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P-ADIC HEIGHTS AND p-ADIC HODGE THEORY

Denis Benois

Abstract. — Using the theory of (¢,I")-modules and the formalism of Selmer com-
plexes we construct the p-adic height pairing for p-adic representations with coeffi-
cients in an affinoid algebra over Q,,. For p-adic representations that are potentially
semistable at p, we relate our contruction to universal norms and compare it to the
p-adic height pairings of Nekovéf and Perrin-Riou.

Résumé (Hauteurs p-adiques et théorie de Hodge p-adique)

En utilisant la théorie des (¢,I")-modules et le formalisme des complexes de Sel-
mer nous construisons un accouplement de hauteur p-adique pour les représenta-
tions p-adiques a coefficients dans une algebre affinoide. Pour les représentations
p-adiques potentiellement semistables en p nous ferons le lien de notre construction
avec les normes universelles et les hauteurs p-adiques construites par Nekovar et
Perrin-Riou.
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INTRODUCTION

0.1. Selmer complexes

0.1.1. — Let F be a number field. We denote by Sy and S. the set of non-
archimedean and archimedean places of F' respectively. Fix a prime number p and
denote by S, the set of places q above p.

Let S be a finite set of non-archimedean places of F' containing S,. To simplify
notation, set £, = S\ S,. We denote by Grs the Galois group of the maximal alge-
braic extension Fg of F' unramified outside SUS... For each q € § we denote by Fj
the completion of F with respect to g and by G, the absolute Galois group of Fy. We
will write I for the inertia subgroup of Gr, and Fr for the relative Frobenius over Fj.
Fix an extension of ¢ to Fs and identify Gp, with the corresponding decomposition
group at q.

We denote by x : Grs — Zj, the p-adic cyclotomic character and, for each q € S,
write X4 for the restriction of ¥ on Gp,. If M is a topological Z,-module equipped
with a continuous linear action of Grs (resp. Gr,) we denote by M(y) (resp. M(x))
or alternatively by M (1) its Tate twist.

If G is a topological group and M is a topological G-module, we denote by
C*(G, M) the complex of continuous cochains of G with coefficients in M. If X = M*®
is a complex of topological G-modules, we denote by C*(G,X) the total complex
associated to the double complex C"(G,M™).

0.1.2. — Let A be a complete local noetherian ring with a finite residue field of
characteristic p. An admissible A[Grs]-module of finite type is a A|Gps|-module T
of finite type over A and such that the map Grs — Auty (T') is continuous m,

1. In other words, T is a "big" Galois representation with coefficients in A in the sense of [56].
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Let X = T* be a bounded complex of admissible A[GF s|-modules of finite type.
A local condition at g € S is a morphism of complexes

gq : U7 (X) — C*(GF,,X).

To each collection U®(X) = (U3 (X), gq)qes of local conditions one can associate the

following diagram

(1) C*(Grs,X) — @C*(GF,,X)

qes
T(é’q)

DU (X),

qes

where the upper row is the restriction map. The Selmer complex associated to the
local conditions U*®(X) is defined as the mapping cone

S*(X,U*(X)) = cone <C'(GF75,X) ® <@UJ(X)> — @C°(GanX)> [—1].

qes qes

This notion was introduced by Nekovér in [56], where the machinery of Selmer com-
plexes was developed in full generality.

0.1.3. — The most important example of local conditions is provided by Green-
berg’s local conditions [S6, Section 7.8]. If q € §, we will denote by X the restriction
of X on Gp,. For each q € S, we fix a complex M, of admissible A[GF,]-modules of
finite type together with a morphism M; — X, and define

U (X) = C*(Gr,My) €S,

For q € X, we consider the unramified local conditions

Ug (X) = Cr(Xq)

q - Yur
(see [56, Section 7.6] for the precise definition). In particular, if X = T'[0] is concen-
trated in degree 0, then

Fro—1
Ct(X) = <T’q AL T1q> :

where the terms are placed in degrees O and 1. To simplify notation, we will write
S*(X,M) for the Selmer complex associated to these conditions and RT'(X,M) for
the corresponding object of the derived category of A-modules of finite type.
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0.1.4. — Let wy denote the dualizing complex for A. The Grothendieck dualization
functor
X —D(X) :=RHomy (X, wy)

is an anti-involution on the bounded derived category of admissible A[G s|-modules
of finite type [56, Section 4.3.2]. Consider the complex D (X)(1) equipped with
Greenberg local conditions N = (N )qes, such that M and N are orthogonal to each
other under the canonical duality X x ©(X)(1) — @a(1). In this case, the general
construction of cup products for cones gives a pairing

U : RT(X, M) @5 RO(D(X)(1),N) = wa[-3]
(see [56, Section 6.3]). Nekovar constructed the p-adic height pairing
B RO(X, M) Q5 RT(D(X)(1),N) — w4[—2]
as the composition of U with the Bockstein map (%) By 3, : R[(X, M) — RT(X, M)[1]:

e (x,y) = Bxm(x) Uy,
Passing to cohomology groups H'(X,M) := R'T’(X, M), we obtain a pairing
) W H (X, M) @ H (D(X)(1),N) = H' (w4).

0.1.5. — The relationship of these constructions to traditional treatements is the fol-
lowing. Let A = Of be the ring of integers of a local field £/Q, and let T be a
Galois stable Og-lattice of a p-adic Galois representation V with coefficients in E.
We consider T as a complex concentrated in degree 0. Then wy = Og[0] and D(T)
coincides with the classical dual 7* = Homyg, (T, Of). Each choice of orthogonal
local conditions provides

B HY(T,M) @4 H (T*(1),N) — 0.

Assume, in addition, that V is semistable in the sense of p-adic Hodge theory at all
q € S,. We say that V satisfies the Panchishkin condition at p if, for each q € S, there
exists a subrepresentation Vq+ C Vj such that all Hodge-Tate weights (3) of Va/ Vq+ are
> 0. Set T," =TNV,", T™ = (T, )qes,- The cohomology group HY(T,T*) is very
close to the Selmer group defined by Greenberg [33, 34] and therefore to the Bloch—
Kato Selmer group [28]. It can be shown [56, Theorem 11.3.9] that, under some mild
conditions, the pairing hie'l coincides with the p-adic height pairing constructed by
Schneider [66], Perrin-Riou [59] and Nekovéf [54] using universal norms.

2. See [56, Section 11.1] or Section 3.2 below for the definition of the Bockstein map.
3. We call Hodge-Tate weights the jumps of the Hodge—Tate filtration on the associated de Rham
module. In particular, the Hodge—Tate weight of Q,(1) is —1.
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0.1.6. — More generally, assume that A is a Gorenstein ring and 7 is an admissible
module of finite type which is projective over A. Then @y is quasi-isomorphic to A
and again ©(T) = T* where T* = Homy (7,A). Then (2) takes the form

(3) B HY(T,M)®4 HY(T*(1),N) — A.

Note that Nekovéai’s construction has many advantages over the classical definitions.
In particular, it allows to study the variation of the p-adic heights in ordinary families
of p-adic representations (see [56, Section 0.16 and Chapter 11], for further discus-
sion).

0.2. Selmer complexes and (¢,I")-modules

0.2.1. — In this paper we study Selmer complexes associated to p-adic representa-
tions with coefficients in an affinoid algebra and local conditions coming from the
theory of (¢,I')-modules. Namely, let A be a Q,-affinoid algebra. We will work in
the category J‘th[“’b] (A) of complexes of A-modules whose cohomologies are finitely
generated over A and concentrated in degrees [a,b] and in the corresponding de-
rived category .@f[ta o (A). Let .@g‘;ﬁ] (A) denote the category of [a,b]-bounded perfect

complexes over A, i.e. the full subcategory of @f[f 4] (A) consisting of objects quasi-
isomorphic to complexes of finitely generated projective A-modules concentrated in
degrees [a, D).

A p-adic representation of G g with coefficients in A is a finitely generated projec-
tive A-module V equipped with a continuous A-linear action of Grs. In [62], Pottharst
studied Selmer complexes associated to the diagrams of the form (1) in this context.
We will consider a slightly more general situation because, for the local conditions
Ug (V) that we have in mind, the maps g, : U3 (V) — C*(GF,,V) are not defined on
the level of complexes but only in the derived category @f[to 2 (A).

For each q € S, we denote by I'; the Galois group of the cyclotomic p-extension of
F,. As before, we denote by Vj the restriction of V on the decomposition group at q.
The theory of (¢,I")-modules associates to V; a finitely generated projective module
D;rig 4(V) over the Robba ring %, a equipped with a semilinear Frobenius map ¢
and a continuous action of I'y which commute to each other [29, 18, 22, 45]. In [46],
Kedlaya, Pottharst and Xiao extended the results of Liu [49] about the cohomology
of (¢,I')-modules to the relative case. Their results play a key role in this paper.

Namely, to each (¢, Fq)-module D over %’Fq A one can associate the Fontaine-Herr
complex Cg . (D) of D. The cohomology H*(D) of D is defined as the cohomology

of Cj,, (D). If D =D (V) =~ H*(Fy,V),

tiga(V), there exist isomorphisms H*(D'

rig,A
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but the complexes Cj, ,, (DZig(v)) and C*(GF,, V) are not quasi-isomorphic. A simple
argument allows us to construct a complex K*(Vj) together with quasi-isomorphisms
& : C*(Gr,,V) — K*(Vg) and 0 : Cp, (D], 4 (V) = K*(Vy) . For each q €
S,, we choose a (¢,I';)-submodule D, of D;& 4(Vy) that is a %ZF, s-module direct

summand of D’ (Vq) and set D = (Dy)qes, - Set

rig,A

k)= | PcGny) | B[ Brw

qeL, qes,

and

cs. (D), ifqes,,
Us( ,D)—{ ‘f’y“( o HaESy
Cur(VCI)> lfq € ZP’

For each q € §,, we have morphisms

fa: C*(Grs,V) =% C*(Gr,,V) S, K*(Vy),

[ ) { ] o7 L]
8q - Uq (VvD) - quq (D;rig,A(VCI)) — K (Vq)-

If g € X,, we define the maps f; : C*(Grs,V) — C*(Gp,,V) and gq : C3.(Vy) —
C*(GF,,V) exactly as in the case of Greenberg local conditions. Consider the diagram

(fa)qes

C.(GF.,va) K.(V)

S5}
qugq

@D U; (VD).
qes

We denote by S°(V,D) the Selmer complex associated to this diagram and by
RI'(V,D) the corresponding object in the derived category of A-modules. Mimicking
the arguments of [62, Section 1E] we see that RI'(V,D) belongs to @t[to 3] (A). If, in
addition, local conditions at all g € X, can be represented by perfect complexes, then
RI'(V,D) belongs to @ggﬁj (A) (see Section 3.1 for detail).
The functor
X — X" :=RHomy (X,A)

is an anti-involution on the derived category .@perf(A) of perfect complexes which can
be viewed as a simple analog of the Grothendick duality ® in our context. For any

4. This complex was first introduced in [9].
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p-adic representation V we have V* = Homy (V,A). We equip V*(1) with orthogonal
local conditions D+ setting

Dql = Homg, , (Djig,A(VQ)/DqV%FmA (X)) q€Sp.
The general machinery gives us a cup product pairing
Uyp : RO(V,D) @Y RO(V*(1),D*) — A[-3].
If local conditions at all g € X, can be represented by perfect complexes, this pairing
gives a duality in @ggff] (A):
RI(V*(1),D}) ~ RHomy (RT(V,D),A)[—3]
(see Theorem 3.1.5 and Section 3.1.6).

0.3. p-adic height pairings

0.3.1. — The previous theory allows us to construct the p-adic height pairing exactly
in the same way as in the case of Greenberg local conditions. Let V be a p-adic
representation with coefficients in A and V*(1) the Tate dual of V.

Definition. — The p-adic height pairing associated to the data (V,D) is defined as
the morphism

K« RO(V,D) ®% RT(V*(1),D4) v,

— RO(V,D)[1] @% RT(V*(1),D) =2 A[-2],
where Sy denotes the Bockstein map.

The height pairing h;,e%) » induces a pairing on cohomology groups

hyp. : H'(V,D) x H'(V*(1),D") — A.
Applying the machinery of Selmer complexes, we obtain the following result (see
Theorem 3.2.4 below).
Theorem I. — We have a commutative diagram

sel
hV,D

RI(V,D) @% RI(V*(1),Dt) ———— A[-2]

S12 =
hsel

* i
RI(V*(1),DY) @LRO(V, D) — % . A[-2],

where s12(a®@b) = (—1)%@eeb)p @ q. In particular, the pairing hi‘}le’l is skew sym-
metric.
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0.3.2. — Assume that A = E, where E is a finite extension of Q. Fix a system

D = (Dg)qes, of submodules Dy C DL o(Vq) and consider tautological exact sequences

0Dy =D, (Vy) 2Dy =0, q€S),

where D’CI —D!

rig(Va)/Dyq. Passing to duals, we have exact sequences

0= (D})" (%) = D (Vy (1)) = Dy (xq) = 0,
where (D})*(%q) = DqL. Consider the following conditions on the data (V,D) (see

Section 5.1):

N1) H°(F,,V)=H (F;,v*(1)) =0 forall q € S,;

N2) H(D}) = H(D(xq)) = Oforall g € S,.

For each data (V,D) satisfying these conditions we construct a pairing
Wy« H'(V,D)x H' (V*(1),D") — E,

which can be seen as a direct generalization of the p-adic height pairing, constructed
for representations satisfying the Panchishkin condition using universal norms [66,
54, 59]. The following theorem generalizes [56, Theorem 11.3.9] (see Theorem 5.2.2
below).

Theorem II. — LetV be a p-adic representation of Gr.s with coefficients in a finite
extension E of Q. Assume that the family D = (Dy)qes, satisfies conditions N1-2).
Then

norm __ _hsel
vD — V.D,1*

0.3.3. — We denote by Dgr, Dcis and Dy Fontaine’s classical functors [30, 31]. Let
V be a p-adic representation with coefficients in E/Q,,. Assume that the restriction
of V on Gp, is potentially semistable for all q € S}, and that V satisfies the following
condition:

S) Deris(V)?=! =Deris(V*(1))?=1 =0,  VqeS,.
For each q € S, we fix a splitting wy : Dgr (Vy)/Fil’Dgr (Vq) — Dar (Vy) of the canon-
ical projection Dgr (V) — Dar(Vy) /Fil’Dyr (Vy) and set w = (wg)qes ,- In this situa-
tion, Nekovér [54] constructed a p-adic height pairing
Hod *
hy o  Hy (V) x Hi(V*(1)) = E

on the Bloch-Kato Selmer groups [16] of V and V*(1), which is defined using the
Bloch—Kato exponential map and depends on the choice of splittings w.
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Let g € S,, and let L be a finite extension of Fy such that Vj is semistable over L.
The semistable module D, /L(Vq) is a finite dimensional vector space over the max-
imal unramified subextension Ly of L, equipped with a Frobenius ¢, a monodromy
N, and an action of G /5, = Gal(L/Fy).

Definition. — Let q € S,,. We say that a (9N, Gy, )-submodule Dq of D1(Vy) is
a splitting submodule if

DdR/L(Vq) = Dq,L D FﬂODdR/L(VUI)7 Dq,L = Dq Qr, L

as L-vector spaces.

It is easy to see, that each splitting submodule D, defines a splitting of the Hodge
filtration of Dgr(V), which we denote by wp 4. For each family D = (Dy)qes, of
splitting submodules we construct a pairing

WPyt HH (V) x H}(V*(1)) — E
using the theory of (¢,I")-modules and prove that

spl Hod
o =Ny,
(see Proposition 6.2.3). Let Dy denote the (¢,I';)-submodule of D;rig(Vq) associated
to Dy by Berger [14] and let D = (Dq)qesp. In the following theorem we compare this
pairing with previous constructions (see Theorem 6.3.3 and Corollary 6.3.4).

Theorem III. — Assume that (V,D) satisfies conditions S) and N2). Then
i) H'(V,D) = H}(V) and H'(V*(1),D) = H{(V*(1));
ii) We have

norm __ 7.5pl sel
vp =hyp=—hyp;.

0.3.4. — If F = Q, we can relax condition N2). Namely, for each splitting submod-
ule D = D, of Dy /1 (V),), we construct a canonical filtration
“4) {0} - F—IDst/L(V) - FODS[/L(V) - Flet/L(V) - Dst/L(V)

which is a direct generalization of the filtration constructed in [7] in the semistable
case. In particular, FoDy/ (V) = D, and the quotients My = groDy/. (V) and M} =
gr; Dy (V) are filtered Dieudonné modules such that

ME™P =My, Fil’My = {0},

M~ =My, Fil°M; =M.
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Let W = FiDy(V)/F-1Dg (V). We denote by My, M; and W the (¢,Tg,)-
modules associated to My, M; and W respectively. The tautological exact sequence

0—-My—W-—->M; >0
induces the coboundary map
6() . HO<M1) — HI(M()).

We introduce the following conditions F1a-b) and F2a-b) which reflect the conjec-
tural behavior of V at p in the presence of trivial zeros [7, 10, 35]

F12) Deris (D}, (V) /FiD, (V)= = Zeris (D], (V*(1))) /ADL (V*(1)))?=! = 0.

F1b) Zeric(F 1D, (V))?=" = Zeris(F1D], (V*(1))) =" = 0.

F2a) The composed map

8o : HOMy) 2 H' (Mo) 2 H! (M),

where the second arrow denotes the canonical projection on H!(Mp), is an
isomorphism.

F2b) The composed map

pr
8o+ HOMy) 25 H' (Mg) 25 HH(My),

where the second arrows denotes the canonical projection H } (M), are isomor-
phisms.

One expects that these conditions hold if V is the p-adic realization of a pure motive
over Q of weight —1 (see Sections 0.4 and 4.3). Note that Fla-b) and F2a) imply
S).

We show that, under conditions F1a) and F2a), there exists a canonically splitting
exact sequence

splvp SVp
(5) 0 —H(D') == H'(V,D) == H}(V) —0,
where D' = Djig(Vp) /D. We call H' (V,D) the extended Selmer group of V associated

to D. Note that
dimz HY(D') = dimg My = dimg M.
If, in addition, condition F2b) is satisfied, there exists another canonical splitting of
this sequence
0 ——= HY(D/) ——= H'(V,D) ——= H}(V) —0.
SPI{;,D 5{/‘1)

The following result is a simplified form of Theorem 7.2.4 below.
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Theorem IV. — Let V be a p-adic representation of Gqs that is potentially
semistable at p and satisfies conditions Fla-b) and F2a-b). Then for all x € H }(V)
andy € H}(V*(l)) we have

D (%,y) = =hfp(s7p(3),57. 1) i ())-

Assume now that, instead of Fla-b), the data (V, D) satisfies the following stronger
condition

F3) Foralli € Z
‘@Pﬂ( rlg( )/Fang(V)) -

By modifying the construction of Section 0.3.2, we define a pairing

i — i

@PM(F lDrlg(V)) 7 =0.

WOR - Hi (V) x Hi(V*(1)) = E.
The following result is proved in Theorem 7.3.2.

Theorem V. — Let V be a p-adic representation of Gqs that is potentially
semistable at p and satisfies conditions F2a-b) and ¥3). Then

VB = Wl
Theorems IV and V imply

CorollaryVI. — Let V be a p-adic representation of Gqs that is potentially
semistable at p and satisfies conditions ¥F2a-b) and ¥3). Then for all x € H }(V) and
yE H}(V*(l)) we have

B (.3) = b (5] (0):5)- 1. 0))-

This generalizes [56, Theorem 11.4.6].

0.4. General remarks

0.4.1. — Assume that V is the p-adic realization of a pure motive M /F of weight
wt(M). Beilinson’s conjectures (in the formulation of Bloch and Kato) predict that

H{(V)=0, if wt(M)>0,

and therefore the pairings /y’," and hf}? }) are interesting only if wt(M) = wt(M*(1)) =
—1.
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0.4.2. — Let M = h'(X)(m), where X is a smooth projective variety over F and 0 <
i <2dim(X). The p-adic realizationof M is V = H ;7 (X)(m), where H [’, (X) denotes the
p-adic étale cohomology of Xz. The Poincaré duality and the hard Lefschetz theorem
give a canonical isomorphism

(6) Hi(X)* ~ H}(X)(i).
i+ 1
Then wt(M) = —1 if i is odd and m = % In this case the representation V is

self dual and we have a canonical isomorphism V ~ V*(1) induced by (6). If, in
addition, X has good reduction at q € S,, then V; is crystalline and Dgyis(V4)?=! = 0
by a result of Katz—Messing [43]. Therefore, conditions S) and N1-2) hold if X has
good reduction at all g € S,.

0.4.3. — We continue to assume that V = H [’, (m), where X is a smooth projective va-
riety over F. For all q € S, the representation V; is potentially semistable by the main
result of Tsuji [70]. Let L/ F, be a finite extension such that V; is semistable over L.
The module Dy, / L(Vq) is equipped with a monodromy N and a Frobenius operator ¢.
The monodromy filtration Dy, (Vy) on Dy /7 (Vy) is an increasing filtration defined
by
MDy/ (Vo) = Y ker(N“1)nIm(N).
k—l=i

It is expected that ¢ acts semisimply on Dy, (V;) and the p-adic analog of the
monodromy-weight conjecture formulated by Jannsen [40] says that the absolute
value of eigenvalues of @ acting on gr¥" Dy, (Vq) is pi+)/2_ Since

Dsis (Vq)(p:1 C Dst/L(Vq)N:O C i):n()Dst/L(Vq)’

conditions S) and N1) conjecturally always hold if wt(M) = —1.

On the other hand, condition N2) depends on the choice of Dy and does not hold
in general in the bad reduction case. If it holds, then Ayp" = hf}?}) = —hi,f}), and
composing this antisymmetric pairing with the isomorphism H fl (V) ~H } (V*(1)) we
get a symmetric pairing

(7) bvp : Hi(V) x H{ (V) — E.

0.4.4. — We maintain previous notation and assumptions. Let wt(M) = —1. As-
sume, in addition, that F = Q and that V is semistable at p. Then conditions Fla-b)
and F2a) follow from the p-adic analog of the monodromy-weight conjecture and
therefore conjecturally always hold (see Proposition 4.3.7). The notion of splitting
submodule coincides with the one of regular submodule from [7, 60] and condition
F2b) is equivalent to the non-vanishing of the .Z-invariant .Z’(V, D) introduced in [7]
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(see Proposition 4.3.11). We also remark that condition F3) does not hold in general.
A simple counter-example is given by the representation V(E)®3(—1), where V (E)
is the p-adic representation associated to an elliptic curve E/Q having split multi-
plicative reduction at p (see Remark 4.3.3 for more detail). We have two pairings

1
D - H}(V)xH}(V) > E,
byp : H'(V,D) x H{(V,D") - E,

el

provided by h:}; }) and hyy, respectively and related by Theorem IV.

0.5. p-adic L-functions

0.5.1. — We keep the hypotheses and notation of Section 0.4.4. Let V be a
semistable representation associated to a motive M /Q of weight —1. It is expected
(see [7, 41, 33, 34] and especially Perrin-Riou’s book [60]) that to each splitting
submodule D of V,, one can associate a p-adic L-function L,(M,D,s) interpolating
special values of the complex L-function L(M,s). Namely, let r and r, denote the or-
ders of vanishing of L(M,s) and L,(M,D,s) ats = 0. Set L!)(M,0) = }i_r)r(l)s*rL(M,s)

and L) (M, D,0) = lil‘I(l) s7"L(M,D,s). Beilinson’s conjecture predicts that
S

r=dimg, H}(V)
and

L"(M,0

( Y ) 6 Q*7
Reo(M) Qoo (M)

where Q..(M) is the Deligne period of M, and R..(M) is the determinant of the

archimedean height on some fixed basis. The conjectural interpolation property of
L(M,D,s) at s = 0 reads

")(M,0)

r L i
® LY (M, D,0) = (M. DR, (M. D) o= o ()’

where R, (V,D) is the determinant of the p-adic height hf}j ;) taken on the same basis,
and & (V, D) is some explicit Euler-like interpolation factor [60].
It is expected that if N2) holds (or equivalently Mg = M; = 0), then

©) rp =1,

and (9) and (8) can be seen as a p-adic version of Beilinson’s conjecture.
If condition N2) does not hold, we are in presence of extra-zeros. Generalizing the
Mazur—Tate—Teitelbaum conjecture (for modular forms) and Greenberg’s trivial zero
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conjecture [35] (in the general ordinary case), it is natural to expect that
r,=r+e, e = dimg, H(D).

Taking into account (5) and (8), we can write this conjectural equality in the form

(10) r, = dimg, H'(V, D).

The natural general conjecture for the special value of L,(V,D,s) at s = 0 reads

L")(v,0)

(11) LYV, D,0) = 2(V,D)& (V,D)R,(V,D) TRCRITIE

where .Z(V,D) is the Z-invariant constructed in [7] (see also Section 4.3.9) and
&1 (V,D) is obtained from & (V, D) by removing linear zero factors (see [7] for further
details). We remark that in (11), R,(V, D) is taken for the pairing h?,% and not for the
extended height pairing h%}’:}). The comparision between these two pairings is given
by Theorem 7.2.4, but does not make appear the .Z-invariant. Formulas (10-11) can
be seen as the p-adic version of Beilinson’s conjecture in the presence of extra-zeros.
We refer the reader to [9] for the formulation of the analog of this conjecture in the

case wt(M) # —1.

0.5.2. — We illustrate previous remarks with p-adic representations arising from

modular forms. Let f = Y a,q" € S{(N) be a newform of even weight k for
n=1

I'o(N). Fix a prime p and denote by Wy the p-adic representation of G¢ associ-

ated to f by Deligne [23]. Its restriction on the decomposition group at p is po-

tentially semistable with Hodge-Tate weights (—k/2,k/2 — 1). It is crystalline if

(N,p) =1 and semistable non-crystalline if p || N. In the second case, Dcris(Wy)
is a one-dimensional subspace of Dst(Wf). In the both cases

(12) det(1 — @X|Derig (Wr)) = 1 —a,X + & (p)p* X2,

where & is the trivial Dirichlet character modulo N [65, 67].
Let M denote the motive associated to the central twist of f. Thus,

L(M,s) = L(f,s+k/2).

Its p-adic realization is the central twist V; = Wy (k/2) of W;. The representation V
is self dual. Fix an eigenvalue o of Frobenius acting on Dcris(Vf). We will always
assume () that |a|, > (1/p)*/>~!. One expects that the corresponding eigenspace Dy

5. We exclude the critical case |¢t|, = (l/p)k/z_l .
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is one-dimensional (©). Tt is easy to see that under this assumption Dy, is a splitting
submodule of Dy (Vy), and we set

L(M,Dg,s) =Ly a(f,s+k/2),

where L, o(f,s) is the classical p-adic L-function constructed in [1, 50, 52, 73]. As
before, we write r and r), for the orders of vanishing of L(f,s) at s = k/2. Below we
consider separately the following cases 0.5.2.1 and 0.5.2.2.

0.5.2.1. — (p,N) = 1. The representation V is crystalline and from (12) it follows
that Dcris(Vf)‘/’:1 = 0. Therefore, V; satisfies S) and N2). The space D5 (V) is two-
dimensional and we have two possible choices of ¢. The values of the complex and
p-adic L-functions at s = k/2 are related by the formula

B 1) 2 L(f,k/2)

(13) Lyo(f,k/2) = (1 e va

k=1)/2 the Euler-like interpo-

where Q denotes Deligne’s period of f. Since |a| = p!
lation factor does not vanish.

Assume first that » = 0. Then r, = 0. By Kato [42], H}(Vy) = 0 and the p-adic
height degenerates. Therefore, in this case, formula (8) reduces to (13).

If r > 1, the relation (13) says only that both L(f,s) and L, o(f,s) vanish at s =
k/2, but does not contain information about special values. In this case, (8) concides
with the Mazur-Tate—Teitelbaum conjecture [52] in the nonexceptional case, namely

2 r
L(f,k/2) = (1 - 1) Ry (1) L)

po

Ro(£)Qy
where R..(f) and R,,(f) are the determinants of the complex and the p-adic height
pairings computed in the same basis. If r = 1, this question is closely related to p-
adic analogues of the Gross-Zagier formula [55, 47, 58]. Here one of the key points
is the interpretation of the p-adic height pairing

by, : Hy(Ve) x Hi (V) = E

in terms of universal norms, and therefore the ordinarity condition appears naturally
in [55, 58]. Kobayashi generalized Perrin—Riou’s formula [58] to non-ordinary mod-
ular forms of higher weight (7).

