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Abstract

The Cutting Stock Problem is that of finding a cutting of stock material
to meet demands for small pieces of prescribed dimensions while minimis-
ing the amount of waste. As changing over from one cutting pattern to
another involves significant setups, an auxiliary problem is to minimise
the number of different patterns that are used. The pattern minimisation
problem is significantly more complex but it is of great practical impor-
tance. In this paper, we propose an integer programming formulation for
the problem that involves an exponential number of binary variables and
associated columns, each of which corresponds to selecting a fixed num-
ber of copies of a specific cutting pattern. The integer program is solved
using a column generation approach where the subproblem is a non-linear
integer program that can be decomposed into multiple bounded integer
knapsack problems. At each node of the branch-and-bound tree, the lin-
ear programming relaxation of our formulation is made tighter by adding
super-additive inequalities. Branching rules are presented that yield a bal-
anced tree. Incumbent solutions are obtained using a rounding heuristic.
The resulting branch-and-price-and-cut procedure is used to produce op-

timal or approximately optimal solutions for a set of real-life problems.

The Cutting Stock Problem (CSP) is that of finding a feasible cutting of stock
material that meets demand for small pieces of prescribed dimensions while min-
imising the amount of waste. In the standard one-dimensional version of the
problem, one has an unlimited supply of identical stock sheets with width W > 0
and length L > 0, and a set of order items i € {1,...,n} whose width and de-
mand are given respectively by w; and d; € IN, where 0 < w; < W and the units
used to express the integer demands d; are number of stock sheet lengths. Then,
the problem is to specify how stock sheets can be cut to produce the demanded
pieces while minimising waste. As demands must be met exactly, the objective

is equivalent to minimising the number of stock sheets that are used.

The standard approach to the cutting stock problem is to formulate it in terms
of variables associated to the feasible ways of cutting a stock sheet (Gilmore and
Gomory, 1961). Let Q" = {q¢ = (¢1,---,q,) € IN" : X" ,w; ¢; < W} be the
set of feasible cutting patterns, where ¢; denotes the number of order pieces cut

for item ¢. Let p, be the number of times cutting pattern ¢ is used. Then, the



problem takes the form

Z = min > g

qeqQ’
[CSP] S.t. (1)
Z%Mq = d; 1=1,...,n
qeqQ’
te € IN g€ Q.

The Gilmore Gomory formulation does in fact result from the application of the
Dantzig-Wolfe decomposition principle to a compact formulation of the cutting
stock problem. It gives rise to a very tight LP relaxation: the round-up of the
LP solution typically gives the optimal value of the integer solution. This is
known as the round-up property (Marcotte, 1985). However, its large number
of columns and associated variables must be dealt with using a column gener-
ation procedure. One can find exact solutions to the cutting stock problem for
instances of practical size — involving say 5 to 30 order items — in just a few
seconds of computational time using a branch-and-price algorithm that combines
the branch-and-bound method with the use of a column gneration procedure at
each node of the branch-and-bound tree (Vanderbeck, 1996).

Given the minimum number of stock sheets required to meet the orders, an
auxiliary problem is to minimise the number of different cutting patterns that are
used. Indeed, if practitioners agree that their primary objective is to minimise
waste, they also recognise that changing over from one cutting pattern to another
involves significant setup times (for adjusting of knife positions) and costs (such
as those associated with the waste incurred in trial runs). Our purpose therefore
is to tackle the problem of minimising the number of different cutting patterns
that are used in the solution. This pattern minimisation problem is significantly

more complex, as we shall see, but it is of great practical importance.

