Exam May 14th 2021 (Solutions)

 Duration: 3 hours

 Duration: 3 hours}

Hard copies of the lecture notes are allowed You can use all results explicitly stated in the course

Exercise 1. Let K be a local field of characteristic 0 with residue field of characteristic p. Let ψ denote a non-trivial additive character of G_{K}, i.e. a continuous map $\psi: G_{K} \rightarrow \mathbf{Z}_{p}$ such that

$$
\psi\left(g_{1} g_{2}\right)=\psi\left(g_{1}\right)+\psi\left(g_{2}\right), \quad \forall g_{1}, g_{2} \in G_{K}
$$

Since ψ is continuous, $\psi\left(G_{K}\right)$ is a non-trivial closed subgroup of \mathbf{Z}_{p}, hence $\psi\left(G_{K}\right)=p^{m} \mathbf{Z}_{p}$ for some $m \geqslant 0$. The $\operatorname{kernel} \operatorname{ker}(\psi)$ is a closed subgroup of G_{K} and $G_{K} / \operatorname{ker}(\psi) \simeq \mathbf{Z}_{p}$. Set $K_{\infty}=\bar{K}^{\operatorname{ker}(\psi)}$. Then K_{∞} / K is a \mathbf{Z}_{p}-extension.

Assume that K_{∞} / K is totally ramified. Prove that there does not exist $c \in \mathbf{C}_{K}$ ($\mathbf{C}_{K}=$ completion of $\left.\bar{K}\right)$ such that

$$
\psi(g)=g(c)-c, \quad \forall g \in G_{K}
$$

Hint: use Tate's theorem (Theorem 4.3).
Solution. By Galois theory, $G_{K_{\infty}}=\operatorname{ker}(\psi)$. Assume that $\psi(g)=g(c)-c$ for all $g \in G_{K}$. Then $g(c)=c$ for all $g \in G_{K_{\infty}}$ and therefore $c \in \mathbf{C}_{K}^{G_{K_{\infty}}}=\widehat{K}_{\infty}$. Set $\Gamma=\operatorname{Gal}\left(K_{\infty} / K\right)$ and denote by γ a generator of Γ. We can consider ψ as a character of Γ. Since ψ is non-trivial, the element

$$
\psi(\gamma)=\gamma(c)-c \in \mathbf{Z}_{p}
$$

is non-zero. Using the decomposition $\widehat{K}_{\infty}=K \oplus \widehat{K}_{\infty}^{\circ}$, write $c=a+b$ with $a \in K$ and $b \in \widehat{K}_{\infty}^{\circ}$. Then

$$
\gamma(c)-c=\gamma(a)-a+\gamma(b)-b=\gamma(b)-b .
$$

On the other hand, $\gamma(b)-b \in \widehat{K}_{\infty}^{\circ}$ and therefore

$$
\psi(\gamma) \in K \cap \widehat{K}_{\infty}^{\circ}=\{0\}
$$

This gives a contradiction.
Exercise 2. Let K be a local field of characteristic 0 with residue field of characteristic p. Let $\eta: G_{K} \rightarrow \mathbf{Z}_{p}^{*}$ be a continuous character. We denote by T_{1} a free \mathbf{Z}_{p}-module of rank one equipped with the action of G_{K} given by

$$
g(x)=\eta(g) x, \quad \forall x \in T_{1}, g \in G_{K} .
$$

(Note that $T_{1} \simeq \mathbf{Z}_{p}(\eta)$ in the notation of the course). We denote by T_{2} a free \mathbf{Z}_{p}-module of rank one equipped with the trivial action of G_{K} :

$$
g(x)=x, \quad \forall x \in T_{2}, g \in G_{K}
$$

Assume that T is a free \mathbf{Z}_{p}-module of rank 2 equipped with a continuous \mathbf{Z}_{p}-linear action of G_{K} and sitting in an exact sequence of Galois modules

$$
\begin{equation*}
0 \rightarrow T_{1} \rightarrow T \rightarrow T_{2} \rightarrow 0 \tag{1}
\end{equation*}
$$

(thus T_{1} is a submodule of T and $T / T_{1} \simeq T_{2}$).

