
UNIVERSITÉ DE BORDEAUX
M2, p-adic Hodge Theory
2020-2021

Exam May 14th 2021 (Solutions)

Duration: 3 hours

Hard copies of the lecture notes are allowed

You can use all results explicitly stated in the course

Exercise 1. Let K be a local field of characteristic 0 with residue field of characteristic p.
Let ψ denote a non-trivial additive character of GK , i.e. a continuous map ψ : GK → Zp
such that

ψ(g1g2) = ψ(g1) + ψ(g2), ∀g1, g2 ∈ GK .

Since ψ is continuous, ψ(GK) is a non-trivial closed subgroup of Zp, hence ψ(GK) = pmZp
for some m > 0. The kernel ker(ψ) is a closed subgroup of GK and GK/ ker(ψ) ' Zp. Set

K∞ = K
ker(ψ)

. Then K∞/K is a Zp-extension.

Assume that K∞/K is totally ramified. Prove that there does not exist c ∈ CK

(CK = completion ofK) such that

ψ(g) = g(c)− c, ∀g ∈ GK .

Hint: use Tate’s theorem (Theorem 4.3).

Solution. By Galois theory, GK∞ = ker(ψ). Assume that ψ(g) = g(c)− c for all g ∈ GK .

Then g(c) = c for all g ∈ GK∞ and therefore c ∈ C
GK∞
K = K̂∞. Set Γ = Gal(K∞/K) and

denote by γ a generator of Γ. We can consider ψ as a character of Γ. Since ψ is non-trivial,
the element

ψ(γ) = γ(c)− c ∈ Zp

is non-zero. Using the decomposition K̂∞ = K ⊕ K̂◦∞, write c = a + b with a ∈ K and

b ∈ K̂◦∞. Then
γ(c)− c = γ(a)− a+ γ(b)− b = γ(b)− b.

On the other hand, γ(b)− b ∈ K̂◦∞ and therefore

ψ(γ) ∈ K ∩ K̂◦∞ = {0}.
This gives a contradiction.

Exercise 2. Let K be a local field of characteristic 0 with residue field of character-
istic p. Let η : GK → Z∗p be a continuous character. We denote by T1 a free Zp-module
of rank one equipped with the action of GK given by

g(x) = η(g)x, ∀x ∈ T1, g ∈ GK .

(Note that T1 ' Zp(η) in the notation of the course). We denote by T2 a free Zp-module
of rank one equipped with the trivial action of GK :

g(x) = x, ∀x ∈ T2, g ∈ GK .

Assume that T is a free Zp-module of rank 2 equipped with a continuous Zp-linear action
of GK and sitting in an exact sequence of Galois modules

0→ T1 → T → T2 → 0. (1)

(thus T1 is a submodule of T and T/T1 ' T2).
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1) Show that there exists a Zp-basis {e1, e2} of T such that the action of GK on this
basis is given by

g(e1) = η(g)e1, g(e2) = ψ(g)e1 + e2, ∀g ∈ GK , (2)

where ψ is some continuous map ψ : GK → Zp. Check that the map ψ satisfies the
following property:

ψ(g1g2) = η(g1)ψ(g2) + ψ(g1), ∀g1, g2 ∈ GK . (3)

Solution. Let v1 be an arbitrary basis of T1. Set e1 = v1. Then g(e1) = η(g)e1 for
all g ∈ GK . Let v2 be any basis of V2 and let e2 be any element of T such that e2 maps to
v2 under the map f : T → T2. It is easy to see that {e1, e2} is a basis of T over Zp. More-
over g(e2) maps to g(v2) = v2 under f ( the sequence (1) is a sequence of GK-modules)
and therefore g(e2)− e2 ∈ ker(f) = T1. Hence

g(e2)− e2 = ψ(g)e1

for some ψ(g) ∈ Zp. Note that since GK acts continuously, the map ψ is continuous. This
proves the first assertion.

For g1, g2 ∈ GK , one has:

g1g2(e2) = g1(e2 + ψ(g2)e1) = g1(e2) + ψ(g2)g1(e1) = e2 + ψ(g1)e1 + ψ(g2)η(g1)e1.

On the other hand,
g1g2(e2) = e2 + ψ(g1g2)e1.

