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P-ADIC HEIGHTS AND p-ADIC HODGE THEORY

Denis Benois

Abstract. — Using the theory of (ϕ,Γ)-modules and the formalism of Selmer com-
plexes we construct the p-adic height pairing for p-adic representations with coeffi-
cients in an affinoid algebra over Qp. For p-adic representations that are potentially
semistable at p, we relate our contruction to universal norms and compare it to the
p-adic height pairings of Nekovář and Perrin-Riou.

Résumé (Hauteurs p-adiques et théorie de Hodge p-adique)
En utilisant la théorie des (ϕ,Γ)-modules et le formalisme des complexes de Sel-

mer nous construisons un accouplement de hauteur p-adique pour les représenta-
tions p-adiques à coefficients dans une algèbre affinoïde. Pour les représentations
p-adiques potentiellement semistables en p nous ferons le lien de notre construction
avec les normes universelles et les hauteurs p-adiques construites par Nekovář et
Perrin-Riou.
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INTRODUCTION

0.1. Selmer complexes

0.1.1. — Let F be a number field. We denote by S f and S∞ the set of non-
archimedean and archimedean places of F respectively. Fix a prime number p and
denote by Sp the set of places q above p.

Let S be a finite set of non-archimedean places of F containing Sp. To simplify
notation, set Σp = S \ Sp. We denote by GF,S the Galois group of the maximal alge-
braic extension FS of F unramified outside S∪ S∞. For each q ∈ S we denote by Fq
the completion of F with respect to q and by GFq the absolute Galois group of Fq. We
will write Iq for the inertia subgroup of GFq and Frq for the relative Frobenius over Fq.
Fix an extension of q to FS and identify GFq with the corresponding decomposition
group at q.

We denote by χ : GF,S→Z∗p the p-adic cyclotomic character and, for each q∈ Sp,

write χq for the restriction of χ on GFq . If M is a topological Zp-module equipped
with a continuous linear action of GF,S (resp. GFq) we denote by M(χ) (resp. M(χq))
or alternatively by M(1) its Tate twist.

If G is a topological group and M is a topological G-module, we denote by
C•(G,M) the complex of continuous cochains of G with coefficients in M. If X = M•

is a complex of topological G-modules, we denote by C•(G,X) the total complex
associated to the double complex Cn(G,Mm).

0.1.2. — Let A be a complete local noetherian ring with a finite residue field of
characteristic p. An admissible A[GF,S]-module of finite type is a A[GF,S]-module T
of finite type over A and such that the map GF,S→ AutA(T ) is continuous (1).

1. In other words, T is a "big" Galois representation with coefficients in A in the sense of [56].
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Let X = T • be a bounded complex of admissible A[GF,S]-modules of finite type.
A local condition at q ∈ S is a morphism of complexes

gq : U•q (X)→C•(GFq ,X).

To each collection U•(X) = (U•q (X),gq)q∈S of local conditions one can associate the
following diagram

(1) C•(GF,S,X) // ⊕
q∈S

C•(GFq ,X)

⊕
q∈S

U•q (X),

(gq)

OO

where the upper row is the restriction map. The Selmer complex associated to the
local conditions U•(X) is defined as the mapping cone

S•(X ,U•(X)) = cone

(
C•(GF,S,X)⊕

(⊕
q∈S

U•q (X)

)
→
⊕
q∈S

C•(GFq ,X)

)
[−1].

This notion was introduced by Nekovář in [56], where the machinery of Selmer com-
plexes was developed in full generality.

0.1.3. — The most important example of local conditions is provided by Green-
berg’s local conditions [56, Section 7.8]. If q∈ S, we will denote by Xq the restriction
of X on GFq . For each q ∈ Sp we fix a complex Mq of admissible A[GFq ]-modules of
finite type together with a morphism Mq→ Xq and define

U•q (X) =C•(GFq ,Mq) q ∈ Sp.

For q ∈ Σp we consider the unramified local conditions

U•q (X) =C•ur(Xq)

(see [56, Section 7.6] for the precise definition). In particular, if X = T [0] is concen-
trated in degree 0, then

C•ur(X) =

(
T Iq Frq−1
−−−→ T Iq

)
,

where the terms are placed in degrees 0 and 1. To simplify notation, we will write
S•(X ,M) for the Selmer complex associated to these conditions and RΓ(X ,M) for
the corresponding object of the derived category of A-modules of finite type.
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0.1.4. — Let ωA denote the dualizing complex for A. The Grothendieck dualization
functor

X →D(X) := RHomA(X ,ωA)

is an anti-involution on the bounded derived category of admissible A[GF,S]-modules
of finite type [56, Section 4.3.2]. Consider the complex D(X)(1) equipped with
Greenberg local conditions N = (Nq)q∈Sp such that M and N are orthogonal to each
other under the canonical duality X ×D(X)(1)→ ωA(1). In this case, the general
construction of cup products for cones gives a pairing

∪ : RΓ(X ,M)⊗L
A RΓ(D(X)(1),N)→ ωA[−3]

(see [56, Section 6.3]). Nekovář constructed the p-adic height pairing

hsel : RΓ(X ,M)⊗L
A RΓ(D(X)(1),N)→ ωA[−2]

as the composition of∪with the Bockstein map (2) βX ,M : RΓ(X ,M)→RΓ(X ,M)[1]:

hsel(x,y) = βX ,M(x)∪ y.

Passing to cohomology groups H i(X ,M) := RiΓ(X ,M), we obtain a pairing

(2) hsel
1 : H1(X ,M)⊗A H1(D(X)(1),N)→ H0(ωA).

0.1.5. — The relationship of these constructions to traditional treatements is the fol-
lowing. Let A = OE be the ring of integers of a local field E/Qp and let T be a
Galois stable OE-lattice of a p-adic Galois representation V with coefficients in E.
We consider T as a complex concentrated in degree 0. Then ωA = OE [0] and D(T )
coincides with the classical dual T ∗ = HomOE (T,OE). Each choice of orthogonal
local conditions provides

hsel
1 : H1(T,M)⊗A H1(T ∗(1),N)→ OE .

Assume, in addition, that V is semistable in the sense of p-adic Hodge theory at all
q∈ Sp. We say that V satisfies the Panchishkin condition at p if, for each q∈ Sp, there
exists a subrepresentation V+

q ⊂Vq such that all Hodge–Tate weights (3) of Vq/V+
q are

> 0. Set T+
q = T ∩V+

q , T+ = (T+
q )q∈Sp . The cohomology group H1(T,T+) is very

close to the Selmer group defined by Greenberg [33, 34] and therefore to the Bloch–
Kato Selmer group [28]. It can be shown [56, Theorem 11.3.9] that, under some mild
conditions, the pairing hsel

1 coincides with the p-adic height pairing constructed by
Schneider [66], Perrin-Riou [59] and Nekovář [54] using universal norms.

2. See [56, Section 11.1] or Section 3.2 below for the definition of the Bockstein map.
3. We call Hodge–Tate weights the jumps of the Hodge–Tate filtration on the associated de Rham

module. In particular, the Hodge–Tate weight of Qp(1) is −1.
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0.1.6. — More generally, assume that A is a Gorenstein ring and T is an admissible
module of finite type which is projective over A. Then ωA is quasi-isomorphic to A
and again D(T ) = T ∗ where T ∗ = HomA(T,A). Then (2) takes the form

(3) hsel
1 : H1(T,M)⊗A H1(T ∗(1),N)→ A.

Note that Nekovář’s construction has many advantages over the classical definitions.
In particular, it allows to study the variation of the p-adic heights in ordinary families
of p-adic representations (see [56, Section 0.16 and Chapter 11], for further discus-
sion).

0.2. Selmer complexes and (ϕ,Γ)-modules

0.2.1. — In this paper we study Selmer complexes associated to p-adic representa-
tions with coefficients in an affinoid algebra and local conditions coming from the
theory of (ϕ,Γ)-modules. Namely, let A be a Qp-affinoid algebra. We will work in
the category K

[a,b]
ft (A) of complexes of A-modules whose cohomologies are finitely

generated over A and concentrated in degrees [a,b] and in the corresponding de-
rived category D

[a,b]
ft (A). Let D

[a,b]
perf (A) denote the category of [a,b]-bounded perfect

complexes over A, i.e. the full subcategory of D
[a,b]
ft (A) consisting of objects quasi-

isomorphic to complexes of finitely generated projective A-modules concentrated in
degrees [a,b].

A p-adic representation of GF,S with coefficients in A is a finitely generated projec-
tive A-module V equipped with a continuous A-linear action of GF,S. In [62], Pottharst
studied Selmer complexes associated to the diagrams of the form (1) in this context.
We will consider a slightly more general situation because, for the local conditions
U•q (V ) that we have in mind, the maps gq : U•q (V )→C•(GFq ,V ) are not defined on

the level of complexes but only in the derived category D
[0,2]
ft (A).

For each q∈ Sp we denote by Γq the Galois group of the cyclotomic p-extension of
Fq. As before, we denote by Vq the restriction of V on the decomposition group at q.
The theory of (ϕ,Γ)-modules associates to Vq a finitely generated projective module
D†

rig,A(V ) over the Robba ring RFq,A equipped with a semilinear Frobenius map ϕ

and a continuous action of Γq which commute to each other [29, 18, 22, 45]. In [46],
Kedlaya, Pottharst and Xiao extended the results of Liu [49] about the cohomology
of (ϕ,Γ)-modules to the relative case. Their results play a key role in this paper.

Namely, to each (ϕ,Γq)-module D over RFq,A one can associate the Fontaine–Herr
complex C•ϕ,γq(D) of D. The cohomology H∗(D) of D is defined as the cohomology
of C•ϕ,γq(D). If D = D†

rig,A(V ), there exist isomorphisms H∗(D†
rig,A(V )) ' H∗(Fq,V ),
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but the complexes C•ϕ,γq(D
†
rig(V )) and C•(GFq ,Vq) are not quasi-isomorphic. A simple

argument allows us to construct a complex K•(Vq) together with quasi-isomorphisms
ξq : C•(GFq ,V )→ K•(Vq) and αq : C•ϕ,γq(D

†
rig,A(Vq))→ K•(Vq)

(4). For each q ∈
Sp, we choose a (ϕ,Γq)-submodule Dq of D†

rig,A(Vq) that is a RFq,A-module direct

summand of D†
rig,A(Vq) and set D = (Dq)q∈Sp . Set

K•(V ) =

⊕
q∈Σp

C•(GFq ,V )

⊕⊕
q∈Sp

K•(Vq)


and

U•q (V,D) =

{
C•ϕ,γq(Dq), if q ∈ Sp,

C•ur(Vq), if q ∈ Σp.

For each q ∈ Sp, we have morphisms

fq : C•(GF,S,V )
resq−−→C•(GFq ,V )

ξq−→ K•(Vq),

gq : U•q (V,D)−→C•ϕ,γq(D
†
rig,A(Vq))

αq−→ K•(Vq).

If q ∈ Σp, we define the maps fq : C•(GF,S,V )→ C•(GFq ,V ) and gq : C•ur(Vq)→
C•(GFq ,V ) exactly as in the case of Greenberg local conditions. Consider the diagram

C•(GF,S,V )
( fq)q∈S // K•(V )

⊕
q∈S

U•q (V,D).

⊕
q∈S

gq

OO

We denote by S•(V,D) the Selmer complex associated to this diagram and by
RΓ(V,D) the corresponding object in the derived category of A-modules. Mimicking
the arguments of [62, Section 1E] we see that RΓ(V,D) belongs to D

[0,3]
ft (A). If, in

addition, local conditions at all q ∈ Σp can be represented by perfect complexes, then
RΓ(V,D) belongs to D

[0,3]
perf (A) (see Section 3.1 for detail).

The functor

X → X∗ := RHomA(X ,A)

is an anti-involution on the derived category Dperf(A) of perfect complexes which can
be viewed as a simple analog of the Grothendick duality D in our context. For any

4. This complex was first introduced in [9].
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p-adic representation V we have V ∗ = HomA(V,A). We equip V ∗(1) with orthogonal
local conditions D⊥ setting

D⊥q = HomRFq,A

(
D†

rig,A(Vq)/Dq,RFq,A(χq)
)
, q ∈ Sp.

The general machinery gives us a cup product pairing

∪V,D : RΓ(V,D)⊗L
A RΓ(V ∗(1),D⊥)→ A[−3].

If local conditions at all q ∈ Σp can be represented by perfect complexes, this pairing
gives a duality in D

[0,3]
perf (A) :

RΓ(V ∗(1),D⊥)' RHomA(RΓ(V,D),A)[−3]

(see Theorem 3.1.5 and Section 3.1.6).

0.3. p-adic height pairings

0.3.1. — The previous theory allows us to construct the p-adic height pairing exactly
in the same way as in the case of Greenberg local conditions. Let V be a p-adic
representation with coefficients in A and V ∗(1) the Tate dual of V.

Definition. — The p-adic height pairing associated to the data (V,D) is defined as
the morphism

hsel
V,D : RΓ(V,D)⊗L

A RΓ(V ∗(1),D⊥)
δV,D−−→

→ RΓ(V,D)[1]⊗L
A RΓ(V ∗(1),D⊥)

∪V,D−−→ A[−2],

where δV,D denotes the Bockstein map.

The height pairing hsel
V,D,M induces a pairing on cohomology groups

hsel
V,D,1 : H1(V,D)×H1(V ∗(1),D⊥)→ A.

Applying the machinery of Selmer complexes, we obtain the following result (see
Theorem 3.2.4 below).

Theorem I. — We have a commutative diagram

RΓ(V,D)⊗L
A RΓ(V ∗(1),D⊥)

hsel
V,D //

s12

��

A[−2]

=

��
RΓ(V ∗(1),D⊥)⊗L

A RΓ(V,D)
hsel

V∗(1),D⊥ // A[−2],

where s12(a⊗b) = (−1)deg(a)deg(b)b⊗a. In particular, the pairing hsel
V,D,1 is skew sym-

metric.
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0.3.2. — Assume that A = E, where E is a finite extension of Qp. Fix a system
D=(Dq)q∈Sp of submodules Dq⊂D†

rig(Vq) and consider tautological exact sequences

0→ Dq→ D†
rig(Vq)→ D′q→ 0, q ∈ Sp,

where D′q = D†
rig(Vq)/Dq. Passing to duals, we have exact sequences

0→ (D′q)
∗(χq)→ D†

rig(V
∗
q (1))→ D∗q(χq)→ 0,

where (D′q)∗(χq) = D⊥q . Consider the following conditions on the data (V,D) (see
Section 5.1):

N1) H0(Fq,V ) = H0(Fq,V ∗(1)) = 0 for all q ∈ Sp;

N2) H0(D′q) = H0(D∗q(χq)) = 0 for all q ∈ Sp.

For each data (V,D) satisfying these conditions we construct a pairing

hnorm
V,D : H1(V,D)×H1(V ∗(1),D⊥)→ E,

which can be seen as a direct generalization of the p-adic height pairing, constructed
for representations satisfying the Panchishkin condition using universal norms [66,
54, 59]. The following theorem generalizes [56, Theorem 11.3.9] (see Theorem 5.2.2
below).

Theorem II. — Let V be a p-adic representation of GF,S with coefficients in a finite
extension E of Qp. Assume that the family D = (Dq)q∈Sp satisfies conditions N1-2).
Then

hnorm
V,D =−hsel

V,D,1.

0.3.3. — We denote by DdR, Dcris and Dst Fontaine’s classical functors [30, 31]. Let
V be a p-adic representation with coefficients in E/Qp. Assume that the restriction
of V on GFq is potentially semistable for all q ∈ Sp, and that V satisfies the following
condition:

S) Dcris(V )ϕ=1 = Dcris(V ∗(1))ϕ=1 = 0, ∀q ∈ Sp.

For each q∈ Sp we fix a splitting wq : DdR(Vq)/Fil0DdR(Vq)→DdR(Vq) of the canon-
ical projection DdR(Vq)→ DdR(Vq)/Fil0DdR(Vq) and set w = (wq)q∈Sp . In this situa-
tion, Nekovář [54] constructed a p-adic height pairing

hHodge
V,w : H1

f (V )×H1
f (V

∗(1))→ E

on the Bloch–Kato Selmer groups [16] of V and V ∗(1), which is defined using the
Bloch–Kato exponential map and depends on the choice of splittings w.
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Let q ∈ Sp, and let L be a finite extension of Fq such that Vq is semistable over L.
The semistable module Dst/L(Vq) is a finite dimensional vector space over the max-
imal unramified subextension L0 of L, equipped with a Frobenius ϕ, a monodromy
N, and an action of GL/Fq = Gal(L/Fq).

Definition. — Let q ∈ Sp. We say that a (ϕ,N,GL/Fq)-submodule Dq of Dst/L(Vq) is
a splitting submodule if

DdR/L(Vq) = Dq,L⊕Fil0DdR/L(Vq), Dq,L = Dq⊗L0 L

as L-vector spaces.

It is easy to see, that each splitting submodule Dq defines a splitting of the Hodge
filtration of DdR(V ), which we denote by wD,q. For each family D = (Dq)q∈Sp of
splitting submodules we construct a pairing

hspl
V,D : H1

f (V )×H1
f (V

∗(1))→ E

using the theory of (ϕ,Γ)-modules and prove that

hspl
V,D = hHodge

V,wD

(see Proposition 6.2.3). Let Dq denote the (ϕ,Γq)-submodule of D†
rig(Vq) associated

to Dq by Berger [14] and let D = (Dq)q∈Sp . In the following theorem we compare this
pairing with previous constructions (see Theorem 6.3.3 and Corollary 6.3.4).

Theorem III. — Assume that (V,D) satisfies conditions S) and N2). Then
i) H1(V,D) = H1

f (V ) and H1(V ∗(1),D⊥) = H1
f (V

∗(1));
ii) We have

hnorm
V,D = hspl

V,D =−hsel
V,D,1.

0.3.4. — If F = Q, we can relax condition N2). Namely, for each splitting submod-
ule D = Dp of Dst/L(Vp), we construct a canonical filtration

(4) {0} ⊂ F−1Dst/L(V )⊂ F0Dst/L(V )⊂ F1Dst/L(V )⊂ Dst/L(V )

which is a direct generalization of the filtration constructed in [7] in the semistable
case. In particular, F0Dst/L(V ) = D, and the quotients M0 = gr0Dst/L(V ) and M1 =

gr1Dst/L(V ) are filtered Dieudonné modules such that

Mϕ=p−1

0 = M0, Fil0M0 = {0},

Mϕ=1
1 = M1, Fil0M1 = M1.
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Let W = F1Dst/L(V )/F−1Dst/L(V ). We denote by M0, M1 and W the (ϕ,ΓQp)-
modules associated to M0, M1 and W respectively. The tautological exact sequence

0→M0→W→M1→ 0

induces the coboundary map

δ0 : H0(M1)→ H1(M0).

We introduce the following conditions F1a-b) and F2a-b) which reflect the conjec-
tural behavior of V at p in the presence of trivial zeros [7, 10, 35]

F1a) Dcris(D†
rig(V )/F1D†

rig(V ))ϕ=1 = Dcris(D†
rig(V

∗(1)))/F1D†
rig(V

∗(1)))ϕ=1 = 0.

F1b) Dcris(F−1D†
rig(V ))ϕ=1 = Dcris(F−1D†

rig(V
∗(1)))ϕ=1 = 0.

F2a) The composed map

δ0,c : H0(M1)
δ0−→ H1(M0)

prc−→ H1
c (M0),

where the second arrow denotes the canonical projection on H1
c (M0), is an

isomorphism.

F2b) The composed map

δ0, f : H0(M1)
δ0−→ H1(M0)

pr f−→ H1
f (M0),

where the second arrows denotes the canonical projection H1
f (M0), are isomor-

phisms.

One expects that these conditions hold if V is the p-adic realization of a pure motive
over Q of weight −1 (see Sections 0.4 and 4.3). Note that F1a-b) and F2a) imply
S).

We show that, under conditions F1a) and F2a), there exists a canonically splitting
exact sequence

(5) 0 // H0(D′) // H1(V,D) //
splcV,Doo

H1
f (V )

sc
V,Doo // 0,

where D′ = D†
rig(Vp)/D. We call H1(V,D) the extended Selmer group of V associated

to D. Note that
dimE H0(D′) = dimE M0 = dimE M1.

If, in addition, condition F2b) is satisfied, there exists another canonical splitting of
this sequence

0 // H0(D′) // H1(V,D) //

spl f
V,D

oo H1
f (V )

s
f
V,D

oo // 0.

The following result is a simplified form of Theorem 7.2.4 below.
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Theorem IV. — Let V be a p-adic representation of GQ,S that is potentially
semistable at p and satisfies conditions F1a-b) and F2a-b). Then for all x ∈ H1

f (V )

and y ∈ H1
f (V

∗(1)) we have

hspl
V,D(x,y) =−hsel

V,D(s
f
V,D(x),s

f
V ∗(1),D⊥(y)).

Assume now that, instead of F1a-b), the data (V,D) satisfies the following stronger
condition

F3) For all i ∈ Z

Dpst(D†
rig(V )/F1D†

rig(V ))ϕ=pi
= Dpst(F−1D†

rig(V ))ϕ=pi
= 0.

By modifying the construction of Section 0.3.2, we define a pairing

hnorm
V,D : H1

f (V )×H1
f (V

∗(1))→ E.

The following result is proved in Theorem 7.3.2.

Theorem V. — Let V be a p-adic representation of GQ,S that is potentially
semistable at p and satisfies conditions F2a-b) and F3). Then

hnorm
V,D = hspl

V,D.

Theorems IV and V imply

CorollaryVI. — Let V be a p-adic representation of GQ,S that is potentially
semistable at p and satisfies conditions F2a-b) and F3). Then for all x ∈ H1

f (V ) and
y ∈ H1

f (V
∗(1)) we have

hnorm
V,D (x,y) =−hsel

V,D(s
f
V,D(x),s

f
V ∗(1),D⊥(y)).

This generalizes [56, Theorem 11.4.6].

0.4. General remarks

0.4.1. — Assume that V is the p-adic realization of a pure motive M/F of weight
wt(M). Beilinson’s conjectures (in the formulation of Bloch and Kato) predict that

H1
f (V ) = 0, if wt(M)> 0,

and therefore the pairings hnorm
V,D and hspl

V,D are interesting only if wt(M)=wt(M∗(1))=
−1.
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0.4.2. — Let M = hi(X)(m), where X is a smooth projective variety over F and 06
i6 2dim(X). The p-adic realization of M is V =H i

p(X)(m), where H i
p(X) denotes the

p-adic étale cohomology of XF . The Poincaré duality and the hard Lefschetz theorem
give a canonical isomorphism

(6) H i
p(X)∗ ' H i

p(X)(i).

Then wt(M) = −1 if i is odd and m =
i+1

2
. In this case the representation V is

self dual and we have a canonical isomorphism V ' V ∗(1) induced by (6). If, in
addition, X has good reduction at q ∈ Sp, then Vq is crystalline and Dcris(Vq)

ϕ=1 = 0
by a result of Katz–Messing [43]. Therefore, conditions S) and N1-2) hold if X has
good reduction at all q ∈ Sp.

0.4.3. — We continue to assume that V =H i
p(m), where X is a smooth projective va-

riety over F. For all q ∈ Sp the representation Vq is potentially semistable by the main
result of Tsuji [70]. Let L/Fq be a finite extension such that Vq is semistable over L.
The module Dst/L(Vq) is equipped with a monodromy N and a Frobenius operator ϕ.

The monodromy filtration MiDst/L(Vq) on Dst/L(Vq) is an increasing filtration defined
by

MiDst/L(Vq) = ∑
k−l=i

ker(Nk+1)∩ Im(Nl).

It is expected that ϕ acts semisimply on Dst/L(Vq) and the p-adic analog of the
monodromy-weight conjecture formulated by Jannsen [40] says that the absolute
value of eigenvalues of ϕ acting on grMi Dst/L(Vq) is p(i+wt(M))/2. Since

Dcris(Vq)
ϕ=1 ⊂ Dst/L(Vq)

N=0 ⊂M0Dst/L(Vq),

conditions S) and N1) conjecturally always hold if wt(M) =−1.
On the other hand, condition N2) depends on the choice of Dq and does not hold

in general in the bad reduction case. If it holds, then hnorm
V,D = hspl

V,D = −hsel
V,D, and

composing this antisymmetric pairing with the isomorphism H1
f (V )'H1

f (V
∗(1)) we

get a symmetric pairing

(7) hV,D : H1
f (V )×H1

f (V )→ E.

0.4.4. — We maintain previous notation and assumptions. Let wt(M) = −1. As-
sume, in addition, that F = Q and that V is semistable at p. Then conditions F1a-b)
and F2a) follow from the p-adic analog of the monodromy-weight conjecture and
therefore conjecturally always hold (see Proposition 4.3.7). The notion of splitting
submodule coincides with the one of regular submodule from [7, 60] and condition
F2b) is equivalent to the non-vanishing of the L -invariant L (V,D) introduced in [7]
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(see Proposition 4.3.11). We also remark that condition F3) does not hold in general.
A simple counter-example is given by the representation V (E)⊗3(−1), where V (E)
is the p-adic representation associated to an elliptic curve E/Q having split multi-
plicative reduction at p (see Remark 4.3.3 for more detail). We have two pairings

h
spl
V,D : H1

f (V )×H1
f (V )→ E,

hsel
V,D : H1(V,D)×H1

f (V,D
⊥)→ E,

provided by hspl
V,D and hsel

V,D respectively and related by Theorem IV.

0.5. p-adic L-functions

0.5.1. — We keep the hypotheses and notation of Section 0.4.4. Let V be a
semistable representation associated to a motive M/Q of weight −1. It is expected
(see [7, 41, 33, 34] and especially Perrin-Riou’s book [60]) that to each splitting
submodule D of Vp one can associate a p-adic L-function Lp(M,D,s) interpolating
special values of the complex L-function L(M,s). Namely, let r and rp denote the or-
ders of vanishing of L(M,s) and Lp(M,D,s) at s = 0. Set L(r)(M,0) = lim

s→0
s−rL(M,s)

and L(r)(M,D,0) = lim
s→0

s−rL(M,D,s). Beilinson’s conjecture predicts that

r = dimQp H1
f (V )

and
L(r)(M,0)

R∞(M)Ω∞(M)
∈Q∗,

where Ω∞(M) is the Deligne period of M, and R∞(M) is the determinant of the
archimedean height on some fixed basis. The conjectural interpolation property of
L(M,D,s) at s = 0 reads

(8) L(r)
p (M,D,0) = E (M,D)Rp(M,D)

L(r)(M,0)
R∞(M)Ω∞(M)

,

where Rp(V,D) is the determinant of the p-adic height hspl
V,D taken on the same basis,

and E (V,D) is some explicit Euler-like interpolation factor [60].
It is expected that if N2) holds (or equivalently M0 = M1 = 0), then

(9) rp = r,

and (9) and (8) can be seen as a p-adic version of Beilinson’s conjecture.
If condition N2) does not hold, we are in presence of extra-zeros. Generalizing the

Mazur–Tate–Teitelbaum conjecture (for modular forms) and Greenberg’s trivial zero
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conjecture [35] (in the general ordinary case), it is natural to expect that

rp = r+ e, e = dimQp H0(D′).

Taking into account (5) and (8), we can write this conjectural equality in the form

(10) rp = dimQp H1(V,D).

The natural general conjecture for the special value of Lp(V,D,s) at s = 0 reads

(11) L(r+e)
p (V,D,0) = L (V,D)E +(V,D)Rp(V,D)

L(r)(V,0)
R∞(M)Ω∞(M)

,

where L (V,D) is the L -invariant constructed in [7] (see also Section 4.3.9) and
E +(V,D) is obtained from E (V,D) by removing linear zero factors (see [7] for further
details). We remark that in (11), Rp(V,D) is taken for the pairing h

spl
V,D and not for the

extended height pairing hsel
V,D. The comparision between these two pairings is given

by Theorem 7.2.4, but does not make appear the L -invariant. Formulas (10-11) can
be seen as the p-adic version of Beilinson’s conjecture in the presence of extra-zeros.
We refer the reader to [9] for the formulation of the analog of this conjecture in the
case wt(M) 6=−1.

0.5.2. — We illustrate previous remarks with p-adic representations arising from

modular forms. Let f =
∞

∑
n=1

anqn ∈ Snew
k (N) be a newform of even weight k for

Γ0(N). Fix a prime p and denote by Wf the p-adic representation of GQ associ-
ated to f by Deligne [23]. Its restriction on the decomposition group at p is po-
tentially semistable with Hodge–Tate weights (−k/2,k/2− 1). It is crystalline if
(N, p) = 1 and semistable non-crystalline if p ‖ N. In the second case, Dcris(Wf )

is a one-dimensional subspace of Dst(Wf ). In the both cases

(12) det(1−ϕX |Dcris(Wf )) = 1−apX + ε0(p)pk−1X2,

where ε0 is the trivial Dirichlet character modulo N [65, 67].
Let M denote the motive associated to the central twist of f . Thus,

L(M,s) = L( f ,s+ k/2).

Its p-adic realization is the central twist Vf =Wf (k/2) of Wf . The representation Vf

is self dual. Fix an eigenvalue α of Frobenius acting on Dcris(Vf ). We will always
assume (5) that |α|p > (1/p)k/2−1. One expects that the corresponding eigenspace Dα

5. We exclude the critical case |α|p = (1/p)k/2−1.
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is one-dimensional (6). It is easy to see that under this assumption Dα is a splitting
submodule of Dst(Vf ), and we set

L(M,Dα ,s) = Lp,α( f ,s+ k/2),

where Lp,α( f ,s) is the classical p-adic L-function constructed in [1, 50, 52, 73]. As
before, we write r and rp for the orders of vanishing of L( f ,s) at s = k/2. Below we
consider separately the following cases 0.5.2.1 and 0.5.2.2.

0.5.2.1. — (p,N) = 1. The representation Vf is crystalline and from (12) it follows
that Dcris(Vf )

ϕ=1 = 0. Therefore, Vf satisfies S) and N2). The space Dcris(Vf ) is two-
dimensional and we have two possible choices of α. The values of the complex and
p-adic L-functions at s = k/2 are related by the formula

(13) Lp,α( f ,k/2) =
(

1− 1
pα

)2 L( f ,k/2)
Ω f

,

where Ω f denotes Deligne’s period of f . Since |α|= p(k−1)/2, the Euler-like interpo-
lation factor does not vanish.

Assume first that r = 0. Then rp = 0. By Kato [42], H1
f (Vf ) = 0 and the p-adic

height degenerates. Therefore, in this case, formula (8) reduces to (13).
If r > 1, the relation (13) says only that both L( f ,s) and Lp,α( f ,s) vanish at s =

k/2, but does not contain information about special values. In this case, (8) concides
with the Mazur–Tate–Teitelbaum conjecture [52] in the nonexceptional case, namely

L(r)
p ( f ,k/2) =

(
1− 1

pα

)2

Rp( f )
L(r)( f ,k/2)
R∞( f )Ω f

,

where R∞( f ) and Rp( f ) are the determinants of the complex and the p-adic height
pairings computed in the same basis. If r = 1, this question is closely related to p-
adic analogues of the Gross-Zagier formula [55, 47, 58]. Here one of the key points
is the interpretation of the p-adic height pairing

hVf ,Dα
: H1

f (Vf )×H1
f (Vf )→ E

in terms of universal norms, and therefore the ordinarity condition appears naturally
in [55, 58]. Kobayashi generalized Perrin–Riou’s formula [58] to non-ordinary mod-
ular forms of higher weight (7).

Our theory provides a framework for working with universal norms in the com-
pletely general non-ordinary setting. In [17], combining the work of Kobayashi with

6. This obviously holds in the semistable case. In the cristalline case, this follows from the conjec-
tural semisimplicity of ϕ acting on Dcris(V f ).

7. Work in progress. See [47] for the elliptic curve case.



0.5. p-ADIC L-FUNCTIONS 15

the methods of our paper, Büyükboduk, Pollack and Sasaki study the p-adic Gross–
Zagier formula in families and deduce from it a p-adic Gross–Zagier formula for the
critical slope stabilizations of modular forms.

0.5.2.2. — p ‖ N. The representation Vf is semistable non-crystalline. From (12) it
follows that Dcris(Vf ) is one-dimensional and that ϕ acts on Dcris(Vf ) as multiplica-
tion by α = p−k/2ap. By [48, Theorem 3], ap = ±pk/2−1, and therefore α = ±p−1.

In both cases, condition S) holds. The only possible choice for splitting submodule
is to take D = Dcris(Vf ). Denote by D the (ϕ,Γ)-submodule of D†

rig(Vf ) associated to

D. Set D′ = D†
rig(Vf )/D. From the self-duality of Vf it follows that

H0(D′) = H0(D∗(χp)) =

{
D∗ if α = p−1,

0 if α =−p−1.

The values of the complex and p-adic L-functions at s = k/2 are related by the for-
mula

(14) Lp( f ,k/2) =
(

1− 1
pα

)
L( f ,k/2)

Ω f
.

If α = −p−1, condition N2) holds and Theorem III applies. The situation is quite
similar to that we considered in Section 0.5.2.1 and we refer the reader to [26, 25] for
the p-adic Gross–Zagier formula in this context and further references.

0.5.2.3. — We discuss in more detail the case α = p−1 which gives an archetypical
example of the failure of condition N2). In this case, conditions F1a-b), F2a) and
F3) hold. (8). From [7, Formula (32), p. 1619] it follows that condition F2b) holds
if and only if the Fontaine–Mazur L -invariant LFM( f ) [51] does not vanish. This is
conjecturally always true, but is proved only for elliptic curves [2].

Set H̃1
f (Vf ) = H1(Vf ,D). Then the exact sequence (5) reads

0 // D∗
∂0 // H̃1

f (Vf ) // H1
f (Vf ) // 0, dimE D∗ = 1.

In this situation, we have the pairing hVf ,D on the Bloch–Kato Selmer group H1
f (Vf )

induced by the pairing hspl
Vf ,D and the pairing

h̃Vf ,D : H̃1
f (Vf )× H̃1

f (Vf )→ E.

on the extended Selmer group provided by hsel
Vf ,D. If we assume, in addition, that

LFM( f ) 6= 0, then we have the third pairing, induced by hnorm
Vf ,D , which coincides with

hVf ,D by Theorem V. Moreover, hVf ,D and h̃Vf ,D are related by Theorem IV.

