) =1 =N jg(x)) > [

and it’s easy to see that

[(p—l)(t+1)
p

-t 1 t(p-1
:[(p )+1__]>(p )

p p p
2. Deeply ramified extensions

2.0.1. In this section, we review the theory of deeply ramified extensions of
Coates— Greenberg [6]]. This theory goes back to the fundamental paper of Tate
[30], where the case of Z,-extensions was studied and applied to the proof of the
Hodge-Tate decomposition for p-divisible groups.

Let K be a local field of characteristic 0. In this section, we consider an infinite
algebraic extension K., /K. Since for each m the number of algebraic extensions of
K of degree m is finite, we can always write K, in the form

KOO:GOK", Ko=K, K,CKuy1, [Ky:K]<oo.
n=

Following [15], we define the different of K.,/K as the intersection of differents of
its finite subextensions.

DEeriNiTION. The different of Koo /K is defined by
Dkojk = n (Pk, /K Ok..)-

Let L., be a finite extension of K. Then L., = K (), where « is a root of
an irreducible polynomial f(X) € Ko [X]. The coefficients of f(X) lie in a finite
extension Ky of K. Let

no = min{n € N | £(X) € K,[X]).

Setting L, = K, («) for all n > ng, we can write

Lo= UL,

n=ng

In what follows we will assume that ny = O without loss of generality. Note that
[L, : K,] =deg(f) doesn’t depend on n > 0.

ProposiTiON 2.1. i) If m > n, then
D1,/k,01,, C DL, /K,
ii) One has
Ol /Koo = nogo(DLn/K,,OLm)-
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Proor. i) We consider the trace duality (2):

th/Kn : Ln XLn - Kn, th/Kn(x,y) = Tan/Kn(xy).
Let {ek}izl be a basis of Or,, over Og,, and let {eZ}izl denote the dual basis. Then
:DLH/KH = OLnelk +---+ OLnej.

Since {ek}}i_l is also a basis of L, over K,,;, any x € DZI/K can be written as
- m m
S
*
X = Zakek.
k=1
Then

ar =11, /k,(x.ex) € Ok,,, VI<k<s,
and we have:
x€ 0k, e} ++0g,e; CD; O,
Therefore ®;' , c®;!, Oy, and, by consequence, Dr,/k,0r, € Du, /K, -
ii) With the same argument as in the proof of i), we have

nL_JO(DL,, /K, OLo) € DLy /Koo

We need to prove that D;_ k. C UO(DLn /k,OL..) or equivalently that
n=
g -1
nrzwo(bLn/KHOLm) CO k.-
X -1 . -1
Letx e nQO(DLn/Kn Or.) and y € Oy _,. Choosing n such that x € DLn/Kn andy€ Oy,
we have

th/Km(x,y) = th/Kn(x,y) € OK,, - OKM-
The proposition is proved. O

DEerINITION. i) For any algebraic extension of local fields M| K (finite or infinite)
we set

vk(Dmyk) = inf{vg(x) | x € Dyyyk ).
ii) We say that M/ K has finite conductor if there exists v > 0 such that M C E(V). If
that is the case, we call the conductor of M the number
—(V—l)}

c(M)=inf{v|M CK
TueEOREM 2.2 (Coates—Greenberg). Let K./ K be an algebraic extension of lo-
cal fields. Then the following assertions are equivalent:
i) vk(Dk, k) = +00;
ii) Ko/ K doesn’t have finite conductor;
iii) For any finite extension L, |/K one has
ve(®rL,/k,) =0;

iv) For any finite extension L., /K one has

Trr, k(ML) = mg,,.
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Below we prove that
i) © ii) = iii) = iv).
For further detail, see [6]. We start with an auxiliary lemma.
Lemma 2.3. For any finite extension M /K, one has
c(M)
2

< vk(Dumyk) < c(M).

Proor. We have
[M : Mﬂf(v)] =1, foranyv>c(M)-1,
M:MnK"1>2, if—1<v<cM)-1.

Therefore

o | o(M)-1
VK(DM/K)=f (1——_(V)]d"<f dv = c(M),
-1 [M:MNK '] -1

o | | -1 (M)
VK(DM/K):f (1——_@]011;;5[ dv = .
U MR -1

The lemma is proved. O

and

2.3.1. We prove that i) & ii). First assume that vg(Dk,, k) = +oo. For any
¢ > 0, there exists K C M C K, such that vg(Dy/x) > c. By Lemma c(M) > c.
This shows that K,/ K doesn’t have finite conductor.

Conversely, assume that K.,/K doesn’t have finite conductor. Then for each

¢ > 0 there exists a nonzero element 8 € K, such that 8 ¢ E(C). Let M = K(8). Then
c(M) > c and vg(Dpyk) > § by Lemma Therefore vg (D jx) = +00.

Lemma 2.4. Assume that w is such that L C E(W). Then for any n >0
Ly Lin K= Ky Kun KL

Proor. Since E(W) /K is a Galois extension, K,, and E(W) are linearly disjoint

over K, ﬂf(w). Therefore K,, and "' L, are linearly disjoint over K, Nk (see
exercise 7). We have

(17) K, :K,nK"1=1K,- & nL,): & L)

Clearly K, - (FW) NL,) C L,. On the other hand, since L, = K,- Land L C K", we
have L, € K,- (K" N L,). Thus

Ly=K, K" Ly
Together with (I7), this proves the lemma. |

Exercise 7. Show that K, and E(W) N L, are linearly disjoint over K,, N E(W).



30 2. ALMOST ETALE EXTENSIONS

2.4.1. We prove that ii) = iii). By the multiplicativity of the different, for any
n >0 we have
vk (®r,/k,) =vk(®rL,/k) — vk(Dk, /k)-

Let w be such that L C E(W). Using formula (@) and Lemma|2.4] we obtain that

0 1 1
vk(Dr,/k,) = f ( o — ]dv =
Ky (KaNK D] [Ly s (LaNK )]

" I 1 " d
f ( —0 —) ]dv < f - —0
“IKy (KinK )] [Ly: (LyNK )] Ky s (KnNK )]

Since [K}, : (K; QE(V))] > [K, : (K, OE(W))] for any v < w, this gives the following
estimate for the different:

w+1
N
[Ky: (K,NK )]
Since K,/ K doesn’t have finite conductor, for any ¢ > 0 there exists n > 0 such that

K, : (K, OE(W))] > ¢, and therefore vg(Dr,/k,) < (Ww+1)/c (see exercise 8 below).
This proves that vg(®r_ /x..) = 0.

v(®Dr,/k,) <

Exercise 8. Assume that K.,/K doesn’t have a finite conductor. Show that for
any fixed w > -1

[K,: K, OE(W)] — +00 when n — +o0.

Hint: proof by contradiction. Show that if [K), : K, ﬂf(w)] is bounded, then

K,CF- ?(W) for some finite extension F/K. Show that in that case K., has a fi-
nite conductor.

2.4.2. We prove that iii) = iv). We consider two cases.

a) First assume that the set {e¢(K,,/K) | n > 0} is bounded. Then there exists n
such that e(K,,/K,,) = 1 for any n > ng. Therefore e(L,/L,,) = 1 for any n > ng and
by the mutiplicativity of the different

DLn/Kn = bLnO/KnO OLn > vn > n()

From Proposition [2.1]and assumption iii) it follows that Dy, /k, = O, for all n > n.
Therefore L, /K, are unramified and Lemmal[I.1](or just the well known surjectivity
of the trace map in unramified extensions) gives:

Trz, /k,(mp,) = mg,, for all n > ny.

Thus Trz k(M) = mg,.
b) Now assume that the set {e(K,,/K) | n > 0} is unbounded. Let x € mg_. Then
there exists n such that x € mg,. By Lemmal|[I.1]

B [VL,Z(DLH/K,,) +1
S S ] R

Try,k,(mg,) =my ,
/ Ko e(L,/K,)
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From our assumptions and Proposition it follows that we can choose n such
that in addition

< VK(X).

1
vk(®Dr,/k,) + LK

Then

ve,(®r,/k,)+1
I < A LA vi(®r,/k,) +

e(L,/K,) )e(Kn/K) < vk, (X).

1
e(Ln/K)

Since Try, /k,(mz,) is an ideal in Ok, this implies that x € Tr, /k,(my, ), and the
inclusion mg, C Try k. (mz.) is proved. Since the converse inclusion is trivial,
we have mg, =Trz k. (mr).

Exercise 9. 1) Show that Gg?) = Ik and that the wild ramification subgroup Gal(K/K™)
can be written as

(K/Ky) = UG
Ga( / tr) 8>OGK

(topological closure of U G(If) ).
>0

ii) Show that K/K has finite conductor and determine it.

3. Almost étale extensions

3.1. Almost etale extensions.
3.1.1. We introduce, in our very particular setting, the notion of almost etale
extension.

DErINITION. A finite extension L/K of non archimedean fields is almost etale if
and only if
Trpx(my) = mg.
It’s clear that an unramified extension of local fields is almost etale. Below we
give two other archetypical examples of almost etale extensions.

1) Assume that K is a perfect non archimedean field of characteristic p.
Then any finite extension of K is almost etale.

Proor. Let L/K be a finite extension. It’s clear that Trz g (my) C mg. Moreover,
Trz x(myg) is an ideal of Ok and for any @ € my,

lim |TrL/Kgo_"(a)|K =0.
n—-+oo
This implies that mg C Try/x(mz), and the proposition is proved. O

2) Assume that K, is a deeply ramified extension of a local field K of char-
acteristic 0. Then any finite extension of K, is almost etale. This was
proved in Theorem
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3.1.2. Let K be a perfect complete non archimedean field. We denote by Cx
the completion of K.

PropostTion 3.2. The field Ck is algebraically closed.

Proor. Proof by contradiction. Assume that there exists o ¢ Cx which is al-
gebraic over Cg. Let @) = a,as,...,a, denote the conjugates of a and let d, =
min |@; — a|g. Take B € K such that |8 —a| < d,. Then a € Ck(5) = Cg by Krasner’s

2<i<n
lemma. O

THEOREM 3.3. Assume that F is an algebraic extension of K such that any finite
extension of F is almost etale. Then

G =
C =F.
We first prove the following lemma.

Lemma 3.4. Let L/F be an almost etale Galois extension with Galois group G.
Then for any « € L and any ¢ > 1 there exists B € F such that

|a/ _'8|F <c r;le%('g(a) - Q'F'

Proor. Let ¢ > 1. By Theorem[2.2]iv), there exists x € Og such that y = Try/r(x)
satisfies

1e<blp<1.

1
Set=— ) g(ax). Then
2

geG
a 1 1
l@—Blr ==Y g == glex)| =|-> gx)(a-g@)
ygeG ygeG F ygeG F
< — -max|g(@) —a| ..
VF s<G Js(@) -l
The lemma is proved. O

34.1. P_roof of Theorem Leta € CgF . Choose a sequence (a,),eN of ele-
ments «, € K such that o, —a|x < p™". Then

lg(an) — anlk = lg(an —@) = (an—a)lg < p~", Vg € Gp.
By Lemma[3.4] for each n there exists 3, € F such that |3, — aulx < p™. Then

a= lim B, €F.

n—+0co

The theorem is proved.
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4. The normalized trace

4.1. In this section, K /K is a totally ramified Z,-extension. Fix a topologi-
cal generator y of I'. For any x € K,, set

1
Tk, /k(x)= ETI'KH/K(X)-

It’s clear that this definition doesn’t depend on the choice of n. Therefore we have
a well defined homomorphism

Tk./k : Koo — K.
Note that T,k (x) = x for x € K. Our first goal is to prove that Tx_x is continuous.
Proposition 4.2 (Tate). i) There exists a constant ¢ > O such that
[Tk, /x(x) = x|x < cly(x) — Xk, Vx € K.
ii) The map Tk_ k is continuous and extends by continuity to Keo.

Proor. a) By Proposition vk(Dk,/k, ) = ex +a,p™", where @, is bounded.
Applying Lemma|I.T|to the extension K, /K1, we obtain that

1-b/p"
(18) Teg,x, (Ol <Iply 7 Ixx,  VxeK,

with some constant b > 0 which doesn’t depend on n.
b) Set y, =y”". For any x € K,, we have

p—1
Trk, /K, () = ) Yy ().
k=0

Therefore

p—1 p—1
Trg, k., (0= px = A1 (0= = > (1 +yn1+-- 7D (1) ).
k=0 k=1

and we obtain that

< Il fyno1 () = Xk, VxeK,.
K

1
_TrKn/anl (x) - X
p

Since y,—1(x)—x=1+y+--- +y”"_1‘1)(y(x) —Xx), we also have

<lpI™" Iy(x) = xlk. Vx € K,.
K

c¢) We prove by induction on #n that

1
(19) ‘;TrKn/KM(x)—x

(20) Tk k() —x|, <coly@)-xk.  VxeK,

where c¢; = |plx and ¢, = ¢;—1 -|p|1_(b/pn. For n = 1, this follows from . Forn>?2
and x € K,,, we write

1 1
Tk k(X)—x= (;TrKn/Knl (x)— x) +(Tko/x(Y) =), y= ETYK,,/K,,,I (x).
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The first term can be bounded by (19). For the second term, we have

Tk k() =Yk < Catly3) =Yk = cnctlpl [ Trk, jk, , (¥(X) = X)|x

—b vl
< entlpl (o) - xk.

