Adaptive Solution of Multidimensional PDEs via Tensor
Product Wavelet Decomposition

A. Averbuch!, G. Beylkin?, R. Coifman?®, P. Fischer** M. Israeli®
1School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978
Israel
2Program in Applied Mathematics, University of Colorado at Boulder, Boulder
CO 80309-0526, USA
3 Department of Mathematics, Yale University, P.O.Box 2155 Yale Station
New Haven, CT 06520, USA

* Mathematiques Appliquees de Bordeaux, Universite de Bordeaux 1, France

% Faculty of Computer Science, Technion- Israel Institute of Technology
Haifa 32000, Israel

Abstract

In this paper we describe efficient adaptive discretization and solution of ellip-
tic PDEs which are forced by right hand side (r.h.s) with regions of smooth (non-
oscillatory) behavior and possibly localized regions with non-smooth structures. Clas-
sical discretization methods lead to dense representations for most operators. The
method described in this paper is based on the wavelet transform which provides sparse
representations of operator kernels. In addition, the wavelet basis allows for automatic
adaptation (using thresholding) in the sense that only a few coefficients are needed to
describe smooth sections of the r.h.s. while more coefficients are needed to describe
sharp transitions and singular points.

In this work we develop adaptive algorithms, i.e. algorithms such that the number
of operations performed is proportional to the number of significant coefficients in
the wavelet expansion of the “inputs” of a given differential equation problem. We
adapt an iterative approach thus we can succeed if we must do only a fixed number of
iterations where each iteration requires a fixed number of operations, independent of
the resolution (but dependent on the chosen accuracy).

The basic tool in our approach is the preconditioned conjugate gradient (CQG) it-
eration in a “constrained” form. In the wavelet basis diagonal preconditioners are
available which render the condition number of elliptic operators to O(1). This implies
that the number of iterations of the CG method does not depend on the size of the

*Receipint of the 1995-1996 Israeli Academy of Sciences Post Doctoral Fellowship for research at the
Computer Science Department, Tel Aviv University, Israel.

problem. Each iteration consists of applying the non-standard-form of an operator to
the wavelet expansion of a function, this translates to a multiplication of a sparse vec-
tor by a sparse matrix. The “constraint” is applied in a form of a mask such that only
elements of the vector in the mask are used in the computation while other elements
are ignored. We present implementations in one, two and three dimensions using sparse
data structures to take advantage of the algorithm.

1 Introduction

Efficient discrete representation of continuous operators is a basic problem in the numerical
solution of differential and integral equations. Classical discretization methods lead to dense
representations (full matrices) for most operators. Sparse representations have the advantage
of minimizing storage requirements, while decreasing the computational times. A “good
sparse” representation means “fewer coeflicients for a given accuracy”. Thus, an important
step in numerical computations consists of building a sparse representations of common
operators and algorithms for using them efficiently.

We seek efficient discretization and solution of partial differential operators which are
forced by right hand sides (r.h.s) which consist mostly of smooth (non-oscillatory) regions
with possibly localized regions of non-smooth behaviour.

The method described in the present paper is based on the wavelet transform which often
provides sparse representations of operator kernels. It consists of expanding functions or
operators over a set of basis functions obtained by dilation and translations of an elementary
wavelet function localized in both direct and Fourier spaces. Although it is widely known that
the wavelet transform leads to more compact representations than the Fourier transform, its
current applications for solving PDEs are mostly limited to 1-dimensional problem [1, 2, 4,
5,7, 17, 18, 19, 20]. Higher dimensional algorithms and software are rare. Some existing
applications are concerned with particular 2-dimensional and 3-dimensional cases [11, 22].

An important advantage of wavelet basis representations is that they allow for automatic
adaptation (using thresholding) in the sense that only a few coefficients are needed to describe
smooth sections of the solution (or right hand side) while many more coefficients are needed
for sharp transitions and for singular points. This natural adaptivity or localization, is due
to the vanishing moments property of high order wavelets. Spectral and other high order
methods can not handle in an efficient way cases with both smooth and oscillatory regions
in the computational domain.

The BCR algorithm|[7] that was developed for the 1-dimensional case is generalized here
to the solution of two and three dimensional partial differential equations whose operators
can be written as sums (and products) of 1-dimensional operators. Usually, 1-dimensional
kernels in the non-standard form have a matrix (two dimensional) representation, a two
dimensional kernel in the non-standard form has a four dimensional representation and a
three dimensional kernel has a six dimensional representation. The methods proposed in
the present paper can efficiently solve 2 and 3-dimensional equations whose operators can
be written as the sum (or the product) of 1-dimensional operators i.e. equations whose
operators are separable. Therefore, the 2 and 3-dimensional cases can be implemented via
a tensor product of one dimensional operators. As a rule, the present algorithms allow the

treatment of 2-dimensional problems in the form of a 2-dimensional matrix representation
and 3-dimensional problems using 3-dimensional arrays. One of the most frequently appear-
ing operators in physics, the Laplacian, A = Y¢_, %,m € R?, will be treated first using
the above mentioned method. ’

Our main goal is to develop adaptive algorithms, i.e. algorithms such that the number of
operations performed is proportional to the number of significant coefficients in the wavelet
expansion of the "inputs” of the given (partial differential equation) problem. We adapt an
iterative approach thus, we can succeed only if we perform only a fixed number of iterations
were each iteration requires a fixed number of operations, independent of the resolution (but
dependent on the chosen accuracy).

The important feature of the algorithm is that with a minimal computation we find
the subspace (i.e. the labels of the significant coeflicients) for the wavelet expansion of
the solution. Once such subspace is found, we use the diagonal preconditioning within the
conjugate gradient (CG) method to find the solution to within specified accuracy. Therefore,
the basic tool in our approach is the preconditioned conjugate gradient (PCG) iteration in a
“constrained” form. The diagonal preconditioning in the wavelet basis renders the condition
number for the class of elliptic operators considered in this paper to O(1). This means in the
PCG context that a constant number of iterations is required for a solution to a prescribed
accuracy. Each iteration consists of applying the non-standard-form of an operator to the
wavelet expansion of a function, this translates to a multiplication of a sparse vector by
a sparse matrix. In the case of the non-standard-form the operator is a convolution and
is represented by short filters, thus the number of operations is a constant multiple of the
number of non vanishing elements in the vector. In addition, we have sparse inner products
and sparse multiplication by constants or functions. The “constraint” is applied in a form
of a mask such that only elements of the vector in the mask are used in the computation,
other elements are not used or even generated (in other words, they are ignored). The mask
on the high-pass coefficients is determined by the size of the wavelet coeflicients of the right
hand side and in the case of non constant coefficients also by coefficients of a solution of
certain “related” problems (to be explained below). The high pass filters also determine the
mask for the low-pass coeflicients. The determination of the mask structure is done once.
The implementations use sparse data structures (described in the appendix) in all steps of
the algorithm. The mask keeps the scales that contribute to the computation in a fixed size
during all the iterations and therefore during the wavelet multiresolution decomposition and
reconstruction the scales are not “filled up” beyond the borders of the predetermined masks.

Two physical applications, represented by the elliptic Poisson equation and by the parabolic
heat equation, are used as model problems. The solutions are achieved by means of the PCG
iteration [21] for the Poisson equation and a first order explicit scheme in time, for the heat
equation.

In the wavelet system of coordinates differential operators may be preconditioned by
a diagonal matrix (see e.g [5, 23, 13]. The book [28] surveys the methods for multilevel
finite element approximation with detailed description on iterative solvers for discretization
of elliptic problems (section 4) where the emphasis is on special cases of computationally
relevant splittings of Sobolev spaces into multilevel finite element spaces. Sharp estimates
are given for multilevel preconditioners. For a specific example where finite elements are

being used see [10].

The algorithm which is proposed in this paper may be efficiently modified to solve non-
linear PDEs. We want to track the evolution of high frequency coefficients by following the
singularties from paraproduct calculus [26] (chapter 16). Once the singularities are tracked
then we can put the masks on these moving singularities. And the solver will operates
between the mask boundaries as the proposed algorithm in this paper. We will use the
methodology of Coifman and Meyer [26] that later was extended to analysis of non-linear
PDEs by Bony [8] to track (follow) the movements of high frequency coefficients. In other
words, this enable us to predict where the signularities will move next. Then we know where
to place the masks at each iteration. This is a work in progress.

The paper is organized as follows. After the description of the problem that is given in
section 2, there is a short description in section 3 of the wavelet background that is needed.
The applications of the masks on different subspaces i1s described in section 4. Section 5
outlines the algorithm. Section 6 describes the 1-D - 3-D preconditioners which are very easy
to apply on the standard form. The validity of the application of the mask on the wavelet
decomposition is given in section 7. Section 8 estimates the number of operations that the
Poisson solver necessitated. Solutions for 1,2 and 3-dimensional problems are described and
illustrated by detailed numerical results in section 9. A general purpose software package
based on sparse data structures was developed for the implementation of the solver. The
data structures that were used for the sparse implementation are described in the appendix.