8. F2a) follows directly from the fact that V f is not crystalline.
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0.5.2.4. — The interpolation factor in (14) vanishes and Lp( f ,s) has an extra-zero at
s = k/2. Conjectural formulas (10-11) reduce to the exceptional case of the Mazur–
Tate–Teitelbaum conjecture

rp = dimE H1
f (Vf )+1,(15)

L(r+1)
p ( f ,k/2) = LFM( f )Rp( f )

L(r)( f ,k/2)
R∞( f )Ω f

.(16)

In the analytic rank zero case r = 0, formula (16) takes the form

L′p( f ,k/2) = LFM( f )
L( f ,k/2)

Ω f
.

It was proved by different methods by Greenberg and Stevens [36, 69] and Kato,
Kurihara and Tsuji (unpublished, but see [8, 21]). In particular, the validity of (15) in
this case is equivalent to the non-vanishing of LFM( f ).

0.5.2.5. — Assume that r = 1. From [42] (see also [20] and [10]), it follows that
in this case ords=k/2Lp( f ,s) > 2. For elliptic curves, a version of the Gross–Zagier
formula involving the L -invariant was proved by Venerucci [71]. Our theory of p-
adic heights allows to generalize the method of Venerucci to modular forms of higher
weights (9). In [11], K. Büyükboduk and the author prove the following result. Let
zBK

f ∈ H1
f (Vf ) denote the first layer of the Beilinson–Kato Euler system constructed

in [42]. Let

zBK
f = sc

Vf ,D
(
zBK

f
)
∈ H̃1

f (Vf )

be the canonical lift of zBK
f under the splitting sc

Vf ,D defined in (5). Fix a basis b of
the one-dimensional space H0(D∗(χp)). Then

(17) Ωp ·
d2

ds2 Lp( f ,s)
∣∣
s=k/2 = det


h̃Vf ,D (∂0(b),∂0(b)) h̃Vf ,D

(
∂0(b),zBK

f

)
h̃Vf ,D

(
zBK

f ,∂0(b)
)

h̃Vf ,D

(
zBK

f ,zBK
f

)
 ,

where Ωp is some explicit "p-adic period" which depends on our choice of b (see [11,
Section 7.2] for the precise definition). The key new ingredient of the proof of this
formula is the interpretation of the height pairing in terms of universal norms which
leads to non-ordinary versions of Rubin-style formulae.

9. Note that our results are weaker that the results of Venerucci, because the injectivity of the p-adic
Abel–Jacobi map is an open question in the higher weight case.
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If LFM( f ) 6= 0, formula (17) together with a standard argument (see, for example,
the proof of [54, Theorem 7.13]) give an expression for d2

ds2 Lp( f ,s)
∣∣
s=k/2 in terms of

LFM( f ) and the height h f ,D(zBK
f ,zBK

f ) (see [11, Corollary B]).

0.5.2.6. — We maintain previous assumptions. Let f be the Coleman family of mod-
ular forms passing through f . Let Vf be the big Galois representation associated to this
family which specializes to Vf at the weight k. A two-variable version of the Bock-
stein map which takes into account the deformation in the weight direction, gives a
two-variable height pairing

Hf : H̃1
f (Vf )× H̃1

f (Vf )→ J/J2,

where J ⊂ E[[κ − k,s]] is the ideal of power series in κ − k and s those vanish at
(k,0) [11, Section 4.3]. The specialization of Hf at κ = k coincides with the height
pairing hVf ,D and its restriction on the central critical line s = (κ − k)/2 coincides
with the central critical height pairing constructed using the Cassels–Tate pairings
[11, Section 3.3]. This pairing is closely related to the behavior of the two-variable
p-adic L-function L(f,s) at (k,k/2) and we refer the reader to op. cit. for further
detail and references.

0.6. The organization of this paper

This paper is very technical by the nature, and in Chapters 1-2 we assemble nec-
essary preliminaries. In Chapter 1, we recall the formalism of cup products. In Sec-
tion 1.1, to each complex A• equipped with a morphism ϕ : A•→ A• we associate the

complex T •(A•) = (A•
ϕ−1−−→ A•) and study cup products of these complexes. These

results are used in Sections 2.5–2.7. In Section 1.2, we recall the the formalism of
cup products for cones following [56] (see also [57]). These results play a key role in
Chapter 3.

In Chapter 2, we consider local Galois representations with coefficients in an affi-
noid algebra. In Sections 2.1–2.2, we review the theory of (ϕ,Γ)-modules over affi-
noid algebras and its connection with p-adic representations and classical Fontaine’s
functors Dcris and Dst and DdR. The reader familiar with (ϕ,Γ)-modules can skip
them. In Section 2.3, we review local duality for Galois representations. In Sec-
tion 2.4, we construct cup products for Fontaine–Herr complexes of (ϕ,Γ)-modules
and review the computation of Galois cohomology in terms of these complexes. Sec-
tions 2.5–2.7 are the central parts of the chapter. They contain the most part of results
we need to develop the theory of Selmer complexes with local conditions arising
from (ϕ,Γ)-modules. In Sections 2.5–2.6, we introduce the complex K•(V ) which
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relates the Fontaine–Herr complex to the complex of continuous cochains with co-
efficients in V. Using results from Chapter 1, we prove some technical results about
cup products of these complexes. These results are used to develop the duality theory
for Selmer complexes in Section 3.1. In Section 2.7, we compute the Bockstein map
for Fontaine–Herr complexes and for K•(V ). These results are used in Section 3.2 to
generalize Nekovář’s construction of the p-adic height pairing. In particular, Propo-
sition 2.6.4 plays a key role in the proof of Theorem 3.2.4 (Theorem I of this Intro-
duction) which asserts that the constructed p-adic height pairing is skew symmetric.
In Section 2.8, we review Iwasawa cohomology of (ϕ,Γ)-modules and prove some
auxiliary results. In Section 2.6, we review the definition and some properties of the
Bloch–Kato group H1

f of a (ϕ,Γ)-module. In particular, we review the canonical
decomposition of H1 of some "exceptional" isoclinic modules (ϕ,Γ)-modules into
the direct sum of H1

f and its canonical complement H1
c . These results are used in

Chapter 7 to study p-adic heights on extended Selmer groups.
Chapter 3 is the central part of the paper. It gathers the main constructions of our

theory. Selmer complexes RΓ(V,D) are defined in Section 3.1. In Theorem 3.1.5,
we construct the cup products. Theorem 3.1.7 gives a sufficient condition that the
cup product be a duality. In Theorem 3.1.11 we prove that the cup product is skew
symmetric following the method of Nekovář. The p-adic height pairing is defined is
Section 3.2. In Theorem 3.2.4 (Theorem I of this Introduction), we deduce that it is
skew symmetric from formal properties of cup products.

In the rest of the paper, we consider p-adic heights for p-adic representations with
coefficients in a p-adic field. In Chapter 4, we study splitting submodules of poten-
tially semistable representations. Sections 4.1-4.2 assembles technical results used to
construct the pairing hspl

V,D. In Section 4.3, we assumme that the ground field is Qp.

We construct the canonical filtration (4) and discuss in detail its properties. In partic-
ular, we show that conditions F1a-b) and F2a) follow from the semisimplicity of the
Frobenius operator and the monodromy-weight conjecture.

In Chapters 5-6 we construct the pairings hnorm
V,D and hspl

V,D and prove Theorems II
and III.

In Chapter 7, we study extended Selmer groups and prove Theorems IV and V.
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CHAPTER 1

COMPLEXES AND PRODUCTS

1.1. The complex T •(A•)

1.1.1. — If R is a commutative ring, we write K (R) for the category of com-
plexes of R-modules and Kft(R) for the subcategory of K (R) consisting of com-
plexes C• = (Cn,dn

C•) such that Hn(C•) are finitely generated over R for all n ∈ Z.
We write D(R) and Dft(R) for the corresponding derived categories and denote by
[ · ] : K∗(R)→ D∗(R), (∗ ∈ { /0, ft}) the obvious functors. We will also consider the
subcategories K

[a,b]
ft (R), (a 6 b) consisting of objects of Kft(R) whose cohomolo-

gies are concentrated in degrees [a,b]. A perfect complex of R-modules is one of the
form

0→ Pa→ Pa+1→ . . .→ Pb→ 0,

where each Pi is a finitely generated projective R-module. If R is noetherian, we
denote by D

[a,b]
perf (R) the full subcategory of Dft(R) consisting of objects quasi-

isomorphic to perfect complexes concentrated in degrees [a,b].
If C• = (Cn,dn

C•)n∈Z is a complex of R-modules and m ∈ Z, we will denote by
C•[m] the complex defined by C•[m]n =Cn+m and dn

C•[m](x) = (−1)mdC•(x). We will
often write dn or just simply d instead of dn

C• . For each m, the truncation τ>mC• of C•

is the complex

0→ coker(dm−1)→Cm+1→Cm+2→ ·· · .

Therefore

H i(τ>mC•) =

{
0, if i < m,

H i(C•), if i> m .
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The tensor product A•⊗B• of two complexes A• and B• is defined by

(A•⊗B•)n =
⊕
i∈Z

(
Ai⊗Bn−i) ,

d(ai⊗bn−i) = dxi⊗ yn−i +(−1)iai⊗bn−i, ai ∈ Ai, bn−i ∈ Bn−i.

We denote by s12 : A•⊗B•→ B•⊗A• the transposition

s12(an⊗bm) = (−1)nmbm⊗an, an ∈ An, bm ∈ Bm.

It is easy to check that s12 is a morphism of complexes. We will also consider the
map s∗12 : A•⊗B•→ B•⊗A• given by

s∗12(an⊗bm) = bm⊗an,

which is not a morphism of complexes in general.
Recall that a homotopy h : f  g between two morphisms f ,g : A• → B• is a

family of maps h = (hn : An+1→ Bn) such that dh+hd = g− f . We will sometimes
write h instead of hn. A second order homotopy H : h k between homotopies
h,k : f  g is a collection of maps H =(Hn : An+2→Bn) such that Hd−dH = k−h.

If fi : A•1→ B•1 (i = 1,2) and gi : A•2→ B•2 (i = 1,2) are morphisms of complexes
and h : f1 f2 and k : g1 g2 are homotopies between them, then the formula

(18) (h⊗ k)1(xn⊗ ym) = h(xn)⊗g1(ym)+(−1)n f2(xn)⊗ k(ym),

where xn ∈ An
1, ym ∈ Am

2 , defines a homotopy

(h⊗ k)1 : f1⊗g1 f2⊗g2.

1.1.2. — For the content of this subsection we refer the reader to [72, §3.1]. If
f : A•→ B• is a morphism of complexes, the cone of f is defined to be the complex

cone( f ) = A•[1]⊕B•,

with differentials

dn(an+1,bn) = (−dn+1(an+1), f (an+1)+dn(bn)).

We have a canonical distinguished triangle

A•
f−→ B•→ cone( f )→ A•[1].
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We say that a diagram of complexes of the form

(19) A•1
f1 //

α1

��

B•1

α2

��
A•2 f2

//

h
2:

B•2

is commutative up to homotopy, if there exists a homotopy

h : f2 ◦α1 α2 ◦ f1.

In this case, the formula

c(α1,α2,h)n(an+1,bn) = (α1(an+1),α2(bn)+hn(an+1))

defines a morphism of complexes

(20) c(α1,α2,h) : cone( f1)→ cone( f2).

Assume that, in addition to (19), we have a diagram

A•1
f1 //

α ′1

��

B•1

α ′2

��
A•2 f2

//

h′
2:

B•2

together with homotopies

k1 : α1 α
′
1

k2 : α2 α
′
2

and a second order homotopy

H : f2 ◦ k1 +h′ k2 ◦ f1 +h.

Then the map

(21) (an+1,bn) 7→ (−k1(an+1),k2(bn)+H(an+1))

defines a homotopy c(α1,α2,h) c(α ′1,α
′
2,h
′).
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1.1.3. — Till the end of this section R is a commutative ring and all complexes are
complexes of R-modules. Let A• = (An,dn) be a complex equipped with a morphism
ϕ : A•→ A•. By definition, the total complex

T •(A•) = Tot(A•
ϕ−1−−→ A•).

is given by T n(A•) = An−1⊕An with differentials

dn(an−1,an) = (dn−1an−1 +(−1)n(ϕ−1)an,dnan), (an−1,an) ∈ T n(A•).

If A• and B• are two complexes equipped with morphisms ϕ : A• → A• and ψ :
B•→ B•, and if α : A•→ B• is a morphism such that α ◦ϕ = ψ ◦α, then α induces
a morphism T (α) : T •(A•)→ T •(B•). We will often write α instead of T (α) to
simplify notation.

Lemma 1.1.4. — Let A• and B• be two complexes equipped with morphisms
ϕ : A•→ A• and ψ : B•→ B•, and let αi : A•→ B• (i = 1,2) be two morphisms
such that

αi ◦ϕ = ψ ◦αi i = 1,2.

If h : α1  α2 is a homotopy between α1 and α2 such that h ◦ ϕ = ψ ◦ h, then
the collection of maps hT = (hn

T : T n+1(A•)→ T n(B•)) defined by hn
T (an,an+1) =

(h(an),h(an+1)) is a homotopy between T (α1) and T (α2).

Proof. — The proof of this lemma is a direct computation and is omitted here.

In the remainder of this subsection we will consider triples (A•1,A
•
2,A
•
3) of complexes

of R-modules equipped with the following structures

A1) Morphisms ϕi : A•i → A•i (i = 1,2,3).

A2) A morphism ∪A : A•1⊗A•2→ A•3 which satisfies

∪A ◦ (ϕ1⊗ϕ2) = ϕ3 ◦∪A.

Proposition 1.1.5. — Assume that a triple (A•i ,ϕi) (1 6 i 6 3) satisfies conditions
A1-2). Then the map

∪T
A : T •(A•1)⊗T •(A•2)→ T •(A•3)

given by

(xn−1,xn)∪T
A (ym−1,ym) = (xn∪A ym−1 +(−1)mxn−1∪A ϕ2(ym),xn∪A ym),

is a morphism of complexes.
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Proof. — This proposition is well known to the experts (compare, for example, to
[57, Proposition 3.1] ). It follows from a direct computation which we recall for the
convenience of the reader. Let (xn−1,xn) ∈ T n(A•1) and (ym−1,ym) ∈ T m(A•2). Then

d((xn−1,xn)∪T
A (ym−1,ym) =

= d(xn∪A ym−1 +(−1)mxn−1∪A ϕ2(ym),xn∪A ym) = (zn+m,zn+m+1),

where

zn+m = dxn∪A ym−1 +(−1)nxn∪A dym−1 +(−1)mdxn−1∪A ϕ2(ym)+

(−1)m+n−1xn−1∪A d(ϕ2(ym))+(−1)n+m(ϕ3−1)(xn∪A ym)

and zn+m+1 = d(xn∪A ym). On the other hand

∪T
A ◦d((xn−1,xn)⊗ (ym−1,ym)) =

= ∪T
A ◦ ((dxn−1 +(−1)n(ϕ1−1)xn,dxn)⊗ (ym−1,ym))+

+(−1)n∪T
A ◦((xn−1,xn)⊗ (dym−1 +(−1)m(ϕ2−1)ym,dym)) =

= (un+m,un+m+1),

where

un+m = dxn∪A ym−1 +(−1)m(dxn−1 +(−1)n(ϕ1−1)xn)∪ϕ2(ym)+

(−1)nxn∪ (dym−1 +(−1)m(ϕ2−1)ym)+(−1)n+m−1xn−1∪ϕ2(dym),

and un+m+1 = dxn ∪A ym + (−1)nxn ∪A dym. Now the proposition follows from the
formula

d(xn∪A ym) = dxn∪A ym +(−1)nxn∪A dym

and the assumption A2) that reads ϕ1(xn)∪A ϕ2(ym) = ϕ3(xn∪A ym).

Proposition 1.1.6. — Let (A•i ,ϕi) and (B•i ,ψi) (16 i6 3) be two triples of complexes
that satisfy conditions A1-2). Assume that they are equipped with morphisms

αi : A•i → B•i ,

such that αi ◦ϕi = ψi ◦αi for all 16 i6 3. Assume, in addition, that in the diagram

A•1⊗A•2
∪A //

α1⊗α2

��

A•3

α3

��

h

�
B•1⊗B•2
∪B // B•3
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there exists a homotopy

h : α3 ◦∪A ∪B ◦ (α1⊗α2).

such that h◦ (ϕ1⊗ϕ2) = ψ3 ◦h. Then the collection hT of maps

hk
T :

⊕
m+n=k+1

(T n(A•1)⊗T m(A•2))→ T k(B•3)

defined by

hk
T ((xn−1,xn)⊗ (ym−1⊗ ym)) =

=
(
h(xn⊗ ym−1)+(−1)mh(xn−1⊗ϕ2(ym)),h(xn⊗ ym)

)
,

provides a homotopy hT : α3 ◦∪T
A  ∪T

B ◦ (α1⊗α2) :

T •(A•1)⊗T •(A•2)
∪T

A //

α1⊗α2

��

T •(A•3)

α3

��

hT

�	T •(B•1)⊗T •(B•2)
∪T

B // T •(B•3).

Proof. — Again, the proof is a routine computation. Let (xn−1,xn) ∈ T n(A•1) and
(ym−1,ym) ∈ T m(A•2). We have

d((xn−1,xn)⊗ (ym−1,ym)) = (dxn−1 +(−1)n(ϕ1−1)xn,dxn)⊗ (ym−1,ym)+

+(−1)n(xn−1,xn)⊗ (dym−1 +(−1)m(ϕ2−1)ym,dym),

and therefore

hT ◦d((xn−1,xn)⊗ (ym−1,ym)) = (a,b),

where

a = h(dxn⊗ ym−1)+(−1)mh((dxn−1 +(−1)n(ϕ1−1)xn)⊗ϕ2(ym))+

+(−1)n(h(xn⊗ (dym−1 +(−1)m(ϕ2−1)ym))+

+(−1)n+m−1h(xn−1⊗ϕ2(dym)) =

= h◦d(xn⊗ ym−1)+(−1)mh◦d(xn−1⊗ϕ2(ym))+

+(−1)n+m(ψ3−1)◦h(xn⊗ ym)

and

b = h(dxn⊗ ym)+(−1)nh(xn⊗dym) = h◦d(xn⊗ ym).
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On the other hand

d ◦hT ((xn−1,xn)⊗ (ym−1,ym)) =

= d(h(xn⊗ ym−1)+(−1)mh(xn−1⊗ϕ2(ym)),h(xn⊗ ym)) =

= (d ◦h(xn⊗ ym−1)+(−1)md ◦h(xn−1⊗ϕ2(ym))+

+(−1)n+m−1(ψ3−1)h(xn⊗ ym),d ◦h(xn⊗ ym)).

Thus

(hT d +dhT )((xn−1,xn)⊗ (ym−1,ym)) =

= ((hd +dh)(xn⊗ ym−1)+(−1)m(hd +dh)(xn−1⊗ϕ2(ym)),

(hd +dh)(xn⊗ ym)) =

= ((α1(xn)∪B α2(ym−1)−α3(xn∪A ym−1))+

(−1)m(α1(xn−1)∪B ϕ2(α2(ym))−α3(xn−1∪A ϕ2(ym)),

α1(xn)∪B α2(ym)−α3(xn∪A ym)) =

= (∪T
B ◦ (α1⊗α2)−α3 ◦∪T

A)((xn−1,xn)⊗ (ym−1,ym)).

and the proposition is proved.

Proposition 1.1.7. — Let A•i (16 i6 4) be four complexes equipped with morphisms
ϕi : A•i → A•i and such that

a) The triples (A•1,A
•
2,A
•
3) and (A•1,A

•
2,A
•
4) satisfy A1-2).

b) The complexes A•i (i = 1,2) are equipped with morphisms Ti : A•i → A•i which
commute with morphisms ϕi

Ti ◦ϕi = ϕi ◦Ti, i = 1,2.

c) There exists a morphism T34 : A•3→ A•4 such that

T34 ◦ϕ3 = ϕ4 ◦T34.

d) The diagram

A•1⊗A•2
∪A //

s12◦(T1⊗T2)

��

A•3

T34

��
A•2⊗A•1

∪A // A•4.

commutes.
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Let Ti : T •(A•i )→ T •(A•i ) (i= 1,2) and T34 : T •(A•3)→ T •(A•4) be the morphisms
(which we denote again by the same letter) defined by

Ti(xn−1,xn) = (Ti(xn−1),Ti(xn)), T34(xn−1,xn) = (T34(xn−1),T34(xn)).

Then in the diagram

T •(A•1)⊗T •(A•2)
∪T

A //

s12◦(T1⊗T2)

��

T •(A•3)

T34

��

hT

�	T •(A•2)⊗T •(A•1)
∪T

A // T •(A•4)

the maps T34 ◦∪T
A and ∪T

A ◦ s12 ◦ (T1⊗T2) are homotopic.

Proof. — Let (xn−1,xn) ∈ T n(A•1) and (ym−1,ym) ∈ T m(A•2). Then

(22) T34((xn−1,xn)∪T
A (ym−1,ym)) =

= (T34(xn∪A ym−1)+(−1)mT34(xn−1∪A ϕ2(ym)),T34(xn∪A ym))

and

(23)

∪T
A ◦s12 ◦ (T1⊗T2)((xn−1,xn)⊗ (ym−1,ym)) =

= (−1)mnT2(ym−1,ym)∪A T1(xn−1,xn) =

= (−1)mn(T2(ym)∪A T1(xn−1)+(−1)nT2(ym−1)∪A ϕ1(T1(xn)),

T2(ym)∪A T1(xn)) =

= ((−1)mT34(xn−1∪A ym)+T34(ϕ1(xn)∪A ym−1),T34(xn∪A ym)).

Define
hk

T :
⊕

m+n=k+1

(T n(A•1)⊗T m(A•2))→ T k(A•4),

by

(24) hk
T ((xn−1,xn)⊗ (ym−1⊗ ym)) = (−1)n−1(T34(xn−1∪A ym−1),0).

Then

dhT ((xn−1,xn)⊗ (ym−1⊗ ym)) =(25)

= (−1)n−1d(T34(xn−1∪A ym−1),0) =

= (−1)n−1(T34(dxn−1∪A ym−1 +(−1)n−1xn−1∪A dym−1),0) =

= ((−1)n−1T34(dxn−1∪A ym−1)+T34(xn−1∪A dym−1),0),
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and

hT d((xn−1,xn)⊗ (ym−1⊗ ym)) =(26)

= hT ((dxn−1 +(−1)n(ϕ1−1)xn,dxn)⊗ (ym−1,ym)+

+(−1)n(xn−1,xn)⊗ (dym−1 +(−1)m(ϕ2−1)ym,dym)) =

= ((−1)nT34(dxn−1∪A ym−1)+T34(ϕ1(xn)∪A ym−1)−
−T34(xn∪A ym−1)−T34(xn−1∪A dym−1)−
− (−1)mT34(xn−1∪A ϕ2(ym))+(−1)mT34(xn−1∪A ym),0).

From (22-26) it follows that

∪T
A ◦ s12 ◦ (T1⊗T2)−T34 ◦∪T

A = dhT +hT d

and the proposition is proved.

1.2. Products

1.2.1. — In this subsection we review the construction of products for cones follow-
ing Nekovář [56] and Nizioł[57]. We will work with the following data:

P1) Diagrams

A•i
fi−→C•i

gi←− B•i , i = 1,2,3,

where A•i , B•i and C•i are complexes of R-modules.

P2) Morphisms

∪A : A•1⊗A•2→ A•3,

∪B : B•1⊗B•2→ B•3,

∪C : C•1⊗C•2 →C•3 .

P3) A pair of homotopies h = (h f ,hg)

h f : ∪C ◦ ( f1⊗ f2) f3 ◦∪A,

hg : ∪C ◦ (g1⊗g2) g3 ◦∪B.

Define

(27) E•i = cone
(

A•i ⊕B•i
fi−gi−−−→C•i

)
[−1].

Thus
En

i = An
i ⊕Bn

i ⊕Cn−1
i

with d(an,bn,cn−1) = (dan,dbn,− fi(an)+gi(bn)−dcn−1).
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Proposition 1.2.2. — i) Given the data P1-3), for each r ∈ R the formula

(an,bn,cn−1)∪r,h (a′m,b
′
m,c
′
m−1) =

(an∪A a′m,bn∪B b′m,cn−1∪C (r f2(a′m)+(1− r)g2(b′m))+

(−1)n((1− r) f1(an)+ rg1(bn))∪C c′m−1− (h f (an⊗a′m)−hg(bn⊗b′m)))

defines a morphism in K (R)

∪r,h : E•1 ⊗E•2 → E•3 .

ii) If r1,r2 ∈ R, then the map

k : E•1 ⊗E•2 → E•3 [−1],

given by

k((an,bn,cn−1)⊗ (a′m,b
′
m,c
′
m−1)) = (0,0,(−1)n(r1− r2)cn−1∪C c′m−1)

for all (an,bn,cn−1) ∈ En
1 and (a′m,b

′
m,c
′
m−1) ∈ Em

2 , defines a homotopy k : ∪r1,h  
∪r2,h.

iii) If h′ = (h′f ,h
′
g) is another pair of homotopies as in P3), and if α : h f  h′f and

β : hg h′g is a pair of second order homotopies, then the map

s : E•1 ⊗E•2 → E•3 [−1],

s((an,bn,cn−1)⊗ (a′m,b
′
m,c
′
m−1)) = (0,0,α(an⊗a′m)−β (bn,b′m))

defines a homotopy s : ∪r,h ∪r,h′ .

Proof. — See [57, Proposition 3.1].

1.2.3. — Assume that, in addition to P1-3), we are given the following data:

T1) Morphisms of complexes

TA : A•i → A•i ,

TB : B•i → B•i ,

TC : C•i →C•i ,

for i = 1,2,3.

T2) Morphisms of complexes

∪′A : A•2⊗A•1→ A•3,

∪′B : B•2⊗B•1→ B•3,

∪′C : C•2⊗C•1 →C•3 .
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T3) A pair of homotopies h′ = (h′f ,h
′
g)

h′f : ∪′C ◦ ( f2⊗ f1) f3 ◦∪′A,
h′g : ∪′C ◦ (g2⊗g1) g3 ◦∪′B.

T4) Homotopies

Ui : fi ◦TA TC ◦ fi,

Vi : gi ◦TB TC ◦gi,

for i = 1,2,3.

T5) Homotopies

tA : ∪′A ◦ s12 ◦ (TA⊗TA) TA ◦∪A,

tB : ∪′B ◦ s12 ◦ (TB⊗TB) TB ◦∪B,

tC : ∪′C ◦ s12 ◦ (TC⊗TC) TC ◦∪C.

T6) A second order homotopy H f trivializing the boundary of the cube

A•1⊗A•2
∪A //

f1⊗ f2

��

TA⊗TA

##

A•3

f3

��

TA

  
A•1⊗A•2

∪′A◦s12 //

f1⊗ f2

��

A•3

f3

��

C•1⊗C•2

TC⊗TC

##

∪C // C•3 TC

  
C•1⊗C•2 ∪′C◦s12

//

h′f ◦s12

5=

C•3 ,

tA
/7

h f
2:

(U1⊗U2)1

�� U3��
tC 08

i.e. a system H f = (H i
f )i∈Z of maps H i

f : (A1⊗A2)
i→Ci−2

3 such that

dH f −H f d =−tC ◦ ( f1⊗ f2)−TC ◦h f +U3 ◦∪A+

+ f3 ◦ tA +h′f ◦ (s12 ◦ (TA⊗TA))− (∪′C ◦ s12)◦ (U1⊗U2)1.

In this formula, (U1⊗U2)1 denotes the homotopy defined by (18).
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T7) A second order homotopy Hg trivializing the boundary of the cube

B•1⊗B•2
∪B //

g1⊗g2

��

TB⊗TB

##

B•3

g3

��

TB

  
B•1⊗B•2

∪′B◦s12 //

g1⊗g2

��

B•3

g3

��

C•1⊗C•2

TC⊗TC

##

∪C // C•3 TC

  
C•1⊗C•2 ∪′C◦s12

//

h′g◦s12

5=

C•3 ,

tB
/7

hg
2:

(V1⊗V2)1

�� V3��
tC 08

i.e. a system Hg = (H i
g)i∈Z of maps H i

g : (B1⊗B2)
i→Ci−2

3 such that

dHg−Hgd =−tC ◦ (g1⊗g2)−TC ◦hg +V3 ◦∪B+

+g3 ◦ tB +h′g ◦ (s12 ◦ (TB⊗TB))− (∪′C ◦ s12)◦ (V1⊗V2)1.

Proposition 1.2.4. — i) Given the data P1-3) and T1-7), the formula

Ti(an,bn,cn−1) = (TA(an),TB(bn),TC(cn−1)+Ui(an)−Vi(bn))

defines morphisms of complexes

Ti : E•i → E•i , i = 1,2,3

such that, for any r ∈ R, the diagram

E•1 ⊗E•2
∪r,h //

s12◦(T1⊗T2)

��

E•3

T3

��
E•2 ⊗E•1

∪′1−r,h′ // E•3

commutes up to homotopy.

Proof. — See [56, Proposition 1.3.6].
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1.2.5. Bockstein maps. — Assume that, in addition to P1-3), we are given the fol-
lowing data:

B1) Morphisms of complexes

βZ,i : Z•i → Z•i [1], Z•i = A•i ,B
•
i ,C
•
i , i = 1,2.

B2) Homotopies

ui : fi[1]◦βA,i βC,i ◦ fi,

vi : gi[1]◦βB,i βC,i ◦gi

for i = 1,2.

B3) Homotopies

hZ : ∪Z[1]◦ (id⊗βZ,2) ∪Z[1]◦ (βZ,1⊗ id),

for Z• = A•,B•,C•.

B4) A second order homotopy trivializing the boundary of the following diagram

A•1⊗A•2
βA,1⊗id

//

f1⊗ f2

��

id⊗βA,2

$$

A•1[1]⊗A•2

f1[1]⊗ f2

��

∪A[1]

##
A•1⊗A•2[1]

∪A[1] //

f1⊗ f2[1]

��

A•3[1]

f3[1]

��

C•1⊗C•2

id⊗βC,2

$$

βC,1⊗id
// C•1 [1]⊗C•2

∪C[1]

##
C•1⊗C•2 [1] ∪C[1]

//

h f [1]

3;

C•3 [1].

hA
.6

u1⊗ f2

��

f1⊗u2

��

h f [1] )1

hC .6

B5) A second order homotopy trivializing the boundary of the cube
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B•1⊗B•2
βB,1⊗id

//

g1⊗g2

��

id⊗βB,2

$$

B•1[1]⊗B•2

g1[1]⊗g2

��

∪B[1]

##
B•1⊗B•2[1]

∪B[1] //

g1⊗g2[1]

��

B•3[1]

g3[1]

��

C•1⊗C•2

id⊗βC,2

$$

βC,1⊗id
// C•1 [1]⊗C•2

∪C[1]

##
C•1⊗C•2 [1] ∪C[1]

//

hg[1]

3;

C•3 [1].

hB
.6

v1⊗ f2

��

g1⊗v2

��

hg[1] )1

hC .6

Proposition 1.2.6. — i) Given the data P1-3) and B1-5), the formula

βE,i(an,bn,cn−1) = (βA,i(an),βB,i(bn),−βC,i(cn−1)−ui(an)+ vi(bn))

defines a morphism of complexes

βE,i : E•i → E•i [1]

such that for any r ∈ R the diagram

E•1 ⊗E•2
βE,1⊗id

//

id⊗βE,2

��

E•1 [1]⊗E•2

∪r,h[1]
��

E•1 ⊗E•2 [1]
∪r,h[1] // E•3 [1]

commutes up to homotopy.
ii) Given the data P1-3), T1-7) and B1-5), for each r ∈ R the diagram

E•1 ⊗E•2
s12

��

βE,1⊗id
// E•1 [1]⊗E•2

∪r,h[1] // E•3 [1]
T3[1] // E•3 [1]

id
��

E•2 ⊗E•1
βE,2⊗id

// E•2 [1]⊗E•1
T2[1]⊗T1 // E•2 [1]⊗E•1

∪′1−r,h′ [1] // E•3 [1]

is commutative up to a homotopy.

Proof. — See [56, Propositions 1.3.9 and 1.3.10].



CHAPTER 2

COHOMOLOGY OF (ϕ,ΓK)-MODULES

2.1. (ϕ,ΓK)-modules

2.1.1. — Throughout this section, K denotes a finite extension of Qp. Let kK be the
residue field of K, OK its ring of integers and K0 the maximal unramified subfield of
K. We denote by Kur

0 the maximal unramified extension of K0 and by σ the absolute
Frobenius acting on Kur

0 . Fix an algebraic closure K of K and set GK = Gal(K/K).

Let Cp be the p-adic completion of K. We denote by vp : Cp→ R∪{∞} the p-adic

valuation on Cp normalized so that vp(p) = 1 and set |x|p =
(

1
p

)vp(x)
. Write A(r,1)

for the p-adic annulus

A(r,1) = {x ∈ Cp | r 6 |x|p < 1}.

Fix a system of primitive pn-th roots of unity ε = (ζpn)n>0 such that ζ
p
pn+1 = ζpn

for all n > 0. Let Kcyc =
⋃

∞
n=0 K(ζpn), HK = Gal(K/Kcyc), ΓK = Gal(Kcyc/K) and

let χK : ΓK → Z∗p denote the cyclotomic character.
Recall the constructions of some of Fontaine’s rings of p-adic periods. Define

Ẽ+ = lim←−
x 7→xp

OCp/ pOCp = {x = (x0,x1, . . . ,xn, . . .) | xp
i = xi, ∀i ∈ N}.

Let x= (x0,x1, . . .)∈ Ẽ+. For each n, choose a lift x̂n ∈OCp of xn. Then, for all m> 0,
the sequence x̂pn

m+n converges to x(m) = limn→∞ x̂pn

m+n ∈ OCp , which does not depend
on the choice of lifts. The ring Ẽ+, equipped with the valuation vE(x) = vp(x(0)), is a
complete local ring of characteristic p with residue field k̄K . Moreover, it is integrally
closed in its field of fractions Ẽ = Fr(Ẽ+).
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Let Ã = W (Ẽ) be the ring of Witt vectors with coefficients in Ẽ. Denote by [ · ] :
Ẽ→W (Ẽ) the Teichmüller lift. Each u = (u0,u1, . . .) ∈ Ã can be written in the form

u =
∞

∑
n=0

[up−n

n ]pn.