The structure of this problem is one that is shared by other applications.
Essentially the problem consists in selecting feasible patterns (or scenarios) such
that together they satisfy a set of global constraints (or joint constraints). The
costs are made of a variable cost per copy of a pattern that is used, plus a fixed
cost if a pattern is used at all. Problems where there is a fixed cost associated

with the use (or launch) of a pattern are common. For instance, consider the
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making of a plate in the printing industry or a patron in the textile industry.
Teghem et al. (1995) consider the problem of printing book covers at minimal
cost: any four covers can be printed from a single plate (i.e. patterns are sets
of 4 ordered covers); there is a fixed cost for producing a plate and a relatively
small cost per sheet of paper that is printed. Combinatorial optimisation prob-
lems involving set-up costs (fixed costs) are notoriously difficult. Here, moreover,
there are typically a huge number of possible patterns (scenarios) to choose from
and associated set-up variables. A standard approach is to generate patterns as
needed in the course of the optimisation, a technique known as column gener-
ation. The issue therefore is how to model and tackle fixed setup costs in the

context of a dynamic generation of patterns.

In this paper, we present a branch-and-price-and-cut algorithm for the pattern
minimisation problem. We start with a compact quadratic integer programming
formulation of the problem. We show how a decomposition approach leads to
a linear integer programming reformulation with a relatively strong linear pro-
gramming (LP) relaxation. This formulation involves a huge number of binary
variables, each of which is associated with the decision of selecting a fixed number
of copies of a specific cutting pattern. The model is tackled using a column gener-
ation algorithm where the subproblem is a bounded knapsack problem involving
quadratic terms. It can be linearised by implicitly enumerating all possible multi-
plicities of a cutting pattern. The lower bound obtained from the LP relaxation of
our model is further improved by adding cutting planes (based of super-additive
inequalities) to the formulation. The resulting bounds are used in a branch-and-
bound procedure to solve our problem. Branching rules are presented that lead
to a balanced tree. The approach that is used to solve the column generation
subproblem after branching constraints and cuts have been added to the formu-
lation is discussed. Some implementation details are given and computational

results are presented for a set of real-life test problems.

1 The Problem

In the Pattern Minimisation Problem (PMP), an upper bound K on the number
of stock sheets that can be used is given. The problem is to select cutting patterns

for K or less sheets so as to satisfy demands for order items while minimising



the number of different cutting patterns that are used. Typically the bound K
is set to the minimum number of stock sheets required to satisfy demands d;
for s = 1,...,n. It is obtained by solving the standard cutting stock problem.
However, it can be set to higher values so as to examine the tradeoff between
waste minimisation and setup minimisation. In the problem formulation below,
we use index £ = 1,..., K to identify cutting patterns, z; is the number of
times pattern k is used, and y; is a binary variable that takes value 1 if cutting
pattern k is used at all and zero otherwise. Variables z;; represent the number
of strips of item 7 cut into the stock sheet when cutting pattern k is used, and
hence completely define cutting pattern k. With these definitions, a compact

formulation for the problem is given by:

K
Z = min Zyk
k=1

[P] s.t.
K
szxik = dz Z=1, ,n (2)
k=1
K
oo < K (3)
k=1
zg < Ky k=1,....,K (4
=1
Tir € IN 1=1,....,n k=1, , K (6)
ue € {0,1} k=1,...,K (7)
ze € IN k=1,....K. (8)

The objective is to minimise the number of different cutting patterns that are
used. Constraints (2) ensure that the demands are met exactly. They are non-
linear. Constraint (3) enforces the upper bound on the number of stock sheets.
Constraints (4) ensure the proper definition of variables y;. The feasibility of

cutting patterns is guaranteed by constraints (5).

The problem presented by Teghem et al. (1995) is closely related to PMP.
There, constraints (5) are replaced by > ; ;x, = 4y, as any 4 covers can define

a plate; constraints (2) are replaced by demand covering constraints; constraint
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(3) is absent since the objective is to minimise 5, yx + & Y., 2k, Where K
is the ratio of variable cost over the fixed cost. Teghem et al. linearised this
formulation and noted that the resulting linear mixed integer program could not
be solved directly using commercial software. They resorted to using a simulated

annealing approach to the problem.

Observe that when demands are all 1’s, the pattern minimisation problem
(PMP) reduces to the standard cutting stock problem (as no cutting pattern
shall be selected more than once, z; = y; for all k) which itself reduces to the
bin packing problem. The latter problem is known to be strongly NP-complete
(Garey and Johnson, 1979). So PMP is clearly a hard problem. But it is much
harder than the standard cutting stock problem (CSP). McDiarmid (1996) con-
sidered the special case where any two items fit on a sheet (w; +w; < W, Vi, j)
but no three do (w; + w; + wx, > W, Vi, 5, k). For this special case, he showed
that PMP is strongly NP-hard even though CSP is trivial to solve (as exactly
[%ﬂ] stock sheets are required).