2 The problem

In this paper we describe adaptive discretization of elliptic PDEs and a method for their
solution using wavelet basis. This is a fast adaptive method for solving certain elliptic
equations with periodic boundary conditions. It also describes a framework for solving
problems with general boundary conditions. Let us consider the partial differential equation

Luv=f zeDcCRY (2.1)
with the boundary condition
Bu|3D =9,
where L is an elliptic operator,
Lu=— > (ai(2) ws,),, +b(z) v,
2,7=1,...,d

and B is the boundary operator,
0
Bu = au + ﬂa—;

Initial 1-D results for the adaptive solution for the case d = 1, which utilized the proposed
method, were reported in [1, 2]. In this paper we generalize the 1-D algorithm of [1, 2] to
the dimensions d = 2,3 via tensor product, though our considerations are valid for higher
dimensions as well.

We generate a function f..:, a smooth extension of f outside the domain D, such that
fest is compactly supported in a rectangular box B, D C B C R, and f = f.,; for z € D.
We want to devise adaptive efficient method to solve

Lu = fe:rt T c B (22)

with periodic boundary conditions.

Our goal in solving (2.2) is to develop an adaptive algorithm where the number of op-
erations will be proportional to the number of significant coeflicients in the representation
of fert. The usual procedure by current numerical methods to derive the solution requires
discretization of the r.h.s. and of the solution in terms of a grid or a basis such that the
representations will resolve all features of interest. This might require a large number of grid
points or elements not only near the singularities of the functions involved but also in the
regions of smooth behavior thus requiring proportionally large number of operations. Cur-
rent adaptive procedures (for example, adaptive grids or irregular elements) are cumbersome
especially in higher dimensions and imply a considerable overhead both for the algorithmic
and programming levels.

Our approach is based on using properties for the representations of functions in wavelet
bases and allows us to obtain a simple adaptive algorithm.

Let us illustrate it by considering Poisson’s equation

Au=f zcB (2.3)

with periodic boundary conditions where (with a slight abuse of notation) we used f instead
of fez: to denote the source term. The source term f may have discontinuities in the domain

B.

3 Preliminaries on Wavelet Analysis - Theoretical back-
ground

In this section we review the relevant material associated with wavelet basis expansions of
functions and operators. The wavelet decomposition is based on the notion of multireso-
lution analysis [24] and the basis functions are compactly supported orthogonal wavelets
constructed in [14]. These wavelets lead to band matrices with only few nonzero values
around the main diagonal.

Multiresolution analysis (MRA) is a decomposition of a Hilbert space, e.g. L*(R), into a
chain of closed subspaces

e C Vo, CVCVoCV_, CV_,C-- (3.1)

that satisfy well established properties [14]. We define an associated sequence of subspaces
W, as the orthogonal complements of V; in V;_; such that V;_; = V; @ W;, and the
subspace V; can be written as the direct sum of subspaces W, i.e. V; = @;is; Wi

The set of dilation and translations of the scaling function ¢(-), {p;s(z) = 279/2p(2 9z —
k)}rez, forms an orthonormal axis of V; and the set of dilations and translations of the

wavelet (), Yinp(z) = 279/2p(2792 — k)}rez, forms an orthonormal basis of W;. The
scaling function () satisfies the two-scale difference equation

L-1
() = V2 Y hep(2z — k) (32)
k=0
and the wavelet ¢(z) is defined by

Y(e) = VI gupl2e). (33)

where the sets of coefficients H = {h;} and G = {gx} are called Quadrature Mirror Filters
(QMF’s) that, once chosen, define a particular wavelet basis.

3.1 Representation of Functions in Wavelet Bases

The projection of a function f(z) onto subspace V; is given by

(Pif)(=) = Y sipin(z) (3.4)

keZ

where P; denotes the projection operator onto subspace V;. The set of coefficients {Si}keza
which we refer to as “averages”, are computed via the inner product s = [T f(2)p;(z)dz.
It follows that we can also write (P;f)(z) as a sum of projections of f(z) onto subspaces
Wj’7 jl > ,
(Pif)(z) =)" > dijn(z) (3-5)
P'>ikeZ
where the set of coefficients {di}ke z, which we refer to as “difference”, are computed via

the inner product df = I+ f(2);x(2)dz. The projection of a function on subspace W is
denoted (Q;f)(z), where Q; = P;_; — P;.

3.2 The Standard and Non-Standard Form of Operators

In order to represent an operator T' : L?(R) — L*(R) in the wavelet system of coordinates,
we consider two ways to define two-dimensional wavelet bases. First, we consider a two-
dimensional wavelet basis which is arrived at by computing the tensor product of two one-
dimensional wavelet basis functions, e.g.

Vi inkk (2,Y) = Yik(2)s e (y) (3.6)

where j, 7', k, k' € Z. This choice of basis leads to the standard form (S-form) of an operator
[6, 7]. The projection of the operator T into the multiresolution analysis is represented in
the S-form by the set of operators

T = {A;,{B] }irsjs1, AT Yirsis1 biez (3.7)

where the operators A;, BJJ-'I, and F;I are projections of the operator 7' into the multiresolution
analysis as follows

4; = QTQ; + Wi W
BJJI = QjTQj’ : le — Wj (38)
]__‘"; = leTQj : Wj — le

forj=1,2,...,nand j'=7+1,...,n
If n is the finite number of scales, then (3.7) is restricted to the set of operators
= {4;,{B]}] {riy]

BT T} (3.9)

J’—J-I-l7 J’—J-I—l7 j=1,.n

where Ty is the projection of 7' on V. Here the operator T, is the coarse scale projection
of the operator T on V,,,
T.=P,TP,:V, >V, . (3.10)
The subspaces V; and W appearing in (3.8) and (3.10) can be periodized.
The operators A, BY 77 and T; appearing in (3.7) and (3.9) are represented by matrices

it
aﬂ,ﬂml,fyml and s’ with entries defined by

G = [T Yin(@) K (2, y)¢50(y)dedy
i = S I Yik(2)K(2,y)ej0(y)dedy (3.11)
Vzﬁf = [Jeir(z)K(z,y)¢jm(y)dzdy
sigw = J[eir(@)K(2,y)piw(y)dedy

where K(z,y) is the kernel of the operator T'. The operators in (3.9) are organized as blocks
of a matrix as shown in Figure 1.

In [5] it is observed that if the operator T' is a Calderén-Zygmund or pseudo-differential
operator then, for a fixed accuracy, all the operators in (3.7) are banded. As a result the
S-form has several “finger” bands, illustrated in Figure 1.

A
1 312 |
Bl
2
Iy A, B3
As

Figure 1: The band structure of the standard form

These “finger” bands correspond to interactions between different scales. For a large class
of operators, e.g. pseudo-differential, the interaction between different scales (characterized
by the size of the coefficients in the bands) decays as the distance |7 — j'| between the scales
increases. Therefore, if the scales 7 and j' are well separated, then for a given accuracy,
the operators BJJ-'I and F;I can be neglected. For compactly supported wavelets, the distance
|7 — 7’| is quite significant. The control of the interaction between scales is better in the
non-standard representation of operators.

An alternative to forming two-dimensional wavelet basis functions using the tensor prod-
uct (which led us to the S-form representation of operators) is to consider functions which
are combinations of the wavelet, ¢(-), and the scaling function, ¢(-). The wavelet represen-
tation of an operator in the non-standard form (N S-form) is arrived at using bases formed
by combinations of wavelet and scaling functions, for example, in L?(R?)

Yin(2)Yim(y)
Yik(2)pin(y) (3.12)
@5(2)Vp(y)

where 7,k, k' € Z. The NS-form of an operator T is obtained by expanding 7 in the
“telescopic” series

T =Y (Q;TQ;+ Q;TP; + P;,TQ;) , (3.13)

J€EZ

where P; and (); are projectors on subspaces V; and W, respectively. We observe that in
(3.13) the scales are decoupled. The expansion of T into the NS-form is thus represented
by the set of operators T' = {A;, Bj,[';};cz, where the operators A;, B;, and I'; act on
subspaces V; and W as follows

A; = Q;TQ; : W; =W,
Bj = QjTPj : Vj — Wj (314)
Fj = PjTQj : Wj — Vj
see e.g. [5].
If J < n is the finite number of scales, then (3.13) is truncated to
J
To =) (QiTQ; + Q;TP; + PiTQ;) + PsTFs , (3.15)
7=1

and the set of operators is restricted to 7o = {{4;, B;, Fj}§2f7 Ty}, where Ty is the projection

of the operator on Vy and T is a coarse scale projection of the operator T' Ty = P;T Py :
V_] — V_].

