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Abstract

We study a problem that has arisen recently in the design of telecommunications
transmission networks at France Telecom. Given a set of centers in a city or con-
glommeration linked together on a ring architecture, given the expected demands
between the centers and an essentially unlimited availability of rings of fixed capac-
ity on the network, assign demand pairs and corresponding add/drop multiplexers
to the rings so as to satisfy the demands and minimize the number of ”costly”
multiplexers installed.

Heuristics based on simulated annealing have been developed for the basic prob-
lem and several variants. France Telecom is particularly interested in validating
the effectiveness of the heuristics. An exact algorithm based on integer column
generation is shown to provide tight performance guarantees, and in most cases to
give provable minimum cost solutions. Column generation is used even though the
subproblems are strongly N P-hard and are solved by standard mixed integer pro-
gramming software. In addition the Master Problems involve both integer columns

and integer variables, whereas these are 0 — 1 in most reported applications.



Introduction

The introduction of new technology has raised a number of new and interesting theoretical
and practical issues in the modelling and optimization of the design of telecommunication
networks. France Telecom has recently decided to adopt a so-called ring architecture for
all their local, main and sectorial networks. Here we consider the problem of assigning
telecommunication traffic on such a network made of a cable of optic fibers that vis-
its telecommunication centers in a circular fashion. Given a set of centers in a city or
conglommeration linked together by individual circular optic fibers called rings with an
essentially unlimited availability of rings of fixed capacity on the network, and given the
expected demands between pairs of centers, assign demands to the rings subject to the
ring capacities. On each ring it is then necessary to install an add/drop mutiplexer at
every center incident to one of the assigned demands. Given the high cost of the mul-
tiplexers, the objective is to find an assignment requiring the smallest total number of
multiplexers.

The practical object of this study is to develop fast and effective heuristics for the
problem outlined above. Speed and simplicity are important both because it is a sub-
problem of a much larger design problem (the subproblem treated here is solved very
frequently), and because the heuristics are to be used by the operators managing the
networks. However given the significance of the multiplexer costs, it is also important to
have performance guarantees for some real life subproblems. After briefly presenting the
heuristics, the main goal in this paper is to explain how the quality of the heuristics was

validated using optimization methods. In particular, we show that:

i) The problem considered is one for which attempting to solve the initial integer pro-
gramming with commercial mixed integer programming software is unsuccessful because

of the weakness of the bounds and the symmetry of the solution space.

i1) Somewhat contrary to the prevailing wisdom that limits the use of IP column gen-
eration (IPCG) to problems in which the subproblems can be solved rapidly by specialized
dynamic programming algorithms, IPCG is shown to be useful when the subproblem is
difficult (strongly N P-hard), and is solved by standard MIP software.

i79) When the Master Problem has columns and variables that are integer and not
just 0 — 1 as in the majority of applications, IPCG can still be implemented using the

generalized branching scheme proposed in [16].



iv) The combination of heuristics and IPCG is effective, and permits the company to

validate the quality of its heuristics.

v) The resulting optimization tool can be modified to treat different scenarios, such

as the costs of increasing network reliability by splitting demands, etc.

In Section 1 below, we discuss the technical and economic background, before defining
the problem to be tackled more precisely. In Section 2, we present two formulations of
the problem and its variants as integer programs. The first is perhaps the more natural
in that it closely matches our initial description of the problem. The second, a parti-
tioning problem with an enormous number of columns, each corresponding to a feasible
ring layout, is the one we have found useful. This is essentially the standard problem
reformulation obtained by applying Dantzig-Wolfe decomposition. Section 3 is devoted
to a brief description of the heuristics used, as well as the integer programming column
generation algorithm we use to solve the partitioning problem. In the last section, we
present computational results on a set of real life problems, slightly modified for reasons
of confidentiality, and examine how the results might help answer the different questions

posed in practice.