1) Show that there exists a \mathbf{Z}_{p}-basis $\left\{e_{1}, e_{2}\right\}$ of T such that the action of G_{K} on this basis is given by

$$
\begin{equation*}
g\left(e_{1}\right)=\eta(g) e_{1}, \quad g\left(e_{2}\right)=\psi(g) e_{1}+e_{2}, \quad \forall g \in G_{K}, \tag{2}
\end{equation*}
$$

where ψ is some continuous map $\psi: G_{K} \rightarrow \mathbf{Z}_{p}$. Check that the map ψ satisfies the following property:

$$
\begin{equation*}
\psi\left(g_{1} g_{2}\right)=\eta\left(g_{1}\right) \psi\left(g_{2}\right)+\psi\left(g_{1}\right), \quad \forall g_{1}, g_{2} \in G_{K} \tag{3}
\end{equation*}
$$

Solution. Let v_{1} be an arbitrary basis of T_{1}. Set $e_{1}=v_{1}$. Then $g\left(e_{1}\right)=\eta(g) e_{1}$ for all $g \in G_{K}$. Let v_{2} be any basis of V_{2} and let e_{2} be any element of T such that e_{2} maps to v_{2} under the map $f: T \rightarrow T_{2}$. It is easy to see that $\left\{e_{1}, e_{2}\right\}$ is a basis of T over \mathbf{Z}_{p}. Moreover $g\left(e_{2}\right)$ maps to $g\left(v_{2}\right)=v_{2}$ under f (the sequence (1) is a sequence of G_{K}-modules) and therefore $g\left(e_{2}\right)-e_{2} \in \operatorname{ker}(f)=T_{1}$. Hence

$$
g\left(e_{2}\right)-e_{2}=\psi(g) e_{1}
$$

for some $\psi(g) \in \mathbf{Z}_{p}$. Note that since G_{K} acts continuously, the map ψ is continuous. This proves the first assertion.

For $g_{1}, g_{2} \in G_{K}$, one has:

$$
g_{1} g_{2}\left(e_{2}\right)=g_{1}\left(e_{2}+\psi\left(g_{2}\right) e_{1}\right)=g_{1}\left(e_{2}\right)+\psi\left(g_{2}\right) g_{1}\left(e_{1}\right)=e_{2}+\psi\left(g_{1}\right) e_{1}+\psi\left(g_{2}\right) \eta\left(g_{1}\right) e_{1} .
$$

On the other hand,

$$
g_{1} g_{2}\left(e_{2}\right)=e_{2}+\psi\left(g_{1} g_{2}\right) e_{1} .
$$

Hence $\psi\left(g_{1} g_{2}\right)=\psi\left(g_{1}\right)+\psi\left(g_{2}\right) \eta\left(g_{1}\right)$.
2) Conversely, assume that T is a free \mathbf{Z}_{p}-module of rank 2 with a basis $\left\{e_{1}, e_{2}\right\}$. Let $\psi: G_{K} \rightarrow \mathbf{Z}_{p}$ be a continuous map such that condition (3) holds. Show that formulas (2) define a continuous linear action of G_{K} on T and that there exist $T_{1} \simeq \mathbf{Z}_{p}(\eta)$ and $T_{2} \simeq \mathbf{Z}_{p}$ such that $T / T_{1} \simeq T_{2}$.

Solution. Any element of T can be written in a unique way in the form $x=a_{1} e_{1}+a_{2} e_{2}$ with $a_{1}, a_{2} \in \mathbf{Z}_{p}$. Setting

$$
g(x):=a_{1} g\left(e_{1}\right)+a_{2} g\left(e_{2}\right),
$$

we associate to g a \mathbf{Z}_{p}-linear map $T \rightarrow T$. To show that it defines a structure on $G_{K^{-}}$ module on T we only need to check that
a) If $g=e_{G}$ (neutral element of G_{K}), then $e_{G}(x)=x$ for all $x \in T$. We remark that $\eta\left(e_{G}\right)=1$ and therefore $e_{G}\left(e_{1}\right)=e_{1}$. Moreover

$$
\psi\left(e_{G}\right)=\psi\left(e_{G} e_{G}\right)=\psi\left(e_{G}\right)+\eta\left(e_{G}\right) \psi\left(e_{G}\right)=\psi\left(e_{G}\right)+\psi\left(e_{G}\right) .
$$