The operators A;, B;,I'; and Ty appearing in the NS-form are represented by matrices
a?, 37,47, and s? with entries defined by

G = [K(z,y)
Bew = JSK(zy)
’YZ:,k’ = ffK(may)
s = S K@ y)0i6(z)pin(y)dedy

in L%(R?). The operators are organized as blocks of a matrix as shown in Fig. 2.

The price of uncoupling the scale interactions in (3.13) is the need for an additional
projection into the wavelet basis of the product of the N S-form and a function.

(@)v5:(9)
Emiwj’k’gy;dmdy (3.16)
)

dl

I, 8
Ay B, 2 a2
]_'\2 52 .§2
A3 \Bs & d’
r ?3 §3 53

Figure 2: Application of non-standard form to a vector

N

B 87
Figure 3: Application of non-standard form to a vector

Referring to Fig. 2 we see that the NS-form is applied to both averages and differences
of the wavelet expansion of a function.

10

It follows from (3.13) that after applying the NS-form to a vector we arrive at the
representation

(Tofo)(Z Z CiiTﬁj,k(m)‘FZ Z Si%k(m) (3.17)

7=l kel j 7= kel

The representation (3.17) consists of both averages and differences on all scales which can
either be projected into the wavelet basis or reconstructed to space V. In order to project
(3.17) into the wavelet basis we form the representation

(Tofo)(z Z > dir(e) + Y siwsn(e) . (3.18)

‘7 1 kebzn—] kebzn—l

using the decomposition algorithm described before.

In this work we are interested in developing adaptive algorithms, i.e. algorithms such
that the number of operations performed is proportional to the number of significant coefhi-
cients in the wavelet expansion of solutions of partial differential equations. The S-form has
the adaptivity property, i.e. applying the S-form of an operator to the wavelet expansion
of a function is a matter of multiplying a sparse vector by a sparse matrix. All the imple-
mentation in this paper is performed using sparse data structures. On the other hand, as
we have mentioned before, the S-form is not a very efficient representation of, for example,
convolution operators.

In section 5 we address the issue of adaptively multiplying the NS-form and a vector.
Since the NS-form of a convolution operator remains a convolution, the A/, B/, and IV
blocks may be thought of as being represented by short filters. We can exploit the efficient
representation afforded us by the NS-form and use the vanishing-moment property of the
B? and IV blocks of the N S-form of differential operators to develop an adaptive algorithm.

4 Application of masks on the V and W subspaces

Let us represent the source term f and the solution w in (2.3) in the wavelet basis,

=22 fbia(e) + Ekj 5] onk(z), (4.1)

ji<n k ¢
=22 > uh¥in(e) + D spupnk(z), (4.2)
i<n k © k
where
k = <f’ ¢Zk>’ u;-,k = <u7 Zk>7 Si,k = <f7 Son,k> and Sz,k = <U,30n,k>. (43)

We now define the e-accuracy subspace for f to be the subspace on which f may be
represented with accuracy €, namely,

My, = Vo U{span{95,} 1 (G, K, 0) + |f7y] > e}, (4.4)

11

and observe that the e-accuracy subspace for the solution

sl = Vn U{SPan{Tﬁ}T,k} | (7, k,0) @ |ufy] > €} (4.5)
may be estimated given My, ..

Proposition 4.1 Let
u(z) =Y > > ul ¥\ (z) + constant (4.6)
i k ¢

be the solution of
Au=4%,, z€B (4.7)

with periodic boundary conditions. For any € > 0 there exist A > 0 and p > 0 such that all
indices (j,k, o) corresponding to the significant coefficients of the solution, [uf,| > €, satisfy
k- K| <A and|j — 7| <

The size of p > 0 and A > 0 depends on the particular choice of basis and, of course, on .
Given M, ,, we may construct the set M) , as a (A, p)-neighborhood of My, ,. According to
Proposition 4.1, M, C M, ,. We note that estimating the subspace amounts to constructing
a mask which contains indices of significant coefficients.

Instead of estimating M, , directly, we may use an iterative approach. For example,
solving directly on MY, . produces a solution @ with accuracy € > e. Applying the Laplacian
to u, we generate f Estimating the e-accuracy subspace for f, we may use it to continue
the iteration to improve the accuracy of the solution. In other words, the mask for M?,; may

be generated iteratively.
There are three main features in our approach to solve (2.3) :

1. Estimation of the e-accuracy subspace for the solution. Our first step is to

explicitly estimate the subspace M¢,

of M¢,; is proportional to that of My, ..

O

given M?, .. For elliptic operators the dimension

2. Preconditioning of the operator. A simple diagonal preconditioner is available for
periodized differential operators in the wavelet bases [5, 6] which yields a condition
number of O(1). We will show in section 6 how to construct simple preconditioners in
wavelet bases for more general operators.

3. Constrained Iterative Solver. We use preconditioned Conjugate Gradient (CG)
method which we constrain to the subspace estimated at Step 1, e.g. M) ,. The CG
method requires only a constant number of iterations due to preconditioning at Step 2,
whereas the cost of each iteration is proportional to the dimension of M; , provided we
succeed to limit the number of operations required for the application of the operator
(matrix) in the CG method (see below).

Steps 1-3 constitute an adaptive algorithm for solving Poisson’s equation.

12

Convergence. In order to demonstrate convergence of our method, we may use results in
[29], where it is shown that if P, is a projector on M3, the e-accuracy subspace for f, then
for any LP function, 1 < p < oo,

lim P (z) ~ f1(z) (45)

almost everywhere. Since our method recovers the e-accuracy subspace for the solution,

ME

sol?
The justification for the proposition is given in section 7 after the introduction of the pre-

conditioners for the 1-D - 3-D cases because it contains the use of masks with the application

in the limit as € — 0 we obtain the pointwise convergence almost everywhere.

of the preconditioner.

4.1 The relation between the masks on V' and W subspaces

The procedure in section 4 means that after having multiscale decomposition of the r.h.s
we create masks on the “d” coeflicients. The masks on the d coeflicients are determined
according to a predefined threshold. But during the application of the multiscale wavelet
decomposition /reconstruction the S part of the multiscale is filled up (it becomes “dense”)
and we may loose the sparsity advantages of the whole process. It is proved in section 7,
that although the location of the sj, coefficients is generally dense it suffices to consider in
the non-standard form only those labels (7, k) near the corresponding labels of dj, that are
used to define the mask. As it is demonstrated in Fig. 4, each mask on the s is determined
by corresponding mask on the d.

13

Figure 4: Illustration how the “d” masks for two scales 1-D wavelet multiscale decomposition,
determine exactly the masks on the s coefficients

5 OQOutline of the algorithm

5.1 1-D algorithm

Let us consider the projection Lg of the periodized operator A on Vj, the finest scale under
consideration,

Lo = Py AP, (5.1)

and L, and L, are its standard (s-form) and non-standard forms (ns-form) [7], respectively.

One of the difficulties in solving (2.2) stems from the inherently large condition number
of the linear system resulting from the discretization of (2.2). As it was shown in [5, 6], using
a diagonal preconditioner in the wavelet system of coordinates yields a linear system with
the condition number typically less than 10, independently of its size. Let P denote such a
diagonal preconditioner.

14

In [6] the s-form is used to solve the two-point boundary value problem. Alternatively,
we may use the ns-form. Some care is required at this point since the preconditioned ns-form
is dense unlike the s-form which remains sparse. Thus, in the process of solving the linear
system, it is necessary to apply the preconditioner and the ns-form sequentially in order
to maintain sparsity. The ns-form is preferable in multiple dimensions since, for example,
differential operators require O(1) elements for representation on all scales (see e.g. [5]).

We develop a constrained preconditioned CG algorithm for solving (2.2) in an adaptive
manner. Both the s-form and the ns-form may be used for this purpose but it appears that
using the ns-form is more efficient especially if compactly supported wavelets are used and
high accuracy is required.

Let us consider (2.2) in the wavelet system of coordinates

Lnsuw = fw; (52)

where f,, and u,, are representations of f and w in the wavelet system of coordinates. This
equation should be understood to include the rules for applying the ns-form (see [7]).
Let us rewrite (5.2) using the preconditioner P as

P LpsPv =P fu, (53)
where Pv = u. For example, for the second derivative the preconditioner P is as follows:
Py = 642 (5.4)

where 1 < j < n is chosen depending on 4,1 so that n —n/29"1 41 < 4,l <n —n/27, and
Prn =27

The periodized operator A has the null space of dimension one which contains constants.
If we use the full decomposition (over all n scales) in the construction of the ns-form then
the null space coincides with the subspace V,, which in this case has dimension one (see [6]).
This allows us to solve (5.3) on the range of the operator,

D W, (5.5)

1<j<n

where the linear system (5.3) is well conditioned.

