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Abstract

This study presents a wavelet-based multifractal approach to describe qualitatively

and quantitatively the complex temporal patterns of atmospheric data. Monthly time

series of geopotential height provided by the National Center for Environmental Pro-

tection (NCEP) and daily Northern Annual Modes (NAM) times series provided by

Baldwin are used in this study. The results obtained for the stratosphere and the tro-

posphere show that the series display two different multifractal behaviors. For large

time scales (several years) the main Hölder exponent for the stratosphere and the tro-

posphere data are negative indicating the absence of correlations. The negative Hölder

exponents imply the presence of strong singularities in the time series. For short time

scales (from few days to one year), the stratosphere series present long-range corre-

lations with Hölder exponents larger than 0.5, whereas the troposphere data are still

uncorrelated. Obviously, in both cases stratosphere and troposphere, the main Hölder

exponents increases when the time range decreases.
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1 Introduction

Numerical weather predictions based on atmospheric data have little skill beyond a week

due to the chaotic nature of the physical data (winds, temperatures, pressures, etc). Many

physical phenomena range on various time scales: the extratropical QBO with an average

period of 28 months, the El Nino Southern Oscillation with a period of about 4 years or the

sunspot cycle of 11 years. Some variations on smaller periods of time are well known, like

the annual cycle, but the understanding of all the physical phenomena occurring at various

time scales is an up-to-date challenge producing many papers every year on the subject (see

for instance [8, 9, 10]). Numerical models for the weather prediction are usually based on

models describing the lower layer of the atmosphere, the troposphere, and the stratospheric

data are generally regarded as having little influence on surface weather patterns. However,

large stratospheric anomalies persisting for several weeks or more, occasionally reach Earth’s

surface [6, 14, 22]. According to Baldwin and Dunkerton, some large circulation anomalies in

the lower stratosphere are related to shifts in the probability distribution of extreme values

of the Arctic and North Atlantic Oscillations (AO and NAO), and that these stratospheric

signals may be used as a predictor of tropospheric weather regimes.

We propose in this paper the study of stratospheric and tropospheric anomalies from a

multifractal point of view. The relevance of fractals to physics and many other fields was

pointed out by Mandelbrot [17, 18] who developed the fractal theory. A quantitative theory

of fractals provides mathematical concepts and numerical tools for the description of scaling

properties. For fractal objects with a recursive hierarchical structure, the knowledge of few

steps of refinement is sufficient for the understanding of the global physical phenomenon.

But phenomena that appear in nature do not exhibit such a well ordered architecture. This

observation motivated the development of the multifractal formalism by Parisi and Frisch [21,
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11] in the framework of the turbulence theory. This formalism relates the scale-dependence

of the statistical moments of turbulent velocity fluctuations to the multifractal nature of the

points at which abrupt local variations of velocities appear.

The wavelet-based multifractal formalism has been introduced in the nineties by Mallat

[15, 16], Arneodo [2, 3, 4], Bacry [5] and Muzy [19]. A wavelet transform can focus on

localized signal structures with a zooming procedure that progressively reduces the scale

parameter. Singularities and irregular structures often correspond to essential information

in a signal. The local signal regularity can be described by the decay of the wavelet transform

amplitude across scales. Singularities can be detected by following the wavelet transform

local maxima at fine scales.

The paper is organized as follows. The theoretical background about the wavelet-based

multifractal formalism is recalled in section 2. The data and the numerical results are

described and commented in section 3. Conclusion and final remarks are given in section 4.

2 The wavelet-based multifractal formalism

Since all the results presented in the sequel concern only time-series, only the one dimen-

sional wavelet theory is reminded in this part. The generalization to higher dimension is

relatively easy and is usually based on tensor products of one dimensional basis functions.

We present here a summary of the theory, and a more complete description can be found in

[1, 2, 3, 4, 5, 12, 13, 15, 16, 19].

The strength of a singularity of a function is usually defined by an exponent called Hölder

exponent. The Hölder exponent h(t0) of a function s at the point t0 is defined as the largest
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exponent such that there exists a polynomial Pn(t) of order n satisfying:

|s(t) − Pn(t− t0)| ≤ C|t− t0|h(t0), (1)

for t in a neighborhood of t0. The polynomial Pn can be the Taylor expansion of s around

t0. If n < h(t0) < n+ 1 then s is Cn but not Cn+1. The exponent h evaluates the regularity

of s at the point t0. The higher the exponent h, the more regular the function s. It can be

interpreted as a local measure of ’burstiness’ in the time-series at time t0. A wavelet trans-

form can estimate this exponent by ignoring the polynomial Pn. A transient structure or

’burst’ is generally wavelet-transformed to a superposition of wavelets with the same centre

of mass and wide range of frequencies.

