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Abstract

In this paper we describe e�cient adaptive discretization and solution of ellip�
tic PDEs which are forced by right hand side �r�h�s� with regions of smooth �non�
oscillatory� behavior and possibly localized regions with non�smooth structures� Clas�
sical discretization methods lead to dense representations for most operators� The
method described in this paper is based on the wavelet transformwhich provides sparse
representations of operator kernels� In addition� the wavelet basis allows for automatic
adaptation �using thresholding� in the sense that only a few coe�cients are needed to
describe smooth sections of the r�h�s� while more coe�cients are needed to describe
sharp transitions and singular points�

In this work we develop adaptive algorithms� i�e� algorithms such that the number
of operations performed is proportional to the number of signi�cant coe�cients in
the wavelet expansion of the �inputs� of a given di	erential equation problem� We
adapt an iterative approach thus we can succeed if we must do only a �xed number of
iterations where each iteration requires a �xed number of operations� independent of
the resolution �but dependent on the chosen accuracy��

The basic tool in our approach is the preconditioned conjugate gradient �CG� it�
eration in a �constrained� form� In the wavelet basis diagonal preconditioners are
available which render the condition number of elliptic operators to O�
�� This implies
that the number of iterations of the CG method does not depend on the size of the
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problem� Each iteration consists of applying the non�standard�form of an operator to
the wavelet expansion of a function� this translates to a multiplication of a sparse vec�
tor by a sparse matrix� The �constraint� is applied in a form of a mask such that only
elements of the vector in the mask are used in the computation while other elements
are ignored� We present implementations in one� two and three dimensions using sparse
data structures to take advantage of the algorithm�

� Introduction

E�cient discrete representation of continuous operators is a basic problem in the numerical
solution of di�erential and integral equations� Classical discretization methods lead to dense
representations �full matrices� for most operators� Sparse representations have the advantage
of minimizing storage requirements� while decreasing the computational times� A �good
sparse� representation means �fewer coe�cients for a given accuracy�� Thus� an important
step in numerical computations consists of building a sparse representations of common
operators and algorithms for using them e�ciently�

We seek e�cient discretization and solution of partial di�erential operators which are
forced by right hand sides �r�h�s� which consist mostly of smooth �non	oscillatory� regions
with possibly localized regions of non	smooth behaviour�

The method described in the present paper is based on the wavelet transform which often
provides sparse representations of operator kernels� It consists of expanding functions or
operators over a set of basis functions obtained by dilation and translations of an elementary
wavelet function localized in both direct and Fourier spaces� Although it is widely known that
the wavelet transform leads to more compact representations than the Fourier transform� its
current applications for solving PDEs are mostly limited to �	dimensional problem 
�� �� ��

� �� ��� ��� ��� ���� Higher dimensional algorithms and software are rare� Some existing
applications are concerned with particular �	dimensional and �	dimensional cases 
��� ����

An important advantage of wavelet basis representations is that they allow for automatic
adaptation �using thresholding� in the sense that only a few coe�cients are needed to describe
smooth sections of the solution �or right hand side� while many more coe�cients are needed
for sharp transitions and for singular points� This natural adaptivity or localization� is due
to the vanishing moments property of high order wavelets� Spectral and other high order
methods can not handle in an e�cient way cases with both smooth and oscillatory regions
in the computational domain�

The BCR algorithm
�� that was developed for the �	dimensional case is generalized here
to the solution of two and three dimensional partial di�erential equations whose operators
can be written as sums �and products� of �	dimensional operators� Usually� �	dimensional
kernels in the non	standard form have a matrix �two dimensional� representation� a two
dimensional kernel in the non	standard form has a four dimensional representation and a
three dimensional kernel has a six dimensional representation� The methods proposed in
the present paper can e�ciently solve � and �	dimensional equations whose operators can
be written as the sum �or the product� of �	dimensional operators i�e� equations whose
operators are separable� Therefore� the � and �	dimensional cases can be implemented via
a tensor product of one dimensional operators� As a rule� the present algorithms allow the
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treatment of �	dimensional problems in the form of a �	dimensional matrix representation
and �	dimensional problems using �	dimensional arrays� One of the most frequently appear	
ing operators in physics� the Laplacian� � �

Pd
k��

��

�x�
k

� x � IRd� will be treated �rst using

the above mentioned method�
Our main goal is to develop adaptive algorithms� i�e� algorithms such that the number of

operations performed is proportional to the number of signi�cant coe�cients in the wavelet
expansion of the �inputs� of the given �partial di�erential equation� problem� We adapt an
iterative approach thus� we can succeed only if we perform only a �xed number of iterations
were each iteration requires a �xed number of operations� independent of the resolution �but
dependent on the chosen accuracy��

The important feature of the algorithm is that with a minimal computation we �nd
the subspace �i�e� the labels of the signi�cant coe�cients� for the wavelet expansion of
the solution� Once such subspace is found� we use the diagonal preconditioning within the
conjugate gradient �CG� method to �nd the solution to within speci�ed accuracy� Therefore�
the basic tool in our approach is the preconditioned conjugate gradient �PCG� iteration in a
�constrained� form� The diagonal preconditioning in the wavelet basis renders the condition
number for the class of elliptic operators considered in this paper to O���� This means in the
PCG context that a constant number of iterations is required for a solution to a prescribed
accuracy� Each iteration consists of applying the non	standard	form of an operator to the
wavelet expansion of a function� this translates to a multiplication of a sparse vector by
a sparse matrix� In the case of the non	standard	form the operator is a convolution and
is represented by short �lters� thus the number of operations is a constant multiple of the
number of non vanishing elements in the vector� In addition� we have sparse inner products
and sparse multiplication by constants or functions� The �constraint� is applied in a form
of a mask such that only elements of the vector in the mask are used in the computation�
other elements are not used or even generated �in other words� they are ignored�� The mask
on the high	pass coe�cients is determined by the size of the wavelet coe�cients of the right
hand side and in the case of non constant coe�cients also by coe�cients of a solution of
certain �related� problems �to be explained below�� The high pass �lters also determine the
mask for the low	pass coe�cients� The determination of the mask structure is done once�
The implementations use sparse data structures �described in the appendix� in all steps of
the algorithm� The mask keeps the scales that contribute to the computation in a �xed size
during all the iterations and therefore during the wavelet multiresolution decomposition and
reconstruction the scales are not ��lled up� beyond the borders of the predetermined masks�

Two physical applications� represented by the elliptic Poisson equation and by the parabolic
heat equation� are used as model problems� The solutions are achieved by means of the PCG
iteration 
��� for the Poisson equation and a �rst order explicit scheme in time� for the heat
equation�

In the wavelet system of coordinates di�erential operators may be preconditioned by
a diagonal matrix �see e�g 

� ��� ���� The book 
��� surveys the methods for multilevel
�nite element approximation with detailed description on iterative solvers for discretization
of elliptic problems �section �� where the emphasis is on special cases of computationally
relevant splittings of Sobolev spaces into multilevel �nite element spaces� Sharp estimates
are given for multilevel preconditioners� For a speci�c example where �nite elements are
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being used see 
����
The algorithm which is proposed in this paper may be e�ciently modi�ed to solve non	

linear PDEs� We want to track the evolution of high frequency coe�cients by following the
singularties from paraproduct calculus 
��� �chapter ���� Once the singularities are tracked
then we can put the masks on these moving singularities� And the solver will operates
between the mask boundaries as the proposed algorithm in this paper� We will use the
methodology of Coifman and Meyer 
��� that later was extended to analysis of non	linear
PDEs by Bony 
�� to track �follow� the movements of high frequency coe�cients� In other
words� this enable us to predict where the signularities will move next� Then we know where
to place the masks at each iteration� This is a work in progress�

The paper is organized as follows� After the description of the problem that is given in
section �� there is a short description in section � of the wavelet background that is needed�
The applications of the masks on di�erent subspaces is described in section �� Section 

outlines the algorithm� Section � describes the �	D 	 �	D preconditioners which are very easy
to apply on the standard form� The validity of the application of the mask on the wavelet
decomposition is given in section �� Section � estimates the number of operations that the
Poisson solver necessitated� Solutions for ��� and �	dimensional problems are described and
illustrated by detailed numerical results in section �� A general purpose software package
based on sparse data structures was developed for the implementation of the solver� The
data structures that were used for the sparse implementation are described in the appendix�

� The problem

In this paper we describe adaptive discretization of elliptic PDEs and a method for their
solution using wavelet basis� This is a fast adaptive method for solving certain elliptic
equations with periodic boundary conditions� It also describes a framework for solving
problems with general boundary conditions� Let us consider the partial di�erential equation

Lu � f x � D � Rd� �����

with the boundary condition
Buj�D � g�

where L is an elliptic operator�

Lu � � X
i�j�������d

�aij�x� uxi�xj � b�x� u�

and B is the boundary operator�

Bu � �u� �
�u

�N
�

Initial �	D results for the adaptive solution for the case d � �� which utilized the proposed
method� were reported in 
�� ��� In this paper we generalize the �	D algorithm of 
�� �� to
the dimensions d � �� � via tensor product� though our considerations are valid for higher
dimensions as well�
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We generate a function fext� a smooth extension of f outside the domain D� such that
fext is compactly supported in a rectangular box B� D � B � Rd� and f � fext for x � D�

We want to devise adaptive e�cient method to solve

Lu � fext x � B �����

with periodic boundary conditions�
Our goal in solving ����� is to develop an adaptive algorithm where the number of op	

erations will be proportional to the number of signi�cant coe�cients in the representation
of fext� The usual procedure by current numerical methods to derive the solution requires
discretization of the r�h�s� and of the solution in terms of a grid or a basis such that the
representations will resolve all features of interest� This might require a large number of grid
points or elements not only near the singularities of the functions involved but also in the
regions of smooth behavior thus requiring proportionally large number of operations� Cur	
rent adaptive procedures �for example� adaptive grids or irregular elements� are cumbersome
especially in higher dimensions and imply a considerable overhead both for the algorithmic
and programming levels�

Our approach is based on using properties for the representations of functions in wavelet
bases and allows us to obtain a simple adaptive algorithm�

Let us illustrate it by considering Poisson�s equation

�u � f x � B �����

with periodic boundary conditions where �with a slight abuse of notation� we used f instead
of fext to denote the source term� The source term f may have discontinuities in the domain
B�

� Preliminaries on Wavelet Analysis � Theoretical back�

ground

In this section we review the relevant material associated with wavelet basis expansions of
functions and operators� The wavelet decomposition is based on the notion of multireso	
lution analysis 
��� and the basis functions are compactly supported orthogonal wavelets
constructed in 
���� These wavelets lead to band matrices with only few nonzero values
around the main diagonal�

Multiresolution analysis �MRA� is a decomposition of a Hilbert space� e�g� L��R�� into a
chain of closed subspaces

� � � � V� � V� � V� � V�� � V�� � � � � �����

that satisfy well established properties 
���� We de�ne an associated sequence of subspaces
Wj as the orthogonal complements of Vj in Vj�� such that Vj�� � Vj

L
Wj� and the

subspace Vj can be written as the direct sum of subspaces Wj�� i�e� Vj �
L

j��j Wj��
The set of dilation and translations of the scaling function ����� f�j�k�x� � ��j������jx�

k�gk�ZZ� forms an orthonormal axis of Vj and the set of dilations and translations of the






wavelet ����� �jh�k�x� � ��j������jx � k�gk�ZZ� forms an orthonormal basis of Wj� The
scaling function ��x� satis�es the two	scale di�erence equation

��x� �
p
�
L��X
k��

hk���x� k� �����

and the wavelet ��x� is de�ned by

��x� �
p
�
L��X
k��

gk���x� k� � �����

where the sets of coe�cients H � fhkg and G � fgkg are called Quadrature Mirror Filters
�QMF�s� that� once chosen� de�ne a particular wavelet basis�

��� Representation of Functions in Wavelet Bases

The projection of a function f�x� onto subspace Vj is given by

�Pjf��x� �
X
k�ZZ

sjk�j�k�x� �����

where Pj denotes the projection operator onto subspace Vj � The set of coe�cients fsjkgk�ZZ�
which we refer to as �averages�� are computed via the inner product sjk �

R��
�� f�x��j�k�x�dx�

It follows that we can also write �Pjf��x� as a sum of projections of f�x� onto subspaces
Wj�� j� � j

�Pjf��x� �
X
j��j

X
k�ZZ

dj
�

k �j��k�x� ���
�

where the set of coe�cients fdjkgk�ZZ� which we refer to as �di�erence�� are computed via
the inner product djk �

R��
�� f�x��j�k�x�dx� The projection of a function on subspace Wj is

denoted �Qjf��x�� where Qj � Pj�� � Pj �

��� The Standard and Non�Standard Form of Operators

In order to represent an operator T � L��R� � L��R� in the wavelet system of coordinates�
we consider two ways to de�ne two	dimensional wavelet bases� First� we consider a two	
dimensional wavelet basis which is arrived at by computing the tensor product of two one	
dimensional wavelet basis functions� e�g�

�j�j��k�k��x� y� � �j�k�x��j��k��y� �����

where j� j�� k� k� � ZZ� This choice of basis leads to the standard form �S	form� of an operator


� ��� The projection of the operator T into the multiresolution analysis is represented in
the S	form by the set of operators

T � fAj� fBj�

j gj��j��� f�j�

j gj��j��gj�ZZ � �����

�



where the operators Aj� B
j�

j � and �j�

j are projections of the operator T into the multiresolution
analysis as follows

Aj � QjTQj � Wj �Wj

Bj�

j � QjTQj� � Wj� �Wj

�j�

j � Qj�TQj � Wj �Wj�

����
��� �����

for j � �� �� � � � � n and j � � j � �� � � � � n�
If n is the �nite number of scales� then ����� is restricted to the set of operators

T� � fAj� fBj�

j gj
��n
j��j��� f�j�

j gj
��n
j��j��� B

n��
j ��n��

j � Tngj�������n � �����

where T� is the projection of T on V�� Here the operator Tn is the coarse scale projection
of the operator T on Vn�

Tn � PnTPn � Vn � Vn � ������

The subspaces Vj and Wj appearing in ����� and ������ can be periodized�

The operators Aj� B
j�

j ��
j�

j � and Tj appearing in ����� and ����� are represented by matrices

�j � �j�j�� �j�j
�

and sj with entries de�ned by

�j
k�k� �

R R
�j�k�x�K�x� y��j�k��y�dxdy

�j�j�

k�k� �
R R

�j�k�x�K�x� y��j��k��y�dxdy

�j�j
�

k�k� �
R R

�j�k�x�K�x� y��j��k��y�dxdy

sjj�k� �
R R

�j�k�x�K�x� y��j�k��y�dxdy

������
�����

������

where K�x� y� is the kernel of the operator T � The operators in ����� are organized as blocks
of a matrix as shown in Figure ��

In 

� it is observed that if the operator T is a Calder�on	Zygmund or pseudo	di�erential
operator then� for a �xed accuracy� all the operators in ����� are banded� As a result the
S	form has several ��nger� bands� illustrated in Figure ��
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A�
B�
�

B�
�

��
� A� B�

�

A�

Figure �� The band structure of the standard form

These ��nger� bands correspond to interactions between di�erent scales� For a large class
of operators� e�g� pseudo	di�erential� the interaction between di�erent scales �characterized
by the size of the coe�cients in the bands� decays as the distance jj � j�j between the scales
increases� Therefore� if the scales j and j� are well separated� then for a given accuracy�
the operators Bj�

j and �j�

j can be neglected� For compactly supported wavelets� the distance
jj � j�j is quite signi�cant� The control of the interaction between scales is better in the
non	standard representation of operators�

An alternative to forming two	dimensional wavelet basis functions using the tensor prod	
uct �which led us to the S	form representation of operators� is to consider functions which
are combinations of the wavelet� ����� and the scaling function� ����� The wavelet represen	
tation of an operator in the non	standard form �NS	form� is arrived at using bases formed
by combinations of wavelet and scaling functions� for example� in L��R��

�j�k�x��j�k��y�

�j�k�x��j�k��y� ������

�j�k�x��j�k��y�

where j� k� k� � ZZ� The NS	form of an operator T is obtained by expanding T in the
�telescopic� series

T �
X
j�ZZ

�QjTQj �QjTPj � PjTQj� � ������

�



where Pj and Qj are projectors on subspaces Vj and Wj � respectively� We observe that in
������ the scales are decoupled� The expansion of T into the NS	form is thus represented
by the set of operators T � fAj� Bj��jgj�ZZ� where the operators Aj� Bj� and �j act on
subspaces Vj and Wj as follows

Aj � QjTQj � Wj �Wj

Bj � QjTPj � Vj �Wj

�j � PjTQj � Wj � Vj

���
�� ������

see e�g� 

��
If J � n is the �nite number of scales� then ������ is truncated to

T� �
JX

j��

�QjTQj �QjTPj � PjTQj� � PJTPJ � ����
�

and the set of operators is restricted to T� � ffAj� Bj ��jgj�Jj�� � TJg� where T� is the projection
of the operator on V� and TJ is a coarse scale projection of the operator T TJ � PJTPJ �
VJ � VJ �

The operators Aj� Bj ��j and TJ appearing in the NS	form are represented by matrices
�j � �j� �j� and sj with entries de�ned by

�j
k�k� �

R R
K�x� y��j�k�x��j�k��y�dxdy

�j
k�k� �

R R
K�x� y��j�k�x��j�k��y�dxdy

�jk�k� �
R R

K�x� y��j�k�x��j�k��y�dxdy

sjk�k� �
R R

K�x� y��j�k�x��j�k��y�dxdy

������
�����

������

in L��R��� The operators are organized as blocks of a matrix as shown in Fig� ��
The price of uncoupling the scale interactions in ������ is the need for an additional

projection into the wavelet basis of the product of the NS	form and a function�
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��

B�

A� B�

��

A�

��

B�

T�

�

d�

s�

d�

s�

d�

s�

�d�

�s�

�d�

�s�

�d�

�s�

Figure �� Application of non	standard form to a vector

�

Bj sj

Figure �� Application of non	standard form to a vector

Referring to Fig� � we see that the NS	form is applied to both averages and di�erences
of the wavelet expansion of a function�
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It follows from ������ that after applying the NS	form to a vector we arrive at the
representation

�T�f���x� �
JX

j��

X
k�Z

�n�j

�djk�j�k�x� �
JX

j��

X
k�Z

�n�j

�sjk�j�k�x� � ������

The representation ������ consists of both averages and di�erences on all scales which can
either be projected into the wavelet basis or reconstructed to space V�� In order to project
������ into the wavelet basis we form the representation

�T�f���x� �
JX

j��

X
k�Z

�n�j

djk�j�k�x� �
X

k�Z
�n�J

sJk�J�k�x� � ������

using the decomposition algorithm described before�
In this work we are interested in developing adaptive algorithms� i�e� algorithms such

that the number of operations performed is proportional to the number of signi�cant coe�	
cients in the wavelet expansion of solutions of partial di�erential equations� The S	form has
the adaptivity property� i�e� applying the S	form of an operator to the wavelet expansion
of a function is a matter of multiplying a sparse vector by a sparse matrix� All the imple	
mentation in this paper is performed using sparse data structures� On the other hand� as
we have mentioned before� the S	form is not a very e�cient representation of� for example�
convolution operators�

In section 
 we address the issue of adaptively multiplying the NS	form and a vector�
Since the NS	form of a convolution operator remains a convolution� the Aj� Bj� and �j

blocks may be thought of as being represented by short �lters� We can exploit the e�cient
representation a�orded us by the NS	form and use the vanishing	moment property of the
Bj and �j blocks of the NS	form of di�erential operators to develop an adaptive algorithm�

� Application of masks on the V and W subspaces

Let us represent the source term f and the solution u in ����� in the wavelet basis�

f�x� �
X
j�n

X
k

X
�

f�j�k�
�
j�k�x� �

X
k

sfn�k�n�k�x�� �����

u�x� �
X
j�n

X
k

X
�

u�j�k�
�
j�k�x� �

X
k

sun�k�n�k�x�� �����

where
f�j�k � hf� ��

j�ki� u�j�k � hu� ��
j�ki� sfn�k � hf� �n�ki and sun�k � hu� �n�ki� �����

We now de�ne the 		accuracy subspace for f to be the subspace on which f may be
represented with accuracy 	� namely�

M �
r�h�s � Vn

�fspanf��
j�kg j �j�k� 
� � jf�j�kj � 	g� �����

��



and observe that the 		accuracy subspace for the solution

M �
sol � Vn

�fspanf��
j�kg j �j�k� 
� � ju�j�kj � 	g ���
�

may be estimated given M �
r�h�s�

Proposition ��� Let

u�x� �
X
j

X
k

X
�

u�j�k�
�
j�k�x� � constant �����

be the solution of
�u � ���

j��k� x � B �����

with periodic boundary conditions� For any 	 � � there exist � � � and � � � such that all
indices �j�k� 
� corresponding to the signi�cant coe�cients of the solution� ju�j�kj � 	� satisfy
jk� k�j � � and jj � j �j � ��

The size of � � � and � � � depends on the particular choice of basis and� of course� on 	�
GivenM �

r�h�s� we may construct the setM��� as a ��� ��	neighborhood of M �
r�h�s� According to

Proposition ����M �
sol �M���� We note that estimating the subspace amounts to constructing

a mask which contains indices of signi�cant coe�cients�
Instead of estimating M��� directly� we may use an iterative approach� For example�

solving directly on M �
r�h�s produces a solution �u with accuracy �	 � 	� Applying the Laplacian

to �u� we generate �f � Estimating the 		accuracy subspace for �f � we may use it to continue
the iteration to improve the accuracy of the solution� In other words� the mask for M �

sol may
be generated iteratively�

There are three main features in our approach to solve ����� �

�� Estimation of the 	�accuracy subspace for the solution� Our �rst step is to
explicitly estimate the subspace M �

sol given M �
r�h�s� For elliptic operators the dimension

of M �
sol is proportional to that of M �

r�h�s�

�� Preconditioning of the operator� A simple diagonal preconditioner is available for
periodized di�erential operators in the wavelet bases 

� �� which yields a condition
number of O���� We will show in section � how to construct simple preconditioners in
wavelet bases for more general operators�

�� Constrained Iterative Solver� We use preconditioned Conjugate Gradient �CG�
method which we constrain to the subspace estimated at Step �� e�g� M���� The CG
method requires only a constant number of iterations due to preconditioning at Step ��
whereas the cost of each iteration is proportional to the dimension of M �

sol provided we
succeed to limit the number of operations required for the application of the operator
�matrix� in the CG method �see below��

Steps �	� constitute an adaptive algorithm for solving Poisson�s equation�

��



Convergence� In order to demonstrate convergence of our method� we may use results in

���� where it is shown that if P� is a projector on M �

f � the 		accuracy subspace for f � then
for any Lp function� � 
 p 
��

lim
���

P�f�x�� f�x� �����

almost everywhere� Since our method recovers the 		accuracy subspace for the solution�
M �

sol� in the limit as 	� � we obtain the pointwise convergence almost everywhere�
The justi�cation for the proposition is given in section � after the introduction of the pre	

conditioners for the �	D 	 �	D cases because it contains the use of masks with the application
of the preconditioner�

��� The relation between the masks on V and W subspaces

The procedure in section � means that after having multiscale decomposition of the r�h�s
we create masks on the �d� coe�cients� The masks on the d coe�cients are determined
according to a prede�ned threshold� But during the application of the multiscale wavelet
decomposition�reconstruction the S part of the multiscale is �lled up �it becomes �dense��
and we may loose the sparsity advantages of the whole process� It is proved in section ��
that although the location of the sjk coe�cients is generally dense it su�ces to consider in
the non	standard form only those labels �j� k� near the corresponding labels of djk that are
used to de�ne the mask� As it is demonstrated in Fig� �� each mask on the s is determined
by corresponding mask on the d�

��
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Figure �� Illustration how the �d� masks for two scales �	D wavelet multiscale decomposition�
determine exactly the masks on the s coe�cients

� Outline of the algorithm

��� ��D algorithm

Let us consider the projection L� of the periodized operator � on V�� the �nest scale under
consideration�

L� � P��P�� �
���

and Ls and Lns are its standard �s	form� and non	standard forms �ns	form� 
��� respectively�
One of the di�culties in solving ����� stems from the inherently large condition number

of the linear system resulting from the discretization of ������ As it was shown in 

� ��� using
a diagonal preconditioner in the wavelet system of coordinates yields a linear system with
the condition number typically less than ��� independently of its size� Let P denote such a
diagonal preconditioner�

��



In 
�� the s	form is used to solve the two	point boundary value problem� Alternatively�
we may use the ns	form� Some care is required at this point since the preconditioned ns	form
is dense unlike the s	form which remains sparse� Thus� in the process of solving the linear
system� it is necessary to apply the preconditioner and the ns	form sequentially in order
to maintain sparsity� The ns	form is preferable in multiple dimensions since� for example�
di�erential operators require O��� elements for representation on all scales �see e�g� 

���

We develop a constrained preconditioned CG algorithm for solving ����� in an adaptive
manner� Both the s	form and the ns	form may be used for this purpose but it appears that
using the ns	form is more e�cient especially if compactly supported wavelets are used and
high accuracy is required�

Let us consider ����� in the wavelet system of coordinates

Lnsuw � fw� �
���

where fw and uw are representations of f and u in the wavelet system of coordinates� This
equation should be understood to include the rules for applying the ns	form �see 
����

Let us rewrite �
��� using the preconditioner P as

P Lns Pv � Pfw� �
���

where Pv � u� For example� for the second derivative the preconditioner P is as follows�

Pil � �il�
j �
���

where � � j � n is chosen depending on i� l so that n � n��j�� � � � i� l � n � n��j � and
Pnn � �n�

The periodized operator � has the null space of dimension one which contains constants�
If we use the full decomposition �over all n scales� in the construction of the ns	form then
the null space coincides with the subspace Vn which in this case has dimension one �see 
����
This allows us to solve �
��� on the range of the operator�M

��j�n

Wj �
�
�

where the linear system �
��� is well conditioned�

Constrained Iterative Solver� In order to solve �
��� we apply the Conjugate Gradient
method constrained to the subspace M���� Without such constrain the conjugate directions
become �dense� at early stages of the iteration only to become small outside the subspace
M��� later� Thus� constraining the solution to a subspace is critical for an adaptive algorithm�

In applying the conjugate gradient method in the wavelet coordinates� we generate only
those entries of conjugate directions which are in the set of signi�cant indices which de�ne the
subspace M��� �called the masks�� This yields an algorithm where the number of operations
at each iteration is proportional to the number of elements ofM���� The number of iterations
is O��� and� thus� the overall number of operations is proportional to the number of signi�cant
coe�cients of f � i�e�� the dimension of M �

r�h�s�

�




Remark� operators with variable coe�cients� As in the case of the Laplacian� the
		accuracy subspace for the solution may be estimated using corresponding subspaces for the
r�h�s and the coe�cients� Essentially� we consider the union of such subspaces as a starting
point for constructing M���� These estimates may be revised in the process of iteration� The
proof that the above algorithm is applicable to operators with variable coe�cients is given
in section ��

��� The ��D and ��D algorithms

The �	D algorithm was described in 
�� ��� The wavelet decomposition of �	D and �	D
functions can be obtained by applying the quadrature formula to each variable� The various
steps which have to be performed in order to apply the Laplacian operator to a given function
can be summarized as follows �the description of the steps is related to Fig� ���

�� Computation of matrices Aj� Bj� and �j�

�� Computation of vectors dj and sj�

�� Multiplication of Aj� Bj and �j by dj and sj in order to obtain d�j and s�j� This is
done within the masks only�

�� Reconstruction of the result from d�j and s�j� This is done within the masks only�

where the above � steps are performed for j � �� � � � � J and J is the number of decomposed
scales� The computation is done only with coe�cients in the corresponding masks�

The use of the tensor product wavelet enables us to apply the �	D algorithm 
�� for the
�	D and �	D Laplacian operator� In the above algorithm step � is performed only once in
the beginning to determine the representation of the �	D second derivative operator� The
other three steps are performed on each row of the matrix which corresponds to the �	D
function� This provides the partial second derivative in the x direction� The same process
is applied to each column which produces the partial second derivative for the y direction�
The summation of the two resulting matrices yields the Laplacian operator� In fact� the
computations on the rows and on the columns are performed in the same time� For an
N �N matrix� the computations are then described by the following algorithm�

� Computation of matrices Aj� Bj� and �j�

� Loop� for i � � to N

�� Computation of row vectors dj and sj which correspond to row i�

�� Computation of column vectors dj and sj which correspond to column i�

�� Multiplication of Aj� Bj and �j by rows dj and sj in order to obtain the rows d�j

and s�j� This is done within the masks only�

�� Multiplication of Aj� Bj and �j by columns dj and sj in order to obtain columns
d�j and s�j� This is done within the masks only�

��




� Reconstruction of the result from rows d�j and s�j� This is done within the masks
only�

�� Reconstruction of the result from columns d�j and s�j� This is done within the
masks only�

�� Partial construction of the �nal matrix from the two vectors obtained in steps 

and ��

where the above steps are performed for j � �� � � � � J and J is the number of decomposed
scales� The computation is done only with coe�cients in the corresponding masks�

The �	D is treated similarly while taking into consideration the third direction �height��

� Preconditioners

In this section we describe how to construct preconditioner to �	D 	 �	D problems� It is
based on the s	form of the decomposition �see Fig� ���

��� ��D Preconditioner for the operator ��
 Const

Let us demonstrate how to construct a diagonal preconditioner for the sum of operators
�� � Const in wavelet bases� We observe that if A and B are diagonal operators with
diagonal entries ai and bi� then the diagonal operator with entries ���ai � bi� �provided
ai � bi 	� �� is an ideal preconditioner�

In our case� the operator �� is not diagonal but we know a good diagonal preconditioner
for it in wavelet bases �
���� Let us use this preconditioner instead of �� for the purpose of
constructing a preconditioner for ��� Const� where Const � �� We note that in wavelet
bases the identity operator remains unchanged� We restrict Const �I� where I is the identity
operator� to the subspace M

��j�n

Wj �����

and construct a preconditioner on this subspace�
We obtain

Pil �
�ilp

���j � Const
�����

where � � j � n is chosen depending on i� l so that n � n��j�� � � � i� l � n � n��j �
and Pnn � ��

p
���n � Const� The square root appears in ����� in order to symmetrize the

application of the preconditioner as shown before� In Table � we illustrate the e�ect of
preconditioning of the operator � d�

dx�
� Const by the diagonal matrix ������

��



Const � �p


	������ �	����� �	�


	������ �	����� �	�


	������ �	����� �	�


	������ �	����� �	�


	������ �	
���� 
	�


	������ �	����� �	�

Table �� Condition numbers � before and �p after preconditioning of the operator � d�

dx�
�

Const in the basis of Daubechies� wavelets with six vanishing moments� There are � scales
and the matrix size is �
� � �
��

Remark� If we consider an operator �� � V � where V is an operator of multiplication
by a function V �x�� a similar construction may be obtained on �ne scales� On �ne scales
where the function V �x� does not change signi�cantly over the support of wavelets� we may
consider the diagonal operator V diag��

V diag��
j�k

�
� V �xj�k��

�
j�k� �����

where xj�k is a point within the support of the wavelet ��
j�k� Using V diag instead of V �

we obtain the preconditioner in a manner outlined above� We will address the problem of
constructing preconditioners for operators of the form ��� V elsewhere�

For many iterative methods� the algebraic error of iterative schemes decays exponentially
and the rate of decay is controlled by the condition number � of the matrix corresponding
to the operator� For the Conjugate Gradient method� for instance� the error between the
exact solution U and the approximated solution Um after m iterations is given by�

kU � Umk� �
�p�� �p

�� �

�m kUk� � �����

For symmetric matrices� the condition number � is the absolute value of the ratio between
the highest and the lowest eigenvalue� In order to improve the convergence� the condition
number � can be reduced by solving an equivalent linear system�

PAP Tx � Pb ���
�

where P has to satisfy two requirements�

� it must lower the system�s condition number� ��PAP T �
 ��A��

��



� The application of P on an arbitrary vector must be simple from the computational point
of view�

For instance� diagonal preconditioners are fast to apply� In the wavelet basis� the second
derivative being almost diagonal� a good diagonal preconditioner for this operator can be
easily de�ned by�

Pil � �il�
j � � � j � n� PNN � �n� �����

such that N �N��j�� � � � i� l � N �N��j where N � �n is the number of discretization
points� It can be noticed that the computation of the matrix	matrix multiplication to apply
the CG process is not necessary� and all the computations can be performed by using only
matrix	vector multiplications� In other words� the CG is a �	D process independent of the
dimensionality of the problem� In the same way that the explicit matrix representation of the
operator itself was not required in dimension greater than one� the matrix corresponding to
the preconditioner is also not necessary� It is su�cient to specify the e�ect of its application
to a given vector�

��� ��D and ��D preconditioners

Let�s proceed by analogy with the �	D case to de�ne the corresponding preconditioner for
�	D and �	D problems� For this� we have to consider the tensor product wavelet transform
�the standard decomposition	Fig� �� of a function �Figs� 
 and ���
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Figure 
� �	D and �	D Wavelet tensor product �standard decomposition�
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In the �	D case �Fig� 
�� the previously de�ned diagonal preconditioner is operated on the
matrix by multiplying all the wavelet coe�cients from a given scale j by the same number
�j � In the same way� the �	D preconditioner will act by multiplying the wavelet coe�cients
located in the same rectangle by a constant which has to be de�ned� The matrix P has to
be built in order to reduce the condition number of the Laplacian in a wavelet basis� As we
know the Laplacian can be decomposed using P�P T � PDxP

T � PDyP
T � �Dx and Dy are

partial second derivatives in x and y� respectively� and P is de�ned as

P �j� j�� � �min�j�j��� � � j� j� � n� �����

In the same way� the �	D preconditioner is de�ned by�

P �j� j �� j��� � �min�j�j��j���� � � j� j �� j�� � n� �����

This means that all the wavelet coe�cients which belong to the same box has to be multiplied
by this factor�

j � �

j � �

j � �f

j� � � j � � �
z �� 	
j� � �

j�� � �

j�� � �

j�� � �

 

Figure �� �	D tensor wavelet

� Justi�cation of the masking procedure for second or�

der elliptic equations

Consider the operator
L�u� �X

�i�aij�x��ju� � q�x�u � f �����

��



where aij�x� are smooth coe�cients satisfyingX
i�j

aij�x��i�j � j�j� and q�x� � ��j� �����

We claim that the solution of ����� can be reduced to solving ����� within a low dimensional
space obtained as the union of Vj� and a high frequency space de�ned as the 	��mask� of
f � �Moreover� if aij�x� are less regular an appropriate 	�mask of aij�x� can be introduced
to account for the high frequencies of aij�x���

We begin by observing that the solution of ����� can be reduced to the solution of a
sparse system on Vj� �

In fact� let u � u� � u�� u� � Vj� � u� � V �
j�

and similarly� f � f� � f��
Let us rewrite ����� as� 


L� A
B L�

�

u�
u�

�
�



f�
f�

�

We claim that L� is invertible on V �
j�

since

hL�h� hi � hLh� hi for h � V �
j�

we have that the preconditionned operator L�
� � PLP� where P is the preconditionner�

satis�es
khk� � ��j�kPhk� � hL�

�h� hi � hL�h� hi � c�khk�

where the preconditionner is the diagonal operator de�ned by

P��
j
����jx� k�� � ��j��

j
����jx� k��

has norm � ��j��� on V �
j�

from which it follows that

��j�kPhk�� �
�

�
khk�� if h � V �

j�

and that L�
� is invertible�

The solution of ����� is reduced to showing�
L� �AL��� B

�
u� � f� �AL��� f�

on the low frequency space Vj� �
We now discuss the masking procedure for inverting L�

�� We can view L�
� as the restriction

to V �
j�

of the operator L� � Pj� �L�
� which is an invertible Calderon Zygmund operator �see

���� given by

Tf �
Z
k�x� y�f�y�dy �����

where k�x� y� is a Calderon Zygmund kernel �see B�C�R��We start by assuming that T ��� � �
in order to justify our masking procedure� we will prove later that this condition is �e�ec	
tively� satis�ed in our case�

��



As shown in 
��� p� 
� the operator T is a self adjoint Calderon Zygmund operator whose
matrix in standard form is sparse around the diagonal with exponentially decaying �ngers
�representing cross scale interactions�� Consequently� the approximate localization of the
wavelet coe�cients of Tf around the coe�cients of f is assured� i�e� there is a projection
M � �called mask projection� such that kf �M ��f�k � 	 and kTf �M ��Tf�k � 	 from
which it follows that kM �L�M �Tf � fk � �	 and that it is enough to solve the equation
M �L�M �u� � f� in the range of M � in order to get an 	 approximation of the solution L��� f��

This equation does not account explicitly for the nature of the mask around the large
wavelet coe�cients of f since each coe�cient interacts with coe�cients at larger scales� In
order to account for this multiscale interaction e�ect it is easier to work in the nonstan	
dard form in which the scales are independent and the mixing occurs only through the sk
coe�cients and the �� � matrices�

Our goal now is to prove that although the location of the sjk coe�cients is generally dense
it su�ces to consider in the nonstandard form only those labels �j� k� near the corresponding
labels of djk used to de�ne the mask M ��

We start by observing that
P

k� �
j
k�k� � �� In fact� since

P
k� �j�k��y� � const

X
k�
�j
k�k� �

Z
�j�k�x�


Z
k�x� y�

X
k�
�j�k��y�dy

�
dx

� const
Z
�j�k�x�

�Z
k�x� y�dy



dx �

Z
�j�k�x�T ����x�dx � ��

Therefore� X
�j
k�k�s

j
k� �

X
Bj
k�k��s

j
k��� � sjk��

where Bj
k�k� �

P
l�k� �

j
k�l�

Since
P

l �
j
k�l � � and j�j

k�lj � cm
���jk�lj�m

we conclude that

jBj
k�k� j �

C

� � jk � k�jm��

Repeating the summation by parts argument we getX
�j
k�k�s

j
k� �

X
bjk�k��s

j
k�� � �sjk� � sjk����

since
P
�j�k��y�k� � y it would be enough to have T �y� � � in order to conclude that

jbjk�k�j � C
��jk�k�jm�� �

The coe�cients

�jk� � sjk��� � �sjk� � sjk��� � h�j�k��� � ��j�k� � �j�k���� fi

are correlations with a wavelet having two vanishing moments and are therefore located near
the singularities of f and are around the djk coe�cients� Their size can be used together with
the djk to de�ne the mask M ��

The matrix bjk�k� being of rapid decay away from the diagonal we �nd that the �d� s�
coe�cients of Tf are close to those of f �

��



We now have to show that the assumptions on T ��� and T �y� are automatically satis�ed
in our case� We recall that

T � �Pj� � L�
��
�� � Pj� � P�j�

�
L�
�

���
P�j�

Therefore� for a function ��y� � Vj� we have T ��� � � and T� � T � Pi� satis�es T�� � �
for � � Vj� satis�es the required conditions�

	 Complexity analysis

In order to perform the complexity analysis we present �rst the version of the conjugate
gradient algorithm 
��� which is being used and the �	D pseudo code that describes the
Poisson solver�

��� Conjugate Gradient 	CG


Given b � IRN � a symmetric positive de�nite matrix A � IRN�N � and a tolerance 	� the
following algorithm computes a vector x such that kAx� bk� � 	 kbk��

x �� �� r �� b� �� �� krk�� � k �� �

Do while ��k�� � 	� kbk��
f
If k � �

then
p �� r

else
�k �� �k����k��� p �� r � �kp

w �� Ap
�k �� �k���p

Tw
x �� x� �kp
r �� r � �kw

�k �� krk��
k �� k � �
g

This algorithm requires only one application of the operator at each iteration step�

��� Poisson solver� ��D pseudo code

Assume that the r�h�s has size N � �J � so we can decompose it into J levels� The basic �	D
structure that is being used in the algorithm consists of an array of size �J � �� Each odd
entry in this array� �j��� j � �� � � � � J � is a pointer to a sparse vector of size N��j and there

��



we store the �s� �averaged� wavelet coe�cients of scale j� Each even entry in this array�
�j� j � �� � � � � J � is a pointer to a sparse vector of size N��j and there we store the �d�
�derivative� wavelet coe�cients of scale j� The �	D algorithm uses only this basic structure�
wt� wr� wp� wp�� ws� wx� which are used in the pseudo code� have this structure�

Preprocessing �

Second derivative � computes the non	standard form of the second derivative ac	
cording to the �lter type and �lter size� number of scales in the multiresolution
decomposition� and the required accuracy�

Setup of the r�h�s�� transform the r�h�s to a sparse data structure by having mul	
tiscale wavelet decomposition of the r�h�s� thresholding the wavelet coe�cients�
and reconstruction of the r�h�s into a sparse data structure� Then� the r�h�s trans	
formed to be in ns	form by applying the operator �in other words� multiplication
of the vector by ns	form��

Wavelet decomposition of the r�h�s � store it in wt

Create the mask on the �d� coe�cients � this mask is determined by the �d�
wavelet coe�cients wt of the decomposed r�h�s�

Create the mask on the �s� coe�cients � this mask is determined by the mask
on the �d� coe�cients�

Application of the preconditioner � on the wavelet coe�cients wt of the r�h�s�

Copy � wt � wr

L� norm of wr � denoted by �

The main loop on the number of iterations of the CG �

If 	rst iteration �
wr � wp

wr � wp�

If it is not the 	rst iteration � � � 	
	�

sparse linear combination� wr � �wp � wp��
wp� � wp

Apply preconditioner � on wp

Sparse wavelet reconstruction � from wp using the masks on the �s� and �d��

Apply the non�standard form � on wp using the masks on �s� and �d� to get ws�

Apply preconditioner � on ws

Sparse inner product � of ws and wp� to produce r�

Compute � � � � 	
r

Sparse linear combination � wx � �wp� � wq�

Copy � wq � wx�

��



Sparse linear combination � wr � �ws � wq�

Copy � wq � wr

Save � �� � �

Copy � wp� � wp

Go to beginning of the loop �

��� Estimation of the number of operations

The Poisson equation is solved using the Conjugate Gradient method
��� where the compu	
tation of the inverse operator is not necessary �just the application of the operator itself is
required�� This property enables us to use these methods for solving �	D and �	D problems
where the operators kernels are separable�

All the computations of the solver are performed within the masks as was explained in
section �� The wavelet transform of the solution consists of Ns signi�cant coe�cients in the
masks which are concentrated near the singularities �see Fig� � and table � which describe
the masks around the singularities��

Although N is the total number of discretization points in each direction� we will use for
our estimations the size of Ns�

Usually� the convolution with �lter of size l takes �l operations� By utilizing factorization
properties of the wavelet �lters� as was described in 
�� ���� we can reduce the number of
operations of the �	D convolution by a factor of at least �� With a �	D convolution� which
is performed as a tensor product� we can reduce the number of operations by a factor of at
least ��

During each iteration of the CG the kernel is decomopsed into the standard form �for
the the application of the preconditioner and recontruction back� and then the non	standard
form is applied once� We assume that �lNs operations are needed for �	D sparse wavelet
convolution with �lter of length l� The same is true for the application of the non	standard
form� Sparse inner product needs �Ns operations� And the same is true for sparse linear
combination� Therefore� one iteration of the Poisson solver necessitated � � �lNs � � � �Ns �

lNs operations� Therefore� the total number of operations for Niter is Niter � 
lNs� To get
		accuracy we need Niter � 
lNs log 	 operations�

When we process d � � dimensional problem the size of the mask becomes Nd
s and the

total number of operations to reach 		accuracy is Niter � 
lNd
s log 	�

The sizes of the masks are independent of the sampling rate� as can be seen in table ��
There� even with �super� sampling rate we still get the same sizes for the masks�

The algorithm is very e�cient compared to the classical methods that require O�N�d�
operations to invert a matrix� for example� The e�ciency of the process relies on the fact
that a full description of the operator is not necessary to solve the equations�


 Numerical results

The algorithm has been tested on �	D� �	D and �	D Poisson equations� The results obtained
for the �	D and �	D cases enforce the idea that application of the �	D decomposition in each

�




direction is valid for solving problems in higher dimensions� The preconditioner has been
tested on the �	D� �	D and �	D cases� As it will be shown in the sequel� the preconditioner
gives very good results after only few iterations� In order to illustrate the validity of the
method with another type of problem� some results concerning the �	D heat equation and
equations with potential terms are also presented�

When we analyze the results in the rest of the section we assume that the total error in
our case has four components�

�� The iteration error�

�� The truncation �or discretization error� which is due to the resolution properties and
depends on the smoothness of the function �i�e� the number of basis functions or mesh
steps per �wave length� or characteristic scale for changes or gradients� and the number
of moments in the analyzing wavelet� Once you have resolution above some number of
points per �wavelength� �the width of the Gaussian in our case�� the error will drop
in relation to a power of ��N which depends on the number of vanishing moments�

�� The roundo� error which becomes signi�cant when the other errors approach small
values�

�� This is the error due to periodization� i�e� if the Gaussian does not decay su�ciently fast
in the interval speci�ed� the function is not periodic� and the periodization introduces
discontinuities in function and derivatives which change the rate of convergence� This
error may be small and can be avoided by modifying the test function�

It becomes important when the scaling is large�

The iteration error is the most important in order to check the method as the truncation
error depends on the input function and basis functions and number of points�

The iteration error is only weakly dependent on the input function and the rate of con	
vergence is the most important issue in our method� As we can check it is also weakly
dependent on the basis functions and on the scaling parameter�

Therefore isolating the convergence rate with and without preconditioning is the basic
issue� The accuracy of representation of operators and derivatives by wavelets is not the
issue we deal with�

As we can see the error should drop down to truncation error levels once the iteration
converges� This only happens if we compute the right hand side as we did � This procedure
takes care both of the periodization and of the resolution error�

��� Model problems

The algorithm was tested on three model problems�

Elliptic problem � the Poisson equation

dX
k��

��u�x�

�x�k
� f�x�� x � IRd� d � �� � � � � � �����

��



Poisson equation with potential

�u� V �x�u� V �y�u � f�x� y� �����

Parabolic problem � the heat equation

�u�x� t�

�t
� �

dX
k��

��u�x� t�

�x�k
� f�x� t�� x � IRd� d � �� � � � � �� t � IR�� �����

The following results have been obtained for a function de�ned on a �xed interval ��	D��
or a �xed square ��	D� or a �xed cube ��	D��

��� ��D examples


���� Example �

Assume we have
��u�x�

�x�
� f�x� �����

where the r�h�s f�x� is numerically computed such that the exact solution is

u�x� � xe���	x
�

� ���x � ����e�������x�����
�

���
�

Assume that N is the number of points and that � � i 
 N � Then� the values of u�x� for
x � �i�N����N are determined in the following way�

u�i� �

��������
�������

��� if x 
 ����
u�i� � x if x � ���� and x 
 ����
u�i�� x if x � ���� and x 
 ���
u�i� � x� ��� if x � ��� and x 
 ���
��� if x � ���

�����

The graph with ����� points� which describes Eqs� ���
� and ������ is given in Fig� ��

��
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Figure �� Graph of the �	D function given by Eqs� ���
� and ����� on ����� points

We apply the algorithm on this function which was sampled with ���� and ����� points�
respectively� We use Daubechies�s �lter of length �� �eight vanishing moments�� In the
multiscale decomposition� the transformed function has four di�erent masks in the �rst
level� two and four respectively in the second level� etc� as it described in table �� This table
describes the beginning� end and length of each mask in each level of the multiresolution�

��



Daubechies ��
���� points ����� points

Level from	to length from	to length
� ���	��� 
� ����	���� ��
� ���	��� �� ��
�	���� ��
� ���	��� �� ����	���� ��
� ���	��� �� 
���	
�
� ��
� ��	��� �� ����	���� ��
� ���	��� �� ����	��
� ��
� ����	���� ��
� ����	���� ��
� ��	��� �� 

�	��� ��

� ���	��� ��
� ����	���� ��
� ����	���� ��
� �	
� �� ���	��� ��
� ���	��� ��
� 
��	��� ��
� ���	��� ��

 full ���	��� ��

 ���	��� ��

 ���	��� ��

 ���	��� ��
� full ��	��
 ��
� ���	��� �

� full ��	��� ��
� full �	
� 
�

Table �� The beginning� end and length of each mask in each level of the multiresolution
applied on the �	D functions given by Eqs� ���
� and ����� using Daubechies �lter of length
��� The masks� accuracy is ����
�

The masks are located around the singular points� Table � describes the structure of the
masks obtained on the decomposition of Eqs� ���
� and ������ These are the masks that
were determined by the application of the thresholding on the �d� coe�cients� The length
and the number of masks in the �rst � and � �ner levels of the decomposition determine
the performance of the algorithm� From this table we can see that the number of points
to process are almost the same when we compare between ���� and ����� sample points�
Therefore� we can conclude that the mask enables us to have comparable performance when
we applied the solver on ���� and ����� points� respectively� Of course� the function with
����� points has �� levels of multiscale decomposition while in the ���� points case there are
only �� levels in the decomposition� But the coarse levels are relatively small and a di�erence
among them do not degrade the performance substantially� As we said� the upper ��ne� levels
hold the major in!uence and contributes the most to the performance of the algorithm and

��



in this case the ���� and ����� points have almost identical mask sizes� Therefore� their
performance is almost the same�

Table � describes the L� error �convergence error� when we apply Daubechies �lters of
length � and ��� respectively� The table shows how the L� error depends upon the number
of iterations� whether the mask is used or not on the �s� �smooth� and �d� �derivative�
coe�cients and on the accuracy of the mask itself� We can see here and in all the other tables
in the rest of the section that without the preconditioner we get accuracy of ���������� We
can see from table � that the application of the mask on �s� does not degrade the accuracy
of the result or reduce the rate of convergence�

No� of Mask on s Mask on d Preconditioner Mask L� error L� error
iterations accuracy D � D ��

�� yes yes yes �� ���� � ����� 
��� � �����
�� no yes yes �� ���� � ����� 
��� � �����
�� no no yes �� ���� � ����� ���� � �����
�� no no no �� ���� � ����� ���� � �����
�� yes yes yes �� ���� � ����� ���� � �����
�� no yes yes �� ���� � ����� 
��� � �����
�� yes yes yes � ���� � ����� ���� � �����
�
 yes yes yes �� ���� � ����
 ���� � �����
�� yes yes yes �� ���� � ����� ���� � �����
�� yes yes yes �� ���� � ����� ���� � �����
�
 yes yes yes �� ���
 � ����� ���� � �����

Table �� �	D example given by Eqs� ���
� and ������ The L� error with respect to di�erent
parameters of the mask� Here we use Daubechies �lters of length � and ��


���� Example �

If the solver is applied to
��u�x�

�x�
� K �x ��x� � �� e�x

�

� �����

whose the exact solution is �
u�x� � K xe�x

�

�����

then the L� error with respect to the number of iterations is given in table ��

��



No� of iterations with preconditioner L� error
� yes 
��� � ����

 yes ���� � ����
�� yes ���� � ���	
�� no ���� � ����
�
 yes ��
� � ���

�� yes ���� � �����
�� yes ���� � �����
�� no ���
 � ����

� yes ���� � �����

Table �� �	D example� the L� error after the application of the algorithm on Eq� ������ It
uses Daubechies �lter of length �� on 
�� points� with masks on �s� and �d�� The masks
accuracy is ����


��� ��D examples


���� Example �

Assume
��u�x� y�

�x�
�
��u�x� y�

�y�
� f�x� y�� �����

where the r�h�s f�x� y� is numerically computed such that the exact solution is�

u�x� y� � ����x e������ �x
�� y��� ������

Table 
 describes the L� error when we apply Daubechies �lters of length � on �� points�
The table show how the L� error depends upon the number of iterations� whether the mask
is used or not on the �s� �smooth� and �d� �derivative� coe�cients and on the accuracy of
the mask itself� We can see from the table that the application of the mask on �s� does not
degrade the accuracy of the result�

No� of Mask on s Mask on d Preconditioner Mask L� error L� error
iterations accuracy D � D ��

�
 yes yes yes �� ���� � ���� ���� � ���	
�� yes yes yes �� ���� � ���	 ���� � ���	
�� yes yes yes �� ���� � ���
 ���� � ���

�� yes yes yes �� 
��� � ���	 ���� � ����

� yes yes yes �� ��
� � ���	 ���� � ����

� no yes yes �� ���� � ���	 ���� � ����

� yes yes yes �� ���� � ���� ���� � ���


� no no yes �� ���� � ����� ���� � �����

Table 
� �	D example given by Eqs� ����� and ������� The L� error with respect to di�erent
parameters of the mask� It uses Daubechies �lter of length � �D �� and length �� �D ��� on
�� points

��




���� Example �

u�x� y� � ����x e������ �x
�� y�� � ���x e����� �x

�� y��� ������

No� of Mask on s Mask on d Preconditioner Mask L�

iterations accuracy error
�
 yes yes yes �� ���� � ����
�
 no yes yes �� ���
 � ���

�
 yes yes yes �� ���
 � ���

�� yes yes yes �� ���� � �����
�� yes yes yes �� ��
� � ����
�� no yes yes �� ��
� � ����

� yes yes yes �� ���� � ����

� no yes yes �� ���� � ����

� yes yes yes �� ���� � �����

� yes no yes �� ��

 � �����

Table �� �	D example given by Eq� ������� The L� error with respect to di�erent parameters
of the mask� It uses Daubechies �lter of length � on �� points�


���� Example �

��u�x� y�

�x�
�
��u�x� y�

�y�
� �

�

x�
� y��u�x� y� � f�x� y�� ������

where the r�h�s f�x� y� is numerically computed such that the exact solution is�

u�x� y� � x e��x
�� y��� ������

Table � describes the results by using Eqs� ������ and �������

No� of iterations with preconditioner L� error
� yes ��
� � ����

 yes ���� � ����
�� yes ���� � ����
�� no ���� � ����
�
 yes ���� � ���

�� yes ���� � ���	
�� yes ���� � ����
�� no ���� � ����

� yes ���� � ���


Table �� �	D example given by Eqs� ������ and ������� The L� error with respect to di�erent
number of iterations� It uses Daubechies �lter of length � on �� points� with masks on �s�
and �d� where the mask accuracy is ����


��




���� Example �

��u�x� y�

�x�
�
��u�x� y�

�y�
� ey u�x� y� � f�x� y�� ������

where the r�h�s f�x� y� is numerically computed such that the exact solution is�

u�x� y� � x e��x
�� y��� ����
�

Table � describes the results by using Eqs� ������ and ����
��

No� of iterations with preconditioner L� error
� yes 
��� � ����

 yes ���� � ����
�� yes ���� � ����
�� no ���� � ����
�
 yes ���� � ����
�� yes ���� � ����
�� yes ���� � �����
�� no ���� � ����

� yes ���� � �����

Table �� �	D example given by Eqs� ������ and ����
�� The L� error with respect to di�erent
number of iterations� It uses Daubechies �lter of length � on �� points� with masks on �s�
and �d� where the mask accuracy is ����



���
 ��D heat equation

The �rst order explicit scheme in time using the separability property has been applied to
the following problem�������

�����

�u�x�y�t�
�t

� ��
�u�x�y�t�
�x�

� ��u�x�y�t�
�y�

� � sin���x� cos���y�

u�x� y� �� � �
u��� y� t� � u��� y� t�
u�x� �� t� � u�x� �� t�

������

whose exact solution is�

u�x� y� t� �
�

���
��� e��


�t� sin���x� cos���y�� ������

Explicit schemes in time Let us consider the following time dependent problem

�u

�t
�Au � f

with the following time discretization

un�x� � u�x� n�t� �

��



A family of explicit schemes in time can be de�ned using a parameter ��

�



un�� � un

�t

�
� ��� ��



un � un��

�t

�
�Aun � f

or as

un�� � �� � �

�
�
�tA

�
�un � �

�

�
� ��un�� �

�t

�
f� ������

Depending on the value of the parameter � one can obtain di�erent methods� With � equals
to � we obtain the usual �rst order explicit scheme� It is a stable scheme which leads to results
with low accuracy� When � equals ��
 one obtains a second order scheme that generates good
results which are very unstable �the discretization step in time has to be very small in order
to have a decay of the error�� Between these two values of � various schemes can be de�ned
which lead to a good compromise between accuracy and stability� If � is less than ��
 then
the method does not converge at all�

When the time step equals to ���� the L� error is ���� ����
� when the time step equals
to ���
 the L� error is ���� ������

This result is the same as the one obtained by Charton
��� with an Euler like scheme
�implicit��

Better results can be obtained with a smaller time step� but this explicit scheme will
remain a scheme of order � in time�

We are using an only �rst order explicit scheme in time� Better results can be achieved
when using implicit scheme� but in this case we should also need to invert a matrix at each
iteration in order to get a better accuracy�

��� ��D example

��u�x� y� z�

�x�
�
��u�x� y� z�

�y�
�
��u�x� y� z�

�z�
� f�x� y� z� ������

where the r�h�s f�x� y� z� is numerically computed such that the exact solution is�

u�x� y� z� � ����x e������ �x
�� y�� z��� ������

Table � describes the results by using Eqs� ������ and �������

No� of iterations with preconditioner L� error on �� points L� error on �� points
�
 yes ���� � ���� ���� � ����
�� yes ���� � ���� ���
 � ����
�� yes ���� � ����� ���� � �����
�� no ���� � ���� ���� � ����

� yes 
��
 � ����� ���� � �����

Table �� �	D example given by Eqs� ������ and ������� The L� error with respect to di�erent
number of iterations� It uses Daubechies �lter of length � on �� and �� points� respectively�
with masks on �s� and �d� where the mask accuracy is ��

��



�� Conclusion

The algorithm described in this paper is using �	D computations enables to solve some
problems in higher dimensions� The operators that can be studied have only to be separable�

Applications and extensions are already in progress� The separability of the computations
�due to the separability of the operator� allows to consider each variable in a di�erent way
according to the problem under study� That means that irregular grids of discretization can
be used�

The extension for solving problems connected to non separable operators is also in
progress� A �rst possibility consists in considering operators whose kernel can be approxi	
mated by linear combinations of separable kernels�

The proof in section � demonstrates that the algorithm� which is described in this paper�
can work also for solving PDEs with non constant coe�cients� We believe that the same
idea will be useful and applicable for solving non linear PDEs� Both topics are currently
being explored�

Appendix

The �	D 	 �	D sparse formats which are used for manipulation and storage are based on the
�Yale Sparse Matrix Package� I� The Symmetric Codes�� Eisenstat et al�� TR "���� The
aim is to utilize a compact sparse data structure in the �	D 	 �	D computations in order
to reduce the number of operations and data storage� The format proposed here keeps in
memory only data that is above a given threshold� The description of the multidimensional
sparse formats uses the �C� programming language conventions�

��D storage

The following is a description of the data structures which are needed to manipulate sparse
vector�

� int size � the size of the dense vector�

� int non zero � the number of non	zero coe�cients in the vector which are above a given
threshold�

� int �array � contains the values of the non	zero �above threshold� coe�cients�

� int �row p � contains the locations �the row number� of the non	zero coe�cients�

Example� The following vector�

�




�
��������������

��
�


�
�
�
��
�

�
��������������

is described by �
size �� �

non zero �� 

�array �� ��� 
� �� ��� �
�row p �� �� �� �� �� �

��D storage

The following is a description of the data structures which are needed to manipulate sparse
matrices�

� int n row � the number of rows�

� int n col � the number of columns�

� int �mat � contains the values of the non	zero �above threshold� coe�cients�

� int �row p � the number of non	zero coe�cients in each row �row p�i���	row p�i� is the
number of non	zero �above threshold� coe�cients in row i��

� int �col p � contains the locations of the non	zero �above threshold� coe�cients in each
row �column numbers��

Example� The following matrix� �
���������

� � � � � �
� � � � � �
� �� �� � �� �
� � �� � �� �
� � � � � �
� � � � � �

�
���������

is described by �
n row �� �
n col �� �
�mat �� �� �� �� ��� ��� ��� ��� ��� �� �� �� �

�row p �� �� �� �� �� �� �� ��
�col p �� �� �� �� �� �� �� �� �� �� 


Remark� the last coe�cient in �row p is the number of non	zero �above threshold� values in
the matrix�

��



��D storage

The following is a description of the data structures which are needed to manipulate sparse
three dimensional matrices�

� int n row � the number of rows�

� int n col � the number of columns�

� int n hei � the number of heights�

� int �mat � the values of the non	zero �above threshold� coe�cients�

� int �hei p � gives some information about the number of non zero coe�cients in each
surface �hei p�i���	hei p�i� is the number of non	zero �above threshold� coe�cients in
surface i��

� int �row p � the number of non	zero �above threshold� coe�cients in each row �the rows
are numbered surface by surface��

� int �col p � contains the locations of the non	zero coe�cients in each row �column num	
bers��

Example� The following cube�

�
����

� � � �
� � � �
� � � �
� �� �� �

�
����
�
����

�� � � �
�� � �� �
� � � �
� � � �

�
����
�
����

� � � �
� � �
 �
� � � �
� �� �� �

�
����
�
����
�� � � �

 � � ��
� � � �
�� � �� ��

�
����

is described by �

n row �� �
n col �� �
n hei �� �
�mat �� �� �� �� ��� ��� ��� ��� ��� �� �� �� �� �
� ��� ��� ��� 
� ��� ��� ��� ��
�hei p �� �� 
� �� �
� ��
�row p �� �� �� �� �� 
� �� �� �� �� ��� ��� ��� �
� ��� ��� ��� ��
�col p �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

Remark� the last coe�cient in �hei p is the number of non	zero �above threshold� values in
the cube� The pointer �hei p could be removed since its coe�cients are also in �row p�
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