Constrained Iterative Solver. In order to solve (5.3) we apply the Conjugate Gradient
method constrained to the subspace M) ,. Without such constrain the conjugate directions
become “dense” at early stages of the iteration only to become small outside the subspace
M, , later. Thus, constraining the solution to a subspace is critical for an adaptive algorithm.

In applying the conjugate gradient method in the wavelet coordinates, we generate only
those entries of conjugate directions which are in the set of significant indices which define the
subspace M) , (called the masks). This yields an algorithm where the number of operations
at each iteration is proportional to the number of elements of M) ,. The number of iterations
is O(1) and, thus, the overall number of operations is proportional to the number of significant
coeflicients of f, i.e., the dimension of M?, ..

15

Remark: operators with variable coefficients. As in the case of the Laplacian, the
e-accuracy subspace for the solution may be estimated using corresponding subspaces for the
r.h.s and the coefficients. Essentially, we consider the union of such subspaces as a starting
point for constructing M} ,. These estimates may be revised in the process of iteration. The
proof that the above algorithm is applicable to operators with variable coefficients is given
in section 7.

5.2 The 2-D and 3-D algorithms

The 1-D algorithm was described in [1, 2]. The wavelet decomposition of 2-D and 3-D
functions can be obtained by applying the quadrature formula to each variable. The various
steps which have to be performed in order to apply the Laplacian operator to a given function
can be summarized as follows (the description of the steps is related to Fig. 2):

1. Computation of matrices A;, B;, and [';.
2. Computation of vectors &’ and s.

3. Multiplication of A;, B; and I'; by d’ and s’ in order to obtain d7 and s. This is
done within the masks only.

4. Reconstruction of the result from d” and s". This is done within the masks only.

where the above 4 steps are performed for j = 1,...,J and J is the number of decomposed
scales. The computation is done only with coefficients in the corresponding masks.

The use of the tensor product wavelet enables us to apply the 1-D algorithm [1] for the
2-D and 3-D Laplacian operator. In the above algorithm step 1 is performed only once in
the beginning to determine the representation of the 1-D second derivative operator. The
other three steps are performed on each row of the matrix which corresponds to the 2-D
function. This provides the partial second derivative in the z direction. The same process
is applied to each column which produces the partial second derivative for the y direction.
The summation of the two resulting matrices yields the Laplacian operator. In fact, the
computations on the rows and on the columns are performed in the same time. For an
N x N matrix, the computations are then described by the following algorithm:

— Computation of matrices A;, Bj, and [';.
— Loop: fori=1to N

1. Computation of row vectors d’ and s’ which correspond to row 1.
2. Computation of column vectors d and s’ which correspond to column 3.

3. Multiplication of A;, B; and I'; by rows d’ and s’ in order to obtain the rows d"
and s”. This is done within the masks only.

4. Multiplication of A;, B; and I'; by columns d’ and s’ in order to obtain columns
d” and s. This is done within the masks only.

16

5. Reconstruction of the result from rows d” and s"”. This is done within the masks
only.

6. Reconstruction of the result from columns d” and s”. This is done within the
masks only.

7. Partial construction of the final matrix from the two vectors obtained in steps 5

and 6.

where the above steps are performed for 3 = 1,...,J and J is the number of decomposed
scales. The computation is done only with coefficients in the corresponding masks.
The 3-D is treated similarly while taking into consideration the third direction (height).

6 Preconditioners

In this section we describe how to construct preconditioner to 1-D - 3-D problems. It is
based on the s-form of the decomposition (see Fig. 1).

6.1 1-D Preconditioner for the operator —A + Const

Let us demonstrate how to construct a diagonal preconditioner for the sum of operators
—A + Const in wavelet bases. We observe that if A and B are diagonal operators with
diagonal entries a; and b;, then the diagonal operator with entries 1/(a; + b;) (provided
a; + b; # 0) is an ideal preconditioner.

In our case, the operator —A is not diagonal but we know a good diagonal preconditioner
for it in wavelet bases (5.4). Let us use this preconditioner instead of —A for the purpose of
constructing a preconditioner for —A + Const, where Const > 0. We note that in wavelet
bases the identity operator remains unchanged. We restrict Const- I, where I is the identity

operator, to the subspace
D w; (6.1)

1<j<n

and construct a preconditioner on this subspace.

We obtain
d;
V272 4 Const

where 1 < j < n is chosen depending on 4,l so that n — n/2"! +1 < 4,1 < n —n/27,

and Pp, = 1/4/272" + Const. The square root appears in (6.2) in order to symmetrize the

application of the preconditioner as shown before. In Table 1 we illustrate the effect of
" . a2 . .

preconditioning of the operator — 7 + Const by the diagonal matrix (6.2).

P = (6.2)

17

Const K Kp

7.1-107° 2.4-10° 2.1

7.1-1071 1.5-10% 6.3

7.1-1072 1.4-102 9.4

7.1-1073 1.3-103 9.5

7.1.107* 6.7-103 7.5

7.1-10°% 1.5-10* 5.0

Table 1: Condition numbers x before and &, after preconditioning of the operator —% +
Const in the basis of Daubechies’ wavelets with six vanishing moments. There are 8 scales
and the matrix size is 256 x 256.

Remark. If we consider an operator —A + V| where V is an operator of multiplication
by a function V(z), a similar construction may be obtained on fine scales. On fine scales
where the function V(z) does not change significantly over the support of wavelets, we may
consider the diagonal operator V449,

(Viooy2,) = V(@ac) s, (6.3)

where z;yx is a point within the support of the wavelet ¥?,. Using Ve instead of V,
we obtain the preconditioner in a manner outlined above. We will address the problem of
constructing preconditioners for operators of the form —A + V elsewhere.

For many iterative methods, the algebraic error of iterative schemes decays exponentially
and the rate of decay is controlled by the condition number & of the matrix corresponding
to the operator. For the Conjugate Gradient method, for instance, the error between the
exact solution U and the approximated solution U™ after m iterations is given by:

o - 07, < ()" 10 (6.4

For symmetric matrices, the condition number & is the absolute value of the ratio between
the highest and the lowest eigenvalue. In order to improve the convergence, the condition
number & can be reduced by solving an equivalent linear system,

PAPTz = Pb (6.5)
where P has to satisfy two requirements:

- it must lower the system’s condition number, x(PAPT) <« x(A4),

18

- The application of P on an arbitrary vector must be simple from the computational point
of view.

For instance, diagonal preconditioners are fast to apply. In the wavelet basis, the second
derivative being almost diagonal, a good diagonal preconditioner for this operator can be
easily defined by:

Py=6;2, 1<j<n, Pyy=2", (6.6)

such that N — N/2971 41 < 4,1l < N — N/29 where N = 2" is the number of discretization
points. It can be noticed that the computation of the matrix-matrix multiplication to apply
the CG process is not necessary, and all the computations can be performed by using only
matrix-vector multiplications. In other words, the CG is a 1-D process independent of the
dimensionality of the problem. In the same way that the explicit matrix representation of the
operator itself was not required in dimension greater than one, the matrix corresponding to
the preconditioner is also not necessary. It is sufficient to specify the effect of its application
to a given vector.

6.2 2-D and 3-D preconditioners

Let’s proceed by analogy with the 1-D case to define the corresponding preconditioner for
2-D and 3-D problems. For this, we have to consider the tensor product wavelet transform
(the standard decomposition-Fig. 1) of a function (Figs. 5 and 6).

j =1 i’=2 45=3
—_——
dtdt 24t Bd s34
_ dl =1
j=1 J
j=2 & j=2 172 2 12
dd d°d Bd? 342
d® dd? EPd® | B 3y
Jj = 3{ Jj = 3{
s d's? d?s? d3s? 5353
1D °D

Figure 5: 1-D and 2-D Wavelet tensor product (standard decomposition)

19

In the 1-D case (Fig. 5), the previously defined diagonal preconditioner is operated on the
matrix by multiplying all the wavelet coefficients from a given scale 7 by the same number
27, In the same way, the 2-D preconditioner will act by multiplying the wavelet coefficients
located in the same rectangle by a constant which has to be defined. The matrix P has to
be built in order to reduce the condition number of the Laplacian in a wavelet basis. As we
know the Laplacian can be decomposed using PAPT = PD,PT + PD,PT (D, and D, are
partial second derivatives in and y, respectively) and P is defined as

P(j,4') = 2", 1< 4,5 <. (6.7)

?