(Here the last inequality follows from (I8])). This proves (20).

d)Setc=ci [1 I = crlpl? PV Then ¢, < ¢ for all n> 1, and from 1;
we obtain that "

’TKw/K(x)—x|K <c-y(x) - xlk, Vx € Ko,

This proves the first assertion of the proposition. The second assertion is immedi-
ate. O

DeriNtTiON. The map Tk, /k - Ko — K is called the normalized trace.

4.2.1. Since Tk, /x is an idempotent map, we have a decomposition

Ko=KoK,

where K3, = ker(Tg_ k).

THEOREM 4.3. i) The map A — 1 is bijective, with a continuous image, on E‘jo

ii) For any A € Ug) which is not a root of unity, the map y — A is bijective, with
a continuous image, on f(\oo.

Proor. a) Write K, = K@K}, where K, = ker(Tg_/x) N K,. Since y—1 is in-
jective on K, and K, has finite dimension over K, y — 1 is bijective on K, and on
K = ngoK"O' Let p : K3, — KZ, denote its inverse. From Proposition we have
that

Ixlx < cl(y = D)k, Vx e Kg,,
and therefore
lo(0)lk < clxlk, Vx €K,
Thus p is continuous and extends to f(\;’o. This proves the theorem for 4 = 1.
b) Assume that A € Uﬁ(l) satisfies

A-1|g <c L

Then p(y — 1) = 1+ (1 — A)p and the series

0= iu— Do’
i=0

converges to an operator 8 such that pd(y — A) = 1. Thus y — A is invertible on E;’o.
Since A # 1, it is also invertible on K and therefore invertible on f(\oo.
c¢) In the general case, we choose n such that IAP" = 1|x < ¢ L. Since 27" # 1,
then by part b), y" — A" is invertible on Ke. Since
p'-1
YA = =) ) A
i=0
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v — A is invertible too. The theorem is proved. O

44. Letn: I — Ug(l) be a continuous character. We denote by Em(n) the
K-vector space K, equipped with the n-twisted action of I', namely
gxx=n(y)-yx, VYyel, xeKu®m.
We will also consider 7 as the character
Gk —-»>I'—> U;l)
and denote by Ck(n) the field Cx equipped with the n-twisted action of Gg.

THeEOREM 4.5 (Tate). Let Ko/K be a totally ramified I'-extension. Then the
following holds true:

i) K, = K and C§* = K.

ii)lfn:T— Ug) is a character with infinite image n(I'), then I’-(\oo(n)F =0and
Cx(m* =0.

Proor. We combine Theorems[3.3|and[4.3] Let y be a topological generator of
I. Since 7 =y — 1 is bijective on K2,, we have (K2,)' =0 and

KL =K'o(K) =K.
Moreover,
r —
Cx =(C™) =KL =K.
If n is a nontrivial character, set 4 = n(y). Then
K" = (x€ Koo | y(0) = 27" x)

Again by Theorem E;(n)r = 0. Since A # 1, we also have K(;)! = 0. Thus
Koo)' = 0. Finally

Cx = (Cks)' =(CE=@m) = Kulm' =0.






CHAPTER 3

From characteristic O to characteristic p and vice versa I:
perfectoid fields

1. Perfectoid fields

1.0.1. The notion of perfectoid field was introduced in Scholze’s fundamental
paper [23] as a far-reaching generalization of Fontaine’s constructions [10], [12].
Fix a prime number p. Let E be a field equipped with a non-archimedean absolute
value | - |g : E — R, such that |p|g < 1. Note that we don’t exclude the case of
characteristic p, where the last condition holds automatically. We denote by Of
the ring of integers of E and by mg the maximal ideal of Og.

DEeriNiTION. Let E be a field equipped with an absolute value | - |g : E — Rs
such that |p|g < 1. One says that E is perfectoid if the following holds true:
i)| - |g is nondiscrete;
ii) E is complete for | - |g;
iii) The Frobenius map
¢ : Op/pOg — Og/pOg,  ¢(x) =x"
is surjective.

We give first examples of perfectoid fields, which can be treated directly.

1) Let K be a non archimedean field. The completion Cg of its algebraic
closure is a perfectoid field.
2) Let K be a local field. Fix a uniformizer 7k of K and set 7, = ﬂ}(/p )

Then the completion of the Kummer extension K (ﬂ}(/p w) = QK (m,) is a
perfectoid field. This follows from the congruence "
m p m
[Z[ai]ﬁ] = Z[ai]” m,., (mod p).
i=0 i=0
The following important result is a particilar case of [14} Proposition 6.6.6].

TueEOREM 1.1 (Gabber—Ramero). Let K be a local field of characteristic 0. A
complete subfield K C E C Ckg is a perfectoid field if and only if it is the completion
of a deeply ramified extension of K.

2. Tilting

2.0.1. Inthis section, we describle the tilting construction, which functorially
associates to any perfectoid field of characteristic 0 a perfect field of characteristic

37
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p. This construction first appeared in the pionnering papers of Fontaine [9, [10].
The tilting of so-called arithmetically profinite (APF) extensions is closely related
to the field of norms functor of Fontaine—Wintenberger and will be studied in the
next chapter. In the full generality, the tilting was defined in the famous paper of
Scholze [25] for perfectoid algebras. This generalization is crucial for geomet-
ric application. However, in this introductory course, we will consider only the
arithmetic case.
2.0.2. Let E be a perfectoid field. Consider the projective limit

. . (4 [
@1 O =1imOp/ pOg = lim(Ox/pO & Op/pOg & ),
)

where ¢(x) = xP is the absolute frobenius. It’s clear that O is equipped with a
natural ring structure. An element x of Oy is an infinite sequence x = (x,)eN Of
elements x, € Og/pOg such that xg +1 = *n- Below we summarize first properties
of the ring Op, :
1) If we choose, for all m € N, a lift X,, € Og of x,,, then for any fixed n the
sequence @zm)meN converges to an element

(I’l) _ . /\pm
x" = limx,, € Of
m—oo

which does not depends on the choice of the lifts X,,. In addition, (x("))p =
x=Dfolall n> 1.

Proor. Since x! ., = Xpin_1, Wwe have X, = X,1,—1 (mod p), and an easy

m
m—1 m
man = ’)an wny (mod p™). Therefore the sequence (BCZ +m)miN
converges. Assume that x,, € O are another lifts of x,,, m € N. Then x,, = X,

induction shows that X,

(mod p) and therefore }Efz’zm = }‘ﬁm (mod p™*!). This implies that the limit doesn’t
depend on the choice of the lifts. O

2) For all x,y € Og» one has

(22) (x+y)™ = lim (x("”") +y(”+m))p , (xy)® = xMyw,
m—+o0

Proor. It’s easy to see that x” € O is a lift of x,,. Therefore x"*™ 4 y(+m) jg
a lift of X4 + Ypem, and the first formula follows from the definition of (x + y)™.
The same argument proves the second formula. O

3) The map x — (x(”))n>0 defines an isomorphism

(23) Ops = lim O,

xPe—x

where the right hand side is equipped with the addition and multiplication
defined by (22).

Proor. This follows from from 2). O
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Define
| “|gp : Opp = RU{+00},
|l = Ol

ProrosiTioN 2.1. i) | - | is a non archimedean absolute value on Opy.

ii) Opy is a perfect complete valuation ring of characteristic p with maximal
ideal mp, = {x € Opy | vy (x) > 0} and residue field k. It is integrally closed in its
field of fractions.

iii) Let E' denote the field of fractions of Opy. Then |Eb|Eb = |E|g.

Proor. 1) Let x,y € Op,. It’s clear that
oyl = 1Gey) e = 16y Ol = kO YOl = 1yl
Also,
ety = x4+ ) Qe =1 Lim O +y™y" g = Tim [x™ 4y
m—+o0o m—+00
E® |(x(m))p |E}

= max{’(x(o))|E, ’(x(o))|E} = max{|x|g, [yl ).

This proves that | - |» is an non archimedean absolute value.

ii) We prove the completeness of Op (other properties follow easily from 1)
and properties 1-3) above.

First remark that if y = (yo,y1,...) € O, then

< lim max{lx™ |, x|} = lim max{|(x™)”"
m—+oo

m—+oo

24) =0 o plp<Iplg.

Let (x,)zen be a Cauchy sequence in Opy. Then for any M > 0O there exist N such
that for all n,m > N

M
1Xn = Xl o < IpI% .
Writing x, = (Xn,0,Xn.15- - -)s Xm = (Xm0, Xm.1,...) and using , we obtain that for
alln,m>N
Xpi=Xm; forall 0<i<M.
This shows that for each i > 0 the sequence (x,, ;)nen 18 stationary. Set a; = 1imy,—, 10 Xp ;.
Then a = (ap,ay,...) € Op, and it’s easy to check that lim,,_, . X, = a. O

Exercise 10. Complete the proof of Proposition 2.1]
DeriniTioN. The field E” will be called the tilt of E.

PRrOPOSITION 2.2. A perfectoid field E is algebraically closed if and only if E’
is.

Proor. The proposition can be proved by successive approximation. See [7,
Proposition 2.1.11] for the proof that E” is algebraically closed and [[Z, Proposi-
tion 2.2.19, Corollary 3.1.10] for two different proofs of the converse statement.
Scholze’s original proof can be found in [25| Proposition 3.8]. See also Kedlaya’s
proof in [3].

O
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3. Witt vectors

3.1. In this section, we review the theory of Witt vectors. Consider the se-
quence of polynomials wo(xp), w;(xg,x1),... defined by
wo(xo) = Xo,
wi(x0,X1) = X{ + pxi,

wa (X0, X1,X2) = X

2
2
+px}| + p*xz,

ProposiTion 3.2. Let F(x,y) € Z[x,y] be a polynomial with coefficients in Z
such that F(0,0) = 0. Then there exists a unique sequence of polynomials

Do (x0,y0) € Z[x0, 0],
@ (x0,y0,X1,¥1) € Z[x0,y0,X1,Y1],

such that
(25)
wp(@o, D1,..., @) = F(Wn(x0, X1, .-, X0), Wi (0, Y15+ - -5 V) foralln>0.

To prove this proposition, we need the following elementary lemma.
Lemma 3.3. Let f € Z[xy,...,x,]. Then
7" (x0se e sx) = 7 (E, 2P (mod p™),  forallm> 1.
Proor. The proof is left to the reader. O

PRrOOF OF PROPOSITION The proposition could be easily proved by induction
on n. For n = 0 we have ®©g(xg,y0) = F(x0,y0). Assume that gy, Dy,...,D,_; are
constructed. From (23)) it follows that

1 , _
(26) q>,,:17(F(w,,(xo,xl,...,xn),wn(yo,yl,...,yn))—(cbg ot pl Ol ).

n—1
This proves the uniqueness. It remains to prove that ®,, has coeflicients in Z. Since
— p p d p"
Wn(x()a-”’xn—laxn)_Wn—l(xoa"’axn_]) (mo p )a
we have:

Q27) FWwa(x0,...s%n=1,%X1), Wn(Y0s - - - s Yn—1,Yn))

= FWuat (&, X w1 08,32 ) (mod p.
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On the other hand, applying Lemma [3.3|and the induction hypothesis we have

(28) @ - p" DL =y (Do), ), Pt (3 2DV )))
= F(Wn—l(xg, .. -7x£_1)7wn—1(y679' .. ’yf,l)_])) (mOd Pn)
From and (28) we obtain that
FW(X05 - Xn 1, X0)s Wa(Y05 > Yn-1,)) = D +---4+p" '@ (mod p").

Together with (26), this shows that @, has coeffiients in Z. The proposition is
proved. O

3.3.1. Let (fu)n>0 denote the polynomials (®,),>o for F(x,y) = x+y and
(81)n>0 denote the polynomials (®,),>0 for F(x,y) = xy. In particular,

4 4
X +y, — (x0 +y0)?
fo(x0,%0) = X0 +Y0,  fi(X0,¥0, X1,91) = X1 +y1 + ——2 > ,

20(x0,Y0) = Xoy0,  &1(X0,Y0,X1,1) = Xpy1 + X1Yg + PXIY1.

3.4. For any commutative unitary ring A, we denote by W(A) the set of in-
finite vectors a = (ag,ay,...) € AN equipped with the addition and multiplication
defined by the formulas:

a+b = (folao,bo), fi1(ao,bo,ai,by),...),
a-b = (go(ao,bo),g1(ap,bo,ai,by),...).

TueOREM 3.5 (Witt). With addition and multiplication defined as above, W(A)
is a commutative unitary ring with

1=(1,0,0,...).