Our theory provides a framework for working with universal norms in the com-
pletely general non-ordinary setting. In [17], combining the work of Kobayashi with

6. This obviously holds in the semistable case. In the cristalline case, this follows from the conjec-
tural semisimplicity of ¢ acting on D5 (V).
7. Work in progress. See [47] for the elliptic curve case.
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the methods of our paper, Biiyiikboduk, Pollack and Sasaki study the p-adic Gross—
Zagier formula in families and deduce from it a p-adic Gross—Zagier formula for the
critical slope stabilizations of modular forms.

0.5.2.2. — p || N. The representation V; is semistable non-crystalline. From (12) it
follows that D¢yis (V) is one-dimensional and that ¢ acts on Dyis(V) as multiplica-
tion by o0 = p_k/zap. By [48, Theorem 3], a, = +p*/2-1 and therefore ot = £p~ 1.
In both cases, condition S) holds. The only possible choice for splitting submodule
is to take D = Dyis(Vy). Denote by D the (¢,I")-submodule of Dzig(Vf) associated to

D. Set D' =D}, (Vy)/D. From the self-duality of Vy it follows that
D' ifa=p,

H(D') = HO(D' (1)) = {

0 ifa=—-p

The values of the complex and p-adic L-functions at s = k/2 are related by the for-
mula

1\ L(f,k/2)
14 L,(fk/2)=(1-— ) ——
If « = —p~', condition N2) holds and Theorem III applies. The situation is quite

similar to that we considered in Section 0.5.2.1 and we refer the reader to [26, 25] for
the p-adic Gross—Zagier formula in this context and further references.

0.5.2.3. — We discuss in more detail the case o = p~! which gives an archetypical

example of the failure of condition N2). In this case, conditions Fla-b), F2a) and
F3) hold. ®). From [7, Formula (32), p. 1619] it follows that condition F2b) holds
if and only if the Fontaine-Mazur .Z-invariant Zv(f) [51] does not vanish. This is
conjecturally always true, but is proved only for elliptic curves [2].

Set H }(Vf) = H'(V;,D). Then the exact sequence (5) reads

0—>D % HN(Vy) —=H}(V;) —=0,  dimgD* =1.
In this situation, we have the pairing by, p on the Bloch-Kato Selmer group H }(Vf)
induced by the pairing h:};l? p, and the pairing
HV;,D : ﬁ}(vf) X ﬁ}(vf) —E.

on the extended Selmer group provided by hf}i{n. If we assume, in addition, that
Zm(f) # 0, then we have the third pairing, induced by h“}‘;f]‘;], which coincides with

f)vfp by Theorem V. Moreover, bvf,D and gv,:p are related by Theorem IV.

8. F2a) follows directly from the fact that V is not crystalline.
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0.5.2.4. — The interpolation factor in (14) vanishes and L, (f,s) has an extra-zero at
s = k/2. Conjectural formulas (10-11) reduce to the exceptional case of the Mazur—
Tate—Teitelbaum conjecture

(15) rp =dimg Hp(Vy) + 1,
(r)
(r+1) . L (ka/z)
In the analytic rank zero case r = 0, formula (16) takes the form
L(f,k/2
L,(f:k/2) = Zew(f) (’;f/)

It was proved by different methods by Greenberg and Stevens [36, 69] and Kato,
Kurihara and Tsuji (unpublished, but see [8, 21]). In particular, the validity of (15) in
this case is equivalent to the non-vanishing of Zrm(f).

0.5.2.5. — Assume that » = 1. From [42] (see also [20] and [10]), it follows that
in this case ord;_; /sz( f,s) = 2. For elliptic curves, a version of the Gross—Zagier
formula involving the Z-invariant was proved by Venerucci [71]. Our theory of p-
adic heights allows to generalize the method of Venerucci to modular forms of higher
weights (°). In [11], K. Biiyiikboduk and the author prove the following result. Let
Z?K €H }(Vf) denote the first layer of the Beilinson—Kato Euler system constructed
in [42]. Let

37" =sup () € Hp(Vy)
be the canonical lift of ZJI?K under the splitting 5%,}_7]) defined in (5). Fix a basis b of
the one-dimensional space H(D*(y,,)). Then

p 5,0 (90(6), (b)) By, (30(6),53)
(17) Qp.@Lp(f,s)\S:k/Z:det - R ;
bv,.p (3?{, (90(19)) bv,.p (3?K73?K>

where Q,, is some explicit " p-adic period" which depends on our choice of b (see [11,
Section 7.2] for the precise definition). The key new ingredient of the proof of this
formula is the interpretation of the height pairing in terms of universal norms which
leads to non-ordinary versions of Rubin-style formulae.

9. Note that our results are weaker that the results of Venerucci, because the injectivity of the p-adic
Abel-Jacobi map is an open question in the higher weight case.
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If Zem(f) # 0, formula (17) together with a standard argument (see, for example,
the proof of [54, Theorem 7.13]) give an expression for %LP (f,s) ‘S:k 1 in terms of

Zm(f) and the height hf,D(z?K,z?K) (see [11, Corollary B]).

0.5.2.6. — We maintain previous assumptions. Let f be the Coleman family of mod-
ular forms passing through f. Let V¢ be the big Galois representation associated to this
family which specializes to V; at the weight k. A two-variable version of the Bock-
stein map which takes into account the deformation in the weight direction, gives a
two-variable height pairing

9¢ : Hi(Vy) x Hi(Vy) = 3/37,

where J C E[[x —k,s]] is the ideal of power series in k — k and s those vanish at
(k,0) [11, Section 4.3]. The specialization of $¢ at k¥ = k coincides with the height
pairing by, p and its restriction on the central critical line s = (k — k) /2 coincides
with the central critical height pairing constructed using the Cassels—Tate pairings
[11, Section 3.3]. This pairing is closely related to the behavior of the two-variable
p-adic L-function L(f,s) at (k,k/2) and we refer the reader to op. cit. for further
detail and references.

0.6. The organization of this paper

This paper is very technical by the nature, and in Chapters 1-2 we assemble nec-
essary preliminaries. In Chapter 1, we recall the formalism of cup products. In Sec-
tion 1.1, to each complex A® equipped with a morphism ¢ : A* — A® we associate the

complex T*(A®) = (A® el A*) and study cup products of these complexes. These
results are used in Sections 2.5-2.7. In Section 1.2, we recall the the formalism of
cup products for cones following [56] (see also [57]). These results play a key role in
Chapter 3.

In Chapter 2, we consider local Galois representations with coefficients in an affi-
noid algebra. In Sections 2.1-2.2, we review the theory of (¢,I')-modules over affi-
noid algebras and its connection with p-adic representations and classical Fontaine’s
functors D5 and Dy and Dgr. The reader familiar with (¢,I")-modules can skip
them. In Section 2.3, we review local duality for Galois representations. In Sec-
tion 2.4, we construct cup products for Fontaine—Herr complexes of (¢,I")-modules
and review the computation of Galois cohomology in terms of these complexes. Sec-
tions 2.5-2.7 are the central parts of the chapter. They contain the most part of results
we need to develop the theory of Selmer complexes with local conditions arising
from (¢@,T")-modules. In Sections 2.5-2.6, we introduce the complex K*(V) which
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relates the Fontaine—Herr complex to the complex of continuous cochains with co-
efficients in V. Using results from Chapter 1, we prove some technical results about
cup products of these complexes. These results are used to develop the duality theory
for Selmer complexes in Section 3.1. In Section 2.7, we compute the Bockstein map
for Fontaine—Herr complexes and for K*(V'). These results are used in Section 3.2 to
generalize Nekovéai’s construction of the p-adic height pairing. In particular, Propo-
sition 2.6.4 plays a key role in the proof of Theorem 3.2.4 (Theorem I of this Intro-
duction) which asserts that the constructed p-adic height pairing is skew symmetric.
In Section 2.8, we review Iwasawa cohomology of (¢,I")-modules and prove some
auxiliary results. In Section 2.6, we review the definition and some properties of the
Bloch—Kato group H } of a (¢,I')-module. In particular, we review the canonical
decomposition of H! of some "exceptional" isoclinic modules (¢,I")-modules into
the direct sum of H } and its canonical complement H!. These results are used in
Chapter 7 to study p-adic heights on extended Selmer groups.

Chapter 3 is the central part of the paper. It gathers the main constructions of our
theory. Selmer complexes RI'(V,D) are defined in Section 3.1. In Theorem 3.1.5,
we construct the cup products. Theorem 3.1.7 gives a sufficient condition that the
cup product be a duality. In Theorem 3.1.11 we prove that the cup product is skew
symmetric following the method of Nekovar. The p-adic height pairing is defined is
Section 3.2. In Theorem 3.2.4 (Theorem I of this Introduction), we deduce that it is
skew symmetric from formal properties of cup products.

In the rest of the paper, we consider p-adic heights for p-adic representations with
coefficients in a p-adic field. In Chapter 4, we study splitting submodules of poten-
tially semistable representations. Sections 4.1-4.2 assembles technical results used to
construct the pairing hf}:}). In Section 4.3, we assumme that the ground field is Q,,.
We construct the canonical filtration (4) and discuss in detail its properties. In partic-
ular, we show that conditions F1a-b) and F2a) follow from the semisimplicity of the
Frobenius operator and the monodromy-weight conjecture.

In Chapters 5-6 we construct the pairings A)p" and hf,% and prove Theorems II
and III. |

In Chapter 7, we study extended Selmer groups and prove Theorems IV and V.
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CHAPTER 1

COMPLEXES AND PRODUCTS

1.1. The complex 7°(A*®)

1.1.1. — If R is a commutative ring, we write ~# (R) for the category of com-
plexes of R-modules and #5(R) for the subcategory of .# (R) consisting of com-
plexes C* = (C",d{.) such that H"(C®) are finitely generated over R for all n € Z.
We write Z(R) and Z(R) for the corresponding derived categories and denote by
[-] : Z(R) = Z.(R), (x € {0,ft}) the obvious functors. We will also consider the
subcategories %/ft[a’b] (R), (a < b) consisting of objects of J#;(R) whose cohomolo-
gies are concentrated in degrees [a,b]. A perfect complex of R-modules is one of the
form

O0—-P,—Py1—...>P,—0,

where each P, is a finitely generated projective R-module. If R is noetherian, we
denote by 9&;’? (R) the full subcategory of Z(R) consisting of objects quasi-
isomorphic to perfect complexes concentrated in degrees |a, b].

If C* = (C",d}.)nez is a complex of R-modules and m € Z, we will denote by
C*[m] the complex defined by C*[m]" = C"*" and d_.. ] (x) = (—=1)"dcs (x). We will
often write d" or just simply d instead of dg.. For each m, the truncation t-,,C* of C*
is the complex

0 — coker(d™ ') — " - "2 .

Therefore

0, ifi<m,

Hi(tsyC®) =<
(#nC) {H’(C‘), ifim.
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The tensor product A®* ® B® of two complexes A® and B® is defined by

(A’@B.)n :@(Ai(anfi)’
icZ
d(a;i @by—;) = dx; @yp—i +(—1)'a; @ by, a; €A, b, ;€B".
We denote by 512 : A®*® B* — B* ® A*® the transposition
s12(an @by) = (—1)"by, @ ay, a, €A", b, €B".

It is easy to check that 51, is a morphism of complexes. We will also consider the
map s}, : A*®B®* — B* ®A® given by

812 (an @by) = by @ ay,

which is not a morphism of complexes in general.

Recall that a homotopy % : f ~» g between two morphisms f,g : A* — B® is a
family of maps h = (k" : A" — B") such that dh+hd = g — f. We will sometimes
write & instead of A". A second order homotopy H : h ~~ k between homotopies
h,k : f ~ gis acollection of maps H = (H" : A"*> — B") such that Hd —dH =k — h.

If f; :AY — B} (i=1,2) and g; : A5 — B3 (i = 1,2) are morphisms of complexes
and i : f| ~ fo and k : g| ~» g are homotopies between them, then the formula

(18) (h@ k)1 (xn @ ym) = h(xn) @ g1 (ym) + (= 1)"f2(xn) @ k(ym),
where x, € A, y,, € A%, defines a homotopy

(h®k); : fi®g ~ fLRg.

1.1.2. — For the content of this subsection we refer the reader to [72, §3.1]. If
f : A®* — B® is a morphism of complexes, the cone of f is defined to be the complex
cone(f) =A°*[1]®B°®,

with differentials
d"(ans1,bn) = (—=d" " (ans1), fans1) +d" (by)).

We have a canonical distinguished triangle

A Lp cone(f) — A*[1].
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We say that a diagram of complexes of the form

(19) as N pe

/
A3 — B3

[04} (0%

is commutative up to homotopy, if there exists a homotopy
h: fhoo ~ o fi.
In this case, the formula
c(ou, 00,h)" (an+1,bn) = (01 (ant1), 02 (by) + 1" (ant1))
defines a morphism of complexes
(20) c(oy,0n,h) : cone(f1) — cone(fz).
Assume that, in addition to (19), we have a diagram

f

Ar— 1 pe

o %
/
As :

- 7 S
2 2

together with homotopies
ki : o~ of
ky : 0~ 0
and a second order homotopy
H: froki+h ~kyo fi+h.
Then the map
21 (ant1,bn) = (—ki(ant1),k2(bn) + H(an+1))

defines a homotopy c(oy, 0n,h) ~ c(ay, ab, i').

21
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1.1.3. — Till the end of this section R is a commutative ring and all complexes are
complexes of R-modules. Let A* = (A",d") be a complex equipped with a morphism
¢ : A®* — A°. By definition, the total complex

T*(A%) = Tot (A* 2= A%).
is given by T"(A®) = A"~! @ A" with differentials
d"(an-1,an) = (dn_lan—l + (=" —Nay,d"ay), (an-1,a,) € T"(A®).

If A® and B°® are two complexes equipped with morphisms ¢ : A®* — A® and y :
B®* — B*, and if a0 : A* — B*® is a morphism such that o ¢ = yo «, then o induces
a morphism 7T(o) : T*(A®) — T*(B®). We will often write « instead of T(a) to
simplify notation.

Lemma 1.1.4. — Let A® and B* be two complexes equipped with morphisms
¢ : A*—>A%and y : B* — B*,and let o 1 A* — B® (i = 1,2) be two morphisms
such that

oo =youq; i=1,2.

If h : oy ~ o is a homotopy between o and O such that ho ¢ = Yo h, then
the collection of maps hy = (K% : T"t1(A®) — T"(B®)) defined by W}-(ay,an+1) =
(h(an),h(an+1)) is a homotopy between T (o) and T ().

Proof. — The proof of this lemma is a direct computation and is omitted here. [l

In the remainder of this subsection we will consider triples (A},A3,A3) of complexes
of R-modules equipped with the following structures

A1) Morphisms ¢; : A? — A? (i =1,2,3).
A2) A morphism Uy : AT ® A5 — A3 which satisfies

UAO((p1®(p2):(p3OUA.

Proposition 1.1.5. — Assume that a triple (A?, ;) (1 < i< 3) satisfies conditions
A1-2). Then the map

UL T*(A) @ T*(A3) — T*(A3)
given by
(-xn—l 7-xn) UZ{ (ym—l 7ym) = (-xn Ua Ym—1 + (_1>mxn—l Ua (PZ(ym)7xn Ua ym)y

is a morphism of complexes.
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Proof. — This proposition is well known to the experts (compare, for example, to
[57, Proposition 3.1] ). It follows from a direct computation which we recall for the
convenience of the reader. Let (x,_1,x,) € T"(A}) and (Ym—1,ym) € T™(A3). Then
d((xn—lyxn) UZ{ (ym—lvym) =
= d(xn Ua Ym—1+ (_l)mxn—l Ua %(Ym)axn Ua ym) = (Zn+mazn+m+l )7

where

Zntm = A%y Ua Ym—1 + (= 1)"% Us dym—1 + (= 1)"dxn—1 Us @2(ym)+
(=)™ e Uad(@2(ym)) + (= 1) (@3 = 1) (% Ua )
and 7, m+1 = d(x, Ua yn)- On the other hand
Ux 0d((Xn—1,%0) @ (Ym—1,Ym)) =
= Up o ((dxa—1+ (—=1)"(¢1 — 1)xn,dxa) © (Y1, Ym)) +
+(=1)"Ug o((4n-1,%) @ (dym—1 4 (=1)" (@2 = 1)Ym,dym)) =
= (tntm>Untmt1),

where

Untm = dXy Ug Ym—1+ (= 1)" (dxp—1 + (=1)" (@1 — 1)x,) U @2 (y)+
(= 1) X U (dYm—1 + (= 1) (@2 — )ym) + (= 1) Ly U @2 (dym),

and U i1 = dx, Ug ym + (—1)"x, Ua dy,,. Now the proposition follows from the
formula

d(x, Ug ym) = dxpy Ug yim + (—1)"x, Ug dypm
and the assumption A2) that reads @ (x,) Us @2(ym) = ©3(x0 U Ym)- O
Proposition 1.1.6. — Let (A}, ¢;) and (B}, y;) (1 <i < 3) be two triples of complexes
that satisfy conditions A1-2). Assume that they are equipped with morphisms
o; Al. — Bi.v
such that oo @; = Yo o for all 1 < i < 3. Assume, in addition, that in the diagram

Ua

A} @AS AS

o R0y

/
B'®@By —" B

o3

°
3
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there exists a homotopy
h:ozolUy ~ UBO(OC1®(X2).
such that ho (¢ ® @2) = Y3 0h. Then the collection hy of maps

Wpo @ (T"(A]) @ T™(A3)) — T(BS)
m+n=k+1
defined by

hljc“((xnflaxn) ® (ymfl ®ym)) =
= (h(n @ Ym-1) + (= 1)"h(xn-1 @ @2 (ym)) s 1(a @ ym)),

provides a homotopy hy : 030 U£ ~ Ug ooy ®@am):

T

T*(A3) @ T*(A3) — T*(A3)
a1®a2 % a3
(B} 0 T*(By) — 2L To(8Y).

Proof. — Again, the proof is a routine computation. Let (x,_1,x,) € T"(A}) and
(Ym—1,Ym) € T™(AS). We have

d((Xn—1,%n) @ (Ym—1,Ym)) = (dxn—1 4+ (=1)"(@1 = 1)xn, dxn) @ (Ym—1,ym)+
+ (=1)" (tn—1,Xn) @ (dym—1 4 (=1)" (@2 = 1)ym,dym),
and therefore
hr 0 d((Xn—1,%) @ (Ym—1,¥m)) = (a,b),
where
a= h(dy © yn1) (= 1)" (1 + (= 1(91— 1) © @3 3m)) +
+ (=1)"(h(xn @ (dym—1 4 (=1)" (@2 = 1)ym))+

(=" h(xu1 @ @a(dym)) =
=hod(xy®@ym-1)+ (=1)"hod(xn—1 © @2(ym))+
(=) (w3 — 1) 0 h(x, @ yim)

+

_l’_

and

b= h(dx, @ym)+ (—1)"h(x, @dym) = hod(x, @ym).
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On the other hand

dohr((Xn—1,%n) @ (Ym—1,Ym)) =
= d(h(xn @Ym—1) + (= 1)"h(x—1 @ Q2(ym)), h(xn @ ym)) =
= (doh(x, @ypu—1)+ (—=1)"doh(x,—1 @ @2(ym))+
(1) (g — 1)y @ yi)d 0 B i),
Thus
(hrd +dhr)((Xn-1,%n) @ (Ym—1,Ym)) =
= ((hd +dh)(xn @ ym—1) + (=1)" (hd + dh)(x2-1 @ 92(ym)),
(hd 4 dh)(x, @ ym)) =
= (ot (xn) Up 02 (Ym—1) — 03(xn Up ym—1))+
(=1)" (o (xn—1) Up 92(02(yim)) — 03 (%1 Us 92(ym)),
01 (xn) Up 02 (Ym) — 03(xa Ua ym)) =
= (Ug o (01 ® aa) — 030 UL (Xn—1,%0) @ (hm—1,Ym))-
and the proposition is proved.

O

Proposition 1.1.7. — Let A? (1 < i< 4) be four complexes equipped with morphisms
¢ 1 A} — A} and such that

a) The triples (A},A5,AS) and (A},A5,A}) satisfy A1-2).

b) The complexes A} (i = 1,2) are equipped with morphisms J; : A} — A} which
commute with morphisms @;

Tio @i = @07}, i=1,2.
c) There exists a morphism J4 : A5 — A such that
T340 Q3 = P10 F34.
d) The diagram
Al ®A3

A3

5120( 71 Q%) T4

L] L[] U L]
ASRA} —— A3

commutes.
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Let 7 : T*(A?) = T*(A?) (i=1,2) and P34 : T*(A5) — T*(A}) be the morphisms
(which we denote again by the same letter) defined by

Ti(xn—1,%0) = (Ti(xn=1), Ti(xn)),  Pa(Xn—1,%0) = (F3a(xn-1), T34 (xn))-

Then in the diagram

UT

T*(A}) ®©T*(A3) — = T*(A3)

s120(71@.%) o

%
U/fl/

T*(A}) @T*(A}) T*(A3)

the maps Fa4 0 UL and UL 05120 (T ® F5) are homotopic.
Proof. — Let (x,_1,x,) € T"(A}) and (ym—1,ym) € T"(AS). Then

(22) P3a((n—1,%0) Uf Om—1,3m)) =
= (‘%4()% UAym—l) + (_l)mf%4(xn—l Ua (P2<ym))7 %4(}% Ua ym))

and

Ux 05120 (F1 ® 25) ((xn—1,%0) @ (Ym—1,Ym)) =

= (=1)""Am-1,m) Ua T (Xn—1,%n) =
(23) = (—1)""(P(ym) Ua A (xn—1) + (= 1)" A (ym—1) Ua @1 (T (x4)),

T (ym) Ua T1(xn)) =

= ((=1)"ZBa(xn-1Uaym) + F34(@1(xn) Ua ym—1), T34 (Xp Ua ym) -

Define
et @ (1A T"(A3) - THAS),
m-+n=k+1

by

QD S (nm1,%0) © (Vo1 @ Ym)) = (=1)" (T4 (a1 Ua 1), 0).
Then
(25) dhg ((Xn-1,%) ® (Ym—1 @ ym)) =
= (=1)""'d(Faa(xn—1 Us ym-1),0) =
= (=1)"""(Pa(dxn1 Ua ym—1 + (=1)" " xuey Ua dym-1),0) =
= (=)' Fag(dxn—1 Uaym-1) + T34 (xu_1 Ua dym_1),0),
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and
Q6)  hrd((n1xn) ® Gt @ 3m) =

— (1 (1) (1 = D) & (3 1,9m) +

+ (1) (n—1,%0) © (dym—1+ (=1)" (@2 = 1)ym, dym)) =

= ((=1)"T34(dxn—-1UaYm—1) + T34( @1 (xn) Up Y1) —

— J34(X0 UaYm-1) — F3a(Xn—1Upa dym—1)—

— (=1)" T34 (xn-1 Ua @2(ym)) + (= 1)" T34 (xn—1 Ua ym), 0).
From (22-26) it follows that

Uy os120 (7 ® %) — FgoUy =dhg +hzd

and the proposition is proved. O

1.2. Products

1.2.1. — In this subsection we review the construction of products for cones follow-
ing Nekovéft [56] and Niziol[57]. We will work with the following data:

P1) Diagrams
alier &g, =123,
where A?, Bf and C} are complexes of R-modules.
P2) Morphisms
Ug : AT ®AS — A3,
Up : B®B5 — B3,
Uc: C1RC5 — C3.
P3) A pair of homotopies i = (hy, hy)
hy 2 Uco(fi® f2) ~ f30Uq,
hg 1 Uco(g1®g2) ~ g30Up.

Define
27) E? = cone (A; LN c;) [—1].
Thus

E'=AleBlaC!
with d(anabnacnfl) = (danadbna _ﬁ(an) +gt(bn) —an,I).
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Proposition 1.2.2. — i) Given the data P1-3), for each r € R the formula

(an,bn,cn_1) Ur,h (a:'n’ ;mc;nfl) =

(@nUa @y, bn Up by, cn—1 Uc (rfa(ay,) + (1= 1)g2(by,)) +

(=1)"((1=7)fi(an) +rg1(bn)) Uc ¢y — (hy(an® a),) — he(ba ® b},)))
defines a morphism in % (R)

U - El. ®E2. — E3.
ii) If r1, ) € R, then the map
k:E} ®Ey — E3[—1],
given by
k((anabmcnfl) ® (a:na :mclln—l )) = (0707 (_1)n(r1 - Fz)Cnfl Uc c;n—l)

for all (ay,by,cp—1) € EV and (a,,,b,,,c,,_,) € EY', defines a homotopy k : Uy, j ~

m>Ym> “m—1

Urz,h-
iii) If W' = (W, hy) is another pair of homotopies as in P3), and if & : hy ~ Iy and
B :hg~ h;, is a pair of second order homotopies, then the map

s: E} ®E; — E3[—1],
S((an, by cn1) @ (@, by, 1)) = (0,0, (@ ® @, ) — B (bu, b))

defines a homotopy s : Uypj ~ U,y

Proof. — See [57, Proposition 3.1]. O

1.2.3. — Assume that, in addition to P1-3), we are given the following data:
T1) Morphisms of complexes
Tp 1 A} — A7,
Ip : B — B?,
To: C; —=C?,
fori=1,2,3.
T2) Morphisms of complexes
Uy AS®AT — AS,
Up : B ®B} — BS,
Ue : G RCT —C5.
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T3) A pair of homotopies h' = ('y, I

1 Uco (2@ f1) ~ fioUy,
hy : Uco(g2®g1) ~ g30Ug.

T4) Homotopies
Ui : fio T4~ Tcofi,
Vit gio Ip~ Jcogi,
fori=1,2,3.
TS) Homotopies

ta s Uyos120 (T4 ® Th) ~ TaolUy,
tg : Ugosino(Tp® Tp) ~ TpoUp,
tc : Ugosino(Ie® Ic) ~ TeolUc.

T6) A second order homotopy H trivializing the boundary of the cube

Ua

Ta

AT®AS A3
T©4 s
fi®f2 U
os
AI ®A5 'ACS12
hy
hef
. . Uc .
o C cs

f

CoCs

Ugosia

3,

i.e. asystem Hy = (H}),-ez of maps HJ’} : (A} ®Az)" — CL % such that

dHf—Hfd: —Z‘CO(fl®f2)—%Ohf—|—U3OUA+

+ frota+hpo(sino(Ta®I4)) — (Uposia)o (U @Us)y.

In this formula, (U; ® U,); denotes the homotopy defined by (18).

29
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T7) A second order homotopy H, trivializing the boundary of the cube

Up
B} B3 B
IB
83
Tp®Tp
15:]
810082 ,
B’ B. UBOSIZ B.
1 @B, 3
hy
81¥82 /
Uc 83
L] { ] { ]
CreC; o

o-Te cs,

Uosta
i.e. a system H, = (Hj);ez of maps H; : (B ® By)' — Ci% such that
dH, —Hyd = —tco(g1®g2) — Jeohg+V30Up+
+g30tp+hyo(sip0(Tp® Tp)) — (Ugosiz)o (Vi @Va)i.
Proposition 1.2.4. — i) Given the data P1-3) and T1-7), the formula
Ti(ansbnscn-1) = (Ta(an), Tp(bn), Tc(cn-1) + Ui(an) — Vi(bn))
defines morphisms of complexes
T E} - E7, i=1,2,3
such that, for any r € R, the diagram

U rh

E}®QE; E3
s120(J10.%) 7

° ° Ullfnhl °

E) @ E; E3

commutes up to homotopy.

Proof. — See [56, Proposition 1.3.6].
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1.2.5. Bockstein maps. — Assume that, in addition to P1-3), we are given the fol-
lowing data:

B1) Morphisms of complexes

Bzi: Z; — Z[1], Z: =A;,B;.C;

At g

i=1,2.