In the same way, the 3-D preconditioner is defined by:

s osH

P(j,4,5") = 2mir@dd 1 <44, 5" < n. (6.8)

This means that all the wavelet coefficients which belong to the same box has to be multiplied
by this factor.

j=1
j=2 j"=1
n
i—of ;=2
jII:3
—_——
i=1 i'=27-3

Figure 6: 3-D tensor wavelet

7 Justification of the masking procedure for second or-
der elliptic equations

Consider the operator

L(w) =) Oi(ai;(2)05u) + q(z)u = f (7.1)

20

where a;;(z) are smooth coefficients satisfying

> ai(2)6i&; > [€" and g(z) < 2% (7.2)

We claim that the solution of (7.1) can be reduced to solving (7.1) within a low dimensional
space obtained as the union of V;, and a high frequency space defined as the e—“mask” of
f. (Moreover, if a;;(z) are less regular an appropriate e—mask of a;;(z) can be introduced
to account for the high frequencies of a;;(z)).

We begin by observing that the solution of (7.1) can be reduced to the solution of a
sparse system on Vj,.

In fact, let v = wo +u1, o €V}, w1 € V;OL and similarly, f = fo + fi.

Let us rewrite (7.1) as:
£0 A Ug . fO
B L w)\ fi

We claim that £; is invertible on V;OL since
(Lih,h) = (Lh,h) for h € V;OL

we have that the preconditionned operator L% = PLP, where P is the preconditionner,
satisfies

|A]]* — 2°%||PA||* < (LTh, h) = (L°h, k) < e A
where the preconditionner is the diagonal operator defined by
P(254(2z — k) = 279(25 (292 — k)

has norm < 277! on V. from which it follows that
, 1 '
20 |[PhI3 < LIRIE i ke vy

and that £9 is invertible.
The solution of (7.1) is reduced to showing

(Lo — ALT'B)uo = fo— ALT* fu

on the low frequency space Vj,.

We now discuss the masking procedure for inverting £9. We can view £? as the restriction
to V;OL of the operator L° = P;, + L9 which is an invertible Calderon Zygmund operator (see
...) given by

71 = [ke, y)f(y)dy (73)

where k(z,y) is a Calderon Zygmund kernel (see B.C.R). We start by assuming that 7'(1) = 0
in order to justify our masking procedure, we will prove later that this condition is “effec-
tively” satisfied in our case.

21

As shown in [26] p. 52 the operator T is a self adjoint Calderon Zygmund operator whose
matrix in standard form is sparse around the diagonal with exponentially decaying fingers
(representing cross scale interactions). Consequently, the approximate localization of the
wavelet coeflicients of T'f around the coefficients of f is assured, i.e. there is a projection
M¢ (called mask projection) such that ||f — M(f)| < e and |Tf — M(Tf)| < € from
which it follows that [[M<L°M*Tf — f|| < 2¢ and that it is enough to solve the equation
M¢L°M¢u, = f, in the range of M€ in order to get an e approximation of the solution £ f;.

This equation does not account explicitly for the nature of the mask around the large
wavelet coefficients of f since each coefficient interacts with coefficients at larger scales. In
order to account for this multiscale interaction effect it is easier to work in the nonstan-
dard form in which the scales are independent and the mixing occurs only through the s
coefficients and the 3, v matrices. '

Our goal now is to prove that although the location of the s}, coeflicients is generally dense
it suffices to consider in the nonstandard form only those labels (7, k) near the corresponding
labels of di used to define the mask M¢.

We start by observing that > ﬂik, = 0. In fact, since Y} p pjr(y) = const

30 = [03a(e) [) S st)

= const [¥iu(@) ([Ke,u)dy) do = [iu(@)T(1)(w)do = 0.
Therefore, o ' ' '
Zﬂljc,klsi' = Z Bljc,k'(siurl - Si')
where B,Jc',k, =Y sk ﬂ,”cl

Since > ﬂ,”cl =0 and |ﬂ,”cl| < eem= we conclude that

c
1+ |k — k/m?

|B] | <

Repeating the summation by parts argument we get

Zﬁl{:,k’s‘;c’ = Z b‘lz:,k’(‘s'lz:-l—l - 25%' + 5%'—1)

since Y. @;w(y)k' = y it would be enough to have T'(y) = 0 in order to conclude that
|b§c,k’| S 1_|_|k_(;;1|m—2 .
The coeflicients

i i
= Sk — 280 Sp_y = (Pika1 — 2050 + @ip-1, f)

are correlations with a wavelet having two vanishing moments and are therefore located near
the singularities of f and are around the di coefficients. Their size can be used together with
the di to define the mask Mc®.

The matrix bi,k, being of rapid decay away from the diagonal we find that the (d,s)
coefficients of T'f are close to those of f.

22

We now have to show that the assumptions on 7'(1) and T'(y) are automatically satisfied
in our case. We recall that

T = (P + L) = Py + Py (2) B
Therefore, for a function a(y) € V;, we have T'(a) = a and Ty = T — P,, satisfies Toa = 0
for a € V}, satisfies the required conditions.
8 Complexity analysis

In order to perform the complexity analysis we present first the version of the conjugate
gradient algorithm [21] which is being used and the 1-D pseudo code that describes the
Poisson solver.

8.1 Conjugate Gradient (CG)

Given b € RY, a symmetric positive definite matrix A € R ¥, and a tolerance ¢, the
following algorithm computes a vector = such that ||Az — b||, ~ €]|b]|,:

z:=0, r:=b, pg::||r||§, k:=1

Do while (pr—1 > €*||b]|,)

Ifk=1
then
pi=r
else
Br := pr-1/pr-2, D=7+ Prp
w:= Ap

— T
ap = pr_1/pw
.=+ agp
rTI=7T— qpw

2
pr = Il

kE=k+1
}

This algorithm requires only one application of the operator at each iteration step.

8.2 Poisson solver: 1-D pseudo code

Assume that the r.h.s has size N = 27, so we can decompose it into J levels. The basic 1-D
structure that is being used in the algorithm consists of an array of size 2J + 1. Each odd
entry in this array, 2j —1, 7 =1,...,J,is a pointer to a sparse vector of size N/2/ and there

23

we store the “s” (averaged) wavelet coeflicients of scale j. Each even entry in this array,
27, j =1,...,J,is a pointer to a sparse vector of size N/27 and there we store the “d”
(derivative) wavelet coeflicients of scale j. The 1-D algorithm uses only this basic structure.
Wy, Wy, Wp, Wp, , Ws, Wy, Which are used in the pseudo code, have this structure.

Preprocessing -

Second derivative - computes the non-standard form of the second derivative ac-
cording to the filter type and filter size, number of scales in the multiresolution
decomposition, and the required accuracy.

Setup of the r.h.s.- transform the r.h.s to a sparse data structure by having mul-
tiscale wavelet decomposition of the r.h.s, thresholding the wavelet coefficients,
and reconstruction of the r.h.s into a sparse data structure. Then, the r.h.s trans-
formed to be in ns-form by applying the operator (in other words, multiplication
of the vector by ns-form).

Wavelet decomposition of the r.h.s - store it in w;

Create the mask on the “d” coefficients - this mask is determined by the “d”
wavelet coefficients w; of the decomposed r.h.s.

“S”

Create the mask on the coefficients - this mask is determined by the mask

on the “d” coefficients.
Application of the preconditioner - on the wavelet coeflicients w; of the r.h.s.
Copy - w; — w,

Ly norm of w, - denoted by p
The main loop on the number of iterations of the CG -

If first iteration -
W, — Wy

W, — Wp,

If it is not the first iteration - G = £

p1
sparse linear combination: w, + fw, — wp, .

Wp, — Wy
Apply preconditioner - on w,
Sparse wavelet reconstruction - from w, using the masks on the “s” and “d”.
Apply the non-standard form - on w, using the masks on “s” and “d” to get w,.
Apply preconditioner - on w,
Sparse inner product - of w, and w,, to produce r.
Compute o - o=~

Sparse linear combination - w, + aw,, — wj.

Copy - wy = w,.

24

Sparse linear combination - w, — aw, — w,.
Copy - wy — w,

Save - p;=p

Copy - wp, — wp

Go to beginning of the loop -

8.3 Estimation of the number of operations

The Poisson equation is solved using the Conjugate Gradient method[21] where the compu-
tation of the inverse operator is not necessary (just the application of the operator itself is
required). This property enables us to use these methods for solving 2-D and 3-D problems
where the operators kernels are separable.

All the computations of the solver are performed within the masks as was explained in
section 4. The wavelet transform of the solution consists of N, significant coefficients in the
masks which are concentrated near the singularities (see Fig. 7 and table 2 which describe
the masks around the singularities).

Although N is the total number of discretization points in each direction, we will use for
our estimations the size of N,.

Usually, the convolution with filter of size [takes 21 operations. By utilizing factorization
properties of the wavelet filters, as was described in [3, 27|, we can reduce the number of
operations of the 1-D convolution by a factor of at least 2. With a 2-D convolution, which
is performed as a tensor product, we can reduce the number of operations by a factor of at
least 4.