1 Modelling Issues

The advent of CCITT Synchronous Digital Hierarchy (SDH) as the new transmission
technology is leading to important changes in European Networks. The SDH offers a
considerably better solution to networking than that provided by the old Plesiochronous
Digital Hierarchy (PDH). Byte Visibility at all Bit Rates means that only simple mul-
tiplexing is needed to extract one tributary and re-insert another (it is much simpler to
extract information as there is direct rather than sequential access to the information).
Note that previously with PDH, a mountain of multiplexers was needed to access the in-
formation. The removal of this multiplex mountain brings significant decreases in power
requirements and costs. Moreover, the normalization and the simplicity of standard in-
terfaces imply that the operating companies are now free to make commercial decisions
regarding equipment sourcing. Possibilities for efficient management of the networks are
increased, and the increased flexibility permits the development of new services for cus-
tomers.

Equipment for SDH networks is standardized and well-developed. It offers high levels

of functional integration; for example, the line termination function no longer has to



be physically separated from a multiplexer allowing easy point to point transmission.
Add-Drop Multiplexers (ADMs) are likely to be used in ring topologies. In its basic
form , an ADM multiplexes sixty-three Virtual -Channel VC-12 ( 2048 kbit/s) in one
Synchronous Transport Module STM-1 (155 Mbit/s). Other variants could employ higher
rate aggregate ports as for example: VC-12 (or and) STM-1 tributaries in one STM-4 (620
Mbit/s).

Point-to-point network architectures are being replaced in the public network by ring
topologies. France Telecom (FT) has decided on this architecture for all the local, main
local and sectorial networks. This type of arrangement gives high protection in case of a
simple node or edge failure i.e. when equipment or cable fails. All the traffic is sent in
two opposite directions around the ring and therefore provides protection through route
diversity. They are Self Healing Rings (SHRs), and they guarantee automatic restoration
of service for all simple failures. The benefits from a ring structure include simplicity,
flexibility and fast restoration time. Analysis indicates that rings are the best economic
alternative compared to existing point-to-point architectures.

Different SHRs exist. In particular, one can find unidirectional and bidirectional SHRs
with two or four fibers, see Bars et al.[2] and Newall[12] for a detailed discussion of the
technology. F'T has decided to use path protection SHRs only. With this architecture, the
sending node duplicates the signal to be transmitted on both the working and protection
fibers. During normal operation, only the working signal is selected by the path switch
at the receiving node. With path protection, the signal consumes bandwith at each node
on the ring. Thus it requires capacity equal to the sum of the point-to-point demands.
On the one hand their management is very simple and automatic restoration for a virtual
channel is very fast (a few m-s). On the other hand, compared to bidirectional rings with
link protection, they can be suboptimal in terms of bandwidth use, especially for a full

mesh demand pattern where all the traffic demands between nodes are quasi-uniform.

The problem of finding an optimal assignment of Add-Drop-Multiplexers on Self-
Healing-Rings is of major interest for France Telecom. ADMs are expensive pieces of
equipment, for example one ADM STM-1 costs something like $50000 US . The French
transmission Network has approximatively 40 Sectorial Networks, 400 Main Local Net-
works and 9000 local Networks. Roughly speaking, each Network has from 1 to 5 clusters
and each cluster has a set of SHRs (from 1 to 10) with the same physical routing path.
Moreover, in the general European context of deregulation, cost saving is a strategic issue
for F'T.

The basic problem to be solved can be summarized as follows:



As input, we are given a cluster which can be viewed as a set of Self-Healing-Rings (circular
fibers) with the same routing path. Cables with 10, 20, 30 or more fibers are installed.
The traffic demand between all pairs of centers is known.

As output, we give the number of SHRs and for each ring the set of demands assigned
to the ring with the assignment of Add-Drop-Multiplexers on that ring.

The constraints are:

e for each ring, the sum of all traffic does not exceed the maximum capacity of the
ring (all STM-1, or all STM-4, ...),

e if the demand between centers i and j is routed on (assigned to) a ring, then ADMs

are installed on that ring at centers ¢z and 7,

e all demands are routed (if a demand exceeds the capacity, we must also specify how

the demand is broken up).