Therefore $\psi\left(e_{G}\right)=0$ and $e_{G}\left(e_{2}\right)=e_{2}$. This implies a).
b) $\left(g_{1} g_{2}\right)(x)=g_{1}\left(g_{2}(x)\right)$ for all $g_{1}, g_{2} \in G_{K}$ and $x \in T$. It is sufficient to prove this property for $x=e_{1}$ and e_{2}. One has:

$$
g_{1}\left(g_{2}\left(e_{1}\right)\right)=\eta\left(g_{1}\right)\left(g_{2}\left(e_{1}\right)\right)=\eta\left(g_{1}\right) \eta\left(g_{2}\right) e_{1}=\eta\left(g_{1} g_{2}\right) e_{1}=\left(g_{1} g_{2}\right)\left(e_{1}\right)
$$

Using property (3), we have:

$$
\begin{align*}
\left(g_{1}\left(g_{2}\left(e_{2}\right)\right)=g_{1}\left(e_{2}+\right.\right. & \left.\psi\left(g_{2}\right) e_{1}\right)=g_{1}\left(e_{2}\right)+\psi\left(g_{2}\right) g_{1}\left(e_{1}\right)= \tag{1}\\
& =e_{2}+\psi\left(g_{1}\right) e_{1}+\psi\left(g_{2}\right) \eta\left(g_{1}\right) e_{1}=e_{2}+\psi\left(g_{1} g_{2}\right) e_{1}=\left(g_{1} g_{2}\right)\left(e_{2}\right)
\end{align*}
$$

Set $T_{1}=\mathbf{Z}_{p} e_{1}$ and $T_{2}=T / T_{1}$. Then $T_{1} \simeq \mathbf{Z}_{p}(\eta)$, and T_{2} is a trivial G_{K}-module of rank one over \mathbf{Z}_{p}.

Set $V=T \otimes_{\mathbf{z}_{p}} \mathbf{Q}_{p}$. Let B be a G_{K}-regular algebra (see Chapter 5, section 5 of the
course). For any p-adic representation U set $\mathbf{D}_{B}(U)=\left(U \otimes_{\mathbf{Q}_{p}} B\right)^{G_{K}}$. Recall that the exact sequence (1) induces an exact sequence

$$
0 \rightarrow \mathbf{D}_{B}\left(V_{1}\right) \rightarrow \mathbf{D}_{B}(V) \rightarrow \mathbf{D}_{B}\left(V_{2}\right)
$$

(the third map is not necessarily surjective).
3) Show that V is B-admissible if and only if there exist an invertible $b \in B$ and $c \in B$ (not necessarily invertible) such that

$$
\eta(g)=b / g(b), \quad \forall g \in G_{K}
$$

and

$$
\psi(g)=c-\eta(g) \cdot g(c), \quad \forall g \in G_{K} .
$$

Hint: First show that V is admissible if and only if V_{1} is admissible and the map $\mathbf{D}_{B}(V) \rightarrow \mathbf{D}_{B}\left(V_{2}\right)$ is surjective.

Solution. Since V_{2} is a trivial Galois representation, one has:

$$
\mathbf{D}_{B}\left(V_{2}\right)=\left(V_{2} \otimes_{\mathbf{Q}_{p}} B\right)^{G_{K}}=B^{G_{K}}=: E .
$$

Hence V_{2} is B-admissible and $\operatorname{dim}_{E} \mathbf{D}_{B}\left(V_{2}\right)=1$. We remark that

$$
\operatorname{dim}_{E} \mathbf{D}_{B}(V) \leqslant \operatorname{dim}_{E} \mathbf{D}_{B}\left(V_{1}\right)+\operatorname{dim}_{E} \mathbf{D}_{B}\left(V_{2}\right)=\operatorname{dim}_{E} \mathbf{D}_{B}\left(V_{1}\right)+1
$$

and the equality holds if and only if the map $\mathbf{D}_{B}(V) \rightarrow \mathbf{D}_{B}\left(V_{2}\right)$ is surjective. Moreover $\operatorname{dim}_{E} \mathbf{D}_{B}\left(V_{1}\right) \leqslant 1$ and $\operatorname{dim}_{E} \mathbf{D}_{B}\left(V_{1}\right)=1$ if and only if V_{1} is B-admissible. Therefore V is B-admissible if and only if the following conditions hold:
a) V_{1} is B-admissible;
b) The map $\mathbf{D}_{B}(V) \rightarrow \mathbf{D}_{B}\left(V_{2}\right)$ is surjective.