Hence ψ(g1g2) = ψ(g1) + ψ(g2)η(g1).

2) Conversely, assume that T is a free Zp-module of rank 2 with a basis {e1, e2}. Let
ψ : GK → Zp be a continuous map such that condition (3) holds. Show that formulas
(2) define a continuous linear action of GK on T and that there exist T1 ' Zp(η) and
T2 ' Zp such that T/T1 ' T2.

Solution. Any element of T can be written in a unique way in the form x = a1e1 + a2e2
with a1, a2 ∈ Zp. Setting

g(x) := a1g(e1) + a2g(e2),

we associate to g a Zp-linear map T → T. To show that it defines a structure on GK-
module on T we only need to check that

a) If g = eG (neutral element of GK), then eG(x) = x for all x ∈ T. We remark that
η(eG) = 1 and therefore eG(e1) = e1. Moreover

ψ(eG) = ψ(eGeG) = ψ(eG) + η(eG)ψ(eG) = ψ(eG) + ψ(eG).

Therefore ψ(eG) = 0 and eG(e2) = e2. This implies a).
b) (g1g2)(x) = g1(g2(x)) for all g1, g2 ∈ GK and x ∈ T. It is sufficient to prove this

property for x = e1 and e2. One has:

g1(g2(e1)) = η(g1)(g2(e1)) = η(g1)η(g2)e1 = η(g1g2)e1 = (g1g2)(e1).

Using property (3), we have:

(1) (g1(g2(e2)) = g1(e2 + ψ(g2)e1) = g1(e2) + ψ(g2)g1(e1) =

= e2 + ψ(g1)e1 + ψ(g2)η(g1)e1 = e2 + ψ(g1g2)e1 = (g1g2)(e2).

Set T1 = Zpe1 and T2 = T/T1. Then T1 ' Zp(η), and T2 is a trivial GK-module of rank
one over Zp.

Set V = T ⊗Zp Qp. Let B be a GK-regular algebra (see Chapter 5, section 5 of the
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course). For any p-adic representation U set DB(U) = (U ⊗Qp B)GK . Recall that the
exact sequence (1) induces an exact sequence

0→ DB(V1)→ DB(V )→ DB(V2).

(the third map is not necessarily surjective).

3) Show that V is B-admissible if and only if there exist an invertible b ∈ B and c ∈ B
(not necessarily invertible) such that

η(g) = b/g(b), ∀g ∈ GK

and

ψ(g) = c− η(g) · g(c), ∀g ∈ GK .

Hint: First show that V is admissible if and only if V1 is admissible and the map
DB(V )→ DB(V2) is surjective.

Solution. Since V2 is a trivial Galois representation, one has:

DB(V2) = (V2 ⊗Qp B)GK = BGK =: E.

Hence V2 is B-admissible and dimE DB(V2) = 1. We remark that

dimE DB(V ) 6 dimE DB(V1) + dimE DB(V2) = dimE DB(V1) + 1

and the equality holds if and only if the map DB(V ) → DB(V2) is surjective. Moreover
dimE DB(V1) 6 1 and dimE DB(V1) = 1 if and only if V1 is B-admissible. Therefore V is
B-admissible if and only if the following conditions hold:

a) V1 is B-admissible;
b) The map DB(V )→ DB(V2) is surjective.
Each element of V1 ⊗Qp B can be written in the form e1 ⊗ b for some b ∈ B. Therefore

V1 is B-admissible if and only if there exists a non-zero b such that

g(v1 ⊗ b) = v1 ⊗ b, ∀g ∈ GK .

This condition is equivalent to the condition

η(g)g(b) = b, ∀g ∈ GK .

In particular, the line Qpb is stable under the action of GK , and therefore b is invertible.
Hence we can write η(g) = b/g(b).

The surjectivity of the map f : DB(V )→ DB(V2) means that there exists an element
x ∈ DB(V ) which maps to v2 under f. Therefore x can be written in the form x = v2+c⊗v1
for some c ∈ B. The condition g(x) = x for all g ∈ GK reads:

g(x) = g(v2) + g(c)⊗ g(v1) = v2 + ψ(g)v1 + g(c)⊗ η(g)v1 = v2 + c⊗ v1.
Therefore it is equivalent to:

ψ(g) + η(g)g(c) = c, ∀g ∈ GK .