An initial lower bound, Z on the number of different patterns Z that might
be required in an optimum solution can be obtained by solving the associated
bin packing problem where all demands have been set equal to 1. On the other
hand, a solution of CSP with demands d;’s is an initial incumbent solution to
PMP, giving an upper bound Z. The gap between these bounds is typically quite
large: in our computational results, Z = 6.6% K while Z = 34.8% K on average,
where K is the minimum number of stock sheets required. This is primarily
because algorithms for the standard cutting stock problem make no attempt at
reducing the number of different patterns. Commercial codes however include
heuristics that can lead to significant reduction in the number of setups. In fact,
the problem instances that we solved involve significant scope for setup reduction:
on average our best solution uses 12.6% K different patterns which corresponds
to a 63.6% reduction in the number of setups compared to the initial solution of
the standard cutting stock problem. Hence, intuitively, it is not difficult to derive
a heuristic that improves Z (i.e. we would expect that any heuristic could easily
achieve 10% or 20% reduction in the number of setups), but the difficulty is to

obtain close to optimal solutions and lower bounds to prove this.



2 Decomposition and Reformulation

The above formulation of PMP is a non-linear integer program. Linearising it
would lead to a linear integer program with a weak linear programming relax-
ation. Moreover, the formulation exhibits some symmetry (the indices & are
interchangeable) which is bound to lead to difficulties in a branch-and-bound
procedure. Hence, we reformulate the problem using the Dantzig-Wolfe decom-
position principle adapted to integer programming (Vanderbeck, 1995). Indeed,
by dualizing constraints (2-3) in a Lagrangian fashion, the problem decomposes
into K identical subproblems that consist in selecting a feasible cutting pattern
and fixing the number of times it is used in the solution. The master formulation
below arises from reformulating PMP in terms of the solutions to these subprob-

lems.

Let @ be the set of feasible solutions to constraints (4-8) for a fixed £ and a

relaxation of (2), i.e.

Q={q=(q0,q1,---,qn) € N"T" + > w;jq; <W (9)
=1
Q@ q <d; Vi}. (10)

With each point ¢ in (), we associate a variable A, that takes value 1 if the cutting
pattern (qi,...,q,) of a stock sheet is used ¢y times and zero otherwise. Then,

problem PMP can be reformulated as

ZM = min Z Aq (11)
q€eQ
[M] s.t.
Nwary = d; i=1,....,n (12)
qeQ

YA <K (13)

q€eQ
A, € {0,1} g€ Q. (14)
Setting A, = 1 in formulation [M] is equivalent to setting (zix, ..., ZTnk, Yk, 2k) =

(g1, --,Gn,1,qo) for some k in formulation [P]. In the definition of @, the con-
straints ¢o ¢; < d; Vi are implied by (2). They have been added to ensure that

the columns of [M] corresponds to proper patterns, giving rise to a tighter for-



mulation.

Formulation [M] is an integer linear program with a large number of variables.
The non-linearities of [P] are now implicit in the column definitions. Given the
enormous number of columns and associated variables in [M], we solve it using an
integer programming column generation procedure, also known as a branch-and-
price algorithm (Barnhart et al., 1994, Vanderbeck and Wolsey, 1996). In brief,
the method consists in embedding a column generation procedure in a branch-
and-bound algorithm. At each node of the branch-and-bound tree, a lower bound
is obtained by solving the linear programming (LP) relaxation of the current mas-
ter problem. At the root node, before any branching constraints have been added,
the master LP relaxation is given by (11-13) together with the constraints A; > 0
for all ¢ € Q.