Set π = [ε]− 1, A+
Qp

= Zp[[π]] and denote by AQp the p-adic completion of

A+
Qp

[1/π] in Ã.

Let B̃ = Ã [1/p], BQp = AQp [1/p] and let B denote the completion of the maximal
unramified extension of BQp in B̃. All these rings are endowed with natural actions
of the Galois group GK and the Frobenius operator ϕ , and we set BK = BHK . Note
that

γ(π) = (1+π)χK(τ)−1, γ ∈ ΓK ,

ϕ(π) = (1+π)p−1.

For any r > 0 define

B̃†,r =

{
x ∈ B̃ | lim

k→+∞

(
vE(xk) +

pr
p−1

k
)

= +∞

}
.

Set B†,r = B∩ B̃†,r, B†,r
K = BK ∩B†,r, B† =

⋃
r>0

B†,r and B†
K =

⋃
r>0

B†,r
K .

Let L denote the maximal unramified subextension of Kcyc/Qp and let eK = [Kcyc :
Lcyc]. It can be shown (see [18]) that there exists rK > 0 and πK ∈ B†,rK

K such that for
all r > rK the ring B†,r

K has the following explicit description

B†,r
K =

{
f (πK) = ∑

k∈Z
akπ

k
K | ak ∈ L and f is holomorphic

and bounded on A(p−1/eKr,1)
}
.

Note that, if K/Qp is unramified, L = K0 and one can take πK = π.

Define

B†,r
rig,K =

{
f (πK) = ∑

k∈Z
akπ

k
K | ak ∈ L and f is holomorphic

on A(p−1/eKr,1)
}
.
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The rings B†,r
K and B†,r

rig,K are stable under ΓK , and the Frobenius ϕ sends B†,r
K into

B†,pr
K and B†,r

rig,K into B†,pr
rig,K . The ring

RK =
⋃

r>rK

B†,r
rig,K

is isomorphic to the Robba ring over L. Note that it is stable under ΓK and ϕ. As
usual, we set

t = log(1+π) =
∞

∑
n=1

(−1)n+1 πn

n
∈RQp .

Note that ϕ(t) = pt and γ(t) = χK(γ)t, γ ∈ ΓK .

To simplify notation, for each r > rK we set R
(r)
K = B†,r

rig,K . The ring R
(r)
K is

equipped with a canonical Fréchet topology (see [12]). Let A be an affinoid alge-
bra over Qp. Define

R
(r)
K,A = A⊗̂QpR

(r)
K , RK,A = ∪

r>rK
R

(r)
K,A.

If the field K is clear from the context, we will often write R
(r)
A instead of R

(r)
K,A and

RA instead of RK,A.

Definition. — i) A (ϕ,ΓK)-module over R
(r)
A is a finitely generated projective R

(r)
A -

module D(r) equipped with the following structures:
a) A ϕ-semilinear map

D(r)→ D(r)⊗
R

(r)
A

R
(pr)
A

such that the induced linear map

ϕ
∗ : D(r)⊗

R
(r)
A ,ϕ

R
(pr)
A → D(r)⊗

R
(r)
A

R
(pr)
A

is an isomorphism of R
(pr)
A -modules;

b) A semilinear continuous action of ΓK on D(r).

ii) D is a (ϕ,ΓK)-module over RA if D = D(r)⊗
R

(r)
A

RA for some (ϕ,ΓK)-module

D(r) over R
(r)
A , with r > rK .

If D is a (ϕ,ΓK)-module over RA, we write D∗=HomRA(D,A) for the dual (ϕ,Γ)-
module. Let Mϕ,Γ

RA
denote the ⊗-category of (ϕ,ΓK)-modules over RA.
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2.1.2. — A p-adic representation of GK with coefficients in an affinoid Qp-algebra A
is a finitely generated projective A-module equipped with a continuous A-linear action
of GK . Note that, as A is a noetherian ring, a finitely generated A-module is projective
if and only if it is flat. Let RepA(GK) denote the⊗-category of p-adic representations
with coefficients in A. The relationship between p-adic representations and (ϕ,ΓK)-
modules first appeared in the pioneering paper of Fontaine [29]. The key result of
this theory is the following theorem.

Theorem 2.1.3 (Fontaine, Cherbonnier–Colmez, Kedlaya)
Let A be an affinoid algebra over Qp.

i) There exists a fully faithul functor

D†
rig,A : RepA(GK)→Mϕ,Γ

RA
,

which commutes with base change. More precisely, let X = Spm(A). For each x ∈
X , denote by mx the maximal ideal of A associated to x and set Ex =A/mx. If V (resp.
D) is an object of RepA(GQp) (resp. of Mϕ,Γ

RA
), set Vx =V ⊗A Ex (resp. Dx = D⊗A Ex).

Then the diagram

RepA(GQp)
D†

rig,A //

⊗Ex

��

Mϕ,Γ
RA

⊗Ex
��

RepEx
(GQp)

D†
rig,Ex // Mϕ,Γ

REx

commutes, i.e. D†
rig,A(V )x ' D†

rig(Vx).

ii) If E is a finite extension of Qp, then the essential image of D†
rig,E is the subcat-

egory of (ϕ,ΓK)-modules of slope 0 in the sense of Kedlaya [44].

Proof. — This follows from the main results of [29], [18] and [44]. See also [22].

Remark 2.1.4. — Note that in general the essential image of D†
rig,A does not coincide

with the subcategory of étale modules. See [15, 46, 37] for further discussion.

2.2. Relation to p-adic Hodge theory

2.2.1. — In [29], Fontaine proposed to classify p-adic representations arising in p-
adic Hodge theory in terms of (ϕ,ΓK)-modules (Fontaine’s program). More pre-
cisely, the problem is to recover classical Fontaine’s functors DdR(V ), Dst(V ) and
Dcris(V ) (see, for example, [31]) from D†

rig(V ). The complete solution was obtained
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by Berger in [12, 14]. His theory also allowed him to prove that each de Rham rep-
resentation is potentially semistable. In this subsection, we review some of results of
Berger. See also [20] for introduction and relation to the theory of p-adic differential
equations. Let E be a fixed finite extension of Qp.

Definition. — i) A filtered module over K with coefficients in E is a free K⊗Qp E-
module M of finite rank equipped with a decreasing exhaustive filtration (FiliM)i∈Z.

We denote by MFK,E the ⊗-category of such modules.
ii) A filtered (ϕ,N)-module over K with coefficients in E is a free K0⊗Qp E-module

M of finite rank equipped with the following structures:
a) An exhaustive decreasing filtration (FiliMK)i∈Z on MK = M⊗K0 K;
b) A σ -semilinear bijective operator ϕ : M→M;
c) A K0⊗Qp E-linear operator N such that N ϕ = pϕN.

iii) A filtered ϕ-module over K with coefficients in E is a filtered (ϕ,N)-module
such that N = 0.

We denote by MFϕ,N
K,E the ⊗-category of filtered (ϕ,N)-module over K with coeffi-

cients in E and by MFϕ

K,E the category of filtered ϕ-modules.
iv) If L/K is a finite Galois extension and GL/K = Gal(L/K), then a filtered

(ϕ,N,GL/K)-module is a filtered (ϕ,N)-module M over L equipped with a semi-
linear action of GL/K which commutes with ϕ and N and such that the filtration
(FiliML)i∈Z is stable under the action of GL/K .

v) We say that M is a filtered (ϕ,N,GK)-module if M = Kur
0 ⊗L0 M′, where M′ is a

filtered (ϕ,N,GL/K)-module for some L/K. We denote by MFϕ,N,GK
K,E the ⊗-category

of (ϕ,N,GK)-modules.

Let Kcyc((t)) denote the ring of formal Laurent power series with coefficients in
Kcyc equipped with the filtration FiliKcyc((t)) = t iKcyc[[t]] and the action of ΓK given
by

γ

(
∑
k∈Z

aktk

)
= ∑

k∈Z
γ(ak)χK(γ)

ktk, γ ∈ ΓK .

The ring RK,E can not be naturally embedded in E⊗Qp Kcyc((t)), but for any r > rK

there exists a ΓK-equivariant embedding in : R
(r)
K,E → E⊗Qp Kcyc((t)) which sends π

to ζpnet/pn − 1. Let D be a (ϕ,ΓK)-module over RK,E and let D = D(r)⊗
R

(r)
K,E

RK,E

for some r > rK . Then

DdR/K(D) =
(

E⊗Qp Kcyc((t))⊗in D(r)
)ΓK
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is a free E⊗Qp K-module of finite rank equipped with a decreasing filtration

FiliDdR/K(D) =
(

E⊗Qp FiliKcyc((t))⊗in D(r)
)ΓK

,

which does not depend on the choice of r and n.
Let RK,E [logπ] denote the ring of power series in variable logπ with coefficients

in RK,E . Extend the actions of ϕ and ΓK to RK,E [logπ] setting

ϕ(logπ) = p logπ + log
(

ϕ(π)

π p

)
,

γ(logπ) = logπ + log
(

γ(π)

π

)
, γ ∈ ΓK .

( Note that log(ϕ(π)/π p) and log(τ(π)/π) converge in RK,E .) Define a monodromy
operator N : RK,E [logπ]→RK,E [logπ] by

N =−
(

1− 1
p

)−1 d
d logπ

.

For any (ϕ,ΓK)-module D define

Dst/K(D) =
(
D⊗RK,E RK,E [logπ,1/t]

)ΓK , t = log(1+π),

Dcris/K(D) = Dst(D)N=0 = (D[1/t])ΓK .

Then Dst(D) is a free E⊗Qp K0-module of finite rank equipped with natural actions of
ϕ and N such that Nϕ = pϕN. Moreover, it is equipped with a canonical exhaustive
decreasing filtration induced by the embeddings in. If L/K is a finite extension and D
is a (ϕ,ΓK)-module, the tensor product DL = RL,E⊗RK,E D has a natural structure of
a (ϕ,ΓL)-module, and we define

Dpst/K(D) = lim−→
L/K

Dst/L(DL).

Then Dpst/K(D) is a free E⊗Qp Kur
0 -module equipped with natural actions of ϕ and

N and a discrete action of GK . Therefore, we have four functors

DdR/K : Mϕ,Γ
RK,E
→MFK,E ,

Dst/K : Mϕ,Γ
RK,E
→MFϕ,N

K,E ,

Dpst/K : Mϕ,Γ
RK,E
→MFϕ,N,GK

K,E ,

Dcris/K : Mϕ,Γ
RK,E
→MFϕ

K,E .

If the field K is fixed and understood from context, we will omit it and simply write
DdR, Dst, Dpst and Dcris.
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Theorem 2.2.2 (Berger). — Let V be a p-adic representation of GK . Then

D∗/K(V )'D∗/K(D
†
rig(V )), ∗ ∈ {dR,st,pst,cris}.

Proof. — See [12].

For any (ϕ,ΓK)-module over RK,E one has

rkE⊗K0Dcris/K(D)6 rkE⊗K0Dst/K(D)6 rkE⊗K0DdR/K(D)6 rkRK,E (D).

Definition. — One says that D is de Rham (resp. semistable, resp. potentially
semistable, resp. crystalline) if

rkE⊗K0DdR/K(D) = rkRK,E (D)

(resp. rkE⊗K0Dst/K(D) = rkRK,E (D), resp. rkE⊗K0Dpst/K(D) = rkRK,E (D), resp.
rkE⊗K0Dcris/K(D) = rkRK,E (D)).

Let Mϕ,Γ
RE ,st, Mϕ,Γ

RE ,pst and Mϕ,Γ
RE ,cris denote the categories of semistable, potentially

semistable and crystalline (ϕ,Γ)-modules respectively. If D is de Rham, the jumps
of the filtration FiliDdR(D) will be called the Hodge–Tate weights of D.

Theorem 2.2.3 (Berger). — i) The functors

Dst : Mϕ,Γ
RK,E ,st→MFϕ,N

K,E ,

Dpst : Mϕ,Γ
RK,E ,pst→MFϕ,N,GK

K,E ,

Dcris : Mϕ,Γ
RK,E ,cris→MFϕ

K,E

are equivalences of ⊗-categories.
ii) Let D be a (ϕ,ΓK)-module. Then D is potentially semistable if and only if D is

de Rham.

Proof. — These results are proved in [14]. See Theorem A, Theorem III.2.4 and
Theorem V.2.3 of op. cit..

2.3. Local Galois cohomology

2.3.1. — For the content of this section we refer the reader to [62]. Let V be a p-adic
representation of GK with coefficients in an affinoid algebra A. Consider the complex
C•(GK ,V ) of continuous cochains of GK with coefficients in A and the corresponding
object RΓ(K,V ) of D(A). For the Tate module A(1), the base change (see [62, Proof
of Theorem 1.14]) and the classical computation of H2(K,Zp(1)) together give

τ≥2RΓ(K,A(1))' A[−2].
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In particular, we have a canonical isomorphism

(28) invK : H2(K,Zp(1))' A.

Recall (see Section 0.2) that on the category Dperf(A) of perfect complexes we have
the contravariant dualization functor

(29) X → X∗ = RHomA(X ,A).

The natural pairing V ∗(1)⊗V → A(1) induces a pairing

(30) RΓ(K,V ∗(1))⊗L
A RΓ(K,V ∗(1))→ τ≥2RΓ(K,A(1))' A[−2].

The following theorem is a version of classical results on local Galois cohomology
in our context.

Theorem 2.3.2 (Pottharst). — Let V be a p-adic Galois representation with coeffi-
cients in an affinoid algebra A.

i) Finiteness. We have RΓ(K,V ) ∈D
[0,2]
perf (A).

ii) Euler–Poincaré characteristic. We have
2

∑
i=0

(−1)irkAH i(K,V ) =−[K : Qp] · rkA(V ).

iii) Duality. The pairing (30) induces an isomorphism

RΓ(K,V ∗(1))' RΓ(K,V )∗[−2] := RHomA(RΓ(K,V ),A)[−2].

Proof. — See [62, Corollary 1.2 and Theorem 1.14].

Remark 2.3.3. — Theorem 2.3.2 is inspired by Nekovář’s duality theory for big
Galois representations [56, Chapters 2-5].

2.4. The complex Cϕ,γK (D)

2.4.1. — In this section we review the generalization of local Galois cohomology to
(ϕ,ΓK)-modules over a Robba ring. We keep previous notation and conventions. Set
∆K = Gal(K(ζp)/K). Then ΓK = ∆K×Γ0

K , where Γ0
K is a pro-p-group isomorphic to

Zp. Fix a topological generator γK of Γ0
K . For each (ϕ,ΓK)-module D over RA =RK,A

define
C•γK

(D) : D∆K
γK−1−−−→ D∆K ,

where the first term is placed in degree 0. If D′ and D′′ are two (ϕ,ΓK)-modules, we
will denote by

∪γ : C•γK
(D′)⊗C•γK

(D′′)→C•γK
(D′⊗D′′)
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the bilinear map

∪γ(xn⊗ ym) =


xn⊗ γn

K(ym) if xn ∈Cn
γK
(D′), ym ∈Cm

γK
(D′′),

and n+m = 0 or 1,

0 if n+m> 2.

Consider the total complex

C•ϕ,γK
(D) = Tot

(
C•γK

(D)
ϕ−1−−→C•γK

(D)
)
.

More explicitly,

C•ϕ,γK
(D) : 0→ D∆K d0−→ D∆K ⊕D∆K d1−→ D∆K → 0,

where d0(x) = ((ϕ−1)x,(γK −1)x) and d1(x,y) = (γK −1)x− (ϕ−1)y. Note that
C•ϕ,γK

(D) coincides with the complex of Fontaine–Herr [38, 39, 49]. We will write
H∗(D) for the cohomology of C•ϕ,γ(D). If D′ and D′′ are two (ϕ,ΓK)-modules, the
cup product ∪γ induces, by Proposition 1.1.5, a bilinear map

∪ϕ,γ : C•ϕ,γK
(D′)⊗C•ϕ,γK

(D′′)→C•ϕ,γK
(D′⊗D′′).

Explicitly

∪ϕ,γ((xn−1,xn)⊗ (ym−1,ym)) = (xn∪γ ym−1 +(−1)mxn−1∪γ ϕ(ym),xn∪γ ym),
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if (xn−1,xn) ∈ Cn
ϕ,γK

(D′) = Cn−1
γK

(D′) ⊕ Cn
γK
(D′) and (ym−1,ym) ∈ Cm

ϕ,γ(D′′) =

Cm−1
γ (D′′)⊕Cm

γ (D′′). An easy computation gives the following formulas{
C0

ϕ,γK
(D′)⊗C0

ϕ,γK
(D′′)→C0

ϕ,γK
(D′⊗D′′),

x0⊗ y0 7→ x0⊗ y0,{
C0

ϕ,γK
(D′)⊗C1

ϕ,γK
(D′′)→C1

ϕ,γK
(D′⊗D′′),

x0⊗ (y0,y1) 7→ (x0⊗ y0,x0⊗ y1),{
C1

ϕ,γK
(D′)⊗C0

ϕ,γK
(D′′)→C1

ϕ,γK
(D′⊗D′′),

(x0,x1)⊗ y0 7→ (x0⊗ϕ(y0),x1⊗ γK(y0)),{
C1

ϕ,γK
(D′)⊗C1

ϕ,γK
(D′′)→C2

ϕ,γK
(D′⊗D′′),

(x0,x1)⊗ (y0,y1) 7→ (x1⊗ γK(y0)− x0⊗ϕ(y1)),{
C0

ϕ,γK
(D′)⊗C2

ϕ,γK
(D′′)→C2

ϕ,γK
(D′⊗D′′),

x0⊗ y1 7→ x0⊗ y1,{
C2

ϕ,γK
(D′)⊗C0

ϕ,γK
(D′′)→C2

ϕ,γK
(D′⊗D′′),

x1⊗ y0 7→ x1⊗ γK(ϕ(y1)).

Here the zero components are omitted.

2.4.2. — For each (ϕ,ΓK)-module D we denote by

RΓ(K,D) =
[
C•ϕ,γK

(D)
]

the corresponding object of the derived category D(A). The cohomology of D is
defined by

H i(D) = Ri
Γ(K,D) = H i(C•ϕ,γK

(D)), i> 0.

There exists a canonical isomorphism in D(A)

TRK : τ>2RΓ(K,RA(χK))' A[−2]

( see [39], [49], [46]). Therefore, for each D we have morphisms

(31) RΓ(K,D)⊗L
A RΓ(K,D∗(χK))

∪ϕ,γ−−→ RΓ(K,D⊗D∗(χK))

duality−−−→ RΓ(K,RA(χK))→ τ>2RΓ(K,RA(χK))' A[−2].

The following theorem generalizes main results on the local Galois cohomology to
(ϕ,Γ)-modules.
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Theorem 2.4.3 (Kedlaya–Pottharst–Xiao). — Let D be a (ϕ,ΓK)-module over
RK,A, where A is an affinoid algebra.

i) Finiteness. We have RΓ(K,D) ∈D
[0,2]
perf (A).

ii) Euler–Poincaré characteristic formula. We have

2

∑
i=0

(−1)irkAH i(D) =−[K : Qp] rkRK,A(D).

iii) Duality. The morphism (31) induces an isomorphism

RΓ(K,D∗(χK))' RΓ(K,D)∗[−2] := RHomA(RΓ(K,D),A)[−2].

In particular, we have cohomological pairings

∪ : H i(D)⊗H2−i(D∗(χK))→ H2(RA(χK))' A, i ∈ {0,1,2}.

iv) Comparision with Galois cohomology. Let V is a p-adic representation of GK

with coefficients in A. There exist canonical (up to the choice of γK) and functorial
isomorphisms

H i(K,V )
∼→ H i(D†

rig(V ))

which are compatible with cup-products. In particular, we have a commutative dia-
gram

H2(RA(χK))

'
��

TRK // A

=

��
H2(K,A(χK))

invK // A,

where invK is the canonical isomorphism of the local class field theory (28).

Proof. — of See [46, Theorem 4.4.5] and [62, Theorem 2.8].

Remark 2.4.4. — The explicit construction of the isomorphism TRK is given in [39]
and [6, Theorem 2.2.6].

2.5. The complex K•(V )

2.5.1. — In this section, we give the derived version of isomorphisms

H i(K,V )
∼→ H i(D†

rig(V ))

of Theorem 2.4.3 iv). We write C•ϕ,γK
(V ) instead of C•ϕ,γK

(D†
rig(V )) to simplify nota-

tion. Let K be a finite extension of Qp. Let V be a p-adic representation of GK with
coefficients in an affinoid algebra A.
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In [12], Berger constructed, for each r> rK , a ring B̃†,r
rig which is the completion of

B†,r with respect to Frechet topology. Set B̃†,r
rig,A = B̃†,r

rig⊗̂QpA and B̃†
rig,A = ∪

r>rK
B̃†,r

rig,A.

For each r > rK we have an exact sequence

0→Qp→ B̃†,r
rig

ϕ−1−−→ B̃†,rp
rig → 0

(see [13, Lemma I.7]). Since the completed tensor product by an orthonormalizable
Banach space is exact in the category of Frechet spaces (see, for example, [3, proof
of Lemma 3.9] ), the sequence

0→ A→ B̃†,r
rig,A

ϕ−1−−→ B̃†,rp
rig,A→ 0.

is also exact. Passing to the direct limit we obtain an exact sequence

(32) 0→ A→ B̃†
rig,A

ϕ−1−−→ B̃†
rig,A→ 0.

Set V †
rig = V ⊗A B̃†

rig,A and consider the complex C•(GK ,V
†
rig). Then (32) induces an

exact sequence

0→C•(GK ,V )→C•(GK ,V
†
rig)

ϕ−1−−→C•(GK ,V
†
rig)→ 0.

Define

K•(V ) = T •(C•(GK ,V
†
rig)) = Tot

(
C•(GK ,V

†
rig)

ϕ−1−−→C•(GK ,V
†
rig)
)
.

Consider the map
αV : C•γK

(V )→C•(GK ,V
†
rig)

defined by 
αV (x0) = x0, x0 ∈C0

γK
(V ),

αV (x1)(g) =
γ

κ(g)
K −1
γK−1

(x1), x1 ∈C1
γK
(V ),

where g∈GK and γ
κ(g)
K = g|

Γ0
K
. It is easy to check that αV is a morphism of complexes

which commutes with ϕ. By fonctoriality, we obtain a morphism (which we denote
again by αV ):

αV : C•ϕ,γK
(V )→ K•(V ).

Proposition 2.5.2. — The map αV : C•ϕ,γK
(V )→ K•(V ) and the map

ξV : C•(GK ,V )→ K•(V ),

xn 7→ (0,xn), xn ∈Cn(GK ,V )

are quasi-isomorphisms.

Proof. — This is [10, Proposition 9].
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2.5.3. — If M and N are two Galois modules, the cup-product

∪c : C•(M)⊗C•(M)→C•(M⊗N)

defined by

(xn∪c ym)(g1,g2, . . . ,gn+m) =

= xn(g1, . . . ,gn)⊗ (g1g2 · · ·gn)ym(gn+1, . . . ,gn+m),

where xn ∈Cn(GK ,M) and ym ∈Cm(GK ,N), is a morphism of complexes. Let V and
U be two Galois representations of GK . Applying Proposition 1.1.5 to the complexes
C•(GK ,V

†
rig) and C•(GK ,U

†
rig) we obtain a morphism

∪K : K•(V )⊗K•(U)→ K•(V ⊗U).

The following proposition will not be used in the remainder of this paper, but we
state it here for completeness.

Proposition 2.5.4. — In the diagram

C•ϕ,γK
(V )⊗C•ϕ,γK

(U)
∪ϕ,γK //

αV⊗αU

��

C•ϕ,γ(V ⊗U)

αV⊗U

��

hϕ,γ

~�K•(V )⊗K•(U)
∪K // K•(V ⊗U)

the maps αV⊗U ◦∪ϕ,γ and ∪K ◦ (αV ⊗αU) are homotopic.

We need the following lemma.

Lemma 2.5.5. — For any x ∈ C1
γK
(V ), y ∈ C1

γK
(U), let cx,y ∈ C1(Γ0

K ,D
†
rig(V ⊗U))

denote the 1-cochain defined by

(33) cx,y(γ
n
K) =

n−1

∑
i=0

γ
i
K(x)⊗

(
γn

K− γ
i+1
K

γK−1

)
(y), if n 6= 0,1,

and cx,y(1) = cx,y(γK) = 0. Then
i) For each x ∈C1

ϕ,γK
(V ) and y ∈C0

ϕ,γK
(U)

cx,(γK−1)y = αV (x)∪c αU(y)−αV⊗U(x∪γ y).

ii) If x ∈C0
ϕ,γK

(V ) and y ∈C1
ϕ,γK

(U) then

c(γK−1)x,y = αV⊗U(x∪γ y)−αV (x)∪c αU(y).

iii) One has
d1(cx,y) =−αV (x)∪c αU(y).
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Proof of the lemma. — i) Note that Γ0
K is the profinite completion of the cyclic group

〈γK〉 , and an easy computation shows that the map cx,y, defined on 〈γK〉 by (33),
extends by continuity to a unique cochain on Γ0

K which we denote again by cx,y.

For any natural n 6= 0,1 one has

cx,(γ−1)y(γ
n
K) =

n−1

∑
i=0

γ
i
K(x)⊗ (γn

K− γ
i+1
K )(y) =

=
n−1

∑
i=0

γ
i
K(x)⊗ γ

n
K(y)−

n−1

∑
i=0

γ
i
K(x)⊗ γ

i+1
K (y) =

=
γn

K−1
γK−1

(x)⊗ γ
n
K(y)−

γn
K−1

γK−1
(x⊗ γK(y)) =

= (gV (x)∪c gU(y))(γn
K)− (gV⊗U(x∪γ y))(γn

K).

By continuity, this implies that cx,(γK−1)y = αV (x)∪c αU(y)−αV⊗U(x∪γ y), and i) is
proved.

ii) An easy induction proves the formula

(34)
m

∑
i=0

γ
i
K(γK−1)(x)⊗ γ

i+1
K −1
γK−1

(y) =

= γ
m+1
K (x)⊗ γ

m+1
K −1
γK−1

(y)− γ
m+1
K −1
γK−1

(x⊗ y).

Therefore

c(γK−1)x,y(γ
n
K) =

n−1

∑
i=0

(γ i+1
K − γ

i
K)(x)⊗

γn
K− γ

i+1
K

γK−1
(y) =

=
n−1

∑
i=0

(γ i+1
K − γ

i
K)(x)⊗

γn
K−1

γK−1
(y)−

n−1

∑
i=0

γ
i
K(γK−1)(x)⊗ γ

i+1
K −1
γK−1

(y) =

by (34)
= (γn

K−1)(x)⊗ γn
K−1

γK−1
(y)+

γn
K−1

γK−1
(x⊗ y)− γ

n
K(x)⊗

γn
K−1

γK−1
(y) =

=
γn

K−1
γK−1

(x⊗ y)− x⊗ γn
K−1

γK−1
(y) =

= (αV⊗U(x∪γ y))(γn
K)− (αV (x)∪c αU(y))(γn

K),

and ii) is proved.
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iii) One has

d1cx,y(γ
n
K ,γ

m
K ) = γ

n
Kcx,y(γ

m
K )− cx,y(γ

n+m
K )+ cx,y(γ

n
K) =

=
m−1

∑
i=0

γ
n+i
K (x)⊗ γ

n+m
K − γ

i+n+1
K

γK−1
(y)−

−
n+m−1

∑
i=0

γ
i
K(x)⊗

γ
n+m
K − γ

i+1
K

γK−1
(y)+

n−1

∑
i=0

γ
i
K(x)⊗

γn
K− γ

i+1
K

γK−1
(y) =

=−
n−1

∑
i=0

γ
i
K(x)⊗

γ
n+m
K − γ

i+1
K

γK−1
(y)+

n−1

∑
i=0

γ
i
K(x)⊗

γn
K− γ

i+1
K

γK−1
(y) =

=
n−1

∑
i=0

γ
i
K(x)⊗

γn
K− γ

n+m
K

γK−1
(y) =−γn

K−1
γK−1

(x)⊗ γ
n
K

γm
K −1

γK−1
(y) =

=−(αV (x)∪c αU(y))(γn
K ,γ

m
K ).

By continuity, d1cx,y =−αV (x)∪c αU(y), and the lemma is proved.

Proof of Proposition 2.5.4. — Let

hγ : C•γK
(V )⊗C•γK

(U)→C•(GK ,V
†
rig⊗U†

rig)[−1]

be the map defined by

hγ(x,y) =

{
−cx,y if x ∈C1

γK
(V ), y ∈C1

γK
(U),

0 elsewhere.

From Lemma 2.5.5 it follows that hγ defines a homotopy

hγ : αV⊗U ◦∪γ  ∪c ◦ (αV ⊗αU).

By Proposition 1.1.6, hγ induces a homotopy

hϕ,γ : αV⊗U ◦∪ϕ,γ  ∪K ◦ (αV ⊗αU).

The proposition is proved.

2.6. Transpositions

2.6.1. — Let M be a continuous GK-module. The complex C•(GK ,M) is equipped
with a transposition

TV,c : C•(GK ,M)→C•(GK ,M)

which is defined by

TV,c(xn)(g1,g2, . . . ,gn) = (−1)n(n+1)/2g1g2 · · ·gn(xn(g−1
1 , . . . ,g−1

n ))
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(see [56, Section 3.4.5.1] ). We will often write Tc instead of TV,c. The map Tc

satisfies the following properties (see [56, Section 3.4.5.3] ) :

a) Tc is an involution, i.e. T 2
c = id.

b) Tc is functorially homotopic to the identity map.

c) Let s∗12 : C•(GK ,M⊗N)→ C•(CK ,N ⊗M) denote the map induced by the in-
volution M ⊗N → N ⊗M given by x⊗ y 7→ y⊗ x (see Section 1.1.1). Set
T12 = Tc ◦ s∗12. Then for all xn ∈Cn(GK ,M) and ym ∈Cm(GK ,N) one has

T12(xn∪ ym) = (−1)nm(Tcym)∪ (Tcxn),

i.e. the diagram

(35) C•(GK ,M)⊗C•(GK ,N)
∪c //

s12

��

C•(GK ,M⊗N)

T12
��

C•(GK ,N)⊗C•(GK ,M)
∪c // C•(GK ,N⊗M)

commutes.

2.6.2. — There exists a homotopy

(36) a = (an) : id Tc

which is functorial in M ([56], Section 3.4.5.5). We remark, that from the discussion
in op. cit. it follows, that one can take a such that a0 = a1 = 0.

2.6.3. — Let V be a p-adic representation of GK . We denote by TK(V ), or simply by
TK , the transposition induced on the complex K•(V ) by Tc, thus

TK(V )(xn−1,xn) = (Tc(xn−1),Tc(xn)).

From Proposition 1.1.7 it follows that in the diagram

(37) K•(V )⊗K•(U)
∪K //

s12◦(TK(V )⊗TK(U))

��

K•(V ⊗U)

TK(V⊗U)◦s∗12

��

hT

~�K•(U)⊗K•(V )
∪K // K•(U⊗V )

the morphisms TK(V⊗U) ◦ s∗12 ◦∪K and ∪K ◦ s12 ◦ (TK(V )⊗TK(U)) are homotopic.
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Proposition 2.6.4. — i) The diagram

C•(GK ,V )
ξV //

Tc
��

K•(V )

TK(V )

��
C•(GK ,V )

ξV // K•(V ).

is commutative. The map aK(V ) = (a,a) defines a homotopy aK(V ) : idK(V ) TK(V )

such that aK(V ) ◦ξV = ξV ◦a.
ii) We have a commutative diagram

C•ϕ,γK
(V )

αV //

id
��

K•(V )

TK

��
C•ϕ,γK

(V )
αV // K•(V ).

If a : id Tc is a homotopy such that a0 = a1 = 0, then aK(V ) ◦αV = 0.

Proof. — i) The first assertion follows from Lemma 1.1.6.
ii) If x1 ∈C1

γK
(V ) then αV (x1) ∈C•(GK ,V

†
rig) satisfies

Tc(αV (x1))(g) =−g(αV (x1)(g−1)) =

=−γ
κ(g)
K

(
γ
−κ(g)
K −1
γK−1

(x1)

)
=

γ
κ(g)
K −1
γK−1

(x1) = (αV (x1))(g).

Thus Tc ◦αV = αV . By functoriality, TK ◦αV = αV . Finally, the identity aK(V ) ◦αV =

0 follows directly from the definition of ξV and the assumption that a0 = a1 = 0.

2.7. The Bockstein map

2.7.1. — Consider the completed group algebra ΛA = A[[Γ0
K ]] of Γ0

K over A. Note
that ΛA = A⊗̂ZpΛ , where Λ = Zp[[Γ

0
K ]] is the classical Iwasawa algebra. Let ι :

ΛA→ ΛA denote the A-linear involution given by ι(γ) = γ−1, γ ∈ Γ0
K . We equip ΛA

with the following structures:

a) The natural Galois action given by g(x) = ḡx, where g ∈ GK , x ∈ΛA and ḡ is the
image of g under canonical projection of GK → Γ0

K .

b) The ΛA-module structure Λ ι
A given by the involution ι , namely λ ? x = ι(λ )x for

λ ∈ΛA, x ∈Λ ι
A.
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Let JA denote the kernel of the augmentation map ΛA→ A. Then the element

X̃ = log−1(χK(γ))(γ−1) (mod J2
A) ∈ JA/J2

A

does not depend on the choice of γ ∈ Γ0
K and we have an isomorphism of A-modules

θA : A→ JA/J2
A,

θA(a) = aX̃ .

The action of GK on the quotient Ãι
K = Λ ι

A/J2
A is given by

g(1) = 1+ log(χK(g))X̃ , g ∈ GK .

We have an exact sequence of GK-modules

(38) 0→ A θK−→ Ãι
K → A→ 0.

Let V be a p-adic representation of GK with coefficients in A. Set ṼK = V ⊗A Ãι
K .

Then the sequence (38) induces an exact sequence of p-adic representations

0→V → ṼK →V → 0.

Therefore, we have an exact sequence of complexes

0→C•(GK ,V )→C•(GK ,ṼK)→C•(GK ,V )→ 0

which gives a distinguished triangle

(39) RΓ(K,V )→ RΓ(K,ṼK)→ RΓ(K,V )→ RΓ(K,V )[1].