During each iteration of the CG the kernel is decomopsed into the standard form (for
the the application of the preconditioner and recontruction back) and then the non-standard
form is applied once. We assume that 2IN, operations are needed for 1-D sparse wavelet
convolution with filter of length I. The same is true for the application of the non-standard
form. Sparse inner product needs 2N, operations. And the same is true for sparse linear
combination. Therefore, one iteration of the Poisson solver necessitated 2 - 2IN, + 3 - 2N, =
5IN, operations. Therefore, the total number of operations for Njs, 1s Niger - DIN,. To get
e-accuracy we need Ny, - 5IN,log € operations.

When we process d > 1 dimensional problem the size of the mask becomes N¢ and the
total number of operations to reach e-accuracy is Njzer 5lN;1 log €.

The sizes of the masks are independent of the sampling rate, as can be seen in table 2.
There, even with “super” sampling rate we still get the same sizes for the masks.

The algorithm is very efficient compared to the classical methods that require O(N3?)
operations to invert a matrix, for example. The efliciency of the process relies on the fact
that a full description of the operator is not necessary to solve the equations.

9 Numerical results

The algorithm has been tested on 1-D, 2-D and 3-D Poisson equations. The results obtained
for the 2-D and 3-D cases enforce the idea that application of the 1-D decomposition in each

25

direction is valid for solving problems in higher dimensions. The preconditioner has been
tested on the 1-D, 2-D and 3-D cases. As it will be shown in the sequel, the preconditioner
gives very good results after only few iterations. In order to illustrate the validity of the
method with another type of problem, some results concerning the 2-D heat equation and
equations with potential terms are also presented.

When we analyze the results in the rest of the section we assume that the total error in
our case has four components:

1. The iteration error,

2. The truncation (or discretization error) which is due to the resolution properties and
depends on the smoothness of the function (i.e. the number of basis functions or mesh
steps per “wave length” or characteristic scale for changes or gradients) and the number
of moments in the analyzing wavelet. Once you have resolution above some number of
points per “wavelength” (the width of the Gaussian in our case), the error will drop
in relation to a power of 1/N which depends on the number of vanishing moments.

3. The roundoff error which becomes significant when the other errors approach small
values.

4. This is the error due to periodization, i.e. if the Gaussian does not decay sufficiently fast
in the interval specified, the function is not periodic, and the periodization introduces
discontinuities in function and derivatives which change the rate of convergence. This
error may be small and can be avoided by modifying the test function.

It becomes important when the scaling is large.

The iteration erroris the most important in order to check the method as the truncation
error depends on the input function and basis functions and number of points.

The iteration error is only weakly dependent on the input function and the rate of con-
vergence 1s the most important issue in our method. As we can check it is also weakly
dependent on the basis functions and on the scaling parameter.

Therefore isolating the convergence rate with and without preconditioning is the basic
issue. The accuracy of representation of operators and derivatives by wavelets is not the
issue we deal with.

As we can see the error should drop down to truncation error levels once the iteration
converges. This only happens if we compute the right hand side as we did . This procedure
takes care both of the periodization and of the resolution error.

9.1 Model problems
The algorithm was tested on three model problems:

Elliptic problem - the Poisson equation

d 0?u(z)

2
Oz}

= f(z), zcR* d=1,...,3 (9.1)

26

Poisson equation with potential

Au+ V(z)u+ V(y)u = f(z,y) (9-2)

Parabolic problem - the heat equation

d 2
M—aZM:f(myt)a mERda d:]-;"'737 t€R+ (93)
ot Oz}

k=1

The following results have been obtained for a function defined on a fixed interval (1-D),

or a fixed square (2-D) or a fixed cube (3-D).

9.2 1-D examples
9.2.1 Example 1

Assume we have 52 ()
u(z

where the r.h.s f(z) is numerically computed such that the exact solution is

u(z) = re256 +20(z + 0.2)e_?’ZOOO(‘T"’O'Z)2 (9.5)

Assume that N is the number of points and that 0 < 7 < N. Then, the values of u(z) for
z = (i — N/2)/N are determined in the following way:

0.0 if e < —0.2
u(i) + z ifz>—-0.2and z < —0.1
u(i) = u(z) — = ifz>—-0.1and z < 0.1 (9.6)
u(i)+2—02 ifz>01and z<0.2
0.0 fz>0.2

The graph with 16384 points, which describes Eqs. (9.5) and (9.6), is given in Fig. 7.

27

0.025 T T T T T T T T

"D16_16384" ——
0.02
0.015 -

0.01 -

0.005

-0.005

-0.01

-0.015

-0.02

_0025 | | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Figure 7: Graph of the 1-D function given by Egs. (9.5) and (9.6) on 16384 points

We apply the algorithm on this function which was sampled with 1024 and 16384 points,
respectively. We use Daubechies’s filter of length 16 (eight vanishing moments). In the
multiscale decomposition, the transformed function has four different masks in the first
level, two and four respectively in the second level, etc, as it described in table 2. This table
describes the beginning, end and length of each mask in each level of the multiresolution.

28

Daubechies 16 ‘
1024 points 16384 points

Level || from-to | length from-to | length
1 120-178 59 || 2433-2474 42
1 || 180-221 42 || 3252-3293 42
1| 282-323 42 || 4890-4932 43
11 333-374 42 || 5709-5751 43
2 || 49-117 69 || 1203-1243 41
2 || 128-193 66 || 1613-1653 42
2 2432-2472 42
2 2842-2881 40
3| 12-102 91 558-661 105
3 794-832 40
3 1203-1242 40
3 1408-1447 40
4 0-59 60 262-342 81
4 384-422 39
4 588-627 40
4 691-729 39
5 full 119-178 60
5 179-217 39
5 281-320 39
5 333-371 39
6 full 49-115 67
6 128-192 65
7 full 12-102 91
8 full 0-58 59

Table 2: The beginning, end and length of each mask in each level of the multiresolution
applied on the 1-D functions given by Egs. (9.5) and (9.6) using Daubechies filter of length
16. The masks’ accuracy is 1071,

The masks are located around the singular points. Table 2 describes the structure of the
masks obtained on the decomposition of Egs. (9.5) and (9.6). These are the masks that
were determined by the application of the thresholding on the “d” coefficients. The length
and the number of masks in the first 3 and 4 finer levels of the decomposition determine
the performance of the algorithm. From this table we can see that the number of points
to process are almost the same when we compare between 1024 and 16384 sample points.
Therefore, we can conclude that the mask enables us to have comparable performance when
we applied the solver on 1024 and 16384 points, respectively. Of course, the function with
16384 points has 14 levels of multiscale decomposition while in the 1024 points case there are
only 10 levels in the decomposition. But the coarse levels are relatively small and a difference
among them do not degrade the performance substantially. As we said, the upper (fine) levels
hold the major influence and contributes the most to the performance of the algorithm and

29

in this case the 1024 and 16384 points have almost identical mask sizes. Therefore, their

performance is almost the same.
Table 3 describes the Ly error (convergence error) when we apply Daubechies filters of
length 8 and 16, respectively. The table shows how the L, error depends upon the number

of iterations, whether the mask is used or not on the “s” (smooth) and “d” (derivative)
coeflicients and on the accuracy of the mask itself. We can see here and in all the other tables
in the rest of the section that without the preconditioner we get accuracy of 107! —1072. We

can see from table 3 that the application of the mask on

of the result or reduce the rate of convergence.

I3
S

does not degrade the accuracy

No. of | Mask on s | Mask on d | Preconditioner Mask L, error L, error
iterations accuracy | D 8 D 16
20 yes yes yes 14 1.00-107°7 | 5.00 - 10710
20 no yes yes 14 1.00-107°7 | 5.03 - 10710
20 no no yes 14 8.41-107% | 3.77.1071°
20 no no no 14 9.78 -107% | 9.77.107%
20 yes yes yes 10 1.12-107°7 | 6.84 - 10710
20 no yes yes 10 1.12-107°7 | 5.98 - 10710
20 yes yes yes 8 3.72-107°7 | 8.16 - 10798
25 yes yes yes 14 1.47-107% | 1.79 - 10712
30 yes yes yes 14 2.18-107! [3.96-10713
30 yes yes yes 10 4.07-107% | 2.01-1071°
35 yes yes yes 14 3.25-10713 | 4.02-10713

Table 3: 1-D example given by Egs. (9.5) and (9.6): The L, error with respect to different
parameters of the mask. Here we use Daubechies filters of length 8 and 16

9.2.2 Example 2

If the solver is applied to

0?u(z)
Ox?2

whose the exact solution is :

= K2z (2z® — 3)e ™,

u(z) = Kz e

2

then the Ly error with respect to the number of iterations is given in table 4.

30

(9.7)

(9.8)

No. of iterations | with preconditioner | L, error
1 yes 5.31-107!
5 yes 2.03-1073
10 yes 1.32-107°
10 no 3.73-1071
15 yes 3.58 -107°
20 yes 1.89-1071!
30 yes 1.47-1071!
30 no 2.95-107!
50 yes 1.47-1071!