The column generation procedure that is used to solve this master LP works
as follows. A restricted formulation containing only a subset of columns and
associated variables is solved optimally. Its dual solution is then used to price
out other columns. The most negative reduced cost column is obtained by solving

a column generation subproblem,

min{1 — gq (im ¢G—0): qeQR} (15)

i=1
where (m,0) € IR"™ x IR, are the dual prices associated respectively with the
demand covering constraints (12) and the maximum number of stock sheet con-
straint (13) of [M]. Thus, the subproblem is a non-linear integer program. If its
solution defines a column with negative reduced cost, this column is added to the
master. Else, the procedure terminates. Early termination of the column gen-
eration procedure is implemented using criteria presented in Vanderbeck (1995).
The column generation procedure is initialized using an artificial variable and as-
sociated column. After adding any cuts or branching constraints to the master,
the column reduced costs and, hence, the column generation subproblem take a

different form.

Observe that the master formulation [M] is not what would have been ob-
tained by adding fixed setup costs to the Gilmore-Gomory formulation (1) of the

standard cutting stock problem. This “natural” extension of the CSP formulation



would give rise to an alternative master formulation [M']:

Z = min SN

qeQ’
[M'] 5.t (16)
doGing = d; i=1,...,n
qeQ’
Yok <K
qeqQ’
e < KA q€eq.
A, € {0,1} q€q.
te € IN q€q'.

where Q' ={q¢=(q1,...,¢,) € IN" : 3", w; ¢; < W} and for which the column

generation subproblem is a standard integer knapsack problem.

Formulation [M'] is much weaker than formulation [M]. Indeed, [M’] is the
master formulation that would results from the dualization of constraints (2-4) of
the compact formulation [P] (if constraints (5) are replaced with 37 ; w;z;p < W
in [P]). Thus, the Lagrangian theory tells us that the LP relaxation of [M], that
results from the dualisation of fewer constraints of [P], must be stronger than
that of [M']. In fact, the LP relaxation of [M'] gives the trivial lower bound
Z =1 (set p, equal to the CSP solution and A, = £ for all ¢ € Q'). This remark
emphasizes the importance of capturing the fixed cost in the column generation
subproblem as we did in formulation [M]. However, our approach results in a
much larger number of columns (for each feasible cutting pattern, there is a col-
umn associated with each possible multiplicity). It also means that we shall have

to deal with a non-linear subproblem.

Our second remark is that the LP relaxation of [M] will not provide the sort
of tight bounds that the column generation approach provides for the standard
cutting stock problem. Here, we do not have the round-up property. In fact,
it is not difficult to see that the LP can “cheat” by using columns with a large
multiplicity gy at a fractional level. However, we expect that the bound provided
by the LP relaxation of formulation [M] will be typically better than that of the
relaxation of [P] obtained by relaxing integrality. The improvement comes from

the convexification of the intersection of the knapsack polytope defined by a con-
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straint (5) with the corresponding constraint (4) for each k. Moreover, constraint
(10) implies a tighter modelling of the upper bounds on pattern multiplicities:
instead of using the upper bound K as in (4), formulation [M] implicitly models
the bound

%< min {PJ}. (17)

T ie{l,...,n} q;
The bounds provided by the LP relaxation of [M] are further improved by adding

cutting planes to the master formulation as explained below.

3 The Subproblem

At the root node, before adding any cuts or branching constraints to the master,
the column generation subproblem is given by (15). If we leave the constant

aside, this integer program with quadratic terms takes the form:

U = max {go (zn:m g —0) (18)

i=1

st > wig <W

=1
Qq <d; Vi

g € IN, g, € N Vi.

For a fixed gy, this problem reduces to a bounded integer knapsack problem. Note
that gy is bounded: a trivial upper bound on the maximum multiplicity of any
cutting pattern is

@ =min{K —Z+1, mzaxd,- }.

So, a brute force approach to solving the subproblem would be to enumerate on

max

do — 1a -5 4y
problem of the form

and, for each value of ¢q, to solve a bounded integer knapsack

max{z T T Zwi x; <W, z; <wui(q) Vi, and z; € IN Vi } (19)
i=1 i
where the item upper bounds are

wlan) =minf 31| | % (20)

w; 90

10



This however requires solving a pseudo-polynomial number of knapsack problems.