Note that in this problem, once the cables are installed, the fiber is supposed to be free.
The only objective is to minimize the cost of the ADM equipment.

Three other practical variants of the problem are also modeled and discussed.

i) Suppose that for reasons of security in case of an ADM failure, it is decided to split
each demand (Z,j) into two with each half necessarily being transmitted on a different
ring. What is the increase of ADM cost?

i1) Suppose on the other hand that we allow arbitrary integer splitting of each demand
(1, 7) between one or more rings. How much is gained, if any, from this increased flexibility?

i7i) Finally suppose that we allow arbitrary integer splitting, but for security reasons
at most half of any demand can be assigned to a single ring. How much is gained relative

to i) or lost relative to ii)?

Kling and Sutter (1992) [10] contains a first presentation of the basic model discussed
here. They show results with a greedy heuristic and suggest the use of the partitioning

formulation presented below.

2 Formulations

An instance of the problem can be represented as a graph G = (V, E) where the n = |V/|
nodes are the telecommunication centers in the cluster and the m = |E| edges denote
pairs of centers between which there is a traffic demand, i.e. d. > 0 for e € E. Let

C > 0 denote the capacity of each ring. Note that even though we talk of "rings”, for our
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problem this does not imply an ordering of the nodes of the graph. For demands with
de > C, we use L%EJ rings at full capacity, and then treat the remaining demand as d..
Thus without loss of generality we assume that d, < C for all e € F.

Letting

y*¥ = 1 if demand e is assigned to ring k, and y* = 0 otherwise, and

x¥ = 1 if a multiplexer is installed at node i for ring k, and z¥ = 0 otherwise,

we obtain a natural integer programming formulation (F):

z=min ) > aF (1)

k=1i€V

K
Y yb=1forecE (2)

k=1
yfﬁxf,yfgxfforez(i,j)EE,kzl,...,K (3)
Zdeyfngorkzl,...,K (4)

eckE

vy abe{0,1}ec E,icV,k=1,...,K (5)

Unfortunately applying a standard mixed integer programming package directly to this
formulation is very ineffective. A good a priori limit K on the number of rings needed is
hard to obtain, and the bound on the objective value obtained from the linear program-
ming relaxation is very weak (setting y* = z¥ = 1/K for all i, e, k shows that its value
does not exceed |V|). In addition all the rings have identical capacity, so each feasible
solution is repeated an enormous number of times just by permuting the numbering of the
rings, which leads to well-known difficulties in branch and bound. Some results presented
in the computational section show that, even after tightening, the formulation (1)-(5) is
very weak and is ineffective in practice.

The problem variants can be formulated similarly.
Variant 1. The demand d. must be split, so if d. < 2C, we replace e = (i,7) by two
parallel edges e! = € = (i, j) with da = |% |, d.2 = [%]. We then replace the constraint
(3) for edge e by constraints y% +y% < z7,yh + yh < ¥ for all k. If d, > 2C, we use
L%BJ rings at full capacity and treat the remainder as a demand d, that does not have to
be split.
Variant 2. The demand d, can be split and any integer amount allocated to each ring.
Here we can treat demands with d, > C directly. Now we let y* € Z, be the amount of
demand e assigned to ring k.

The resulting modified formulation is:

K
>yt = d.foreeE
k=1



Yk < dak gt < czexf fore=(i,j) e E)k=1,...,K

[

SNoybF < Cfork=1,...,K

eck B
vheztab e {0,1}ecEicVk=1,...,K

where d, = min{d,, C}.
Variant 3. The formulation is identical to that of Variant 2 except that d, = min{ [£1,C}.