The wavelet transform is a convolution product of a data sequence with the compressed

(or dilated) and translated version of a basis function ψ called the wavelet mother. The

scaling and translation are performed by two parameters: the scale parameter a dilates or

compresses the mother wavelet to various resolutions and the translation parameter b moves

the wavelet all along the sequence:

WTs(b, a) =
1√
a

∫ +∞

−∞

s(t)ψ∗

(

t− b

a

)

dt, a ∈ R
+∗, b ∈ R. (2)

This definition of the wavelet transform leads to an invariant L2 measure, and thus conserves

the energy (‖s‖2 = ‖WTs‖2).

In order to evaluate the Hölder exponent, we have to choose a wavelet mother with m > h

vanishing moments:
∫

∞

−∞

tkψ(t) dt, (3)
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for 0 ≤ k < m. A wavelet with m vanishing moments is orthogonal to polynomials of degree

m− 1. Since h < m, the polynomial Pn has a degree n at most equal to m− 1 and we can

then show that:
∫ +∞

−∞

Pn(t− t0)ψ
∗

(

t− b

a

)

dt = 0. (4)

Let us assume that the function s can be written as a Taylor expansion around t0:

s(t) = Pn(t− t0) + C|t− t0|h(t0) (5)

We then obtain for its wavelet transform at t0:

WTs(t0, a) =
1√
a

∫ +∞

−∞

C|t− t0|h(t0)ψ∗

(

t− t0

a

)

dt (6)

= C|a|h(t0)+ 1

2

∫ +∞

−∞

|t′|h(t0)ψ(t′)dt′. (7)

We have the following power law proportionality for the wavelet transform of the singularity

of s(t0):

|WTs(t0, a)| ∼ ah(t0)+ 1

2 (8)

Then, we can evaluate the exponent h(t0) from a log-log plot of the wavelet transform am-

plitude versus the scale a.

However, we cannot compute the regularity of a multifractal signal because its singular-

ities are not isolated. But we can still obtain the singularity spectrum of multifractals from

the wavelet transform local maxima.

These maxima are located along curves in the plane (b, a). This method, introduced by

Arneodo et al. [3], requires the computation of a global partition function Z(q, a). Let

{bi(a)}i∈Z be the position of all maxima of |WTs(b, a)| at a fixed scale a. The partition
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function Z(q, a) is then defined by:

Z(q, a) =
∑

i

|WTs(bi, a)|q. (9)

We can then assess the asymptotic decay τ(q) of Z(q, a) at fine scales a for each q ∈ R:

τ(q) = lim
a→0

inf
logZ(q, a)

log a
. (10)

This last expression can be rewritten as a power law for the partition function Z(q, a):

Z(q, a) ∼ aτ(q). (11)

If the exponents τ(q) define a straight line than the signal is a monofractal, otherwise the

signal is called multifractal: the regularity properties of the signal are inhomogeneous, and

change with location.

Finding the distribution of singularities in a multifractal signal is necessary for analyz-

ing its properties. The so-called spectrum of singularity D(h) measures the repartition of

singularities having different Hölder regularity. The singularity spectrum D(h) gives the

proportion of Hölder h type singularities that appear in the signal. A fractal signal has only

one type of singularity, and its singularity spectrum is reduced to one point. The singularity

spectrum D(h) for any multifractal signal can be obtained from the Legendre transform of

the scaling exponent τ(q) previously defined :

D(h) = min
q∈R

(

q(h+
1

2
) − τ(q)

)

. (12)

Let us notice that this formula is only valid for functions with a convex singularity spectrum
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[16]. In general, the Legendre transform gives only an upper bound of D(h) [12, 13]. For a

convex singularity spectrum D(h), its maximum

D(h0) = max
h

D(h) = −τ(0) (13)

is the fractal dimension of the Hölder exponent h0.