The map s : A→ Ãι
K that sends a to a (mod J2

A) induces a canonical non-equivariant
section sV : V→ ṼK of the projection ṼK→V. Define a morphism βV,c : C•(GK ,V )→
C•(GK ,V )[1] by

βV,c(xn) =
1

X̃
(d ◦ sV − sV ◦d)(xn), xn ∈C•(GK ,V ).

We will write βc instead of βV,c if the representation V is clear from the context.

Proposition 2.7.2. — i) The distinguished triangle (39) can be represented by the
following distinguished triangle of complexes

C•(GK ,V )→C•(GK ,ṼK)→C•(GK ,V )
βV,c−−→C•(GK ,V )[1].

ii) For any xn ∈Cn(GK ,V ) one has

βV,c(xn) =− log χK ∪c xn.

Proof. — See [56, Lemma 11.2.3].
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2.7.3. — We will prove analogs of this proposition for the complexes C•ϕ,γK
(D) and

K•(V ). Let D be a (ϕ,ΓK)-module with coefficients in A. Set D̃ = D⊗A Ãι
K . The

splitting s induces a splitting of the exact sequence

(40) 0 // D // D̃ // D //
sDoo

0

which we denote by sD. Define

βD : C•ϕ,γK
(D)→C•ϕ,γK

(D)[1],(41)

βD(x) =
1

X̃
(d ◦ sD− sD ◦d)(x), x ∈Cn

ϕ,γK
(D).

Proposition 2.7.4. — i) The map βD induces the connecting maps Hn(D) →
Hn+1(D) of the long cohomology sequence associated to the short exact sequence
(40).

ii) For any x ∈Cn
ϕ,γK

(D) one has

βD(x) =−(0, log χK(γK))∪ϕ,γ x,

where (0, log χK(γK)) ∈C1
ϕ,γK

(Qp(0)).

Proof. — The first assertion follows directly from the definition of the connecting
map. Now, let x = (xn−1,xn) ∈Cn

ϕ,γK
(D). Then

(dsD− sDd)(x) =

= d(xn−1⊗1,xn⊗1)− sD((γK−1)xn−1 +(−1)n(ϕ−1)xn,(γK−1)xn) =

= (γK(xn−1)⊗ γK− xn−1⊗1+(−1)n(ϕ−1)xn⊗1,γK(xn)⊗ γK− xn⊗1)−
− ((γK−1)(xn−1)⊗1+(−1)n(ϕ−1)xn⊗1,(γK−1)(xn)⊗1) =

= (γK(xn−1)⊗ (γK−1),γK(xn)⊗ (γK−1)).

From γK = 1+ X̃ log χK(γK) it follows that γ
−1
K − 1 ≡ −X̃ log χK(γK) (mod J2

A) and
we obtain

βD(x) =
1

X̃
((γK(xn−1),γK(xn))⊗ (γK−1))) =

=− log χK(γK)(γK(xn−1),γK(xn)) ∈Cn+1
ϕ,γK

(D).

On the other hand,

(0, log χK(γK))∪ϕ,γ (xn−1,xn) = log χK(γK)(γK(xn−1),γK(xn))

and ii) is proved.
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The exact sequence

0→C•(GK ,V
†
rig)→C•(GK ,(ṼK)

†
rig)→C•(GK ,V

†
rig)→ 0,

induces an exact sequence

(42) 0→ K•(V )→ K•(ṼK)→ K•(V )→ 0.

Again, the splitting sV : V → ṼK induces a splitting sK : K•(V )→ K•(ṼK) of (42)
and we have a distinguished triangle of complexes

K•(V )→ K•(Ṽ )→ K•(V )
βK(V )−−−→ K•(V )[1].

We will often write βK instead of βK(V ).

Proposition 2.7.5. — i) One has

βK(x) =−(0, log χK)∪K x, x ∈ Kn(V ).

ii) The following diagrams commute

C•(GK ,V )

ξV
��

βc // C•(GK ,V )[1]

ξV [1]
��

K•(V )
βK // K•(V )[1]

, C•ϕ,γK
(V )

αV

��

β
D†

rig(V )

// C•ϕ,γK
(V )[1]

αV [1]
��

K•(V )
βK // K•(V )[1].

Proof. — i) The proof is a routine computation. Let x = (xn−1,xn) ∈ Kn(V ), where
xn−1 ∈Cn−1(GK ,V

†
rig), xn ∈Cn(GK ,V

†
rig). Since sK commutes with ϕ one has

(dsK− sKd)x = ((dsV − sV d)xn−1,(dsV − sV d)xn).

On the other hand,

((dsV − sV d)xn−1)(g1,g2, . . . ,gn) = g1xn−1(g2, . . . ,gn)⊗ (ḡ1−1),

where ḡ1 denote the image of g1 ∈GK in ΓK . As in the proof of Proposition 2.7.4, we
can write ḡ1−1 (mod J2

A) = X̃ log χK(g1). Therefore

(d ◦ sV − sV ◦d)xn−1(g1,g2, . . . ,gn) = log χK(g1)g1xn−1(g2, . . . ,gn)⊗ X̃ .

and

(d ◦ sV − sV ◦d)xn(g1,g2, . . . ,gn,gn+1) =

= log χK(g1)g1xn−1(g2, . . . ,gn,gn+1)⊗ X̃ .
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Since ι(g1−1) =−X̃ log χK(g1), we have

βK(x)(g1, . . . ,gn) =
1

X̃
(d ◦ sK− sK ◦d)x(g1,g2, . . . ,gn) =

=− log χK(g1)(g1xn−1(g2, . . . ,gn,gn),g1xn−1(g2, . . . ,gn,gn+1)).

On the other hand, (0, log χK)∪K (xn−1,xn) = (zn,zn+1), where

zi(g1,g2, . . . ,gi) = log χK(g1)g1xi(g2, . . . ,gi), i = n, n+1,

and i) is proved.
ii) The second statement follows from the compatibility of the Bockstein mor-

phisms βc, βD†
rig(V ) and βK with the maps αV and βV . This can be also proved using i)

and Propositions 2.7.2 and 2.7.4.

2.8. Iwasawa cohomology

2.8.1. — We keep previous notation and conventions. Set K∞ = (Kcyc)∆K , where
∆K = Gal(K(ζp)/K). Then Gal(K∞/K)' Γ0

K and we denote by Kn the unique subex-
tension of K∞ of degree [Kn : K] = pn. Let E be a finite extension of Qp and let OE

be its ring of integers. We denote by ΛOE = OE [[Γ
0
K ]] the Iwasawa algebra of Γ0

K
with coefficients in OE . The choice of a generator γK of Γ0

K fixes an isomorphism
ΛOE ' OE [[X ]] such that γK 7→ X + 1. Let HE denote the algebra of formal power
series f (X)∈ E[[X ]] that converge on the open unit disk A(0,1) = {x∈Cp | |x|p < 1}
and let

HE(Γ
0
K) = { f (γK−1) | f (X) ∈HE}.

We consider ΛOE as a subring of HE(Γ
0
K). The involution ι : ΛOE →ΛOE extends to

HE(Γ
0
K). Let Λ ι

OE
(resp. HE(Γ

0
K)

ι ) denote ΛOE (resp. HE(Γ
0
K)) equipped with the

ΛOE -module (resp. HE(Γ
0
K)-module) structure given by α ?λ = ι(α)λ .

Let V be a p-adic representation of GK with coefficients in E. Fix a OE-lattice
T of V stable under the action of GK and set IndK∞/K(T ) = T ⊗OE Λ ι

OE
. We equip

IndK∞/K(T ) with the following structures:

a) The diagonal action of GK , namely g(x⊗ λ ) = g(x)⊗ ḡλ , for all g ∈ GK and
x⊗λ ∈ IndK∞/K(T );

b) The structure of ΛOE -module given by α(x⊗λ ) = x⊗λι(α) for all α ∈ΛOE and
x⊗λ ∈ IndK∞/K(T ).

Let RΓIw(K,T ) denote the class of the complex C•(GK , IndK∞/K(T )) in the derived
category D(ΛOE ) of ΛOE -modules. The augmentation map ΛOE → OE induces an
isomorphism

RΓIw(K,T )⊗L
ΛOE

OE ' RΓ(K,T ).



54 CHAPTER 2. COHOMOLOGY OF (ϕ,ΓK)-MODULES

We write H i
Iw(K,T ) = RiΓIw(K,T ) for the cohomology of RΓIw(K,T ). From

Shapiro’s lemma it follows that

H i
Iw(K,T ) = lim←−

cores
H i(Kn,T )

(see, for example, [56, Sections 8.1–8.3]).
We review the Iwasawa cohomology of (ϕ,ΓK)-modules [19, 46]. The map ϕ :

B†,r
rig,K → B†,pr

rig,K equips B†,pr
rig,K with the structure of a free ϕ : B†,r

rig,K-module of rank p.
Define

ψ : B†,pr
rig,K → B†,r

rig,K , ψ(x) =
1
p

ϕ
−1 ◦TrB†,pr

rig,K/ϕ(B†,r
rig,K)

(x).

Since RK,Qp = ∪
r>rK

B†,r
rig,K , the operator ψ extends by linearity to an operator ψ :

RK,E →RK,E such that ψ ◦ϕ = id.
Let D is a (ϕ,ΓK)-module over RK,E = RK ⊗Qp E. If e1,e2, . . . ,ed is a base of D

over RK,E , then ϕ(e1),ϕ(e2), . . . ,ϕ(ed) is again a base of D, and we define

ψ : D→ D,

ψ

(
d

∑
i=1

aiϕ(ei)

)
=

d

∑
i=1

ψ(ai)ei.

The action of Γ0
K on D∆K extends to a natural action of HE(Γ

0
K) and we consider the

complex of HE(Γ
0
K)-modules

C•Iw(D) : D∆K
ψ−1−−→ D∆K ,

where the terms are concentrated in degrees 1 and 2. Let RΓIw(D) = [C•Iw(D)]

denote the class of C•Iw(D) in the derived category D(HE(Γ
0
K)). We also consider

the complex C•ϕ,γK
(IndK∞/K(D)), where IndK∞/K(D) = D ⊗E HE(Γ

0
K)

ι , and set
RΓ(K, IndK∞/K(D)) =

[
C•ϕ,γK

(D)
]
.

Theorem 2.8.2 (Pottharst). — Let D be a (ϕ,ΓK)-module over RK,E . Then
i) The complexes C•Iw(D) and Cϕ,γK (D) are quasi-isomorphic and therefore

RΓIw(D)' RΓ(K, IndK∞/K(D)).

ii) The cohomology groups H i
Iw(D) = RiΓIw(D) are finitely-generated HE(Γ

0
K)-

modules. Moreover, rkHE (Γ
0
K)

H1
Iw(D) = [K : Qp] rkRK,E D and H1

Iw(D)tor and H2
Iw(D)

are finite-dimensional E-vector spaces.
iii) We have an isomorphism

C•ϕ,γK
(IndK∞/K(D))⊗HE (Γ

0
K)

E ∼→C•ϕ,γK
(D)
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which induces the Hochschild–Serre exact sequences

0→ H i
Iw(D)

Γ0
K
→ H i(D)→ H i+1

Iw (D)Γ0
K → 0.

iv) Let ω = cone
[
KE(Γ

0
K)→KE(Γ

0
K)/HE(Γ

0
K)
]
[−1], where KE(Γ

0
K) is the field

of fractions of HE(Γ
0
K). Then the functor D = HomHE (Γ

0
K)
(−,ω) furnishes a duality

DRΓIw(D)' RΓIw(D∗(χK))
ι [2].

v) If V is a p-adic representation of GK , then there are canonical and functorial
isomorphisms

RΓIw(K,T )⊗L
ΛOE

HE(Γ
0
K)' RΓ

(
K,T ⊗OE HE(Γ

0
K)

ι
)
'

' RΓ(K, IndK∞/K(D
†
rig(V ))).

Proof. — See [61, Theorem 2.6].

We will need the following lemma.

Lemma 2.8.3. — Let E be a finite extension of Qp and let D be a potentially
semistable (ϕ,ΓK)-module over RK,E . Then

i) H1
Iw(D)tor '

(
D∆K

)ϕ=1
.

ii) Assume that
Dpst(D∗(χK))

ϕ=pi
= 0, ∀i ∈ Z.

Then H2
Iw(D) = 0.

Proof. — i) Consider the exact sequence

0→ Dϕ=1→ Dψ=1 ϕ−1−−→ Dψ=0.

Since
(
D∆K

)ψ=1 ' H1
Iw(D) and, by [46, Theorem 3.1.1], Dψ=0 is HE(Γ

0
K)-torsion

free, we have H1
Iw(D)tor ⊂

(
D∆K

)ϕ=1
. On the other hand, Dϕ=1 is a finitely di-

mensional E-vector space (see, for example, [46, Lemma 4.3.5]) and therefore is
HE(Γ

0
K)-torsion. This proves the first statement.

ii) By Theorem 2.8.2 iv), H2
Iw(D) and H1

Iw(D∗(χK))tor are dual to each other and
it is enough to show that D∗(χK)

ϕ=1 = 0. Since dimE D∗(χK)
ϕ=1 < ∞, there exists

r such that D∗(χK)
ϕ=1 ⊂ D∗(χK)

(r), and for n� 0 the map in = ϕ−n : R
(r)
K,E →

E⊗Qp Kcyc[[t]] gives an injection

D∗(χK)
ϕ=1→ D∗(χK)

(r)⊗in
(
E⊗Qp Kcyc[[t]]

) ∼→
∼→ Fil0 (DdR(D∗(χK))⊗K⊗Kcyc((t))) .

Looking at the action of ΓK on Fil0 (DdR(D∗(χK))⊗K Kcyc((t))) and using the fact
that D∗(χK)

ϕ=1 is finite-dimensional over E, it is easy to prove, that there exists a
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finite extension L/K such that D∗(χK)
ϕ=1, viewed as GL-module, is isomorphic to a

finite direct sum of modules Qp(i), i ∈ Z. Therefore

D∗(χK)
ϕ=1 '

(
D∗(χK)

ϕ=1⊗Qp Qp(−i)
)ΓL⊗Qp Qp(i)

as GL-modules. Since(
D∗(χK)

ϕ=1⊗Qp Qp(−i)
)ΓL ⊂

(
D∗(χK)⊗RK,E RL,E [1/t, `π ]

)ϕ=p−i,ΓL =

= Dst/L(D∗(χK))
ϕ=p−i

= 0,

we obtain that D∗(χK)
ϕ=1 = 0, and the lemma is proved.

2.9. The group H1
f (D)

2.9.1. — For the content of this section we refer the reader to [7, Sections 1.4-1.5].
Let D be a potentially semistable (ϕ,ΓK)-module over RK,E , where E is a finite
extension of Qp. As usual, we have the isomorphism

H1(D)' Ext1RK,E
(RK,E ,D)

which associates to each cocycle x = (a,b) ∈C1
ϕ,γK

(D) the extension

0→ D→ Dx→RK,E → 0

such that Dx = D⊕RK,Ee with ϕ(e) = e+ a and γK(e) = e+ b. We say that [x] =
class(x) ∈ H1(D) is crystalline if

rkE⊗K0(Dcris(Dx)) = rkE⊗K0(Dcris(D))+1

and define
H1

f (D) = {[x] ∈ H1(D) | cl(x) is crystalline}.
This definition agrees with the definition of Bloch and Kato [16]. Namely, if V is a
potentially semistable representation of GK , then

H1
f (D

†
rig(V ))' H1

f (K,V )

(see [7, Proposition 1.4.2]).

Proposition 2.9.2. — Let D be a potentially semistable (ϕ,ΓK)-module over RK,E .

Then
i) H0(D) = Fil0(Dpst(D))ϕ=1,N=0,GK and H1

f (D) is a E-subspace of H1(D) of di-
mension

dimE H1
f (D) = dimE DdR(D)−dimE Fil0DdR(D)+dimE H0(D).

ii) There exists an exact sequence
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0→ H0(D)→Dcris(D)
(pr,1−ϕ)−−−−−→ tD(K)⊕Dcris(D)→ H1

f (D)→ 0,

where tD(K) = DdR(D)/Fil0DdR(D).

iii) H1
f (D

∗(χK)) is the orthogonal complement to H1
f (D) under the duality

H1(D)×H1(D∗(χK))→ E.
iv) Let

0→ D1→ D→ D2→ 0

be an exact sequence of potentially semistable (ϕ,ΓK)-modules. Assume that one of
the following conditions holds

a) D is crystalline;

b) Im((H0(D2)→ H1(D1))⊂ H1
f (D1).

Then one has an exact sequence

0→ H0(D1)→ H0(D)→ H0(D2)→ H1
f (D1)→ H1

f (D)→ H1
f (D2)→ 0.

Proof. — This proposition is proved in Proposition 1.4.4, and Corollaries 1.4.6 and
1.4.10 of [7]. For an another approach to H1

f (D) and an alternative proof see [53,
Section 2].

2.9.3. — In this subsection we assume that K = Qp. We review the computation
of the cohomology of some isoclinic (ϕ,ΓQp)-modules given in [7]. To simplify
notation, we write χp and Γ0

p instead of χQp and Γ0
Qp

respectively.

Proposition 2.9.4. — Let D be a semistable (ϕ,ΓQp)-module of rank d over RQp,E

such that Dst(D)ϕ=1 = Dst(D) and Fil0Dst(D) = Dst(D). Then
i) D is crystalline and H0(D) = Dcris(D).
ii) One has dimE H0(D) = d, dimE H1(D) = 2d and H2(D) = 0.
iii) The map

iD : Dcris(D)⊕Dcris(D)→ H1(D),

iD = cl(−x, log χp(γQp)y)

is an isomorphism of E-vector spaces. Let iD, f and iD,c denote the restrictions of iD
on the first and the second summand respectively. Then Im(iD, f ) = H1

f (D) and we
have a decomposition

H1(D) = H1
f (D)⊕H1

c (D),

where H1
c (D) = Im(iD,c).

iv) Let D∗(χp) be the Tate dual of D. Then

Dcris(D∗(χp))
ϕ=p−1

= Dcris(D∗(χp))
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and Fil0Dcris(D∗(χp)) = 0. In particular, H0(D∗(χp)) = 0. Let

[ , ]D : Dcris(D∗(χp))×Dcris(D)→ E

denote the canonical duality. Define a morphism

iD∗(χp) : Dcris(D∗(χp))⊕Dcris(D∗(χp))→ H1(D∗(χp))

by
iD∗(χp)(α,β )∪ iD(x,y) = [β ,x]D− [α,y]D

and denote by Im(iD∗(χp), f ) and Im(iD∗(χp),c) the restrictions of iD∗(χp) on the first and
the second summand respectively. Then Im(iD∗(χp), f ) = H1

f (D
∗(χp)) and again we

have
H1(D∗(χp)) = H1

f (D
∗(χp))⊕H1

c (D
∗(χp)),

where H1
c (D∗(χp)) = Im(iD∗(χp),c).

Proof. — See [7, Proposition 1.5.9 and Section 1.5.10].

Lemma 2.9.5. — Let D be a semistable (ϕ,ΓQp)-module of rank d over RQp,E

such that Dst(D)ϕ=1 =Dst(D) and Fil0Dst(D) =Dst(D). Let wp = (0, log χp(γQp))∈
C1

ϕ,γQp
(E(0)). Then

H1
c (D) = ker

(
∪wp : H1(D)→ H2(D)

)
,

H1
c (D

∗(χp)) = ker
(
∪wp : H1(D∗(χp))→ H2(D∗(χp))

)
.

Proof. — This follows directly from the definition of the cup product.

We also need the following result.

Proposition 2.9.6. — Let D be a crystalline (ϕ,ΓQp)-module over RQp,E such that
Dcris(D)ϕ=p−1

= Dcris(D) and Fil0Dcris(D) = 0. Then

H1
Iw(D)Γ0

p
= H1

c (D).

Proof. — See [10, Proposition 4].



CHAPTER 3

p-ADIC HEIGHT PAIRINGS I: SELMER COMPLEXES

3.1. Selmer complexes

3.1.1. — In this section we construct p-adic height pairings using Nekovář’s for-
malism of Selmer complexes. Let F be a number field. We denote by S f (resp. S∞)
the set of all non-archimedean (resp. archimedean) absolute values on F. Fix a prime
number p and a compatible system of pn-th roots of unity ε = (ζpn)n>1. Let S ⊂ S f

be a finite subset containing the set Sp of all q ∈ S f such that q | p. We will write
Σp for the complement of Sp in S. Let GF,S denote the Galois group of the maximal
algebraic extension of F unramified outside S∪S∞. For each q ∈ S, we fix a decom-
position group at q which we identify with GFq . If q ∈ Sp, we denote by Γq = ΓFq the
p-cyclotomic Galois group of Fq and fix a generator γq ∈ Γ0

q.

3.1.2. — Let V be a p-adic representation of GF,S with coefficients in a Qp-affinoid
algebra A. We will write Vq for the restriction of V on the decomposition group at q.
For each q ∈ Sp, we fix a (ϕ,Γq)-submodule Dq of D†

rig(Vq) that is a RFq,A-module

direct summand of D†
rig,A(Vq). Set D = (Dq)q∈Sp and define

U•q (V,D) =

{
C•ϕ,γq(Dq), if q ∈ Sp,

C•ur(Vq), if q ∈ Σp,

where
C•ur(Vq) : V Iq

q
Frq−1
−−−→V Iq

q , q ∈ Σp,

and the terms are concentrated in degrees 0 and 1. In this section we consider these
complexes as objects in K

[0,2]
ft (A). Note that, if q ∈ Sp, the objects RΓ(Fq,V ) =

[C•(GFq ,V )] and RΓ(Fq,Dq) = [U•q (V,D)] belong to D
[0,2]
perf (A) by Theorems 2.3.2

and 2.4.3. On the other hand, if q ∈ Σp, then, in general, the module V Iq and the
complex U•q (V,D) are not quasi-isomorphic to a perfect complex of A-modules. We
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discuss this in more detail in Sections 3.1.6–3.1.9 in relation with the duality theory
for Selmer complexes.

First assume that q ∈ Σp. Then we have a canonical morphism

(43) gq : U•q (V,D)→C•(GFq ,V )

defined by

gq(x0) = x0, if x0 ∈U0
q (V,D),

gq(x1)(Frq) = x1, if x1 ∈U1
q (V,D)

and the restriction map

(44) fq = resq : C•(GF,S,V )→C•(GFq ,V ).

Now assume that q ∈ Sp. The inclusion Dq ⊂ D†
rig(Vq) induces a morphism

U•q (V,D) =C•ϕ,γ(Dq)→C•ϕ,γ(Vq). We denote by

(45) gq : U•q (V,D)→ K•(Vq), q | p

the composition of this morphism with the quasi-isomorphism αVq : C•ϕ,γ(Vq) '
K•(Vq) constructed in Section 2.5 and by

(46) fq : C•(GF,S,V )→ K•(Vq), q | p

the composition of the restriction map resq : C•(GF,S,V ) → C•(GFq ,V ) with the
quasi-isomorphism ξVq : C•(GFq ,V )→ K•(Vq) constructed in Proposition 2.5.2. Set

K•q (V ) =

{
K•(Vq) if q ∈ Sp,

C•(GFq ,V ) if q ∈ Σp,

and

K•(V ) = ⊕
q∈S

K•q (V ),

U•(V,D) = ⊕
q∈S

U•q (V,D).

We turn now to global Galois cohomology of V. By [62, Section 1], one has

C•(GF,S,V ) ∈K
[0,3]

ft (A)

and the associated object of the derived category

RΓS(V ) := [C•(GF,S,V )] ∈D
[0,3]
perf (A).
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Therefore, we have a diagram in K
[0,3]

ft (A)

C•(GF,S,V )
f // K•(V )

U•(V,D),

g

OO

where f = ( fq)q∈S and g = (gq)q∈S, and the corresponding diagram in D
[0,3]
ft (A)

RΓS(V ) // ⊕
q∈S

RΓ(Fq,V )

⊕
q∈S

RΓ(Fq,V,D),

OO

where we set RΓ(Fq,V,D) =
[
U•q (V,D)

]
for all q∈ S. The associated Selmer complex

is defined as

S•(V,D) = cone
[
C•(GF,S,V )⊕U•(V,D)

f−g−−→ K•(V )
]
[−1].

We set RΓ(V,D) := [S•(V,D)] and write H•(V,D) for the cohomology of S•(V,D).

Since all complexes involved in this definition belong to Kft(A), it is easy to check
that S•(V,D) ∈K

[0,3]
ft (A). If, in addition, [C•ur(Vq)] ∈ D

[0,1]
perf (A) for all q ∈ Σp, then

RΓ(V,D) ∈D
[0,3]
perf (A).

Each element [xsel] ∈ H i(V,D) can be represented by a triple

(47) xsel = (x,(x+q ),(λq)),

where, for each q ∈ S,

x ∈Ci(GF,S,V ), x+q ∈U i
q(V,D), λq ∈ Ki−1

q (V ),

d(x) = 0, d(x+q ) = 0, fq(x) = gq(x+q )−d(λq).

3.1.3. — The previous construction can be slightly generalized. Fix a finite subset
Σ ⊂ Σp and, for each q ∈ Σ, a locally direct summand Mq of the A-module Vq stable
under the action of GFq . Let M = (Mq)q∈Σ. Define

U•q (V,D,M) =


C•ϕ,γq(Dq), if q ∈ Sp,

C•ur(Vq), if q ∈ Σp \Σ,

C•(GFq ,Mq), if q ∈ Σ.

In short, we replace unramified conditions at all q ∈ Σ by Greenberg conditions de-
fined by the family of subrepresentations M = (Mq)q∈Σ. We denote by S•(V,D,M) the
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associated Selmer complex and set RΓ(V,D,M) := [S•(V,D,M)] . This construction
is a direct generalizaton of Selmer complexes considered in [56, Section 7.8] to the
non-ordinary setting.

Consider two important particular cases. If Mq = 0 for all q∈ Σ, we write S•
Σ
(V,D)

and RΓΣ(V,D) for S•(V,D,M) and RΓ(V,D,M) respectively. If Mq = Vq for all
q ∈ Σ, we write SΣ,•(V,D) and RΓΣ(V,D) for S•(V,D,M) and RΓ(V,D,M) respec-
tively. These complexes are derived analogs of the strict and relaxed Selmer groups
in the sense of [63, Section 1.5]. Note that RΓΣp(V,D) and RΓΣp(V,D) are objects of

D
[0,3]
perf (A). See Section 3.1.6 for further remarks concerning these complexes.

3.1.4. — We construct cup products for our Selmer complexes RΓ(V,D,M). Con-
sider the dual representation V ∗(1) of V. We equip V ∗(1) with the dual local condi-
tions setting

D⊥q = HomRA(D
†
rig(V )/Dq,RA(χq)), ∀q ∈ Sp,

M⊥q = HomA(Vq/Mq,A(χq)), ∀q ∈ Σ,

and denote by f⊥q and g⊥q the morphisms (43-46) associated to (V ∗(1),D⊥,M⊥). We
also remark that the composition

(48) C•ur(Vq)⊗C•ur(V
∗
q (1))

gq⊗g⊥q−−−−→C•(GFq ,V )⊗C•(GFq ,V
∗(1)) ∪c−→ A[−2]

is the zero map [56, Lemma 7.5.2]. Consider the following data

1) The complexes A•1 = C•(GF,S,V ), B•1 = U•(V,D,M), and C•1 = K•(V ) equipped
with the morphisms f1 = ( fq)q∈S : A•1→C•1 and g1 = ⊕

q∈S
gq : B•1→C•1 ;

2) The complexes A•2 = C•(GF,S,V ∗(1)), B•2 = U•(V ∗(1),D⊥,M⊥), and C•2 =

K•(V ∗(1)) equipped with the morphisms f2 = ( f⊥q )q∈S : A•2 → C•2 and
g2 = ⊕

q∈S
g⊥q : B•2→C•2 ;

3) The complexes A•3 = τ>2C•(GF,S,A(1)), B•3 = 0 and C•3 = τ>2K•(A(1)) equipped
with the map f3 : A•3→C•3 given by

τ>2C•(GF,S,A(1))
(resq)q−−−−→

⊕
q

τ>2C•(GFq ,A(1))→ τ>2K•(A(1))

and the zero map g3 : B•3→C•3 .

4) The cup product ∪A : A•1⊗A•2→ A•3 defined as the composition

∪A : C•(GF,S,V )⊗C•(GF,S,V ∗(1))
∪c−→C•(GF,S,V ⊗V ∗(1))→

C•(GF,S,A∗(1))→ τ>2C•(GF,S,A∗(1)),
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5) The zero cup product ∪B : B•1⊗B•2→ B•3.

6) The cup product ∪C : C•1⊗C•2 →C•3 defined as the composition

K•(V )⊗K•(V ∗(1)) ∪K−→ K•(V ⊗V ∗(1))→ K•(A(1))→ τ>2K•(A(1)).

7) The zero maps h f : A•1⊗A•2→C•3 [−1] and hg : B•1⊗B•2→C•3 [−1].

Theorem 3.1.5. — i) There exists a canonical, up to homotopy, quasi-isomorphism

rS : E•3 → A[−2].

ii) The data 1-7) above satisfy conditions P1-3) of Section 1.2 and therefore define,
for each a ∈ A and each quasi-isomorphism rS, the cup product

∪a,rS : S•(V,D,M)⊗A S•(V ∗(1),D⊥,M⊥)→ A[−3].

iii) The homotopy class of ∪a,rS does not depend on the choice of r ∈ A and, there-
fore, defines a pairing

(49) ∪V,D,M : RΓ(V,D,M)⊗L
A RΓ(V ∗(1),D⊥,M⊥)→ A[−3].

Proof. — i) We repeat verbatim the argument of [56, Section 5.4.1]. For each q ∈ S,
let iq denote the composition of the canonical isomorphism A ' H2(Fq,A(1)) of the
local class field theory with the morphism τ>2C•(GFq ,A(1))→ K•(Aq(1)). Then we
have a commutative diagram

τ>2C•(GF,S,A(1))
(resq)q // ⊕

q∈S
τ>2K•(Aq(1))

j // E•3

⊕
q∈S

A[−2]

(iq)q
OO

Σ // A[−2],

iS

OO

where iS = j ◦ iq0 for some fixed q0 ∈ S and Σ denotes the summation over q ∈ S.
By global class field theory, iS is a quasi-isomorphism and, because A[−2] is con-
centrated in degree 2, there exists a homotopy inverse rS of iS which is unique up to
homotopy.

ii) We only need to show that condition P3) holds in our case. Note that ∪A = ∪c,

∪B = 0 and ∪C = ∪K . From the definition of ∪K it follows immediately that

(50) ∪K ◦ ( f1⊗ f2) = f3 ◦∪c.

If q ∈ Sp (resp. if q ∈ Σ), from the orthogonality of D⊥q and Dq (resp. from the
orthogonality of Mq and M⊥q ) it follows that ∪K ◦ (gq⊗ g⊥q ) = 0. If q ∈ Σp \Σ, we
have ∪c ◦ (gq⊗g⊥q ) = 0 by (48). Since g3 ◦∪B = 0, this gives

(51) ∪C ◦ (g1⊗g2) = g3 ◦∪B = 0.
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The equations (50) and (51) show that P3) holds with h f = hg = 0. We define ∪a,rS

as the composition of the cup product constructed in Proposition 1.2.2 with rS. The
rest of the theorem follows from Proposition 1.2.2.

3.1.6. — In this subsection we discuss the duality theory for Selmer complexes.
Recall that we have the anti-involution (29) on the category Dperf(A) given by (1)

X → X∗ = RHomA(X ,A).

The cup product ∪V,D,M induces a map in Db
ft(A):

(52) RΓ(V ∗(1),D⊥,M⊥)→ RHomA(RΓ(V,D,M),A)[−3].

For each q ∈ S define

Ũ•q (V,D,M) = cone
(

U•q (V,D,M)
gq−→ K•(Vq)

)
[−1]

and R̃Γ(Fq,V,D,M) =
[
Ũ•q (V,D,M)

]
. From the orthogonality of gq and g⊥q under

the cup product K•(Vq)⊗K•(V ∗q (1))→ A[−2] it follows that we have a pairing

Ũ•q (V,D,M)⊗U•q (V
∗(1),D⊥,M⊥)→ A[−2]

which gives rise to a morphism in Db
ft(A)

(53) RΓ(Fq,V ∗(1),D⊥,M⊥)→ RHomA(R̃Γ(Fq,V,D,M),A)[−2].

Let q ∈ Σp \Σ. Denote by Iw
q the wild ramification subgroup of Iq. Fix a topological

generator tq of Iq/Iw
q such that for any uniformizer ϖq of Fq

tq(ϖ
1/pn

q ) = ζpnϖ
1/pn

q , n> 1,

where ε = (ζpn)n>1 is our fixed system of pn-th roots of unity. We also fix a lift
Fq ∈ Gq/Iw

q of the Frobenius Frq. Define

C•tr(Vq) : V Iw
q

(Fq−1,tq−1)
−−−−−−−→V Iw

q ⊕V Iw
q

(1−tq,θq−1)
−−−−−−−→V Iw

q ,

where θq = Fq(1+ tq+ · · ·+ tqq−1
q ) and qq is the order of the residue field of F mod-

ulo q. We refer the reader to [56, Sections 7.1-7.6] for the proofs of the following
results. The complex C•tr(Vq) is quasi-isomorphic to C•(GFq ,V ). The natural in-
clusion V Iq ↪→ V Iw

q induces a monomorphism of complexes C•ur(Vq)→ C•tr(Vq). Let
C̃•ur(Vq) =C•tr(Vq)/C•ur(Vq). Then the natural projections induce a quasi-isomorphism

(54) C̃•ur(Vq)'
(

V Iw
q /(tq−1)V Iw

q
qqFq−1
−−−−→V Iw

q /(tq−1)V Iw
q

)

1. Note that the dualizaton functor is not defined on Db
ft(A).
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where the terms are concentrated in degrees 1 and 2. We also remark that since q∈Σp,

the group Iw
q acts on V through a finite quotient H and we have a decomposition

(55) V 'V Iw
q ⊕ IH(V ),

where IH = ker(Z[H]→ Z) is the augmentation ideal. In particular, the submodule
V Iw

q is a direct factor of the projective A-module V and therefore is projective itself.
From (55) we also get

(56) V ∗(1)Iw
q = HomA(V Iw

q ,A)(1).