Another view of the basic problem is that on any potential ring layout ¢, the set of
demands (edges) E and associated multiplexers (nodes) V¢ = V(E?) must form an edge
induced subgraph of G of cost | V¢ |. This leads to an alternative formulation as an edge
partition problem:

Find an edge partition {E", ..., EP} of E such that 3 ,cpid, < C fori=1,...,p, and

P_, | V*| is minimized.

This can then be written as an integer programming partitioning problem:

z=min Y ¢\, (6)
q€Q

D aegAg=b. forec E (7)

qeQ
L<Y A <K Q

9e@

0<XN<1qg€eqQ (9)
A, integer g € Q (10)

where {E9},cq is a complete list of feasible edge assignments for a ring, a., is 1 if e € E9
and is 0 otherwise, b.=1 for all e, ¢, = |V, and A, is the number of times E? with
incidence vector a, is chosen. Without loss of generality we have added constraint (8)
requiring a lower bound L and an upper bound K on the number of rings used. Feasible
columns are precisely the solutions of X = {(z,y) € {0,1}" x {0,1}": >, deye < C,ye <
Ti, Ye < x; for e = (i, j) € E}.
The variants can also be handled by generalizing this formulation slightly.

Variant 1. To handle the split demands, we treat the cases where d, is even or odd
slightly differently. (If not, the number of partition constraints is immediately doubled).
When d, is even, edge e has demand L%BJ twice. a., = 1 means that ring ¢ contains one

of these split demands, and we set b, = 2 in the corresponding partition constraint (7):

Z aegAg = 2 for e with d, even .
9e@
When d, is odd, constraint (7) associated with row e is replaced by two constraints

corresponding to rows e! and e? both with right hand side equal to 1, and with the
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additional restriction on the columns that a1, + a.24 < 1. Feasible columns are precisely
the solutions of
X ={(z,y) € {0,1}" x {0,1}™ :

5

e:dceven 2

Ye + Z (delyel + de2ye2) < C,
e:deodd

Ye < Ti,Ye < x; for d, even e € £
Yer + Ye2 < T, Yer + Y2 < x5 for d. odd e € E}

where m’ =m+ | {e € £ : d, odd} |.
Variants 2 and 3. Here we change the scale so that 0 < a., < cze with a., € Z represents
the number of units of demand d, assigned to pattern q. Now the right hand side of the
partitioning constraint (7) becomes b, = d.. Feasible columns are precisely the solutions
of X = {(z,y) € {0,1}" x Z™ : ¥ y. < C, Yo < do x4, Yo < d z; for e = (i,5) € F},
where d, = min{d,, C'} in Variant 2 and d, = min{ [%],C} in Variant 3.

Observe that the set-partitioning formulation is precisely the formulation obtained by
applying Dantzig-Wolfe decomposition to the original formulation (F') with constraints
(2) kept in the Master.

3 Heuristic and Exact Algorithms

Here we describe briefly the approaches we have developed to obtain

i) good feasible solutions quickly (which provide upper bounds on the optimal value),

i1) tight lower bounds which permit us to check whether these feasible solutions are
close to optimal,

i11) exact optimal solutions.

The good feasible solutions are found initially by using simulated annealing heuristics.
Tight lower bounds are then obtained using a column generation approach to solve the
linear programming relaxation (6)-(9). The final step to obtain optimal solutions involves
the insertion of the column generation approach into a branch-and-bound algorithm. The
goal below is not to describe the algorithms in detail, but to indicate the important choices
made and to provide appropriate references.

3.1 Heuristic Algorithms

Heuristic 1



A simulated annealing algorithm has been implemented for the basic problem. A
“solution” is an assignment of edge demands to rings. The ‘neighborhood” is implicitly

defined by the two moves described below:

e transfer: Select an edge e and a ring k£ with e not assigned to k£ in the current

solution. Transfer edge e to ring k.

e exchange: Select edges e; and e, that are assigned to different rings k; and k,
respectively in the current solution. Exchange the edges by assigning e; to ring ks

and ey to ring k;.