B2) Homotopies

ui : fi[lloBai~ Beiio fi
vi : gi[l]oBpi~ Be,iogi

fori=1,2.
B3) Homotopies
hz = Uz[1]o (Id® Bz2) ~ Uz[1] o (Bz1 @id),
for Z* = A*,B*,C".
B4) A second order homotopy trivializing the boundary of the following diagram

. . BAJ@id . .
A} ®AS A1 @A

Uall]

filll®fa

id®pBa 2

[i®f
AT ®A3[1]
fief]
®id
Ctocs Bc,1 ®i
f1®uy
id®fBc
ct o Cyl]

Ucl1]

B5) A second order homotopy trivializing the boundary of the cube
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®id
B} ® B3 Puach Bl ®B;
Up(1]
ideBa2 silllog:
hy =
81082 U] /
® [ ] B o
By ®B3[1] B3[1]
VI®f
g10g2(1]
Bc,1@id (1]
Croc; ——— cil i
810V
id®pBc hg[1]
Ct ®C3[1] G 1]

Ucll]
Proposition 1.2.6. — i) Given the data P1-3) and B1-5), the formula
Be.i(an, b, cn1) = (Ba,i(an), Bp.i(bn), —Be.i(cn—1) — ui(an) +vi(bn))
defines a morphism of complexes
Be.i : Ef — E7[1]
such that for any r € R the diagram

BE 1 ®id
E!®QES b E1QES
lid@ﬁg}z lur,h[l]
° ° Ur,h[l] °
E}®E3[1] E3[1]

commutes up to homotopy.
ii) Given the data P1-3), T1-7) and B1-5), for each r € R the diagram

BE.1®id Ur,h[l] %[1]

E}®ES E}[1]®E; E3[1] E3[1]
lﬁz ild

id AN U, w1
E5®E;ﬂ>E5[1]®E; 1o % E3l|®@Ep — " ES[1]

is commutative up to a homotopy.

Proof. — See [56, Propositions 1.3.9 and 1.3.10].



CHAPTER 2

COHOMOLOGY OF (¢,T'x)-MODULES

2.1. (¢,I'x)-modules

2.1.1. — Throughout this section, K denotes a finite extension of Q,. Let kg be the
residue field of K, Ok its ring of integers and Kj the maximal unramified subfield of
K. We denote by K" the maximal unramified extension of K and by ¢ the absolute
Frobenius acting on K§*. Fix an algebraic closure K of K and set Gx = Gal(K/K).
Let C, be the p-adic completion of K. We denote by v, : C, — RU{eo} the p-adic

vp(x)
valuation on C,, normalized so that v,(p) = 1 and set |x|, = (%) " Write A(r 1)

for the p-adic annulus
A(rl)={xeC, | r<|x|, <1}

Fix a system of primitive p”-th roots of unity € = ({,n),>0 such that CII;" =G
for all n > 0. Let K¢ = ;o K(E), Hx = Gal(K/K®¢), I'x = Gal(K®¢/K) and
let yx : Tk — Z;‘, denote the cyclotomic character.

Recall the constructions of some of Fontaine’s rings of p-adic periods. Define

Et = EOCP/]JOCP = {x= (%0, X1, -, Xn,...) | x =x;, VieN}.

x—xP

Letx = (xo,x1,...) € E*. Foreach n, choose a lift £, € Oc, of x,. Then, forall m > 0,

pn

. Ap" .
mn CONVErges to XM = lim, oo £ +n € Oc,, which does not depend

the sequence X
on the choice of lifts. The ring ET, equipped with the valuation vg(x) = vp(x(0)) isa
complete local ring of characteristic p with residue field kx. Moreover, it is integrally

closed in its field of fractions E = Fr(E*).
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Let A = W(E) be the ring of Witt vectors with coefficients in E. Denote by [-] :
E — W(E) the Teichmiiller lift. Each u = (ug,u;,...) € A can be written in the form

oo

u=Y [ul "p".
n=0
Set m = [g] — 1, Aap = Z,[[x]] and denote by Aq, the p-adic completion of
A(JS,, [l/Nn] irlA.
LetB=A[l/p],Bq, = Aq, [1/p] and let B denote the completion of the maximal
unramified extension of Bg, in B. All these rings are endowed with natural actions

of the Galois group Gx and the Frobenius operator ¢, and we set Bx = B, Note
that

y(m)=(1+m)*® -1,  yelk,
o(m)=(1+m)”—1.

For any r > 0 define

k—>-o0

B — {xeﬁ\ lim (vE(xk) + pp_r1k> = —|—o<>}.

Set BT = BNB'*, B} = B¢ B, B = | ] B'" and B}, = |  BY"
r>0 r>0
Let L denote the maximal unramified subextension of K<¥¢/Q » and let ex = [ Keye -

L9€]. Tt can be shown (see [18]) that there exists rx > 0 and 7 € B;(’rK such that for
all r > rg the ring B;(’r has the following explicit description

B;{,r _ {f(ﬂK) = Z ak”qu | ax € L and f is holomorphic
kEZ

and bounded on A(p~!/¢k” 1)} :

Note that, if K/Q,, is unramified, L = K and one can take mx = 7.
Define

Bji’ng = {f(ﬂ?]() =Y amg | ax € Land £ is holomorphic
' keZ

onA(p_l/"K’,l)}.
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The rings B;{ and B lg x are stable under I'g, and the Frobenius ¢ sends B x into

B;(pr and Brlg £ into B

rie K- The ring

_ or
’%K - U Brng
r2ry
is isomorphic to the Robba ring over L. Note that it is stable under 'y and @. As
usual, we set

c "
t =log(1+7) :Z 1) = — € Aq,

Note that ¢(z) = pr and y(r) = xx(y)t, v € T'k.
To simplify notation, for each r > rx we set %( leg k- The ring %I((r) is
equipped with a canonical Fréchet topology (see [12]). Let A be an affinoid alge-

bra over Q,,. Define

If the field X is clear from the context, we will often write %\ instead of %’,(;)A and
X, instead of Zk 4.
Definition. — i) A (¢,I'x)-module over %f({) is a finitely generated projective %f(\r)_
module D) equipped with the following structures:

a) A @-semilinear map

D" D 2"
“CA
such that the induced linear map
(pr)
0* - pn ®%A),(p 17,0 )10 ®%£‘r) %Apr
(pr)

is an isomorphism of ' -modules;

b) A semilinear continuous action of Tx on D).
ii) D is a (@, Tk )-module over Z4 if D = D) ® i %a for some (@,T'x)-module
A

D) over %X), withr > rg.

If Disa (¢,'x)-module over %4, we write D* = Homg, (D, A) for the dual (¢,I')-
module. Let Mf%;f denote the ®-category of (¢,I'x)-modules over Z4.
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2.1.2. — A p-adic representation of Gk with coefficients in an affinoid Q,-algebra A
is a finitely generated projective A-module equipped with a continuous A-linear action
of Gg. Note that, as A is a noetherian ring, a finitely generated A-module is projective
if and only if it is flat. Let Rep, (G ) denote the ®-category of p-adic representations
with coefficients in A. The relationship between p-adic representations and (¢, 'k )-
modules first appeared in the pioneering paper of Fontaine [29]. The key result of
this theory is the following theorem.

Theorem 2.1.3 (Fontaine, Cherbonnier—Colmez, Kedlaya)
Let A be an affinoid algebra over Q,.
i) There exists a fully faithul functor

D, , : Rep,(Gx) > M,

rig,A

which commutes with base change. More precisely, let 2° = Spm(A). For each x €
2, denote by m, the maximal ideal of A associated to x and set E, = A /my. If V (resp.
D) is an object of Rep,(Gq,) (resp. ofM%’:), setV, =V QE, (resp. Dy =D®4 E,).
Then the diagram

:

Drig,A

r
Rep,(Gq,) —— M%A

l QE; i QEx
i

Drig‘Ex

Ny
Repg (Go,) — MY,
commutes, i.e. D:ig,A<V)x o~ Djig(Vx).
ii) If E is a finite extension of Q,,, then the essential image of Djig’ g 18 the subcat-
egory of (¢,I'x)-modules of slope 0 in the sense of Kedlaya [44].

Proof. — This follows from the main results of [29], [18] and [44]. See also [22].
O

Remark 2.1.4. — Note that in general the essential image of D:fig 4 does not coincide
with the subcategory of étale modules. See [15, 46, 37] for further discussion.

2.2. Relation to p-adic Hodge theory

2.2.1. — In [29], Fontaine proposed to classify p-adic representations arising in p-
adic Hodge theory in terms of (¢,Ix)-modules (Fontaine’s program). More pre-
cisely, the problem is to recover classical Fontaine’s functors Dggr (V'), Dy (V) and
Dis (V) (see, for example, [31]) from D;fig(V). The complete solution was obtained



2.2. RELATION TO p-ADIC HODGE THEORY 37

by Berger in [12, 14]. His theory also allowed him to prove that each de Rham rep-
resentation is potentially semistable. In this subsection, we review some of results of
Berger. See also [20] for introduction and relation to the theory of p-adic differential
equations. Let E be a fixed finite extension of Q.

Definition. — i) A filtered module over K with coefficients in E is a free K ®q, E-
module M of finite rank equipped with a decreasing exhaustive filtration (Fil'M );cz.
We denote by MFk g the ®-category of such modules.

ii) A filtered (@, N)-module over K with coefficients in E is a free Ko ®q, E-module
M of finite rank equipped with the following structures:

a) An exhaustive decreasing filtration (FiliMK) icz. on Mg = M Qg K;

b) A o-semilinear bijective operator ¢ : M — M;

c) A Ko ®q, E-linear operator N such that N ¢ = p ¢N.

iii) A filtered @-module over K with coefficients in E is a filtered (¢,N)-module
such that N = 0.

We denote by MF;@’II\ZI the ®-category of filtered (¢,N)-module over K with coeffi-
cients in E and by MF ,q; g the category of filtered @-modules.

) If L/K is a finite Galois extension and Gp;x = Gal(L/K), then a filtered
(¢,N,Gyk)-module is a filtered (¢,N)-module M over L equipped with a semi-
linear action of G x which commutes with ¢ and N and such that the filtration
(FiliML)iez is stable under the action of Gp k.

v) We say that M is a filtered (¢,N,Gg)-module if M = Ki* @1, M', where M' is a
filtered (¢,N,Gy i )-module for some L/K. We denote by MFI%};‘G’( the ®-category
of (¢,N,Gg)-modules.

Let K<¢((r)) denote the ring of formal Laurent power series with coefficients in
K¢ equipped with the filtration Fil' K¢((¢)) = t/K¥°[[¢]] and the action of ['x given
by

7<Zakt"> = Y vla)xx ()",  yelk.
keZ keZ

The ring Zk £ can not be naturally embedded in E ®q, K“°((¢)), but for any r > rg

there exists a ['g-equivariant embedding i, : %g )E — E®q, K%¢((t)) which sends @

to Cpne’/p" —1. Let D be a (¢,I'x)-module over Zx g and let D = D) ® 0 Kk E
AKE

for some r > rg. Then

Ik
T k(D) = (E ©o, K¥((1)) @, D)
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is a free E ®q, K-module of finite rank equipped with a decreasing filtration
, . y
Fil' Zar (D) = (E @g, K™ (1)) @, D) "

which does not depend on the choice of r and n.
Let Zk [log 7] denote the ring of power series in variable log 7w with coefficients
in Zx k. Extend the actions of ¢ and I'x to Zx g[log 7| setting

TP

y(log ) = log m 4 log <Y(n7f)> , veTk.

¢(logm) = plogm + log <(P(ﬂ)> ,

( Note that log(¢(x)/n”) and log(t(7)/m) converge in Zk r.) Define a monodromy
operator N : Zx g[log t] — %k g[log 7] by

"' 4d
N=—(1-= .
)4 dlogm

For any (¢,['x)-module D define

PDajx(D) = (D@, Zicpllogm, 1/1])'*, 1 =1log(1+7),
-@cris/K(D) = gst(D)NZO = (D[l/t])FK.

Then Z4(D) is a free E ®q, Ko-module of finite rank equipped with natural actions of
¢ and N such that N¢ = p @N. Moreover, it is equipped with a canonical exhaustive
decreasing filtration induced by the embeddings . If L/K is a finite extension and D
is a (¢@,T'gx)-module, the tensor product D; = %, ®azx D has a natural structure of
a (¢,I'r)-module, and we define

-@pst/K(D) = hﬂgst/La)L) :
L/K

Then Zpg k(D) is a free E ®q, Kj'-module equipped with natural actions of ¢ and
N and a discrete action of Gg. Therefore, we have four functors

ng/K . M;{E — MFK7E,

e
@St/K . M'%

K.E

. QD,F (P’N%GK
Dps/k Mg . = MF g,

(p7N
— MFKE,

. o ¢
Devisyic - MG, — MF .

If the field K is fixed and understood from context, we will omit it and simply write
Dars Dst @pst and Peris.
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Theorem 2.2.2 (Berger). — Let 'V be a p-adic representation of Gg. Then
D, x(V)~ P x(D},(V)),  *€{dR,st,pst,cris}.
Proof. — See [12]. ]
For any (¢,I'x)-module over Zk g one has
ke, Deris )k (D) < tkeei, Dk (D) < tkewk, Zar k(D) < ko (D).

Definition. — One says that D is de Rham (resp. semistable, resp. potentially
semistable, resp. crystalline) if

I'kE®Ko @dR/K (D) = rk%}(,f: (D)

(resp. rkE@Kogst/K(D) = 1k . (D), resp. rkE®K09pst/K(D) = kg, (D), resp.
Kegk, -@cris/K (D) = rkf%KﬁE (D))
I

Let M;;;st, M;,’;pst and M%E,cris denote the categories of semistable, potentially
semistable and crystalline (¢, I")-modules respectively. If D is de Rham, the jumps

of the filtration Fil' Zyr (D) will be called the Hodge—Tate weights of D.

Theorem 2.2.3 (Berger). — i) The functors
Dy : MY — MFPY,

r@K.’E,St
. (Pvr (p7N7GK
Dost : M%}(‘E,pst — MFK,E ,

-@cris : M(PI - MFI(’;E

Rk E,cris
are equivalences of ®-categories.
ii) Let D be a (¢,I'x)-module. Then D is potentially semistable if and only if D is
de Rham.

Proof. — These results are proved in [14]. See Theorem A, Theorem III.2.4 and
Theorem V.2.3 of op. cit.. O

2.3. Local Galois cohomology

2.3.1. — For the content of this section we refer the reader to [62]. Let V be a p-adic
representation of Gg with coefficients in an affinoid algebra A. Consider the complex
C*(Gk, V) of continuous cochains of Gg with coefficients in A and the corresponding
object RI'(K,V) of Z(A). For the Tate module A(1), the base change (see [62, Proof
of Theorem 1.14]) and the classical computation of H*(K,Z,(1)) together give

T=oRT(K,A(1)) ~ A[-2].



40 CHAPTER 2. COHOMOLOGY OF (¢,I'x)-MODULES

In particular, we have a canonical isomorphism
(28) invg : H*(K,Z,(1)) ~ A.

Recall (see Section 0.2) that on the category Zpert(A) of perfect complexes we have
the contravariant dualization functor

(29) X — X" =RHomy (X,A).
The natural pairing V*(1) ® V — A(1) induces a pairing
(30) RI(K,V*(1)) @Y RI(K,V*(1)) — t=,RT(K,A(1)) ~ A[—2].

The following theorem is a version of classical results on local Galois cohomology
in our context.

Theorem 2.3.2 (Pottharst). — Let V be a p-adic Galois representation with coeffi-
cients in an affinoid algebra A.

i) Finiteness. We have RT'(K,V) € .@[Egﬁ] (A).

ii) Euler—Poincaré characteristic. We have

2

Y (—1)'kaH' (K, V) = —[K : Q)] - tka (V).
i=0

iii) Duality. The pairing (30) induces an isomorphism
RI'(K,V*(1)) ~RI(K,V)*[—2] := RHomu (RT(K,V),A)[—2].
Proof. — See [62, Corollary 1.2 and Theorem 1.14]. OJ

Remark 2.3.3. — Theorem 2.3.2 is inspired by Nekovai’s duality theory for big
Galois representations [56, Chapters 2-5].

2.4. The complex Cy, 5, (D)

2.4.1. — In this section we review the generalization of local Galois cohomology to
(¢,I'x)-modules over a Robba ring. We keep previous notation and conventions. Set
Ag = Gal(K({,)/K). Then T'x = Ak x T'%, where I'Y is a pro-p-group isomorphic to
Z,. Fix a topological generator 7k of Y. For each (¢, )-module D over %4 = %k 4
define
C; (D) : D L pax
where the first term is placed in degree 0. If D’ and D" are two (¢,I'x)-modules, we
will denote by
Uy : C;K(D’) ®C;K(D") — C;,K(D’®D”)
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the bilinear map

Xn @ YVg(ym)  if X, € Cy (D), yim € C (D"),
Uy (xn @ ym) = andn+m=0or1,
0 ifn+m>=2.

Consider the total complex

CO

(D) =Tot (G5, (D) 2= 5, (1) ).

More explicitly,

Ch (D) : 0— DA 2y pir g i &y pie g

where do(x) = ((¢ — 1)x,(yx — 1)x) and d, (x,y) = (yx — 1)x — (¢ — 1) y. Note that

Cg 5 (D) coincides with the complex of Fontaine-Herr [38, 39, 49]. We will write

H*(D) for the cohomology of Cg (D). If D’ and D” are two (¢,I'x)-modules, the
cup product Uy induces, by Proposition 1.1.5, a bilinear map

Ug.y : Cg (D)) @Cy

P,k (D,/) - C.

o (D/ ® DN).

Explicitly

U(P,V((xnflaxn) ® (ymflaym)) = (xn Uy Ym—1+ (_1)mxn71 Uy (P(}’m),xn Uyym),
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it (% 1,%) € Chy (D) = C2U(D) @ CL (DY) and (yu1,ym) € Cl (D) =
C;“}_l (D") @ Cy'(D"). An easy computation gives the following formulas

Coa (D) @ Cp (D) = Cp (D' D),

Xo @Yo F X0 & Yo,

Co 4 (D) ®c(}, w(D") = Cp (D' @D"),

X0 ® (Yo,¥1) — (X0 @ y0,X0 @Y1),

0 I
Cp (D) @ C 5, (D") = Cp e (D' @ D),

(x0,x1) ®y0 = (X0 @ @(¥0),X1 ® Yx (o)),

{c (D)&CL . (D) = C3

o 0,7k o (D' @D"),
(x0,x1) @ (Yo, y1) = (x1 @ ¥k (o) —X0 @ @ (1)),

2 2
Cop (D) @€y (D) = Cg oy (D' @ D),

Xo®Yy1 = X0 @Y1,

(P YK(D/) ®C((l)) YK(DN) - CQ% YK(D/®D”)’
X1 @y~ x1 Q¥ (@(y1)).

Here the zero components are omitted.

2.4.2. — For each (¢,T'’x)-module D we denote by
RI(K,D) = [Cy . (D)]

the corresponding object of the derived category Z(A). The cohomology of D is
defined by

H'(D) =RT(K,D)=H'(C;, (D)), i>0.
There exists a canonical isomorphism in Z(A)
TRk : T=0RU(K, %A (xk)) ~ A]—2]
(see [39], [49], [46]). Therefore, for each D we have morphisms

(31) RT(K,D)ak RI(K, D () —% RT(K,D® D" (xx))

WAl RT(K, %, (X)) = T=2RU(K, Za(xx)) ~ A[-2].

The following theorem generalizes main results on the local Galois cohomology to
(¢,I')-modules.
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Theorem 2.4.3 (Kedlaya—Pottharst—Xiao). — Let D be a (¢,Ix)-module over
Fk A, where A is an affinoid algebra.

i) Finiteness. We have RU(K,D) € .@]ﬂgﬁl (A).

ii) Euler—Poincaré characteristic formula. We have

2

Y (—1)'tk4yH'(D) = —[K : Q)] 1kz, , (D).
i=0
iii) Duality. The morphism (31) induces an isomorphism

RI'(K,D*(xx)) ~ RI'(K,D)*[—2] := RHomy4 (RT'(K,D),A)[—2].
In particular, we have cohomological pairings
U H(D) @ H (D" () — HA(%a()) ~ A, i€{0,1,2).

iv) Comparision with Galois cohomology. Let V is a p-adic representation of G
with coefficients in A. There exist canonical (up to the choice of Yx) and functorial
isomorphisms

i ~ gimt
HZ(K7V) - Hl(Dng(V))
which are compatible with cup-products. In particular, we have a commutative dia-

gram

HX(Ba(x)) —= A

lw _

inv K

H? (K A(xx)) ———A,

where invg is the canonical isomorphism of the local class field theory (28).
Proof. — of See [46, Theorem 4.4.5] and [62, Theorem 2.8]. ]

Remark 2.4.4. — The explicit construction of the isomorphism TRg is given in [39]
and [6, Theorem 2.2.6].

2.5. The complex K*(V)
2.5.1. — In this section, we give the derived version of isomorphisms
i ~ gimt
HZ(K7V) — Hl(Dng(V))

of Theorem 2.4.3 iv). We write Cg, ,, (V) instead of Cg, . (Dj1 o(V)) to simplify nota-

tion. Let K be a finite extension of Q,. Let V be a p-adic representation of Gx with
coefficients in an affinoid algebra A.
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In [12], Berger constructed, for each r > rg, aring ﬁ” which is the completion of

B with respect to Frechet topology. Set Bng 4= Brlg ®QpA and Brllg A=

For each r > rg we have an exact sequence

0—Q, Bl LB -0
(see [13, Lemma 1.7]). Since the completed tensor product by an orthonormalizable
Banach space is exact in the category of Frechet spaces (see, for example, [3, proof
of Lemma 3.9] ), the sequence

O—>A—>BngA—>BTgA—>0

is also exact. Passing to the direct limit we obtain an exact sequence

(32) 0—+A-Bl,, T 5B, —0.

Set Vrlg =V ®a ﬁ;rig’ 4 and consider the complex C'(GK,V;{g). Then (32) induces an

exact sequence

0— C*(Gg,V) = C*(Gk, V.

rlg) —> C.(GK7Vr}Lg) — 0.

Define

K*(V) = T*(C*(Gk. V) = Tot (C’(GK,W

1) T C (G V).

Consider the map

v G (V) = C*(Gk, V)
defined by
Otv()C()) = X0, X0 € CJQK (V),
,)/K(g) -1
oy (x1)(g) = E——(x1), x1€Cp(V),

Yk —1
where g € Gk and }/;(g) = 8’r*,)( . Itis easy to check that oy is a morphism of complexes
which commutes with ¢. By fonctoriality, we obtain a morphism (which we denote
again by oy ):

OC\/IC.

o (V) = K (V).

Proposition 2.5.2. — The map o : Cg ., (V) — K*(V) and the map
Svi:  C(Gk,V)—=K*(V),
xn = (0,x), X, € C"(Gg,V)

are quasi-isomorphisms.

Proof. — This is [10, Proposition 9]. L]
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2.5.3. — If M and N are two Galois modules, the cup-product
Ue : C°*(M)RC*(M) - C*(M®N)
defined by

(%0 Ue ym) (81,825 - - -, 8ntm) =
= %n(815---,8n) @ (8182~ 8n)Ym(8n+15- > 8nim),
where x, € C"(Gk,M) and y,, € C"(Gg,N), is a morphism of complexes. Let V and
U be two Galois representations of Gg. Applying Proposition 1.1.5 to the complexes
C*(Gg, Vgg) and C*(Gg, Ur'li'g) we obtain a morphism
Uk : K*(V)QK*(U) = K*(VQU).

The following proposition will not be used in the remainder of this paper, but we

state it here for completeness.

Proposition 2.5.4. — In the diagram

. . U(p,y .
Cop(V)OCo , (U) —— Co (VRU)
oy QoY h veu
Py
K*(V)@K*(U) —=EZ - k*(VaU)

the maps Oy gy © Ug y and Uk o (Oly @ Oy ) are homotopic.
We need the following lemma.

Lemma 2.5.5. — For any x € Cy(V), y € C}, (U), let ¢,y € C'(T%, D} (V®U))
denote the 1-cochain deﬁned by

et -hos (B0 o
Yk —
and ¢, y(1) = ¢y (k) = 0. Then
i)ForeacthC;L % )andyGC(PYK(U)

Cr(y—1)y = Qv (X) Ue 0w () — oty u (x Uy y).
ii)Ifx e Cq, w(V)andy € Cy Yk( ) then
Clyg—xy = vy (xUyy) — ay (x) Ue oy ().
iii) One has
d' (Cx,y) =—Qv (x) Ue 0y (y)
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Proof of the lemma. — 1) Note that F?( is the profinite completion of the cyclic group
(¥x), and an easy computation shows that the map c,,, defined on (yx) by (33),
extends by continuity to a unique cochain on I (I)( which we denote again by cy .

For any natural n # 0, 1 one has

—1)y(7’1n<) = ZY’K Yk — H)()’):

ZZV’K ) @ % () Zﬁc =
Y}é
Yk —

L@ RO) - y”; i(mmy)) -
(0 ) OV v U D)

By continuity, this implies that ¢, (y, _1), = v (x) Ue a (¥) — aveu (xUyy), and i) is
proved.
ii) An easy induction proves the formula

+1 -1

(34) ZVK =D —

() =

Therefore

n—1 ) ,Yn Al
c(YK*l)x,y(YIy’() = Z( KJrl - 71!'()()6) ® KiK()’) =

i=0 YK_I
n—1 - ) ,ynK n— +1_1
:;,)(K+ —7’1’<)(X)®YK ZVK %= D) ® T () =
by (34) Ye Ye Y —1
- ne y§_1<y>+y’;_ (r@y) = ) @ ) =
Yk 7" B
}’K*1<x®) nyl()

= (oweu (xUyy)) (%) — (o (x) Ue o () (%)

and ii) is proved.
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iii) One has

dlcxy(y;(vym) = YeCxy (%) — C&y(ﬁ+m) +eny (k) =

+1 +m K+n+1
= ZY’Z ?()’)—
n+m—1 +m i+1
_ ' Wfi A
l;g Te(0) ® = — +ZYK YK_I (y)
n—1 +m i+1
=y V;(* A
= ,;,VK(X)@ — )+ Z;/K yK_l (y)
_n—I. 'Yn* +m B ,Yn_l 'J/m—l B
=Lhet o) =B menl 0=
= —(aw (x) Ue o () (7%, 1K) -
By continuity, d'c,, = —ay (x) U a (y), and the lemma is proved. O

Proof of Proposition 2.5.4. — Let
hy : C3 (V) ®Cy (U) = C* (G, Vi, @ UL [~ 1]

be the map defined by
—cy ifxeCl (V),yecCl (U),
hy(xy) =4 % B w(V),y € Cy (U)
0 elsewhere.

From Lemma 2.5.5 it follows that &, defines a homotopy
hy : aygy oUy~» Uco (oy @ o).
By Proposition 1.1.6, iy induces a homotopy
hey 1 Myeu oUgy~ Ugo (o @ oy ).

The proposition is proved. 0

2.6. Transpositions

2.6.1. — Let M be a continuous Gg-module. The complex C*(Gg, M) is equipped
with a transposition

Fye : C*(Gg,M) — C*(Gk,M)
which is defined by

T e(6)(81,825 -, 8n) = (= 1)) 20100 g (xaler !, 80 1)
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(see [56, Section 3.4.5.1] ). We will often write .7, instead of .7y .. The map .7
satisfies the following properties (see [56, Section 3.4.5.3] ) :

a) . is an involution, i.e. 7% = id.
b) 7 is functorially homotopic to the identity map.

c) Let 57, : C*(Gx,M @ N) — C*(Cx,N ® M) denote the map induced by the in-
volution M @ N - N® M given by x®y — y®@x (see Section 1.1.1). Set
T2 = T os},. Then for all x, € C"(Gg, M) and y,, € C"(Gk,N) one has

%Z(Xn Uym) = (_l)nm(f%ym) U (z‘xn%

i.e. the diagram

(35) C*(Gx, M) ®C*(Gg,N) —= C*(Gx,M & N)
lslz i%z
C*(Gg,N) ®C*(Gg,M) —= C*(Gx,N M)

commutes.

2.6.2. — There exists a homotopy
(36) a=(d") :id~ 7,

which is functorial in M ([56], Section 3.4.5.5). We remark, that from the discussion
in op. cit. it follows, that one can take a such that ¢’ = a! = 0.

2.6.3. — LetV be a p-adic representation of Gx. We denote by Jiy), or simply by
Tk, the transposition induced on the complex K*(V) by .7, thus

Tk W) On—1,%n) = (Te(Xn-1), Te(xn)).-

From Proposition 1.1.7 it follows that in the diagram

Uk

(37) K*(V)®K*(U) K*(VaU)
5120( Tk ()@ Tk (v)) Tk(veu)°Sia
ha

K(U)®K* (V) —XZ L g (U®V)

the morphisms Ty ey 057, © U and Ug 0512 0 (T (v) ® k(7)) are homotopic.
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Proposition 2.6.4. — i) The diagram

C*(Gx,V) = K*(V)

\L,Z iyk(v)
C*(Gx, V) = K*(V).
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is commutative. The map ag ) = (a,a) defines a homotopy agy : idgy) ~ Tkw)

such that agyyo &y = &y oa.
ii) We have a commutative diagram

C;D:YK (V) L K* (V)

I

Co (V) 2= K2 (V).

Ifa : id ~ . is a homotopy such that a® = a' = 0, then agyoay =0.