In the last question of this exercise, we assume that η = id is the trivial character (and
therefore T1 is trivial as GK-module). From formula (3) it follows that ψ is an additive
character, i.e. ψ(g1g2) = ψ(g2) + ψ(g1).

4) Set K∞ = K
ker(ψ)

. Assume that K∞/K is totally ramified, and ψ is non-trivial. Us-
ing Exercise 1, prove that then V is not CK-admissible. Deduce that V is not Hodge–Tate.

Solution. If η = id, V1 is CK-admissible. By question 3), V is CK-admissible if and only
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if there exists c ∈ CK such that ψ(g) = c − g(c) for all g ∈ GK . This is impossible by
Exercise 1. Hence V is not CK-admissible.

Assume that V is Hodge–Tate. Then V is BHT-admissible, and there exists α =
∑

i cit
i,

ci ∈ CK such that the following identity holds in BHT.

ψ(g) = α− g(α) =
∑
i

(ci − χi(g)g(ci))t
i, ∀g ∈ GK .

Therefore ψ(g) = c0 − g(c0) for all g ∈ GK . This gives a contradiction.

Exercise 3. For any n we denote by ζpn a primitive pnth root of unity. One can as-
sume (this is not really necessary in this exercise) that ζppn = ζpn−1 . Set K = Qp(ζp)
and K∞ = ∪

n>1
Qp(ζpn). Recall that K∞/K is a totally ramified Zp-extension. Let Kur/K

denote the maximal unramified extension of K.

1) Show that in the compositum KurK∞ contains infinitely many subfields K ⊂ L ⊂
KurK∞ such that L/K are totally ramified Zp-extensions of K.

Hint: Use Galois theory. What is the Galois group of the compositum of two linearly
disjoint Galois extensions?

Solution. If F1 and F2 are two Galois extensions of K such that F1 ∩ F2 = K, then

Gal(F1F2/K) = Gal(F1/K)×Gal(F2/K). Since Gal(Kur/K) ' Ẑ '
∏̀
Z`, there exists an

unramified subextension Kur,p/K such that Gal(Kur,p/K) ' Zp. Take F1 = K∞ and F2 =
Kur,p, and set F = F1F2. Then F ⊂ KurK∞ and Gal(F/K) ' Gal(F1/K)× Gal(F2/K),
where

Gal(F1/K)×Gal(F2/K) ' Zp × Zp.

For a subgroup H ⊂ Gal(F1/K)×Gal(F2/K), set L = FH . Since Kur,p = FGal(F1/K), one
has

L ∩Kur,p = K ⇔ H ·Gal(F1/K) = Gal(F/K).

Therefore it is sufficient to show that there exists infinitely many H such that

Gal(F/K)/H ' (Gal(F1/K)×Gal(F2/K)) /H ' Zp

and
H ·Gal(F1/K) = Gal(F1/K)×Gal(F2/K).

To construct such subgroups, it is sufficient to consider the subgroups in Zp × Zp topo-
logically generated by (pn, 1) for different n.

2*) This question is independent on question 1). Moreover, the assertion below holds
for any local field of characteristic 0, not only for K = Qp(ζp).

Let L1 and L2 be two totally ramified Zp-extensions of K. Show that L̂[1 and L̂[2 are

isomorphic as non-archimedean fields (i.e. that there exists an isomorphism L̂[1 ' L̂[2
which is compatible with non-archimedean values on L̂[1 and L̂[2).

Solution. By the theory of field of norms, X (L1/K) and X (L2/K) are both local fields
of characteristic p withe the same residue field. Hence X (L1/K) ' X (L2/K). By Theo-
rem 2.7 (Fontaine–Wintenberger)

L̂[1 ' X (L1/K)rad ' X (L2/K)rad ' L̂[2.

3*) Show that there exist totally ramified Zp-extensions L1 and L2 of K such that L̂[1 ' L̂[2
but L1 6' L2 as abstract fields.
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Solution. Use question 1). Take K = Qp(ζp) and K∞ = Qp(ζp∞). Take L1 = K∞.
In the compositum K∞K

ur take a totally ramified Zp-extension L2 such that L2 6= L1.