The cost of a solution is just the number of multiplexers required if the assignment is
feasible, and a solution is immediately rejected otherwise.
Variant 1 can be handled by a minor modification that takes into account the splitting

of the demands.

Heuristic 2

A second simulated annealing algorithm has been developed for Variants 2 and 3. Here
a ”solution” is an assignment of multiplexers to rings. One can test if a given multiplexer
assignment permits one to partition all the demands among the rings by solving a max flow
problem: Given a multiplexer assignment z* € {0,1}/VI k& = 1,... K, define a network
with node set N = FU{1,..., K}U{s,t}, arcs from s to e with capacity d, for alle € E,
arcs from e to k with capacity d, min{xf,x?} fore = (i,j) € Eand k =1,...,K, and
arcs form k to t for k = 1,..., K; the current assignment x is feasible if the associated

maximum s — ¢t flow is equal to >, d.. More specifically, we solve:

((z) = maXZk:ny

ny < d, eeFE

k

Yub < C k=1,...,K

[
yb < Jemin{xf,xf}e:(i,j)GE,kzl,...,K
ye integer e€ E,k=1,...,K

where y* is the amount of demand on edge e assigned to ring k. We know that in an
extreme optimal flow y* is integer as the data d,,C are integer. The assignment z is
feasible if and only if {(z) = X, d..

The “neighborhood” of a solution defined by an assignment z is implicitly given by

the two following types of moves:
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e flip ADM: Select a node i and a ring k. If z¥ = 1, set 2% = 0. Otherwise, if z¥ = 0,
set zF = 1.

e exchange ADM: Select a node 7 and two rings k; and ks with :Ei-“ #* mfz. Exchange

the values of 2 and z*2,

The cost F(z) of a solution z is the ADM installation cost plus a penalty associated with

the flow infeasibility

F@) =S 5o + a(Cd - @),

where o > 0 is a scalar parameter that specifies the relative weight of the penalty in the

cost function.

3.2 LP Column Generation

A natural approach for solving linear partitioning problems such as (6)-(9) with an enor-
mous number of columns is to generate columns if and when they are needed, and handle
the others implicitly. Indeed column generation algorithms for linear programs date back
to the 1960s (Dantzig-Wolfe (1960)). The cutting stock problem, treated by Gilmore and
Gomory (1961,1963), is a well-known example in which the columns are obtained as feasi-
ble solutions to an integer program. For the basic problem and its variants, the standard
approach has been adopted:

i) Solve a Restricted LP Master Problem (linear programming relaxation (6)(7) and
(9) with a subset of the columns).

i1) Take optimal dual variables 7 associated with the constraints (7), and search for a

missing column with a negative reduced cost by solving the column generation subproblem:
w=min{d 2, — Y 7y : (z,y) € X} (11)
1 e

Note that adding cardinality constraints (8) would simply amount to adding a constant
to column reduced costs.

ii1) If w = 0, the LP Master Problem with value 2" has been solved, and [2L7] is a
lower bound on the optimal integer value z.

iv) Otherwise add one or more columns with negative reduced cost to the Restricted
LP Master, and iterate.

For the basic problem, the subproblem (11) takes the form:

w= miani —Zweye
7 e
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Ye < ZiyYe <z; e=(i,j) € E
> dey. <C

eckE

Ye,Z; € {0,1}

Taking d, = m. = 1 for e € E and C = k(k — 1)/2, it is easily checked that w =
k—k(k—1)/2 if and only if the graph contains a k-clique [3]. It follows that the subproblem
is strongly N P-hard. For the model variants, similar restrictions (taking de =2 fore € E
in Variants 1 and 3) demonstrate the complexity of the subproblem. Therefore as the
subproblem is difficult, and no special purpose software was available, we chose to use a
commercial MIP code. For the basic problem, an attempt is also made to find (possibly
several) negative reduced cost columns using a greedy heuristic. The subproblem is only
solved exactly when the heuristic is unsuccessful.