For the representation A(1) we have

C•tr(A(1)) : A(1)
(q−1

q −1,0)
−−−−−→ A(1)⊕A(1)

(0,0)−−→ A(1).

The canonical isomorphism invFq : H2(Fq,A(1))→ A has the following description
in terms of this complex:

(57)

{
H2(C•tr(A(1)))→ A

x⊗ ε = x.

Now we can formulate the following result which is a more precise version of [62,
Theorem 1.16] in our context.

Theorem 3.1.7. — i) For all q ∈ Σ∪Sp the map (53) is an isomorphism in D
[0,2]
perf (A).

ii) Let q∈ Σp\Σ. If the A-module V Iw
q /(tq−1)V Iw

q is projective, then the A-modules
V Iq , V ∗(1)Iq and V ∗(1)Iw

q /(tq−1)V ∗(1)Iw
q are projectives and the map (53) is an iso-

morphism in D
[0,2]
perf (A).

iii) If, for all q∈Σp\Σ, the A-module V Iw
q /(tq−1)V Iw

q is projective, then the duality
map (52) is an isomorphism in D

[0,3]
perf (A) :

RΓ(V ∗(1),D⊥,M⊥)' RΓ(V,D,M)∗[−3].

Proof. — i) For q ∈ Σ, the assertion i) is proved in [56, Section 6.7] in the context
of admissible modules. Recall that it follows directly from the local duality for p-
adic representations. Mimiking this proof and using Theorem 2.3.2 we obtain that
(53) is an isomorphism for q ∈ Σ. The same proof applies to the case q ∈ Sp if we
use Theorem 2.4.3 instead Theorem 2.3.2. Namely, consider the tautological exact
sequence

0→ Dq→ D†
rig(Vq)→ D̃q→ 0,

where D̃q =D†
rig(Vq)/Dq. Applying the functor RΓ(Fq,−) to this sequence, we obtain

a distinguished triangle

RΓ(Fq,Dq)→ RΓ(Fq,D†
rig(Vq))→ RΓ(Fq, D̃q)→ RΓ(Fq,Dq)[1],
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and therefore R̃Γ(Fq,V,D) ' RΓ(Fq, D̃q). From the definition of D⊥q we have D⊥q '
D̃∗q(χ). Using Theorem 2.4.3, we obtain that

RΓ(Fq,D⊥v )' RΓ(Fq, D̃∗q(χ))'

' RHomA(RΓ(Fq, D̃q),A)[−2]' RHomA(R̃Γ(Fq,V,D),A)[−2],

and therefore (53) holds for q ∈ Sp.

ii) Assume that V Iw
q /(tq−1)V Iw

q is projective. Then the tautological exact sequence

0→ (tq−1)V Iw
q →V Iw

q →V Iw
q /(tq−1)V Iw

q → 0

splits and (tq− 1)V Iw
q is projective as direct summand of the projective module V Iw

q .

The same argument applied to the exact sequence

(58) 0→V Iq →V Iw
q

tq−1
−−→ (tq−1)V Iw

q → 0

shows that V Iq is projective. Dualizing the sequence (58) and taking into account (56)
and the fact that Iq acts trivially on Qp(1) we get the sequence

0→ (tq−1)V ∗(1)Iw
q →V ∗(1)Iw

q →
(
V Iq
)∗
(1)→ 0.

This sequence is split exact because the sequence (58) splits. Therefore

(59) V ∗(1)Iw
q /(tq−1)V ∗(1)Iw

q '
(
V Iq
)∗
(1).

Since V Iq is projective, V ∗(1)Iw
q /(tq− 1)V ∗(1)Iw

q is projective. This also implies the
projectivity of V ∗(1)Iw

q .

Now we show that (53) is an isomorphism. Consider the following diagram in
D

[0,2]
perf (A).

0 //
[
C•ur(V

∗
q (1))

]
//

λ

��

RΓ(Fq,V ∗(1)) //

µ

��

R̃Γ(Fq,V ∗(1)) //

ν

��

0

0 // R̃Γ(Fq,V )∗[−2] // RΓ(Fq,V )∗[−2] // [C•ur(Vq)]
∗ [−2] // 0

where we write R̃Γ(Fq,V ) := R̃Γ(Fq,V,D,M) to simplify notation. The upper row
is exact by the definition of R̃Γ(Fq,V ∗(1)). The exactness of the bottom row follows
from the definition of R̃Γ(Fq,V ) and the exactness of the dualization functor. The
middle vertical map µ is induced by the local duality and is an isomorphism by
Theorem 2.3.2.
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We show that ν is an isomorphism. This will imply that λ is an isomorphism.
From (59) it follows that

R̃Γ(Fq,V ∗(1))'
[
(V Iq)∗(1)

qqFrq−1
−−−−−→ (V Iq)∗(1)

]
⊗ε−1

'
[
(V Iq)∗

Frq−1
−−−→ (V Iq)∗

]
' [C•ur(Vq)]

∗.

(Note that all involved modules are projective.) Using (57) it is easy to check that
this isomorphism coincides with ν and ii) is proved.

iii) Repeating the arguments of [56] (see the proofs of Proposition 6.3.3 and Theo-
rem 6.3.4 of op. cit.) it is easy to show that if RΓ(Fq,V,D) and RΓ(Fq,V ∗(1),D⊥) are
perfect and (53) holds for all q ∈ S, then (52) is an isomorphism. Now the statement
follows from i) and ii).

Corollary 3.1.8. — Let WD(Vq) denote the Weil-Deligne representation associated
to Vq equipped with the canonical monodromy Nq : WD(Vq)→WD(Vq). Assume that
for all q ∈ Σp \Σ, the A-module WD(Vq)/NqWD(Vq) is projective. Then the duality
map (52) is an isomorphism.

Proof. — We remark that Grothendieck’s monodromy theorem holds for representa-
tions with coefficients in an affinoid algebra [4, Lemma 7.8.14]. Let F ′q/Fq be a finite
extension such that the action of the inertia subgroup I′q of GF ′q on Vq factors through
the p-part TK(p) of its tame quotient TK . Recall that WD(Vq) = Vq as A-module and
that the monodromy Nq is defined as the derivative of the action of TK(p) on Vq at 1.
The decomposition (55) is compatible with the action of GFq and therefore with the
monodromy Nq. Thus, V Iw

q /Nq

(
V Iw

q
)

is a direct summand of WD(Vq)/NqWD(Vq).

From the definition of Nq it follows that for m� 0

tm
q

∣∣∣V Iw
q = exp(mNq).

Since exp(mNq)− 1 = mNqRq, where Rq = 1+mNq/2!+(mNq)
2/3!+ · · · is invert-

ible, we have

(tm
q −1)V Iw

q = Nq

(
V Iw

q
)

and

V Iw
q /(tm

q −1)V Iw
q =V Iw

q /Nq

(
V Iw

q
)
.

To simplify notation, set W =V Iw
q /(tm

q −1)V Iw
q . Since tm

q acts trivially on W, we have

W = (tq−1)W ⊕W ′, W ′ = (1+ tq+ · · ·+ tm−1
q )W.
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Assume that WD(Vq)/NqWD(Vq) is projective. Then W = V Iw
q /Nq

(
V Iw

q
)

is projec-
tive. Since

V Iw
q /(tq−1)V Iw

q 'W/(tq−1)W 'W ′

and W ′ is a direct summand of W, the A-module V Iw
q /(tq−1)V Iw

q is projective. Now
the corollary follows from Theorem 3.1.7 iii).

Remarks 3.1.9. — 1) Let f be a primitive eigenform of level N and weight k > 2.
Assume that (p,N) = 1. Fix a p-stabilization fα of f and denote by x0 the corre-
sponding point on the Coleman–Mazur eigencurve. Let f be the family of p-adic
modular forms passing through fα . Taking a sufficiently small affine neighborhood
U = Spm(A) of x0, we can associate to f a canonical p-adic Galois representation
Wf over A. Let Ax0 and Wf,x0 denote the localizations of A and Wf at x0. Note that
Wf =Wf,x0/mx0Wf,x0 is the p-adic representation associated to f by Deligne.

Consider the representation V =Wf(ψ), where ψ is a continuous Galois character
unramified outside p with values in A∗. First assume that for all q|N the following
conditions hold:

a) If f is Steinberg at q, then ψx0(Frq) is not a Weil number of weight −k or 2− k;
b) If f is not Steinberg at q, then ψx0(Frq) is not a Weil number of weight 1− k.

From the purity of p-adic representations associated to modular forms it follows that
in this case, the complex RΓ(Qq,Vq) is locally acyclic at x0 (see, for example, [56,
Proposition 12.7.13.3]). Therefore, the duality map (52) is an isomorphism on a
sufficiently small neighborhood of x0.

In the general case, RΓ(Qq,Vq) is not locally acyclic and the argument is different.

By [27, Proposition 2.2.4], for each q|N, the Ax0-module W
Iw
q

f,x0
/(tq−1)W

Iw
q

f,x0
is free (2).

Replacing U by a smaller neighborhood if necessary, we obtain that W
Iw
q

f /(tq−1)W
Iw
q

f
is free. Since ψ is unramified outside p, the module V Iw

q /(tq−1)V Iw
q is free. Therefore

Theorem 3.1.7 applies, and again the duality map is a local isomorphism at x0.

2) In higher dimension, the situation is more complicated. See [64] for some
related results.

2. In [27], the authors consider Hida families, but in the general case the proof is the same.
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3.1.10. — Equip the complexes A•i , B•i and C•i with the transpositions given by

(60)

TA1 = TV,c,

TB1 =

(
⊕

q∈Sp

idCϕ,γ (Dq)

)
⊕

(
⊕

q∈Σp\Σ
idCur(Vq)

)
⊕
(
⊕
q∈Σ

TMq,c

)
,

TC1 =

(
⊕

q∈Sp

TK(Vq)

)
⊕
(
⊕

q∈Σp

TVq,c

)
,

TA2 = TV ∗(1),c,

TB2 =

(
⊕

q∈Sp

idCϕ,γ (D⊥q )

)
⊕

(
⊕

q∈Σp\Σ
idCur(V ∗q (1))

)
⊕
(
⊕
q∈Σ

TM⊥q ,c

)
,

TC2 =

(
⊕

q∈Sp

TK(V ∗q (1))

)
⊕
(
⊕

q∈Σp

TV ∗q (1),c

)
,

TA3 = TA(1),c,

TB3 = id,

TC3 =

(
⊕

q∈Sp

TK(A(1)q)

)
⊕
(
⊕

q∈Σp

TA(1)q,c

)
.

Theorem 3.1.11. — i) The data (60) satisfy conditions T1-7) of Section 1.2.
ii) We have a commutative diagram

RΓ(V,D,M)⊗L
A RΓ(V ∗(1),D⊥,M⊥)

∪V,D //

s12

��

A[−3]

=

��
RΓ(V ∗(1),D⊥,M⊥)⊗L

A RΓ(V,D,M)
∪V∗(1),D⊥ // A[−3].

Proof. — i) We check conditions T3-7) taking ∪′A =∪c, ∪′B = 0 and ∪′C =∪K . From
(50) and (51) it follows that T3) holds if we take h′f = h′g = 0. To check condition
T4) we remark that, by Proposition 2.6.4,i) we have fi ◦TA =TC ◦ fi and we can take
Ui = 0. The existence of a homotopy Vi follows from Proposition 2.6.4 ii) and [56],
Proposition 7.7.3. Note that again we can set Vi = 0.

We prove the existence of homotopies tA, tB and tC satisfying T5). From the com-
mutativity of the diagram (35), it follows that ∪c ◦ s12 ◦ (TA⊗TA) = TA ◦∪c and we
can take tA = 0. Since ∪′B = ∪B = 0, we can take tB = 0. We construct tC as a system
of homotopies (tC,q)q∈S such that tC,q : ∪c ◦ s12 ◦ (TVq,c⊗TV (1)q,c) TA(1)q,c ◦∪c

for q ∈ Σp and tC,q : ∪K ◦ s12 ◦ (TK(Vq)⊗TK(V (1)q)) TK(A(1)q) ◦∪K for q ∈ Sp. As
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before, from (35) it follows that for q ∈ Σp one can take tC,q = 0. If q ∈ Sp, by Propo-
sition 1.1.7 we can set

(61) tC,q((xn−1,xn)⊗ (ym−1⊗ ym)) = (−1)n(TA(1)q,c(xn−1∪c ym−1),0)

for (xn−1,xn) ∈ Kn(Vq) and (ym−1,ym) ∈ Km(V ∗(1)q) (see (24)). This proves T5).
From (61) it follows that tC ◦ ( f1⊗ f2) = 0 and it is easy to see that T6) and T7) hold
if we take H f = Hg = 0.

ii) For each Galois module X , we denote by aX : id TX ,c the homotopy (36).
Recall that we can take aX such that a0

X = a1
X = 0. Consider the following homotopies

(62)

kA1 = aV : id TA•1 , on A•1,

kB1 =

(
⊕

q∈Sp∪Σp\Σ
0Uq(V,D,M)

)
⊕
(
⊕
q∈Σ

aMq

)
: id FB1 on B•1,

kC1 =

(
⊕

q∈Sp

aK(Vq)

)
⊕
(
⊕

q∈Σp

aVq

)
: id TC•1 , on C•1 .

We will denote by kA2 , kB2 kC2 the homotopies on A•2, B•2 and C•2 defined by the
analogous formulas. From Proposition 2.6.4, ii) it follows that

f ◦ kA1 = kC1 ◦ f , f⊥ ◦ kA2 = kC2 ◦ f⊥,

g◦ kB1 = kC1 ◦g, g⊥ ◦ kB2 = kC2 ◦g⊥.

By (20), these data induce transpositions T sel
V and T sel

V ∗(1) on S•(V,D,M) and
S•(V ∗(1),D⊥,M⊥), and the formula (21) of Subsection 1.1.2 defines homotopies
ksel

V : id T sel
V and ksel

V ∗(1) : id T sel
V ∗(1). By Proposition 1.2.4, the following diagram

commutes up to homotopy:

S•(V,D,M)⊗A S•(V ∗(1),D⊥,M⊥)
∪a,rS //

s12◦(T sel
V ⊗T sel

V∗(1))
��

A[−3]

=

��
S•(V ∗(1),D⊥,M⊥)⊗A S•(V,D,M)

∪1−a,rS // A[−3].

Now the theorem follows from the fact that the map (ksel
V ⊗ ksel

V ∗(1))1, given by (18),
furnishes a homotopy between id and T sel

V ⊗T sel
V ∗(1).

3.2. p-adic height pairings

3.2.1. — We keep notation and conventions of the previous subsection. Let
Fcyc =

∞

∪F
n=1

(ζpn) denote the cyclotomic p-extension of F. The Galois group

ΓF = Gal(Fcyc/F) decomposes into the direct sum ΓF = ∆F × Γ0
F of the group
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∆F = Gal(F(ζp)/F) and a p-procyclic group Γ0
F . We denote by χ : ΓF → Z∗p the

cyclotomic character and by χq the restriction of χ on Γq, q ∈ S.
Consider the completed group algebra ΛA = A[[Γ0

F ]]. As in Section 2.7, we equip
ΛA with the involution ι : ΛA→ ΛA such that ι(γ) = γ−1, γ ∈ Γ0

F . Fix a generator γF

of Γ0
F . Set Ãι

F = Λι
A/(J

2
A), where JA is the augmentation ideal of A[[Γ0

F ]]. We have an
exact sequence

(63) 0→ A θF−→ Ãι
F → A→ 0,

where θF(a) = aX̃ , and X̃ = log−1(χ(γF))(γF − 1) does not depend on the choice
of γF ∈ Γ0

F . For each p-adic representation V with coefficients in A, (63) induces an
exact sequence

(64) 0→V → ṼF →V → 0,

where ṼF = Ãι
F ⊗A V. As in Section 2.7, passing to continuous Galois cohomology,

we obtain a distinguished triangle

C•(GF,S,V )→C•(GF,S,ṼF)→C•(GF,S,V )
βV,c−−→C•(GF,S,V )[1].

For each q ∈ S, we have the local analog of the sequence (64) studied in Section 2.7

0→V → ṼFq →V → 0.

The inclusion Γ0
q ↪→ Γ0

F induces a commutative diagram of GFq-modules

0 // Vq

=

��

θq // ṼFq

��

// Vq

=

��

// 0

0 // Vq
//θF // (ṼF)q // Vq

// 0,

where the vertical middle arrow is an isomorphism by the five lemma. Taking into
account Proposition 2.7.2, we see that the exact sequence (64) induces a distinguished
triangle

C•(GFq ,V )→C•(GFq ,ṼF)→C•(GFq ,V )
βVq,c−−→C•(GFq ,V )[1].

where βVq,c(x) =− log χq∪ x.
Let Dq be a (ϕ,Γq)-submodule of D†

rig(Vq) and let D̃F,q = Ãι
F ⊗A Dq. As in Sec-

tion 2.7, we have an exact sequence

(65) 0→ Dq→ D̃F,q→ Dq→ 0
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which sits in the diagram

0 // Dq

=

��

θq // D̃q

��

// Dq

=

��

// 0

0 // Dq
//θF // D̃F,q // Dq

// 0.

Taking into account Proposition 2.7.4, we obtain that (65) induces the distingushed
triangle

C•ϕ,γq(Dq)→C•ϕ,γq(D̃F,q)→C•ϕ,γq(Dq)
βDq−−→C•ϕ,γq(Dq)[1],

where βDq(x) = −(0, log χq(γq))∪ x. Finally, replacing in the exact sequence (42)
Ṽ by (ṼF)q, and taking into account Proposition 2.7.5 we obtain the distinguished
triangle

K•(Vq)→ K•((ṼF)q)→ K•(Vq)
βK(Vq)−−−→ K•(Vq)[1],

where βK(Vq)(x) =−(0, log χq)∪ x.
If q ∈ Σp, we construct the Bockstein map for U•q (V,D,M) following [56], Section

11.2.4. Namely, if q ∈ Σ, then U•q (V,D,M) =C•(GFq ,Mq) and the exact sequence

(66) 0→Mq→ M̃F,q→Mq→ 0

gives rise to a map βMq,c : C•(GFq ,Mq)→C•(GFq ,Mq). If q ∈ Σp \Σ, then (ṼF)
Iq =

V Iq⊗ Ãι
F and we denote by s : V Iq → (ṼF)

Iq the section given by s(x) = x⊗1. There
exists a distingushed triangle

C•ur(Vq)→C•ur((ṼF)q)→C•ur(Vq)
βVq ,ur−−−→C•ur(Vq)[1],

where βVq,ur : C0
ur(Vq)→C1

ur(Vq) is given by

β
F
Vq,ur(x) =

1

X̃
(ds− sd)(x) =− log χq(Frq)x.
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Proposition 3.2.2. — In addition to (60), equip the complexes A•i , B•i and C•i (1 6
i6 3) with the Bockstein maps given by

βA1 = βV,c,

βB1 =

(
⊕

q∈Sp

βDq

)
⊕
(
⊕

q∈Σp

βVq,ur

)
,

βC1 =

(
⊕

q∈Sp

βK(Vq)

)
⊕
(
⊕

q∈Σp

βVq,c

)
,

βA2 = βV ∗(1),c,

βB2 =

(
⊕

q∈Sp

βD⊥q

)
⊕
(
⊕

q∈Σp

βV ∗q (1),ur

)
,

βC2 =

(
⊕

q∈Sp

βK(V ∗q (1))

)
⊕
(
⊕

q∈Σp

βV ∗q (1),c

)
,

βA3 = βA(1),c,

βB3 = 0,

βC3 =

(
⊕

q∈Sp

βK(A(1)q)

)
⊕
(
⊕

q∈Σp

βA(1)q,c

)
.

Then these data satisfy conditions B1-5) of Section 1.2.

Proof. — We check B2-5) for our Bockstein maps. For each q ∈ Σp, Nekovář con-
structed homotopies

vV,q : gq ◦βVq,ur βVq,c ◦gq,

vV ∗(1),q : g⊥q ◦βV ∗q (1),ur βV ∗q (1),c ◦g⊥q .

From Proposition 2.7.5, ii) it follows that for all q ∈ Sp

gq ◦βDq = βK(Vq) ◦gq,

g⊥q ◦βDq = βK(V ∗q (1)) ◦g⊥q .

Set vV,q = vV ∗(1),q = 0 for all q ∈ Sp. Then condition B2) holds for ui = 0 and vi =

(vi,q)q∈S.

In B3), we can set hB = 0 because∪B = 0. The existence of a homotopy hA between
∪A[1] ◦ (id⊗ βA,2) and ∪A[1] ◦ (βA,1⊗ id) is proved in [56], Section 11.2.6 and the
same method allows to construct hC. Namely, we construct a system hC = (hC,q)q∈S

of homotopies such that hC,q : ∪c[1]◦ (id⊗βV ∗q (1),c) ∪c[1]◦ (βVq,c⊗ id) for q ∈ Σp

and hC,q : ∪K [1]◦ (id⊗βK(V ∗q (1))) ∪K [1]◦ (βK(Vq)⊗ id) for q ∈ Sp. For q ∈ Σp, the
construction of hC,q is the same as those of hA. Now, let q ∈ Sp. By Proposition 2.7.5,
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one has βK(Vq)(x) = −(0, log χq)∪K x. Consider the following diagram, where zq =
(0, log χq)

(67) K•(Vq)⊗A K•(V ∗q (1))

=

��

id // K•(Vq)⊗A K•(V ∗q (1))

=

��
K•(Vq)⊗A A⊗A K•(V ∗q (1))

id⊗(−zq)⊗id
��

id // A⊗A K•(Vq)⊗A K•(V ∗q (1))

(−zq)⊗id⊗id
��

K•(Vq)⊗A K•(A)[1]⊗A K•(V ∗q (1))

∪K⊗id
��

s12⊗id // K•(A)[1]⊗A K•(Vq)⊗A K•(V ∗q (1))

∪K⊗id
��

K•(Vq)[1]⊗A K•(V ∗q (1))

∪K

��

id // K•(Vq)[1]⊗A K•(V ∗q (1))

∪K

��
K•(Vq⊗V ∗q (1))[1]

id // K•(Vq⊗V ∗q (1))[1].

The first, second and fourth squares of this diagram are commutative. From Proposi-
tion 1.1.7 (see also (37)) it follows that the diagram

K•(Vq)⊗K•(A)[1]

∪K

��

s12◦(TK⊗TK) // K•(A)[1]⊗K•(Vq)

∪K

��
K•(Vq)[1]

TK // K•(Vq)[1]

is commutative up to some homotopy k1 : TK ◦∪K  ∪K ◦ s12 ◦ (TK ⊗TK). Since
T 2

K = id, we have a homotopy

TK ◦ k1 : ∪K  TK ◦∪K ◦ s12 ◦ (TK⊗TK).

By [56], Section 3.4.5.5 (see also Section 2.6.2), for any topological GFq-module
M there exists a functorial homotopy a : id Tc. By Proposition 2.6.4, a induces
a homotopy between id : K•(Vq)→ K•(Vq) and TK : K•(Vq)→ K•(Vq) which we
denote by aK . Let (aK ⊗ aK)1 : id TK ⊗TK denote the homotopy between the
maps id and TK ⊗TK : K•(Vq)⊗K•(Qp)[1]→ K•(Vq)⊗K•(Qp)[1] given by (18).
Then

d(aK ◦TK ◦∪K ◦ s12 ◦ (TK⊗TK))+(aK ◦TK ◦∪K ◦ s12 ◦ (TK⊗TK))d =

= (TK− id)◦∪K ◦ s12 ◦ (TK⊗TK),
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and

d(∪K ◦ s12 ◦ (aK⊗aK)1)+(∪K ◦ s12 ◦ (aK⊗aK)1) =

= ∪K ◦ s12 ◦ (TK⊗TK− id).

Therefore the formula

(68) k2 = aK ◦TK ◦∪K ◦ s12 ◦ (TK⊗TK)+∪K ◦ s12 ◦ (aK⊗aK)1

defines a homotopy

k2 : ∪K ◦ s12 TK ◦∪K ◦ s12 ◦ (TK⊗TK).

Then kC,q = FK ◦ k1− k2 defines a homotopy

kC,q : ∪K  ∪K ◦ s12

and we proved that the third square of the diagram (67) commutes up to a homotopy.
We define the homotopy

hC,q : ∪K [1]◦ (id⊗βK(V ∗q (1)),c) ∪K [1]◦ (βK(Vq)⊗ id)

by

(69) hC,q = ∪K ◦ (kC,q⊗ id)◦ (id⊗ (−zq)⊗ id).

This proves B3).
Since u1 = u2 = h f = 0, condition B4) reads

(70) dK f −K f d =−hC ◦ ( f1⊗ f2)+ f3[1]◦hA

for some second order homotopy K f . It is proved in [56], Section 11.2.6, that if
q ∈ Σp, then

(71) hC,q ◦ ( f1⊗ f2) = resq ◦hA.

Assume that q ∈ Sp. Recall (see [56], Section 11.2.6) that the homotopy hA is given
by

(72) hA = ∪c ◦ (kA⊗ id)◦ (id⊗ (−z)⊗ id),

where z = log χ and

(73) kA =−a◦ (∪c ◦ s12 ◦ (Tc⊗Tc))− (Tc ◦∪c ◦ s12)◦ (a⊗a)1.

From (24), it follows that for all x ∈Cn(GF,S,V ) and y ∈Cm(GF,S,V ∗(1)) we have

(74) (k1⊗ id)◦ (id⊗ (−zq)⊗ id)◦ ( f1⊗ f2)(x⊗ y) =

= (k1⊗ id)((0,− log χq)⊗ (0,xq)⊗ (0,yq)) =

= k1((0,− log χq)⊗ (0,xq))⊗ (0,yq) = 0,
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where xq = resq(x), yq = resq(y). On the other hand, comparing (68) and (73) we see
that

(75) (k2⊗ id)◦ (id⊗ (−zq)⊗ id)◦ ( f1⊗ f2)(x⊗ y) =

= k2((0,− log χq)⊗ (0,xq))⊗ (0,yq) =

=−(0, resq(kA(−z⊗ x)))⊗ (0,yq).

From (74), (75), (69) and (73) we obtain that

(76) hC,q ◦ ( f1⊗ f2)(x⊗ y) =

= (0, resq(kA(−z⊗ x)))∪K (0,yq) =

= (0, resq(kA(−z⊗ x))∪c y) = (0, resq(hA(x⊗ y))).

From (76) and (71) it follows that hC ◦ ( f1⊗ f2) = f3[1]◦hA and therefore we can set
K f = 0 in (70). Thus, B4) is proved.

It remains to check B5). Since v1 = v2 = hg = 0, this condition reads

(77) dKg−Kgd =−hC ◦ (g1⊗g2)+∪C[1] ◦ (v1⊗g2)−∪C[1] ◦ (g1⊗ v2)

for some second order homotopy Kg. Write Kg = (Kg,q)q∈S. For q ∈ Σp, Nekovář
proved that the q-component of the right hand side of (77) is equal to zero. For
q ∈ Sp, we have v1,q = v2,q = 0 and hC,v ◦ (g1⊗g2) = 0 because of orthogonality of D
and D⊥, and again we can set Kg,q = 0. To sum up, condition (77) holds for Kg = 0.
The proposition is proved.

3.2.3. — The exact sequences (64), (65) and (66) give rise to a distinguished triangle

RΓ(V,D,M)→ RΓ(ṼF , D̃F ,M̃F)→ RΓ(V,D,M)
δV,D,M−−−→ RΓ(V,D,M)[1]

Definition. — The p-adic height pairing associated to the data (V,D,M) is defined
as the morphism

hsel
V,D,M : RΓ(V,D,M)⊗L

A RΓ(V ∗(1),D⊥,M⊥)
δV,D,M−−−→

→ RΓ(V,D,M)[1]⊗L
A RΓ(V ∗(1),D⊥,M⊥)

∪V,D,M−−−→ A[−2],

where ∪V,D,M is the pairing (49).

The height pairing hsel
V,D,M induces a pairing

(78) hsel
V,D,M,1 : H1(V,D,M)⊗A H1(V ∗(1),D⊥,M⊥)→ A.
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Theorem 3.2.4. — The diagram

RΓ(V,D,M)⊗L
A RΓ(V ∗(1),D⊥,M⊥)

hsel
V,D,M //

s12

��

A[−2]

=

��
RΓ(V ∗(1),D⊥,M⊥)⊗L

A RΓ(V,D,M)
hsel

V∗(1),D⊥,M⊥ // A[−2]

is commutative. In particular, the pairing hsel
V,D,1 is skew-symmetric.

Proof. — From Propositions 1.2.6 and 3.2.2 it follows, that the diagram

S•(V,D,M)⊗A S•(V ∗(1),D⊥,M⊥)
hsel

V,D,M //

s12◦(T sel
V ⊗T sel

V∗(1))
��

E3

=

��
S•(V ∗(1),D⊥,M⊥)⊗A S•(V,D,M)

hsel
V∗(1),D⊥,M⊥// E3

is commutative up to homotopy. Now the theorem follows from the fact, that (T sel
V ⊗

T sel
V ∗(1)) is homotopic to the identity map (see the proof of Theorem 3.1.11).





CHAPTER 4

SPLITTING SUBMODULES

4.1. Splitting submodules

4.1.1. — Let K be a finite extension of Qp, and let V be a potentially semistable
representation of GK with coefficients in a finite extension E of Qp. For each fi-
nite extension L/K we set D∗/L(V ) = (B∗⊗V )GL , where ∗ ∈ {cris,st,dR} and write
D∗(V ) = D∗/K(V ) if L = K. We will use the same convention for the functors D∗/L.

Fix a finite Galois extension L/K such that the restriction of V on GL is semistable.
Then Dst/L(V ) is a free filtered (ϕ,N,GL/K)-module over E⊗Qp L0 and DdR/L(V ) =

Dst/L(V )⊗L0 L. A (ϕ,N,GL/K)-submodule of Dst/L(V ) is a free E⊗Qp L0-subspace
D of Dst/L(V ) stable under the action of ϕ , N and GL/K .

Definition. — We say that a (ϕ,N,GL/K)-submodule D of Dst/L(V ) is a splitting
submodule if

DdR/L(V ) = DL⊕Fil0DdR/L(V ), DL = D⊗L0 L

as E⊗Qp L-modules.

From this definition it follows that if D is a splitting submodule, then

D⊥ = HomE⊗Qp L0(Dst/L(V )/D,Dst/L(E(1))

is a splitting submodule of Dst/L(V ∗(1)).
In Subsections 4.1–4.2 we will always assume that V satisfies the following con-

dition:

S) Dcris(V )ϕ=1 = Dcris(V ∗(1))ϕ=1 = 0.
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One expects that this condition always holds for representations associated to pure
motives of weight−1 (see Section 0.4). Namely, consider the Deligne–Jannsen mon-
odromy filtration

(
MiDst/L(V )

)
i∈Z on Dst/L(V ) given by

(79) MiDst/L(V ) = ∑
k−l=i

ker(Nk+1)∩ Im(Nl)

(see [40]). Denote by
(
grMi Dst/L(V )

)
i∈Z its quotients. Assume for simplicity that

E = Qp. Set h = [L0 : Qp] and q = ph. Then Φ = ϕh acts L0-linearly on Dst/L(V ).

Lemma 4.1.2. — Assume that Φ acts semisimply on Dst/L(V ) and that the absolute
value of eigenvalues of Φ acting on grMi Dst/L(V ) is q(i−1)/2. Then condition S) holds.

Proof. — From our assumptions it follows that Dst/L(V )Φ=1 ∩M0Dst/L(V ) = 0.
Since Dcris(V )⊂ Dst/L(V )N=0 ⊂M0Dst/L(V ), this implies that

Dcris(V )ϕ=1 ⊂ Dst/L(V )Φ=1∩Dcris(V ) = 0.

Note that our assumptions are invariant under passing to the dual representation, and
therefore we also get Dcris(V ∗(1))ϕ=1 = 0.

4.1.3. — If D is a splitting submodule, we denote by D the (ϕ,ΓK)-submodule of
D†

rig(V ) associated to D by Theorem 2.2.3. The natural embedding D→ D†
rig(V )

induces a map H1(D)→ H1(D†
rig(V ))

∼→ H1(K,V ). Passing to duals, we obtain a
map H1(K,V ∗(1))→ H1(D∗(χ)).

Proposition 4.1.4. — Assume that V satisfies condition S). Let D be a splitting sub-
module. Then

i) H1
f (K,V ∗(1))→ H1

f (D
∗(χ)) is the zero map.

ii) Im(H1(D)→ H1(K,V )) = H1
f (K,V ) and the map H1

f (D)→ H1
f (K,V ) is an

isomorphism.
iii) If, in addition, Fil0(Dst/L(V )/D)ϕ=1,N=0,GL/K = 0, then H1(D) = H1

f (K,V ).

Proof. — i) By Proposition 2.9.2 we have a commutative diagram

(80) H1
cris(V

∗(1))

=

��

// H1
cris(D

∗(χ))

=

��
H1

f (K,V ∗(1)) // H1
f (D

∗(χ)),

where we set

H1
cris(V

∗(1)) = coker
(

Dcris(V )
(1−ϕ,pr)−−−−−→ Dcris(V )⊕ tV (K)

)
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and

H1
cris(D

∗(χ)) = coker
(

Dcris(D∗(χ))
(1−ϕ,pr)−−−−−→Dcris(D∗(χ)))⊕ tD∗(χ)(K)

)
to simplify notation.

Since Dcris(V ∗(1))ϕ=1 = 0, the map 1−ϕ : Dcris(V ∗(1))→Dcris(V ∗(1)) is an iso-
morphism and H1

cris(V
∗(1)) = tV ∗(1)(K). On the other hand, all Hodge–Tate weights

of D∗(χ) are > 0 and tD∗(χ)(K) = 0. Hence

H1
cris(D

∗(χ)) = coker(1−ϕ | Dcris(D∗(χ)))

and the upper map in (80) is zero because it is induced by the canonical projection of
tV ∗(1)(K) on tD∗(χ)(K). This proves i).

Now we prove ii). Using i) together with the orthogonality property of H1
f we

obtain that the map

HomE(H1(K,V )/H1
f (K,V ),E)→ HomE(H1(D)/H1

f (D),E),

induced by H1(D)→ H1(K,V ), is zero. This implies that the image of H1(D) is
H1(K,V ) is contained in H1

f (K,V ). Finally one has a diagram

H1
cris(D)

'
��

// H1
cris(V )

'
��

H1
f (D) // H1

f (K,V ).