In fact, only a subset of multiplicity values gy needs to be considered. Indeed,
a solution z* € IN™ of the knapsack problem (19) for ¢y = 1, will remain optimal

for all ¢o values up to the multiplicity

m* = min{ {j—J} | (21)

Therefore, the next gy that needs to be considered is gy = m* +1 and this remark
can be applied recursively. Thus, the procedure that we use to solve the column

generation subproblem at the root node is:

Let g =1 and c=1.
While (g0 < ¢f*) do
Compute u;(qg) for i = 1,...,n according to (20).
Let v* = ¢/qg"® + o be a lower bound on (18).
Solve the bounded integer knapsack problem (19) with initial incumbent v*.
Let v* and x* be respectively its optimum value and solution.
Compute the maximum multiplicity m* of z* according to (21).
If m* (v* — o) > ¢, let ¢ =m* (v* — o) and record ¢ = (m*, z*).
Let gg =m* + 1.

end.

On completion of the procedure, the solution to subproblem (15) is given by ¢

whose reduced cost is 1 — c.

4 Cutting Planes

As we noted in Section 2, the master LP bound for the pattern minimisation
problem is not as tight as it is for the standard cutting stock problem. In our
computational results the gap between the root node LP bound and our best
feasible solution is 33.5% on average. Hence, we consider using a cutting plane

procedure to strenghten the LP formulation.
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A recent trend in combinatorial optimisation has been to revisit the use of
general purpose cuts such as Chvatal-Gomory (C-G) inequalities or Gomory frac-
tional cuts but to consider only subclasses of inequalities that are strong. For
instance, Caprara, Fischetti and Letchford (1997) consider maximally violated
mod-k inequalities, a subclass of C-G inequalities, and show that they include
well-known problem-specific facet-defining inequalities for the travelling sales-
man problem. Marchand (1998) shows how another subclass of C-G inequalities
for the continuous knapsack problem dominates specific classes of inequalities
for network flow models such as flow cover or cut-set inequalities. Here, we con-
sider a specific class of super-additive inequalities. Nemhauser and Wolsey (1988)
showed that every inequality constructed by the C-G rounding procedure, and
hence all maximal valid inequalities for an integer polyhedron, can be obtained

from a super-additive nondecreasing function.

General purpose cuts have been previously used for the cutting stock problem.
However, they were not applied in the context of a dynamic generation of columns.
Goulimis (1990) used Gomory fractional cuts for solving the 2-sided cutting stock
problem (where production is restricted to be within an interval instead of having
to meet demands exactly). Goulimis considered small instances for which all
cutting patterns can be generated a priori and he solved the resulting Gilmore-
Gomory formulation of the CSP using a branch-and-cut procedure. It is well-
known that Gomory fractional cuts can be derived as C-G inequalities and that,
inversely, rank 1 C-G cuts can be obtained as Gomory fractional inequalities
(Nemhauser and Wolsey, 1988). Scheithauer and Terno (1997) suggest using C-G
inequalities for the standard cutting stock problem. By adding cuts derived from

a single row of the Gilmore-Gomory formulation of CSP, i.e. cuts of the form
Yo lval pe < lvdil,
qeQ’

where 0 < v < 1, they have been able to close the LP gap for their test instances
that did not satisfy the integer rounding property.

Combining general purpose cuts and column generation raises some difficul-
ties since the modifications to the column reduced costs that are caused by adding
cuts must be properly modelled in the column generation subproblem; modifying

the subproblem may destroy its special structure and make it intractable. To our
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knowledge, the literature does not contain any report on using general purpose
cuts in a column generation context where the column generation subproblem is a
non-binary integer program as is the case for the cutting stock problem. Here, we
use super-additive inequalities in a combined cut and column generation scheme.
In order to limit the extent of the modifications to the column generation sub-
problem, we restrict our attention to a specific class of super-additive inequalities
derived from a single row of the master formulation [M]. This class of inequalities
is shown to dominate all rank 1 C-G cuts that could be generated from a single
row of [M]. Based on these cuts, we implement a cutting plane procedure that
combines cut and column generation to strengthen the LP relaxation of [M] at
each node of the branch-and-bound tree.