In designing a successful implementation of this algorithm, attention also needs to
paid to several points such as:

i) the choice of artificial variables to introduce in Phase 1 of the simplex algorithm
and

i) the tailing-off effect (in which often 10-20% of the iterations are required for the
last 1% increase in objective value) .
In our implementation phase 1 of the simplex algorithm is handled by the introduction
of a single artificial variable, a vector of 1’s whose cost is modified in the course of the
algorithm [15], [17]. The tailing-off effect is tackled by the explicit use of early termination
criteria based on the observation that the optimal value z is integer. Using duality, this
allows us to terminate column generation once [25F] is known, even though 2Z¥ has not
been determined exactly. The early termination criteria can also be used to determine
a value € < 0 such that all subproblem solutions with value exceeding € can be cut off.
Details can be found in Vanderbeck and Wolsey [16]. Finally as suggested in the literature,

the master problem is solved with > rather than = constraints for reasons of stability.

3.3 IP Column Generation

Work on exact column generation algorithms for 0-1 integer programs originated largely
in the 80’s with an extensive body of work on routing and scheduling, in which the
subproblems are restricted shortest path problems of various types. More recently other
researchers have started using the approach, which has also been called branch-and-price.
Barnhart et al. [1], Desaulnier et al. [6] and Desrosiers et al. [7] present recent surveys.
The basic difficulty is to find an effective way to embed LP column generation in a branch

and bound scheme. The important questions concern the choice of branching rules, and
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the resulting modification of the column generation subproblem at nodes of the branch
and bound tree. Several successful applications have been reported. In most of these
applications, either there are K non-indentical subproblems with associated convexity
constraints of the form 3 o« )\’; =1 for each subproblem £ =1,..., K or the coefficients
of the constraint matrix (7) satisfy a., € {0,1} and the right hand side vector b is a vector
of 1’s. In the first case, branching is straightforward as the branching constraints can be
expressed in terms of the variables of the subproblems and therefore branching does not
require any modifications to the subproblems [6]. In the second case, a branching scheme
due to Ryan and Foster [13],[14] is used. When the master variables are not restricted to
0-1 as is the case in our variants 1-3, a more elaborate branching scheme such as that of
Vance et al. [14], Vanderbeck and Wolsey [16] or Vanderbeck [17] is required. Even when
not required, the latter branching schemes are in certain cases more efficient, yielding

fewer nodes in the enumeration tree.

The Basic Problem .

Here a4, be € {0, 1}, so the Ryan and Foster branching scheme is theoretically sufficient
to eliminate any fractional solution ([14], [15]). However, we also use more ”global”
branching rules that are helpful given the symmetric structure of the solution space. Our
implementation incorporates three specific choices of branching rules:

i) In an integer solution the number of rings used (the sum of all the variables) must
be integer, i.e.

Y A€z (12)
q€Q

i7) The number of ADMs needed at a node must be integer, i.e.

Y NeEZy, (13)
1€Q:a; ¢=1
where we introduce the notation a;, =1 if a., > 0 for some edge e incident to node 4.
i71) The Ryan and Foster scheme consists here in partitioning the set of solutions into
those in which two specific edges lie on different rings, and those in which they lie on the
same ring, i.e.
> Ay = 0 or 1 respectively. (14)

g€Q:acg=ayf ¢=1
where e, f € F are the specified pair of edges.
The above rules amount to defining a subset Q C @ of variables and enforcing that
the sum of these variables is integer. If 3 .5\, = a & Z,, we branch on }° .5 Ay < [a],

and 3 .5 A > [a]. Each rule must be completed by introducing additional constraints
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or variables in the subproblem, so that the column generated satisfies the branching con-
straints, or the column reduced costs are appropriately modified to reflect the branching
constraints. In case ¢), the branching constraints take the form (8) and hence modify the
column reduced costs by a constant. In case ii) the cost associated with the node con-
cerned by the branching constraint is amended in the subproblem. In case 7ii), branching
results in adding a constraint of the form z, + z; <1 or z, = zy in the subproblem. In
each case the Phase 1 and early termination procedures described above are unaffected

by the modifications resulting from branching.