Table 4: 1-D example: the L, error after the application of the algorithm on Eq. (9.7). It
uses Daubechies filter of length 16 on 512 points, with masks on “s” and “d”. The masks
accuracy is 1071

9.3 2-D examples

9.3.1 Example 1

Assume Puley) Fulzy)
u(z,y u(z,y)
52 + a2 f(z,y), (9.9)

where the r.h.s f(z,y) is numerically computed such that the exact solution is:

u(z,y) = 10.0z 72500 +4°), (9.10)

Table 5 describes the L, error when we apply Daubechies filters of length 8 on 64 points.
The table show how the L, error depends upon the number of iterations, whether the mask
is used or not on the “s” (smooth) and “d” (derivative) coeflicients and on the accuracy of

the mask itself. We can see from the table that the application of the mask on “s” does not
degrade the accuracy of the result.
No. of | Mask on s | Mask on d | Preconditioner Mask L, error L, error
iterations accuracy | D 8 D 16
25 yes yes yes 10 1.17-1075% | 3.72-10°
30 yes yes yes 10 8.43-107% |2.64-10°°
30 yes yes yes 14 1.30-107° | 1.30-107°
40 yes yes yes 10 5.22-107% |2.37.10°7
50 yes yes yes 10 3.54-107% | 1.89-1077
50 no yes yes 10 1.37-10"% | 1.89-10°7
50 yes yes yes 14 3.02-107® | 1.30-107°
50 no no yes 14 4.66-10712 | 4.11-1071¢

Table 5: 2-D example given by Egs. (9.9) and (9.10): The L, error with respect to different
parameters of the mask. It uses Daubechies filter of length 8 (D 8) and length 16 (D 16) on
64 points

31

9.3.2 Example 2

u(z,y) = 10.0 z e~ 200 (@ +9°) 4 7.0 e 5000 +47), (9.11)
No. of | Mask on s | Mask on d | Preconditioner Mask L,
iterations accuracy | error
25 yes yes yes 10 1.24-107°
25 no yes yes 14 4.95-107°
25 yes yes yes 14 4.95-107°
40 yes yes yes 14 3.81-10712
40 yes yes yes 10 4.53-1078
40 no yes yes 10 4.53-1078
50 yes yes yes 10 2.94-1078
50 no yes yes 10 2.94-1078
50 yes yes yes 14 1.40-10712
50 yes no yes 14 8.55-10713

Table 6: 2-D example given by Eq. (9.11): The L, error with respect to different parameters
of the mask. It uses Daubechies filter of length 8 on 64 points.

9.3.3 Example 3

Ou(z, Ou(z, 1)
a(mz y) + (9(y2 y) 4 (; +y*)u(z,y) = f(z,y), (9.12)

where the r.h.s f(z,y) is numerically computed such that the exact solution is:

u(ez,y) = ze (F+9), (9.13)

Table 7 describes the results by using Eqs. (9.12) and (9.13).

No. of iterations | with preconditioner | L, error
1 yes 6.59 - 107!
5 yes 1.30 - 1071
10 yes 1.07-1072
10 no 6.70 - 1071
15 yes 2.97-107*
20 yes 6.93-107°
30 yes 2.17-10°8
30 no 2.64-1071
50 yes 2.37-107°

Table 7: 2-D example given by Egs. (9.12) and (9.13): The L, error with respect to different
number of iterations. It uses Daubechies filter of length 8 on 64 points, with masks on “s”

and “d” where the mask accuracy is 10714

32

9.3.4 Example 4
Oule,y) O°uls,)
Oz? Oy?

where the r.h.s f(z,y) is numerically computed such that the exact solution is:

+ e?u(z,y) = f(z,y), (9.14)

u(ez,y) = ze (F+9), (9.15)

Table 8 describes the results by using Eqs. (9.14) and (9.15).

No. of iterations | with preconditioner | L, error
1 yes 5.39 - 107!
5 yes 3.92-1072
10 yes 1.10-1073
10 no 2.32-1071
15 yes 1.39-1075
20 yes 2.27-1077
30 yes 8.03 .10~
30 no 8.36 - 1072
50 yes 7.31-1071°

Table 8: 2-D example given by Egs. (9.14) and (9.15): The L; error with respect to different
number of iterations. It uses Daubechies filter of length 8 on 64 points, with masks on “s”

and “d” where the mask accuracy is 10714

9.3.5 2-D heat equation

The first order explicit scheme in time using the separability property has been applied to
the following problem:

Bu(zyt) — (8 ua(:;y’t) + 82“§Z;y’t)) = sin(2mz) cos(27y)
ﬁﬁif—uu%w 1)
u(z,0,t) = u(z, 1,t)
whose exact solution is:
u(z,y,t) = = (1 — e ") sin(27x) cos(2my). (9.17)

82

Explicit schemes in time Let us consider the following time dependent problem

Ou
a—l—Au_f

with the following time discretization

u™(z) = u(z, ndt) .

33

A family of explicit schemes in time can be defined using a parameter 6:

n+l _ _.n n_ ,n-1
() a5 s

or as
u™tt = (2 - % + &TA)U” + (% — Du™t + %f (9.18)

Depending on the value of the parameter § one can obtain different methods. With 6 equals
to 1 we obtain the usual first order explicit scheme. It is a stable scheme which leads to results
with low accuracy. When 6 equals 0.5 one obtains a second order scheme that generates good
results which are very unstable (the discretization step in time has to be very small in order
to have a decay of the error). Between these two values of @ various schemes can be defined
which lead to a good compromise between accuracy and stability. If is less than 0.5 then
the method does not converge at all.

When the time step equals to 107° the L, error is 7.94 -10™*, when the time step equals
to 10~* the L, error is 7.94 -1073.

This result is the same as the one obtained by Charton[11] with an Euler like scheme
(implicit).

Better results can be obtained with a smaller time step, but this explicit scheme will
remain a scheme of order 1 in time.

We are using an only first order explicit scheme in time. Better results can be achieved
when using implicit scheme, but in this case we should also need to invert a matrix at each
iteration in order to get a better accuracy.

9.4 3-D example

u(z,y,z) Ou(z,y,z) 0u(z,y,z)
amz ayz 622 - f(m7y7 Z) (919)

where the r.h.s f(z,y, z) is numerically computed such that the exact solution is:

u(z,y,z) = 10.0 ¢ e~2500(=" +97+ %) (9.20)

Table 9 describes the results by using Eqs. (9.19) and (9.20).

No. of iterations | with preconditioner | Ly error on 32 points | Ly error on 64 points
15 yes 3.43-107° 3.74-107°
20 yes 4.34-1077 7.15-10°7
30 yes 6.62 - 1011 1.34-10710
30 no 9.19-1073 2.84-1072
50 yes 5.05-10713 2.89 - 10712

Table 9: 3-D example given by Egs. (9.19) and (9.20): The L, error with respect to different
number of iterations. It uses Daubechies filter of length 8 on 32 and 64 points, respectively,
with masks on “s” and “d” where the mask accuracy is 14

34

10 Conclusion

The algorithm described in this paper is using 1-D computations enables to solve some
problems in higher dimensions. The operators that can be studied have only to be separable.

Applications and extensions are already in progress. The separability of the computations
(due to the separability of the operator) allows to consider each variable in a different way
according to the problem under study. That means that irregular grids of discretization can
be used.

The extension for solving problems connected to non separable operators is also in
progress. A first possibility consists in considering operators whose kernel can be approxi-
mated by linear combinations of separable kernels.

The proof in section 7 demonstrates that the algorithm, which is described in this paper,
can work also for solving PDEs with non constant coefficients. We believe that the same
idea will be useful and applicable for solving non linear PDEs. Both topics are currently
being explored.

Appendix

The 1-D - 3-D sparse formats which are used for manipulation and storage are based on the
“Yale Sparse Matrix Package, I. The Symmetric Codes”, Eisenstat et al., TR #112. The
aim 1is to utilize a compact sparse data structure in the 1-D - 3-D computations in order
to reduce the number of operations and data storage. The format proposed here keeps in
memory only data that is above a given threshold. The description of the multidimensional
sparse formats uses the “C” programming language conventions.

1-D storage

The following is a description of the data structures which are needed to manipulate sparse
vector.

— 1int s2ze : the size of the dense vector.

— int non_zero : the number of non-zero coeflicients in the vector which are above a given

threshold.
— int *array: contains the values of the non-zero (above threshold) coeflicients.
— int *row_p : contains the locations (the row number) of the non-zero coefficients.

Example: The following vector,

35

F 93 T
0
5
2
0
0
12
[8]
is described by :
size — 8
non_zero — 5
xarray — 23,5,2,12,8
xrow_p — 0,2,3,6,7

2-D storage

The following is a description of the data structures which are needed to manipulate sparse

matrices.

int n_row : the number of rows.
int n_col : the number of columns.

int *mat : contains the values of the non-zero (above threshold) coeflicients.