By question 2), L̂[1 ' L̂[2. To prove that L1 6' L2 one can remark that L2 cannot contain
all pnth roots of unity ζpn (n > 1) since otherwise L2 = L1.

Exercise 4. Let K be a local field of characteristic 0 with residue field of character-
istic p. Fix u0 ∈ UK such that u0 ≡ 1 (mod pOK). Fix a system of pnth roots un ∈ K of
u0 such that upn+1 = un for all n > 0. We consider the system u = (un)n>0 as an element

of O[
CK
. It is easy to see that un ≡ 1 (mod mK) and therefore u ≡ 1 (mod mC[

K
). We fix

a compatible system ε = (ζpn)n>0 of pnth roots of unity and denote by χ : GK → Z∗p the
cyclotomic character.

1) Show that for any n > 1 there exists a map ψn : GK → Z/pnZ such that

g(un) = unζ
ψn(g)
pn , ∀g ∈ GK .

Show that there exists a continuous map ψ : GK → Zp such that ψn(g) = ψ(g) mod pn

for all n > 1 and g ∈ GK .

Solution. If un is a fixed root of Xpn − u0, then other roots of this polynomial are of the
form unζ

a
pn , where 0 6 a 6 pn − 1. Since the elements of the Galois group permute the

roots, for any n > 1 and g ∈ GK , there exists ψn(g) ∈ Z/pnZ such that g(un) = unζ
ψn(g)
pn .

Moreover,

g(un−1) = g(upn) = g(un)p = upn(ζ
ψn(g)
pn )p = un−1ζ

ψn(g)

pn−1 .

This implies that ψn−1(g) = ψn(g) (mod pn−1). Therefore (ψn(g))n>1 define an element
ψ(g) of lim←−n Z/p

nZ = Zp. Since for each n the set {g ∈ GK |ψn(g) = 0} is open in GK ,
the map ψ is continuous.

2) Check that the map ψ satisfies property (3) of Exercise 2 with η = χ :

ψ(g1g2) = χ(g1)ψ(g2) + ψ(g1), g1, g2 ∈ GK .

Solution. For each n one has:

g1g2(un) = g1(unζ
ψn(g2)
pn ) = g1(un)g1(ζ

ψn(g2)
pn ) = unζ

ψn(g1)
pn ζ

χ(g1)ψn(g2)
pn = unζ

ψn(g1)+χ(g1)ψn(g2)
pn .

Hence ψn(g1g2) = χ(g1)ψn(g2)+ψn(g1) for all n. Passing to the limit, we obtain the result.

From question 2) of Exercise 2 it follows that there exists an exact sequence of p-adic
representations:

0→ V1 → V → V2 → 0,

where V1 ' Qp(χ) and V2 ' Qp (trivial representation).

We denote by [u] ∈ Ainf the Teichmüller lift of u in Ainf = W (O[
CK

). The following
facts are admitted:

a) The power series

log[u] =
∞∑
n=1

(−1)n+1 ([u]− 1)n

n

converges in B+
cris.

b) If v = (vn)n>0 is another system of units satisfying the same properties as u, then
log[uv] = log[u] + log[v];
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c) The logarithm map commutes with the action of GK .

3) Show that
g(log[u]) = log[u] + ψ(g)t, ∀g ∈ GK ,

where t = log[ε].

Solution. One has g(log[u]) = log[g(u)]. Since u = (un)n>0, by question 1) one has:

g(u) = (unζ
ψn(g)
pn )n>0 = uεψ(g),

where ε = (ζpn)n>0. Hence

g(log[u]) = log([uεψ(g)]) = log([u][ε]ψ(g)) = log[u] + ψ(g) log[ε] = log[u] + ψ(g)t.

4*) Using the criterion proved in question 3) of Exercise 2 show that V is crystalline.

Solution. V1 = Qp(χ) is Bcris-admissible. Namely, taking b = t−1, we obtain that

b/g(b) = g(t)/t = χ(g).

Set c = − log[u]/t. Then

c− χ(g)g(c) = − log[u]/t+ g(log[u])/t = − log[u]/t+ (log[u]/t+ ψ(g)) = ψ(g).

Applying the criterion from Exercise 2, we see that V is crystalline.