Variant 1.

In this case a., € {0,1}, b. € {1,2}, and A\, € {0,1,2}, and we apply the scheme
proposed in Vanderbeck and Wolsey [16]. In principle this means that one might have
to branch on a subset of variables defined by fixing the assignment of up to three edges,
so as to eliminate all fractional solutions. However, for the instances reported on in the
next section, a generalization of rule 7i7) involving only two edges has sufficed. Branching
rule (14) is only valid if either e or f, say e, is an odd demand edge, i.e. b, = 1. Then
branching results in adding either z.+z; < 1 or z. < z; in the subproblem. If both e and
—a;=1A¢ € {0,1,2}, then branching
results in adding a binary variable in the subproblem that takes value 1 if and only if

J are even demand edges, i.e. be = by = 2, ¥ icoua,,

both e and f are selected in the subproblem solution and that comes in the expression of
the column reduced cost with a weight equal to the master dual variable associated with

the branching constraint.

Variants 2 and 3.

The coefficients a., are integers varying between 0 and d,.. The branching rules used
here are specific cases of the general branching framework of [16] and [17]. In Variants
2 and 3, branching aims at enforcing integrality of the ADM assignments. Indeed, once
an optimal integer assignment of the multiplexers is known, an associated optimal as-
signment of the demands can be obtained by solving a max-flow problem. Therefore we
successively enforce the integrality of the number of rings used (see (12)), the total num-
ber of ADMs used (adding a cut in the master that rounds up the objective value), the
number of ADMs at any given node (see (13)), the number of rings with ADMs at two
specific nodes i and j (i.e. Y 4€Quaig=a;4=1 g € Z,), and the number of rings sharing 3
specific nodes 7, j, and [ (i.e. YX,cqua;,=a; 1Ay € Z;). The modifications resulting
from the last two branching rules involve adding one binary variable in the subproblem

whose value is a function of the node assignment variables concerned.
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We have also implemented primal heuristics in an attempt to contruct an improved
incumbent solution. For the basic problem and Variant 1, it is a simple greedy algorithm
for a partitioning problem, using the existing set of columns. For Variants 2 and 3, we
round up the current ADM assignments and solve a max-flow problem in the search for

a feasible integer solution.

4 Computational Results

Here we report on computational experience with the heuristic and exact algorithms
for the basic problem and its three variants. The first simulated annealing heuristic is
described in more detail in Kling and Sutter(1992). The second with arbitrary splitting
of the demands uses the solution and neighborhood described in Section 3.1. The LP
and IP column generation algorithms described above were initially implemented using
MINTO (Nemhauser and Savelsberg (1993)). They have now been implemented directly
in C using the CPLEX subroutine library Version 3.0 [4]. CPLEX is used to solve the
linear programming master problems, and CPLEXMIP to solve the subproblems.

The test instances have been adapted from a series of real data sets. The number of
nodes and edges(demands) varies from (7, 21) to (15, 72), and in many instances the graphs
are almost complete. The instances are run with several different capacities, namely 50,
60,100, 200, 214 and 240. The name of each instance is n.m.C' where n is the number of
nodes, m the number of edges and C' is the capacity, with a final letter b if two instances
have identical parameters.

In Table 1 we present the bounds and running times (on a HP 9000/712/80) obtained
using both the heuristics and exact IP column generation algorithms. There are four
columns for each of the four models: the basic problem and Variants 1, 2 and 3 respectively.