Proor. a) We show the associativity of addition. From construction it’s clear
that there exist polynomials with integer coefficients (u,),0, and (v;,),>0 such that
U,V € L[X0,¥0,20, - - - »Xn,Yn>2n] and for any a,b,c € W(A)

(a + b) tc= (uo(aO’bO’CO)7 cee un(a()?b()aCOa s aanabn’cn)’ .. ')a
a+ (b +C) = (VO(aO’bO,CO), .. '7vn(a09b0’C09' .. ’a}’l’bl’bcl’l)’ .. )

Moreover

Wn(Uo, - .., un) = Wu(fo(X0,¥0), f1(X0,Y0, X1,1),-..) + Wn(Z0, . .., Zn)
= wy(x0,...,X,) + Wn(yo, cee ’yn) +wn(20,---,2n)

and

Wn(Vo, .., Vn) = Wn(X0, - .., Xn) + wa(fo(¥0,20), f1(¥0,20,¥1,21), - . .)
= Wu(X05 -+« X0) F Wi (V0 -+ > Vi) + Wi(205 - - -, Zn)-
Therefore
wu(Ug, ..., uy) = wa(vo,..., V), foralln >0,

and an easy induction shows that u, = v, for all n. This shows the associativity of
addition.
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b) We will show the formula
(29) (X0, X1, %2,-..)+ (50, 0,0,....) = Cxoyo, xiy2, 5130 ..)
In particular, it implies that 1 = (1,0,0,...) is the unity of W(A). We have
(x0,x1,%2,...)- (30,0,0,...) = (ho, hy,...),

where hg, hy,... are some polynomials in yg, xg, x1 ---. We prove by induction that
hy = xny;. For n =0 we have hy = go(x0,y0) = Xoyo. Assume that the formula is
proved for all i < n—1. We have

wp(ho,hy, ... hy) = wy(x0, X1, ..., X)Wi(30,0,...,0x).
Thus
n n—1 1 n—1 n
hg +ph11’ +ot p" 4 phy, = (xg +pr +o +p”x,,)yg .
By induction hypothesis, h; = xiygl for 0<i<n-1. Then h, = xny‘gn, and the

statement is proved.
Other properties can be proved by the same method. O

3.6. We assemble below some properties of the ring W(A):
1) Any morphism of rings ¢ : A — B induces
W(A) - W(B),  ¥lao,ai,...) = Wlao)¥(ar),...).

2) If p is invertible in A, then there exists an isomorphism of rings W(A) =~
AN,
Proor. The map
w: W) =AY, wag,ar,...) = (wolag), wi(ao, ar), walag,ar,az), )

is an homomorphism by the definition of the addition and multiplication
in W(A). If p is invertible, then for any (bg, b1, bs,...) the system of equa-
tions

wo(xo) = bo,  wilxo,x1) =b1,  wa(xo,x1,%2) = b, ...
has a unique solution in A. Therefore w is an isomorphism. O

3) For any a € A, define its Teichmiiller lift [a] € W(A) by

[a] = (a,0,0,...).
Then [ab] = [a][b] for all a,b € A.
Proor. This follows from (29). o

4) The shift map (Verschiebung)
Vi W(A) - W), (ao,a1,0,...) = (0,a9,a1,...),
is additive, i.e. V(a+b) = V(a) + V(b).

Proor. Can be proved by the same method. O
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5) For any n > 0 define
I,(A) ={(ap,ay,...) € W(A) | a; =0 for all 0 < i < n}.

It’s easy to see that (1,,(A)),>0 is a descending chain of ideals which de-
fines a separable filtration on W(A). Set

Win(A) := W(A)/I,(A).
Then
W(A) = &gﬂ W(A)/I,(A).

We equip W(A)/I,,(A) with the discrete topology and define the standard
topology on W(A) as the topology of the projective limit. It is clearly
Hausdorft. This topology coincides with the topology of the direct prod-
uct on W(A):

WMA)=AXAXAX:--,

where each copy of A is equipped with the discrete topology. The ideals
I,,(A) form a neighborhood base at 0 (each open neighborhood of 0 con-
tains 1,,(A) for some n).

6) For any a = (ag,ay,...) € W(A), one has
(ag,a1,a2,...) = )" V"[a,].
n=0

Proor. Can be proved by the standard method. O

Assume that A is a ring of characteristic p. Then A is equipped with the abso-
lute Frobenius endomorphism

p:A>A, @(x) = x".

In the remainder of this paper, will will only consider the Witt vectors with coeffi-
cients in semiperfect rings.

DErINITION. Let A be a ring of charactersitic p. We say that A is perfect if ¢ is
an isomorphism.

7) If A is a ring of characteristic p, then the map (which we denote again by
®)

@ W@A)->WA),  (ao.ai,...)— (af,a],..),
is a ring endomomorphism. In addition
eV =Vp=p.
Proor. We should show that
plag,ai,...) = (O,ag,af,...).
By definition of Witt vectors, the multiplication by p is given by

plag,az,...) = (ho(ap), hi(ag,ar),...),
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where h,(xg, X1,...,x,) is the reduction mod p of the polynomials de-
fined by

wu(ho,hy,... ) = pwy(x0, X1,...,Xn), n=0.

An easy induction shows that h,, = x” , (mod p), and 4) is proved. O

e
ProposriTion 3.7. Assume that A is an integral perfect ring of characteristic p.
The following holds true:
i) P W(A) = I,(A).
ii) The standard topology on W(A) coincides with the p-adic topology.
iii) Each a = (ag,ai,...) € W(A) can be written as

(ag,ay,az,...) = Z[aﬁi 1p".
n=0
Prookr. i) Since ¢ is bijective on A (and therefore on W(A)), we can write

pn+1w(A) — Vn+1(,0_(n+1)W(A) — Vn+lw(A) — In(A).

ii) Follows directly from 1).
iii) One has

(ag,a1,a2,..) = > V'([la)) = D p'e™"(anl) = > [ah 1"
n=0 n=0 n=0

THEOREM 3.8. i) Let A be an integral perfect ring of characteristic p. Then there
exists a unique, up to an isomorphism, ring R such that
a) R is integral of characteristic 0;
b) R/pR = A;
¢) R is complete for the p-adic topology, namely
~ n
R = l%lR/ P"R.

ii) The ring W(A) satisfies properties a-c).

Proor. 1) See [28, Chapitre II, Théoreme 3].
ii) This follows from Proposition O

3.9. Examples. 1) W(F,)~Z,.
2) Let E, be the algebraic closure of F),. Then W(F ) is isomorphic to the ring
of integers of Q.

4. The tilting equivalence

4.1. The ring A;j,(E). Let E be a perfectoid field.

DEerINiTION. The ring
Aint(E) := W(Op).
is called the infinitesimal thickening of Op».
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Each element of A;,¢(E) is an infinite vector
a = (ag,ay,ay,...), aHEO%,
which also can be written in the form
a= ) lay"|p".
n=0
ProposiTion 4.2 (Fontaine, Fargues—Fontaine). i) The map
Ok : Aint(E) > Og

0
O [Z[an]p"] = >y
n=0 n=0

is a surjective ring homomorphism.

given by

ii) ker(Og) is a principal ideal. An element § a,1p" € ker(6g) is a generator
of ker(6) if and only if vys(ag) = vi(p). "
Proor. 1) For any ring A set W,(A) = W(A)/I,,(A). Directly from the definition
of Witt vectors it follows that for any n > 0 the map
wy @ Wy(Og) — Ok,

pn pnfl n
wa(ao,ai,...,an) =a, +pa; +---+piay

is a ring homomorphism. Consider the map

M © Wa(Og/pOg) — Op/p™ ' Og,

n n—1
o
nn(aOaal,---,an)—ao +pa; +--+ play,

where a; denotes any lift of @; in Og. It’s easy to see that the definition of 1, doesn’t
depend on the choice of these lifts. Moreover, the diagram

Wn

Wu(OkE) Ok

| |

W, (Og/pOr) —— Og/p"™' O

commutes by the functoriality of the Witt vectors functor. This shows, that 17, is a
ring homomorphism. Let 6g, : W, 1(05’5) — Ofp/p"*'OF denote the reduction of
6 modulo p™*!.

Claim. From the definitions of our maps, it follows that 0 ,, coincides with the
composition

Wa(Ol) == Wo(0%) = Wo(Or/pOr) = Or/p"' O,
where the map pr is induced by the projection

0% = Op/pOp,  (Vo,Y1,---) P Yo.

The proof is left as an exercise (see below).
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The claim shows that 6, is a ring homomorphism for all #n > 0. Therefore 6
is a ring homomorphism.

The surjectivity of g follows from the surjectivity of the map

Oz : 0% — Og/pOg.

Exercise 11. 1) Let y = (yg,1,...) € Op». Show that

(o)™ =y" D, Ym>1.
2) Show that
@V =y",  vnxo0.
3) Leta=(aop,ai,...) € Ajnt(E), a; € Ogr. Show that the map 77, opro ™ sends
ato
0 1
ag)+pa(1 )+-~-+p
4) Deduce the claim from 3).
_ We continue to assume that E is a perfectoid field. Fix an algebraic closure
E of E and denote by Cg its completion. By Proposition C% is algebraically

nafln) )

closed and we denote by E’ the separable closure of E” in C%. Let E* denote the

p-adic completion of ED.
4.3. The untilt. We have the following picture

Cp ~2C,

EN\P-Vs.Eb

Let & be a complete intermediate field E b & C CE. Fix a generator ¢ of ker(0g).
Consider the diagram, where Og; := 0c,(W(O5)) :

0 — EAing(E) Aii(E) = 0y 0

0 —— EW(05) W(03) Oy 0
!

0 —— EAinr(Cg) —— Ainr(Cp) Oc, 0

‘We remark that
Ot = W(O3)/EW(O5).

Set Ff = Og:[1/p] (field of fractions of Og).
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Claim. %ﬁ is a perfectoid field and (‘Zyﬂ)b =g.

PROOF OF THE CLAIM. We admit that & is complete with ring of integers Og;. If
&= Y [a,]p”, then from Proposition ii) we have ag € my,. Thus

n>0
¢ modp=ap€mp.
Then
O5:/pOss = O /agOs.

The exercise below shows that (fs-ﬁ)" =3. O

Exercise 12. Let § be a perfect complete non-archimedean field of character-
istic p. Let @ € mg. Then
liLnOg-/ (IOg- =~ Og-.
¢
The isomorphism is given by the maps

limOgz/a05 — Oy, (Xdnz0 = nl_igloo% ;
¢
O — {iLnOg/a’Og, x> ("(x) mod @Og),s0,
@

This exercise shows that

lim O/ pOys = lim Og /a9 O = O,
¢ ¢

i.e. that (%) = .
ProrosiTioN 4.4. One has Clbg = Cp, where Cpy is the completion of ED.

Proor. Since E’ C C'}; and C'I’Z is complete and algebraically closed, we have
Cp C C%. Set § := Cpy. By the claim, (‘f\;ﬁ)b = §&. Since § is complete and alge-
braically closed, " is complete and algebraically closed by Proposition Since
iﬂ c Cg, we have %ﬁ C Cg. Therefore

b b
§=@F =Cj
The proposition is proved. O

Now we can prove the main results of this section.

THEOREM 4.5 (Scholze, Fargues—Fontaine). Let E be a perfectoid field of char-
acteristic 0. Then the following holds true:

i) Each finite extension of E is a perfectoid field.

ii) The tilt functor F v~ F’ induces an equivalence between the categories of
finite extensions of E and E' respectively.

iii) The functor

Fe gL F = (W(05)/EWO05)[1/p]

is a quasi inverse to the tilt functor.
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Proor. The proof below due to Fargues and Fontaine [7, Theorem 3.2.1].

a) The Galois group Gg = Gal(E/E) acts on Cg and C'%. LetE = EV. By Propo-
sition C% =E, and we have a map

(30) G — Aut(Cl,/E") 5 Aut(EY/E") 5 Aut(EY/E”) = G .
Conversely, again by Proposition 4.4 we have an isomorphism
€29 W(Og)/§W(OE) = Oc;,

which induces a map
G — Aut(E/E") - Aut(Cg/E) = G.

It’s easy to see that the maps (30) and (31) are inverse to each other. Therefore

Gg = Gp,
and by Galois theory we have a one-to-one correspondence
(32) {finite extensions of E} < {finite extensions of E’}

b) Let &/ E" be a finite extension. Then
§* = (W(O)/¢W(O)[1/p)] € CF*.

The following is admitted

F=Cpr
This shows that the Gaois correspondence
(33) {finite extensions of E"} — {finite extensions of E}

is given by the untilting & — &*. Moreover, by the claim F is perfectoid and
& =3. .

¢) Conversely, let F be a finite extension of E. Set § = (E?)°” . Then tautologi-
cally Gz =G and F = Cg“. From part b),

Gl —
C," =,
and F is a perfectoid field. Therefore F' = Fisa perfectoid field. Moreover
b
F'=(§") =3,
and
(F¥ =% =F

This concludes the proof. O



CHAPTER 4

From characteristic O to characteristic p and vice versa II:
the field of norms

1. Arithmetically profinite extensions

1.1. In this chapter, we introduce the theory of the arithmetically profinite
(APF) extensions and the field of norms construction of Fontaine—Wintenberger
[31].

DEerINITION. An algebraic extension L/ K is called arithmetically profinite (APF)

if and only if
Gk :GYVG) <+c0  Wv>-1.
If L/K is a Galois extension with G = Gal(L/K), then it is APF if and only if
G:GV)<+c0  Wv>-l.
It is clear that any finite extension is APF. Below we give some basic properties
and examples of APF extensions.
1) An infinite APF extension is deeply ramified.

—GLGY v —
Proor. We have K- "% = 6% = LN K", Therefore for each v

(LK : K] = (Gk : GLGY) < +oo.
This shows that L doesn’t have finite conductor. O

The converse of this statement is clearly wrong (K /K is deeply rami-
fied but not APF). However Fesenko [8] proved that every deeply ramified
extension L/K of finite residue degree and with discrete set of ramifica-
tion jumps is APF.

2) Let G = GLn(Z,). This group is equipped with the natural descending
filtration G[n] = {A € GLy(Z,) | A =1 (mod p")}. Let L/K be a totally
ramified Galois extension of local fields of characteristic 0 with the Galois
group G. Assume that there exists a continuous embedding of G in G. Let
G[n] denote the filtration on G induced by this embedding, namely

Gn]l=GngGln].
Then a theorem of Sen [26]] says that there exists a constant ¢ such that
Gt c Gnlc G, VneN.