Remark: When the maximum value of the wavelet transform modulus is very small, the

formulation of the partition function given in (9) can diverge for q < 0. A way to avoid this

problem consists in replacing the value of the wavelet transform modulus at each maximum

by the supremum value along the corresponding maxima line at scales smaller than a:

Z(q, a) =
∑

l∈L(a)

(

sup
(t,a′)∈l, a′<a

|WTs(t, a)|
)q

, (14)

where L(a) is the set of all maxima lines l satisfying: l ∈ L(a), if ∀a′ ≤ a, ∃(x, a′) ∈ l. The

properties of this modified partition function are well described in [3].

3 Multifractal analysis of atmospheric time series

Depending on the application, there are various ways of computing the wavelet transform.

For the purpose of compression for instance, an orthogonal wavelet transform on dyadic

scales are generally used. For the study of fractals like in this present study, continuous

wavelet transforms have been found to be efficient [5]. The wavelet mother has also to be

chosen according to the application. When the time series do not have any characteristic

scales, or when the goal is to identify discontinuities or singularities, a real wavelet mother

7



has to be chosen. In this work, we use the N successive derivatives of a Gaussian function:

ψ(x) =
dN

dxN
e−x2/2 (15)

These functions are well localized in both space and frequency, and have N vanishing mo-

ments, as required for a multifractal analysis.The computations have been performed with

N = 1, 2, 4, 6, 8, 10 but only the results for N = 2 are discussed in detail in this paper. The

results for other values of N are very similar denoting the absence of any polynomial com-

ponent. Furthermore, the case N = 2 is generally used for fractal analysis and corresponds

to the so-called Mexican Hat function.

We have applied the wavelet-based multifractal approach to the analysis of two sets of

atmospheric data. The first set consists in the monthly averages of the NCEP Daily Global

Analyzes data [20]. They correspond to times series of geopotential height from January

1948 to June 2005. A spatial average from 60◦N to 90◦N is performed at 17 levels, from 10

hPa down to 1000 hPa. Then the annual cycle is removed by subtracting for each month the

corresponding mean in order to focus our study onto the anomalies. In such way, we will be

able to detect and to describe the singularities present in the signal. Typical stratospheric

and tropospheric representations are shown at 100 hPa and 700 hPa in Figures 1 and 2.

The second set of data consists in the Northern Annular Modes (NAM) at 17 levels from the

stratosphere down to the surface level from January 1958 to July 2006 provided by Baldwin

[7]. At each pressure altitude, the annular mode is the first Empirical Orthogonal Function

(EOF) of 90-day low-pass filtered geopotential anomalies north of 20◦N. Daily values of

the annular mode are calculated for each pressure altitude by projecting daily geopotential

anomalies onto the leading EOF patterns. In the stratosphere annular mode values are a

measure of the strength of the polar vortex, while the near-surface annular mode is called
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Figure 1: 100 hPa monthly geopotential height anomalies (NCEP) from 1948 to 2005 (spa-
tially averaged from 60◦N to 90◦N)
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Figure 2: 700 hPa monthly geopotential height anomalies (NCEP) from 1948 to 2005 (spa-
tially averaged from 60◦N to 90◦N)
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the Arctic Oscillation (AO), which is recognized as the North Atlantic Oscillation (NAO)

over the Atlantic sector. The NAM signal at 100 hPa and 700 hPa are shown in Figures 3

and 4.
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Figure 3: 100 hPa daily anomalies from 1958 to 2006 (NAM index)
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Figure 4: 700 hPa daily anomalies from 1958 to 2006 (NAM index)
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3.1 Monthly geopotential height anomalies analysis (NCEP data)

The wavelet decomposition obtained with the Mexican Hat function (second derivative of

the Gaussian function) are given in Figures 5 and 6. The wavelet transform consists in

Time

log
2(1/

a)

1950 1960 1970 1980 1990 2000

2

3

4

5

6

7

8

9

Figure 5: Wavelet transform modulus of the 100 hPa monthly geopotential height anomalies

the calculation of a resemblance index between the signal and the wavelet mother (here the

Mexican Hat function). If the signal is similar to itself at different scales, then the wavelet

coefficients representation will be also similar at different scales. It can be easily noticed

in Figures 5 and 6 that the self-similarity generates a characteristic pattern. This repre-

sentation is a good demonstration of how well the wavelet transform can reveal the fractal

pattern of the atmospheric data. Based only on these representations, we cannot make any

significant difference between the stratospheric and the tropospheric signals. But we will see

in the sequel by studying the maxima lines of the wavelet transform that these two signals

have a different singularity spectrum D(h).