From S) it follows that the top arrow can be identified with the natural map tD(K)→
tV (K) which is an isomorphism by the definition of a splitting submodule.

iii) Taking into account ii), we only need to prove that the natural map H1(D)→
H1(K,V ) is injective. This follows from the exact sequence

0→ D→ D†
rig(V )→ D′→ 0, D′ = D†

rig(V )/D

and the fact that H0(D′) = Fil0(Dst/L(V )/D)ϕ=1,N=0,GL/K = 0 (see Proposition 2.9.2,
i)).

4.2. The canonical splitting

4.2.1. — Let
y : 0→V ∗(1)→ Yy→ E→ 0

be an extension of E by V ∗(1).
Passing to (ϕ,ΓK)-modules, we obtain an extension

0→ D†
rig(V

∗(1))→ D†
rig(Yy)→RK,E → 0.
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By duality, we have exact sequences

0→ E(1)→ Y ∗y (1)→V → 0

and
0→RK,E(χ)→ D†

rig(Y
∗
y (1))→ D†

rig(V )→ 0.

We denote by [y] the class of y in Ext1E[GK ]
(E,V ∗(1)) ∼→H1(K,V ∗(1)). Assume that y

is crystalline, i.e. that [y]∈H1
f (K,V ∗(1)). Let D be a splitting submodule of Dst/L(V ).

Consider the commutative diagram

y : 0 // D†
rig(V

∗(1)) //

pr

��

D†
rig(Yy) //

��

RK,E //

=

��

0

pr(y) : 0 // D∗(χ) // D∗y(χ) // RK,E // 0

where Dy is the inverse image of D in D†
rig(Y

∗
y (1)). The class of pr(y) in H1(D∗(χ))

is the image of [y] under the map

Ext1(RK,E ,D†
rig(V

∗(1)))→ Ext1(RK,E ,D∗(χ))

which coincides with the map

H1(K,V ∗(1)) = H1(D†
rig(V

∗(1)))→ H1(D∗(χ))

after the identification of Ext1(RK,E ,−) with the cohomology group H1(−). Since
we are assuming that [y] ∈ H1

f (K,V ∗(1)), by Proposition 4.1.4 i), we obtain that
[pr(y)] = 0. Thus the sequence pr(y) splits.

4.2.2. — We will construct a canonical splitting of pr(y) using the idea of Nekovář
[54]. Since dimE Dcris(Yy) = dimE Dcris(V ∗(1))+1, the sequence

0→ Dcris(V ∗(1))→ Dcris(Yy)→ Dcris(E)→ 0

is exact by the dimension argument. From Dcris(V ∗(1))ϕ=1 = 0 and the snake lemma
it follows that Dcris(Yy)

ϕ=1 = Dcris(E) and we obtain a canonical ϕ-equivariant mor-
phism of K0-vector spaces Dcris(E)→ Dcris(Yy). By linearity, this map extends to a
(ϕ,N,GL/K)-equivariant morphism of L0-vector spaces Dst/L(E)→Dst/L(Yy). There-
fore we have a canonical splitting

Dst/L(Yy)
∼→ Dst/L(V

∗(1))⊕Dst/L(E)

of the sequence

0→ Dst/L(V
∗(1))→ Dst/L(Yy)→ Dst/L(E)→ 0
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in the category of (ϕ,N,GL/K)-modules. This splitting induces a (ϕ,N,GL/K)-
equivariant isomorphism

(81) Dst/L(D∗y(χ))
∼→Dst/L(D∗(χ))⊕Dst/L(E).

Moreover, since all Hodge–Tate weights of D∗(χ) are positive, we have

FiliDdR/L(D∗y(χ))
∼→ FiliDdR/L(D∗(χ))⊕FiliDdR/L(E)

and therefore the isomorphism

DdR/L(D∗y(χ))
∼→DdR/L(D∗(χ))⊕DdR/L(E)

is compatible with filtrations. Thus, we obtain that (81) is an isomorphism in the
category of filtered (ϕ,N,GL/K)-modules. This gives a canonical splitting

pr(y) : 0 // D∗(χ) // D∗y(χ) // RK,E //oo
0

of the extension pr(y). Passing to duals, we obtain a splitting

(82) 0 // RK,E(χ) // Dy // D //
sD,yoo

0.

Taking cohomology, we get a splitting

(83) 0 // H1
f (K,E(1)) // H1

f (Dy) // H1
f (D) //

syoo
0.

Our constructions can be summarized in the diagram

0 // H1
f (K,E(1)) //

=

��

H1
f (Dy) //

'
��

H1
f (D) //

syoo

'
��

0

0 // H1
f (K,E(1)) // H1

f (K,Y ∗y (1)) // H1
f (K,V ) // 0.

Here the vertical maps are isomorphisms by Proposition 4.1.4 and the five lemma.

Remark 4.2.3. — Assume that H0(D∗(χ)) = 0. Then each crystalline extension of
D by RK(χ) splits uniquely. This follows from Proposition 2.9.2 i) which implies
that H1

f (D
∗(χ)) = 0 and from the fact that various splittings are parametrized by

H0(D∗(χ)).
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4.3. Filtration associated to a splitting submodule

4.3.1. — In this subsection we assume that K = Qp. Let V be a potentially
semistable representation of GQp with coefficients in a finite extension E of Qp.

As before, we fix a finite Galois extension L/Qp such that V is semistable over
L and denote by Dst/L(V ) the semistable module of the restriction of V on GL.

Let GL/Qp = Gal(L/Qp). To each splitting submodule D of Dst/L(V ) we associate
a canonical filtration on Dst/L(V ) which is a direct generalization of the filtration
constructed by Greenberg [35] in the ordinary case and in [7] in the semistable case.

Let D be a splitting submodule of Dst/L(V ). Set D′ = Dst/L(V )/D. Then Fil0D′ =
D′ and we define

M1 = (D′)ϕ=1,N=0,GL/Qp ⊗Qp L0.

Recall that D⊥ = HomE⊗Qp L0(Dst/L(V )/D,Dst/L(E(1)) and that in the tautological
exact sequence

0→ D⊥→ Dst/L(V
∗(1))→ (D⊥)′→ 0

we have

(D⊥)′ ' D∗ = HomE⊗Qp L0(D,Dst/L(E(1)).

For the filtered (ϕ,N,GL/Qp)-module D∗ we have Fil0D∗ = D∗ and we define

M0 =
(
(D∗)ϕ=1,N=0,GL/Qp ⊗Qp L0

)∗
.

From Lemma 4.4.2 ii) it follows that M1 can be seen as a submodule of D′ and that
M∗0 can be seen as a submodule of (D⊥)′. Clearly we have

rkE⊗Qp L0(M1) = dimE(D′)
ϕ=1,N=0,GL/Qp , rkE⊗Qp L0(M0) = dimE(D∗)

ϕ=1,N=0,GL/Qp .

We have canonical projections prD′ : Dst/L(V )→ D′ and prM0
: D→M0. Define a

five-step filtration

{0}= F−2Dst/L(V )⊂ F−1Dst/L(V )⊂ F0Dst/L(V )⊂
F1Dst/L(V )⊂ F2Dst/L(V ) = Dst/L(V )

by

FiDst/L(V ) =


ker(prM0

) if i =−1,

D if i = 0,

pr−1
D′ (M1) if i = 1.
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Set W = F1Dst/L(V )/F−1Dst/L(V ). These data can be represented by the diagram

0 // D //

prM0
����

Dst/L(V )
prD′ // D′ // 0

0 // M0 //W // M1 //?�

OO

0.

We denote by
(
griDst/L(V )

)2
i=−2 the quotients of the filtration (FiDst/L(V ))2

i=−2.

Thus, M0 = gr0Dst/L(V ) and M1 = gr1Dst/L(V ). By Theorem 2.2.3, the filtration(
FiDst/L(V )

)2
i=−2 induces a filtration

(
FiD†

rig(V )
)2

i=−2
on the (ϕ,ΓQp)-module

D†
rig(V ) such that

Dst/L(FiD†
rig(V )) = FiDst/L(V ), −26 i6 2.

Note that D = F0D†
rig(V ). We set M0 = gr0D†

rig(V ), M1 = gr1D†
rig(V ) and W =

F1D†
rig(V )/F−1D†

rig(V ). We have a tautological exact sequence

(84) 0→M0
α−→W β−→M1→ 0.

By construction, M0 and M1 are crystalline (ϕ,ΓQp)-modules such that

Dcris/Qp(M0) = M0, Dcris/Qp(M1) = M1.

Since

Mϕ=p−1

0 = M0, Fil0M0 = 0,

Mϕ=1
1 = M1, Fil0M1 = M1,

the structure of modules M0 and M1 is given by Proposition 2.9.4. In particular, we
have canonical decompositions

H1(M0)
(pr f ,prc)
' H1

f (M0)⊕H1
c (M0), H1(M1)

(pr f ,prc)
' H1

f (M1)⊕H1
c (M1).

The exact sequence (84) induces the cobondary map δ0 : H0(M1)→ H1(M0). Pass-
ing to cohomology in the dual exact sequence

(85) 0→M∗1(χ)→W∗(χ)→M∗0(χ)→ 0,

we obtain the coboundary map δ ∗0 : H0(M∗0(χ))→ H1(M∗1(χ)).
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4.3.2. — We keep previous notation and denote by (FiDst/L(V ∗(1)))−26i62 the
filtration on Dst/L(V ∗(1)) associated to D⊥. This filtration is dual to the filtration
FiDst/L(V ). In particular,

F−1D†
rig(V

∗(1))∗(χ)' D†
rig(V )/F1D†

rig(V ),(86)

D†
rig(V

∗(1))/F1D†
rig(V

∗(1))' (F−1D†
rig(V ))∗(χ),(87)

and the sequence (84) for (V ∗(1),D⊥) coincides with (85).
We consider the following conditions on (V,D) :

F1a) Dcris(D†
rig(V )/F1D†

rig(V ))ϕ=1 = Dcris(D†
rig(V

∗(1)))/F1D†
rig(V

∗(1)))ϕ=1 = 0.

F1b) Dcris(F−1D†
rig(V ))ϕ=1 = Dcris(F−1D†

rig(V
∗(1)))ϕ=1 = 0.

F2a) The composed map

δ0,c : H0(M1)
δ0−→ H1(M0)

prc−→ H1
c (M0),

where the second arrow denotes the canonical projection on H1
c (M0), is an

isomorphism.

F2b) The composed map

δ0, f : H0(M1)
δ0−→ H1(M0)

pr f−→ H1
f (M0),

where the second arrows denotes the canonical projection H1
f (M0), are isomor-

phisms.

F3) For all i ∈ Z

Dpst(D†
rig(V )/F1D†

rig(V ))ϕ=pi
= Dpst(F−1D†

rig(V ))ϕ=pi
= 0.

We expect that conditions F1a-b) and F2a-b) hold for p-adic representations arising
from pure motives over Q of weight −1 (see Sections 4.3.4-4.3.11). On the other
hand, it is easy to give an example of a motive for which condition F3) does not hold
(see Remark 4.3.3.5) below.

Remarks 4.3.3. — 1) Since for any potentially semistable (ϕ,ΓQp)-module X one
has H0(X) = Fil0Dcris(X)ϕ=1 and the Hodge–Tate weights of D†

rig(V )/F1D†
rig(V ) and

D†
rig(V

∗(1))/F1D†
rig(V

∗(1)) are > 0, condition F1a) is equivalent to

H0(D†
rig(V )/F1D†

rig(V )) = H0(D†
rig(V

∗(1)))/F1D†
rig(V

∗(1))) = 0.

2) All conditions introduced above are preserved under duality.
3) From (86-87) it follows that F3) implies F1a-b).
4) F1a-b) and F2a) imply condition S) introduced in Section 4.1 (see Proposi-

tion 4.3.13 iv) below).
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5) We give a simple example of a p-adic representation arising from a motive of
weight −1 which does not satisfy condition F3). Let V (E) be the p-adic represen-
tation associated to an elliptic curve E/Q having split multiplicative reduction at p.
The restriction of V (E) on the decomposition group at p sits in an exact sequence

0→Qp(1)→Vp(E)→Qp→ 0.

Then Dst(Vp(E)) is generated by two vectors eα and eβ such that N(eβ ) = eα ,

ϕ(eα) = p−1eα , ϕ(eβ ) = eβ and Dcris(Qp(1)) = Qpeα . Let W =V (E)⊗3(−1). Then
Dst(Wp) = Dst(Vp(E))⊗3[1], where [1] denotes the ⊗-multiplication by the canonical
generator of Dcris(Qp(−1)).

It is easy to see that the Qp-vector space generated by the vectors

d0 = (eα ⊗ eα ⊗ eα)[1], d1 = (eβ ⊗ eα ⊗ eα)[1],

d2 = (eα ⊗ eβ ⊗ eα)[1], d0 = (eα ⊗ eα ⊗ eβ )[1]

is a splitting submodule of Dst(Wp). Since ϕ(d0) = p−2d0 and ϕ(di) = p−1di for
16 i6 3, we have F−1Dst(Wp) = Qpd0. An easy computation shows that F1Dst(Wp)

is the six-dimensional subspace generated by (di)16i63 and (d+
i )16i63, where

d+
1 = (eα ⊗ eβ ⊗ eβ )[1], d+

2 = (eβ ⊗ eα ⊗ eβ )[1], d+
3 = (eβ ⊗ eβ ⊗ eα)[1].

Thus, Dst(Wp)/F1Dst(Wp) ' Dst(Qp) and F−1Dst(Wp) ' Dcris(Qp(2)) and condition
F3) fails.

4) If V is semistable over Qp, and the linear map ϕ : Dst(V )→Dst(V ) is semisim-
ple at 1 and p−1, the filtration FiDst(V ) coincides with the filtration defined in [7,
Section 2.1.4] (see Proposition 4.3.5 below).

4.3.4. — In the next two sections we show that conditions F1a-b) and F2a) hold
if the Frobenius operator acts semisimply on Dst/L(V ) and V satisfies the p-adic
monodromy-weight conjecture. To simplify the exposition, we assume that the coef-
ficient field E = Qp.

Let W be a finite-dimensional vector space over a vector space K. If f is a linear
operator on W, then for each field extension K′/K we denote by the same letter f the
linear extension of f to WK′ =W ⊗K K′. If α ∈ K′, we say that f is semisimple at α

if
WK′ = ( f −α)WK′⊕W f=α

K′ .

Note that f is semisimple if and only if it is semisimple at all its eigenvalues. Let

0→W1→W →W2→ 0

be an exact seguence of K-vector spaces equipped with compatible linear actions of
f . If the action of f on W is semisimple at α ∈ K, then the actions of f on W1 and W2
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are semisimple at α and the sequence

(88) 0→W f=α

1 →W f=α →W f=α

2 → 0

is exact.
Let G be a finite group acting on W. Then W decomposes canonically into the

direct sum W =W G⊕W 0, where W 0 = {w ∈W |TrG(w) = 0}. If

0→W1→W →W2→ 0

is an exact sequence of K[G]-modules, then the induced sequence of G-invariants

(89) 0→W G
1 →W G→W G

2 → 0

is exact. In particular, the inertia subgroup IL/Qp acts on the splitting submodule D
and we have

D = DIL/Qp ⊕D0.

Proposition 4.3.5. — Let V be a potentially semistable representation of GQp and
let L/Qp be a finite Galois extension such that V becomes semistable over L. Assume
that ϕ : Dst/L(V )→ Dst/L(V ) is semisimple at 1 and p−1. Then

i) The filtration (FiDst/L(V ))2
i=−2 is explicitly given by

FiDst/L(V ) =


D0 +

(
(1− p−1ϕ−1)DGL/Qp +N(DGL/Qp )

)
⊗Qp L0 if i =−1,

D if i = 0,

D+
(

Dst/L(V )ϕ=1,GL/Qp ∩N−1(Dϕ=p−1
)
)
⊗Qp L0 if i = 1.

ii) We have

M0 =

(
DGL/Qp ,ϕ=p−1

N(DGL/Qp ,ϕ=1)

)
⊗Qp L0, M1 =

(
Dst/L(V )GL/Qp ,ϕ=1∩N−1(D)

DGL/Qp ,ϕ=1

)
⊗Qp L0.

iii) Condition F1a) holds.

Proof. — i) Since ϕ is semisimple at 1, from the definition of M1 and properties
(88 - 89) it follows that

F1Dst/L(V ) = D+
(

Dst/L(V )ϕ=1,GL/Qp ∩N−1(D)
)
⊗Qp L0

= D+
(

Dst/L(V )ϕ=1,GL/Qp ∩N−1(Dϕ=p−1
)
)
⊗Qp L0

Let D⊥ be the orthogonal complement of D under the canonical pairing

[ , ] : Dst/L(V ) × Dst/L(V
∗(1))→ Dst/L(Qp(1))
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and let
(
FiDst/L(V ∗(1))

)2
i=−2 denote the associated filtration. Then F−1Dst/L(V ) is

the orthogonal complement of F1Dst/L(V ∗(1)) under [ , ] and we have

F−1Dst/L(V ) =
(

D⊥+
(

Dst/L(V
∗(1))ϕ=1,GL/Qp ∩N−1(D⊥)

)
⊗Qp L0

)⊥
=

= D∩
(

N−1(D⊥)⊥+
(

Dst/L(V
∗(1))ϕ=1,GL/Qp ⊗Qp L0

)⊥)
.

If f ∈ N−1(D⊥) and x ∈ Dst/L(V ), then f (Nx) = (N f )(x), where N f ∈ D⊥. This
implies that N−1(D⊥)⊥ = N(D). Since N(D)⊂ D, we get

(90) F−1Dst/L(V ) = N(D)+D∩
(

Dst/L(V
∗(1))ϕ=1,GL/Qp ⊗Qp L0

)⊥
.

From Lemma 4.4.7 we have that

(91)
(

Dst/L(V
∗(1))ϕ=1,GL/Qp ⊗Qp L0

)⊥
=

=
(
(1− p−1

ϕ
−1)Dst/L(V )GL/Qp

)
⊗Qp L0 +Dst/L(V )0.

Set X = D∩
(
(1− p−1ϕ−1)Dst/L(V )GL/Qp

)
⊗Qp L0. Since X is an L0-vector space

equipped with a semilinear action of Gal(L0/Qp), by Hilbert’s Theorem 90

X = XGL/Qp ⊗Qp L0 =
(

DGL/Qp ∩
(
(1− p−1

ϕ
−1)Dst/L(V )GL/Qp

))
⊗Qp L0.

Since ϕ is semisimple at p−1, we have

DGL/Qp ∩
(
(1− p−1

ϕ
−1)Dst/L(V )GL/Qp

)
= (1− p−1

ϕ
−1)DGL/Qp .

Together with (90) and (91) this gives

F−1Dst/L(V ) =
(
(1− p−1

ϕ
−1)DGL/Qp

)
⊗Qp L0 +N(D)+D0.

Write

(92) D =
(

DGL/Qp ⊗Qp L0

)
⊕D0

and
DGL/Qp = DGL/Qp ,ϕ=1⊕

(
(1−ϕ)DGL/Qp

)
.

Then N(D0)⊂ D0 and

N
(

DGL/Qp

)
= N

(
DGL/Qp ,ϕ=1

)
⊕
(
(1− p−1

ϕ
−1)N

(
DGL/Qp ,ϕ=1

))
.

Therefore

(93) F−1Dst/L(V ) =
(
(1− p−1

ϕ
−1)DGL/Qp

)
⊗Qp L0+N

(
DGL/Qp ,ϕ=1

)
⊗Qp L0+D0

and i) is proved.
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ii) From the definition of M1 and the semisimplicity of ϕ at 1 if follows immedi-
ately that

M1 =

(
Dst/L(V )GL/Qp ,ϕ=1∩N−1(D)

DGL/Qp ,ϕ=1

)
⊗Qp L0.

Using (93), the decomposition (92) and the semisimplicity of ϕ at p−1 we have

M0 =
DGL/Qp(

(1− p−1ϕ−1)DGL/Qp

)
+N

(
DGL/Qp ,ϕ=1

) ⊗Qp L0 =

=

 DGL/Qp ,ϕ=p−1

N
(

DGL/Qp ,ϕ=1
)
⊗Qp L0

and ii) is proved.
iii) The statement iii) follows from ii). The proof repeats verbatim the proof of the

property D2) from [7, Lemma 2.1.5].

4.3.6. — Set h = [L0 : Qp], q = ph and Φ = ϕh. Then Φ is an L0-linear operator on
Dst/L(V ). Let MiDst/L(V ) denote the Deligne –Jannsen monodromy filtration (79).
By [24, Section 1.6], the monodromy N induces an isomorphism

(94) NM : grM1 Dst/L(V )→ grM−1Dst/L(V ).

Proposition 4.3.7. — i) Assume that Φ : Dst/L(V )→ Dst/L(V ) is semisimple at 1
and q−1. Then ϕ is semisimple at 1 and p−1.

ii) If, in addition, for all i ∈ Z the absolute value of eigenvalues of Φ acting on
grMi Dst/L(V ) is q(i−1)/2, then conditions F1a-b), F2a) and S) hold.

Proof. — i) This is a particular case of Proposition 4.4.5.
ii) The proof will be divided into several steps.
a) From the semisimplicity of ϕ and Proposition 4.3.5 iii) it follows that F1a)

holds. Next, S) holds by Lemma 4.1.2. Since S) implies F1b), we only need to show
that F2a) holds.

b) From the semisimplicity of Φ and our assumption about the action of Φ on
grM1 Dst(V ), it follows that the canonical inclusions induce isomorphisms

Dst/L(V )Φ=1 ' grM1 Dst/L(V ), Dst/L(V )Φ=q−1 ' grM−1Dst/L(V ).

Using (94), we see that the operator N induces an isomorphism

N : Dst/L(V )Φ=1→ Dst/L(V )Φ=q−1
.
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Since Dst/L(V )ϕ=1 ⊂ Dst/L(V )Φ=1 and N(Dst/L(V )ϕ=1) ⊂ Dst/L(V )ϕ=p−1
, the map

N : Dst/L(V )ϕ=1 → Dst/L(V )ϕ=p−1
is injective. Let y ∈ Dst/L(V )ϕ=p−1

. Then there
exists x ∈ Dst/L(V )Φ=1 such that N(x) = y. Set z = ϕ(x)− x. Then

N(z) = N(ϕ(x))−N(x) = pϕN(x)−N(x) = 0

and therefore z ∈ Dst/L(V )Φ=0,N=0 = {0}. This implies that x ∈ Dst/L(V )ϕ=1 and we
proved that the map

N : Dst/L(V )ϕ=1→ Dst/L(V )ϕ=p−1
.

is an isomorphism of Qp-vector spaces. Taking GL/Qp-invariants, we also get an
isomorphism (which we denote by the same letter N)

(95) N : Dst/L(V )GL/Qp ,ϕ=1→ Dst/L(V )GL/Qp ,ϕ=p−1
.

c) From Proposition 4.3.13, we have

M1 =
(

N−1(D)∩Dst/L(V )GL/Qp ,ϕ=1/DGL/Qp ,ϕ=1
)
⊗Qp L0,

M0 =
(

DGL/Qp ,ϕ=p−1
/N(DGL/Qp ,ϕ=1)

)
⊗Qp L0.

The isomorphism (95) shows that the monodromy map N induces an isomorphism

N : M1→M0.

d) Recall (see Section 4.3.1) that we set W = F1Dst/L(V )/F−1Dst/L(V ) and denote
by M0, M1 and W the (ϕ,ΓQp)-modules associated to M0, M1 and W respectively.
Set e = dimL0 M0 = dimL0 M1. We have a commutative diagram

0 // M0 //W //

N !!

M1

N'
��

// 0

M0.

Then
H0(W) =W N=0,ϕ=1 = Mϕ=1

0 = 0.

and the coboundary map δ0 : H0(M1)→H1(M0) is injective. Since dimE H0(M1) =

dimE H1
c (M0) = e, we only need to show that Im(δ0) ∩ H1

f (M0) = 0. For each
semistable (ϕ,Γ)-module A we denote by Cst(A) the complex

0→Dst(A)
g−→
(
Dst(A)/Fil0Dst(A)

)
⊕Dst(A)⊕Dst(A)

h−→Dst(A),

where

g(x) = (x (mod Fil0Dst(A)),(ϕ−1)(x),N(x)), h(x,y,z) = N(y)− (pϕ−1)(z).

We refer to [7, Sections 1.4-1.5] for the proofs of the following facts. The cohomol-
ogy group H0(Cst(A)) is canonically isomorphic to H0(A). The group H1(Cst(A)) is
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canonically isomorphic to the subgroup H1
st(A) of H1(A) classifying semistable ex-

tensions. One has H1
st(M0) = H1(M0) and the subgroups H1

f (M0) and H1
c (M0) have

the following description in terms of Cst(A)

H1
f (M0) = {cl(x,0,0)|x ∈M0},

H1
c (M0) = {cl(0,0,z)|x ∈M0}.

We have a commutative diagram

H0(M1)
δ0 // H1(M0)

H0(Cst(M1))

'

OO

∆0 // H1(Cst(M0)),

'

OO

where ∆0 is induced by the exact sequence

0→Cst(M0)→Cst(W)→Cst(M1)→ 0.

Let x ∈ H0(M1) = Mϕ=1
1 . By the snake lemma, W ϕ=1 ' Mϕ=1

1 and we denote by
y ∈ W ϕ=1 the lift of x under this isomorphism. It is easy to check that ∆0(x) =
cl(y,0,N(x)). This implies that if ∆0(x) ∈ H1

f (M0) then N(x) = 0. Since N is an
isomorphism, this implies that x = 0. The proposition is proved.

Remark 4.3.8. — Assume that V is the p-adic realization of a pure motive M over
Q. The p-adic version of the Grothendieck semisimplicity conjecture says that Φ acts
semisimply on Dst/L(V ). If, in addition, M is of weight −1, the p-adic monodromy
conjecture of Deligne–Jannsen [40] asserts that the absolute value of eigenvalues of
Φ acting on grMi Dst/L(V ) is q

i−1
2 . Therefore conjecturally conditions F1a-b) and F2a)

always hold in this case.

4.3.9. — We continue to assume that V is potentially semistable at p. If, in addition,
condition F2a) holds, we have a diagram

Dcris(M0)
iM0 , f // H1

f (M0)

H0(M1)
δ0 //

κ f

OO

κc

��

δ0, f
99

δ0,c

&&

H1(M0)

pr f

OO

prc
��

Dcris(M0)
iM0 ,c // H1

c (M0),

where iM0,c and iM0, f are the canonical isomorphisms defined in Proposition 2.9.4 and
κc and κ f are the unique maps making the resulting diagram commute.
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Definition. — The determinant

(96) L (V,D) = detE
(
κ f ◦κ

−1
c | Dcris(M1)

)
is called the L -invariant associated to V and D.

Remark 4.3.10. — This is a generalization of the L -invariant defined in [7] in
the semistable case. Note that in op. cit. we assume that V is the restriction on
GQp of a global Galois representation satisfying the additional condition H1

f (V ) =

H1
f (V

∗(1)) = 0, but the definition of L (V,D) in the semistable case is purely local
and does not use this assumption. We expect that L (V,D) 6= 0 if V is associated to a
pure motive of weight −1 (see Section 0.4).

The next proposition follows immediately from definitions.

Proposition 4.3.11. — Assume that condition F2a) holds. Then F2b) holds if and
only if L (V,D) 6= 0.

4.3.12. — Now we come back to the general setting described in Section 4.3.1 and
summarize below some properties of the filtration FiD†

rig(V ).

Proposition 4.3.13. — Let D be a regular submodule of Dst/L(V ). Then
i) If (V,D) satisfies F2a), then rk(M0) = rk(M1) and H0(W) = 0
ii) If (V,D) satisties F1a), then

H1
f (F−1D†

rig(V )) = H1(F−1D†
rig(V )),

H1
f (F1D†

rig(V )) = H1
f (Qp,V ).

iii) If (V,D) satisfies F1a) and F2a), then we have exact sequences

(97) 0→ H0(M1)→ H1(M0)→ H1
f (W)→ 0

and

(98) 0→ H0(M1)→ H1(D)→ H1
f (Qp,V )→ 0.

iv) If (V,D) satisfies F1a-b) and F2a), then the representation V satisfies S),
namely

Dcris(V )ϕ=1 = Dcris(V ∗(1))ϕ=1 = 0.

Proof. — i) From F2a) and the fact that dimE H0(M1)= rk(M1) and dimE H1
c (M0)=

rk(M0) (see Proposition 2.9.4) we obtain that rk(M0) = rk(M1).

By Proposition 2.9.4, iv), H0(M0) = 0, and we have an exact sequence

0→ H0(W)→ H0(M1)
δ0−→ H1(M0).

By F2a), the map δ0 is injective and therefore H0(W) = 0.
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ii) By F1a) together with Proposition 2.9.2 and the Euler–Poincaré characteristic
formula, we have

dimE H1(F−1D†
rig(V ))−dimE H1

f (F−1D†
rig(V )) =

= dimE H0((F−1D†
rig(V ))∗(χ)) = dimE H0(D†

rig(V
∗(1))/F1D†

rig(V
∗(1)))) = 0,

and therefore H1
f (F−1D†

rig(V )) = H1(F−1D†
rig(V )). Since H0(D†

rig(V )/F1D†
rig(V )) =

0, the exact sequence

0→ F1D†
rig(V )→ D†

rig(V )→ D†
rig(V )/F1D†

rig(V )→ 0

induces, by Proposition 2.9.2 iv), an exact sequence

0→ H1
f (F1D†

rig(V ))→ H1
f (D

†
rig(V )).→ H1

f (D
†
rig(V )/F1D†

rig(V ))→ 0.

On the other hand, since

DdR(D†
rig(V )/F1D†

rig(V )) = Fil0DdR(D†
rig(V )/F1D†

rig(V )),

by Proposition 2.9.2, i) we have

dimE H1
f (D

†
rig(V )/F1D†

rig(V )) = dimE H0(D†
rig(V )/F1D†

rig(V )) = 0,

and therefore H1
f (F1D†

rig(V )) = H1
f (D

†
rig(V )) = H1

f (Qp,V ).

iii) To prove the exacteness of (97), we only need to show that the image of the
map α : H1(M0)→ H1(W), induced by the exact sequence (84), coincides with
H1

f (W). By F2a), Im(δ0)∩H1
f (M0) = {0}, and therefore the map H1

f (M0)→H1
f (W)

is injective. Set e = rk(M0) = rk(M1). Since

dimE H1
f (W) = dimE tW(Qp)−H0(W) = e = dimE H1

f (M0),

we obtain that H1
f (M0) = H1

f (W). On the other hand, the exact sequence

0→ H0(M1)
δ0−→ H1(M0)

α−→ H1(W)

shows that dimE Im(α) = dimE H1(M0)−dimE H0(M1) = e= dimE H1
f (M0). There-

fore Im(α) = H1
f (M0) = H1

f (W), and the exacteness of (97) is proved.
Since H0(W) = 0 and H1

f (F−1D†
rig(V )) = H1(F−1D†

rig(V )), by Proposition 2.9.2
iv) we have an exact sequence

0→ H1(F−1D†
rig(V ))→ H1

f (F1D†
rig(V ))→ H1

f (W)→ 0,

which shows that H1
f (F1D†

rig(V )) is the inverse image of H1
f (W) under the map

H1(F1D†
rig(V ))→ H1(W). Therefore we have the following commutative diagram
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with exact rows

0

��

0

��
H0(M1)

��

= // H0(M1)

��
0 // H1(F−1D†

rig(V ))

=

��

// H1(D)

��

// H1(M0) //

��

0

0 // H1(F−1D†
rig(V )) // H1

f (F1D†
rig(V ))

��

// H1
f (W) //

��

0

0 0.

Since the right column of this diagram is exact, the five lemma gives the exacte-
ness of the middle column. Now the exacteness of (98) follows from the fact that
H1

f (F1D†
rig(V )) = H1

f (Qp,V ) by ii).
iv) First prove that Dcris(W) = Dcris(M0). The exact sequence (84) gives an exact

sequence

0→Dcris(M0)
α−→Dcris(W)

β−→Dcris(M1)

and we have immediately the inclusion Dcris(M0) ⊂ Dcris(W). Thus, it is enough
to check that dimE Dcris(W) = dimE Dcris(M0). Assume that dimE Dcris(W) >

dimE Dcris(M0). Then there exists x ∈Dcris(W) such that m = β (x) 6= 0. Since ϕ acts
trivially on Dcris(M1) = M

ΓQp
1 , RQp,Em is a (ϕ,ΓQp)-submodule of M1, and there

exists a submodule X ⊂W which sits in the following commutative diagram with
exact rows

0 // M0 //

=

��

X //

��

RQp,Em //

��

0

0 // M0 // W // M1 // 0.

Since Dcris(W) = (W[1/t])ΓQp , there exists n > 0 such that tnx ∈ X, and therefore
x ∈Dcris(X). This implies that X is crystalline, and by Proposition 2.9.2 iv) we have
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a commutative diagram

Em� _

��

// H1
f (M0)
� _

��
H0(M1)

� � δ0 // H1(M0).

Thus, Im(δ0) ∩H1
f (M0) 6= {0} and condition F2a) is violated. This proves that

Dcris(W) = Dcris(M0).

Now we can finish the proof. Taking invariants, we have Dcris(W)ϕ=1 =

Dcris(M0)
ϕ=1 = 0. By F1b),

Dcris(F−1D†
rig(V ))ϕ=1 = Dcris(D†

rig(V )/F1D†
rig(V ))ϕ=1 = 0,

and, applying the functor Dcris(−)ϕ=1 to the exact sequences

0→ F1D†
rig(V )→ D†

rig(V )→ D†
rig(V )/F1D†

rig(V )→ 0,

0→ F−1D†
rig(V )→ F1D†

rig(V )→W→ 0,

we obtain that Dcris(V )ϕ=1 ⊂ Dcris(W)ϕ=1 = 0. The same argument shows that
Dcris(V ∗(1))ϕ=1 = 0.

4.3.14. — Assume that (V,D) satisfies conditions F1a-b). The tautological exact
sequence

0→ D→ D†
rig(V )→ D′→ 0.

induces the coboundary map

∂0 : H0(D′)→ H1(D),

Since H0(D†
rig(V )/F1D†

rig(V )) = 0, we have that H0(D′) = H0(M1), and the exact
sequence (98) shows that the sequence

(99) 0→ H0(D′) ∂0−→ H1(D)→ H1
f (Qp,V )→ 0

is also exact.