Each element of $V_{1} \otimes_{\mathbf{Q}_{p}} B$ can be written in the form $e_{1} \otimes b$ for some $b \in B$. Therefore V_{1} is B-admissible if and only if there exists a non-zero b such that

$$
g\left(v_{1} \otimes b\right)=v_{1} \otimes b, \quad \forall g \in G_{K} .
$$

This condition is equivalent to the condition

$$
\eta(g) g(b)=b, \quad \forall g \in G_{K} .
$$

In particular, the line $\mathbf{Q}_{p} b$ is stable under the action of G_{K}, and therefore b is invertible. Hence we can write $\eta(g)=b / g(b)$.

The surjectivity of the map $f: \mathbf{D}_{B}(V) \rightarrow \mathbf{D}_{B}\left(V_{2}\right)$ means that there exists an element $x \in \mathbf{D}_{B}(V)$ which maps to v_{2} under f. Therefore x can be written in the form $x=v_{2}+c \otimes v_{1}$ for some $c \in B$. The condition $g(x)=x$ for all $g \in G_{K}$ reads:

$$
g(x)=g\left(v_{2}\right)+g(c) \otimes g\left(v_{1}\right)=v_{2}+\psi(g) v_{1}+g(c) \otimes \eta(g) v_{1}=v_{2}+c \otimes v_{1} .
$$

Therefore it is equivalent to:

$$
\psi(g)+\eta(g) g(c)=c, \quad \forall g \in G_{K}
$$

In the last question of this exercise, we assume that $\eta=\mathrm{id}$ is the trivial character (and therefore T_{1} is trivial as G_{K}-module). From formula (3) it follows that ψ is an additive character, i.e. $\psi\left(g_{1} g_{2}\right)=\psi\left(g_{2}\right)+\psi\left(g_{1}\right)$.
4) Set $K_{\infty}=\bar{K}^{\operatorname{ker}(\psi)}$. Assume that K_{∞} / K is totally ramified, and ψ is non-trivial. Using Exercise 1, prove that then V is not \mathbf{C}_{K}-admissible. Deduce that V is not Hodge-Tate.

Solution. If $\eta=\mathrm{id}, V_{1}$ is $\mathbf{C}_{K^{-}}$-admissible. By question 3), V is $\mathbf{C}_{K^{-}}$-admissible if and only
if there exists $c \in \mathbf{C}_{K}$ such that $\psi(g)=c-g(c)$ for all $g \in G_{K}$. This is impossible by Exercise 1. Hence V is not \mathbf{C}_{K}-admissible.

Assume that V is Hodge-Tate. Then V is \mathbf{B}_{HT}-admissible, and there exists $\alpha=\sum_{i} c_{i} t^{i}$, $c_{i} \in \mathbf{C}_{K}$ such that the following identity holds in $\mathbf{B}_{\text {HT }}$.

$$
\psi(g)=\alpha-g(\alpha)=\sum_{i}\left(c_{i}-\chi^{i}(g) g\left(c_{i}\right)\right) t^{i}, \quad \forall g \in G_{K}
$$

Therefore $\psi(g)=c_{0}-g\left(c_{0}\right)$ for all $g \in G_{K}$. This gives a contradiction.
Exercise 3. For any n we denote by $\zeta_{p^{n}}$ a primitive p^{n} th root of unity. One can assume (this is not really necessary in this exercise) that $\zeta_{p^{n}}^{p}=\zeta_{p^{n-1}}$. Set $K=\mathbf{Q}_{p}\left(\zeta_{p}\right)$ and $K_{\infty}=\bigcup_{n \geqslant 1} \mathbf{Q}_{p}\left(\zeta_{p^{n}}\right)$. Recall that K_{∞} / K is a totally ramified \mathbf{Z}_{p}-extension. Let K^{ur} / K denote the maximal unramified extension of K.