Based on the technical reasons presented in the previous section, the partition function
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Figure 6: Wavelet transform modulus of the 700 hPa monthly geopotential height anomalies

is computed with the formulation given in (14) for q between -20 and 20 with a step size of

0.5.

The first step in the computation of the partition function consists in the detection of the

maxima lines of the wavelet transform modulus. The representation of these maxima lines,

often called the “skeleton” of the wavelet transform, is given in Figure 7 for the stratospheric

signal. For the computation of the partition functions, only the maxima lines of length longer

than 1 octave are kept in the summation in order to keep only the significant singularities.

The two partition functions are given in Figures 8 and 9. The steps that can be observed

for negative values of q are due to the use of the supremum (otherwise, the computation of

Z(q, a) would diverge for negative q). We can remark that the slopes for negative q are

different for the stratosphere and for the troposphere. Based on this simple remark, we can

already predict that the shapes of the corresponding singularity spectra will be also different.

We can expect a steeper down slope in the case of the troposphere.

The corresponding singularity spectra are given in Figure 10. The large supports of the
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Figure 7: Maxima lines of the modulus of the wavelet transform of the 100 hPa monthly
geopotential height signal
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Figure 8: Partition function of the 100 hPa monthly geopotential height signal
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Figure 9: Partition function of the 700 hPa monthly geopotential height signal
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Figure 10: Singularity Spectra of the 100 hPa and 700 hPa monthly geopotential height
signals
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spectra prove that the signals are multifractal. A quasi-monofractal signal spectrum would

lie on very few values, and a real monofractal signal spectrum would reduce to only one

point.

As expected, the down slope corresponding to the negative values of q is steeper for the

troposphere than for the stratosphere. The maximum of the spectra is obtained around

h = −0.29 for the stratosphere and between h = −0.22 and h = −0.23 for the troposphere.

We remind here that the smaller is this value the more singular are the singularities in the

signal.

So according to this first study, we can conclude that the singularities in the tropospheric

signal are more singular than the singularities in the stratospheric signal. We can verify this

first conclusion by computing the value of h where the maximum of D(h) is obtained for

the 17 levels from 10 hPa down to 1000 hPa. The results are given in Figure 11. We can

clearly detect two areas: the first one with h around −0.23 corresponds to the stratosphere

and the second one with h around −0.29 corresponds to the troposphere. These results

0 100 200 300 400 500 600 700 800 900 1000
−0.3

−0.29

−0.28

−0.27

−0.26

−0.25

−0.24

−0.23

−0.22

−0.21

hPa

h

Figure 11: Evolution of h (maximum of D(h)) for the 17 levels from 10hPa down to 1000hPa
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can be compared to the values h obtained for artificial uncorrelated data. We perform the

same computations on signals of random numbers whose elements are uniformly distributed

in the interval (0, 1). The value of h found for random signals are around −0.4. So with

h ∼ −0.3 or h ∼ −0.2, the signals corresponding to atmospheric data are close to artificial

uncorrelated data at these ranges of time periods.

The whole singularity spectra can also give some information to discriminate stratospheric

data from tropospheric data. We can show that their supports are also different as can

be noticed from Figure 12. The stratospheric signals present broader spectra than the

tropospheric signals indicating the presence of singularities over a larger spectrum.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0

0.2

0.4

0.6
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500 hPa
400 hPa
250 hPa
200 hPa
150 hPa
100 hPa
70 hPa
50 hPa

Figure 12: Singularity spectra for few levels of the monthly geopotential height data; strato-
sphere and troposphere levels are respectively in blue and red

The analysis performed on the monthly averages NCEP Data cannot give any information

for periods smaller than a month. In order to get details on finer time periods, we performed

the same kind of analysis on the daily NAM index.
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3.2 Northern Annular Modes analysis

The NAM data of length 17742 correspond to daily values from January 1958 to July 2006

at 17 levels (from 10 hPa to 1000 hPa). The daily time step size allows to get details on

finer time period than the monthly NCEP data. In order to perform some statistics on this

large signal, we used 50 sliding windows of various sizes on 8 octaves. The 50 windows are

overlapping and regularly spaced. For each window, we performed a continuous wavelet de-

composition, and a singularity spectrum computation. We then evaluated the main Hölder

exponent h corresponding to the maximum of the singularity spectrum D(h).