Proof. — 1) The first assertion follows from Lemma 1.1.6.
i) If x; € Cy (V) then o (x1) € C*(Gi, V) satisfies

Te(ay (x1))(g) = —glav(x1)(g™1) =

~x(g) K(g)
= 7 (”Wm) =0 =Ly = (aw () ().

¥k — 1 Y —1

Thus 7 oy = ay . By functoriality, 7k o ay = a . Finally, the identity agy)oay =
0 follows directly from the definition of &, and the assumption that ¢ =a' =0. O

2.7. The Bockstein map

2.7.1. — Consider the completed group algebra A4 = A[[['%]] of T% over A. Note
that Ay = A®z,A, where A = Z,[[T%]] is the classical Iwasawa algebra. Let 1 :
A4 — Ay denote the A-linear involution given by 1(y) = y~!, y € T%. We equip As

with the following structures:

a) The natural Galois action given by g(x) = gx, where g € Gk, x € A4 and g is the

image of g under canonical projection of Gg — F?(.

b) The As-module structure A} given by the involution 1, namely A xx = 1(4 )x for

A €Ay, xEAL
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Let J4 denote the kernel of the augmentation map A4 — A. Then the element
X =log™' (xx(1)(y=1) (mod J3) € Ja /I

does not depend on the choice of y € I‘?{ and we have an isomorphism of A-modules

04 : A— Ju/)J3,

64(a) = aX.
The action of G on the quotient A% = A 1/J% is given by

g(1) = 1+log(xx(8)X, g€ Gr.

We have an exact sequence of Gg-modules
(38) 0>A% AL 5A 0.

Let V be a p-adic representation of Gg with coefficients in A. Set Vk =V @4 AV}(.
Then the sequence (38) induces an exact sequence of p-adic representations

05V V=V 0.
Therefore, we have an exact sequence of complexes
0 — C*(Gk,V) — C*(Gg,Vk) = C*(Gg,V) = 0
which gives a distinguished triangle
(39) RI(K,V) — RI(K,Vk) — RI(K,V) — RIO(K,V)[1].

The maps : A — K% that sends a to a (mod J3) induces a canonical non-equivariant
section sy : V — Vi of the projection Vx — V. Define a morphism By : C*(Gk,V) —
C*(Gk,V)[1] by

1 1]
Bv.c(xn) :)?(dOSV*SVOd)(xn), x, € C*(Gg, V).
We will write f3. instead of Py . if the representation V is clear from the context.

Proposition 2.7.2. — i) The distinguished triangle (39) can be represented by the
following distinguished triangle of complexes

C*(Gk, V) = C*(Gx, Vi) = C*(Gx,V) 25 ¢* (G, V) 1].
ii) For any x, € C"(Gk,V') one has
Bv.c(6n) = —log 2k U xn.

Proof. — See [56, Lemma 11.2.3]. L]
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2.7.3. — We will prove analogs of this proposition for the complexes Cg, ,, (D) and

K*(V). Let D be a (@,Tx)-module with coefficients in A. Set D = D 4 Aj. The
splitting s induces a splitting of the exact sequence

(40) 0 D D="%D 0

which we denote by sp. Define

(41) Bo : Cg 5, (D) = C,, (D)[1],
ﬁD(X)ZXIV(dOSDSDOd)(x), x € Cg (D).

Proposition 2.7.4. — i) The map Pp induces the connecting maps H"(D) —
H"(D) of the long cohomology sequence associated to the short exact sequence
(40).

ii) For any x € C},

o (D) one has

Po(x) = —(0,log xk (Yk)) Ug,y X,
where (0,1og xx (Yx)) € C(},VYK(QP(O)).

Proof. — The first assertion follows directly from the definition of the connecting
map. Now, let x = (x,—1,%,) € Cg , (D). Then

(dsp —spd)(x) =

=d(xp—1 @ 1,0, @ 1) =sp((Yk — Dxn—1 + (= 1)" (¢ — 1)xn, (k — 1)x) =
= (k1) @Y% =% 1 @1+ (=1)"(@ = D), ® 1, Yk () @ Vg — 2, @ 1) —
—(=D-) @1+ (=1)"(¢ = Dx @1, (% — 1) (xa) ® 1) =

= (Y& (1) ® (¥ — 1), Y& (xn) @ (Y& — 1)).

From Yx = 1 + X log xx (¥x) it follows that Vel —1= —Xlog xx (yk) (mod J3) and
we obtain

Po(x) = %((YK(xnl)#K(xn)) ®(w—1))) =

= —log 2k (%) (Y (%n—1), Yk (%)) € Cipye (D).
On the other hand,

(0,1og xk (Y)) Ug.y (¥n—1,%n) = log i (¥ic) (Y (%n—1), Vi (xn))

and ii) is proved. 0
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The exact sequence

0— C.(GK’Vr.iI‘g) — C.(GK7 (Vkﬂlg) — C.(GK7Vr.iI;g) — 0,

induces an exact sequence
(42) 0— K*(V) = K*(Vk) = K*(V) — 0.

Again, the splitting sy : V — Vg induces a splitting s : K* (V) — K’(\7K) of (42)
and we have a distinguished triangle of complexes

~ Bk )
—

K (V) = K (V) = K*(V) =% k*(V)[1].

We will often write Bk instead of Bxy).
Proposition 2.7.5. — i) One has
Bk (x) = —(0,log xx ) Uk x, xeK"(V).

ii) The following diagrams commute

ﬂDT. v
C(Gi.V) Lo G, o (V) — (V)]
i‘gv lﬁv[l] ilxv \Lav[l]
K (V) — ko)1) K (V) — ko)1),

Proof. — 1) The proof is a routine computation. Let x = (x,_1,x,) € K"(V), where
Xy €C™! (GK,Vr;(g), xn € C"(Gk, V). Since sx commutes with ¢ one has

(dsg — sxd)x = ((dsy — syd)xy—1,(dsy — syd)xy).
On the other hand,
((dSV —SVd)Xn_]) (g17g27 cee 7gl’l) = glxn—1(827 e 7gn) b2y (g_l - 1)7

where g; denote the image of g; € Gk in I'. As in the proof of Proposition 2.7.4, we
can write §; — 1 (mod J3) = X log xx(g1). Therefore

(dosy —syod)x,_1(81,82,---,8n) = 10g Xk (81)81%n-1(g2,- - ,8n) ®X.

and

(dOSV — Sy Od)xn(g17g27 cee 7gn7gn+1) =
= log xx(81)81%n-1(82,---8n>&n+1) ®X.
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Since 1(g; — 1) = —X log ¥« (g1), we have

1
B (x)(g15---,8n) = ;(dOSK—SKOd)X(gl,gz,--.,gn) =

= _long(gl)(glxnfl(g% cee 7gn7gl1)7g1xn71 (g27 cee 7gn7gn+l))'
On the other hand, (0,log k) Uk (Xn—1,%n) = (2n,2n+1), Where

zi(g1,82,--.,81) =logxk(g1)g1xi(g2,...,8i), i=n,n+1,
and 1) is proved.
ii) The second statement follows from the compatibility of the Bockstein mor-
phisms S, ﬁDEg (v) and Bk with the maps ay and By . This can be also proved using i)
and Propositions 2.7.2 and 2.7.4. O

2.8. Iwasawa cohomology

2.8.1. — We keep previous notation and conventions. Set K., = (K¢)% where
Ax = Gal(K(&,)/K). Then Gal(Kw./K) ~ T'% and we denote by K,, the unique subex-
tension of K., of degree [K, : K] = p". Let E be a finite extension of Q, and let Of
be its ring of integers. We denote by Ag, = Og[[[%]] the Iwasawa algebra of T
with coefficients in @%. The choice of a generator yx of T fixes an isomorphism
Ag, ~ Og|[X]] such that yx — X + 1. Let %% denote the algebra of formal power
series f(X) € E[[X]] that converge on the open unit disk A(0,1) = {x€ C, | x|, < 1}
and let
H(Ty) = {f (o = 1) | F(X) € A}
We consider Ag, as a subring of % (I'%). The involution t : Ag, — Ag, extends to
H%(TY). Let Ap, (resp. H%(T%)Y) denote Ag, (resp. #(I'%)) equipped with the
Ag,-module (resp. 7% (T'%)-module) structure given by o« A = 1(a)A.
Let V be a p-adic representation of Gx with coefficients in E. Fix a Og-lattice

T of V stable under the action of Gk and set Indg_/x(T) =T ®g, Aj,_. We equip
Indg_/x(7') with the following structures:

a) The diagonal action of Gk, namely g(x® 1) = g(x) ® gA, for all g € Gk and

XA € Inde/K(T);
b) The structure of Ag,-module givenby a(x®@A) =x®@A1(o) for all ¢ € Ay, and
x®@A € Indg_/k(T).
Let Ry (K, T) denote the class of the complex C*(Gk,Indk_,x (7)) in the derived
category Z(Ag,) of Ag,-modules. The augmentation map Ay, — Of induces an
isomorphism
RDy (K. T) ), Op ~RU(K,T).
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We write H| (K,T) = RT(K,T) for the cohomology of RI(K,T). From
Shapiro’s lemma it follows that
H{,(K,T)=1limH'(K,,T)
) o

(see, for example, [56, Sections 8.1-8.3]).
We review the Iwasawa cohomology of (¢,I'x)-modules [19, 46]. The map ¢ :

Bji’; K= Bji’g’j;( equips Blé’% with the structure of a free ¢ : BL"; r-module of rank p.
Define
. ph.pr T _ 1 -1 .
v Bik = Bigks V) =20 Ty oy ) ):

Since Zxq, = U B’

r>rr rig,K”
Fk g — Xk such that yo @ =id.
Let D is a (¢,['x)-module over Zx r = %k ®q, E. If e1,e2,...,eq4 is a base of D
over Zk ., then @(e;),p(e2),...,0(ey) is again a base of D, and we define

the operator y extends by linearity to an operator Y :

v :D—D,

d d
v <;a,~(p(e,~)> = ;‘I/(ai)ei-

The action of ') on D*% extends to a natural action of %% (I'}) and we consider the
complex of 7% (I'%)-modules

ce (D) : DA Y7L pAr,

where the terms are concentrated in degrees 1 and 2. Let RI, (D) = [C}, (D)]
denote the class of Cf, (D) in the derived category Z(#%(I'%)). We also consider
the complex Cg ,, (Indg_ /x(D)), where Indg_x(D) = D ®g H5(T%)', and set
RI(K,Indg_ k(D)) = [C§ . (D)] .

Theorem 2.8.2 (Pottharst). — Let D be a (¢,T'x)-module over Zx . Then

i) The complexes C},,(D) and Cyp (D) are quasi-isomorphic and therefore
RT,, (D) ~ RO(K, Indg_/x(D)).

ii) The cohomology groups Hi, (D) = R'T1y (D) are finitely-generated #%(I'%)-
modules. Moreover, 1k , o )HIIW (D) = [K : Q) kg, D and HL,(D)or and HE, (D)
are finite-dimensional E-vector spaces.

iii) We have an isomorphism

C(.PKJ/K (Inde/K(D)) ®%(r{l)() E :> C(.P,VK (D)
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which induces the Hochschild—Serre exact sequences
0 — Hi\, (D)o — H'(D) — H{' (D)% — 0.
iv) Let ® = cone [ g (L) — A (Ty)/ A5 ([T%)] [—1], where A5 (TY) is the field
of fractions of #%(T%). Then the functor 2 = Hom (10 (—, @) furnishes a duality
JRT'1w(D) ~ Rl (D" (k)" [2].

v) If V is a p-adic representation of Gk, then there are canonical and functorial
isomorphisms

RUw (K, T) @, #p(Tg) ~RT (K, T @0, Ap(TR)") =
~RI(K,Indg_sx (D} (V))).
Proof. — See [61, Theorem 2.6]. O
We will need the following lemma.

Lemma 2.8.3. — Let E be a finite extension of Q, and let D be a potentially
semistable (¢,I'x)-module over Zx k. Then

. =1

i) Hy (D)or = (DA) 777

ii) Assume that .

Do (D" (xx))?~7 =0,  Viel.
Then HZ,(D) = 0.
Proof. — 1) Consider the exact sequence

0 D?=! 5 pv=1 2L py=0,

Since (DA")I’/:1 ~ H{, (D) and, by [46, Theorem 3.1.1], D¥=0 is 7% (I')-torsion
free, we have HJ, (D)ior C (D2)?~'. On the other hand, D?=! is a finitely di-
mensional E-vector space (see, for example, [46, Lemma 4.3.5]) and therefore is
% (TY)-torsion. This proves the first statement.

i) By Theorem 2.8.2 iv), HZ, (D) and H (D*(Xk))wor are dual to each other and
it is enough to show that D*(yx)?~! = 0. Since dimg D*(yx)?~! < o, there exists
r such that D*(xx)?=' € D*(xx)""), and for n > 0 the map i, = @ " : '@1(;)15 —
E ®q, K?°[[t]] gives an injection

~

D*(xx)*~" = D" (xx)" @i, (E @, K¥[[1)]) =
= Fil’ (Zar (D" (xx)) @k @KV((1))).

Looking at the action of I'x on Fil® (Zyr (D*(xx)) @k K<((¢))) and using the fact
that D*(xx)?~! is finite-dimensional over E, it is easy to prove, that there exists a
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finite extension L/K such that D*(yx)?~!, viewed as G;-module, is isomorphic to a
finite direct sum of modules Q,,(i), i € Z. Therefore

% = * = . FL .
D*(xx)?~" = (D*(2x)?~' @, Qp(—1)) " ®q, Qp(i)
as G;-modules. Since
(D" (k)" ©0, Qp(—)) ™ C (D" (xk) @it A1 /1)) =

= P4 (D"(xx))?7" =0,

we obtain that D*(yx)?=' = 0, and the lemma is proved. O

2.9. The group H(D)

2.9.1. — For the content of this section we refer the reader to [7, Sections 1.4-1.5].
Let D be a potentially semistable (¢,I'x)-module over %k g, where E is a finite
extension of Q,. As usual, we have the isomorphism

I‘I1 (D) ~ EXt&K.E (%K,EaD)
which associates to each cocycle x = (a,b) € Cy ,,
0—=+D—=D,— Zxg—0

(D) the extension

such that D, = D & Zx ge with ¢(e) = e+ a and yg(e) = e+ b. We say that [x] =
class(x) € H'(D) is crystalline if
rkE®Ko(gcris (Dx)) = I‘kE®KO(-@cris (D)) +1
and define
H}(D) = {[x] € H'(D) | cl(x) is crystalline}.
This definition agrees with the definition of Bloch and Kato [16]. Namely, if V is a

potentially semistable representation of Gg, then

H} (D, (V) ~ HNK,V)

(see [7, Proposition 1.4.2]).
Proposition 2.9.2. — Let D be a potentially semistable (¢,I'x)-module over %k .
Then
i) H'(D) = Fil’(Zps(D))?=""N=00x gnd Hfl» (D) is a E-subspace of H' (D) of di-
mension
dimg H} (D) = dimg Zgr (D) — dimg Fil’ Zgr (D) + dimg H°(D).

ii) There exists an exact sequence
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where tp(K) = Zur (D) /Fil’ Z4r (D).
iii) H } (D*(xk)) is the orthogonal complement to H } (D) under the duality
H'(D) x H' (D*(xx)) — E.
iv) Let
0O—-D; —D—>D,—0
be an exact sequence of potentially semistable (¢,T'x)-modules. Assume that one of
the following conditions holds
a) D is crystalline;
b) Im((H°(D,) — H'(D1)) C H}(Dy).
Then one has an exact sequence

0— H(Dy) — H(D) — H°(Dy) — H}(Dy) — H} (D) — H}(D;) — 0.

Proof. — This proposition is proved in Proposition 1.4.4, and Corollaries 1.4.6 and
1.4.10 of [7]. For an another approach to H }(D) and an alternative proof see [53,
Section 2]. O

2.9.3. — In this subsection we assume that K = Q,. We review the computation
of the cohomology of some isoclinic (¢,Iq,)-modules given in [7]. To simplify
notation, we write ), and 1'2 instead of yq, and 1'%]7 respectively.

Proposition 2.9.4. — Let D be a semistable (¢,I'q,)-module of rank d over %q, r
such that P (D)?=' = P(D) and Fil’ P (D) = Z(D). Then
i) D is crystalline and H°(D) = De.is(D).
ii) One has dimg H°(D) = d, dimg H' (D) = 2d and H*(D) = 0.
iii) The map
iD : gcris (D) ® -@cris (D) — Hl (D)a
ip = cl(—x,log %, (%, )y)
is an isomorphism of E-vector spaces. Let ip r and ip . denote the restrictions of ip
on the first and the second summand respectively. Then Im(ip 5) = H } (D) and we
have a decomposition
H'(D) = H{(D) & H; (D),
where H! (D) = Im(ip ).
iv) Let D*(),,) be the Tate dual of D. Then

Dexis(D* (1)) * " = exis(D* (1))
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and Fil® D5 (D* () = 0. In particular, H*(D* (x,,)) = 0. Let
[7 ]D . @cris(D* (Xp)) X @cris(D) —E
denote the canonical duality. Define a morphism

iD* (xp) : -@cris (D* (XP)) ® chis (D* (XP)) - Hl (D* (XP))
by
ip+(y,) (@, B) Uin(x,y) = [B,x]p — [a,y]p
and denote by Im(iD*(xp% r) and Im(iD*(xp%C) the restrictions of ip+(y,) on the first and
the second summand respectively. Then Im(ip.(y,) r) = H } (D*(xp)) and again we
have
H'(D*(xp)) = H} (D" (1)) ® H, (D" (%)),
where H (D* (%)) = Im(ip-(5 ) )

P

Proof. — See [7, Proposition 1.5.9 and Section 1.5.10]. O

Lemma 2.9.5. — Let D be a semistable (¢,Lq,)-module of rank d over %q, r
such that 94 (D)?~! = 94(D) and Fil’ P4 (D) = P4(D). Let w, = (0,logxp(1,)) €
CL . (E(0)). Then

(pa,YQp
H!(D) =ker (Uw, : H' (D) — H*(D)),
H (D" (%)) = ker (Uw, : H'(D*(%,)) — H*(D*(%,))) -
Proof. — This follows directly from the definition of the cup product. 0

We also need the following result.

Proposition 2.9.6. — Let D be a crystalline (¢,Tq,)-module over %q, g such that

1

Deris(D)P=P" = Diyis (D) and Fil° Dyis (D) = 0. Then
Hi\,(D)ry = H; (D).
Proof. — See [10, Proposition 4]. ]



CHAPTER 3

p-ADIC HEIGHT PAIRINGS I: SELMER COMPLEXES

3.1. Selmer complexes

3.1.1. — In this section we construct p-adic height pairings using Nekovaf’s for-
malism of Selmer complexes. Let F' be a number field. We denote by S (resp. S)
the set of all non-archimedean (resp. archimedean) absolute values on F. Fix a prime
number p and a compatible system of p"-th roots of unity € = ({yn),>1. Let S C Sy
be a finite subset containing the set S, of all q € Sy such that q | p. We will write
Y, for the complement of S, in S. Let Grs denote the Galois group of the maximal
algebraic extension of F' unramified outside S U S.. For each q € S, we fix a decom-
position group at q which we identify with Gr,. If g € S, we denote by I'y = I'r, the
p-cyclotomic Galois group of Fy and fix a generator ¥, € I' 8.

3.1.2. — Let V be a p-adic representation of Gr with coefficients in a Q,-affinoid
algebra A. We will write Vj; for the restriction of V' on the decomposition group at q.
For each q € S, we fix a (¢,I';)-submodule D, of D:ig(Vq) that is a #Zr, a-module

direct summand of D;fig’ 4(Vg). Set D = (Dyg)4es, and define

C(Ve), ifgeX,,
where
CalVe) : Vit 5V, qex,
and the terms are concentrated in degrees 0 and 1. In this section we consider these
complexes as objects in %/ﬁ[O,Z] (A). Note that, if q € S, the objects RI'(F;,V) =
[C*(GF,,V)] and RI(F,Dq) = [U7(V,D)] belong to 9&2}? (A) by Theorems 2.3.2
and 2.4.3. On the other hand, if q € X, then, in general, the module Vla and the

complex Ug (V,D) are not quasi-isomorphic to a perfect complex of A-modules. We
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discuss this in more detail in Sections 3.1.6-3.1.9 in relation with the duality theory
for Selmer complexes.
First assume that q € X,. Then we have a canonical morphism

(43) gq : U (V,D) = C*(GF,,V)
defined by
gq(x0) = X0, if xo €U (V,D),
8q(x1)(Frg) =x1, if x5 € Uql(V,D)
and the restriction map
(44) fq=resq : C*(Grs,V) — C’(qu,V).

¥

Now assume that q € S,. The inclusion Dy C Dy,

Ug (V,D) =Cg ,(Dg) — C (V). We denote by

(Vy) induces a morphism

(45) gq : Uq.(V¢D) — K.(Vq)¢ q | p

the composition of this morphism with the quasi-isomorphism ay, : C;,’Y(Vq) ~
K*(Vy) constructed in Section 2.5 and by

(46) fo 1 C(Grs,V) = K*(Vq),  alp

the composition of the restriction map resq : C*(Grgs,V) — C*(GF,,V) with the
quasi-isomorphism &y, : C*(GF,,V) — K*(V,) constructed in Proposition 2.5.2. Set

K.(V) — K.(VCI) if q € Sp’
| C*(Gr,,V) ifqex,

and

K(V) = 9 K3(V).

U*(V.D) = ¢ US(V,D).
qes

We turn now to global Galois cohomology of V. By [62, Section 1], one has

C*(Grs,V) € 47 (4)
and the associated object of the derived category

RTs(V) = [C*(Grs,V)] € 70 (A).
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Therefore, we have a diagram in Ji/ﬁ[oﬁ] (A)

C*(Grs.V) ——K*(V)
|
U*(V,D),
where f = (fy)qes and g = (gq)qes, and the corresponding diagram in .@f[to’?’] (A)
@RI(F,V)

qes

@RI(F,,V,D),
qes

RI5(V)

where we set RI'(F;,V,D) = [Uq° (v, D)] forall g € S. The associated Selmer complex
is defined as

S*(V,D) = cone [C’(GFVS, V)aUu(v,D) =% ke (v)| [-1].

We set RI'(V,D) := [$*(V,D)] and write H*(V,D) for the cohomology of S*(V,D).
Since all complexes involved in this definition belong to J#;(A), it is easy to check
that $*(V,D) € " (A). If, in addition, [C3,(Vy)] € 2wy (A) for all g € %, then
03
RI(V,D) € 7503(A).
Each element [x**!] € H(V,D) can be represented by a triple

(47) 2= (x, (o), (Ag)),

where, for each g € S,
x € CYGrs,V), xi €ULV.D), A€ K:N(V),
d(x) =0, d(xg) =0, Ja(x) = gq(xg) — d(Aq).

3.1.3. — The previous construction can be slightly generalized. Fix a finite subset
Y C X, and, for each q € X, a locally direct summand M, of the A-module V; stable
under the action of Gr,. Let M = (M) qex.- Define

CQ.D,Yq (Dy), ifqes,,
Uq.(VvD’M): Car(Va), ifqeX,\x,
C'(qu,Mq), ifgeX.

In short, we replace unramified conditions at all q € X by Greenberg conditions de-
fined by the family of subrepresentations M = (Mg)qex. We denote by So(V,D, M) the
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associated Selmer complex and set R['(V,D,M) := [S*(V,D,M)]. This construction
is a direct generalizaton of Selmer complexes considered in [56, Section 7.8] to the
non-ordinary setting.

Consider two important particular cases. If My = 0 for all q € X, we write S3.(V,D)
and RI'x(V,D) for S*(V,D,M) and RI'(V,D,M) respectively. If M, =V, for all
q € £, we write S&*(V,D) and R['**(V,D) for $*(V,D,M) and RI'(V,D, M) respec-
tively. These complexes are derived analogs of the strict and relaxed Selmer groups
in the sense of [63, Section 1.5]. Note that R['y, (V,D) and RI™ (V, D) are objects of

9&2’;1 (A). See Section 3.1.6 for further remarks concerning these complexes.

3.1.4. — We construct cup products for our Selmer complexes RI'(V,D,M). Con-
sider the dual representation V*(1) of V. We equip V*(1) with the dual local condi-
tions setting

D, =Homy, (D} (V)/Dq, Zs(2)), VA ES),

MqL = Homy (Vq/Mq,A(%q)), Vgek,
and denote by fqL and qu the morphisms (43-46) associated to (V*(1),D+,M*). We
also remark that the composition

8408y

2, € (Gr,, V) @ C* (G, VH (1)) =

(48) Car(Ve) @ G (Vg (1)) — A[-2]

is the zero map [56, Lemma 7.5.2]. Consider the following data

1) The complexes A} = C*(Grs,V), B} =U*(V,D,M), and C} = K*(V) equipped
with the morphisms f| = (fy)qes : A} = C}and g1 = @ gq : B} = C};
qes

2) The complexes A5 = C*(Gps,V*(1)), BS = U*(V*(1),D+,M1), and C; =
K*(V*(1)) equipped with the morphisms f, = (qu)qu : A5 — C5 and
Q= ®gy B —~Cs;

qes
3) The complexes A3 = 7>2C*(Grs,A(1)), B§ =0 and C5 = 7=,K*(A(1)) equipped
with the map f3 : A3 — C3 given by
©rC* (Grs,A(1)) 2% (120C* (Gr, A1) = T2K* (A(1))
q
and the zero map g3 : B3 — C3.

4) The cup product Uy : AT ® A5 — A3 defined as the composition

Uy : C*(Grs,V) ®C*(Grs, V(1)) = C*(Grs,V@V*(1)) —
C*(Grs,A*(1)) = T2C* (Gps,A*(1)),
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5) The zero cup product Ug : B} ® B — B3.
6) The cup product Uc : C7 ® C5 — C3 defined as the composition
K*(V)®@K*(V*(1)) =N K*(VeV*(1l)) = K*(A(1)) = 1=2K*(A(1)).
7) The zero maps hy : A} ® A5 — C3[—1] and hy : B @ B3 — C3[—1].
Theorem 3.1.5. — i) There exists a canonical, up to homotopy, quasi-isomorphism
rs : E3 — A[-2].

ii) The data 1-7) above satisfy conditions P1-3) of Section 1.2 and therefore define,
for each a € A and each quasi-isomorphism rs, the cup product

Uass 1 ST(V,D,M) @4 S°(V*(1), D, M*) — A[-3].

iii) The homotopy class of U, », does not depend on the choice of r € A and, there-
fore, defines a pairing

(49) Uvpwm : RO(V,D, M) @5 RO(V*(1),DH, M*) — A[-3].

Proof. — 1) We repeat verbatim the argument of [56, Section 5.4.1]. For each q € S,
let iq denote the composition of the canonical isomorphism A ~ H?(F;,A(1)) of the
local class field theory with the morphism 7-,C*(GF,,A(1)) — K*(A4(1)). Then we
have a commutative diagram

(resq)q j

72C*(GF5,A(1)) — @51'221('(140[(1)) —E3
qe

(iq)qT is

DA[-2] —— A[-2],
qes

where ig = joig, for some fixed qo € § and X denotes the summation over q € S.
By global class field theory, is is a quasi-isomorphism and, because A[—2] is con-
centrated in degree 2, there exists a homotopy inverse rs of ig which is unique up to
homotopy.

ii) We only need to show that condition P3) holds in our case. Note that Uy = U,,
Up = 0 and U¢ = Ug. From the definition of Uk it follows immediately that

(50) Uko(fi®f2) = froU,.

If g €8, (resp. if q € X), from the orthogonality of DqL and Dy (resp. from the
orthogonality of My and M) it follows that Ug o (g ®g;) = 0. If g € £, \ E, we
have U. o (gq ®qu) = 0 by (48). Since g3 oUp = 0, this gives

(51) Uco (81 ®g2) =g3oUp =0.



64 CHAPTER 3. p-ADIC HEIGHT PAIRINGS I: SELMER COMPLEXES

The equations (50) and (51) show that P3) holds with hy = h, = 0. We define U, ,,
as the composition of the cup product constructed in Proposition 1.2.2 with rg. The
rest of the theorem follows from Proposition 1.2.2. O

3.1.6. — In this subsection we discuss the duality theory for Selmer complexes.
Recall that we have the anti-involution (29) on the category Zpe(A) given by (1)
X — X" =RHomy (X ,A).
The cup product Uy,p » induces a map in Z5(A):
(52) RI(V*(1),D*,M*) — RHomy (RT(V,D,M),A)[-3].
For each q € S define

U2 (V,D,M) = cone (Uq'(V,D,M) Sa, K'(Vq)) (1]

and liT"(Fq,V,D,M ) = [ﬁq' (V,D,M)] . From the orthogonality of g, and qu under
the cup product K*(Vy) @ K*(V, (1)) — A[-2] it follows that we have a pairing
Us (V,D,M)@U; (V*(1),D, M) — A[-2]
which gives rise to a morphism in Z%(A)
(53) RI(F,,V*(1),D*, M*) — RHoms(RL(Fy, V,D,M),A)[—2].