1) Show that in the compositum $K^{\mathrm{ur}} K_{\infty}$ contains infinitely many subfields $K \subset L \subset$ $K^{\mathrm{ur}} K_{\infty}$ such that L / K are totally ramified \mathbf{Z}_{p}-extensions of K.

Hint: Use Galois theory. What is the Galois group of the compositum of two linearly disjoint Galois extensions?

Solution. If F_{1} and F_{2} are two Galois extensions of K such that $F_{1} \cap F_{2}=K$, then $\operatorname{Gal}\left(F_{1} F_{2} / K\right)=\operatorname{Gal}\left(F_{1} / K\right) \times \operatorname{Gal}\left(F_{2} / K\right)$. Since $\operatorname{Gal}\left(K^{\mathrm{ur}} / K\right) \simeq \widehat{\mathbf{Z}} \simeq \prod_{\ell} \mathbf{Z}_{\ell}$, there exists an unramified subextension $K^{\mathrm{ur}, p} / K$ such that $\operatorname{Gal}\left(K^{\mathrm{ur}, p} / K\right) \simeq \mathbf{Z}_{p}$. Take $F_{1}=K_{\infty}$ and $F_{2}=$ $K^{\mathrm{ur}, p}$, and set $F=F_{1} F_{2}$. Then $F \subset K^{\mathrm{ur}} K_{\infty}$ and $\operatorname{Gal}(F / K) \simeq \operatorname{Gal}\left(F_{1} / K\right) \times \operatorname{Gal}\left(F_{2} / K\right)$, where

$$
\operatorname{Gal}\left(F_{1} / K\right) \times \operatorname{Gal}\left(F_{2} / K\right) \simeq \mathbf{Z}_{p} \times \mathbf{Z}_{p} .
$$

For a subgroup $H \subset \operatorname{Gal}\left(F_{1} / K\right) \times \operatorname{Gal}\left(F_{2} / K\right)$, set $L=F^{H}$. Since $K^{\mathrm{ur}, p}=F^{\mathrm{Gal}\left(F_{1} / K\right)}$, one has

$$
L \cap K^{\mathrm{ur}, p}=K \Leftrightarrow H \cdot \operatorname{Gal}\left(F_{1} / K\right)=\operatorname{Gal}(F / K)
$$

Therefore it is sufficient to show that there exists infinitely many H such that

$$
\operatorname{Gal}(F / K) / H \simeq\left(\operatorname{Gal}\left(F_{1} / K\right) \times \operatorname{Gal}\left(F_{2} / K\right)\right) / H \simeq \mathbf{Z}_{p}
$$

and

$$
H \cdot \operatorname{Gal}\left(F_{1} / K\right)=\operatorname{Gal}\left(F_{1} / K\right) \times \operatorname{Gal}\left(F_{2} / K\right)
$$

To construct such subgroups, it is sufficient to consider the subgroups in $\mathbf{Z}_{p} \times \mathbf{Z}_{p}$ topologically generated by $\left(p^{n}, 1\right)$ for different n.
2^{*}) This question is independent on question 1). Moreover, the assertion below holds for any local field of characteristic 0 , not only for $K=\mathbf{Q}_{p}\left(\zeta_{p}\right)$.

Let L_{1} and L_{2} be two totally ramified \mathbf{Z}_{p}-extensions of K. Show that \widehat{L}_{1}^{b} and \widehat{L}_{2}^{b} are isomorphic as non-archimedean fields (i.e. that there exists an isomorphism $\widehat{L}_{1}^{b} \simeq \widehat{L}_{2}^{b}$ which is compatible with non-archimedean values on \widehat{L}_{1}^{b} and \widehat{L}_{2}^{b}).