The first results shown in Figure 13 correspond to a window of size 1 year for the 17

pressure levels from 10 hPa down to 1000 hPa. The 8 octaves give thus a decomposition

from the largest scale (1 year) to the smallest scale (few days). The colormap goes from

dark blue for h = −0.5 to dark red for h = 1. We can easily notice that the main Hölder

exponents for the highest stratosphere are bigger than 0.5 which would indicate the presence

of long-range dependence. Then the exponents are decreasing with the altitude denoting a

more chaotic behavior.

In order to verify the effective presence of correlations in the signal for scales smaller

than 1 year, we can replace each window of length 1 year by a shuffled version of the data.

By shuffling the series, the correlation is lost but the power law like distribution, if present,

remains unchanged. We shuffled our series, and the results are given in Figure 14. The

colormap for the shuffled series goes from dark blue for h = −0.5 to dark red for h = −0.25.

The shuffled series are thus completely uncorrelated, and it is then impossible to differen-

tiate the stratosphere data from the troposphere data. These results on shuffled data can

be compared to the results obtained for artificial uncorrelated data where random numbers

are used instead of the NAM index. The results obtained for the random data are given
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Figure 13: NAM index: Main Hölder exponents h (max D(h)) obtained for the 50 sliding
windows (window size: 1 year); X-axis: window number along the signal, Y-axis: the 17
pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding to
Hölder exponents from -0.5 to 1

5 10 15 20 25 30 35 40 45 50

10

100

1000

300

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

Figure 14: Shuffled NAM data: Main Hölder exponents h (max D(h)) obtained for the 50
sliding windows (window size: 1 year); X-axis: window number along the signal, Y-axis: the
17 pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding
to Hölder exponents from -0.5 to -0.25
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in Figure 15. They are very similar to those obtained for the shuffled data. This simple
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Figure 15: Random data: Main Hölder exponents h (max D(h)) obtained for the 50 sliding
windows (window size: 1 year); X-axis: window number along the signal, Y-axis: the 17
pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding to
Hölder exponents from -0.5 to -0.25

test confirms the presence of correlations on time scales between few days and 1 year in the

stratosphere layer.

By using a larger window, we are able to verify if this long-range correlation persists to

larger periods of time. The results shown in Figure 16 have been obtained with a window

of size 5 years on 8 octaves. That means that the largest period is 5 years, and the finest

one is few weeks. As can be easily observed, the long-range correlation disappeared in the

higher stratosphere, and the non-correlation behavior in the troposphere is stronger. The

appearance of negative values for h indicates the presence of strong singularities in the spec-

tra. This trend tends to confirm the results obtained with the monthly NCEP data where

negative values had been obtained for h.

In order to validate this trend, another computation with a window of size 25 years has
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Figure 16: NAM index: Main Hölder exponents h (max D(h)) obtained for the 50 sliding
windows (window size: 5 years); X-axis: window number along the signal, Y-axis: the 17
pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding to
Hölder exponents from -0.5 to 1

been performed. The results, given in Figure 17, correspond to a range from 25 years to

few months. The trend detected in the two previous experiments is confirmed and we can

observe negative values for h at all the altitudes. Even if it’s not really clear in Figure 17,

the values for h are slightly smaller in the troposphere than in the stratosphere as obtained

with the NCEP data computation.

The results with the NAM index presented so far were obtained with decompositions on

8 octaves. While keeping the same octaves number, we can refine the results to describe

the fine time periods multifractal behavior. Indeed, we computed the asymptotic decay τ(q)

of the partition function Z(q, a) on the whole large domain, for instance, from 1 year to 5

days for Figure 13. We can cut the domain in the partition function into two parts from

1 year to 45 days, and from 45 days to 5 days, and perform the computation of τ(q) sepa-

rately for these two subdomains. The results are given in Figures 18 and 19. The results
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Figure 17: NAM index: Main Hölder exponents h (max D(h)) obtained for the 50 sliding
windows (window size: 25 years); X-axis: window number along the signal, Y-axis: the 17
pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding to
Hölder exponents from -0.5 to 0
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Figure 18: NAM index: Main Hölder exponents h (max D(h)) obtained for the 50 sliding
windows (window size: 1 year; partition function domain from 45 days to 5 days); X-axis:
window number along the signal, Y-axis: the 17 pressure levels from 10 hPa down to 1000hPa,
Colormap from blue to red corresponding to Hölder exponents from -0.5 to 1
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Figure 19: NAM index: Main Hölder exponents h (max D(h)) obtained for the 50 sliding
windows (window size: 1 year; partition function domain from 1 year to 45 days); X-axis:
window number along the signal, Y-axis: the 17 pressure levels from 10 hPa down to 1000hPa,
Colormap from blue to red corresponding to Hölder exponents from -0.5 to 1