Let g € X, \ X. Denote by I3 the wild ramification subgroup of ;. Fix a topological
generator t4 of I;/ 13’ such that for any uniformizer @ of Iy

1/p" 1/p"
(@) =Cpm)", n=1,

where € = ({,n),>1 is our fixed system of p"-th roots of unity. We also fix a lift
Fy € Gy/1y of the Frobenius Fry. Define

(lftq,Gqfl) i

(quhtqfl) v v
L vl gyl T vl

Co(Vq) : Vi
where 0; = Fy(1 414+ -+ tqq‘rl) and g, is the order of the residue field of F mod-
ulo q. We refer the reader to [56, Sections 7.1-7.6] for the proofs of the following
results. The complex Cg(Vy) is quasi-isomorphic to C*(Gr,,V). The natural in-
clusion V% < V@ induces a monomorphism of complexes C3,(Vy) — C(Vy)- Let
Ca(Vy) = C(Vq)/Ca:(Vy). Then the natural projections induce a quasi-isomorphism

(54) CarlVy) = (v'f?’/aq — VA I v /(g - 1>v’é”)

1. Note that the dualizaton functor is not defined on 25 (A).
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where the terms are concentrated in degrees 1 and 2. We also remark that sinceq € X,
the group ;" acts on V through a finite quotient H and we have a decomposition

(55) VeV e v),

where Iy = ker(Z[H| — Z) is the augmentation ideal. In particular, the submodule
V14 is a direct factor of the projective A-module V and therefore is projective itself.
From (55) we also get

(56) V*(1)% = Homy (Va,A)(1).
For the representation A(1) we have

(0.0)

G0 s (yean) 2% an).

Ca(A(1)) - A(1)
The canonical isomorphism invp, : HZ(Fq,A(l)) — A has the following description
in terms of this complex:

(57)
XX E=x.

{HZ(C&(A(I))) —A

Now we can formulate the following result which is a more precise version of [62,
Theorem 1.16] in our context.

Theorem 3.1.7. — i) For all q € £US, the map (53) is an isomorphism in @ggﬁ] (A).

ii) Let q € £, \ X. If the A-module V'3 | (t; — 1)V'a is projective, then the A-modules
Vi V(1) and V* (1) / (t, — 1)V*(1)s are projectives and the map (53) is an iso-
morphism in .@gg’r?] (A).

iii) If, for all € £,)\ X, the A-module V'3 / (t,— 1)V'3 is projective, then the duality

map (52) is an isomorphism in @ggﬁ»} (A):

RI(V*(1),D,M*) ~ RO(V,D, M)*[-3].

Proof. — 1) For q € X, the assertion 1) is proved in [56, Section 6.7] in the context
of admissible modules. Recall that it follows directly from the local duality for p-
adic representations. Mimiking this proof and using Theorem 2.3.2 we obtain that
(53) is an isomorphism for q € X. The same proof applies to the case q € S, if we
use Theorem 2.4.3 instead Theorem 2.3.2. Namely, consider the tautological exact
sequence
0—Dg— Djig(Vq) — f)q —0,

where ]N)q = Dj'ig (V4)/Dgq. Applying the functor RI'(F;, —) to this sequence, we obtain
a distinguished triangle

RI(F5,Dq) — RF(FQ’Djig(VQ)) — RI'(F3,Dq) — RI'(Fq,Dq)[1],
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and therefore ﬁf(Fq, V.D) ~ RF(Fq,ﬁq). From the definition of DqL we have DqL ~
13;‘ (x). Using Theorem 2.4.3, we obtain that

RT(F;,D;") ~ R(Fy, D (1)) ~
~ RHomy (RT(F,,Dy),A)[—2] ~ RHom, (RT(F,,V,D),A)[-2],

and therefore (53) holds forq € §,.
ii) Assume that V'3 /(t, — 1)V'4 is projective. Then the tautological exact sequence

0= (tg— DV - Vi 5Vl /(t,— 1)V =0

splits and (¢; — I)VIEIV is projective as direct summand of the projective module V4.
The same argument applied to the exact sequence

w tq—1 W
(58) 0— Vi o VI I (1, — 1V 0

shows that V4 is projective. Dualizing the sequence (58) and taking into account (56)
and the fact that I, acts trivially on Q, (1) we get the sequence

0= (tg— V()T = V(1) — (V)" (1) = 0.
This sequence is split exact because the sequence (58) splits. Therefore

(59) V) (tg— 1)V (1) =~ (Vi) (1).

w

Since V4 is projective, V*(1) /(t, — 1)V*(1)%a is projective. This also implies the
projectivity of V*(1)%.
Now we show that (53) is an isomorphism. Consider the following diagram in

20 (A).

0 —— [Ch (Vg (1))] RI(Fy, V*(1)) —— RI(F;, V(1)) —0

L

0 — R(Fy,V)*[~2] — RT(Fy, V) [~2] — [Co(Vy)] [~2] — 0

where we write ﬁf(Fq,V) = ﬁl/“(Fq,V,D,M ) to simplify notation. The upper row
is exact by the definition of RI'(F;,V*(1)). The exactness of the bottom row follows
from the definition of RI'(Fy,V) and the exactness of the dualization functor. The

middle vertical map p is induced by the local duality and is an isomorphism by
Theorem 2.3.2.
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We show that v is an isomorphism. This will imply that A is an isomorphism.
From (59) it follows that

qqFrg—1
_—

RT(Fy, V(1)) =~ | (VA)"(1) (V’“)*(l)}

Ly b | = e
(Note that all involved modules are projective.) Using (57) it is easy to check that
this isomorphism coincides with v and ii) is proved.

iii) Repeating the arguments of [S6] (see the proofs of Proposition 6.3.3 and Theo-
rem 6.3.4 of op. cit.) itis easy to show that if R['(F;,V,D) and R['(Fy, V*(1),D4) are
perfect and (53) holds for all g € S, then (52) is an isomorphism. Now the statement

follows from 1) and ii).
O

Corollary 3.1.8. — Let WD(V,) denote the Weil-Deligne representation associated
to Vy equipped with the canonical monodromy Ny : WD(Vy) — WD(V;). Assume that
for all q € £, \ X, the A-module WD(V,) /NqWD(Vy) is projective. Then the duality
map (52) is an isomorphism.

Proof. — We remark that Grothendieck’s monodromy theorem holds for representa-
tions with coefficients in an affinoid algebra [4, Lemma 7.8.14]. Let Fq’ / F, be a finite
extension such that the action of the inertia subgroup IC’| of Gy on'Vy factors through
the p-part Tx(p) of its tame quotient Tx. Recall that WD (V) =V, as A-module and
that the monodromy Nj, is defined as the derivative of the action of Tx(p) on V; at 1.
The decomposition (55) is compatible with the action of G, and therefore with the
monodromy Ng. Thus, V1 /Ny (V1) is a direct summand of WD(V;) /NgWD(Vj).
From the definition of N it follows that for m > 0

m
tq

i = exp(mNg).

Since exp(mNg) — 1 = mNgRy, where Ry = 1 +mNg/2! + (mNg)? /3! + - -+ is invert-
ible, we have
(1" = )V = Ny (V)
and
Vi /(= 1)V =V /Ny (V7).
To simplify notation, set W = Vi / (g — 1)V, Since 1" acts trivially on W, we have

W=l DWW, W= (bt
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Assume that WD(V;)/NgWD(V;) is projective. Then W = V'a /N, (V') is projec-
tive. Since

VI (tg— D)V =W/ (tg— )W =~ W/

and W is a direct summand of W, the A-module V4 /(t; — 1)V is projective. Now
the corollary follows from Theorem 3.1.7 iii). O

Remarks 3.1.9. — 1) Let f be a primitive eigenform of level N and weight k > 2.
Assume that (p,N) = 1. Fix a p-stabilization f, of f and denote by x( the corre-
sponding point on the Coleman—Mazur eigencurve. Let f be the family of p-adic
modular forms passing through f,. Taking a sufficiently small affine neighborhood
U = Spm(A) of xg, we can associate to f a canonical p-adic Galois representation
Wt over A. Let A,, and Wt ,, denote the localizations of A and Wt at xo. Note that
Wy = Wg , /My Wy, is the p-adic representation associated to f by Deligne.

Consider the representation V = Wi(y), where v is a continuous Galois character
unramified outside p with values in A*. First assume that for all q|N the following
conditions hold:

a) If f is Steinberg at q, then y, (Fry) is not a Weil number of weight —k or 2 — k;

b) If f is not Steinberg at q, then y;, (Fry) is not a Weil number of weight 1 — k.
From the purity of p-adic representations associated to modular forms it follows that
in this case, the complex RI'(Qq,V;) is locally acyclic at xg (see, for example, [56,
Proposition 12.7.13.3]). Therefore, the duality map (52) is an isomorphism on a
sufficiently small neighborhood of xj.

In the general case, RI'(Qy, V) is not locally acyclic and the argument is different.

By [27, Proposition 2.2.4], for each q|N, the A,,-module Wflivo /(tq— I)Wfli’:o is free @),

Replacing U by a smaller neighborhood if necessary, we obtain that Wf[CI /(tq— l)WfI‘;v
is free. Since W is unramified outside p, the module V/3 /(t,— 1)V is free. Therefore
Theorem 3.1.7 applies, and again the duality map is a local isomorphism at xg.

2) In higher dimension, the situation is more complicated. See [64] for some
related results.

2. In [27], the authors consider Hida families, but in the general case the proof is the same.
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3.1.10. — Equip the complexes A7, B} and C; with the transpositions given by

%1 = '7‘/,(,'7

Ts = @id o @ id ol @),
B <qES,, C‘Pe}’(Dq)) (qEZP\E Cur(vq)> <q€2 M‘P‘)

T, = ( & zqvq>> @( & %)
qes, qeL,
‘7142 = %*(1)7”

0 () g ) ()
B, qul CoyD§) | D qeg?,\il CulVE(1) | © qeeaz Mt )

T, = ( s yK(v;;(l))) EB( @ 9\/;(1),c) :

qes, qex,
<7A3:<7A(1),c7
T, = id,
A ol & Zun ).
“ (qGSp K(A(l)q)) (CIEZP A(])q7>

Theorem 3.1.11. — i) The data (60) satisfy conditions T1-7) of Section 1.2.
ii) We have a commutative diagram

RT(V,D,M) @k RO(V*(1),D, MY) — > A[-3]
lslz \L_

* IREVIRON § vt
RO(V*(1),D", M) @k ROV, D, M) A[-3)

Proof. — 1) We check conditions T3-7) taking U, = U,, U = 0 and U, = Ug. From
(50) and (51) it follows that T3) holds if we take h} = hg, = 0. To check condition
T4) we remark that, by Proposition 2.6.4,i) we have f;o .94 = J¢ o f; and we can take
U; = 0. The existence of a homotopy V; follows from Proposition 2.6.4 ii) and [56],
Proposition 7.7.3. Note that again we can set V; = 0.

We prove the existence of homotopies t4, 3 and #¢ satisfying TS). From the com-
mutativity of the diagram (35), it follows that U, 05120 (74 ® J4) = F4 oU, and we
can take 74 = 0. Since Uy = Up = 0, we can take t5 = 0. We construct 7 as a system
of homotopies (fcq)qes such that tcq : U os120 (@ (1) )~ Z\(l)mc o U,

9:¢

forq€ X, and fcq t Ugosppo ('Z((Vq) X 9K(V(1)q)) ~ Z((A(l)q) oUg forq € §,. As
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before, from (35) it follows that for g € X, one can take 1c = 0. If g € §),, by Propo-
sition 1.1.7 we can set

(61) tC,q((xn—laxn) ® (Ym—1®Ym)) = (_1)n<<7A(1)q,c(xn—l UeYm-1),0)

for (x,—1,x,) € K"(Vq) and (ym—1,ym) € K™(V*(1)q) (see (24)). This proves T5).
From (61) it follows that 7c o (f; ® f) = 0 and it is easy to see that T6) and T7) hold
if we take Hy = H, = 0.

ii) For each Galois module X, we denote by ax : id ~» Jx . the homotopy (36).
Recall that we can take ay such that ag)( = a} = 0. Consider the following homotopies

ka, = ay @ id ~ Tpe, onAj,
kg, = ® 0 Ol Da cid ~ on B},
(62) b (qespuzp\z U“(V’D’M)> <qez M“) B !
ke, = < D aK(Vq)> 8P < D avq> 2id ~» %I', on Cl.-
qes, qeL,

We will denote by ka,, kp, kc, the homotopies on A3, B and C3 defined by the
analogous formulas. From Proposition 2.6.4, ii) it follows that

foka =ke,of, froka =keoft,
gokg, =kc 08, g okp =kcog".

By (20), these data induce transpositions Z3¢! and Z,Sf%l) on S*(V,D,M) and

S*(V*(1),D+,M*), and the formula (21) of Subsection 1.1.2 defines homotopies
ke id ~~ Z5% and k;il(l) sid ﬂvseé 1 By Proposition 1.2.4, the following diagram
commutes up to homotopy:

Lol Varg
S*(V,D, M) @4 §*(V*(1), D+, ML) A[-3]
J/smo(yvsel@@%sil(l)) iz

Ul—are
S*(V5(1),DY, ML) @, 8°(V,D,M) —— ~ A[-3].

Now the theorem follows from the fact that the map (k{f! @ kf,e}(l)) 1, given by (18),
furnishes a homotopy between id and 7' @ ﬂvsfgl). O

3.2. p-adic height pairings

3.2.1. — We keep notation and conventions of the previous subsection. Let

Fo¢ = UF; (8pr) denote the cyclotomic p-extension of F. The Galois group
n—

I'r = Gal(F®°/F) decomposes into the direct sum I'y = Ap x T'% of the group



3.2. p-ADIC HEIGHT PAIRINGS 71

Ar = Gal(F({,)/F) and a p-procyclic group I'%. We denote by x : T'r — Z; the
cyclotomic character and by y, the restriction of y onI'y, q € S.

Consider the completed group algebra Ay = A[[[%]]. As in Section 2.7, we equip
A4 with the involution t : A4 — Ay such that 1(y) = y~!, y € T%.. Fix a generator yr
of T9. Set AL, = AL /(J3), where Jy is the augmentation ideal of A[[T%]]. We have an
exact sequence

(63) 0A% AL A0,

where 0r(a) = aX, and X = log~' ()} (7)) (7 — 1) does not depend on the choice
of yr € FOF. For each p-adic representation V with coefficients in A, (63) induces an
exact sequence

(64) 0V Ve =V 0,

where Vp = K} ®4 V. As in Section 2.7, passing to continuous Galois cohomology,
we obtain a distinguished triangle

o ° 7 ) ﬁ . °
C*(Grs,V) = C*(Grs, Vi) = C*(Grs,V) =5 C*(Grs,V)[1].

For each q € S, we have the local analog of the sequence (64) studied in Section 2.7
0=V Vg, =V =0
The inclusion Fg — F% induces a commutative diagram of Gr, -modules

84

L]
0 Vq (VF)q Vq 0,

where the vertical middle arrow is an isomorphism by the five lemma. Taking into
account Proposition 2.7.2, we see that the exact sequence (64) induces a distinguished
triangle

° ° 7 ° B < .
C*(Gr,,V) — C*(Gr,,Vr) = C*(Gr,,V) =5 C*(Gr,,V)[1].

where By, .(x) = —log x4 Ux.
Let Dy be a (¢,I';)-submodule of D:ig(Vq) and let ﬁFyq = X} ®a Dy. As in Sec-
tion 2.7, we have an exact sequence

(65) 0—Dg—=Drq—Dy—0
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which sits in the diagram

04 ~
0 D, D, D, 0
L
0 D, D, D, 0.

Taking into account Proposition 2.7.4, we obtain that (65) induces the distingushed
triangle

° ° n ° Po °
C(p,yq (Dq) - C(p,q/q (DF,q) - Cq),yq (DCI) — C(p,q/q (Dq) [1]7

where Bp_ (x) = —(0,log x4(7)) Ux. Finally, replacing in the exact sequence (42)
1% by (\N/F)q, and taking into account Proposition 2.7.5 we obtain the distinguished
triangle
° °//1/ ) ﬁK(Vq) °
K*(Vy) = K*((VF)q) = K*(Vq) — K*(Vy)[1],

where (v, )(x) = —(0,log xq) Ux.
If g € X, we construct the Bockstein map for Uy (V,D,M) following [56], Section
11.2.4. Namely, if q € X, then Ug (V,D, M) = C*(GF,,M,) and the exact sequence

(66) 0 — My — Mpq — Mg — 0
gives rise to a map By, . : C*(Gr,,My) — C*(Gp,,M,). If g € £, \ L, then (Vp)lq =

Via ®g}7 and we denote by s : Vs — (Vi)/s the section given by s(x) = x® 1. There
exists a distingushed triangle

Co(Va) = Col(Vi)a) — CoalVa) 222 . (Vi) 1),

where By, ur 1 Cop(Vy) — Ci(Vq) is given by

B ) = 2 (ds —5d)(x) = ~ log 1o (Fry .
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Proposition 3.2.2. — In addition to (60), equip the complexes A7, B} and C} (1 <
i < 3) with the Bockstein maps given by

BAI = ,BV,C’

ﬁB] = < &) BDq> @( D BVq,ur> )
qes, qeL,

e, = < & ﬁK(Vq)> @< & Bvq,c> ;
qes, q€eL,
Ba, = Bv+(1),5

Pe, = < ® 5K<vq*<1)>> @< & ﬁvq*u),c)a

CS
Bas = Baq).c»
BB3 =0,

=| & S| D -
Bc, <qupﬁK(A(l)q)> <q€2pBA(l)q,c)
Then these data satisfy conditions B1-5) of Section 1.2.

Proof. — We check B2-5) for our Bockstein maps. For each q € X, Nekovii con-
structed homotopies

Vq - 8q OﬁVq,ur ~ BVq7c ©&q>

o) * 85 ©Brz(1yur ~ Br(1).c o8y

From Proposition 2.7.5, ii) it follows that for all g € S,

8q OﬁDq = BK(Vq) ©8q,

g4 oPp, = Br vz (1)) °gy
Set vy g = V(l),q = 0 for all g € S,,. Then condition B2) holds for u; = 0 and v; =
(Vig)qes-

In B3), we can set ip = 0 because Ug = 0. The existence of a homotopy /4 between
Ua[l] o (id ® Ba2) and Ua[1] o (Ba,1 ®1d) is proved in [56], Section 11.2.6 and the
same method allows to construct h¢c. Namely, we construct a system h¢c = (th) qes
of homotopies such that ¢ q : Uc[1] 0 (id @ By (1),c) ~ Ue[l] o (By, . ®1id) for g € £,
and hicq © Ug[1] o (id ® Bx(vy(1))) ~ Uk (1] © (Bk(v,) ®id) for q € S,. For q € T, the
construction of /ic 4 is the same as those of 414. Now, let q € §,. By Proposition 2.7.5,
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one has fi(y,)(x) = —(0,log xq) Uk x. Consider the following diagram, where zq =
(Ovloqu)

° ° * id ° ° *
(67) K*(Vq) @a K*(V (1)) K*(Vq) @4 K*(V{ (1))

id

K* (Vo) ®aA@a K* (Vi (1)) A@aK*(Vg) ®a K (V7 (1))

id®(—zq)®id (—zq)®id®id

s12®id
— >

K*(Vq) @a K*(A)[1] @4 K*(V, (1)) K*(A)[1] @4 K*(Vq) @a K* (V5 (1))

Ug ®id Ug ®id
K (VI @a K (Vi (1) — = K (Vo) [1] @ K*(V;E(1))

Uk Uk

K* (Vg Vy(1)[1].

K* (Ve Vg (1)1

The first, second and fourth squares of this diagram are commutative. From Proposi-
tion 1.1.7 (see also (37)) it follows that the diagram

K* (V) @ K*(A)[1] 2P o) 1] 0 K* (V)

iw ) M

K*(Vo)[1] - K*(Vo)[1]

is commutative up to some homotopy k; : Jx o Ug ~» Ug osjp 0 (Tx ® Fk). Since
T2 = id, we have a homotopy

Txoky 1 Ug ~ yKOUKOSuO(yK@yK).

By [56], Section 3.4.5.5 (see also Section 2.6.2), for any topological Gr,-module
M there exists a functorial homotopy « : id ~» 7. By Proposition 2.6.4, a induces
a homotopy between id : K*(V,;) — K*(V;) and Jx : K*(Vy) — K*(V,) which we
denote by ag. Let (ax ® ag); : id ~ Jx ® Tk denote the homotopy between the
maps id and Jx @ Jx : K*(V5) @ K*(Q,)[1] = K*(V;) ® K*(Q,)[1] given by (18).
Then

d(aKo%oUKoslzo(%®%))—|—(aKo<%(oUKoslzo(§K®e7K))d:
= (Jg —id)oUgospo (T @ Ik),
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and
d(Ugosppo(ag ®ag)1) + (Ugosizo(ax ®ak)i) =
=Ugospo(Jkx® Ik —id).
Therefore the formula
(68) ky =ago TgoUgosipo(Tx® Ik)+Ugosipo(ax ®ak)i
defines a homotopy
ko : Ugosia ~ TxoUgospo( Tk @ Ik).
Then k¢ = Fk o ki — ko defines a homotopy
kcg : Ug ~ Ugosi2

and we proved that the third square of the diagram (67) commutes up to a homotopy.
We define the homotopy

heq © Uk (1] o (([d® Br(vs(1)).e) ~ Uk (1] o (Bx(v,) ®id)

by
(69) he,q = Uk o (ke,q @id) 0 (Id ® (—z4) ®id).
This proves B3).
Since uy = up = hy = 0, condition B4) reads
(70) dKy—Kyd = —hco (f1 ® f2) + f3[1] 0 ha

for some second order homotopy Ky. It is proved in [56], Section 11.2.6, that if
q € X,, then

(71) hC,qo(f1®f2) = Iesq ohy.
Assume that q € S,,. Recall (see [56], Section 11.2.6) that the homotopy A4 is given
by

(72) hy = U0 (kg ®id) o (id® (—z) ®1d),
where z = log ¥ and
(73) ky =—ao(Usos120(7® 7)) —(TeoUcosp)o(a®a).

From (24), it follows that for all x € C"(Gps,V) and y € C"(Grs,V*(1)) we have
(74) (ki @id)o (id ® (—z¢) ®id) o (fi © f2) (x@y) =
= (k1 ®1d)((0, —log ) © (0,xq) @ (0,%,)) =
= k1 ((0, —log xq) ® (0,xq)) ® (0,y4) =0,
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where xq = resq(x), yq = resq(y). On the other hand, comparing (68) and (73) we see
that

(75) (ky®id) o (id ® (—zq) ®id) 0 (fi ® f2)(x @) =
= ka((0, ~log 2g) © (0.20)) @ (0,y,) =
= —(0,resq(ka(—z®x))) @ (0,yq).

From (74), (75), (69) and (73) we obtain that

(76) hcqo(fi®f2)(x®y) =
= (0,resq(ka(—2z2®x))) Uk (0,y4) =
= (0,resq(ka(—z2®x)) Ucy) = (0,1esq(ha (x ®y))).
From (76) and (71) it follows that hc o (f; ® f2) = f3[1] o hs and therefore we can set

Ky = 01in (70). Thus, B4) is proved.
It remains to check BS). Since vi = v, = h, = 0, this condition reads

(77)  dKy—Ked = —hco(g1®g2) +Ucpjo (Vi ®g2) —Ucpj o (g1 ®@v2)

for some second order homotopy K,. Write K, = (K, q)qes- For q € £,, Nekovf
proved that the g-component of the right hand side of (77) is equal to zero. For
q€S,, wehave vi g =v24=0and hc,o (g1 ®g2) = 0 because of orthogonality of D
and D', and again we can set K, q = 0. To sum up, condition (77) holds for K, = 0.
The proposition is proved. O

3.2.3. — The exact sequences (64), (65) and (66) give rise to a distinguished triangle

RT(V,D, M) — RT(V, Dr, M) — RT(V,D, M) 224 RT(V, D, M)[1]

Definition. — The p-adic height pairing associated to the data (V,D,M) is defined
as the morphism

1Sl ¢« RT(V,D,M) @Y RI(V* (1), D4 Mt 222,

Uvp.m
e

— RO(V,D,M)[1] @ RO(V*(1),DF, M) A[-2],
where Uy p m is the pairing (49).

The height pairing h%,e_{)’ » induces a pairing

(78) Koy @ H'(V,D,M)®,H' (V*(1),DF,M*) = A.
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Theorem 3.2.4. — The diagram

sel
V.D.M

RI(V,D,M) @Y RT(V*(1),D+ M*) A[-2]

S12 =
hsel

* Lol
RI(V*(1),D-, ML) @Y RIO(V,D, M) — 2 A[—2]

is commutative. In particular, the pairing h{’,e}) | is skew-symmetric.

Proof. — From Propositions 1.2.6 and 3.2.2 it follows, that the diagram

. ° * 1 1 h;e’%)’M
S (VaDvM)®AS (V (1)7]) 7M ) E;3
isuo(%el@%&%) =
hsel ARyyan
S*(V*(1),D-, M) @48 (V,D,M) — U2 gy

is commutative up to homotopy. Now the theorem follows from the fact, that (yvsel ®
ﬁvsfgl)) is homotopic to the identity map (see the proof of Theorem 3.1.11). O






CHAPTER 4

SPLITTING SUBMODULES

4.1. Splitting submodules

4.1.1. — Let K be a finite extension of Q,, and let V be a potentially semistable
representation of Gg with coefficients in a finite extension E of Q,. For each fi-
nite extension L/K we set D,/ (V) = (B, @ V)., where * € {cris,st,dR} and write
D.(V) =D, x(V)if L = K. We will use the same convention for the functors Z, ;.

Fix a finite Galois extension L/K such that the restriction of V on G, is semistable.
Then Dy, (V) is a free filtered (¢, N, Gy /g )-module over E ®q, Lo and Dgg/.(V) =
Dy/r(V) @1, L. A (¢,N,Gy)-submodule of Dy, (V) is a free E ®q, Lo-subspace
D of Dy /L(V) stable under the action of @, N and Gy /k.

Definition. — We say that a (¢,N, Gy x)-submodule D of Dy, (V) is a splitting
submodule if

Dyr/(V) =DL®Fil'Dg/1(V),  DL=D®,L

as E ®qQ, L-modules.

From this definition it follows that if D is a splitting submodule, then
D* = Homgeg 1o (D (V)/D, Dy (E(1))

is a splitting submodule of Dy (V*(1)).
In Subsections 4.1-4.2 we will always assume that V satisfies the following con-
dition:

S) Dcris(v)(p:] = Dcris(V*(l))q’Zl =0.
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One expects that this condition always holds for representations associated to pure
motives of weight —1 (see Section 0.4). Namely, consider the Deligne—Jannsen mon-
odromy filtration (imiDSt /L(V))iez on Dy, (V) given by
(79) MDDy (V)= Y ker(N“H)nIm(N')

k—l=i
(see [40]). Denote by (gr;rmDSt /L(V))ieZ its quotients. Assume for simplicity that
E=Q,.Seth=[Ly:Q,] and ¢ = p". Then ® = @" acts Ly-linearly on Dy/(V).

Lemma 4.1.2. — Assume that ® acts semisimply on Dy /L(V) and that the absolute
value of eigenvalues of ® acting on gr Dy, (V) is g'"=V/2_ Then condition S) holds.

Proof. — From our assumptions it follows that Dst/L(V)‘I’:1 NMoDy/ (V) = 0.
Since Deris(V) € Dy (V)V=" € 9Dy, (V), this implies that

Dcris(v)(p:1 C I)st/L(‘/)d):1 chris(V) =0.

Note that our assumptions are invariant under passing to the dual representation, and
therefore we also get Deis(V*(1))?=! = 0. O

4.1.3. — If D is a splitting submodule, we denote by D the (¢,['x)-submodule of
DLg(V) associated to D by Theorem 2.2.3. The natural embedding D — Djig(V)
induces a map H'(D) — Hl(Djig(V)) 5 HY(K,V). Passing to duals, we obtain a

map H'(K,V*(1)) — H'(D*(y)).