Proposition 4.3.15. — Let V be a p-adic representation of GQp which satisfies con-
ditions F2b) and F3). Then

H1(D) = H1
Iw(D)

Γ0
Qp
⊕∂0

(
H0(D′)

)
.
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Proof. — Since Dpst

((
F−1D†

rig(V )
)∗

(χ)
)ϕ=pi

= 0 for all i ∈ Z, by Lemma 2.8.3

we have H2
Iw(F−1D†

rig(V )) = 0. Then the tautological exact sequence

0→ F−1D†
rig(V )→ D→M0→ 0

induces an exact sequence

0→ H1
Iw(F−1D†

rig(V ))→ H1
Iw(D)→ H1

Iw(M0)→ 0.

Since H1
Iw(M0)

Γ0
Qp = H0(M0) = 0 by Proposition 4.3.13, the snake lemma gives an

exact sequence

(100) 0→ H1
Iw(F−1D†

rig(V ))
Γ0

Qp
→ H1

Iw(D)
Γ0

Qp
→ H1

Iw(M0)Γ0
Qp
→ 0.

The Hochschild–Serre exact sequence

0→ H1
Iw(F−1D†

rig(V ))
Γ0

Qp
→ H1(F−1D†

rig(V ))→ H2
Iw(F−1D†

rig(V ))
Γ0

Qp → 0

together with the fact that

dimE H2
Iw(F−1D†

rig(V ))
Γ0

Qp = dimE H2
Iw(F−1D†

rig(V ))
Γ0

Qp
=

= dimE H0
(
(F−1D†

rig(V ))∗(χ)
)
= 0

implies that H1
Iw(F−1D†

rig(V ))
Γ0

Qp
= H1(F−1D†

rig(V )). On the other hand,

H1
Iw(M0)Γ0

Qp
= H1

c (M0)

by Proposition 2.9.6. Therefore, the sequence (100) reads

0→ H1(F−1D†
rig(V ))→ H1

Iw(D)
Γ0

Qp
→ H1

c (M0)→ 0

and we have a commutative diagram

(101) 0 // H1(F−1D†
rig(V )) //

=

��

H1
Iw(D)

Γ0
Qp� _

��

// H1
c (M0) //
� _

��

0

0 // H1(F−1D†
rig(V )) // H1(D) // H1(M0) // 0.

Since H0(D†
rig(V )/F1D†

rig(V )) = 0, the exact sequence

0→M1→ D′→ D†
rig(V )/F1D†

rig(V )→ 0
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gives H0(M1) = H0(D′) and we have a commutative diagram

(102) H0(D′)
∂0 // H1(D)

��
H0(M1)

=

OO

� � δ0 // H1(M0).

Finally, from F2b) it follows that H1
c (M0)∩δ0

(
H0(M1)

)
= {0}, and the dimension

argument shows that

(103) H1(M0) = H1
c (M0)⊕δ0

(
H0(M1)

)
.

Now, the proposition follows from (103) and the diagrams (101) and (102).

4.4. Appendix. Some semilinear algebra

4.4.1. — In this section we assemble auxiliary results used in Section 4.3. They are
certainly known to experts, but we give detailed proofs for completeness.

Let L0 be a finite unramified extension of Qp. We denote by σ the absolute Frobe-
nius automorphism on L0. Let W be a finite dimensional L0-vector space equipped
with a σ -semilinear bijective operator ϕ : W →W. For each extension E/Qp, de-
note by the same letter ϕ the operator on E ⊗Qp W induced by ϕ by extension of
scalars. Note that W is a free E ⊗Qp L0-module and that ϕ acts on E ⊗Qp L0 by
ϕ(a⊗Qp b) = a⊗Qp σ(b).

Lemma 4.4.2. — Let L′0/L0 be a field extension and let ϕ : L′0⊗Qp W → L′0⊗Qp W
be the L′0-linear map induced by ϕ by extension of scalars. Then

i) For each α ∈ E, the natural map

ι : L′0⊗Qp W → L′0⊗L0 W, ι(a⊗Qp x) = a⊗L0 x

induces an injection (
L′0⊗Qp W

)ϕ=α → L′0⊗L0 W.

ii) For any α ∈Qp, the natural map

L0⊗Qp W ϕ=α →W

is injective.

Proof. — Set d = dimL0 W. Let {v j}16 j6d be a basis of W over L0 and {θi}16i6h be
a basis of L0 over Qp. Then {θiv j}16i6h,16 j6d is a basis of L0⊗Qp W over L′0. Let
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C(s) = (c(s)jk )16 j,k6d be the matrix of ϕs in the basis {v j}16 j6d , i.e.

ϕ
s(v j) =

d

∑
k=1

c(s)jk vk, 16 j 6 h.

Assume that

x =
h

∑
i=1

d

∑
j=1

ai j⊗Qp (θiv j) ∈ ker(ι), ai j ∈ L′0.

If, in addition, ϕ(x) = αx, then

ϕ
s(x) =

h

∑
i=1

d

∑
j=1

ai j⊗Qp ϕ
s(θi)ϕ

s(v j) ∈ ker(ι) for all 06 s6 h−1.

Set

x(s)j =
h

∑
i=1

ai jϕ
s(θi), 16 j 6 d.

Then
d

∑
j=1

x(s)j c(s)jk = 0, 16 j 6 d.

Since det(C(s)) 6= 0, this implies that x(s)j = 0 for all 1 6 j 6 d and 0 6 s 6 h− 1.
Therefore for each 16 j 6 d we have

h

∑
i=1

ai jϕ
s(θi) = 0, 06 s6 h−1.

Since det(ϕs(θi)16s,i6h) 6= 0 by the linear independence of automorphisms, we get
ai j = 0 for all 16 j 6 d and 16 i6 h. Thus x = 0 and i) is proved.

ii) Take L′0 = L0 (with the trivial action of ϕ). Since α ∈ Qp, we have
(L0 ⊗Qp W )ϕ=α = L0 ⊗Qp W ϕ=α and by i) the map L0 ⊗Qp W ϕ=α → W is in-
jective. This proves ii). Note that the usual proof of this statement uses Artin’s trick
(see Lemma 4.4.3 below).

Lemma 4.4.3. — Let U be an L0-subspace of W stable under the action of ϕ and let
α ∈Q∗p. Then (

L0⊗Qp W ϕ=α
)
∩U = L0⊗Qp Uϕ=α .

In particular, (
L0⊗Qp W ϕ=α

)
∩U 6= {0} =⇒ W ϕ=α ∩U 6= {0}.
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Proof. — First note that L0⊗Qp W ϕ=α ⊂W and L0⊗Qp Uϕ=α ⊂W by Lemma 4.4.2.
Fix a Qp-basis {wi}k

i=1 of Uϕ=α and complete it to a basis {wi}n
i=1 of W ϕ=α . We

prove the lemma by contradiction. Assume that there exist a nonzero element

x =
m

∑
i=1

ai⊗wi ∈
(
L0⊗Qp W ϕ=α

)
∩U,

such that x /∈ L0⊗Qp Uϕ=α . In the set of elements with this property we choose a
"shortest" element which we denote again by x. Note that m > k and that we can
assume that am = 1. Then

ϕ(x) = α

m

∑
i=1

σ(ai)⊗wi ∈
(
L0⊗Qp W ϕ=α

)
∩U,

and therefore

α
−1

ϕ(x)− x =
m−1

∑
i=1

(σ(ai)−ai)⊗wi ∈
(
L0⊗Qp W ϕ=α

)
∩U.

By the choice of x, we have α−1ϕ(x)−x∈ L0⊗Qp Uϕ=α . This implies that σ(ai) = ai

for all k+16 i6 m. Thus ai ∈Qp for all k+16 i6 m. Therefore

x = x0 + x1, x0 =
k

∑
i=1

ai⊗wi ∈ L0⊗Qp Uϕ=α , x1 =
m

∑
i=k+1

ai⊗wi ∈W ϕ=α .

Thus x1 = x− x0 ∈U ∩W ϕ=α =Uϕ=α and by the construction of the basis {wi}n
i=1

we get that x1 = 0. The lemma is proved.

4.4.4. — Let h = [L0 : Qp] and Φ = ϕh. We consider ϕ as a linear map on the Qp-
vector space W and Φ as a L0-linear map on the L0-vector space W.

Proposition 4.4.5. — i) Let L′0 be a finite extension of L0 and α ∈ L′0. Assume that
Φ is semisimple at αh. Then ϕ is semisimple at α.

ii) Φ is semisimple if and only if ϕ is semisimple.

Proof. — i) We prove i) by contradiction. Assume that ϕ is not semisimple at α.

Then there exists a nonzero vector y = (ϕ−α)x such that ϕ(y) = αy. Set

z =
h−1

∑
i=0

α
i
ϕ

h−i−1y = (Φ−α
h)(x).

Then z = hαh−1x 6= 0 and Φ(z) = αhz. The map

(104) ι : W ⊗Qp L′0→W ⊗L0 L′0, ι(x⊗Qp a) = x⊗L0 a

is compatible with the action of Φ. Since ι is injective by Lemma 4.4.2, ι(z) 6= 0 and

ι(z) ∈ (Φ−α
h)W ∩W Φ=αh

.
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This proves i).
ii) From i) it follows that ϕ is semisimple if Φ is. Now we show that the converse

holds. If ϕ is semisimple, there exist an extension L′0/L0 and a basis {wi}16i6dh of
W ⊗Qp L′0 over L′0 such that ϕ(wi) = λiwi, λi ∈ L′0 for all i. Since the map (104) is
surjective, one can find a subsystem {vi}16i6d of {wi}16i6dh such that {ι(vi)}16i6d

is a basis of W ⊗L0 L′0. Since the map ι is compatible with Φ, this proves that the
matrix of Φ in this basis is diagonal.

4.4.6. — Let G be a finite group sitting in an exact sequence of the form

0→ I→ G π−→ Gal(L0/Qp)→ 0.

We write TrI for the trace operator TrI = ∑
g∈I

g. Assume that W is equipped with a

semilinear action of G via the projection π which commutes with the operator ϕ.

Then I acts L0-linearly on W and we have

W =W I⊕W 0, W 0 = {x ∈W |TrI(x) = 0}.

Moreover, from Hilbert’s Theorem 90 for GLn we have

(105) W I = L0⊗Qp W G.

We denote by W ∗ the dual space W ∗ = HomL0(W,L0) equipped with the semilinear
action of ϕ given by

(ϕ f )(w) = σ f (ϕ−1(w)), f ∈W ∗,w ∈W.

For any W we denote by W [1] the space W equipped with the operator ϕW [1] = p−1ϕ.

The canonical duality gives a pairing of L0-vector spaces

[ , ] : W ×W ∗[1]→ L0[1], [x, f ] = f (x).

We equip W ∗[1] with the natural action of G given by

(g f )(x) = g f (g−1x), g ∈ G, x ∈W, f ∈W ∗[1].

If Y is a L0-subspace of W ∗[1], we denote by Y⊥ the orthogonal complement of Y in
W with respect to the pairing [ , ].

Lemma 4.4.7. — For any α ∈Q∗p we have(
L0⊗Qp W ∗[1]ϕ=α,G)⊥ =

(
(α− p−1

ϕ
−1)W G)⊗Qp L0 +W 0.

Proof. — The pairing [ , ] induces non-degenerate pairings

[ , ]I : W I×W ∗[1]I → L0[1],

[ , ]G : W G×W ∗[1]G→Qp[1].
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From (105) it follows that [ , ]I is induced from [ , ]G by extension of scalars. Since
(α− p−1ϕ−1)W G is the orthogonal complement of W ∗[1]ϕ=α,G under [ , ]G, this im-
plies the lemma.



CHAPTER 5

p-ADIC HEIGHT PAIRINGS II: UNIVERSAL NORMS

5.1. The pairing hnorm
V,D

5.1.1. — In this section, we construct the pairing hnorm
V,D , which is a direct general-

ization of the pairing constructed in [66] [59] and [54, Section 6]. Let V is a p-adic
representation of GF,S with coefficients in a finite extension E of Qp. We fix a sys-
tem D = (Dq)q∈Sp of submodules Dq ⊂ D†

rig(Vq) and denote by D⊥ = (D⊥q )q∈Sp the
orthogonal complement of D. We have tautological exact sequences

0→ Dq→ D†
rig(Vq)→ D′q→ 0, q ∈ Sp,

where D′q = D†
rig(Vq)/Dq. Passing to duals, we have exact sequences

0→ (D′q)
∗(χq)→ D†

rig(V
∗
q (1))→ D∗q(χq)→ 0,

where (D′q)∗(χq) = D⊥q . If the contrary is not explicitly stated, in this section we will
assume that the following conditions hold

N1) H0(Fq,V ) = H0(Fq,V ∗(1)) = 0 for all q ∈ Sp;

N2) H0(D′q) = H0(D∗q(χq)) = 0 for all q ∈ Sp.

As we noticed in Section 0.4, if V is the p-adic realization of a pure motive of weight
−1 condition N1) conjecturally always holds. Condition N2) means that the p-adic
L-function L(V,D,s) conjecturally associated to D has no extra-zeros at s = 0. From
N2), it follows immediately that H1(Dq) injects into H1(Fq,V ). By our definition of
Selmer complexes we have

(106) H1(V,D)' ker

H1
S (V )→

⊕
q∈Σp

H1(Fq,V )

H1
f (Fq,V )

⊕⊕
v∈Sp

H1(Fq,V )

H1(Dq)

 ,

and the same formula holds for V ∗(1) if we replace Dq by D⊥q . Recall that each
element of H1(V,D) can be written as the class [xsel] of a triple xsel = (x,(x+q ),(λq))
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(see (47)). The isomorphism (106) identifies [xsel] with the corresponding global
cohomology class [x] ∈ H1

S (V ).

5.1.2. — Let [ysel] = [(y,(y+q ),(µq))] ∈ H1(V ∗(1),D⊥) and let Yy be the associated
extention

0→V ∗(1)→ Yy→ E→ 0.

Passing to duals, we have an exact sequence

0→ E(1)→ Y ∗y (1)→V → 0.

For each q ∈ Sp, this sequence induces an exact sequence of (ϕ,Γq)-modules

0→RFq,E(χq)→ D†
rig(Y

∗
y (1)q)→ D†

rig(Vq)→ 0.

Consider the commutative diagram

0 // H1(Fq,E(1))

=

��

// H1(Dq,y)
πD,q //

� _

gq,y
��

H1(Dq)
δ 1

D,q //
� _

gq
��

H2(Fq,E(1))

=

��
0 // H1(Fq,E(1)) // H1(Fq,Y ∗y (1))

πq // H1(Fq,V )
δ 1

V,q // H2(Fq,E(1))

0 // H1
S (E(1)) //

OO

H1
S (Y

∗
y (1))

π //

resq

OO

H1
S (V )

δ 1
V //

resq

OO

H2
S (E(1)),

resq

OO

where Dq,y denotes the inverse image of Dq in D†
rig(Vq).

In the following lemma we do not assume that condition N2) holds.

Lemma 5.1.3. — Assume that V is a p-adic representation satisfying condition N1).
Let [x] = [(x,(x+q ),(λq))] ∈ H1(V,D) and let xq = resq(x). Then

i) If q - p, then H1
f (Fq,E(1)) = 0 and

H1
f (Fq,Y

∗
y (1))' H1

f (Fq,V ).

ii) For each q ∈ Sp one has δ 1
V,q([xq]) = δ 1

D,q([x
+
q ]) = 0.

iii) δ 1
V ([x]) = 0.

iv) The sequence

0→ H1(E(1),R(χ))→ H1(Y ∗y (1),Dy)→ H1(V,D)→ 0,

where R(χ) = (RFq,E(χq))q∈Sp , is exact.

Proof. — i) If q - p, then E(1) is unramified at q, H0(Fur
q /Fq,E(1)) = 0 and

H1
f (Fq,E(1)) = H1(Fur

q /Fq,E(1)) = E(1)/(Frq−1)E(1) = 0.
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Since [y] is unramified at q, the sequence

0→ E(1)→ Y ∗y (1)
Iq →V Iq → 0

is exact. Passing to the associated long exact cohomology sequence of Gal(Fur
q /Fq)

and taking into account that

H1(Fur
q /Fq,E(1)) = H2(Fur

q /Fq,E(1)) = 0

we obtain that H1(Fur
q /Fq,Y ∗y (1)

Iq)
∼→ H1(Fur

q /Fq,V Iq). This proves i).
ii) For each q ∈ Sp we have gq([x+q ]) = [xq]. From the orthogonality of Dq and D⊥q

it follows that
δ

1
D(x

+
q ) =−x+q ∪ y+q = 0.

Therefore, δ 1
V,q([xq]) = δ 1

D,q([x
+
q ]) = 0 for each q ∈ Sp.

iii) Let q ∈ Σp. Since [xq] ∈ H1
f (Fq,V ), from i) it follows that again δV,q([xq]) = 0.

As the localization map

H2
S (E(1))→

⊕
v∈S

H2(Fq,E(1))

is injective, we obtain that δ 1
V (x) = 0.

iv) First prove the surjectivity of π : H1(Y ∗y (1),Dy)→ H1(V,D). We remark that
H1(Y ∗y (1),Dy) ⊂ H1

S (Y
∗
y (1)) and therefore each element of H1(Y ∗y (1),Dy) is com-

pletely defined by its global cohomology component. For each q ∈ Σp we denote
by

sy,q : H1
f (Fq,V )' H1

f (Fq,Y
∗
y (1))

the inverse of the isomorphism i). Let [xsel] = [(x,(x+q ),(λq))] ∈ H1(V,D). By ii),
δ 1

V ([x]) = 0, and there exists [a] ∈ H1
S (Y

∗
y (1)) such that π([a]) = [x]. For each q ∈ Σp

set [aq] = resq([a]). Since [x+q ]∈H1
f (Fq,V ), there exists [b+q ]∈H1(Fq,E(1)) such that

[aq] = sy,q([x+q ])+ [b+q ].

The localization map H1
S (E(1))→

⊕
q∈Σp

H1(Fq,E(1)) is surjective, and there exists

[b]∈H1
S (E(1)) such that resq([b]) = [b+q ] for each q∈ Σp. Then [a]− [b]∈H1

S (Y
∗
y (1))

defines a class [x̂ sel][x] ∈ H1(Y ∗y (1),Dy) such that π([x̂ sel]) = [x]. Thus, the map π is
surjective.

Finally, from i) we have

H1(E(1),R(χ)) = ker

H1
S (E(1))→

⊕
q∈Σp

H1(Fq,E(1))

 ,

and it is easy to see that H1(E(1),R(χ)) coincides with the kernel of π. The lemma
is proved.
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5.1.4. — Let logp : Q∗p→Qp denote the p-adic logarithm normalized by logp(p) =
0. For each finite place q we define an homomorphism `q : F∗q →Qp by

`q(x) =

{
logp(NFq/Qp(x)), if q | p,

logp |x|q, if q - p,

where NFq/Qp denotes the norm map. By linearity, `q can be extended to a map
`q : F∗q ⊗̂ZpE→ E, and the isomorphism F∗q ⊗̂ZpE ∼→H1(Fq,E(1)) allows to consider
`q as a map H1(Fq,E(1))→ E which we denote again by `q.

From the product formula

|NF/Q(x)|∞ ∏
q∈S f

|x|q = 1

and the fact that NF/Q(x) = ∏
q|p

NFq/Qp(x) it follows that

(107) ∑
q∈S f

`q(x) = 0, ∀x ∈ F∗.

We set ΛOE ,q = OE [[Γ
0
q]] and ΛE,q = ΛOE ,q[1/p].

Lemma 5.1.5. — Let V be a p-adic representation of GF,S that satisfies N1-2) and
let [ysel] ∈ H1(V ∗(1),D⊥). For each q ∈ Sp, the following diagram is commutative
with exact rows and columns

(108) 0

��

0

��
H (Γ0

q)⊗ΛE,q H1
Iw(Fq,E(1)) //

��

H1(Fq,E(1))

��

`q // E

H1
Iw(Dq,y)

π Iw
D,q

��

prq,y // H1(Dq,y)

πD,q

��
H1

Iw(Dq)

��

prq // H1(Dq)

��

// 0

H2(Fq,E(1))
= // H2(Fq,E(1)).
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Proof. — The exacteness of the left column is clear. The exactness of the right
column follows from the fact that the diagram

H2(Fq,n,E(1))
invFq,n //

cores
��

E

id
��

H2(Fq,n−1,E(1))
invFq,n−1 // E

is commutative, and therefore

H2
Iw(Fq,E(1))' H2(Fq,E(1))' E.

The diagram (108) is clearly commutative. Now, we prove that the projection map
H1

Iw(Dq)→ H1(Dq) is surjective. We have an exact sequence

0→ H1
Iw(Dq)Γ0

q
→ H1(Dq)→ H2

Iw(Dq)
Γ0
q → 0,

and therefore it is enough to show that H2
Iw(Dq)

Γ0
q = 0. Consider the exact sequence

0→ H2
Iw(Dq)

Γ0
q → H2

Iw(Dq)
γq−1
−−−→ H2

Iw(Dq)→ H2
Iw(Dq)Γ0

q
→ 0.

Since H2
Iw(Dq) is a finite-dimensional E-vector space, we have

dimE H2
Iw(Dq)

Γ0
q = dimE H2

Iw(Dq)Γ0
q
= dimE H2(Dq) = dimE H0(D∗q(χ)) = 0.

Thus, the map H1
Iw(Dq)→ H1(Dq) is surjective. To prove the exactness of the first

row, we remark that the sequence

H1
Iw(Fq,E(1))→ H1(Fq,E(1))

`q−→ E

is known to be exact (see, for example, [56, Section 11.3.5]), and that the image of
the projection H (Γ0

q)⊗ΛE,q H1
Iw(Fq,E(1))→ H1(Fq,E(1)) coincides with the image

of the projection H1
Iw(Fq,E(1))→ H1(Fq,E(1)).

5.1.6. — By Lemma 5.1.5, for each q ∈ Sp we have the following commutative dia-
gram with exact rows, where the map prq is surjective
(109)

H1
Iw(Dq,y)

π Iw
D,q //

prq,y
��

H1
Iw(Dq)

prq
����

// H2(Fq,E(1))

=

��
0 // H1(Fq,E(1))

=

��

// H1(Dq,y)
πD,q //

� _

gq,y
��

H1(Dq)
δ 1

D,v //
� _

gq
��

H2(Fq,E(1))

0 // H1(Fq,E(1)) // H1(Fq,Y ∗y (1))
πq // H1(Fq,V ).
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Let [xsel] = [(x,(x+q ),(λq))] ∈ H1(V,D). By Lemma 5.1.3 ii), for each q ∈ Sp we
have δD,q([x+q ]) = 0, and therefore there exists [xIw

q,y] ∈ H1
Iw(Dq,y) such that prq ◦

π Iw
D,q

(
[xIw
q,y]
)
= [x+q ]. By Lemma 5.1.3 iv), there exists a lift [x̂ sel] = [(x̂,(x̂+

q ),(λ̂q))] ∈
H1(Y ∗y (1),Dy) of [xsel]. Note that resq([ x̂ ]) = gq,y([x̂+

q ]) in H1(Fq,Y ∗y (1)). For each
q ∈ Sp we set

(110) [uq] = [x̂+
q ]−prq,y([x

Iw
q,y]) = resq([ x̂ ]−gq,y ◦prq,y([x

Iw
q,y])).

Then πq([uq]) = 0, and therefore [uq] ∈ H1(Fq,E(1)).

Definition. — Let V be a p-adic representation of GF,S equipped with a family D =

(Dq)q∈Sp of (ϕ,Γq)-modules satisfying conditions N1-2). The p-adic height pairing
hnorm

V,D associated to these data is defined to be the map

hnorm
V,D : H1(V,D)×H1(V ∗(1),D⊥)→ E,

hnorm
V,D ([xsel], [ysel]) = ∑

q∈Sp

`q ([uq]) .

Remarks 5.1.7. — 1) If [x̃ sel]∈H1(Y ∗y (1),Dy) is another lift of [xsel], then from (107)
and the fact that [x̂+

q ] = [x̃+
q ] = sy,q([x+q ]) for all q ∈ Σp, it follows that the definition

of hnorm
V,D ([xsel], [ysel]) does not depend on the choice of the lift [x̂+

q ].

2) It is not indispensable to take [x̂ sel] in H1(Y ∗y (1),Dy). If [ x̂ ]∈H1
S (Y

∗
y (1)) is such

that π([ x̂ ]) = [x], we can again define [uq] by (110). For q ∈ Σp we set

[uq] = resq([ x̂ ]−gq,y ◦ sy,q([x+q ])),

where sy,q : H1
f (Fq,V )

∼→H1
f (Fq,Y

∗
y (1)) denotes the isomorphism from Lemma 5.1.3

i). Note that again [uq] ∈ H1(Fq,E(1)). Then

hnorm
V,D ([xsel], [ysel]) = ∑

q∈S
`q ([uq]) .

3) The map hnorm
V,D is bilinear. This can be shown directly, but follows from Theo-

rem 5.2.2 below.

5.2. Comparision with hsel
V,D

5.2.1. — In this subsection we compare hnorm
V,D with the p-adic height pairing con-

structed in Subsection 3.2. We take Σ = /0 and denote by

hsel
V,D,1 : H1(V,D)×H1(V ∗(1),D⊥)→ E

the associated height pairing (78).
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Theorem 5.2.2. — Let V be a p-adic representation of GF,S with coefficients in a
finite extension E of Qp. Assume that the family D = (Dq)q∈Sp satisfies conditions
N1-2). Then hnorm

V,D is a bilinear map and

hnorm
V,D =−hsel

V,D,1.

Proof. — The proof repeats the arguments of [56, Sections 11.3.9-11.3.12], where
this statement is proved in the case of p-adic height pairings arising from Greenberg’s
local conditions. We remark that in this case our definition of hnorm

V,D differs from
Nekovář’s hnorm

π by a sign.
Let [xsel]∈H1(V,D) and [ysel]∈H1(V ∗(1),D⊥). We use the notation of Section 3.1

and denote by fq and gq the morphisms defined by (43–46). As before, to simplify
notation we set xq = fq(x) and yq = f⊥q (y). We represent [xsel] and [ysel] by cocycles
xsel = (x,(x+q ),(λq)) ∈ S1(V,D) and ysel = (y,(y+q ),(µq)) ∈ S1(V ∗(1),D⊥), where

x ∈C1(GF,S,V ), x+q ∈U1
q (V,D), λq ∈ K0

q (V ),

y ∈C1(GF,S,V ∗(1)), y+q ∈U1
q (V

∗(1),D⊥), µq ∈ K0
q (V

∗(1))

and for all q ∈ S

dx = 0, dy = 0,

dx+q = 0, dy+q = 0,

gq(x+q ) = fq(x)+dλq, g⊥q (y
+
q ) = f⊥q (x)+dµq.

For simplicity, we will use the same notation for the resulting maps on cohomologies,
namely

fq = resq : H i
S(V )→ H i(Fq,V ), gq : H i(Dq)→ H i(Fq,V ), q ∈ Sp.

This agrees with the notation used in Section 5.1. Also, we will write fq,y and gq,y
for the maps fq and gq,y associated to the data (Y ∗y (1),Dy).

By Propositions 2.7.2, 2.7.4 and 2.7.5 we have

(111) βV,D(xsel) = (−z∪ x,(−wq∪ x+q ),(zq∪λq)) ∈ S2(V,D),

where

z = log χ ∈C1(GF,S,E(0)),(112)

wq =

{
0, if q ∈ Σp,

(0, log χq(γq)) ∈C1
ϕ,γq(E(0)), if q ∈ Sp,

zq =

{
log χq ∈C1(GFq ,E(0)), if q ∈ Σp,

(0, log χq) ∈ K1(E(0)q), if q ∈ Sp.
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Let [ x̂ ] ∈ H1
S (Y

∗
y (1)) be a lift of [x] ∈ H1

S (V ). The diagram (109) shows, that there
exist unique cohomology classes

[x̂+
q ] ∈ H1(Dq,y), q ∈ Sp,

[x̂+
q ] ∈ H1

f (Fq,Y
∗
y (1)), q ∈ Σp

represented by cocycles x̂ ∈C1(GF,S,Y ∗y (1)), x̂+q ∈C1
ϕ,γq(Dq,y) (if q ∈ Sp), and x̂+q ∈

C1
ur(Y

∗
y (1)q) (if q ∈ Σp) such that

gq,y
(
[x̂+
q ]
)
= fq,y ([ x̂ ]) , q ∈ Sp∪Σp.

Since gq,y(x̂+q ) = fq,y(x̂)+dλ̂q for some λ̂q ∈ K0
q (Y

∗
y (1)), we obtain a cocycle x̂sel =

(x̂,(x̂+q ),(λ̂q)) ∈ S1(Y ∗y (1),Dy).

Lemma 5.2.3. — Suppose that for each q ∈ Sp we are given a 1-cocycle
ξq ∈ C1

ϕ,γq(Dq,y) such that βDq,y([ξq]) = 0. Then βY ∗y (1),Dy(x̂
sel) is homologous to

a cocycle of the form
(â,(b̂q),(ĉq)) ∈ S2(Y ∗y (1),Dy),

where

b̂q =

{
0, if q ∈ Σp,

wq∪ (ξq− x̂+q ) ∈C2
ϕ,γq(Dq,y), if q ∈ Sp.

Proof. — By (111), we have

βY ∗y (1),Dy(x̂
sel) = (−z∪ x̂,(−wq∪ x̂+

q ),(zq∪ λ̂q)).

If q ∈ Σp, we have wq = 0 and wq∪ x̂+
q = 0, If q ∈ Sp, we have

b̂q = wq∪ (ξq− x̂+q ) =−wq∪ x̂+
q +wq∪ξq.

Since βDq,y([ξq]) = 0, there exists νq ∈C1
ϕ,γq(Dq,y) such that wq∪ξq = dνq. Therefore,

βY ∗y (1),Dy(x̂
sel) = (−z∪ x̂,(b̂q),(zq∪ λ̂q+gq(νq)))−d(0,(νq),0)

and we can set â = −z∪ x̂ and ĉq = zq ∪ λ̂q + gq(νq) for all q ∈ Sp. The lemma is
proved.

For each q ∈ Sp, we have the canonical isomorphism of local class field theory

invFq : H2(Fq,E(1))
∼→ E.

Let κq : F∗q ⊗̂E→ H1(Fq,E(1)) denote the Kummer map. Then

invFq(log χq∪κq(x)) = logp(NFq/Qp(x)) = `q(κq(x))

([68, Chapitre 14], see also [5, Corollaire 1.1.3]) and therefore

(113) invFq(log χq∪ [b]) = `q([b]), for all [b] ∈ H1(Fq,E(1)).
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Lemma 5.2.4. — Assume that βV,D([xsel]) ∈ H2(V,D) is represented by a 2-cocycle
e = (a,(bq),(cq)) of the form e = π(ê), where

ê = (â,(b̂q),(ĉq)) ∈ S2(Y ∗y (1),Dy)

is also a 2-cocycle and π : S2(Y ∗y (1),Dy)→ S2(V,D) denotes the canonical projec-
tion. Then

[βV,D(xsel)]∪ [ysel] = ∑
q∈Sp

invFq([gq,y(b̂q)∪ f⊥q (αy)+gq(bq)∪µq]),

where αy ∈C0(GF,S,Yy) is an element that maps to 1 ∈C0(GF,S,E) = E and satisfies
dαy = y. If, in addition,

b̂q ∈C2
ϕ,γq(E(1)q), ∀q ∈ Sp,

then
[βV,D(xsel)]∪ [ysel] = ∑

q∈Sp

invFq([b̂q]),

where we identify [b̂q] ∈ H2(RFq,E(χq)) with an element of H2(Fq,E(1)) using The-
orem 2.4.3.

Proof. — The proof of this lemma is purely formal and follows verbatim the proof
of [56, Lemma 11.3.11].

Now we can proof Theorem 5.2.2. Take ξq = prq,y(x
Iw
q,y). Then [uq] = [x̂+

q ]− [ξq]

coincides with the cohomology class (110) used in the definition of hnorm
V,D . Since the

map
C•ϕ,γq(IndFq,∞/Fq(Dq,y))→C•ϕ,γq(Dq,y)

factors through C•ϕ,γq(D̃q,y), where D̃q,y = Dq,y⊗ Ãι
Fq , from the distinguished triangle

RΓ(Fq,Dq,y)→ RΓ(Fq, D̃q,y)→ RΓ(Fq,Dq,y)
βDq,y−−−→ RΓ(Fq,Dq,y)[1]

it follows that βDq,y([ξq]) = 0. In addition, [uq] ∈ H1(Fq,RFq,E(χq)) and adding a
coboundary to uq we can assume that uq ∈ C1

ϕ,γq(E(1)). Combining Lemma 5.2.3
and Lemma 5.2.4 we have

hsel
V,D,1([x

sel], [ysel]) = [βV,D(xsel)]∪ [ysel] = ∑
q∈Sp

invFq([b̂q]) =

=−∑
q∈Sp

invFq([wq∪uq]) =−∑
q∈Sp

invFq(log χq∪ [uq]) =

=−∑
q∈Sp

`q([uq]) =−hnorm
V,D ([xsel], [ysel]).





CHAPTER 6

p-ADIC HEIGHT PAIRINGS III: SPLITTING OF
LOCAL EXTENSIONS

6.1. The pairing hspl
V,D

6.1.1. — Let F be a finite extension of Q. We keep notation of Chapters 3-5. In
particular, we fix a finite set S of places of F such that Sp ⊂ S and denote by GF,S the
Galois group of the maximal algebraic extension of F which is unramified outside
S∪ S∞. For each topological GF,S-module M, we write H∗S (M) for the continuous
cohomology of GF,S with coefficients in M.

Let V be a p-adic representation of GF,S with coefficients in a finite extension
E/Qp which is potentially semistable at all q | p. Following Bloch and Kato, for each
q ∈ S we define the subgroup H1

f (Fq,V ) of H1(Fq,V ) by

H1
f (Fq,V ) =

{
ker(H1(Fq,V )→ H1(Fq,V ⊗Qp Bcris)) if q | p,

ker(H1(Fq,V )→ H1(Fur
q ,V )) if q - p.