In the first column (RB) we give the initial lower bound [2“¥] obtained by solving the
LP Master problem at the root node of the branch and bound tree and in the third column
(HR) 2% is the initial upper bound obtained from the simualated annealing heuristic. In
the second (|L,U]) we give the final interval [z, Z] where z is the best lower bound obtained
and Z is the best upper bound after running the IP Column Generation Algorithm for at
most 4 hours. Note that the values are nondecreasing from left to right with [21f] < z <
z < zM. If the interval [z, Z] is a single point, the instance has been solved to optimality
and z = z = Z. The fourth column shows the CPU time required to obtain the final
interval [z,z], excluding that for the simulated annealing heuristic. When optimality is
proven, it is the total run time. All other instances were run for a total of 4 hours, but

no further improvement of the bounds was observed.
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Table 1 shows that the heuristics perform remarkably well. In fact 2% < z + 1 for
all instances that have been solved to optimality and z = z for most of them. What is
more for the large majority of instances, if one just runs the heuristic and the LP column
generation algorithm without branch and bound, one obtains z < [2"F] 4 1, namely a
feasible solution guaranteed to be within one of optimal. For Variant 2 and 3, the gaps
between the lower and upper bounds [z“"| and 2" tend to be larger. In such cases we
are not always able to prove optimality within the allocated CPU time.

Table 1 also permits us to compare the optimal values obtained from the basic problem
and its two variants. Although Variant 2 never requires more multiplexers than the
basic problem, we observe that the values of Variant 2 and the basic problem are almost
identical. However imposing that the demands be split into two (Variant 1) increases
the multiplexer costs by between 20 and 50%. With Variant 3 we see that when security
constraints (split demands) are imposed, increased flexibility again fails to significantly
improve the multiplexer costs.

Table 2 gives details and statistics concerning the exact IP column algorithm so as
to give an idea of how such an algorithm behaves. Here there are five columns for each
model: nod denotes the total number of nodes in the branch-and-bound tree, nbSP is
the total number of subproblems solved, time here represents the total run time, mas is
the percentage of time spent solving the restricted LP Master problems, and spr is the
percentage of time spent solving the subproblems. The table shows clearly that in most
cases the time spent in solving the subproblems is a crucial factor.

We have also attempted to solve two of the easier instances of the basic problem
with the initial mixed integer programming formulation (1)-(5) tightened by symmetry-
breaking constraints. Instance 7.21.60b is solved in 26M:45S with CPLEX 3.0. on a Sun
10, model 51. Instance 8.28.60b ran for 12 hours and produced lower and upper bounds
[L,U] = [26,44]. This compares with solution times of 2 and 27 seconds respectively with

column generation, see Table 1.

5 Conclusions

We believe there are several tentative conclusions that can be drawn from this paper:

i) Even if fast heuristics are developed for use in practice, it is possible in certain
circumstances to use optimisation methods to verify that the solutions obtained are close
to optimal, and thus strengthen both the modeler’s and the enduser’s confidence in the
use of the heuristic. For many of the instances treated here, this is achieved by using

column generation, but without having to resort to branch and bound.
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i1) Exact optimal solutions can sometimes be found to IP column generation problems
even when the master coefficients and variables can take integer values not restricted to
0-1, as in Variants 1, 2 and 3, and the subproblems are themselves difficult integer pro-
grams. This provides a new problem class where integer programming column generation
is effective, adding to the numerous successful applications reported in [|,[],[]. This also
indicates that for certain problems the theoretical framework introduced in Vanderbeck
and Wolsey can be usefully put into practice. ??Moreover, the simplest of these branching
rules appears to be the most useful.??

i7) Our efforts to solve to optimality instances with more than fifteen nodes per
cluster have failed in most cases because of the excessive amount of time needed to solve
the column generation subproblem. However, France Telecom clusters typically involve
less than 10 nodes. Improved algorithms for the optimal / heuristic construction of a
single ring appear to be crucial to further progress.

iv) More generally, the modelling of telecommunications networks of the future is an
iterative process as the technology evolves, and the practical performance of material is
observed. One such aspect is a recent request to incorporate additional constraints on the
capacity of certain multiplexers. The column generation approach has the advantage that
such a constraint can be easily and rapidly incorporated. Results for this new variant are

not presented here.
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