Proposition 4.1.4. — Assume that V satisfies condition S). Let D be a splitting sub-
module. Then

i) H}(K,V*(l)) — H}(D*(x ) is the zero map.

ii) Im(H'(D) — H'(K,V)) = H}(K,V) and the map H}(D) — H}(K,V) is an
isomorphism.

iii) If, in addition, Fil®(Dy, (V) /D)?='N=0Cx =0, then H'(D) = H}(K, V).

Proof. — 1) By Proposition 2.9.2 we have a commutative diagram

(80) H!

cris

(V*(1)) — H(D* (1))
H}(K,V*(1)) — H}(D*()),
where we set

* 1-— ,pr
Hclris(v (1)) = coker <Dcris(v) ﬂ) Dcris(v) @lv(K))
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and
Hclris(D* (l)) = coker <@cris(D* (X)) m -@cris(D* (X))) @ID*()() (K)>

to simplify notation.

Since Dis(V*(1))?=! =0, the map 1 — @ : Deyis(V*(1)) — Deis(V*(1)) is an iso-
morphism and H;(V*(1)) = ty-(1)(K). On the other hand, all Hodge-Tate weights
of D*(y) are > 0 and tp-(,)(K) = 0. Hence

Heis (D" (%)) = coker(1 = ¢ | Zexis(D*(%)))
and the upper map in (80) is zero because it is induced by the canonical projection of
ty+(1)(K) on tp- () (K). This proves i).
Now we prove ii). Using i) together with the orthogonality property of H } we
obtain that the map

Homg (H'(K,V)/H}(K,V),E) — Homg (H' (D) /H}(D),E),

induced by H'(D) — H'(K,V), is zero. This implies that the image of H'(D) is
H'(K,V) is contained in H } (K,V). Finally one has a diagram

Hclris (D) Hclris (V)

L
H{(D) —— H{(K,V).

From S) it follows that the top arrow can be identified with the natural map p(K) —
ty (K) which is an isomorphism by the definition of a splitting submodule.

iii) Taking into account ii), we only need to prove that the natural map H'(D) —
H'(K,V) is injective. This follows from the exact sequence

0—D—D,(V)»D -0, D'=Df(V)/D
and the fact that H(D') = Fil° (Dst/L(V)/D)‘P:I’N:O’GL/K = 0 (see Proposition 2.9.2,
1)). O

4.2. The canonical splitting
4.2.1. — Let

y: 0—=-V*(1)—=Y,—E—0
be an extension of E by V*(1).

Passing to (¢,T'x)-modules, we obtain an extension

0— DrTig(V*(l)) - D:ig(Yy) — Xk g — 0.
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By duality, we have exact sequences
0—E()—=Y(1)=V—=0

and

0 — Zx.e(x) = Dy (¥; (1)) = D,

We denote by [y] the class of y in Ext}E[GK] (E,V*(1)) = H'(K,V*(1)). Assume that y
is crystalline, i.e. that [y] € Hfl» (K,V*(1)). Let D be a splitting submodule of Dg;/; (V).
Consider the commutative diagram

(V) —0.

yi  0——=D} (V:(1)) —=D}(¥,) —= Zxr —=0

-]

D* (%) Dj(x) —— %k —0

where D, is the inverse image of D in DLg(Yy*(l)). The class of pr(y) in H'(D*(x))
is the image of [y] under the map

pr(y): 0

T

Ext! (Zx £, D}, (V*(1))) = Ext' (% £, D" (%))
which coincides with the map

H'(K.V*(1)) = H' (D, (V*(1)) = H'(D*(x))

after the identification of Ext!(%x g, —) with the cohomology group H'(—). Since

we are assuming that [y] € H } (K,V*(1)), by Proposition 4.1.4 i), we obtain that
[pr(y)] = 0. Thus the sequence pr(y) splits.

4.2.2. — We will construct a canonical splitting of pr(y) using the idea of Nekovar
[54]. Since dimg Dyyis(Yy) = dimg Deis(V*(1)) + 1, the sequence
0 — Deris(V*(1)) = Deris (Yy) = Deris(E) — 0

is exact by the dimension argument. From Dy;s(V*(1))?=! = 0 and the snake lemma
it follows that Dcris(Yy)“”:1 = Dis(E) and we obtain a canonical ¢-equivariant mor-
phism of Ky-vector spaces Deris(E) — Deris(Yy). By linearity, this map extends to a
(¢,N, Gy /k)-equivariant morphism of Lo-vector spaces Dy (E) — Dy (Yy). There-
fore we have a canonical splitting

Dy (¥)) = Dy (V7 (1)) €Dy (E)
of the sequence

0— D@t/L(V*(l)) - Dst/L(Yy) - DSt/L(E) —0
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in the category of (¢,N,Gy/k)-modules. This splitting induces a (¢,N,Gyk)-
equivariant isomorphism
(81) D1 (D5(x)) = Doyr(D"(x)) & Dy (E).

Moreover, since all Hodge—Tate weights of D*(x) are positive, we have
Fil' Dar /1 (D5 (x)) = Fil' Dy (D* (%)) © Fil' Dyr 1 (E)
and therefore the isomorphism
DarjLD5(x)) = Dar/L(D* (X)) ® DarL(E)

is compatible with filtrations. Thus, we obtain that (81) is an isomorphism in the
category of filtered (¢, N, Gy /x)-modules. This gives a canonical splitting

pr(y): 0 D*(x) D;(x) = %k 0

of the extension pr(y). Passing to duals, we obtain a splitting

(82) 0 — Zxe(x) D, = D 0.

Taking cohomology, we get a splitting

Sy
(83) 0 — H}(K,E(1)) — H}(D,) = H}(D) — 0.
Our constructions can be summarized in the diagram

Sy

0 —~ H\(K,E(1) HI(D,) = H!(D)

0 — H}(K,E(1)) — H}(K,Y; (1)) —= H}(K,V) —0.

'ty

0

Here the vertical maps are isomorphisms by Proposition 4.1.4 and the five lemma.

Remark 4.2.3. — Assume that H*(D*(x)) = 0. Then each crystalline extension of
D by Zk(x) splits uniquely. This follows from Proposition 2.9.2 i) which implies
that H } (D*(x)) = 0 and from the fact that various splittings are parametrized by

HO(D*(x)).
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4.3. Filtration associated to a splitting submodule

4.3.1. — In this subsection we assume that K = Q,. Let V be a potentially
semistable representation of Gq, with coefficients in a finite extension E of Q,.
As before, we fix a finite Galois extension L/Q, such that V is semistable over
L and denote by D /L(V) the semistable module of the restriction of V on Gi.
Let Gp/q, = Gal(L/Qp). To each splitting submodule D of Dy, (V) we associate
a canonical filtration on Dy (V) which is a direct generalization of the filtration
constructed by Greenberg [35] in the ordinary case and in [7] in the semistable case.

Let D be a splitting submodule of Dy, (V). Set D' = Dy, (V)/D. Then Fil’D’ =
D’ and we define

M, = (D/)<P:1,N:07GL/Q/J ®Qp Ly.

Recall that D+ = Homgeg, 1, (Dsi/(V)/D, Dy (E(1)) and that in the tautological
exact sequence

0— D" — Dy (V*(1)) = (DF) =0
we have
(D) = D" = Homgeg, 1, (D, Dy (E(1)).

For the filtered (¢,N, Gy q,)-module D* we have Fil’D* = D* and we define
_ “\o=1,N=0,G, *
My = ((D ) L/Qp ®QI> LO) .

From Lemma 4.4.2 ii) it follows that M; can be seen as a submodule of D’ and that
M, can be seen as a submodule of (D). Clearly we have

rkE@QpLo (Ml) = dimg (D,)(le N=0.G1/q, , rkE®QpL0 (M()) = dimg (D*)(PZI N=0.GL/q, .

We have canonical projections prp, : Dy (V) — D" and pry,, : D — Mp. Define a
five-step filtration

{0} = F72Dst/L(V) - Flest/L(V) - FODst/L(V) -
FiDg (V) C BaDgyr (V) =Dy (V)
by
ker(pry,) ifi=—1,
FDg) (V)={D ifi=0,
pry (My) ifi=1.
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Set W = FiDg 1 (V)/F-1Dg, (V). These data can be represented by the diagram

0——=D——=Dy, (V) XD ——>0

.

0 My w M, 0.

We denote by (grl-Dst/L(V))?:i2 the quotients of the filtration (EDst/L(V))I-Z:fz.
Thus, My = groDy/(V) and M} = gr;Dy (V). By Theorem 2.2.3, the filtration

2
(1’7,~Dst/L(V))i2:_2 induces a filtration (F,-DT (V)) , on the (@,Tq,)-module

rig
D o(V) such that

Dy (FDL, (V) = FDyr(V),  —2<i<2.

Note that D = FyD’. (V). We set My = grODEg(V), M; = gr,D’ (V) and W =

rig rig
F Djig(V) / F_le'ig(V). We have a tautological exact sequence

(84) 0—My %5 WE M 0.
By construction, My and M are crystalline (¢,I'q,)-modules such that
Deris)Q,(Mo) = Mo, Deris)q,(M1) =M.
Since
ME = My, Fil’M, = 0,
MP=' =My, Fil'M, = M;,

the structure of modules My and M is given by Proposition 2.9.4. In particular, we
have canonical decompositions

(prs.pre) (prs.pre)

rf" Te : c
H'(Mp) =~ H{(Mg)®H!(My),  H'(M;) =~ Hy(M;)@H)(M).

The exact sequence (84) induces the cobondary map & : H°(M;) — H'(My). Pass-
ing to cohomology in the dual exact sequence

(85) 0— Mj(x) = W*(x) = Mg(x) — 0,

we obtain the coboundary map &} : H'(Mj(x)) — H (M} ())-
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4.3.2. — We keep previous notation and denote by (FiDg,.(V*(1)))-2<i<2 the
filtration on Dy (V*(1)) associated to D*. This filtration is dual to the filtration
FiDg (V). In particular,
(36) f‘lnnga/< )*(x) =D}, (V)/FDL,(V),
&7) DL, (V*(1))/FDL, (V¥ (1)) = (FLiD, (V)" (%),
and the sequence (84) for (V*(1),D") coincides with (85).
We consider the following conditions on (V,D) :
F12) Z4is(D, (V) /FiD}y, (V) *~ = Zeais (D}, (V*(1))) /RD ], (V*(1))) =" = 0.
F1b) Deris(F 1D, (V))?~" = Zeris(F1D], (V*(1))) =" = 0.
F2a) The composed map

So : HOMy) 2 H' (Mo) 25 H! (M),

where the second arrow denotes the canonical projection on H!(My), is an
isomorphism.

F2b) The composed map
S+ HOOMy) 2 H' (M) ™ H} (M),

where the second arrows denotes the canonical projection H } (My), are isomor-
phisms.

F3)ForallieZ
Do (D}, (V) /RDS (V) * ™ = Zp(FD, (V) ?~ = 0.

We expect that conditions F1a-b) and F2a-b) hold for p-adic representations arising
from pure motives over Q of weight —1 (see Sections 4.3.4-4.3.11). On the other
hand, it is easy to give an example of a motive for which condition F3) does not hold
(see Remark 4.3.3.5) below.

Remarks 4.3.3. — 1) Since for any potentially semistable (¢,I'q,)-module X one
has H(X) = Fil’Z(X)?=! and the Hodge—Tate weights of Dng( )/ Fang( ) and

Djlg(V*( ))/Fi Djlg(V*(l)) are > 0, condition F1a) is equivalent to

HO(D}, (V) /FD}(V)) = HY(DL, (V*(1)))/FiDL, (V" (1)) = 0.

2) All conditions introduced above are preserved under duality.

3) From (86-87) it follows that F3) implies Fla-b).

4) Fla-b) and F2a) imply condition S) introduced in Section 4.1 (see Proposi-
tion 4.3.13 iv) below).
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5) We give a simple example of a p-adic representation arising from a motive of
weight —1 which does not satisfy condition F3). Let V(E) be the p-adic represen-
tation associated to an elliptic curve E/Q having split multiplicative reduction at p.
The restriction of V(E) on the decomposition group at p sits in an exact sequence

0—Qy(1) = V,(E)—Q,—0.

Then Dg(V,(E)) is generated by two vectors ey and eg such that N(eg) = eq,
@(eq) =p 'eq, @(ep) = eg and Deyis (Q, (1)) = Qpeq. Let W = V(E)®3(—1). Then
Dy (W,) = Dy (V,(E))*3[1], where [1] denotes the ®@-multiplication by the canonical
generator of Dis(Q,(—1)).

It is easy to see that the Q,-vector space generated by the vectors

do = (eq@eq@eq)[l], di = (eg®@eq®@eq)|l],
dry = (eq@egReg)[l], do=(eq®eq@eg)ll]
is a splitting submodule of Dy (W,). Since ¢(dy) = p~2dp and @(d;) = p~'d; for

1 <i <3, wehave F_1Dy(W,) = Q,do. An easy computation shows that F;D(W,)
is the six-dimensional subspace generated by (d;)1<i<3 and (d;")1<;<3, where

di =(eqa@eg®ep)[l], di =(eg@eqa®@ep)[l], di =(ep@ep®@eq)|l].

Thus, Dy (W,)/FiDg(W,) ~ Dy(Q,) and F_Dg(W,) ~ D¢is(Q,(2)) and condition
F3) fails.

4) If V is semistable over Q,, and the linear map ¢ : Dy (V) — Dy (V) is semisim-
ple at 1 and p~!, the filtration F;Dy (V) coincides with the filtration defined in [7,
Section 2.1.4] (see Proposition 4.3.5 below).

4.3.4. — In the next two sections we show that conditions Fla-b) and F2a) hold
if the Frobenius operator acts semisimply on Dst/L(V) and V satisfies the p-adic
monodromy-weight conjecture. To simplify the exposition, we assume that the coef-
ficient field £ = Q,,.

Let W be a finite-dimensional vector space over a vector space K. If f is a linear
operator on W, then for each field extension K’ /K we denote by the same letter f the
linear extension of f to Wy = W @ K'. If @ € K’, we say that f is semisimple at &
if

W = (f — (X)WK/ &) W[{/:a.
Note that f is semisimple if and only if it is semisimple at all its eigenvalues. Let
O—-W —-W-—->W,—0

be an exact seguence of K-vector spaces equipped with compatible linear actions of
f- If the action of f on W is semisimple at & € K, then the actions of f on W| and W,



88 CHAPTER 4. SPLITTING SUBMODULES

are semisimple at o and the sequence
(88) 0—W/ = sw/=* w/=* 50
1 2

is exact.
Let G be a finite group acting on W. Then W decomposes canonically into the
direct sum W = W6 @ WO where W = {w € W|Trg(w) = 0}. If

O—-W —-W-—->W,—0
is an exact sequence of K[G]-modules, then the induced sequence of G-invariants
(89) 0—-WE-Wo W =0

is exact. In particular, the inertia subgroup I q, acts on the splitting submodule D
and we have

D = D' ¢ p°.

Proposition 4.3.5. — Let V be a potentially semistable representation of Gq, and
let L/Q,, be a finite Galois extension such that V becomes semistable over L. Assume
that @ : Dy (V) = Dy (V) is semisimple at 1 and p~ L. Then
i) The filtration (I’TZ'Dst/L(V))%:f2 is explicitly given by
DO+ (1= p~lo 1) DO 4 N(D10) ) g, Loy ifi=~1,
EDst/L(V) =4D ifi=0,
D+ (Dst/L(V)(p:LGL/Qp AN"! (D<P:p")> ®q, Lo ifi=1.

ii) We have

DO ?=r Dy (V)= AN~ (D)

N(DGL/st‘PZI) DCLiey =1

iii) Condition F1a) holds.

Proof. — 1) Since ¢ is semisimple at 1, from the definition of M| and properties
(88 - 89) it follows that

FiDyu(V) =D+ (Dyu (V)= %0 AN~(D) ) @q, Lo
=D+ (Dst/L(V)(p:I’GL/Qp ﬂN_] (D<P:P71)) ®Qp Ly

Let D be the orthogonal complement of D under the canonical pairing

[,] © Dyyr(V) x Dy (V¥(1)) = Dy (Qp(1))
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and let (FDy /L(V"(l)))l.zzi2 denote the associated filtration. Then F_;Dy (V) is
the orthogonal complement of FiDg;/; (V*(1)) under [, | and we have

_ 1
FDg (V) = (DL + (Dst/L(V*(l))(p_LGL/Q” mN*l(Di)) ®q, L0> =

_pn (N—%Di)i £ (D (v (1) o ®QPL0)L) .

If f € N"'(DF) and x € Dy (V), then f(Nx) = (Nf)(x), where Nf € D*. This
implies that N~!(D+)* = N(D). Since N(D) C D, we get

90 — * (p:17GL/Qp L
G0 FaDgy (V) = N(D)+DN Dy (V7(1)) ®q, Lo

From Lemma 4.4.7 we have that

_ 1
O (Dyu (v (1) g, L) =

= (1= 97Dy (V)90 ) g, Lo + Dy (V)"

Set X =DnN ((l —p‘lq)_l)Dst/L(V)GL/QP) ®q, Lo- Since X is an Loy-vector space
equipped with a semilinear action of Gal(Ly/Q,), by Hilbert’s Theorem 90
X =X @q, Ly = (DGL/Qp M ((1 —P”(P’I)Dst/L(V)G”QP» ®q, Lo-

Since ¢ is semisimple at p~!

, we have
D% (1= p o ™Dy (V)% ) = (1= p~' D%,
Together with (90) and (91) this gives
FaDyu (V) = (1= p~'9 D% ) @q, Lo+ N(D) +D".
Write
(92) D= (D% @, Ly) @ D°

and

Then N(D°) c D° and

N (DGL/QP> =N (DGL/QW"’ZI) o ((1 -p o N (DGL/QW“’:I)) :
Therefore
(93) F_1Dy, (V) = ((1 —p—1<p—1)DGL/op> ®q, Lo+N (DGL/op=<P:1) ®q, Lo+ D°

and 1) is proved.
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ii) From the definition of M and the semisimplicity of ¢ at 1 if follows immedi-

ately that
Dy, (V)= AN~ (D)
Ml = DGL/Q,,‘,(PZI ®QP L().
Using (93), the decomposition (92) and the semisimplicity of ¢ at p~! we have
DOy
((1 - p*lcp*)DGL/ov) +N (DGL/w:l) N
D(;L/Qwﬁl’:lf1
=\ —F7—F—~ | ®q, Lo

N (DGL/va(pzl)

and ii) is proved.
ii1) The statement iii) follows from ii). The proof repeats verbatim the proof of the
property D2) from [7, Lemma 2.1.5]. O

4.3.6. — Seth=[Ly:Q,], g = p" and ® = ¢". Then ® is an Ly-linear operator on
Dy (V). Let M;Dg (V) denote the Deligne —Jannsen monodromy filtration (79).
By [24, Section 1.6], the monodromy N induces an isomorphism

—M
(94) N7 gDy (V) — gDy (V).

Proposition 4.3.7. — i) Assume that ® : Dy (V) — Dy (V) is semisimple at 1
and q~'. Then @ is semisimple at 1 and p~".
ii) If, in addition, for all i € Z the absolute value of eigenvalues of ® acting on

grémDst /L(V) is ¢=V/2 then conditions Fla-b), F2a) and S) hold.

Proof. — 1) This is a particular case of Proposition 4.4.5.

ii) The proof will be divided into several steps.

a) From the semisimplicity of ¢ and Proposition 4.3.5 iii) it follows that Fla)
holds. Next, S) holds by Lemma 4.1.2. Since S) implies F1b), we only need to show
that F2a) holds.

b) From the semisimplicity of @ and our assumption about the action of ® on
gr?nDst(V), it follows that the canonical inclusions induce isomorphisms

o _—1
Dy (V)®= = gDy (V), Dy (V)™ = gr”i Dy (V).

Using (94), we see that the operator N induces an isomorphism

-1

N : Dy (V)= = Dy (V)P4
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Since Dy (V)?=! © Dy (V)?= and N(Dyyr(V)?=") € Dyyy (V)= the map
N : Dst/L(V)"’:1 — Dst/L(V)"’:f”fl is injective. Lety € Dst/L(V)‘P:pfl. Then there
exists x € Dy, (V)®=! such that N(x) = y. Set z = @(x) — x. Then

N(z) = N(¢(x)) = N(x) = ppN(x) - N(x) =0
and therefore z € Dy (V)®=""=0 = {0}. This implies that x € Dy, (V)?=' and we

proved that the map
1

N : Dy (V)?=" = Dy (V)97

is an isomorphism of Q,-vector spaces. Taking Gy q,-invariants, we also get an
isomorphism (which we denote by the same letter N)

©3) N: DSt/L(V)GL/Q”’(p:1 — Dst/L(V)GL/QI)"P:’fl.
¢) From Proposition 4.3.13, we have

My = (N7 (D) Dy (V) om0 0o 1) g, 1,

MO = <DGL/Qp7(p:1771 /N(DGL/QIH(P:l)) ®Q]7 LO'
The isomorphism (95) shows that the monodromy map N induces an isomorphism
N:M 1 — M.

d) Recall (see Section 4.3.1) that we set W = F{Dg;/; (V) /F_1Dg,. (V) and denote
by My, M; and W the (¢,T’q,)-modules associated to My, M; and W respectively.
Set e = dimz,, My = dimz,, M;. We have a commutative diagram

0 M, w M, 0

o

M.

Then

HO(W) _ WNZO’(le _ M(()pzl —0.
and the coboundary map & : H(M;) — H'(M)) is injective. Since dimg H(M;) =
dimg H! (M) = e, we only need to show that Im(J) ﬂH}(MO) = 0. For each
semistable (¢,I")-module A we denote by Cs(A) the complex

0= Zu(A) % (Zu(A)/FI Z4(A)) & Zu(A) & Z(A) 2 24 (A),

where
g(x) = (x (mod Fi’Zy(A)), (¢ — 1)(x),N(x)), h(x,3,2) =N(y) - (p@ —1)(2).

We refer to [7, Sections 1.4-1.5] for the proofs of the following facts. The cohomol-
ogy group H%(Cy(A)) is canonically isomorphic to H°(A). The group H' (Cy(A)) is
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canonically isomorphic to the subgroup H}(A) of H!(A) classifying semistable ex-
tensions. One has H!(My) = H'(My) and the subgroups H } (My) and H!(My) have
the following description in terms of Cy(A)

H}(Mo) = {Cl(x, 0,0) |x S M()},
H! (M) = {cl(0,0,z)|x € My}.

We have a commutative diagram

HOM,) — 2 H'(My)

1

HO(Cy(M))) —2> H' (Ca(My)),

where A is induced by the exact sequence
0 — Cst(Mp) — Ct(W) — Cy(M) — 0.

Let x € HO(M;) = M?~". By the snake lemma, W9=! ~ M?~" and we denote by
y € W?=! the lift of x under this isomorphism. It is easy to check that Ag(x) =
cl(y,0,N(x)). This implies that if Ag(x) € H}(Mo) then N(x) = 0. Since N is an
isomorphism, this implies that x = 0. The proposition is proved. O

Remark 4.3.8. — Assume that V is the p-adic realization of a pure motive M over
Q. The p-adic version of the Grothendieck semisimplicity conjecture says that ® acts
semisimply on Dy /7 (V). If, in addition, M is of weight —1, the p-adic monodromy
conjecture of Deligne—Jannsen [40] asserts that the absolute value of eigenvalues of
® acting on gr?nDSt (V) is q% . Therefore conjecturally conditions Fla-b) and F2a)
always hold in this case.

4.3.9. — We continue to assume that V is potentially semistable at p. If, in addition,
condition F2a) holds, we have a diagram

Mg, f
-@cris(MO) s H}(MO>

A .
Kf | 60/ prfT
| &
H'(M;) —— H' (M)
! S,
Ke | lprc

v iMO c

-@cris(MO) I HLI (M()),

where iv,, and iwm, , are the canonical isomorphisms defined in Proposition 2.9.4 and
K. and Ky are the unique maps making the resulting diagram commute.
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Definition. — The determinant
(96) Z(V,D) =detg (krok. ' | Deris(My))
is called the £ -invariant associated to'V and D.

Remark 4.3.10. — This is a generalization of the .Z-invariant defined in [7] in
the semistable case. Note that in op. cit. we assume that V is the restriction on
Gq, of a global Galois representation satisfying the additional condition H } (V)=
H }(V*(l)) = 0, but the definition of .Z/(V,D) in the semistable case is purely local
and does not use this assumption. We expect that .Z(V, D) # 0 if V is associated to a
pure motive of weight —1 (see Section 0.4).

The next proposition follows immediately from definitions.

Proposition 4.3.11. — Assume that condition ¥2a) holds. Then F2b) holds if and
only if £(V,D) # 0.

4.3.12. — Now we come back to the general setting described in Section 4.3.1 and
summarize below some properties of the filtration F,D:i (V).

Proposition 4.3.13. — Let D be a regular submodule of D/ (V). Then
i) If (V, D) satisfies F2a), then tk(My) = rk(M;) and H*(W) =0
ii) If (V, D) satisties F1a), then

H}(F_D},(V)) = H'(F.D}(V)),

rig rig
H} (D}, (V) = H}(Qp.V).
iii) If (V, D) satisfies Fla) and ¥2a), then we have exact sequences
(97) 0— H'(My) — H' (M) = H} (W) = 0
and
(98) 0— H'(M;) = H'(D) = H}(Q,,V) — 0.

iv) If (V,D) satisfies Fla-b) and F2a), then the representation V satisfies S),
namely
Dcris(v)(p:1 = Dcris(v*(l))(p:1 =0.
Proof. — i) From F2a) and the fact that dimg H°(M;) = rk(M; ) and dimg H! (M) =

rk(My) (see Proposition 2.9.4) we obtain that rk(Mp) = rk(M; ).
By Proposition 2.9.4, iv), H’(Mp) = 0, and we have an exact sequence

0— HO(W) — H' M) 2 5 (M),

By F2a), the map & is injective and therefore H°(W) = 0.
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ii) By F1a) together with Proposition 2.9.2 and the Euler—Poincaré characteristic
formula, we have

dimp H'(F_ D}, (V)) — dimg H} (F_{D,(V)) =
= dimg HO((F_1D},(V))*(x)) = dimg H(D},(V*(1))/FD{ (V*(1)))) =0,

and therefore Hf(F ang( ) =H'(F_ D\ (V

fi(V))- Since HO(D, (V) /FD;, (V) =
0, the exact sequence

0— F]I)T

be(V) = D (V) = D (V)/AD,(V) =0

rig rig

induces, by Proposition 2.9.2 iv), an exact sequence

0— Hf(FlDrlg(V)) - Hf(Djlg(V)) —>Hf( r]g( )/Fang(V)) — 0.

On the other hand, since

Dar(Df, (V) /FDL,(V)) = Fil' Zar (D, (V) /D], (V)),

by Proposition 2.9.2, i) we have
dimg H} (D}, (V)/FiD](V)) = dimg H'(D], (V) /FD(V)) =0,

and therefore H}(FiD},(V)) = H} (D} (V)) = H}(Q),V).

ii1) To prove the exacteness of (97), we only need to show that the image of the
map o : H'(My) — H'(W), induced by the exact sequence (84), coincides with
H} (W). By F2a), Im(&) DH} (M) = {0}, and therefore the map H} (Mp) — H} (W)
is injective. Set e = rk(My) = rk(M;). Since

dimg H{ (W) = dimg tw(Q,) — H'(W) = e = dimg H} (M),

we obtain that H (M) = H}(W). On the other hand, the exact sequence

0— HOM) 2 B (M) & H (W)
shows that dimg Im (&) = dimg H' (M) —dimg H*(M;) = e = dimg H} (My). There-
fore Im(a) = H }(Mo) =H }(W) and the exacteness of (97) is proved.
Since H(W) = 0 and H(F- 1D1Tlg( )) = H'(F_ 1Dr'lg(V)), by Proposition 2.9.2
iv) we have an exact sequence

0— H'(F. D}, (V) = H{(FID},(V)) — H} (W) =0,

which shows that H (FlDT

rig
(FIDLg(V)) —H 1 (W). Therefore we have the following commutative diagram

(V)) is the inverse image of H}(W) under the map
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with exact rows

HO(M;)

00— H'(F_|D,

rlg(V)) - Hl (D)

0——H'(F_ D

he(V) —= H}(FD}(V)) —= H}(W) —>0

Since the right column of this diagram is exact, the five lemma gives the exacte-
ness of the middle column. Now the exacteness of (98) follows from the fact that
H}(FID},(V)) = H{(Qp,V) by ii).

iv) First prove that Zcis(W) = Zeris(Mp). The exact sequence (84) gives an exact
sequence

0— @cris (MO) 1) @cris (W) i @cris (Ml)

and we have immediately the inclusion Zis(Mo) C Zeris(W). Thus, it is enough
to check that dimg Zeis(W) = dimg Zeris(Mp). Assume that dimg Zeis(W) >
dimg Peris(Mp). Then there exists x € Zis(W) such that m = B(x) # 0. Since ¢ acts
trivially on Zis(M;) = MTQP , #q,.em is a (¢,Iq,)-submodule of My, and there
exists a submodule X C W which sits in the following commutative diagram with
exact Tows

0 M() X %Qpl?m —0
0 My W M; 0.

Since Deris(W) = (W[1/1])" there exists n > 0 such that "x € X, and therefore
X € Deris(X). This implies that X is crystalline, and by Proposition 2.9.2 iv) we have
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a commutative diagram

Em Hj (f/[o)
HOM) 2w 5 (My).