49
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Here e = e(K/Q)) denotes the ramification index. From this theorem it
follows that

(G : G )< (G : GIn]) < (G : Gln) < +co.

Therefore L/K is APF.

3) Any totally ramified Z,-extension is APF. This remark applies to the p-
cyclotomic extension K({p~). This follows from 2), but also from Propo-
sition

1.2. We analyze the ramification jumps of APF extensions. First we extend
the definition of the ramification jumps to general (non necessarily Galois) exten-
sions. Let K be a local field of characteristic 0.

DeriniTioN. Let L/K be an algebraic extension. A real number v > —1 is a
ramification jump of L/ K if and only if

GV G £GYG,  Ve>0.

Proposrition 1.3. Let L/K be an infinite APF extension and let B denote the set
of ramification jumps of K. Then B is a countably infinite unbounded set.

Proor. a) Let L/K be an APF extension. First we prove that B is discrete. Let
vz = v1 2 —1 be two ramification jumps. Then

(Gk : GYVG) < (Gk : GYPGy) < +oo,
and
(GYVGL: GYPGy) < +oo.
Therefore there exists only finitely many subgroups H such that

GYGLcHcGYG,.

This implies that there are only finitely many ramification jumps in the interval

(v1,v2).
b) We prove that B is unbounded by contradiction. Assume that B is bounded
above by a. Then GLGB?) = ﬂOGLGggH). Letge GLG(I?). Then for any n > 0 we can
>

write g = x,,y, with x,, € G and y, € G(I?+n). Since Gy is compact, we can assume
that (x,),>0 converges. In this case (y,),>0 converges to some y € HQOG%’M). From

N Gﬁ?*") = {1}, we obtain that g € G;. Therefore GLG(I?) =Gy, and

n=0
(Gg : GLGY) = (Gx : G1) + o,
which is in contradiction with the definition of APF extensions. |

Let L/K be an infinite APF extension. We denote by B* = (b;),> the set of its
strictly positive ramification jumps. For all i > 1 define

b
—G1GY!
Ki=K %
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ProrosiTion 1.4, i) L = 'SlKi;

ii) K is the maximal tallnely ramified subextension of L/K;

iii) For all i > 1, K;+1/K; is a nontrivial finite p-extension.

iv) Assume that L/K is a Galois extension. Then for all i > 1 the group
Gal(K;+1/K;) has a unique ramification jump. In particular, Gal(K;41/K;) is a p-
elementary abelian group.

Proor. ii) The maximal tamely ramified subextension of L/K is

—GLPk
l’TI' = K ’

where Pk is the wild ramification subgroup. From definitions, it is easy to see that

Pk is the topological closure of UOG? in Gg. This implies that Gy Pk = GLG(I?'),
V>

and ii) is proved.

The assertions 1), iii) and iv) are clear. O

1.5. We record some general properties of APF extension.

ProposiTioN 1.6. Let K C F C L be a tower of extensions.
i)If F/K is APF and L/F is finite, then L/K is APF.

ii) If F/K is finite and L/ F is APF;, then L/K is APF.

iii) If L/ K is APF, then F/K is APF.

Proor. See [31), Proposition 1.2.3]. O

The definition of Hasse—Herbrand functions can be extended to APF exten-
sions. Namely, for an APF extension L/K define

v, ifve[~1,0],
— 'V
Vi) f G :GOCD)dr, ifv>0.
0

or/k(U) = Y7 k().
It is not difficult to check that if K ¢ F' c L with [F : K] < +o0, then

Yk =YL/FoYF/K, YLK = YF/K O PL/F-

2. The field of norms

2.1. In this Section, we review the construction of the field of norms of an
APF extension. Let K| = LN K" denote the maximal tamely ramified subextension
of L/K. Note that by Proposition|[I.4] K, /K is finite. Denote by &(L/K) the directed
set of finite extensions E/K such that of K; C E C L.

THEOREM 2.2 (Fontaine—Wintenberger). Let L/F be an infinite APF extension.
Set
X(L/K) = lln E*U{0}.
Ee&(L/K)
Then the following holds true.
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i) Let @ = (ag)g and B = (Bg)g. Then aff and a + 8 defined by the formulas

(af)E = agPE,
(@+P)E = E/elé?Ll/E)NE’/E(a’E’ +BE’)

are well defined elements of X(L/K).
ii) The above defined addition and multiplication equip X(L/K) with a struc-
ture of a local field of characteristic p with residue field ky .
iii) The valuation on X(L/K) is given by
v(@) = ve(ap),

forany E.
iv) For any &€ € k;, let [£] denote its Teichmiiller lift. For any Ky C E C L set

& 1= [£]'/155)
Then the map
kr — X(L/K), & (Ep)E

is a canonical embedding.

DEerntTioN. The field X(L/K) is called the field of norms of the APF extension
L/K.

2.3. Functorial properties.

2.3.1. In this section L/K denotes an infinite APF extension. Any finite ex-
tension M of L can be written as M = L(«), where « is a root of an irreducible
polynomial f(X) € L[X]. The coefficients of f(X) lie in some finite subextension
Fe&(L/K). Forany E € &(L/F),

F(o)NE =F,
and we set E” = E(a). The system (E")geg(r/k) is cofinal in E(M/K). Consider the
map
jM/L . X(L/K) Ed X(M/K)
which sends any « = (@g)r € X(L/K) to the element 8 € X(M/K) defined by
B = ag if E' = E(a) with E € &(L/F).

The previous remarks show that jj, is a well defined embedding.

THEOREM 2.4 (Fontaine—Wintenberger). i) Let M/L be a finite extension. Then
X(M/K)/X(L/K) is a separable extension of degree [M : L). If M/L is a Galois
extension, then the natural action of Gal(M/L) on X(M/L) induces an isomorphism

Gal(M/L) = Gal(X(M/K)/X(L/K)).
ii) The above construction establishes a one-to-one correspondence
{finite extensions of L} < {finite separable extensions of X(L/K)},

which is compatible with the Galois correspondence.
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Proor. We only explain how to associate to any finite separable extension M
of X(L/K) a canonical finite extension M of L of the same degree. Let M =
X(L/K)(@), where « is a root of some irreducible polynomial f(X) with coeffi-
cients in the ring of integers of X(L/K). We can write f(X) as a sequence f(X) =
(fE(X))Eesw/k) Where fg(X) € E[X]. Then M = L(a), where @ is a root of fg(X),
and E is of "sufficiently big” degree over K. See [31, Théoréme 3..2] for a detailed
proof. O

2.4.1. From this theorem it follows that the separable closure X(L/K) of
X(L/K) can de written as

X(L/IK)= U X(M/K).
[M:L]<oco

CorOLLARY 2.5. The field of norms functor induces a canonical isomorphism
of absolute Galois groups:

Gxwx)=Gr.

2.6. Comparision with the tilting equivalence.

2.6.1. Recall that an infinite APF extension if deeply ramified, and therefore
its completion Lisa perfectoid field. We finish this section with comparing the field
of norms with the tilting construction. A general result was proved by Fontaine and
Wintenberger for APF extensions satisfying some additional condition.

DEerINITION. A strictly APF extension is an APF extension satisfying the follow-
ing property:

. Yr/k(v)
1$r3+12>f(G<0> GG,
k YL Yk

From Sen’s theorem (see Section 1.1) it follows that if Gal(L/K) is a p-adic
Lie group, then L/K is strictly APF.

2.6.2. Let L/K be an infinite strict APF extension. Recall that K; denotes
the maximal tamely ramified subextension of E/K. Fot any E € &L/K) set d(E) =
[E : K1]. For any n > 1 let &, denote the subset of extensions £ € &(L/K) such that
p" divides the degree d(E). Let a = (ag)g € X(L/K). It can be proved (see [31}
Proposition 4.2.1]) that for any n > 1 the family

AP peg,

converges to an element x, € L. Once the convergence is proved, it’s clear that
xh = xg _, for all n, and therefore x = (x,),>1 € I'. This defines an embedding

X(L/K) —I".

TueorREM 2.7 (Fontaine—Wintenberger). Let L/K be an infinite strict APF ex-
tension. Then o
X(L/K)™ =T

Here X(L/K)™ denotes the completion of the maximal purely inseparable exten-

sion of X(L/K).
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Proor. See [31, Théoreme 4.3.2 & Corollaire 4.3.4]. O

Remark 2.8. In [8]], Fesenko gives an example of a deeply ramified extension
which doesn’t contain infinite APF extensions. In some sense, this shows that the
theory of perfectoid fields doesn’t reduce to the theory of APF extensions.

3. The case of cyclotomic extensions

3.0.1. In this section, we consider cyclotomic extensions of local fields. Let
F be an unramified extension of Q,. Set F,, = F({,) and Fo = UIF,,. Let I'r =
nz

Gal(F/F). Then we have a canonical isomorphism
xriTr=Zh Y@ =%, yelr

The extension F,/F is totally ramified and F/F is a Z,-extension. Therefore
Fo/F is APF. Set nr, = {;» — 1. Then &, is a uniformizer of F,,. From (1 +7,41)” =
1+, we have

(34) S(7ns1) =0, Xp+po_1+---+pX—7rn_
Therefore (for p # 2)
(33) NF, .1 /F,(Tps1) = Ty =7, (mod p).

For p =2, Nf,,,/r,(Tpn+1) = =1, = m, (mod 2) and the congruence holds again.
From (34) and Proposition [3.2] we have for the different of F,,1/F:

D 1Fy = POF,.-

Therefore
VEu (DEo/F,) = [Fne1 t Fl=(p= 1D+ 1), t:=p"-1
Applying Corollary [I.4] we obtain that for all @, € O

n+l

Vi, (NF,, /F,(@+B)—NF,,, /(@) —NF,,,/F,(B)) > W.
Equivalently
(36) Vvr(NF,, /F,(@+B) = NF,,,/r,(@) = NF,,,/F,(B))
-0 =D 1 p-t
p(p—T1)p™! p" p

foralln > 1. Set C, := Cyq,.

Exercise 13. Let a € m» be such that v(a) < v(p) (one can take v := v, then
P
the condition reads vp(p) < 1). Show that
OC?, = @OCP/GOCP-
]
Each element x € Op,,, can be written in the form

x= ) [&drt.,,
k
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where [£;] are Teichmiiller lifts of & € kr. From (35) and (36) we have
-1
ve(NEy D=2 2 2= v 1,
p

Choose a € F| such that 0 < vp(a) < ijl @if p # 2, one can take a = mry). Therefore
we have a commutative diagram, where N denotes the norm map:

N N
Or, Or, Or,

Lo

Or, /(@) <~— O, /(a) <~— O, /(a) ~— ---

A T

Oc, /(@) <*— Oc, /(@) <~— Oc, /(@) ~— -

The projective limit of the upper row is X(F) := X(F«/F). The projective limit of
the bottom row is O . Therefore this diagram gives an embedding
P
Oxwr) = Oci

which agrees with the embedding constructed in Section [2.6] We can also replace
C,, by the perfectoid field F, in the bottom row. This gives the embedding Ox ) —
Op -

3.1. We denote by Er the image of X(F) in Ci’,. Since C?, is algebraically
closed, we have an embedding X(F) of the separable closure of X(F) in C*I’,. We
denote by E := Ef the image of X(F) in C*I’]. Then for the Galois groups we have:

GFoo = GX(F) = GE.

Let now K be a finite totally ramified extension of F' and let K., = K({)~) be
its cyclotomic expension. Then [K : Fo] < [K : F] < +00. Therefore X(K) :=
X(Ks/K) = X(Ks/F) is a finite extension of X(F'), and corresponds to a unique
intermediate field Er C Ex € E. We have

Ex = ECk~.






CHAPTER 5

p-adic representations of local fields

1. (-adic representationss

1.1. Let E be a field equipped with a Hausdorff topology and let V be a
finite dimensional E-vector space. Each choice of a basis of V fixes topological
isomorphisms V ~ E" and Aut(V) ~ GL,(F) where n = dimy(E). Note that V is
equipped with the induced topology.

DErINITION. A representation of a topological group G on V is a continuous
homomorphism
p: G- Aut(V).

Fixing a basis of V we can view a representation of G as a continuous homomor-
phism G — GL,(E).

Let K be a field and let K be a separable closure of K. We denote by Gk
the absolute Galois group Gal(K/K) of K. Recall that Gk is equipped with the
inverse limit topology and therefore is a compact and totally disconnected topolog-
ical group.

1.2. Example. Equip E with the discrete topology. Let p : Gk — GL,(E) be
a representation of Gg. Then H := p~!{1} is an open normal subgroup in Gg. Since

any open subgroup of Gk has a finite index, (Gg : H) < +o0. Set L := EH. Then
L/K is a finite extension, Gal(L/K) = Gk /H, and p factors through Gal(L/K) :

Gx — GLu(E)

S

Gal(L/K).

DEerINITION. Let € be a prime number.

i)An {-adic Galois representation is a representation of Gk on a finite dimen-
sional Qg-vector space.

ii) An Z¢-adic representation is of Gg is a free Le-module T of finite rank
equipped with a continuous homomorphism p : Gx — Autg,(T).

Sometimes it is convenient to consider representations with coefficients with a
finite extension E of Q.
If p : Gk — Autg,(V) is an (-adic representation, we will write

g(x) := p(g)(x), VgeGg,xeV.
57
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1.3. A morphism of ¢-adic representations is a linear map f : Vi — V; such

that
fg(x)=gf(x),  VgeGk, xeVi.