are obviously less homogeneous since describing a shorter period of time. We can again

notice a difference between the stratosphere and the troposphere in these two figures, the

troposphere showing a more singular behavior. At small periods of time, from 45 days to 5

days (Figure 18), the main Hölder exponents for the stratosphere are essentially above 0.5

with only very few small values around 0. At the same range of time, the troposphere data

present weaker correlations. This behavior explains the difficulty to make reliable weather

predictions in the troposphere on period longer than 5 days. At larger ranges, from 45

days to 1 year (Figure 19), the stratosphere data present large periods of correlation sepa-

rated by short uncorrelated periods. At these time scales, the troposphere starts to show

large periods of uncorrelated data with strong negative values for the main Hölder exponents.

We can detail our study by comparing winter periods to summer periods. We consider

periods of length 180 days, first from October to March, and then from April to September.
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The results are given in Figure 20 and 21. They don’t present any significant difference,
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Figure 20: Winter NAM index: Main Hölder exponents h (max D(h)) obtained for the
50 sliding windows (window size: 6 months); X-axis: window number along the signal,
Y-axis: the 17 pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red
corresponding to Hölder exponents from -0.5 to 1

and we can conclude that the anomalies occurring during the winter months have the same

multifractal behavior than the anomalies occurring during the summer months. But on the

other hand, the signals are very short and any statistical computations are not really reliable.

Another way to discriminate the atmosphere data from a multifractal point of view con-

sists in studying the support size of the corresponding singularity spectra. So far we only

studied the maximum of the spectra, but we can also get some interesting information by

studying the support of the spectra. Indeed, the support of a monofractal signal is reduced

to only one value since only one Hölder exponent is present in the signal. A signal can be

qualified of quasi-monofractal if its singularity spectrum support is very small. A real mul-

tifractal signal present a broad singularity spectrum support. If we take into consideration

this parameter in the previous computations, and if we plot the the support size in function
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Figure 21: Summer NAM index: Main Hölder exponents h (max D(h)) obtained for the
50 sliding windows (window size: 6 months); X-axis: window number along the signal,
Y-axis: the 17 pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red
corresponding to Hölder exponents from -0.5 to 1

of the altitude level and of the time, we obtain the results shown in Figure 22. We can again

find a different behavior in the stratosphere and the troposphere, the spectrum supports

being larger in the stratosphere than in the troposphere. This property can still be observed

on larger time range when the size of the window used is of 5 years (fig. 23) or 25 years (fig.

24).

3.2.1 Polynomial component

In order to show the absence of any polynomial component in the signals, we also performed

the same computations using wavelet mothers with N = 1, 2, 4, 6, 8, 10 vanishing moments.

The results were very similar. We report in Figure 25 the singularity spectra obtained for

the NAM index (pressure level: 100hPa) with a 25 years window. The values of h obtained

for the various wavelet mothers are very close to each other. Then we artificially added a
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Figure 22: NAM index: Size of the singularity spectrum support obtained for the 50 sliding
windows (window size: 1 year); X-axis: window number along the signal, Y-axis: the 17
pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding to
support size from 0.2 to 1.2
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Figure 23: NAM index: Size of the singularity spectrum support obtained for the 50 sliding
windows (window size: 5 years); X-axis: window number along the signal, Y-axis: the 17
pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding to
support size from 0.2 to 1.4
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Figure 24: NAM index: Size of the singularity spectrum support obtained for the 50 sliding
windows (window size: 25 year); X-axis: window number along the signal, Y-axis: the 17
pressure levels from 10 hPa down to 1000hPa, Colormap from blue to red corresponding to
support size from 0.25 to 0.8

quadratic polynomial component to this signal, and we repeated the same computations. It

can be easily observed in Figure 26 that the spectra obtained with wavelet mothers with few

vanishing moments are modified by the polynomial component. This last test confirms the

absence of any polynomial component in the signal, and can be useful in the modelization

of atmospheric anomalies.