Thus, Im(&) ﬂH}(Mo) # {0} and condition F2a) is violated. This proves that
@cris (W) — @cris (MO)

Now we can finish the proof. Taking invariants, we have Z;(W)?=! =
Deris(Mp)?=! = 0. By F1b),

Deris(F1D},(V))?™! = Ders (D], (V) /FD[ (V) =" =0,

and, applying the functor Zis(—)?~! to the exact sequences

0— FD}, (V) = D} (V) = D} (V)/FD},(V) =0,

rig rig rig
0— FD}, (V) = D[, (V) = W =0,

we obtain that Des(V)?~! € Ziis(W)?=! = 0. The same argument shows that
Deis(V*(1))?=! =0.
]

4.3.14. — Assume that (V,D) satisfies conditions Fla-b). The tautological exact
sequence

0—-D-—=D'

(V) — D' — 0.

induces the coboundary map
d : H'(D') — H'(D),

Since HO(Djig(V)/Fleig(V)) =0, we have that H*(D') = H°(M;), and the exact

sequence (98) shows that the sequence
(99) 0— H(D') & H'(D) = HA(Q,,V) =0
is also exact.

Proposition 4.3.15. — LetV be a p-adic representation of G, which satisfies con-
ditions ¥2b) and ¥3). Then

H'(D) = HI;(D)FOQP @ d (H'(D")).
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i

. + =p .
Proof. — Since Py ((F 1D ) (x)) =0 for all i € Z, by Lemma 2.8.3

rlg
we have H, (F- IDLg( )) = 0. Then the tautological exact sequence

0— F D

hig(V) =D=My —0

induces an exact sequence

0— H,(F_ D’ (V

r1g( )) - HIIW(D) — HIIW(MO) — 0.

Since HIIW(MO)F%P = H°(My) = 0 by Proposition 4.3.13, the snake lemma gives an
exact sequence

(100) 0 — Hy\, (F.1Df,(V Dry, — HIIW(D)r%p — HfW(MO)r%p —0.
The Hochschild—Serre exact sequence

1—*0
0—>wa(F_ll)jig(v))r?2 —H'(F_|D, (V)@ —0
P

rlg(v)) - HIW(F 1DT

rig

together with the fact that

. Iy
dllTIEI—IIW(F 1Dr2g( )) Qe dlrnEI_IIW(F 1])rlg( ))I‘%p:

= dimg H* ((F1Dfy (V) (x)) =0
implies that Hf\, (F_ lnjlg(V))r% = H'(F_\Df,(V)). On the other hand,
p
Hy, (Mo)ry = H, (Mo)
by Proposition 2.9.6. Therefore, the sequence (100) reads

0— H'(F_ D} (V

ng( )) - [111\>x/(1))r%17 — I_Ic1 (MO) —0

and we have a commutative diagram

(101) 0——H'\(F_ 1Djlg

- |

0 — H'(F_Df,(V)) H'(D)

(V)) — Hy,(D)ry —— H¢(Mo) —0

Since HO(DLg( )/Fang(V)) = 0, the exact sequence

0—M;, =D =D (V
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gives H'(M;) = H°(D') and we have a commutative diagram

(102) HO(D') — 2~ H'(D)

1o

HOM) 2w 7' (My).

Finally, from F2b) it follows that H} (Mo) N & (H°(M,)) = {0}, and the dimension
argument shows that

(103) H'(Mo) = H! (M) & & (H°(M,)).
Now, the proposition follows from (103) and the diagrams (101) and (102). ]

4.4. Appendix. Some semilinear algebra

4.4.1. — In this section we assemble auxiliary results used in Section 4.3. They are
certainly known to experts, but we give detailed proofs for completeness.

Let Ly be a finite unramified extension of Q,. We denote by o the absolute Frobe-
nius automorphism on Ly. Let W be a finite dimensional Ly-vector space equipped
with a o-semilinear bijective operator ¢ : W — W. For each extension E/Q,, de-
note by the same letter ¢ the operator on E ®q, W induced by ¢ by extension of
scalars. Note that W is a free E ®q, Lo-module and that ¢ acts on E ®q, Lo by
p(a®q,b) =axq,o(b).

Lemma 4.4.2. — Let Liy/Ly be a field extension and let ¢ : Ly @q, W — Ly ®q, W
be the Lj-linear map induced by ¢ by extension of scalars. Then
i) For each a € E, the natural map

1 Ly®q, W — Ly®r, W, 1(a®q,Xx) =a®r, X
induces an injection
(Ly®q, W)~ — Ly @1, W.
ii) For any a € Q,,, the natural map
Lo®q, W% =W

is injective.

Proof. — Setd = dimz,W. Let {v;}i<j<q be a basis of W over L and {6;}<;<; be
a basis of Ly over Q. Then {6v;}1<i<n,1<j<a is a basis of Lo ®q, W over L. Let
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cl) = (CE-;))Igj’kgd be the matrix of ¢* in the basis {v;}1< <, i.e.

d
O°(vj) = Zcﬁ)vk, 1<j<h
k=1

Assume that
h d

x=Y Y ai;®q, (6v)) €ker(t), ;€L
i=1j=1

If, in addition, @(x) = ax, then

hod
0°(x)=Y Y aijq, 0’ (6;)9°(v;) €ker(1) forall0<s<h—1.

i=1j=1

Set
(s) h
N .
xj :Z{auq’s(&')v 1<j<d.
=
Then
d
vack):O, 1<j<d
j=1

29

Since det(C(*)) # 0, this implies that x\") = 0 forall 1 < j < d and 0 <s <h— 1.

Therefore for each 1 < j < d we have

h
Y aijo*(6,)=0, 0<s<h—1
i=1

Since det(@*(6;)1<s,i<n) # 0 by the linear independence of automorphisms, we get

a;j=0forall 1 <j<dand1<i<h. Thusx=0andi)is proved.

ii) Take Ly = Ly (with the trivial action of ¢). Since a € Q,, we have
(Lo ®q, W)?=% = Ly ®g, W?=% and by i) the map Lo ®q, W¢~* — W is in-

jective. This proves ii). Note that the usual proof of this statement uses Artin’s trick

(see Lemma 4.4.3 below).

Lemma 4.4.3. — Let U be an Ly-subspace of W stable under the action of ¢ and let

a € Q. Then
(Lo®q, WP™%)NU = Ly®q, U?~%.
In particular,

(Lo®q, WP™%)NU # {0} = W~*NU # {0}.

O
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Proof. — First note that Lo ®q, W?=% C W and Ly ®q, U?~% C W by Lemma 4.4.2.
Fix a Q,-basis {w;}*_, of U?=% and complete it to a basis {w;}"_, of W?=%. We
prove the lemma by contradiction. Assume that there exist a nonzero element

m
X = Zai Rdw; € (L() ®qQ, W(’D:a) NU,
i=1
such that x ¢ Ly ®q, U?~%. In the set of elements with this property we choose a
"shortest" element which we denote again by x. Note that m > k and that we can
assume that a,, = 1. Then

ox) = aic(ai) @wi € (Lo®q, WP=%)NU,
i=1
and therefore
o p() v = T (0(a) —a) @ wi € (Log, WO U
i=1
By the choice of x, we have o' ¢ (x) —x € Ly®q, U?=*. This implies that 6 (a;) = a;
forall k+1 < i< m. Thus a; € Q, for all k+1 < i < m. Therefore

k m
X =x0+Xx1, X0 = ai®wieL0®QpU‘p:°‘, X = Z a,-®w,-€W‘p:O‘.
i=1 i=k+1
Thus x; =x—x9 € UNW?=% = U?=% and by the construction of the basis {w;}!_,
we get that x; = 0. The lemma is proved. O

4.4.4. — Let h=[Ly: Q,] and ® = ¢". We consider ¢ as a linear map on the Q-
vector space W and ® as a Ly-linear map on the Lg-vector space W.

Proposition 4.4.5. — i) Let L, be a finite extension of Ly and o. € L{,. Assume that
® is semisimple at . Then @ is semisimple at .
ii) @ is semisimple if and only if ¢ is semisimple.

Proof. — 1) We prove 1) by contradiction. Assume that ¢ is not semisimple at o.
Then there exists a nonzero vector y = (¢ — o )x such that @(y) = ay. Set

h—1
=Y dlo" T ly=(@—a")(x).
i=0

Then z = hat"~'x # 0 and ®(z) = a’z. The map
(104) 1: W®q, Ly = W ey, L, 1(x®q, a) =x®,a
is compatible with the action of ®. Since 1 is injective by Lemma 4.4.2, 1(z) # 0 and

1(z) € (@ — a )W NWE=2",
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This proves i).

ii) From 1) it follows that ¢ is semisimple if & is. Now we show that the converse
holds. If ¢ is semisimple, there exist an extension L{,/Lo and a basis {w;}1<i<an Of
W ®q, Ly over L such that ¢@(w;) = Aw;, A; € L, for all i. Since the map (104) is
surjective, one can find a subsystem {v;}1<i<q of {w;}1<i<an such that {1(v;) }1<i<q
is a basis of W ®y, Lj,. Since the map 1 is compatible with ®, this proves that the
matrix of @ in this basis is diagonal. O

4.4.6. — Let G be a finite group sitting in an exact sequence of the form
0—1—G25 Gal(Ly/Q,) — 0.
We write Tr; for the trace operator Tr; = ) g. Assume that W is equipped with a

gel
semilinear action of G via the projection 7 which commutes with the operator ¢.

Then I acts Ly-linearly on W and we have

w=w ow’ W°={xeW|Trx) =0}
Moreover, from Hilbert’s Theorem 90 for GL,, we have
(105) W =Ly®q, WC.

We denote by W* the dual space W* = Homy,, (W, L) equipped with the semilinear
action of @ given by

(pH)w)=0f(' (W),  fEW weW.

For any W we denote by W|1] the space W equipped with the operator Owi) = rlo.
The canonical duality gives a pairing of Ly-vector spaces

[, ] WX W1 = Lo[l], [x,f] = f(x).
We equip W*[1] with the natural action of G given by
(8N =gf(g7'x), g€G, xeW, feWwl]

If Y is a Ly-subspace of W*[1], we denote by Y the orthogonal complement of Y in
W with respect to the pairing [, |.

Lemma 4.4.7. — For any a € Q,, we have
* = J— — —
(Lo®q, W 1]7=%C) " = ((a—p ' )W) ®q, Lo+ W°.
Proof. — The pairing [, | induces non-degenerate pairings
[ ] W wH1)! — Lo[1],
[, ] : WEXWH1]° — Q,[1].
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From (105) it follows that [, |; is induced from [, ] by extension of scalars. Since
(o — p~ Lo~ YWY is the orthogonal complement of W*[1]?=%*C under [, ], this im-

plies the lemma.
O



CHAPTER 5

p-ADIC HEIGHT PAIRINGS II: UNIVERSAL NORMS

5.1. The pairing iyp"

5.1.1. — In this section, we construct the pairing Ay’5", which is a direct general-

ization of the pairing constructed in [66] [59] and [54, Section 6]. Let V is a p-adic
representation of Grg with coefficients in a finite extension E of Q,. We fix a sys-
tem D = (Dg)qes, of submodules Dy C DLg(Vq) and denote by D+ = (D)qes, the

q
orthogonal complement of D. We have tautological exact sequences

0Dy =D}, (Vy) 2Dy =0,  q€S),

where DLI =D

ig(Va) /Dy Passing to duals, we have exact sequences

0 — (D))" (%) = D (V4 (1)) = D (xtg) = 0,
where (DL,)* (Xq) = Dql. If the contrary is not explicitly stated, in this section we will

assume that the following conditions hold

N1) HO(F,,V) = HO(F;,V*(1)) =0 forall q € S;

N2) H(D) = H(D; (%)) = Oforall g € S,,.
As we noticed in Section 0.4, if V is the p-adic realization of a pure motive of weight
—1 condition N1) conjecturally always holds. Condition N2) means that the p-adic
L-function L(V, D, s) conjecturally associated to D has no extra-zeros at s = 0. From

N2), it follows immediately that H'(Dy) injects into H' (Fy,V). By our definition of
Selmer complexes we have

H'(F,,V) H'(F,,V)
) | P\ D,y |

VES)

(106)  H'(V,D)~ker [ Hs(V) = P
qex,
and the same formula holds for V*(1) if we replace D, by DqL. Recall that each

element of H'(V,D) can be written as the class [x*®!] of a triple x**' = (x, (x3): (Aq))
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(see (47)). The isomorphism (106) identifies [xsel] with the corresponding global
cohomology class [x] € Hi (V).

5.1.2. — Let [y*] = [(v,(v4), (4q))] € H'(V*(1),D") and let ¥, be the associated
extention
0—=V*(1)—=Y,—E—D0.
Passing to duals, we have an exact sequence
0—E(1) =Y (1) =V =0,
For each q € §,,, this sequence induces an exact sequence of (¢,I';)-modules

0 — Zr, £ (Xa) = D (¥ (1)q) = DL, (Vy) = 0.

rig
Consider the commutative diagram

TD,q

OHH](anE(l))—>H1(Dq~,y) Hl(Dq);;HZ(anE(I))

W

Tq

OHHI(FGI’E(I)) 4>H1(anYy*(1)) HH](anV) %Hz(anE(l))

T resq T resq T resq T
51

Hg (E(1)) H3 Yy (1)) —"—= H{(V)

0

where Dy , denotes the inverse image of Dy in Djig(Vq).
In the following lemma we do not assume that condition N2) holds.

Lemma 5.1.3. — Assume that 'V is a p-adic representation satisfying condition N1).

Let [x] = [(x,(x;), (Aq))] € H'(V,D) and let xq = resq(x). Then

i)Ifqtp, then H}(Fq,E(l)) =0and
H}<FQ7Yy*(1)) 2H}(Fq,V).

i) For each q € S, one has 8 ,([xq]) = %q([x;]) =0.
iii) &L([x]) = 0.

iv) The sequence
0—H'(E(1),%(x)) — H'(Y;(1),D,) = H'(V,D) - 0,
where %(X) = (%F, E(Xq))qes, is exact.
Proof. — 1) If q 1 p, then E(1) is unramified at q, HO(Fq”r/Fq,E(l)) =0 and
H(Fy (1)) = H'(FYFy E(1)) = E(1)/(Fry — DE(1) =0,
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Since [y] is unramified at q, the sequence
0—E(l) =Y (1)s -V -0

is exact. Passing to the associated long exact cohomology sequence of Gal(Fqur /Fy)
and taking into account that

H'(F"/Fy, E(1)) = H*(F}"/Fy,E(1)) = 0

we obtain that H' (F)" /Fy, Y, (1)) = H' (F}" /Fy,V's). This proves i).
i) For each q € S, we have g4([x7]) = [xq]. From the orthogonality of Dq and Dy
it follows that
66()(:) =—x; Uyol+ =0.
Therefore, 8y ([xq]) = 811)q([x;f]) =0 foreach g € S,.
iii) Let q € X,,. Since [xq] € H}(Fy,V), from i) it follows that again dy,q([xg]) = 0.

As the localization map
1)) — EPH*(Fy, E(1
ves

is injective, we obtain that ) (x) = 0.

iv) First prove the surjectivity of 7 : H' (¥ (1),Dy) — (V D). We remark that
H'(Y;(1),Dy) C Hg(Y; (1)) and therefore each element of H'(Y;(1),Dy) is com-
pletely defined by its global cohomology component. For each q € ¥, we denote
by

Syq - H}(Fmv) Hj ( a0 Yy S(1))
the inverse of the isomorphism i). Let [x*!] = [(x, (x), (Aq))] € H'(V,D). By ii),
8y ([x]) = 0, and there exists [a] € Hg(¥;*(1)) such that 7([a]) = [x]. Foreach q € X,
set [aq] = resq([a]). Since [x;] € Hf(Fq, ), there exists [b}] € H' (Fy,E(1)) such that

lag] = syq([xg]) + [bg |-

The localization map Hy(E(1)) — @ H'(F;,E(1)) is surjective, and there exists
q€eL,
[b] € HI(E(1)) such that resq([b]) = [bg] for each q € Z,. Then [a] — [b] € H{(Y; (1))
defines a class [x*][x] € H' (Y5 (1),Dy) such that n([Agel]) = [x]. Thus, the map 7 is
surjective.
Finally, from i) we have

H'(E(1),%(x)) = ker | Hs(E(1)) — (DH'(F,E(1)) | ,
qex,

and it is easy to see that H'(E(1),%(y)) coincides with the kernel of 7. The lemma
is proved.
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O

5.14. — Letlog, : Q}, — Q) denote the p-adic logarithm normalized by log,(p) =
0. For each finite place q we define an homomorphism /g : F;” — Q), by

) = {logp<hhﬁ/qp<x>x ifq] .
log, [x]q, if q1p,
where Nf, /q, denotes the norm map. By linearity, {4 can be extended to a map
ly Fq*<§>sz — E, and the isomorphism F ®Z,,E 5 HY(Fy,E(1)) allows to consider
{q as amap H'(Fy,E(1)) — E which we denote again by .
From the product formula

Ne (o)l TT Iy =1

q4€Sy
and the fact that Ny q(x) = I‘INFCI /Q, (%) it follows that
alp
(107) Y ((x)=0, VxeF*.
q4€Sy
We set Ag, g = O[[T0]] and A = Ag, [1/p].
Lemma 5.1.5. — LetV be a p-adic representation of Grs that satisfies N1-2) and

let [y**!] € H'(V*(1),D}). For each q € S,, the following diagram is commutative
with exact rows and columns

(108) 0 0

Hy,,(Dqy) H'(Dgy)
ﬂll)v:'q D,q
pr,
H\,(Dq) : H' (D) 0
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Proof. — The exacteness of the left column is clear. The exactness of the right
column follows from the fact that the diagram

inqu n

H?(Fyn,E(1)) —E
H2(Fyo1, E(1) 2
is commutative, and therefore
H,(Fy,E(1)) ~ H*(Fy,E(1)) ~E.

The diagram (108) is clearly commutative. Now, we prove that the projection map
H{, (Dq) — H'(Dy) is surjective. We have an exact sequence

0— Hi\, (Dg)rg — H' (Dg) — Hy, (Dg)"s — 0,
and therefore it is enough to show that HIZW(Dq)rg = 0. Consider the exact sequence
Yq—1
0 H, (Do) — Hi, (Dg) T H, (Dg) — Hpy (Dg)rg — 0.
Since HZ, (Dq) is a finite-dimensional E-vector space, we have
dimg HE, (Dg)™0 = dimg HE, (D, )rg = dimg H(Dq) = dimg H'(Dj(x)) = 0.

Thus, the map H},(Dq) — H'(Dy) is surjective. To prove the exactness of the first
row, we remark that the sequence

HY\(Fy, E(1)) = H' (Fy, E(1)) 5 E

is known to be exact (see, for example, [56, Section 11.3.5]), and that the image of
the projection %(Fg) ®Ag.q Hiy (F, E(1)) = H' (Fy, E(1)) coincides with the image

of the projection Hi, (Fy,E(1)) — H'(F,E(1)). O
5.1.6. — By Lemma 5.1.5, for each q € S, we have the following commutative dia-
gram with exact rows, where the map pr is surjective
(109)
n]I)W
Hy\,(Dyy) ———= H}\,(Dq) ——= H*(Fy, E(1))
o o,k
1
OHH](FCIvE(l)) Hl(Dq,y) i H](DQ)%'HZ(F%E(I))
i— Jﬁ’w 8q
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Let [x*] = [(x, (x7),(Aq))] € H'(V,D). By Lemma 5.1.3 ii), for each q € S, we
have &pq([x;]) = 0, and therefore there exists [x;"] € Hy, (Dq,) such that pr, o

n{,"fq (xi%]) = [xg]. By Lemma 5.1.3 iv), there exists a lift [x**'] = [(%, (%), (/iq))] €
H'(Y;(1),Dy) of [x sel]. Note that resq([X]) = gay([%]) in H'(F,, Y;(1)). For each

qe S, we set

(110) [ug] = [fqﬂ - Prq,y([xgvy]) = resq([X] — gqy0 Prq,y([xaﬁv]))-
Then 74([uq]) = 0, and therefore [uy] € H' (Fy,E(1)).
Definition. — Let 'V be a p-adic representation of Gr,s equipped with a family D =
(Dq)qes, of (¢,T'q)-modules satisfying conditions N1-2). The p-adic height pairing
hyp" associated to these data is defined to be the map
Hp" H‘(V D) x H'(V*(1),D*) - E,
1‘1/0]r)m( sel sel Z f uq

qes,

Remarks 5.1.7. — 1)If [x*'] € H' (Y}’ (1),Dy) is another lift of [x**'], then from (107)

and the fact that [x;"] = [x;"] = sy,4([x;]) for all g € £, it follows that the definition

of hr“,f’lr)m([xgel], [y gel]) does not depend on the choice of the lift [x,].
2) It is not indispensable to take [x**'] in H' (Y}’ (1), D). If [ ] € H{(Y; (1)) is such
that 7£([x]) = [x], we can again define [u,] by (110). For q € X, we set
[tq] = resq([X] —gqy0 Sy,q([x;])%

where sy,4 : H}- (Fp,V) = H} (Fy,Y; (1)) denotes the isomorphism from Lemma 5.1.3
i). Note that again [ug] € H'(Fy,E(1)). Then

hr‘l/?rm sel bjsel Z f ”q
qes

3) The map hyy,y" is bilinear. This can be shown directly, but follows from Theo-
rem 5.2.2 below.

5.2. Comparision with /Sy,

5.2.1. — In this subsection we compare hyp," with the p-adic height pairing con-
structed in Subsection 3.2. We take ¥ = @ and denote by

h?/%.,l :H'(V,D)x HY(V*(1),D') - E

the associated height pairing (78).
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Theorem 5.2.2. — Let V be a p-adic representation of Grs with coefficients in a
finite extension E of Q. Assume that the family D = (Dq)qegp satisfies conditions
N1-2). Then hyyyy" is a bilinear map and

= —high 1.
Proof. — The proof repeats the arguments of [56, Sections 11.3.9-11.3.12], where
this statement is proved in the case of p-adic height pairings arising from Greenberg’s
local conditions. We remark that in this case our definition of Ayp" differs from
Nekovéi’s h3’™ by a sign.
Let [x*!] € H'(V,D) and [y**] € H'(V*(1),D"). We use the notation of Section 3.1
and denote by f; and g, the morphisms defined by (43—46). As before, to simplify
notation we set x, = fq(x) and yq = f;-(v). We represent [x*'] and [y*] by cocycles

X1 = (x, (7). (Aq)) € S (V,D) and y* = (3, (4 ) () € §' (V*(1),D*), where

x € CY(Gps,V), X €U, (V,D), Aq EKJ(V),
yEC Grs, V1), 3f EULVID.DY), e KAVI(1)
andforallqe S
dx =0, dy =0,
dxy =0, dy; =0,
gal) = fal) + . & 0F) = £ () +dsy

For simplicity, we will use the same notation for the resulting maps on cohomologies,
namely

fo=resq : H{(V) = H'(F,,V), gq:H(Dg) = H(F;,V), q€S,.
This agrees with the notation used in Section 5.1. Also, we will write f; , and gq,

for the maps fq and g4, associated to the data (¥;'(1),Dy).
By Propositions 2.7.2, 2.7.4 and 2.7.5 we have

(111) B (r*) = (—zUx, (—wqUx)), (zgUAq)) € S*(V, D),
where
(112) z=1logy € C'(Grs,E(0)),

o, ifgex,,

- {(0710glq(?’q)) € Cé:,yq (E(0)), ifqesSy,

Z_ {logxq € C!(Gr,,E(0)), ifqex,
q_ .
(0,logxq) € K'(E(0)q), ifq€S,.
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Let [x] € H{(Y; (1)) be a lift of [x] € H§(V). The diagram (109) shows, that there
exist unique cohomology classes

1€ H!(Dgy),  q€S),
1€ Hi(FuY) (1), a€l,
represented by cocycles X € C'(Grs,Y, (1)), Xj € Cg , (Dqy) (if g € Sp), and X €

Car(¥; (1)q) (if g € £,) such that
8a,y ([’?ﬂ) = fay ([X]), qeS,UL,.
Since gq.,(Xy) = fo(¥) + dzq for some iq € Kg(Yy*(l)), we obtain a cocycle x*¢! =

o~

(%, (%), (Aq)) € S1(¥; (1), Dy).

Lemma 5.2.3. — Suppose that for each q € S, we are given a 1-cocycle
& € C(}Wq (Dq,y) such that Bp, ([E]) = 0. Then Byv*(l)py()/c*d) is homologous to
a cocycle of the form '

(@, (bg), (¢4)) € S*(¥;'(1),Dy),
where
/l; o {07 lfq € Z[M
qa= ~ .
weU (& —%;) € Coy.(Dgy),  ifQES).
Proof. — By (111), we have
ﬁyg(l),ny(fsel) = (—2zUX, (—wq U ), (2g U Aq))-
If g € X, we have wq = 0 and wq UX,” =0, If q € S, we have
bg=wqU (& —X]) = —wq U, +wqU&,.

Since Bp,, ([&4]) = 0, there exists v, € quo.,yq (Dyq,y) such that wy U &, = dv,. Therefore,
/31/;(1)7Dy(5f\sel) = (—zUX, (bq), (2 Udq +84(vq))) — d(0,(v4),0)

and we can set @ = —zUX and ¢q = z4 U//iq +gq(vy) for all g € S,,. The lemma is
proved. 0

For each q € §),, we have the canonical isomorphism of local class field theory
invp, : H*(Fy,E(1)) S E.
Let g : F;‘@E — H'(F,;,E(1)) denote the Kummer map. Then
invy, (log 2q U & (x)) = log, (N, g, () = g (i3 (x))
([68, Chapitre 14], see also [5, Corollaire 1.1.3]) and therefore
(113) invg, (log xq U[b]) = £4([D]), for all [b] € H' (Fy, E(1)).
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Lemma 5.2.4. — Assume that Byp([x**']) € H*(V,D) is represented by a 2-cocycle
e=(a,(by),(cq)) of the form e = w(e), where

e=(a,(by), (&) € S*(¥(1),Dy)
is also a 2-cocycle and T : Sz(Yy*(l),D ) — S%(V,D) denotes the canonical projec-
tion. Then

Bro (U] = Y inve, (g0, (ba) U S (04) + 2q(bg) Uktg)),
qes,
where a, € C°(Grg,Yy) is an element that maps to 1 € C°(Grs,E) = E and satisfies
doy, = y. If, in addition,
by € Cyy (E(1)g),  VqES,,
then

[BVD( sel U bjsel Z anFq

qes,
where we identify [Zq] € H*(%r, £(Xq)) with an element of H*(Fy,E(1)) using The-
orem 2.4.3.

Proof. — The proof of this lemma is purely formal and follows verbatim the proof
of [56, Lemma 11.3.11]. ]

Now we can proof Theorem 5.2.2. Take &, = pr,,(x"). Then [uq] = [%;] — [&]
coincides with the cohomology class (110) used in the definition of Ayp,". Since the
map

o7, (Indr; ./, (Day) = oy, (D)

factors through C3 .. (]~)q¢y), where ]~)q,y =Dy, QA F,» from the distinguished triangle

P,
RI(Fy,Dgq,) — RF(Fq,Dq y) = RI(Fy,Dgy) LEIEN RI(Fy,Dq,y)[1]

it follows that fp_ ([£]) = 0. In addition, [ug] € H'(Fy,%F, £(X,)) and adding a
coboundary to u; we can assume that ug € C(i,_yq (E(1)). Combining Lemma 5.2.3
and Lemma 5.2.4 we have

15,1 (), 7)) = [Brp (U] = Y invg (b)) =

qesp
= — ZanF quuq ZIHVF logxq [u ]) =
qes, qes,
==Y lo([ug) = —HB (], ™).
qes,






CHAPTER 6

p-ADIC HEIGHT PAIRINGS III: SPLITTING OF
LOCAL EXTENSIONS

6.1. The pairing £ lD

6.1.1. — Let F be a finite extension of Q. We keep notation of Chapters 3-5. In
particular, we fix a finite set S of places of F such that S, C § and denote by G the
Galois group of the maximal algebraic extension of F which is unramified outside
§'USe. For each topological Grs-module M, we write Hg (M) for the continuous
cohomology of Gr s with coefficients in M.