We denote by Repgy,(Gk) the category of p-adic representations of the absolute
Galois group of a field K. Below we assemble some basic properties of this cate-
gory.

1.3.1. Repq,(Gk) is an abelian category.

1.3.2. Repq,(Gk) is equipped with the internal Hom:

HomQ[(Vl, Vz).

Namely, Homg,(V1, V) is the Q,-vector space of all Qg-linear maps f : Vi — V>
equipped with the following linear action of Gg:

(gHx) =g(f(g”'(x)), VgeGk, xeVi.

This induces a structure of an £-adic representation on Homg, (V1, V2).

1.3.3.  For each V, we have the dual representation V* = Homg,(V,Q;). The
action of G on V* is given by (gf)(x) = f(g~'(x)).

1.3.4. Repq,(Gk) is equipped with ®. Namely, if V; and V; are {-adic repre-
sentations, the structure of an ¢-adic representation on the tensor product V; Qg V>
is given by

g(x1 ®x2) = g(x1) ®g(x2), g €Gg.

Proposition 1.4. For any €-adic representation V, there exists a ZL¢-lattice sta-
ble under the action of Gg.

Remark 1.5. The proposition shows that the functor

Repy, (Gk) — Repg,(Gk),
T—T®z, Q/
is essentially surjective.
Proor. Let {eq,...,e,} be a basis of V and

T’ =Zee1+---+Zyey
the associated lattice. The group
U = Autg,(T") ~ GL,(Z¢) € GL,(Qy) = Autg,(V)

is open in Autq,(V). Therefore H :=p }(U) c G is open and (G : H) < +co.
Replacing H by NgHg™!, where g runs the representatives of left cosets of H, one
8

can assume that H is normal in G. Write G = _61 giH and set
=
T=gi(T)+-+gm(T.
Then T is a lattice in V, which is stable under the action of Gg. O

Below we give some examples of £-adic representations.
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1.5.1. Roots of unity. Let ¢ # char(K). The group Gk acts on the groups ue of
{"-th roots of unity via the cyclotomic character y, : Gk — Z;

g =09, ifgeGy, L€upm.
Set Z,(1) = El e and Qe(1) = Z(1) ®z, Q¢. Then Q(1) is a one dimensional
n
Q-vector space equipped with a continuous action of Gg. The homomorphism
Gk — Aut(Qe(1)) ~ Q; concides with y.

1.5.2. Elliptic curves. Let E be an elliptic curve over a field K of character-
istic 0. The group A[£"] of {"*-torsion points of E(K) is a Galois module which is
isomorphic (not canonically) to (Z/€"Z)* as an abstract group. The £-adic Tate
module of A is defined as the projective limit

—1i n
T/(E) = limE[("],
n
with respect to the multiplication-by-£ maps E[£**!] — E[£"]. This is a free Z-
module of rank d equipped with a continuous action of Gg. The associated vector
space Ve(A) = T¢(A)®z, Q; gives rise to an £-adic representation

pEc » Gk = Aut(V((E)).

Note that T¢(F) is a canonical Gk -lattice of V¢(E). The reduction of T¢(E) modulo
¢ is isomorphic to E[{].

1.6. {-adic representations of local fields (¢ # p). From now on, we consider
{-adic representations of local fields. Let K be a local field with residue field
kg of characteristic p. To distinguish between the cases £ # p and £ = p, we will
use in the second case the term p-adic keeping £-adic exclusively for the inequal
characteristic case.

We consider the ¢-adic case. Recall that for the tame quotient of the inertia
subgroup we have an isomorphism

Gal(K"/K") ~ ]_[ Z,
q prime
(see (12)). Let ¥, denote the projection
Vet Ix — Gal(K"/K"™) — Z,.
The following general result reflects the Frobenius structure on the tame Galois
group.
TaeEOREM 1.7 (Grothendieck ¢-adic monodromy theorem). Let
o Gg — GL(V)

be an {-adic representation. Then the following holds true:

i) There exists an open subgroup H of the inertia group Ix such that the auto-
morphism p(g) is unipotent for all g € H.

ii) More precisely, there exists a nilpotent operator N : V — V such that

p(g) = exp(NY(g)),  VgeH.
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iii) Let I/:\rK € Gk be any lift of the arithmetic Frobenius Frg. Set F = p(l’:\rK).
Then

FN = gx NF,

where qg = |kk|.

Proor. See [29] for details.
a) By Proposition[I.4] p can be viewed as an homomorphism

p GK e GLd(Zg).

Let U = 1+ ¢>My(Z¢). Then U has finite index in GL4(Z,), and there exists a finite
extension K’ /K such that p(Gg-) C U. Without loss of generality, we may (and will)
assume that K’ = K.

b) The wild ramification subgroup Pk is a pro-p-group. Since U is a pro-{-
group with £ # p, we have p(Pk) = {1}, and p factors through the tame ramification
group Gal(K"/K). Since Gal(K"/K") =~ []Z,, the same argument shows that p

q

factors through the Galos group of the extension K{Er /K, where
K= K" ().
Let 7, be the automorphism that maps to 1 under the isomorphism Gal(Kz,r JKY) ~
Z,. By Proposition Gal(K{t,r /K) is the pro-{-group topologically generated by
7, and any lift f, of Frobenius with the single relation
(37) frref; ' =7IK,
c¢) Set X = p(1¢) € U. The {-adic logarithm map converges on U, and we define
- X-1y
N :=log(X) = Z(—l)”“(—).
n=1 n

From definitions it follows that for any g € Ix we have

p(g) = p(t!") = exp(Nye(g)).

Moreover, applying the identity log(BAB™') = Blog(A)B~! to and setting F =
p(fr), we obtain that

FNF~' = ggN.

d) It remains to show that N is nilpotent. From the last formula it follows that
N and gg N have the same eigenvalues. Therefore they are all zero, and the theorem
is proved. O

2. Formal groups

2.1. Formal groups.
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2.1.1. In this section, we make first steps in studing p-adic representations
arising from p-divisible groups.

DErINITION. Let A be an integral domain. A one-dimensional commutative for-
mal group over A is a formal power series F(X,Y) € A[[X, Y]] satisfying the fol-
lowing conditions:

i) F(FX.Y),2)=F X, F(X.2));

i) Z(X,Y) = Z (Y, X);

iii) F(X,0) =X and F(0,Y)=7Y;

iv) There exists i(X) € XA[[X]] such that F (X,i(X)) = 0.

It can be proved that ii) and iv) follow from i) and iii). We will often write
X+ 7Y instead Z (X,Y). _

2.1.2. Examples. 1) The additive formal group G,(X,Y) = X + Y. Here i(X) =
-X.

2) The multiplicative formal group G,,(X,Y) = X+ Y + XY. Note that G,,(X, Y) =
(1+X)(1+Y)-1.Here i(X) = - Tix

3) More generally, for each a € A,

F(X,Y)=X+Y +aXY

is a formal group over A. Here i(X) = -

l+aX
2.1.3.  We introduce basic notions of the theory of formal groups. An homo-

morphism of formal groups .# — G over A is a power series f € XA[[X]] such that
fo F(X,Y)=G(f(X), f(Y)). The set Homu(.%#,G) of homomorphisms .% — G is
an abelian group with respect to the addition defined as

fog=6(f(X),8(X)).
We set Enda(.%) = Homa(%#,.%). Then Enda(.%) is a ring with respect to the
addition defined above and the multiplication given by the composition of power
series:
fogX) = f(g(X)).
2.1.4. The module Q}\[[X]] of formal Kihler differentials of A[[X]] over A is
the free A[[X]]-module generated by dX.

DEeriNntTiON. We say that w(X) = f(X)dX € Qll[[X]] is an invariant differential
form on the formal group 7 if
wX+27Y)=wX).
2.1.5. The next proposition describes invariant differential forms on one-
dimensional formal groups. We will write .7/(X,Y) (respectively .7,(X,Y) the

formal derivative of % (X,Y) with respect to the first (respectively second) vari-
able.

ProposiTiON 2.2. The space of invariant differential forms on a one-dimensional
formal group % (X,Y) is the free A-module of rank one generated by
dX
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Proor. (See, for example, [17, Section 1.1].) a) Since F(V,X) =Y +X+
(terms of degree > 2), the series .% 1(0,X) is invertible in A[[X]], and

ax

Differentiating the identity
F(Z,F7(X,Y)) = F(F(Z,X),Y)
with respect ot Z, we have
FZ,F(X.Y)) = F(F(ZX)Y) F/(ZX).
Taking Z = 0, we obtain that

FIXY) 1
Z10,Z(X,Y))  F[0,X)’

or equivalently, that
d7(X,Y) dX
F(0,7(X,Y)  F/(0,X)

This shows that w(X) is invariant.
b) Conversely, assume that w(X) = f(X)dX is invariant. Then

AFXYNF(XY) = f(X),
and setting X = 0, we obtain that f(Y) = .% 1(0,Y)f(0). Therefore
w(X) = f(O)wz(X),
and the proposition is proved. O

REMARK 2.3. We can write

[e9)

wz(X) = (ZanX”)dX, where a, € A and ag # 0.
n=0

2.3.1. Let K denote the field of fractions of A. We say that a power series
A(X) € K[[X]] is a logarithm of ., if

AX+7zY)=AX)+AY).
ProposiTiON 2.4. Assume that char(K) = 0. Then the map
X
w A,(X) = f w
0
establishes an isomorphism between the one-dimensional K-vector space gener-

ated by invariant differential forms on % and the K-vector space of logarithms of

F.
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Proor. a) Let w(X) = g(X)dX be a nonzero invariant differential form on .%.
Set g(X) = 2 b, X". Since char(K) = 0, the series f(X) has the formal primitive
n=0

X o by
A,(X) = fo w= ZT‘X" e K[[X]].
n=1

The invariance of w reads
I XY)F((X.Y) = g(X),
and taking the primitives, we obtain that
AdwX+2Y)=2,X)+h(Y)

for some A(Y) € K[[Y]]. Putting X = 0 in the last formula, we have A(Y) = 4,(Y),
and 1,(X +2 Y) = 1,(X) + 1,(Y). Therefore A, is a logarithm of .Z.

b) Conversely, let A(X) be a logarithm of .% . Differentiating the equality A(Y + #
X) = A(Y) + A(X) with respect to Y and setting Y = 0 we obtain that

, A'(0)
AX)=——.
M=Z 00
Therefore w = A’(0)w 4, and the proposition is proved. O

DEeFINITION 2.5. Let
X
/L@(X)=f wz.
0

Note that 1 #(X) is the unique logarithm of .% such that
Az(X)=X (mod deg2).

From Proposition [2.4]if follows that over a field of characteristic 0 all formal
goups are isomorphic to the additive formal group. Indeed, A # is an isomorphism

F — Gyg.
2.5.1. Example. For the multiplicative group we have
dx = X"
X)=——, g, =logl+X)=» (-1)"'—.
w6, X)= 7= Ae,(X)=logl+X)= ) (1)

n=1

2.5.2.  We consider formal groups over the ring of integers of a local field K
of characteristic 0 and residue caracteristic p.
For each n € Z we denote by [#] the formal multiplication by n:

X+z+Xz+z--+X, ifn=0,

n

[n] =
i(([=nD), ifn<0.
This defines an injection

[ 1:Z — Endp, (%), n—nlX)=nX+---.
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It can be easily checked that this map can be extended by continuity to an injective
map
[ 1:Z, - Endo, (%), a—[alX)=aX+---.

ProposiTION 2.6. Let .F be a formal group over Ok. Then either
[pl(X)=0 (mod 7g)

or there exists an integer h > 1 and a power series g(X) = c{X+--- such that c; #£0
(mod 7g) and

(38) [p1X) = g(X”")  (mod mg).

Proor. The proof is not difficult. See, for example, [16, Chapter I, § 3, Theo-
rem 2]. O

Dermnition 2.7. If [pl(X) = 0 (mod nig), we say that F has infinite height.
Otherwise, we say that ¥ is p-divisible and call the height of ¥ the unique h > 1
satisfying the condition (38).

2.7.1. Now we can explain the connection between formal groups and p-adic
representations. Any formal group law .#(X,Y) over Ok defines a structure of
Z,-module on the maximal ideal m of K:

a+gzf:=F(a,p), a,pecmg,
7, X mg — mg, (a,@) - [a](a).

We will denote by .7 (my) the ideal my equipped with this Z,-module structure.
The analogious notation will be used for Og-submodules of mg.

ProposiTioN 2.8. Assume that % is a formal group of finite height h. Then

i) The map [p] : F (mg) — F (mg) is surjecive.

ii) The kernel ker([p]) is a free 1] pZ-module of rank h.

Proor. i) Consider the equation

[PI(X) = a, @ € Z (mg).

A version of the Weierstrass preparation theorem (see, for example, the proof of
[20, Theorem 4.2]) shows that this equation can be written in the form f(X) = g(a),
where f(X) € Og[X] is a polynomial of degree ph such that f(X) = x7" (mod 7g),
and g € Ok[[X]]. Therefore the roots of this equation are in mz.

ii) To prove that ker([ p]) is a free Z/ pZ-module of rank # we only need to show

that the roots of the equation [p](X) = O are all of multiplicity one. Differentiating
the identity

[PI(F (X, Y)) = F ([ pl(X),[pI(Y))
with respect to Y and setting Y = 0, we get
[p) (X)- F(X,0) = F;([p)(X),0).