*row_p : the number of non-zero coeflicients in each row (row_pfi+1/-row_p[i] is the

number of non-zero (above threshold) coeflicients in row i).

int

int *col_p : contains the locations of the non-zero (above threshold) coefficients in each
row (column numbers).

Example: The following matrix,

[0 6 0 8 0 0]
0 0 0 0 0 O
9 10 11 0 12 0
0 0 0 14 0
0 0 0 0 0 O
|0 8 0 1 2 3]
is described by :

n_row — 6

n_col — 6

xmat — 6,8,9,10,11,12,13,14,8,1,2,3

xrow_p — 0,2,2,6,8,8,12

xcol.p — 1,3,0,1,2,4,1,3,4,5

Remark: the last coefficient in *row_p is the number of non-zero (above threshold) values in
the matrix.

36

3-D storage

The following is a description of the data structures which are needed to manipulate sparse
three dimensional matrices.

— int m_row : the number of rows.

— int n_col : the number of columns.

— int n_hez : the number of heights.

— int *mat : the values of the non-zero (above threshold) coeflicients.

— int *hei_p : gives some information about the number of non zero coeflicients in each
surface (hei_p[i+1]-hei_p[i] is the number of non-zero (above threshold) coefficients in
surface).

— int *row_p : the number of non-zero (above threshold) coefficients in each row (the rows
are numbered surface by surface).

— int *col_p : contains the locations of the non-zero coefficients in each row (column num-

bers).

Example: The following cube,

0 6 0 8 12 0 0 0 0 1 2 3 22 0 0 O
0 0 0 O 13 0 14 0 0 0 65 0 5 0 0 18
0 0 0 O 0 0 0 O 0 0 0 O 0 0 0 O
9 10 11 0 0 0 0 8 0 12 34 0 22 0 63 64
is described by :

n_row — 4

n_col — 4

n_hes — 4

xmat — 6,8,9,10,11,12,13,14,8,1,2,3,65,12,34,23,5,18,22,63,64

xhet.p — 0,5,9,15,21

xrow_p — 0,2,2,2,5,6,8,8,9,12,13,13,15,16,18,18,21

xcol.p — 1,3,0,1,2,0,0,2,3,1,2,3,2,1,2,0,0,3,0,2,3

Remark: the last coefficient in *hei_p is the number of non-zero (above threshold) values in

*row_p.

the cube. The pointer *hei_p could be removed since its coefficients are also in
Acknowledgments. The research of A. Averbuch, R. Coifman and M. Israeli was sup-
ported by U.S-Israel Binational Science Foundation grant # 92-00269/1.

The research of G. Beylkin was partially supported by ARPA grant F49620-93-1-04 74 and
ONR grant N00014-91-J4037.

The research of P. Fischer was supported by Post-Doc Fellow, awarded by the Israeli Academy

of Sciences, at the department of computer science, Tel Aviv University, Israel, in 1995-1996.

37

References

1]

[10]

[11]

[12]

[13]

[14]

Averbuch, A., Beylkin, G., Coifman, R., Israeli, M., Multiresolution Solution of Elliptic
and Parabolic PDEs, The Samuel Neaman Workshop on Signal and Image Representa-
tion in Combined Space, Technion, Haifa, Israel, May 8-11, 1994: edited by Y. Zeevi,
R. Coifman, pp. 341-360, Academic Press, 1998.

Averbuch, A., Beylkin, G., Coifman, R., Fischer P., Israeli, M., A wavelets based con-
strained Preconditioned Conjugate Gradient for elliptic problems, Conference on Pre-
conditioned Iterative Solution Methods for Large Scale Problems in Scientific Compu-
tations, May 27-29, 1997 University of Nijmegen, The Netherlands.

A. Averbuch, M. Israeli, F. Meyer, Speed vs. Quality in Low Bit-Rate Still Image Com-

pression, Image Communication, 1999.

Bertoluzza, S., Maday, Y., Ravel, J.C., A dynamically adaptive wavelet method for
solving partial differential equations, Comput. Methods Appl. Mech. and Eng., Vol.
116, pp- 293-299, 1994.

Beylkin, G., On the Representation of Operators in Bases of Compactly Supported
Wavelet Bases, SIAM J. Num. Anal., Vol. 6, pp. 1716-1740, 1992.

Beylkin, G., On wavelet-based algorithms for solving differential equations, In John J.
Benedetto and Michael W. Frazier, editors, Wavelets: Mathematics and Applications,
pages 449-466. CRC Press, 1994.

Beylkin, G., Coifman, R., Rokhlin, V., Fast Wavelet Transforms and Numerical Algo-
rithms I, Comm. on Pure and Applied Mathematics, Vol. XLIV, pp. 141-183, 1991.

Bony, J.M., Clcul symbolique et propagation des singularities pour les equations auz
derives partielles non-linaries, Ann. Scient. E.N.S., 14, pp. 209-246, 1981.

A. Brandt, A.A. Lubrecht, Multilevel matriz multiplication and fast solution of integral
equations, J. Comp. Phys. 90, pp. 348-370, 1990.

J.H. Bramble, J.E. Pasciak, J. Xu, Parallel multilevel preconditioners, Math. Comp. 55,
pp- 1-22, 1990.

Charton, P., Perrier, V., Factorisation sur base d’ondelettes du noyau de la chaleur
et algorithmes matriciels rapides associés, C. R. Acad. Sci. Paris Sér. I, vol. 320, pp.

1013-1018, 1995.
Chui, C.K., An Introduction to Wavelets, Academic Press, 1992.

W. Dahmen, A. Kunoth, Multilevel Preconditioning, Numer.Math. 63, pp. 315-344,
1992.

Daubechies, 1., Ten Lectures on Wavelets, STAM, 1992.

38

[15] Daubechies, 1., The Wavelet Tranform, Time-Frequency Localization and Signal Analy-
sts, IEEE Trans. on Information Theory, Vol. 36, No. 5, pp. 961-1005, September 1990.

[16] Daubechies, 1., Orthonormal Bases of Compactly Supported Wavelets, Comm. on Pure
and Applied Mathematics, Vol. XLI, pp. 909-996, 1988.

[17] Dorobantu, M., Wavelet based algorithms for one-dimensional parabolic equations, Tech-

nical report No. 9214, NADA, KTH, Stockholm, 1992.

[18] Engquist, B.,Osher, S. Zhong, S., Fast wavelet based algorithms for linear evolution
equation, ICASE Report 92-14, April 1992.

[19] Fischer, P., Defranceschi, M., Representation of the atomic Hartree-Fock equations in a
wavelet basis by means of the BCR algorithm, in: Wavelets: Theory, Algorithms, and
Applications, (Chui, C., Montefusco, L., Puccio, L., Eds.; Academic Press Inc., San
Diego), pp. 495-506, 1994.

[20] Fischer, P., Defranceschi, M., Numerical solution of the Schridinger equation in a
wavelet basis for hydrogenlike atoms, to appear in STAM J. Num. Anal.

[21] Golub, G.H., Van Loan, C.H., Matriz Computations, (J. Hopkins University Press,
Baltimore), 1983.

[22] S.J. Gortler, P. Schroder, M.F. Cohen, P. Hanrahan, Wavelet Radiosity, COMPUTER
GRAPHICS Proceedings, Annual Conf., pp. 221-230, 1993.

[23] S. Jaffard, Wavelet methods for fast resolution of elliptic problems, STAM J. Numer.
Anal. 29, pp. 965-986, 1992.

[24] Mallat, S.G., Multiresolution Approzimations and Wavelet Orthonormal Bases for
L*(IR), Trans. of AMS, Sept. 1989.

[25] Y. Meyer, Wavelets and Operators I, Cambridge University Press, 1989.

[26] Y. Meyer, R. Coifman, Wavelets: Calderon-Zygmund and multilinear operators, Cam-
bridge University Press, 1997.

[27] F. Meyer, A. Averbuch, J-O Strémberg, Fast Adaptive Wavelet Packet Image Compres-
ston, submitted to IEEE Image Processing.

[28] P. Oswald, Multilevel Finite Element Approzimation: Theory and Applications, B.G.
Teubner Stuttgart, 1994.

[29] T. Tao. On the almost everywhere convergence of wavelet summation methods, preprint,

1995.

[30] J. Wang, Convergence analysis of Schwarz algorithm and multilevel decomposition in-
terative methods II: non-selfadjoint and wndefinite elliptic problems, STAM J. Numer.
Anal. 30, pp. 953-970, 1993.

39

[31] H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math. 49,
pp.- 379-412, 1986.

[32] X. Zhang, Multilevel Schwarz methods, Numer. Math. 63, pp. 521-539, 1992.

40