Solution. By the theory of field of norms, $\mathcal{X}\left(L_{1} / K\right)$ and $\mathcal{X}\left(L_{2} / K\right)$ are both local fields of characteristic p withe the same residue field. Hence $\mathcal{X}\left(L_{1} / K\right) \simeq \mathcal{X}\left(L_{2} / K\right)$. By Theorem 2.7 (Fontaine-Wintenberger)

$$
\widehat{L}_{1}^{b} \simeq \mathcal{X}\left(L_{1} / K\right)^{\mathrm{rad}} \simeq \mathcal{X}\left(L_{2} / K\right)^{\mathrm{rad}} \simeq \widehat{L}_{2}^{\mathrm{b}}
$$

$\left.3^{*}\right)$ Show that there exist totally ramified \mathbf{Z}_{p}-extensions L_{1} and L_{2} of K such that $\widehat{L}_{1}^{b} \simeq \widehat{L}_{2}^{b}$ but $L_{1} \not \nsim L_{2}$ as abstract fields.

Solution. Use question 1). Take $K=\mathbf{Q}_{p}\left(\zeta_{p}\right)$ and $K_{\infty}=\mathbf{Q}_{p}\left(\zeta_{p^{\infty}}\right)$. Take $L_{1}=K_{\infty}$. In the compositum $K_{\infty} K^{\text {ur }}$ take a totally ramified \mathbf{Z}_{p}-extension L_{2} such that $L_{2} \neq L_{1}$. By question 2), $\widehat{L}_{1}^{b} \simeq \widehat{L}_{2}^{b}$. To prove that $L_{1} \nsucceq L_{2}$ one can remark that L_{2} cannot contain all p^{n} th roots of unity $\zeta_{p^{n}}(n \geqslant 1)$ since otherwise $L_{2}=L_{1}$.

Exercise 4. Let K be a local field of characteristic 0 with residue field of characteristic p. Fix $u_{0} \in U_{K}$ such that $u_{0} \equiv 1\left(\bmod p O_{K}\right)$. Fix a system of p^{n} th roots $u_{n} \in \bar{K}$ of u_{0} such that $u_{n+1}^{p}=u_{n}$ for all $n \geqslant 0$. We consider the system $u=\left(u_{n}\right)_{n \geqslant 0}$ as an element of $O_{\mathbf{C}_{K}}^{b}$. It is easy to see that $u_{n} \equiv 1\left(\bmod \mathfrak{m}_{\bar{K}}\right)$ and therefore $u \equiv 1\left(\bmod \mathfrak{m}_{\mathbf{C}_{K}^{b}}\right)$. We fix a compatible system $\varepsilon=\left(\zeta_{p^{n}}\right)_{n \geqslant 0}$ of p^{n} th roots of unity and denote by $\chi: G_{K} \rightarrow \mathbf{Z}_{p}^{*}$ the cyclotomic character.

1) Show that for any $n \geqslant 1$ there exists a map $\psi_{n}: G_{K} \rightarrow \mathbf{Z} / p^{n} \mathbf{Z}$ such that

$$
g\left(u_{n}\right)=u_{n} \zeta_{p^{n}}^{\psi_{n}(g)}, \quad \forall g \in G_{K} .
$$

Show that there exists a continuous map $\psi: G_{K} \rightarrow \mathbf{Z}_{p}$ such that $\psi_{n}(g)=\psi(g) \bmod p^{n}$ for all $n \geqslant 1$ and $g \in G_{K}$.

Solution. If u_{n} is a fixed root of $X^{p^{n}}-u_{0}$, then other roots of this polynomial are of the form $u_{n} \zeta_{p^{n}}^{a}$, where $0 \leqslant a \leqslant p^{n}-1$. Since the elements of the Galois group permute the roots, for any $n \geqslant 1$ and $g \in G_{K}$, there exists $\psi_{n}(g) \in \mathbf{Z} / p^{n} \mathbf{Z}$ such that $g\left(u_{n}\right)=u_{n} \zeta_{p^{n}}^{\psi_{n}(g)}$. Moreover,

$$
g\left(u_{n-1}\right)=g\left(u_{n}^{p}\right)=g\left(u_{n}\right)^{p}=u_{n}^{p}\left(\zeta_{p^{n}}^{\psi_{n}(g)}\right)^{p}=u_{n-1} \zeta_{p^{n-1}}^{\psi_{n}(g)} .
$$