Let [p](¢) = 0. Since (X, 0) is invertible in Og[[X]] and £ € mg, we have .7(£,0) #
0 and [p]'(£) # 0. Therefore ¢ is a simple root. O
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2.8.1. Forn>1,let Tz, denote the p”-torsion subgroup of .# (k). From
Proposition it follows that as abelian group, it is isomorphic to (Z/p"Z)" and
sits in the exact sequence

[p"]
0> Ty, — F(mg) — F(mg) — 0.
As in the case of abelian varieties, the Tate module of .% is defined as the
projective limit
22N M P
T(J‘) - l(inTJ N
n
with respect to the multiplication by p maps. Since the series [p"](X) have coef-
ficients in Ok, the Galois group Gk acts on E# ,, and this action gives rise to a
Z,-adic representation

pz : Gk — Autz (T(F)) = GLy(Z)).
We will denote by V(%) = T(F )®z, Q) the associated p-adic representation.

3. Classification of p-adic representations: the case of characteristic p

3.1. In this section, we turn to p-adic representations. The main reference is
[11]. It turns out, that it is possible to give a full classification of p-adic represen-
tations of the Galois group of any field K of characteristic p in terms of modules
equipped with a semilinear operator. This is explained by the existence of the ab-
solute Frobenius structure on K. To simplify the exposition we will work with the
purely inseparable closure F := K™ of K. It is a perfect field with Gy = G. How-
ever, it is not absolutely necessary. On the contrary, it is sometime preferable to
work with non-perfect fields.

Consider the ring of Witt vectors

Oz =W(F)

Recall that O # is a complete discrete valuation ring of characteristic 0 with maxi-
mal ideal (p) = pO.# and residue field F. Its field of fractions .# = O #[1/p] is an
unramified discrete valuation field.

DeriNiTION. Let A = F,O0 4 or F.

i) A p-module over A is a finitely generated free A-module (respectively . -
vector space) D equipped with a semilinear injective operator ¢ : D — D. Namely,
@ satisifies the following properties:

p(x+y)=px)+o(y), VYx,yeD,
p(ax) = p(a)p(x), YaeA,xeD.

ii) Assume that A = F or Og. A p-module D over A is étale if the matrix of
the operator ¢ : D — D is invertible over A. This condition does not depend on the
choice of the basis.

iii) An étale p-module over F is a finitely generated free % -module equipped
with a semilinear operator ¢ and having an étale O z-lattice.
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3.1.1. A morphism of ¢-modules is an A-linear map f : D; — D, such that
fle(x) =e(f(x)),  VYxeD.

We denote by Mﬁ’ét the category of étale p-modules over A.

Exercise 14. We consider A as an A-module via the Frobenius map ¢ : A —» A
(so a € A acts on x € A as the multiplication by ¢(a)). For a ¢-module D, let
D®4,, A denote the tensor product of A-modules D and A. We consider D®, , A
as an A-module:

Ad®a)=d® Aa, 1A€A d®aeD®y,A.
1) Show that the map
®:D®y,A— D, d®aw ap(d)

is A-linear. Show that @ is an isomorphism if and only if D is étale.
ii) Let Dy and D, be two étale p-modules. Denote by

Hom(D1, D;) := Homu (D1, D)

the A-module of all A-linear maps f : D; — D> (so, in general, f is not compatible
with the action of ¢). Define the map ¢(f) as the composition:

o1 f®id W)
o(f) : D1 — D1 ®s A — Dr®s A — Ds.

Show that the following holds:

a) (f)(p(d)) = o(f(d));
b) ¢(f) = f if and only if f(¢(d)) = ¢(f(d)), Vd € D;
¢) Hom(D, D,) is an étale ¢-module.
Exercise 15. Let D; and D, be two ¢-modules. Equip D ®4 D, with the
diagonal action of ¢ :
o(d1 ®d>) = p(d1) ®p(d>).
Show that if that D and D, are étale, then D ®4 D> is.

ProposiTiON 3.2. Let D be an étale p-module over F of dimension n. Then
Hompg(D, F)*=! and (D®r F)¥=" are F,-vector spaces of dimension n.

Proor. a) Fix a basis {eq,...,e,} of D. Write:
<p(e,-) = Zaijej, ajj € F, 1<i<n.
i=1
Consider the F,-vector space Hompg(D, F)#=!. Let fe Hompy(D, F). Then o(f)=
f if and only if f(p(d)) = ¢(f(d)) for all d € D (see Exercise 14). Taking d =
el,...,ey, we see that o(f) = f if and only if the vector (f(ey),...f(en)) € Flisa
solution of the system
n
Xf—Zain]:O, 1<i<n.
i=1
Claim: The solutions of the above system form a F,-vector space of dimension n.
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ComMENTS oN THE cLAIM. The claim follows from standard results of commu-
tative algebra (which are beyond the program of this course). Here are the details.
LetI C F[Xi,...,X,] denote the ideal generated by

N

n
Xf—Za,-ij, 1 <i<n.
i=1

Consider the algebra A := F[X|,...,X,]/I. Therefore we have isomorphisms:
Homp(D, F)#~! = Homp_y4(A, F) = Spec(A)(F).

The algebra A is étale over F if and only if the matrix A = (a;)1«;, j<x 18 invertible if
and only if D is an étale p-module. On the other hand, if D is étale, then the cardi-
nality of Spec(A)(f) is p”", and Hompg(D, F)*=! is a F,-vector space of dimension
n (see, for example, [22, Chapter I, §3] ). O

b) For the dual module D*, we have a canonical isomorphisms:
D®p F ~ Homp(D*,F)®r F ~ Homp(D*,F).
Then
(D®F F)*=! ~ Homp(D*, F)*~!,

and applying the previous remark to D*, we see that (D ®F F)¥=! is a F,-vector
space of dimension n. The proposition is proved.
O

3.3. Following Fontaine [[11]], we construct a canonical equivalence between
the category Repr (Gk) of modular Galois representations of Gx and M‘;’ét. For
any V € Repr (Gg), set:

Dr(V) = (V &g, ).
Since Gk acts trivially on F, it is clear that Dr(V) is an F-module equipped with
the diagonal action of ¢ (here ¢ acts trivially on V). For any D € M‘I’;’ét, set:

Vr(D) = (D®r F)*".

Then Vg(D) is an F,-vector space equipped with the diagonal action of Gk (here
Gk acts trivially on D).

THEOREM 3.4. i) Let V € Repr(GK) be a modular Galois representation of
dimension n. Then Dgp(V) is an étale p-module of rank n over F.

ii) Let D € M‘;’ét be an étale p-module of rank n over F. Then Vi(D) is a
modular Galois representation of Gk of dimension n over F .

iii) The functors D and V establish equivalences of tannakian categories

Dy : Repp (Gk) > MEY, Vi : M4 - Repy (Gx).

which are quasi-inverse to each other. Moreover, for all T € Repr(GK) and D €

Mfiet, we have canonical and functorial isomorphisms compatible with the actions
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of Gk and ¢ on the both sides:
Dp(T)® F ~T®y, F,
Vi(D)®, F ~ D& F.
Th proof of this theorem uses the following result:

Tueorem 3.5. [Hilbert’s theorem 90] Let E be a field, and let X be a finite-
dimensional vector space over the separable closure E of E. Assume that X is
equipped with a continuous semi-linear action of Gg := Gal(E/E):

gx+y)=g(x)+g(y),  VgeGg, xyeX,
g(Ax) = g(Dg(x), VgeGg, xeX.

Then:

i) X has a basis fixed by Gp;

ii) The map

XGE®EE—>X, XA Ax

is an isomorphism.

Proor. In the course, we omit the proof of this theorem. It follows from the
standard form of the non-abelian Hilbert’s theorem 90. Here are some detail.

i) Let {ey,...,e,} be abasis of X. For any g € Gal(E/E), let A, € GL,(E) denote
the unique matrix such that

gler,...,ep) = (er,...,ex)Aq.
Then the map
f: Gal(E/E) — GL,(E), 1) =4,
is a 1-cocyle, namely
f(g182) = f(81)(81/(82)), V81,82 € GE.
Hilbert’s Theorem 90 (as statEd, for example, in [24, Theorem 6.2.3]) says that
there exists a matrix B € GL,(F) such that
f(@=BgB)',  VgeGr.

It is easy to check that (ey,...,e,)B is fixed by Gg. Therefore X has a basis fixed
by Gg. This proves the first assertion.

i1) The second assertion follows from 1). O

Proor oF TueorREM[3.4] a) Let V € RepFP (Gk) be a modular representation of
dimension n. The Galois group G acts semi-linearly on V ®g, F. From Hilbert’s
Theorem 90, it follows that D(V) = (V ®p, F)CF has dimension n over F, and that
the multiplication in F induces an isomorphism

(Ver, F)°" e F — V&, F.

Hence:
De(V)®r F — V®Fp F.
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This isomorphism shows that the matrix of ¢ is invertible in GL,(F) and therefore
in GL,,(F). This proves that Dg(V) is étale.
Taking the ¢-invariants on the both sides, one has:

(39) VeDp(V)) = Dp(V)®F F)*~' = (Veg, F)*~' = V.

b) Conversely, let D € M?ét. By Proposition Vr(D) is a F-vector space
of dimension n. Consider the map

(40) @: (D®FF)*~'®, F > D& F,

induced by the multiplication in F. We claim that this map is an isomorpism. Since
the both sides have the same dimension over F, it is sufficient to prove the injec-
tivity. To do that, we use the following argument, known as Artin’s trick. Assume
that f is not surjective, and take a non-zero element x € ker(a) which has a shortest
presentation in the form

m
X = Zd{@di, dieVp(D), a;€ F.
i=1

Without loss of generality, we can assume that a,, = 1 (dividing by a,,). Note that
©(x) — x € ker(a). On the other hand, it can be written as:

m m—1
px)—x= ) di®(pla)—a) = ) di®(pla)-a).

i=1 i=1
By our choice of x, this implies that ¢(a;) = a;, and therefore a; € F), for all i. But
in this case x € Vp(D), and x = a(x) = 0. This proves the injectivity of {0).
¢) By part b), we have an isomorphism:
Vr(D)®p, F - D& F.
Taking the Galois invariants on the both sides, we obtain:
(41) Dr(Vr(D) = (Vr(D)&®F, F)* — (D&r )% = D.
From and (#1), it follows that the functors D and Vg are quasi-inverse to
each other. In particular, they are equivalences of categories. Other assertions can
be checked easily. O
3.5.1. Now we turn to Z,-representations. For all T € Repr(GK) and D €
@,ét .
MO(g’ set: B
Do (T) = (T ®z, W(F))¥,
Vo (D)= (D&o, WF)*.
The following theorem can be deduced from Theorem [3.4]by devissage.
TueoreM 3.6 (Fontaine). i) Let T € Repzp (Gk) be a Z,-representation. Then
Do, (T) is an étale p-module over O .

ii) Let D € M‘g’i be an étale p-module over Og. Then Vo, (D) is a Z,-
representation of Gg.
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iit) The functors Do . and Vo, establish equivalences of categories
Do, : Repz (Gx) > My", Vo, : MJ — Repg (Gx),
which are quasi-inverse to each other. Moreover, for all T € Repr(GK) and D €

M‘g’z, we have canonical and functorial isomorphisms compatible with the actions
of Gg and ¢ on the both sides:

Do, (T)®0; W(F) =T &z, W(F),
Vo (D)®z, W(F) ~ D®¢, W(F).

3.7. For p-adic representations, we have the following theorem. Here FU =
W(F)[1/p] is the completion of the maximal unramified extension of .%.

THEOREM 3.8. i) Let V be a p-adic representation of Gk of dimension n. Then
Dz(V)=(Veq, ﬁur)G’( is an étale -module of dimension n over F .
ii) Let D € M";lét be an étale p-module of dimension n over % . Then V #(D) =
(D®q, F un\e=l is a p-adic Galois representation of Gy of dimension n over Q -
iii) The functors
D : Repg (Gx) > M5

9’\ 9
. @6t
Vs : M5 > Repg, (Gi).
are equivalences of tannakian categories, which are quasi-inverse to each other.

Moreover, for all V € Repr (Gx)and D € Mg;ét, we have canonical and functorial
isomorphisms compatible with the actions of Gk and ¢ on the both sides:

Dr(V)®sr F" = Veq, 7,
V#(D)®q, 7" = Doy T
4. The case of characteristic O

4.1. In this section, K is a local field of characteristic O with residual char-
acteristic p. Let Ko, = K({0) denote the p-cyclotomic extension of K. Set Gk, =
Gal(E/ K) and I'x = Gal(K«/K). Then K., /K is a deeply ramified (even an APF)
extension, and we can consider the tilt of its completion:

F:=K

The field F is perfect, of characteristic p, and we apply to F the contructions of
Section[3] Namely, set Oz = W(F) and .% = O #[1/p].

The ring of Witt vectors W(F) is equipped with the p-adic (standard) topol-
ogy. Now we equip it with a coarser topology, which will be called the canonical
topology. It is defined as the topology of the infinite direct product

W(F) = FN,

where each F is equipped with the topology induced by the absolute value | - |f.
For any ideal a C Of and integer n > 0, the set

Uoipn ={x=(x0,x1,...) e W(F)|x;ea forall0<i<n}
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is an ideal in W(F). In the canonical topology, the family (U, ,) of these ideals
form a base of the fundamental system of neighborhoods of W(F).