The Bloch–Kato Selmer group [16] of V is defined as

H1
f (V ) = ker

(
H1

S (V )→
⊕
q∈S

H1(Fq,V )

H1
f (Fq,V )

)
.

In this section, we assume that, for all q∈ Sp, the representation Vq satisfies condition
S) of Section 4.1, namely that

S) Dcris(Vq)
ϕ=1 = Dcris(V ∗q (1))

ϕ=1 = 0 for all q ∈ Sp.

As we noticed in Section 0.4, this condition conjecturally always holds if V is the
p-adic realization of a pure motive of weight −1. For each q | p, we fix a splitting
(ϕ,N,GFq)-submodule Dq of Dpst(Vq) (see Section 4.1). We will associate to these
data a pairing

hspl
V,D : H1

f (V )×H1
f (V

∗(1))→ E
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and compare it with the height pairing constructed in [54, Section 4] using the expo-
nential map and splitting of the Hodge filtration.

Let [y]∈H1
f (V

∗(1)). Fix a representative y∈C1(GF,S,V ∗(1)) of y and consider the
corresponding extension of Galois representations

(114) 0→V ∗(1)→ Yy→ E→ 0.

Passing to duals, we obtain an extension

0→ E(1)→ Y ∗y (1)→V → 0.

From S), it follows that H0
S (V ) = 0, and the associated long exact sequence of global

Galois cohomology reads

0→ H1
S (E(1))→ H1

S (Y
∗
y (1))→ H1

S (V )
δ 1

V−→ H2
S (E(1))→ . . . .

Also, for each place q ∈ S we have the long exact sequence of local Galois cohomol-
ogy

H0(Fq,V )→ H1(Fq,E(1))→ H1(Fq,Y ∗y (1))→

→ H1(Fq,V )
δ 1

V,q−−→ H2(Fq,E(1))→ . . . .

The following results, which can be seen as an analog of Lemma 5.1.3, are well
known but we recall them for the reader’s convenience.

Lemma 6.1.2. — Let V be a p-adic representation of GF,S that is potentially
semistable at all q ∈ Sp and satisfies condition S). Assume that [y] ∈ H1

f (V
∗(1)).

Then
i) δ 1

V ([x]) = 0 for all x ∈ H1
f (V );

ii) There exists an exact sequence

0→ H1
f (E(1))→ H1

f (Y
∗
y (1))→ H1

f (V )→ 0.

Proof. — i) For any x ∈C1(GF,S,V ), let xq = resq(x) ∈C1(GFq ,V ) denote the local-
ization of x at q. If [x] ∈ H1

f (V ), then for each q one has δ 1
V,q([xq]) =−[xq]∪ [yq] = 0

because H1
f (Fq,V ) and H1

f (Fq,V
∗(1)) are orthogonal to each other under the cup

product. Since the map H2
S (E(1))→

⊕
q∈S

H2(Fq,E(1)) is injective and the localization

commutes with cup products, this shows that δ 1
V ([x]) = 0.

ii) This is a particular case of [32, Proposition II, 2.2.3].
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6.1.3. — Let [x] ∈ H1
f (V ) and [y] ∈ H1

f (V
∗(1)). In Section 4.2, for each q ∈ Sp we

constructed the canonical splitting (83) which sits in the diagram

0 // H1
f (Fq,E(1)) //

=

��

H1
f (Dq,y) //

'gq,y
��

H1
f (Dq)

sy,qoo //

'gq
��

0

0 // H1
f (Fq,E(1)) // H1

f (Fq,Y
∗
y (1)) // H1

f (Fq,V ) // 0.

By Lemma 6.1.2 ii), we can lift [x] ∈ H1
f (V ) to an element [ x̂ ] ∈ H1

f (Y
∗
y (1)). Let

[x̂q] = resq ([ x̂ ]) ∈ H1
f (Fq,Y

∗
y (1)). If q ∈ Sp, we denote by [x̃+q ] the unique element of

H1
f (Dq) such that gq([x̃+q ]) = [xq].

Definition. — The p-adic height pairing associated to splitting submodules D =

(Dq)q∈Sp is defined to be the map

hspl
V,D : H1

f (V )×H1
f (V

∗(1))→ E

given by
hspl

V,D([x], [y]) = ∑
q∈Sp

`q
(
[ x̂q ]−gq,y ◦ sy,q([x̃+q ])

)
.

Remarks 6.1.4. — 1) For each q ∈ Σp, denote by sy,q : H1
f (Fq,V )

∼→ H1
f (Fq,Y

∗
y (1))

the isomorphism constructed in Lemma 5.1.3, i) and by gq : H1
f (Fq,V ) ↪→ H1(Fq,V )

and gq,y : H1
f (Fq,Y

∗
y (1)) ↪→ H1(Fq,Y ∗y (1)) the canonical embeddings. Let [x̃+q ] ∈

H1
f (Fq,V ) be the unique element such that gq([x+q ]) = [xq]. From the product formula

(107) it follows, that hspl
V,D can be defined by

hspl
V,D([x], [y]) = ∑

q∈S
`q
(
[ x̂q ]−gq,y ◦ sy,q([x̃+q ])

)
,

where [ x̂ ] ∈ H1
S (V ) is an arbitrary lift of [x].

2) The pairing hspl
V,D is a bilinear skew-symmetric map. This can be shown directly,

but follows from the interpretation of hspl
V,D in terms of Nekovář’s height pairing (see

Proposition 6.2.3 below).

6.2. Comparision with Nekovář’s height pairing

6.2.1. — We relate the pairing hspl
V,D to the p-adic height pairing constructed by

Nekovář in [54, Section 4]. First recall Nekovář’s construction. If [y] ∈ H1
f (V

∗(1)),
the extension (114) is crystalline at all q ∈ Sp, and therefore the sequence

0→ Dcris(V ∗q (1))→ Dcris(Yy,q)→ Dcris(E(0)q)→ 0
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is exact. Since Dcris(V ∗q (1))
ϕ=1 = 0, we have an isomorphism of vector spaces

Dcris(E(0)q)
∼→ Dcris(Yy,q)

ϕ=1,

which can be extended by linearity to a map DdR(E(0)q)→ DdR(Yy,q). Passing to
duals, we obtain a Fq-linear map DdR(Y ∗y,q(1))→DdR(E(1)q) which defines a splitting
sdR,q of the exact sequence

0 // DdR(E(1)q) // DdR(Y ∗y,q(1)) // DdR(Vq)
sdR,qoo // 0.

Fix a splitting wq : DdR(Vq)/Fil0DdR(Vq)→ DdR(Vq) of the canonical projection

(115) prdR,Vq
: DdR(Vq)→ DdR(Vq)/Fil0DdR(Vq).

We have a commutative diagram

0 // H1(Fq,E(1)) // H1
f (Fq,Y

∗
y (1)) // H1

f (Fq,V ) //
sw

y,qoo
0

DdR(Y ∗y,q(1))

Fil0DdR(Y ∗y,q(1))

expY∗y,q(1) '

OO

// DdR(Vq)

Fil0DdR(Vq)

expVq '

OO

wq

��
DdR(Y ∗y,q(1))

prdR,V∗y,q(1)

OO

DdR(Vq).
sdR,qoo

Then the map sw
y,q : H1

f (Fq,V )→ H1
f (Fq,Y

∗
y (1)) defined by

sw
y,q = expY ∗y,q(1) ◦prdR,Y ∗y,q(1) ◦ sdR,q ◦wq ◦ exp−1

Vq

gives a splitting of the top row of the diagram, which depends only on the choice of
wq and [y].

Definition (Nekovář). — The p-adic height pairing associated to a family w =

(wq)q∈Sp of splitting wq of the projections (115) is defined to be the map

hHodge
V,w : H1

f (V )×H1
f (V

∗(1))→ E

given by
hHodge

V,w ([x], [y]) = ∑
q|p

`q
(
[ x̂q ]− sw

y,q([xq])
)
,

where [ x̂ ] ∈ H1
f (Y
∗
y (1)) is a lift of [x] ∈ H1

f (V ) and [ x̂q ] denotes its localization at q.

In [54], it is proved that hHodge
V,w is a E-bilinear map.
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6.2.2. — Now, let Dq be a splitting submodule of Dst/L(Vq). We have

(116) DdR/L(Vq) = Dq,L⊕Fil0DdR/L(Vq), Dq,L = Dq⊗L0 L.

Set Dq,Fq = (Dq,L)
GFq . Since the decomposition (116) is compatible with the Galois

action, taking Galois invariants we have

DdR(Vq) = Dq,Fq⊕Fil0DdR(Vq).

This decomposition defines a splitting of the projection (115) which we will denote
by wD,q.

Proposition 6.2.3. — Let V be a p-adic representation of GF,S such that for each
q ∈ Sp the restriction of V on the decomposition group at q is potentially semistable
and satisfies condition S). Let (Dq)q∈Sp be a family of splitting submodules and let
wD = (wD,q)q∈Sp be the associated system of splittings. Then

hspl
V,D = hHodge

V,wD
.

We need the following auxiliary result. As before, we denote by Dq the (ϕ,Γq)-
module associated to Dq.

Lemma 6.2.4. — The following diagram

DdR(Dq)
sDq,y //

��

DdR(Dq,y)

��
DdR(Vq)

sdR,q // DdR(Y ∗y,q(1)),

where the vertical maps are induced by the canonical inclusions of corresponding
(ϕ,Γq)-modules and sDq,y is the map induced by the splitting (82), is commutative.

Proof of the lemma. — The proof is an easy exercice and is omitted here.

Proof of Proposition 6.2.3. — From the functoriality of the exponential map and
Proposition 4.1.4 it follows that the diagram

(117) DdR(Dq)
expDq //

=

��

H1
f (Dq)

=

��
DdR(Vq)/Fil0DdR(Vq)

expVq // H1
f (Fq,V )
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is commutative. The same holds if we replace Vq and Dq by Y ∗y,q(1) and Dq,y respec-
tively. Consider the diagram

(118) DdR(Dq)
sDq,y //

��

DdR(Dq,y)

DdR(Vq)

Fil0DdR(Vq)

wD,q

��

DdR(Y ∗y,q(1))

Fil0DdR(Y ∗y,q(1))
,

=

OO

DdR(Vq)
sdR,q // DdR(Y ∗y,q(1)).

prdR,Y∗y,q(1)

OO

From the definition of wD,q, it follows that the composition of vertical maps in the
left (resp. right) colomn is induced by the inclusion Dq ⊂ D†

rig(Vq) (resp. by Dq,y ⊂
D†

rig(Y
∗
y,q(1))) and therefore the diagram (118) is commutative by Lemma 6.2.4. From

the commutativity of (117) and (118) and the definition of sy,q and sw
y,q, it follows now

that sy,q = sw
y,q for all q ∈ Sp, and the proposition is proved.

6.3. Comparision with hnorm
V,D

6.3.1. — In this section, we compare the pairing hspl
V,D with the pairing hnorm

V,D con-
structed in Chapter 5. Let V be a p-adic representation of GF,S that is potentially
semistable at all q ∈ Sp. Fix a system (Dq)q∈Sp of splitting submodules and denote
by (Dq)q∈Sp the system of (ϕ,Γq)-submodules of D†

rig(Vq) associated to (Dq)q∈Sp by
Theorem 2.2.3. We will assume, that (V,D) satisfies condition S) of Section 6.1 and
condition N2) of Section 5.1. Note that S) implies N1). We also remark, that from
Proposition 2.9.2 i) and the fact that the Hodge–Tate weights of Dst/L(Vq)/Dq and
Dst/L(V ∗q (1))/D⊥q are positive, it follows that, under our assumptions, N2) is equiva-
lent to the following condition

N2*) For each q ∈ Sp,

(Dst/L(Vq)/Dq)
ϕ=1,N=0,GL/Fq = (Dst/L(V

∗
q (1))/D⊥q )

ϕ=1,N=0,GL/Fq = 0,

where L is a finite extension of Fq such that Vq (respectively V ∗q (1)) is semistable
over L.

The following statement is known ([62, 10]), but we prove it here for completeness.

Proposition 6.3.2. — Assume that V is a p-adic representation satisfying conditions
S) and N2*). Then
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i) H1
f (Fq,V ) = H1

f (Dq) = H1(Dq) and H1
f (Fq,V

∗(1)) = H1
f (D

⊥
q ) = H1(D⊥q ) for all

q ∈ Sp.

ii) H1
f (V )' H1(V,D) and H1

f (V
∗(1))' H1(V ∗(1),D⊥).

Proof. — i) The first statement follows from N2) and Proposition 4.1.4 iii).
ii) Note that by i)

R1
Γ(Fq,V,D) =

{
H1

f (Fq,V ), if q ∈ Σp,

H1(Dq), if q ∈ Sp.

By definition, the group H1(V,D) is the kernel of the morphism

H1
S (V )

⊕⊕
q∈Σp

H1
f (Fq,V )

⊕⊕
q∈Sp

H1(Dq)

→⊕
q∈S

H1(Fq,V )

given by
([x], [yq]q∈S) 7→ ([xq]−gq([yq]))q∈S, [xq] = resq([x]),

where gq denotes the canonical inclusion H1
f (Fq,V )→ H1(Fq,V ) if q ∈ Σp and the

map H1(Dq)→H1(Fq,V ) if q ∈ Sp. In the both cases, gq is injective and, in addition,
for each q ∈ Sp we have H1(Dq) = H1

f (Fq,V ) by i). This implies that H1(V,D) =

H1
f (V ). The same argument shows that H1(V ∗(1),D⊥) = H1

f (V
∗(1)).

Theorem 6.3.3. — Let V be a p-adic representation such that Vq is potentially
semistable for each q ∈ Sp, and let (Dq)q∈Sp be a family of splitting submodules.
Assume that (V,D) satisfies conditions S) and N2*). Then

hnorm
V,D = hspl

V,D.

where D = (Dq)q∈Sp denotes the family of (ϕ,Γq)-modules associated to D =

(Dq)q∈Sp .

Proof. — First note that in our case the element [x̃+q ], defined in Section 6.1.3, coin-
cides with [x+q ]. Comparing the definitions of hnorm

V,D and hspl
V,D we see that it is enough

to show that `q
(
prq,y([x

Iw
q,y])− sq,y([x+q ])

)
= 0 for all q ∈ Sp. The splitting sy,q of the

exact sequence

0→ H1
f (Fq,E(1))→ H1

f (Dq,y)→ H1(Dq)→ 0

(see (83)) gives an isomorphism

H1
Iw(Dq,y)Γ0

q
' H1

Iw(Dq)Γ0
q
⊕H1

Iw(RFq,E(χ))Γ0
q
' H1(Dq)⊕H1

Iw(Fq,E(1))Γ0
q
.

Since πD,q

(
prq,y([x

Iw
q,y])− sq,y([x+q ])

)
= 0, from this decomposition it follows that

prq,y([wq])− sq,y([x+q ]) ∈ H1
Iw(Fq,E(1))Γ0

q
= ker(`q),
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and the theorem is proved.

Corollary 6.3.4. — If (V,D) satisfies conditions S) and N2*), then

hsel
V,D,1 = hnorm

V,D =−hspl
V,D

coincide.

Proof. — This follows from Theorems 5.2.2 and 6.3.3.



CHAPTER 7

p-ADIC HEIGHT PAIRINGS IV: EXTENDED SELMER
GROUPS

7.1. Extended Selmer groups

7.1.1. — Let F = Q. Let V be a p-adic representation of GQ,S that is poten-
tially semistable at p. We fix a splitting submodule Dp of Vp which we will
denote simply by D. In Section 4.3, we associated to D a canonical filtration(

FiD†
rig(Vp)

)
−26i62

. Recall that F0D†
rig(Vp) = D, where D is the (ϕ,ΓQp)-module as-

sociated to D. We maintain the notation of Section 4.3 and set M0 = D/F−1D†
rig(Vp),

M1 = F1D†
rig(Vp)/D and W = F1D†

rig(Vp)/F−1D†
rig(Vp). The exact sequence

0→M0→W→M1→ 0

induces the coboundary map δ0 : H0(M1)→H1(M0). Note that if V satisfies condi-
tions N1-2) of Section 5.1 we have M0 = M1 = 0. We first describe the structure of
the Selmer group H1(V,D). Recall the following conditions introduced in Section 4.3

F1a) H0(D†
rig(Vp)/F1D†

rig(Vp)) = H0(D†
rig(V

∗
p (1)))/F1D†

rig(V
∗
p (1))) = 0.

F2a) The composed map

δ0,c : H0(M1)
δ0−→ H1(M0)

prc−→ H1
c (M0),

where the second arrow denotes the canonical projection on H1
c (M0), is an

isomorphism.

Let ρD, f andρD,c denote the composed maps

(119)
ρD, f : H1(D)→ H1(M0)

pr f−→ H1
f (M0),

ρD,c : H1(D)→ H1(M0)
prc−→ H1

c (M0).

Note that H0(M1) = H0(D′), where D′ = D†
rig(Vp)/D.
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Proposition 7.1.2. — Let V be a p-adic representation of GQ,S which is potentially
semistable at p. Assume that the restriction of V on the decomposition group at p
satisfies conditions F1a) and F2a). Then

i) There exists an exact sequence

(120) 0→ H0(D′) ∂0−→ H1(V,D)→ H1
f (V )→ 0.

ii) The map

splcV,D : H1(V,D)→ H0(D′),[
(x,(x+q ),(λq))

]
7→ δ

−1
0,c ◦ρD,c

(
[x+p ]

)
defines a canonical splitting of (120).

Proof. — The first statement follows directly from the definition of Selmer com-
plexes and the exact sequence (99). See also [10, Proposition 11]. The second state-
ment follows immediately from the definition of splV,D.

Definition. — If the data (V,D) satisfy conditions F1a) and F2a), we call H1(V,D)

the extended Selmer group associated to (V,D).

From Proposition 7.1.2 it follows that we have a decomposition

H1(V,D)' H1
f (V )⊕H0(D′),

and we denote by

sc
V,D : H1

f (V )→ H1(V,D)

the injection induced by this splitting.
If, in addition, (V,D) satisfies F2b), we have another natural splitting of (120),

namely

spl f
V,D : H1(V,D)→ H0(D′),[

(x,(x+q ),(λq))
]
7→ δ

−1
0, f ◦ρD, f

(
[x+p ]

)
,

and we denote by

s f
V,D : H1

f (V )→ H1(V,D)

the resulting injection.

7.2. Comparision with hspl
V,D

7.2.1. — Assume that, in addition to F1a) and F2a), (V,D) satisfies condition
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F2b) The map

δ0, f : H0(M1)
δ0−→ H1(M0)

pr f−→ H1
f (M0),

where the second arrow denotes the canonical projection on H1
f (M0), is an

isomorphism (see Section 4.3).

Define a bilinear map

〈 , 〉D, f : H1
f (M0)×H1

f (M
∗
1(χp))→ E

as the composition

H1
f (M0)×H1

f (M
∗
1(χp))

(δ−1
0, f ,id)// H0(M1)×H1

f (M
∗
1(χp))

∪ // H1(RQp,E(χp))

`Qp

��
E.

Lemma 7.2.2. — For all x ∈ H1
f (M0) and y ∈ H1

f (M
∗
1(χp)) we have

〈x,y〉D, f =−[i
−1
M∗1(χp), f

(y),δ−1
0, f (x)]M1 ,

where [ , ]M0 : Dcris(M∗1(χp))×Dcris(M1)→ E denotes the canonical duality and
iM∗1(χp), f : Dcris(M∗1(χp))→ H1

f (M
∗
1(χp)) is the isomorphism constructed in Propo-

sition 2.9.4.

Proof. — Recall that for each z ∈ H1(RQp,E(χp)) we have invp(wp ∪ z) = `p(z),
where wp = (0, log χp(γQp)). Therefore, using Proposition 2.9.4, we obtain

〈x,y〉D, f = `Qp(δ
−1
0, f (x)∪ y) = invp(wp∪δ

−1
0, f (x)∪ y) =

=−invp(iM1,c(δ
−1
0, f (x))∪ y)) =

=−invp(iM1,c(δ
−1
0, f (x))∪ iM∗1(χp), f ◦ i−1

M∗1(χp), f
(y)) =

=−[i−1
M∗1(χp), f

(y),δ−1
0, f (x)]M1 .

7.2.3. — Assume that (V,D) satisfies conditions F1a-b) and F2a-b). Then condition
S) holds by Proposition 4.3.13 iv) and the height pairing hspl

V,D is defined.

Theorem 7.2.4. — Let V be a p-adic representation of GQ,S that is potentially
semistable at p and satisfies conditions F1a-b) and F2a-b). Then for all [xsel] =

[(x,(x+q ),(λq))] ∈ H1(V,D) and [ysel] = [(y,(y+q ),(µq))] ∈ H1(V ∗(1),D⊥) we have

hsel
V,D([x

sel], [ysel]) =−hspl
V,D([x], [y])+

〈
ρD, f ([x+p ]),ρD⊥, f ([y

+
p ])
〉

D, f
,

where the map ρD, f and ρD⊥, f are defined in (119).
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Proof. — The proof is the same as that of [56, Theorem 11.4.6] with some modifi-
cations. Recall that we have a split exact sequence

0 // H0(D′) // H1(V,D) // H1
f (V ) //

sV,Doo
0.

Let [xsel] = [(x,(x+q ),(λq))] ∈ H1(V,D). Then sV,D([xsel]) =
[
(x,(x̃+q ),(λ̃q))

]
, where

(121) x̃+p = x+p −∂0 ◦
(

δ
−1
0,c ◦ρD,c

(
[x+p ]

))
.

Since H0(M0) = 0, H2(F−1D†
rig(Vp)) = 0 and H1

f (F−1D†
rig(Vp)) = H1(F−1D†

rig(Vp)),

we have a commutative diagram with exact rows

0 // H1(F−1D†
rig(Vp)) //

=

��

H1
f (D) //
� _

��

H1
f (M0) //
� _

��

0

0 // H1(F−1D†
rig(Vp)) // H1(D) // H1(M0) // 0.

The image of [x̃+p ] ∈ H1(D) in H1(M0) is equal to

ρD, f ([x+p ])+ρD,c([x+p ])−∂0 ◦
(

δ
−1
0,c ◦ρD,c

(
[x+p ]

))
=

= ρD, f ([x+p ])−δ0, f

(
δ
−1
0,c ◦ρD,c

(
[x+p ]

))
∈ H1

f (M0),

and therefore [x̃+p ] ∈ H1
f (D). Consider the following diagram with exact rows and

columns

(122) 0

��

0

��
H0(D′) = //

∂0
��

H0(D′)

∂0
��

0 // H1(Qp,E(1))

=

��

// H1(Dy) πD
//

gp,y

��

H1(D) //
sy,poo

gp

��

0

0 // H1(Qp,E(1)) // H1(Qp,Y ∗y (1))
πp // H1(Qp,V ),

where sy,p is the canonical splitting constructed in Section 4.2. Recall that by Propo-
sition 4.3.13 iii), Im(gp) = H1

f (Qp,V ). Let [ x̂ ] ∈ H1
f (Y
∗
y (1)) be any lift of [x] and let

[x̂p] ∈ H1(Qp,Y ∗y (1)) denote its localization at p. Then by definition, we have

hspl
V,D([x], [y]) = `p

(
[x̂p]−gp,y ◦ sy,p([x̃+p ])

)
.
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The diagram (122) shows that there exists a unique element [x̂+p ] ∈ H1(Dy) such that
gp,y

(
[x̂+p ]

)
= [x̂p] and πD

(
[x̂+p ]

)
= [x+p ]. Therefore, there exists a lift [x̂sel] of [xsel] of

the form
[
x̂sel
]
= [(x̂, x̂+q , λ̂q)]. Recall that

βY ∗y (1),Dy

(
[x̂sel]

)
= (−z∪ x̂,(−wq∪ x̂+q ),(zq∪ λ̂q)) ∈ S2(Y ∗y (1),Dy),

where z, wq and zq are defined in (112). Set

(123) [tp] =−δ
−1
0, f ◦ρD, f ([x+p ]) ∈ H0(M1) = H0(D′).

Then

ρD, f ([x̃+p ])+ρD, f (∂0([tp])) = ρD, f ([x̃+p ])+δ0, f ([tp]) = 0.

Thus, the image of [x̃+p ] + ∂0([tp]) under the projection H1(D)→ H1(M0) lies in
H1

c (M0). We have a commutative diagram

0 // H1(F−1D†
rig(Vp)) //

∪wp

��

H1(D) //

∪wp

��

H1(M0) //

∪wp

��

0

0 // H2(F−1D†
rig(Vp)) // H2(D) // H2(M0) // 0

{0}

By Lemma 2.9.5, H1
c (M0) = ker

(
∪wp : H1(M0)→ H2(M0)

)
, and we have

[wp]∪
(
[x̃+p ]+∂0([tp])

)
= 0 in H2(D).

Set [ξp] = sy,p
(
[x̃+p ]

)
+∂0([tp]) ∈ H1(Dy). Then

βDy ([ξp]) =−[wp]∪ [ξp] = 0.

Now we can use Lemma 5.2.3 and write

βY ∗y (1),Dy

(
[x̂sel]

)
= [(â,(b̂q),(ĉq))],

where

b̂p = wp∪ (ξp− x̂+p ) = wp∪
(
sy,p
(
x̃+p
)
− x̂+p

)
+wp∪∂0(tp).

Let αy ∈C0(GQ,S,Yy) be an element that maps to 1 ∈C0(GQ,S,E) = E and satisfies
dαy = y. The first formula of Lemma 5.2.4 reads

(124) hsel
V,D([x

sel], [ysel]) = invQp

(
[gp,y(b̂p)∪ f⊥p (αy)+gp(bp)∪µp]

)
.
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Set up = sy,p(x̃+p )− x̂+p . Then up ∈C1
ϕ,γp

(E(1)) and up∪αy = up. Thus

(125) [gp,y(b̂p)∪ f⊥p (αy)+gp(bp)∪µp] =

= [wp∪up]+ [gp,y(wp∪∂0(tp))∪ f⊥p (αy)+gp(bp)∪µp].

By (113), we have

invQp [wp∪up] = `Qp [up] =−hspl
V,D([x], [y]),

and from (124–125) we get

(126) hsel
V,D([x

sel], [ysel]) =

=−hspl
V,D([x], [y])+ invQp

(
[gp,y(wp∪∂0(tp))∪ f⊥p (αy)+gp(bp)∪µp]

)
.

We compute the second term on the right hand side of this formula. Since
gp,y(∂0([tp])) = 0, there exists t̃p ∈ D†

rig(Y
∗
y (1)p) such that t̃p 7→ tp under the

projection D†
rig(Y

∗
y (1)p)→ D′y and we can assume that

∂0(tp) = d0(̃tp) = ((ϕ−1)(̃tp),(γp−1)(̃tp)).

Therefore

gp,y(wp∪∂0(tp)) = zp∪gp,y(d0(̃tp)) ∈ K2
p(V )⊂ K2

p(Y
∗
y (1)),

gp(bp)∪µp = zp∪gp(dt̃p)∪µp ∈ K2
p(V )⊂ K2

p(Y
∗
y (1)).

Thus,

(127)

invQp

(
[gp,y(wp∪∂0(tp))∪ f⊥p (αy)+gp(bp)∪µp]

)
=

= invQp

(
zp∪gp,y(dt̃p)∪ f⊥p (αy)+ zp∪gp(πp(dt̃p))∪µp]

)
=

=−invQp

(
[zp∪gp,y(̃tp)∪d f⊥p (αy)+ zp∪gp(̃tp)∪dµp]

)
=

=−invQp

(
[zp∪ t̃p∪ ( f⊥p (y)+dµp)]

)
=

=−invp
(
[zp∪ t̃p∪gp(y+p )]

)
=

=−invp
(
[wp∪ tp∪ y+p ]

)
=

=−`Qp

(
[tp∪ y+p ]

)
.

Now we remark that `Qp

(
[tp∪ y+p ]

)
= `Qp

(
[tp∪ρD⊥, f (y

+
p ]
)

and, taking into account
(123), we have

(128) `Qp

(
[tp∪ y+p ]

)
=−`Qp

(
δ
−1
0, f ◦ρD, f ([x+p ])∪ρD, f ([y+p ])

)
=

=−
〈
ρD, f ([x+p ]),ρD⊥, f ([y

+
p ])
〉

D, f
.
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The theorem follows from (126–128).

Corollary 7.2.5. — Under conditions of Theorem 7.2.4, for all [x] ∈ H1
f (V ) and

[y] ∈ H1
f (V

∗(1)) we have

hspl
V,D([x], [y]) =−hsel

V,D(s
f
V,D([x]),s

f
V ∗(1),D⊥([y])).

Proof. — Set [(x,(x+q ),λq)] = s f
V,D([x]). Then ρD, f ([x+p ]) = 0 and the formula follows

from Theorem 7.2.4.

7.3. The pairing hnorm
V,D for extended Selmer groups

7.3.1. — Recall condition F3) introduced in Section 4.3

F3) For all i ∈ Z

Dpst(D†
rig(Vp)/F1D†

rig(Vp))
ϕ=pi

= Dpst(F−1D†
rig(Vp))

ϕ=pi
= 0.

Clearly, F3) implies F1a-b). In this section, we generalize the construction of the
height pairing hnorm

V,D to the case when V satisfies conditions F3), F2a) and F2b).
Let [y] ∈ H1

f (V
∗(1)) and let Yy denote the associated extention (114). As before,

we denote by Dy the inverse image of D in D†
rig(Y

∗
y (1)p). Since the representation Vp

satisfies condition S), the exact sequence (82) have a canonical splitting sD,y.

In the diagram (109), the maps gv and gv,y are no more injective and we replace it
by the diagram (122). Let [x] ∈ H1

f (V ) and let sV,D([x]) = [(x,(x̃+q ),(λ̃q))]. Then [x̃+p ]
is the unique element of H1

f (D) such that gp([x̃+p ]) = [xp]. Its explicit form is given
by (121), but we do not use it here. Let

[ x̂ ] ∈ ker

(
H1

S (Y
∗
y (1))→

H1(Qq,Y ∗y (1))

H1
f (Qq,Y ∗y (1))

)

be an arbitrary lift of [x]. (Note that by Lemma 6.1.2, we can even take [ x̂ ] ∈
H1

f (Y
∗
y (1)).) As easy diagram chase (already used in the proof of Theorem 7.2.4)

shows there exists a unique [x̂+p ] ∈ H1(Dy) such that gp,y([x̂+p ]) = resp([ x̂ ]) in
H1(Qp,Y ∗y (1)) and πD([x̂+p ]) = [x̃+p ].
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We have the following diagram which can be seen as an analog of the diagram
(108) in our situation

0

��

0

��
H (Γ0

Qp
)⊗ΛE,Qp

H1
Iw(Qp,E(1)) //

��

H1(Qp,E(1))

��

`Qp // E

H1
Iw(Dy)

π Iw
D
��

prD,y // H1(Dy)

πD
��

H0(D′)

=

��

? _
∂0oo

H1
Iw(D)

��

prD // H1(D)

��

H0(D′)? _
∂0oo

0 0.

From Proposition 4.3.15 it follows that there exist a unique [tp] ∈ H0(D′) (explicitly
given by (123) and

[
xIw

p,y
]
∈ H1

Iw(Dy) such that

[x̃+p ]+∂0([tp]) = prD ◦π
Iw
D
([

xIw
p,y
])
.

Set

(129) [up] = [x̂+p ]+∂0([tp])−prD,y
([

xIw
p,y
])
.

Then [up] ∈ H1(Qp,E(1)).

Definition. — Let V be a p-adic representation that is potentially semistable at p
and satisfies conditions F2a-b) and F3). We define the height pairing

hnorm
V,D : H1

f (V )×H1
f (V

∗(1))→ E

by

hnorm
V,D ([x], [y]) = `Qp([up]).

It is easy to see that hnorm
V,D ([x], [y]) does not depend on the choice of the lift

[
xIw

p,y
]
.

The following result generalizes [56, Theorem 11.4.6].

Theorem 7.3.2. — Let V be a p-adic representation of GQ,S that is potentially
semistable at p and satisfies conditions F2a-b) and F3). Then

i) hnorm
V,D = hspl

V,D;
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ii) For all [xsel] = [(x,(x+q ),(λq))] ∈ H1(V,D) and [ysel] = [(y,(y+q ),(µq))] ∈
H1(V ∗(1),D⊥) we have

hsel
V,D([x

sel], [ysel]) =−hnorm
V,D ([x], [y])+

〈
ρD, f ([x+p ]),ρD⊥, f ([y

+
p ])
〉

D, f
.

Proof. — i) Recall that in the definition of hnorm
V,D we can take [ x̂ ]∈H1

f (Y
∗
y (1)). Com-

paring the definitions of hnorm
V,D and hspl

V,D, we see that it is enough to prove that

[up]−
(
sy,p([x̂p]− [x̃+p ])

)
∈ ker(`Qp),

where [up] is defined by (129) and sy,p denotes the splitting (83). Since the restriction
of gp,y on H1(Qp,E(1)) is the identity map, we have

[up] = gp,y([up]) = [x̂p]−gp,y([xIw
p,y]),

and it is enough to check that

(130) gp,y([xIw
p,y])−gp,y ◦ sy,p([x̃+p ]) ∈ ker(`Qp).

First remark that the canonical splitting (82) induces splittings sIw
p,y and sp,y in the

diagram

0 // H1
Iw(RQp,E(χ))

//

��

H1
Iw(Dy) //

prD,y

��

H1
Iw(D) //

sIw
p,yoo

prD
��

0

0 // H1(Qp,E(1)) // H1(Dy) // H1(D) //
sp,yoo

0.

Write [xIw
p,y] in the form

[xIw
p,y] = sIw

p,y(a
Iw)+bIw, aIw ∈ H1

Iw(D), bIw ∈ H1
Iw(RQp,E(χp)).

By the definition of [xIw
p,y], we have

prD,y([x
Iw
p,y]) = sy,p(a)+b,

where b ∈ ker(`Qp) = H1(Qp,E(1))Γ0
Qp

and

a = ∂ ([tp])+ sp,y([x̃+p ]) ∈ H1(D).

Since gp,y(sy,p(∂0([tp])) = 0, we have

gp,y(prD,y([x
Iw
p,y])) = b+gp,y(sy,p(a)) = b+gp,y(sy,p([x̃+p ])),

and (130) is checked.
ii) The second statement follows from i) and Theorem 7.2.4.
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