3.2.2 Red noise comparison

We previously compared the results obtained for the NAM index to the results obtained for

a signal composed by random numbers. This kind of random signal is generally used for

the creation of white noises. But atmospheric data are usually compared to red noise in

the literature. So in order to perform the same kind of comparison, we artificially created a

family of red noise signals.

Each discrete time series created depends only on its own immediate past value plus a random
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Figure 25: NAM index (100 hPa): Singularity spectra obtained with various derivatives of
the Gaussian function as wavelet mother
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Figure 26: NAM index (100 hPa) + quadratic component: Singularity spectra for various
derivatives of the Gaussian function as wavelet mother
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component.

Xn = ρXn−1 +
√

1 − ρ2 yn. (16)

with |ρ| < 1 and yn a random number. Depending on the choice of the autocorrelation

parameter ρ, we can create a family of noise from white noises with ρ = 0 to strong red

noises with ρ = 0.9. First, we created a such family of noises of the same length as the NAM

index for several values of ρ. Then we performed the same computations using 50 windows

of size 1 year, 5 years and 25 years. For each period of time, we computed the mean value of

h obtained for the 50 windows. The results obtained for these computations are summarized

in Table 1. As can be easily observed from the results, the method gives a good description

ρ 0.1 0.3 0.5 0.7 0.9

1 year -0.31 -0.24 -0.13 0.03 0.30

5 years -0.42 -0.40 -0.38 -0.30 -0.06

25 years -0.42 -0.44 -0.43 -0.42 -0.35

Table 1: Mean values of h (max D(h)) for several red noises

of the artificially created red noises. When using a short window of size 1 year, the mean

value of h goes from −0.31 for ρ = 0.1 to 0.30 for ρ = 0.9. As expected, this size of window

is suitable for describing short-range correlated signals. The window of size 5 years is less

adapted for this kind of correlation, and the larger window of size 25 years is completely blind

to short-range correlation. These results show that the wavelet-based multifractal method

presented in this paper is well adapted for studying this kind of correlations.

Now, we can use the data given in Table 1 to comment the numerical results obtained for

the NAM index. Indeed, with a window of size 1 year, we found for the stratosphere mean

values of h bigger or equal to 0.5. That corresponds to a correlation stronger than a red

noise with ρ = 0.9 indicating that the stratosphere anomalies are not a simple red noise. For
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the same period of time, we can observe that the troposphere anomalies present a behavior

similar to a red noise with a autocorrelation parameter around 0.7. If we consider now

the results obtained with a window of size 5 years, we can remark that the stratosphere

anomalies present a correlation stronger than a simple red noise. For the troposphere, we

obtain numerical results similar to a red noise. Even with a window of size 25 years, we can

observe that the stratosphere anomalies present a correlation stronger than a regular red

noise. This is particularly true for the values of h obtained at 100 hPa which are around

−0.2 above the results obtained for the different red noises.

4 Conclusion

In this paper, we have discussed some issues relating to the estimation of the multifractal

nature of atmospheric data using a wavelet-based method. Our study reveals the clear fractal

pattern of the analyzed series and their different scaling characteristics. In the case of the

stratosphere, we found a short-range correlation behavior that occurs for short ranges of

time scales, from few days to few months. In the troposphere and in the same ranges of

time, we found a much weaker correlation. These results show in particular that classical

weather forecasting, mainly based on tropospheric data, are clearly unreliable for periods

longer than 5 days. We also compared the results obtained for the NAM index to the results

obtained for artificially created red noises. The stratosphere anomalies present clearly some

correlations stronger than usual red noises. The correlations in the troposphere are weaker

and often similar to a red noise. Furthermore, the fact that we obtained the same results

for various wavelet mothers with different vanishing moments proves that the signals do not

present any polynomial components.

The properties described in this paper motivate the use of multifractal models for analyzing

atmospheric data and simulating weather phenomena. The connection of the multiscaling
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properties of atmospheric data to the underlying physical dynamics falls beyond the scope

of the present paper. But we can confirm that cascade models that include scaling space-

time anisotropy, causality and continuous scales have to be used in order to get reliable

predictions. We have shown that tropospheric data present behaviors similar to red noises.

So models for weather forecasting have to include red noise type generators in order to take

into consideration this property of tropospheric data.

By using a two dimensional wavelet transform, we plan to extend our research from time

series to spatial patterns of atmosphere analysis.
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