4.2. By Proposition the separable closure F of F is dense in CE{ and
we have a natural inclusion W(F) C W(CE(). The Galois group Gk acts naturally
on the maximal unramified extension .#" of .% in W(C?()[l /p] and on its p-adic
completion Fur = W(F)[1/p]. By Theorem , this action induces a canonical
isomorphism:

(42) Gk, = Gp(=Gal(F"|.F)).

In particular, (f unHx = Z . The cyclotomic Galois group I'x acts on F and there-
fore on 04 and ..

DerINITION. Let A = F,O 4, or F. A (p,T'g)-module over A is a @-module
over A equipped with a continuous semi-linear action of 'y commuting with .
A (¢, T'x)-module is étale if it is étale as a p-module.

We denote by Mi’:’r’ét the category of (¢,I'x)-modules over A. It can be easily
seen that Mﬁ’r’et is an abelian tensor category. Moreover, if A = F or .%, it is neutral
tannakian.

4.2.1. Now we are in position to introduce the main constructions of Fontaine’s
theory of (¢,I'x)-modules. Let T be a Z,-representation of Gg. Set:

Do, (T) = (T ®z, W(F))%.

Thanks to the isomorphism (42) and the results of Section 3, Do, (T) is an étale
¢-module. In addition, it is equipped with a natural action of 'k, and therefore we
have a functor

€
Do, : Repz (Gx) - My, <.
Conversely, let D be an étale (¢,I'x)-module over O &. Set:
Vo, (D) =(D®z, W(F)*".

By the results of Section |3} Vo, (D), is a free Z,-module of the same rank. More-
over, it is equipped with a natural action of Gk, and we have a functor

Voo : M*g’;ét — Repy, (Gx).

Tueorem 4.3 (Fontaine). i) The functors Do, and Vo, are equivalences of
categories, which are quasi-inverse to each other.

ii) Forall T € Repzp(GK) and D € Mz’g, we have canonical and functorial

isomorphisms compatible with the actions of Gg and ¢ on the both sides:
@) Do, (T)®0 ; W(F) =T &z, W(F),
Vo (D)®z, W(F) ~ D®¢, W(F).

Here Gk acts on (¢,I'x)-modules through I'k.
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Proor. Theorem 3.6|provide us with the canonial and functorial isomorphisms
(43), which are compatible with the action of ¢ and Gk,,. From construction, it
follows that they are compatible with the action of the whole Galois group Gk on
the both sides. This implies that the functors Do, and Vo, are quasi-inverse to
each other, and the theorem is proved. O

RemMark 4.4. We invite the reader to formulate and prove the analogous state-
ments for the categories Repr(G k) and Repr (Gg).

5. Admissible representations

5.1. General approach. The classification of all p-adic representations of lo-
cal fields of characteristic 0 in terms of (¢,['x)-modules is a powerful result. How-
ever, the representations arising in algebraic geometry have very special properties
and form some natural subcategories of RepQP(GK). Moreover, as was first ob-
served by Grothendieck, it should be possible to classify them in terms of some
objects of semi-linear algebra (¢p-modules with filtration). We consider Fontaine’s
general approach to this problem.

In this section, K is a local field. As usual, we denote by K its separable
closure and set Gx = Gal(K/K). To simplify notation, in the remainder of this
paper we will write C instead of C for the p-adic completion of K. Since the field
of complex numbers will appear only occasionally, this convention should not lead
to confusion.

Let B be a commutative Q,-algebra without zero divisors, equipped with a
Q,-linear action of G. Let C denote the field of fractions of B. Set E = BOx. We
adopt the following definition of a regular algebra (provided by Brinon and Conrad
in (4], which differs from the original definition in [13].

DEeriNiTION. The algebra B is Gg-regular if it satisfies the following conditions:

l) BG]( — CGK,'

ii) Each non-zero b € B such that the line Q,b, is stable under the action of
Gk, is invertible in B.

If B is a field, these conditions are satisfied automatically.

5.2. In the remainder of this section, we assume that B is Gg-regular. From
the condition ii), it follows that E is a field. For any p-adic representation V of Gg
we consider the E-module

Ds(V) = (V®q, B)X.
The multiplication in B induces a natural map
ap : Dp(V)®g B — V®Qp B.

ProposrTion 5.3. i) The map ag is injective for all V € Repr (Gk).
ii) dimg D(V) <dimg, V.
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Prook. See [4, Theorem 5.2.1]. Set De(V) = (V ®q, C)°X. Since BO¥ = Cx,
Dc¢(V) is an E-vector space, and we have the following diagram with injective
vertical maps:

Dp(V) —= V®q, B

|

Dc(V) —= V®q, B.

Therefore it is sufficient to prove that a¢ is injective. We prove it applying Artin’s
trick. Assume that ker(a¢) # 0 and choose a non-zero element

m
x= ) d;i®c; € ker(ac)
i=1
of the shortest length m. It is clear that in this formula, d; € D¢c(V) are linearly
independent. Moreover, since C is a field, one can assume that c¢,, = 1. Then for all
g€Gg
m—1
gx)—x= ) d;i®(g(ci) —c;) € ker(ac).
i=1
This shows that g(x) = x for all g € Gk, and therefore that ¢; € CCx = E for all
1 <i < m. Thus x € Dc(V). From the definition of ac, it follows that a¢(x) = x,
hence x = 0. o

DEFINITION. A p-adic representation V is called B-admissible if
dil’l’lE DB(V) = dime V.
ProposiTiON 5.4. If V is admissible, then the map ap is an isomorphism.

Proor. See [13, Proposition 1.4.2]. Let v = {v;}!_, and d = {d;}]"_, be arbitrary
bases of V and Dp(V) respectively. Then v = Ad for some matrix A with coefficients
in B. The bases x = \"_,d; € \"Dp(V) and y = \'_,v; € \"V are related by x =
det(A)y. Since Gk acts on y € A"V as multiplication by a character, the Q,,-vector
space generated by det(A) is stable under the action of Gg. This shows that A is
invertible, and @ is an isomorphism. O

5.4.1. Wedenote by Rep;(Gk) the category of B-admissible representations.
The following proposition summarizes some properties of this category.

ProposiTION 5.5. The following holds true:
i) If in an exact sequence

0V sV-oV' 50

V is B-admissible, then V' and V"' are B-admissible.
i) If V' and V" are B admissible, then V' ®q, V'" and Hom(V’,V"") =Homgq, (V', V")
are B-admissible.

iii) V is B-admissible if and only if the dual representation V* is B-admissible,
and in that case Dg(V*) = Dg(V)*.
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iv) The functor
Djp : Repy(Gk) — Vectg

to the category of finite dimensional E-vector spaces, is exact and faithful.
Proor. The proof is formal. See [13) Proposition 1.5.2]. O

5.5.1. We can also work with the contravariant version of the functor Dp :
D%(V) = Homg, (V, B).
From definitions, it is clear that
Dy(V) =Dp(V*).

In particular, if V (and therefore V*) is admissible, then

D3(V) =Dp(V)" := Homg(Dp(V), E).
The last isomorphism shows that the covariant and contravariant theories are equiv-
alent. For an admissible V, we have the canonical non-degenerate pairing

(,) 1 VxD*(V) - B, W, f)y=f),

which can be seen as an abstract p-adic version of the canonical duality between
singular homology and de Rham cohomology of a complex variety.

5.6. Examples.
5.6.1. B=K, wheLe K is of characteristic 0. One has Bk = K. The following
proposition describes K-admissible representations.

ProposITION 5.7. p : Gk — Autq,V is K-admissible if and only if Im(p) is finite.

Proor. a) Assume that Im(p) is finite. The group Gk acts semi-linearly on

f@Qp V:
ga®v) = gla)®g),  geGlk.
Since Im(p) is finite, for each x € E@Q , V there exists a subgroup H C Gk of
finite index such that H acts trivially on x. This implies that Gk acts on K ®q, V
continuously (here K ®q, V is equipped with the discrete topology !). By Hilbert’s
theorem 90 (Theorem [3.3), one has:
dimg Dp(V) := dimg (K ®q, V)% = dimg, V.

Therefore V is f—admissigle.
b) Assume that V is K-admissible. Fix a basis {U.i}7:1 of V and a basis {d;}}_,
of Dp(V) = (K®q, V)*. Then:
n —
di:zaij®vj’ ajekK, 1<i<n.
j=1
There exists a finite extension L/K such that G acts trivially on all g;;. Since G
acts trivially on {di};':l, and A = (a;;)1<i, j<n 18 invertible, G, acts trivially on {v j}’}:l'

Therefore G, acts trivially on V, and Im(p) is finite. O
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5.7.1. B = Cg, where K is of characteristic 0. One has Cg" = K by Theo-
rem 4.3

THeOREM 5.8 (Sen). p is Cg-admissible if and only if p(Ix) is finite.

Exercise 16. Prove that if p(/x) is finite, then p is Cg-admissible. Hint: use
Hilbert’s theorem 90.
The converse statement is difficult. See [27]].
5.8.1. Take V =Q,(1). Then
D¢, (Q,(1)) = (Cx ®q, Qup(1)%* = (Cx(xx)“* =0

by Theorem @ Therefore Q,(1) is not Cx-admissible.

6. Hodge-Tate representations

6.1. We maintain notation and conventions of Section The notion of a
Hodge-Tate representation was introduced in Tate’s paper [30]. We use the for-
malism of admissible representations. Let K be a local field of characteristic 0.
Let

Byt = Cklt,17']

denote the ring of polynomials in the variable ¢ with integer exponents and coeffi-
cients in Cg. We equip Byt with the action of Gk given by

g(D ai)= > glaxi@r,  geGr,
where yx denotes the cyclotomic character. Therefore Gk acts naturally on Ckg,

and ¢ can be viewed as the ”p-adic 271” — the p-adic period of the multiplicative
group G,,. For any p-adic representation V of Gg, we set:

Dur(V) =(Veq, Bur)“~.
ProposiTiON 6.2. The ring Byr is Gg-regular and Bg’; =K.

Proor. a) The field of fractions Fr(Byt) of Byt is isomorphic to the field of
rational functions Ck(#). Embedding it in Cg((¢)), we have:

BUX ¢ Fr(Bur)“* < Cx((1) .

From Theorem [4.5] it follows that (Cx#))°¥ = K if i = 0, and (Cgt)®% = 0 other-
wise. Hence BH§ = Cg((1))° = K. Therefore

Fr(Bur)°* = BOX = K.

b) Let b € Byr \ {0}. Assume that Q,b is stable under the action of Gg. This
means that

(44) g(b) =n(g)b, Vg€ Gk

for some character n : Gx — Zj,. Write b in the form

b= Zaiti.
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We will prove by contradiction that all, except one monomials in this sum are zero.
From formula (44)), if follows that for all i one has:

glax'v(e) =am(g),  geGk.

Assume that a; and a; are both non-zero for some i # j. Then

glax(g) _ g(aj)){f}(g), Vg € Gg.

a; aj
Set c =a;/ajand m = i— j# 0. Then c is a non-zero element of Cg such that
gloxg(® =c,  VYgeGk.

This is in contradiction with the fact that Cx ()% = 0 if m # 0.
Therefore b = a;t' for some i € Z and a; # 0. This implies that b is invertible in
Byr. The proposition is proved. O

6.2.1. Let Gradg denote the category of finite-dimensional graded K-vector
spaces. The morphisms in this category are linear maps preserving the grading.
We remark that Dyr(V) has a natural structure of a graded K-vector space:

X . G
Dir(V) = @ ar'Dim(V),  @'Din(V) = (Veg, Cxr') ™
1

Therefore we have a functor
Dyr : Repr(GK) — Gradg.
Note that this functor is clearly left exact but not right exact.

DEerINITION. A p-adic representation V is a Hodge—Tate representation if it is
Byr-admissible.

We denote by Repyr(Gk) the category of Hodge—Tate representations. From
the general formalism of B-admissible representations, it follows that the restric-
tion of Dyt on Repyr(Gk) is exact and faithful.

6.3. Set:

VO ={xeVeq, Cxlg) =xk(g)'x, VgeGkl, i€Z,

Vii} = V@ @k Ck.
It is clear that ' . .

v ~ gr'Dyr(V), x e xt™
is an isomorphism of K-vector spaces. Therefore
VO ~ or ' Dyr(V) ®k K7, xo (e
is an isomorphism of Gg-modules (G acts on the both sides as the multiplication
by x%). Set:
Vii}:= VP @ Ck.

From the above isomorphism, it follows that

V{i} = gr ' Dyr(V) ®k Ckt', icZ.
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Set:

&’ Dur(V) @ Bur) = ) (217 Dur(V) @ Cxt') € Dyr(V) @ Buar.
i€Z

We have a commutative diagram

© V{i}

Vg, C
i€Z Q, K

§ i

g1’ Dur(V) ® Bur) — Vg, Ck

Dyr(V) ® Bur ——— V ®qQ, Bur.

The upper map in this diagram

45) GBZ V{i} — V®QP Ck
ic

is induced by the maps:
Vii} = y@® Rk Cx — V®Qp Ck,
(ka ®ak] A ka ® i,
k k
where Yo ®ap € VP, 1 € Ck.

k
The following proposition shows that our definition of a Hodge—Tate represen-
tation coincides with Tate’s original definition:

ProposiTiON 6.4. i) For any representation V, the map is injective.
ii) V is a Hodge—Tate if and only if is an isomorphism.