Let V be a p-adic representation of Grs with coefficients in a finite extension
E/Q, which is potentially semistable at all q | p. Following Bloch and Kato, for each
q € S we define the subgroup H}(Fq,V) of H'(F,,V) by

. ker(H'(Fy,V) = H' (F,V ®q, Beis))  if q ] p,
Hf (Fq, V) - .
~ ker(H' (Fy,V) — H' (F",V)) if q1p.
The Bloch—Kato Selmer group [16] of V is defined as
H'(F,,V
H}(V) = ker <H; (V) — @M) .
qes Hf (FCI7 V)

In this section, we assume that, for all q € S, the representation V; satisfies condition
S) of Section 4.1, namely that

8) Deris (V) ?~! = Diyis (V;7(1))?=! = 0 for all q € S,.

As we noticed in Section 0.4, this condition conjecturally always holds if V is the
p-adic realization of a pure motive of weight —1. For each q | p, we fix a splitting
(¢,N,GF,)-submodule Dy of Dy (Vy) (see Section 4.1). We will associate to these
data a pairing
1 *
WYy cHp (V) x Hi(V¥(1)) = E
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and compare it with the height pairing constructed in [54, Section 4] using the expo-
nential map and splitting of the Hodge filtration.

Let [y] € H}- (V*(1)). Fix arepresentative y € C' (G5, V*(1)) of y and consider the
corresponding extension of Galois representations

(114) 0—-V*(1l)—=Y,—E—O.
Passing to duals, we obtain an extension
0—E(l) =Y (1) >V —=0.

From S), it follows that Hg (V) =0, and the associated long exact sequence of global
Galois cohomology reads

0 HIE(1)) = HY (v} (1) » HL(V) 5 HR(E(1) > ...

Also, for each place q € § we have the long exact sequence of local Galois cohomol-
ogy

HO(quV) %Hl(anE(l)) %Hl(quYy*(l)) —
— H'(F,,V) %Hz(Fq,E(l)) — .

The following results, which can be seen as an analog of Lemma 5.1.3, are well
known but we recall them for the reader’s convenience.

Lemma 6.1.2. — Let V be a p-adic representation of Grs that is potentially
semistable at all q € S, and satisfies condition S). Assume that [y] € H}(V*(l))
Then

i) 8¢ ([x]) =0 forall x € H}(V);

ii) There exists an exact sequence

0— H(E(1)) = Hp (Y (1)) — H{ (V) = 0.

Proof. — i) For any x € C'(Gps,V), let xq = resq(x) € C'(Gp,, V) denote the local-

ization of x at q. If [x] € H}-(V), then for each q one has SJ’q([xq]) = —[xg]U[yq) =0

because H } (Fy,V) and H } (Fy,V*(1)) are orthogonal to each other under the cup

product. Since the map Hz (E (1)) — @ H?(Fy,E(1)) is injective and the localization
qes

commutes with cup products, this shows that &} ([x]) = 0.
ii) This is a particular case of [32, Proposition II, 2.2.3]. 0
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6.1.3. — Let [x] € H{(V) and [y] € H{(V*(1)). In Section 4.2, for each q € S, we
constructed the canonical splitting (83) which sits in the diagram

Sy.q

0

OHH}'(FmE(l)) H}(Dq,ﬂ H}(Dq)

[ el

0 —— H} (Fy, E(1) — H}(Fy, 7 (1) —= H}(F, V) —=0.

By Lemma 6.1.2 ii), we can lift [x] € H}(V) to an element [x] € Hf(Y*(l)) Let
[xq] =resq ([x]) € Hf(Fq,Yy*( ). If q € S),, we denote by [x;] the unique element of
H}(Dq) such that gq([x;]) = [xg]-
Definition. — The p-adic height pairing associated to splitting submodules D =
(Dq)qes, is defined to be the map

WPy HI(V) < H (V' (1)) = E

given by
spl ~
hp Zf — 8q.y O Syq([¥ qﬂ))

qes,

W y
the isomorphism constructed in Lemma 5.1.3,1) and by g4 : H fl (Fy,V) = H'(F,,V)

and gq, : H} (Fy,Y; (1)) < H'(Fy,Y;(1)) the canonical embeddings. Let [X;] €
H fl (Fy,V) be the unique element such that gq([x;]) = [xy]. From the product formula
(107) it follows, that h p can be defined by
L -
' Z€ — 8q.y O Syq([¥ cﬂ))7

qes

Remarks 6.1.4. — 1) For each q € X, denote by sy : H}(Fq,V) o Hf(F Yr(1))

where [X] € H}(V) is an arbitrary lift of [x].
2) The pairing h:}?}) is a bilinear skew-symmetric map. This can be shown directly,

2vy

but follows from the interpretation of hf,‘?}) in terms of Nekovar
Proposition 6.2.3 below).

af’s height pairing (see

sy

6.2. Comparision with Nekovar’s helght pairing

6.2.1. — We relate the pairing /', to the p-adic height pairing constructed by
Nekovir in [54, Section 4]. First recall Nekovii’s construction. If [y] € Hf(V*(l)),
the extension (114) is crystalline at all q € S, and therefore the sequence

0 — Deris (V' (1)) = Deris(Yyq) = Deris(E(0)q) — 0
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is exact. Since Dcris(Vq"(l))"’:1 = 0, we have an isomorphism of vector spaces

DcriS(E(O)q) = DcriS(Ym)(p:la
which can be extended by linearity to a map Dar(E(0)q) — Dgr(Yy,q). Passing to

q
duals, we obtain a Fy-linear map Dyr (¥y(1)) — Dar (E(1)4) which defines a splitting
SdR,q of the exact sequence

SdR,q
0 ——=Dgr(E(1)q) — Dar(¥y4(1)) —— Dar(Vq) — 0.
Fix a splitting wq : Dar (Vq) /Fil’Dar (V) — Dar (Vy) of the canonical projection
(115) Prar.v, * Dar(Ve) = Dar (Vy) /Fil’Dar (Vo).

We have a commutative diagram

W
Sy.q

0 — H(Fy, E(1)) —— H}(Fy, ¥, (1)) =——= H}(Fy, V) —— 0

eXPy;:q (1) T: €XPyy T:

Dyr (Yy4(1)) Dyr (Vq)
Fil’Dar (¥;5(1)) Fil’Dag (V)
PTar vitq (1) T lwq

% SdR,q
D (,54(1)) Dar (Vq)-

Then the map sy, = Hf(Fy,V) — H(Fy,Y; (1)) defined by

Svia = EXPy (1) OPTaR 1y, (1) © SaR,q © Wq © €XPy,
gives a splitting of the top row of the diagram, which depends only on the choice of
wq and [y].

Definition (Nekovar). — The p-adic height pairing associated to a family w =
(Wq)qesp of splitting wq of the projections (115) is defined to be the map

Hod *
hyow : Hi (V) x H{(V*(1)) - E

given by
Hod - W
hv.,(v)vge([x]a b)) = qu ([xq] —Sy,q([xq])) )
alp
where [X] € H}(Yy*(l)) is a lift of [x] € H}(V) and [Xy | denotes its localization at q.

In [54], it is proved that hgffge is a E-bilinear map.
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6.2.2. — Now, let D, be a splitting submodule of Dy /7 (V;). We have
(116) Dyr/r(Vq) = Dq1® FilODdR/L(Vq)a Dqg 1 = Dq®, L.

Set Dg r, = (Dq,L)GFq. Since the decomposition (116) is compatible with the Galois
action, taking Galois invariants we have

Dyr (Vy) = Dq.r, ®Fil’Dar (Vy).
This decomposition defines a splitting of the projection (115) which we will denote

by WD,q-

Proposition 6.2.3. — Let V be a p-adic representation of Grs such that for each
q € S, the restriction of V on the decomposition group at q is potentially semistable
and satisfies condition S). Let (Dq)qes, be a family of splitting submodules and let
wp = (Wp,q)qes, be the associated system of splittings. Then

spl __ ; Hodge
hV,D - hV,wD :

We need the following auxiliary result. As before, we denote by Dy the (¢,I7;)-
module associated to Dy.

Lemma 6.2.4. — The following diagram

SDq.y

QdR(Dq)

| |

SdR,q

Dar (Vq) —— Dar (Yy4(1)),

where the vertical maps are induced by the canonical inclusions of corresponding
(9,T'q)-modules and sp . I8 the map induced by the splitting (82), is commutative.

Proof of the lemma. — The proof is an easy exercice and is omitted here. O

Proof of Proposition 6.2.3. — From the functoriality of the exponential map and
Proposition 4.1.4 it follows that the diagram

BXqu

(117 Z4r(Dy) H}(Dy)

S

] expy,
DdR(Vq)/FﬂODdR(Vq) —> H} (Fy,V)
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is commutative. The same holds if we replace V; and D, by nyq(l) and D, respec-
tively. Consider the diagram

(118) Dar(Dy) Zar (Dg,y)
Dyr (Vq) Do (Yy'q(1))
Fil’Dyr (Vy) Fil’Dgg (Y5, (1))
le.q TprdR,){;ﬁq(l)
Dar (Vg) — > Dy (¥, (1))

From the definition of wp g, it follows that the composition of vertical maps in the
left (resp. right) colomn is induced by the inclusion Dy C D;ri g(Vq) (resp. by D, C
Djig (¥;74(1))) and therefore the diagram (118) is commutative by Lemma 6.2.4. From
the commutativity of (117) and (118) and the definition of sy q and sy, , it follows now
that sy q = s}, for all g € S}, and the proposition is proved. O

6.3. Comparision with h%f’{)m

6.3.1. — In this section, we compare the pairing h:/% with the pairing hy°p" con-
structed in Chapter 5. Let V be a p-adic representation of Gr g that is potentially
semistable at all q € S,,. Fix a system (Dy)qes, of splitting submodules and denote
by (Dg)ges, the system of (¢,Iy)-submodules of Djig(Vq) associated to (Dg)qes, by
Theorem 2.2.3. We will assume, that (V, D) satisfies condition S) of Section 6.1 and
condition N2) of Section 5.1. Note that S) implies N1). We also remark, that from
Proposition 2.9.2 i) and the fact that the Hodge-Tate weights of Dy, (Vy)/Dy and
Dy (V4 (1)) /DqL are positive, it follows that, under our assumptions, N2) is equiva-
lent to the following condition

N2%*) For each q € §),
(Dyy1(Va) /D)~ =06k = (D1 (Vi (1)) /D ) O~V =0Ckma = 0,

where L is a finite extension of Fy such that V; (respectively V' (1)) is semistable
over L.

The following statement is known ([62, 10]), but we prove it here for completeness.

Proposition 6.3.2. — Assume that V is a p-adic representation satisfying conditions
S) and N2*). Then
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i) H}(Fy,V) = H}(Dg) = H'(Dy) and H}(Fy,V*(1)) = H}(Dy) = H'(Dy ) for all
qes,.

ii) H{(V) ~ H'(V,D) and H}(V*(1)) ~ H'(V*(1),D").
Proof. — 1) The first statement follows from N2) and Proposition 4.1.4 iii).

ii) Note that by 1)
H}(Fq,V), ifqex,,

R'T(F,,V,D) = ,
H'(Dy), ifqes,.

By definition, the group H'(V,D) is the kernel of the morphism

Hs(V)ED | DH;(F.V) | D | DH'(Dq) | — DH' (Fo.V)

qex, qes, qes
given by
([x], valaes) = ([xq] — &q([val))ges, [xq] = resq([x]),
where g, denotes the canonical inclusion H } (Fy,V)—H 1(Fq,V) if g € X, and the
map H'(Dy) — H'(F;,V) if g € S,. In the both cases, g is injective and, in addition,
for each q € S, we have H'(Dq) = H}(F;,V) by i). This implies that H'(V,D) =

H}(V). The same argument shows that H' (V*(1),D+) = H}(V*(l)). O

Theorem 6.3.3. — Let V be a p-adic representation such that Vy is potentially
semistable for each q € S,, and let (Dq)qesp be a family of splitting submodules.
Assume that (V,D) satisfies conditions S) and N2*%). Then

norm __ hSpl
vD — "“v.D*

where D = (Dyg)qes, denotes the family of (@,I)-modules associated to D =
(Dg)ges, -
Proof. — First note that in our case the element [fﬁ, defined in Section 6.1.3, coin-
cides with [XEH Comparing the definitions of 2y’," and hf}le we see that it is enough
to show that £g (pr, ,([xg]) = sq.([x7])) = O for all g € S,,. The splitting s, of the
exact sequence
0— Hi(Fy,E(1)) = H}(Dq,) = H'(Dg) = 0

(see (83)) gives an isomorphism

Hllw(Dq,y)rg ~ Hllw(Dq)rg @Hllw(f%Fq,E(l))rg ~H'(Dy) @HIIW(F(]?E(I))I—%‘

Since 7p q (pry, ([x43]) — Sqy([x; 1)) = 0, from this decomposition it follows that

Prq7y([wq]) - Sq,y([x:]) € Hllw(quE(l))rg = ker({q),
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and the theorem is proved.
Corollary 6.3.4. — If (V,D) satisfies conditions S) and N2*), then
S 1
h?/ﬂ),l = h%?lgm = _hi/r,)D
coincide.

Proof. — This follows from Theorems 5.2.2 and 6.3.3.



CHAPTER 7

p-ADIC HEIGHT PAIRINGS 1V: EXTENDED SELMER
GROUPS

7.1. Extended Selmer groups

71.1. — Let F = Q. Let V be a p-adic representation of Gq s that is poten-
tially semistable at p. We fix a splitting submodule D, of V, which we will
denote simply by D. In Section 4.3, we associated to D a canonical filtration

(FDIlg(V )) . Recall that FODTi (Vp) =D, where D is the (¢,T’q,)-module as-

sociated to D. We maintain the notation of Section 4.3 and set My = D/F_ ang(V ),
M, = rlg( »)/Dand W = Fang( )/ F- 1D o(Vp). The exact sequence

—2<i<

0—-My—W-—->M; >0

induces the coboundary map & : H°(M;) — H'(My). Note that if V satisfies condi-
tions N1-2) of Section 5.1 we have My = M = 0. We first describe the structure of
the Selmer group H'! (V, D). Recall the following conditions introduced in Section 4.3

F1a) H'(D,(V,)/FiD},(V,)) = H' (DL, (V; (1)) /FiD}, (V; (1)) = 0.

F2a) The composed map

8o+ HOMy) 25 H' (Mo) 25 H (M),

where the second arrow denotes the canonical projection on H!(My), is an
isomorphism.

Let pp, r andpp . denote the composed maps

(119) pp s : H' (D) — H' (M, )—@H}(M)
P : H' (D) — H' (Mp) 25 H! (My).

Note that H*(M;) = H(D'), where D' = D;flg(V )/D.
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Proposition 7.1.2. — Let V be a p-adic representation of Gg,s which is potentially
semistable at p. Assume that the restriction of V on the decomposition group at p
satisfies conditions Fl1a) and F2a). Then

i) There exists an exact sequence
(120) 0— H(D') 2 H'(V,D) — H}V) — 0.

ii) The map

splf,_yD : Hl(V,D) —>H0(D’),
[(x. (), (Aq)] = &2 0 e ([ ])

defines a canonical splitting of (120).
Proof. — The first statement follows directly from the definition of Selmer com-

plexes and the exact sequence (99). See also [10, Proposition 11]. The second state-
ment follows immediately from the definition of sply y,. 0

Definition. — If the data (V,D) satisfy conditions Fla) and F2a), we call H' (V,D)
the extended Selmer group associated to (V,D).

From Proposition 7.1.2 it follows that we have a decomposition
H'(V,D)~H}(V)&H (D),
and we denote by
sjp : H(V) = H'(V,D)

the injection induced by this splitting.
If, in addition, (V,D) satisfies F2b), we have another natural splitting of (120),
namely

splyp © H'(V,D) = H (DY),
[, (5 (Aa)] = 8 opps ([p1)

and we denote by
shp t HH(V) — H'(V,D)

the resulting injection.

7.2. Comparision with /1,

7.2.1. — Assume that, in addition to Fla) and F2a), (V, D) satisfies condition
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F2b) The map
. 10 S 11 Py o1
o,y : H'(My) — H' (Mo) — H;(Mp),
where the second arrow denotes the canonical projection on H }(Mo), is an

isomorphism (see Section 4.3).
Define a bilinear map
(s >D,f : H}(MO) X H}I‘(MT(%P)) —E
as the composition

(8 /+id)

H}(Mo) x HHM (%)) —— H°(My) x H} (M (x)) — H' (%q,.£(Xp))

\L ZQP

E.
Lemma 7.2.2. — Forall x € H}(MO) andy € H}(MT()CP)) we have

<x))’>1),f = _[ii/[%«(xpw()’)u 5(;} )M, 5
where [, 1My @ Zeris(M(Xp)) X Deris(M1) — E denotes the canonical duality and

iM: ()1 Deris(M (Xp)) = H fl(M’lk (Xp)) is the isomorphism constructed in Propo-
sition 2.9.4.

Proof. — Recall that for each z € H'(%q, £(Xp)) we have inv,(w, Uz) = £,(z),
where w), = (0,log %, (1q,))- Therefore, using Proposition 2.9.4, we obtain

<xa)’>1),f = KQ,,(6(;} (x)Uy) =invp(wp U 60_,f1 () Uy) =

= —invp(iMl,c(50_,_,1(x)) Uy)) =

= —inv, (inty (8 £ (0) Uing; ()1 © ingt (1) /) =

= _[ii/[l’;(xp) f(y)75(i}(x)]M1'

O]

7.2.3. — Assume that (V, D) satisfies conditions Fla-b) and F2a-b). Then condition
S) holds by Proposition 4.3.13 iv) and the height pairing h:’% is defined.

Theorem 7.2.4. — Let V be a p-adic representation of Gqs that is potentially
semistable at p and satisfies conditions Fla-b) and F2a-b). Then for all [x**!] =
(5, (57), ()] € HI(V.D) and [y1) = [(3. (5 ) ()] € H(V*(1), D) we have

q
1fp (), %) = =¥ (1], ) + (po.s (1) o (5 D) -

where the map pp s and py. ¢ are defined in (119).
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Proof. — The proof is the same as that of [S6, Theorem 11.4.6] with some modifi-
cations. Recall that we have a split exact sequence
5v.D

0 —H(D') — H'(V,D) == H}(V) —0.

Let [¢] = [(x, (x{), (A))] € H' (V, D). Then syp([!]) = [(x, (%), (Aq))| , where

(121) %y =x; =00 (8 opoe (167]))
Since H'(Mo) = 0, H*(F_1D} (V,)) = 0 and H}(F_D},(V,)) = H' (F_1Df,(V})),

we have a commutative diagram with exact rows
0 —— H'(F_\D},(V,)) — H}(D) — H} (M) —0

: L
0——H! (Flijig(v,,)) —— H'(D) —— H'(My) — 0.
The image of [X] € H'(D) in H' (M) is equal to
oo (151) + P[5 1) — 00 (85, o poe (1571) ) =
= po.s(15]) — 8 (8,00 poc ([531]) ) € H} (M),

and therefore [xX;] € H } (D). Consider the following diagram with exact rows and

columns
(122) 0 0
HO(D) = H(D")
80 a()
Sy.p
0 —— H'(Q,,E(1)) H'(D,) <—m> H'(D) 0

J/_ 8py 8p

0 —= H'(Q,,E(1)) —= H'(Q,,%; (1)) = H'(Q,.V),

where sy, , is the canonical splitting constructed in Section 4.2. Recall that by Propo-
sition 4.3.13 iii), Im(g,) = H}(Q,,V). Let [x] € H/(¥, (1)) be any lift of [x] and let
x,] € H! (Qp, Yy (1)) denote its localization at p. Then by definition, we have

K (1, ) = £ ([Bp] — gpy 05y ([])) -
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The diagram (122) shows that there exists a unique element [x}] € H'(D,) such that

gpy ([£}]) = [%,] and mp ([A;,']) = [x;}]. Therefore, there exists a lift [%*'] of [x**'] of

the form [x*] = [(A,“;,A )]. Recall that

By, (IB¥1) = (—2 U (—wq U}, (s U2q)) € 878 (1),Dy).
where z, wq and z4 are defined in (112). Set
(123) ) = 85} o P ((x5]) € HO(My) = HO(D).
Then

po.¢([%,1) + Po.£ (do([5])) = £ ([,]) + B0 ([t]) = O.

Thus, the image of [x; ]+ do([t,]) under the projection H'(D) — H'(My) lies in
H!(My). We have a commutative diagram

0 — H'(F_D},,(V,)) —= H'(D) —= H'(My) —=0

i Uw, L Uwp, l Uwp

00— Hz(F 1Dr'1g( b)) —— HZ(D) — HZ(MO) —0

{0}

By Lemma 2.9.5, H} (Mo) = ker (Uw), : H'(Mo) — H*(My)) , and we have

] U (€8] + 0((1,]) =0 in H3(D).
Set [&,] = sy, ([X}]) + o ([1,]) € H' (D). Then
Po, ([5p]) = —wplU[Ep] =0

Now we can use Lemma 5.2.3 and write
By, (F) = [(@ (ba). (G)));

where

b p=wpU(Ep— ) WI’U(SyP(;+) —ﬁ)+wpu80(tp).

Let ay € C%(Ggq.s,Yy) be an element that maps to 1 € C°(Gqs,E) = E and satisfies
do, = y. The first formula of Lemma 5.2.4 reads

(124) it (1) 1)) = inv, ([850(Bp) U £ (05) + 5(bp) Uy ) )
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Set u, = sy ,(X)) —X,;. Then u, € C(},%(E(l)) and u, U oty = up,. Thus

(125) [gpyy(/l;p) Ufpl(ay) +8p(bp) U] =
= [wpUuy| +[gpy(wpUdo(ty)) Ufpl(ay) +8p(bp) U p].
By (113), we have
invo, [wy Uuy] = b, lup] = ~hyp(]. ),
and from (124-125) we get

(126)  hyp (K], ™) =

= = (. ) +invay, (8 (9 Udo(1,)) U (o) +5(bp) Ubty] )

We compute the second term on the right hand side of this formula. Since

gpy(90([tp])) = 0, there exists 7, € D;rig(Yy*(l)p) such that 7, — 7, under the
T

projection D;, (¥;'(1),) — Dy and we can assume that

do(tp) = do(tp) = (¢ — 1) (1), (1p — 1) (1p)).

Therefore
8py(WpUd(1p)) = 2, U gy (do(7y)) € Kp(V) C Ky (¥, (1)),
gp(bp) Uty =2, Ugy(di,) U, € Ky (V) C Ko (Y, (1)).
Thus,

inva (189 (wp Udb(1p)) U S (0) +8p(bp) Ubty]) =

= invg, (25 Ugpy (diy) U fy (0) +25 U p(%, (diy)) Ubty] ) =
= —invg, (1)U gpy (i) Ud Sy () +2, Ugy(ip) Udiyy] ) =
= —invq, ([ Uiy U (5 () +duy)]) =

— —invl7 ([Zp UE;; ng(y;)]) =
= —inv, ([Wp Ut[,Uy,ﬂ) -
=—{g, ([tpuy;]) :

Now we remark that ¢ t,Uyr]) =4 t,Upp. (y}]) and, taking into account
Q, ((pUyp Q, (lpYPp sy &
(123), we have

(128) (g, ([1ryUy;]) = —(q, (50]1 °p.([x,]) UpDJ'Gy;D) N
=— <pD,f([x;§])aPDi,f([y;]»D,f'

(127)
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The theorem follows from (126-128). ]

Corollary 7.2.5. — Under conditions of Theorem 7.2.4, for all [x] € H}(V) and
] € H}(V*(l)) we have

WP (5], b]) = i (sl p([x]).5]. 1 s (D).

Proof. — Set|[(x, (x7),Aq)] = 5‘\’;7D([x]). Then pp ¢ ([x}]) = 0 and the formula follows
from Theorem 7.2.4. U

7.3. The pairing hy’;," for extended Selmer groups

7.3.1. — Recall condition F3) introduced in Section 4.3

F3) Foralli € Z

DDy (Vp)/FiD (V)7 = Zpu(FiD (V)77 =0
Clearly, F3) implies Fla-b). In this section, we generalize the construction of the
height pairing A" to the case when V satisfies conditions F3), F2a) and F2b).

Let [y] € Hf(V*(1)) and let ¥, denote the associated extention (114). As before,

Lg(Y;(l) »)- Since the representation V,,

satisfies condition S), the exact sequence (82) have a canonical splitting spy.

In the diagram (109), the maps g, and g, are no more injective and we replace it
by the diagram (122). Let [x] € H}(V) and let sy p([x]) = [(x, (X] ), (Aq))]- Then [¥}]
is the unique element of H } (D) such that g,([x;}]) = [x,]. Its explicit form is given

by (121), but we do not use it here. Let

we denote by D, the inverse image of D in D

H'(Qq,Y (1
[%] € ker Hé(Y;‘(l))—>—l(Qq (1)
be an arbitrary lift of [x]. (Note that by Lemma 6.1.2, we can even take [X] €
H }(Yy*(l)).) As easy diagram chase (already used in the proof of Theorem 7.2.4)

shows there exists a unique [¥}] € H'(Dy) such that g,,([x}]) = res,([x]) in

H'(Qy,Y; (1)) and 7ip([%;]) = [¥;].
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We have the following diagram which can be seen as an analog of the diagram
(108) in our situation

Prp, o
H}, (D)) : H'(D,) <2—H"(D')
n:%)w Tp =
a
H}\ (D) o H'(D) ~——2—H(D)
0 0

From Proposition 4.3.15 it follows that there exist a unique [t,] € H°(D') (explicitly
given by (123) and [x}¥ | € H},(D,) such that

&4+ do([1,)) = prp o 7y’ ([x5]) -
Set
(129) [up) = [£}]+0([t]) — Py ([Xh%]) -

Then [u,] € H'(Q,,E(1)).

Definition. — Let V be a p-adic representation that is potentially semistable at p
and satisfies conditions F2a-b) and ¥3). We define the height pairing

Wept : Hi(V) x Hi(V*(1)) = E
by
hyp" ([x], b)) = Lo, ([up))-

It is easy to see that hyp"([x], [y]) does not depend on the choice of the lift [x},w}] .
The following result generalizes [56, Theorem 11.4.6].

Theorem 7.3.2. — Let V be a p-adic representation of Gqs that is potentially
semistable at p and satisfies conditions F2a-b) and F3). Then

*) ,norm spl |

i) hyp" = hy p;
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i) For all [x*] = [(x,(x)),(Aq))] € H'(V.D) and [*] = [(v,(57). (k)] €
H'(V*(1),D%) we have

Rp (), ) = =AM (1], ) + (po.r (g D) Poe (5 1)) -

Proof. — i) Recall that in the definition of /5" we can take [x] € H } (¥y°(1)). Com-

paring the definitions of Aj’;" and hf,%, we see that it is enough to prove that

[p] — (sy-,p([jc\ ] — [37;])) € ker({q,),
where [u)] is defined by (129) and sy, , denotes the splitting (83). Since the restriction
of g,y on H'(Q,,E(1)) is the identity map, we have

Iw

[up] = gpy([up]) = [Xp] — gpvy([xp,y])7
and it is enough to check that

(130) py(pn]) — &py o syp([%]) € ker(£g,)-

First remark that the canonical splitting (82) induces splittings S% and s, , in the
diagram

Jw
‘SP,A\'

00— HIIW(%QWE(X)) — HIIW(D)’) = Hllw(D) —0

\L \L Prp,y \L P'p
Spy

0—— H'Y(Q,,E(1)) H'(Dy) == H'(D) ——0.

Write [x)%] in the form
] = spy(a™) +61, a™ € Hy (D), 0™ € Hyy(Zq, £ (Xp))-
By the definition of [x}",], we have
Py ([)3]) = syp(a) + b,
where b € ker(lq,) = HI(QP,E(I))r%p and
a=d([tp]) +sp,([%}]) € H' (D).
Since g, (8y,p(do([tp])) = 0, we have
gl’:)’(prD,yqx;\:/y])) =b+gpy(syp(a)) =b+gpy (sy,p([f;]))v

and (130) is checked.
ii) The second statement follows from i) and Theorem 7.2.4. O]
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