This implies that $\psi_{n-1}(g)=\psi_{n}(g)\left(\bmod p^{n-1}\right)$. Therefore $\left(\psi_{n}(g)\right)_{n \geqslant 1}$ define an element $\psi(g)$ of $\lim _{n} \mathbf{Z} / p^{n} \mathbf{Z}=\mathbf{Z}_{p}$. Since for each n the set $\left\{g \in G_{K} \mid \psi_{n}(g)=0\right\}$ is open in G_{K}, the map ψ is continuous.
2) Check that the map ψ satisfies property (3) of Exercise 2 with $\eta=\chi$:

$$
\psi\left(g_{1} g_{2}\right)=\chi\left(g_{1}\right) \psi\left(g_{2}\right)+\psi\left(g_{1}\right), \quad g_{1}, g_{2} \in G_{K} .
$$

Solution. For each n one has:

$$
g_{1} g_{2}\left(u_{n}\right)=g_{1}\left(u_{n} \zeta_{p^{n}}^{\psi_{n}\left(g_{2}\right)}\right)=g_{1}\left(u_{n}\right) g_{1}\left(\zeta_{p^{n}}^{\psi_{n}\left(g_{2}\right)}\right)=u_{n} \zeta_{p^{n}}^{\psi_{n}\left(g_{1}\right)} \zeta_{p^{n}}^{\chi\left(g_{1}\right) \psi_{n}\left(g_{2}\right)}=u_{n} \zeta_{p^{n}}^{\psi_{n}\left(g_{1}\right)+\chi\left(g_{1}\right) \psi_{n}\left(g_{2}\right)} .
$$

Hence $\psi_{n}\left(g_{1} g_{2}\right)=\chi\left(g_{1}\right) \psi_{n}\left(g_{2}\right)+\psi_{n}\left(g_{1}\right)$ for all n. Passing to the limit, we obtain the result.
From question 2) of Exercise 2 it follows that there exists an exact sequence of p-adic representations:

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0
$$

where $V_{1} \simeq \mathbf{Q}_{p}(\chi)$ and $V_{2} \simeq \mathbf{Q}_{p}$ (trivial representation).
We denote by $[u] \in \mathbf{A}_{\mathrm{inf}}$ the Teichmüller lift of u in $\mathbf{A}_{\mathrm{inf}}=W\left(O_{\mathbf{C}_{K}}^{b}\right)$. The following facts are admitted:
a) The power series

$$
\log [u]=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{([u]-1)^{n}}{n}
$$

converges in $\mathbf{B}_{\text {cris }}^{+}$.
b) If $v=\left(v_{n}\right)_{n \geqslant 0}$ is another system of units satisfying the same properties as u, then $\log [u v]=\log [u]+\log [v] ;$
c) The logarithm map commutes with the action of G_{K}.
3) Show that

$$
g(\log [u])=\log [u]+\psi(g) t, \quad \forall g \in G_{K},
$$

where $t=\log [\varepsilon]$.
Solution. One has $g(\log [u])=\log [g(u)]$. Since $u=\left(u_{n}\right)_{n \geqslant 0}$, by question 1$)$ one has:

$$
g(u)=\left(u_{n} \zeta_{p^{n}}^{\psi_{n}(g)}\right)_{n \geqslant 0}=u \varepsilon^{\psi(g)},
$$

where $\varepsilon=\left(\zeta_{p^{n}}\right)_{n \geqslant 0}$. Hence

$$
g(\log [u])=\log \left(\left[u \varepsilon^{\psi(g)}\right]\right)=\log \left([u][\varepsilon]^{\psi(g)}\right)=\log [u]+\psi(g) \log [\varepsilon]=\log [u]+\psi(g) t .
$$

$\left.4^{*}\right)$ Using the criterion proved in question 3) of Exercise 2 show that V is crystalline.
Solution. $V_{1}=\mathbf{Q}_{p}(\chi)$ is $\mathbf{B}_{\text {cris }}$-admissible. Namely, taking $b=t^{-1}$, we obtain that

$$
b / g(b)=g(t) / t=\chi(g) .
$$

Set $c=-\log [u] / t$. Then

$$
c-\chi(g) g(c)=-\log [u] / t+g(\log [u]) / t=-\log [u] / t+(\log [u] / t+\psi(g))=\psi(g) .
$$

Applying the criterion from Exercise 2, we see that V is crystalline.