Prook. i) By Proposition[5.3] for any p-adic representation V, the map
aur : Dur(V)®k Bur — V®q, Bur

is injective. The restriction of ayr on the homogeneous subspaces of degree 0
coincides with the map (@5])). Therefore is injective.

ii) By Proposition[5.4] V is a Hodge—Tate if and only if gy is an isomorphism.
We remark that aygr is an isomorphism if and only if the map is. Now ii)
follows from the above diagram (exercise). This proves the proposition. O

DEerINtTION. Let V be a Hodge—Tate representation. The isomorphism
V®q, Ck = & V{i}
i€Z

is called the Hodge—Tate decomposition of V. If V{i} # 0, one says that the integer
i is a Hodge—Tate weight of V, and that d; = dimc, V{i} is the multiplicity of i.
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We will use the standard notation Cg(i) = C K(,\(%) for the cyclotomic twists of
Ck. Then V{i} = Ck(i)% as a Galois module. The Hodge-Tate decomposition of V
can be written in the following form:

Veq, Ck = ich(i)di.

6.5. Example. If .# is a (one-dimensional) formal group of height %, then
V(%) is a Hodge—Tate representation. Namely

V(F)®q, Cx ~ Cx(1)aCly .

The Hodge-Tate weights of V(.#) are 0 (of multiplicity 2— 1) and 1 (of multiplicity
one). It was first proved by Tate [30].

7. De Rham representations

7.1. The field Bgr. In this section, we define Fontaine’s field of p-adic periods
Bgr. For proofs and more detail, we refer the reader to [10] and [12].

Let K be a local field of characteristic 0. Recall that the ring of integers of the
tilt C?( of Ck was defined as the projective limit

O, =limOc, /pOcy, @) =+
[

(see Section . By Propositions and ObCK is a complete perfect valuation

ring of characteristic p with residue field kx. The field CE( is a complete alge-
braically closed field of characteristic p.
7.1.1.  We will denote by Aj,¢ the ring of Witt vectors

Ain(Cx) = W(OQ,).

Recall that Ajyr is equipped with the surjective ring homomorphism 6 : Ajyr — Ocy
(see Proposition #.2] where it is denoted by 6g). The kernel of 6 is the principal
ideal generated by any element £ = )’ [a,]p”" € ker(6) such that a; is a unit in OI’CK.

n=0
Useful canonical choices are:

— &=[p]-p, where p = (p'/7"),20;
p=1
— w= Y [e]/P, where € = (£pIn>0-
i=0
Let Ky denote the maximal unramified subextension of K. Then Ok, = W(kg) C
Ajns, and we set Ajnrx = Ajnr ®0x, K. Then 6 extends by linearity to a sujective
homomorphism
f®idg : Ainf(CK)®OKO K — Cg.
Again, the kernel Jg :=ker(d®idg) is a principal ideal. It is generated, for example,
by [x]—mg, where ng is any uniformizer of K and 77x = (n}(/p )ns0- The action of
Gk extends naturally to Ajqrx, and it’s easy to see that Jg is stable under this

action. Let B:i—R, ¢ denote the completion of Ay g for the Jg-adic topology:

B, » = limA; J%.
dRK = — 1nf,K/ K
n
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+
dR.,K"*

+

Rk are summarized

The action of Gk extends to B
in the following proposition:

The main properties of B

+

ProrosiTion 7.2. i) B dR.K

is a discrete valuation ring with maximal ideal

+
My4r.x = JKBdR,K‘

The residue field BgR X /MR k is isomorphic to Cg as a Galois module.
ii) The series

- 1 ([e]=1)"
r=log<[s]>=;<—1> I

+

4R k> and the Galois group

converges in the Jx-adic topology to a uniformizer of B
acts on t as follows:
g0 =xk(@t,  ge€Ck.
iii) If L/K is a finite extension, then the natural map BgR’K — BgR’L
depends only on the algebraic closure K of K.

is an

+
dR,K

iv) There exists a natural G g-equivariant embedding of K in B

isomorphism. In particular, B

+
dR.K’

and
(Bis) =K.

7.2.1.  We refer the reader to [10] and [12] for detailed proofs of these proper-
ties. Note that if L is a finite extension of K, then one checks first that B, . c Bt

dR,K ~ PdR,L’
From assertions 1) and ii), it follows that this is an unramified extension of discrete
valuation rings with the same residue field. This implies that Bj, , = B ;. Since
L c B, forall L/K, this proves that Kc Bk

7.2.2.  The above proposition shows that BJ; , depends only on the residual

characteristic of the local field K. By this reason, we will omit K from notation and
write Bi, :=Byp 4.

DEerNiTION. The field of p-adic periods Bar is defined to be the field of fractions
of B

7.2.3. The field Bgr is equipped with the canonical filtration induced by the
discrete valuation, namely

Fil'Ber =B}y,  i€Z.
In particular, FilOBdR = BgR and FilleR = myr. From Proposition it follows
that
Fil'Bar /Fil "' Bar = Cx (),  Ck(i) := Cx(xk).

Therefore for the associated graded module we have
gr*(Bar) = Byr.

Note that from this isomorphism it follows that BdGlf = K as claimed in Proposi-

tion [7.2] iii).
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7.3. Filtered vector spaces.

DEerINITION. A filtered vector space over K is a finite dimensional K-vector
space A equipped with an exhaustive separated decreasing filtration by K-subspaces
(Fil'A)jez.:

. DFITTAS FIAS F*'AS .., NFil'A={0}, UFil'A=A.

i€Z i€Z
A morphism of filtered spaces is a linear map f : A’ — A” which is compatible
with filtrations: _ _
f(FI'A") Cc Fil'A”, VieZ.
If A’ and A” are two filtered spaces, one defines the filtered space A’ ®x A’ as the
tensor product of A” and A” equipped with the filtration
Fil'(A" ®x A”) = Z Fil' A’ ®g Fil” A"
=i
The one-dimensional vector space 1x = K with the filtration
: K ifi<O0
Filllg =4 '
0 ifi>0
is a unit object with respect to the tensor product defined above, namely
A®glg ~A for any filtered module A.

One defines the internal Hom in the category of filtered vector spaces as the vector
space Hom (A’,A”) of K-linear maps f : A" — A" equipped with the filtration
Fil' (Hom, (A", A”)) = {f € Hom, (A", A”) | f(FiVA") C Fil*(A”) VjeZ).

In particular, we consider the dual space A* = Hom,(A,1x) as a filtered vector
space.

We denote by MFg the category of filtered K-vector spaces. It is easy to check
that the category MFg is an additive tensor category with kernels and cokernels,
but it is not abelian.

7.4. De Rham representations. Since Bgr is a field, it is Gg-regular. To any
p-adic representation V of Gx we associate the finite-dimensional K-vector space

Dar(V) = (V&q, Bar)¥.
We equip it with the filtration induced from Bggr:
Fil'Dgr(V) = (V®q, Fil'Bgr) ¥
The mapping which assigns Dyr(V) to each V defines a functor of tensor categories
Dyr : Repr (Gg) » MFg.

DEerINITION. A p-adic representation V is called de Rham if it is Bqr-admissible,

ie. if
dimg Dgr(V) = dimg,, (V).

We denote by Repr(Gk) the category of de Rham representations. By Propo-
sition [5.5] the restriction of Dgr on Repyr(Gi) is exact and faithful.
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ProposiTioN 7.5. Each de Rham representation is Hodge—Tate.
Proor. Recall that we have exact sequences
0 — Fil""'Bgg — Fil'Bgr — Ckt' — 0.
Tensoring with V and taking Galois invariants we have
dimy (gr'Dar(V)) < dimg(V &g, Cxt).

From Byt = EBZ Ckt' it follows that
IS

dimg Dar(V) = ) dim (@1'Dar(V)) < dimg Dyr(V) < dimg, (V).
1€Z

The proposition is proved. O
ReMARK 7.6. 1) The functor Dgr is not fully faithful. A p-adic representation

cannot be recovered from its filtered module.
Recall that Ayt is equipped with the canonical Frobenius operator ¢. One has:

(&) =[pl’ - p, 0&) = p’ —p#0.

From this formula it follows that ker(0) is not stable under the action of ¢, and
therefore ¢ can not be naturally extended to Byr.

8. Crystalline representations

8.0.1. We define the ring B, of crystalline p-adic periods, which is a subring
of Bgr equipped with a natural Frobenius structure. Set:

At = s _ . 3 .
cris — §Oann!|an€Amf, nl_l)Igoan—O CBdR‘
n=

In this definition, a, — 0 in the p-adic topology of Ajy¢. From the formula

g_”g_(n+m) gnim (n+m)€Z’

nlm! \ n Jm+m)!’ n

ProposiTioN 8.1. i) Al is stable under the action of G.

ii) The action of ¢ on Ajys extends to an injective map ¢ : A:ris - A:ris.

Proor. The verification of the both properties is straightforward, but we omit
the details. O

+

oris? and one has:

The element ¢ = log[e] belongs to A

@(t) = pt.
[1/p] and B.is = BT, [1/1]. The ring By is called

DeriniTION. Set BY. = A* cris

cris cris
the ring of crystalline periods.
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It is easy to see that the rings B:ris and B, are stable under the action of Gg.

The actions of Gg and ¢ on B commute to each other. The inclusion B3 C Bgr
induces a filtration on B;s which we denote by Fil'B.is. Note that B:ris C FilOBcriS
but the latter space is much bigger. Also the action of ¢ on B is not compatible
with filtration i.e. w(Filchris) ¢ Fil'B.is. We summarize some properties of Bs in
the following proposition.

ProposiTion 8.2. The following holds true:
i) The map
K ®k, Beris — Bar, a®x — ax
is injective.
ii) BSK = K.

s =1 0pe=1 _
l.ll) Fil B.cris =Q,.
iv) Beris is Gg-regular.

Proor. See [12], especially Theorems 4.2.4 and 5.3.7. O

8.3. Filtered o-modules. Let K be a local field of characteristic 0 with residue
field k of characteristic p, and let Ky denote the maximal unramified subfield of K.
A ¢-module over Kj is a finite-dimensional Ky-vector space D equipped with a
(-semininear bijective operator ¢ : D — D :

px+y) =) +o(y),  VxyeD,
©(Ax) = p(D)p(x), YA€ Ky, x€D.

DEerINITION. i) A filtered ¢p-module over K is a ¢-module D over Ky together
with a structure of filtered K-vector space on Dy := D®g, K.

A morphism of filtered ¢-modules is a Ky-linear map f : D’ — D" such that
the induced linear map
fK : D;( =D ®k, K— D;é :=D" Y K,
fxkd @) =f(d)®A, Yd'eD', 1€k
is a morphism of filtered modules, namely fK(FiliD’[() C FiliD’Ié foralli € Z.

Filtered ¢-modules form an additive tensor category which we denote by MF";}.
Note that this category is not abelian.

8.4. Crystalline representations.
8.4.1. Recall that Bs is Gg-regular with Bgfs = Ky. Therefore for each p-
adic representation V, the Ky-vector space

Dcris(V) = (V®Qp Bcris)GK

is finite-dimensional with dimg; Deris(V) < dimg, (V). The action on ¢ on B in-
duces a semi-linear operator on D¢;5(V), which we denote again by ¢. Since ¢ is
injective on B, it is bijective on the finite-dimensional vector space D¢is(V). The
embedding K ®k, Beris — Bgr induces an inclusion

K®KO Dcris(V) — DdR(V)-
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This equips Deis(V)k := K ®k, Dcris(V) with the induced filtration:
Fil'Desis(V)k = Deris(V)k NFil'Dgr(V).
Thereore D5 can be viewed as a functor
Dyyis : Repr(GK) - MF"[D(.

DEerINITION. A p-adic representation V is crystalline if it is B.iis-admissible, i.e.
’ dimg, Deis(V) = dimg, V.

By Proposition[5.4] V is crystalline if and only if the map
(46) Qcris * Deris(V) ®ky Beris = V ©q, Beris

is an isomorphism. We denote by Rep_;(G) the category of crystalline represen-
tations.

8.4.2. Example. Let V = Q,(m), m € Z. Letv,, € Q,(m) be a basis of Q,(m).
Then g(vm) = x'¥(g)vm for all g € Galg. Set d,, = v, @17 € Veq, B.s. It is clear that
dy, 1s Gg-invariant, and therefore d,, € Deis(Q,(m)). Since dimg, Deyis(Q,(m)) <
dimq, V = 1, we obtain that Di5s(Q,(m)) is the one-dimensional Ky-vector space
generated by dy,. In particular, Q,(m) is crystalline, and

DdR(Qp(m)) = Dcris(Qp(m))K = Kdy,.
The action of ¢ on D¢i5(Q,(m)) is given by
o(dpn) = vy ®‘P(t)_m = p_mdm-
Moreover, since ¢~ € Fil7"Bggr, one has

Fil' Dar(Q,(m)) = {ng(Qp(m)), illz z i :Z

ProposiTioN 8.5. Let V be a crystalline representation. Then

V = Fil’(Deris (V) ®k, Beris)?~ "

In other words, one can recover V from Dis(V).

Proor. This follows from the formula

Fil'Beris)*~' = Q.
Namely, assume that V is crystalline. Then using (46), we have
Fil’(Deris (V) @k, Berig)?~! = Fil’(V ®q, Beris)?~' = V.

We constructed subcategories
Rep,;5(Gk) C Repgr(Gk) C Repyr(G) C Repq (Gk).

8.6. Example. Let V(%) be the representation associated to to a formal group
Z of finite height. Then V(.%) is crystalline. This is a particular case of a theorem
of Fontaine [9], [10].
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