From the inequalities (13) of the pattern minimisation problem, we can derive

valid inequalities of the form:

g{%}—mqm—l (22)

for v € {2,..., K}. Similarly, from inequality (12) we derive inequalities:

> ([%Oiﬂ—l)/\qév—l (23)

g€Q:q;>0

for v € {2,3,...,d;} and for i = 1,...,n. The proposition below shows that
these inequalities are valid and that they dominate any rank 1 C-G inequalities
that could be derived by applying the rounding procedure to the associated single
row of M.

Proposition 1 Let S = {z € IN" : 3, a; x; < b} where a € IN", b € IN and

a; < b for all 1. Then inequalities

" (@) 2 < F7(b) where F7(z) = max{0, P{} —1 (24)

and v € {2,3,...,b}, are valid for S. Moreover, they are equivalent to or domi-

nate any rank 1 C-G inequalities of the form
Ylvaz <|vb|, (25)
where % <v<Il
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Proof:

It is easy to check that F7/(z) is a non-decreasing super-additive function on R*
and that F7(0) = 0 for v € {2,3,...,b}. Hence, the validity of inequalities (24)
follows from Proposition 4.1, page 229, in Nemhauser and Wolsey (1988). We
now show that inequalities (24) dominate inequalities (25). Observe that for all
v € (3,1) such that |[vb] = F7(b) =y —1, vb < v and, hence, v a; < % for all
i, which in turn implies that |v a;| < max{0, [7%1 — 1} for all ¢. .

Note that ¥ < ; yields an inequality (25) that is trivial; while » > 1 yields an

inequality that is dominated by the one for v — |v| (since the latter plus |v|
times Y, a; x; < b implies the former). Observe that the above result also holds
for the standard cutting stock problem which is a special case of PMP where

qo = ¢5*** =1 for all columns gq.

The separation algorithm for inequalities (22-23) is a simple enumeration pro-
cedure (for each v and i, we test for the violation of the associated inequality).
Cuts (22) are added in priority because they are more likely to force the LP-
bound up (since the LP cheats by using high multiplicity pattern at a fractional
level). Then, cuts (23) are added. The most violated cut is selected so as to
avoid adding in the master cuts that are dominated for the current LP solu-
tion. The complexity of the separation procedure is O(m (3, d; + K)), where
m is the number of rows in the current master and hence an upper bound on
the number of non-zero variables in the master LP solution. This complexity is
pseudo-polynomial, however, in practice >, d; and K are reasonably small. In
the computational results reported in Section 8, the use of cuts (22-23) has lead
to an average 17.3% increase in the master LP bound, reducing the optimality
gap at the root node from 33.5% to 13.8% on average.

5 Branching

If the master LP bound does not allow to prove optimality of the current in-
cumbent solution (even after adding cuts), one must resort to branching. In
Vanderbeck and Wolsey (1996) and Vanderbeck (1995), we present ways of im-
plementing branching in an IP column generation procedure. Essentially, it is not
appropriate to fix (or bound) fractional master variables to their integer value as

it leads to difficulties in accounting for this in the column generation subprob-
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lem and to an unbalanced branch-and-bound tree. Instead, one can proceed by
fixing (or bounding) the number of columns that are used from amongst those
sharing a similar property that can be easily identified in the column generation

subproblem.

In short, an appropriate branching scheme consists in enforcing

Y A eN

a€Q

for carefully selected column subsets Q C (@; i.e. if the master LP solution A is
fractional, a subset Q C (@ is chosen for which 240 A = a &€ IN and two new

branch-and-bound nodes are defined by imposing respectively

Y A<l or > A >a]. (26)

a€Q a€Q

The column subset Q C @ on which to branch should be chosen so that

a. it is easy to detect whether a solution to the column generation subproblem
corresponds to a column g € Q and hence whether it must include the dual

price associated with the branching constraint in its reduced cost;

b. the partition Q, Q \ Q of the column set Q is relatively balanced, giving
rise to a balanced branch-and-bound tree.

So, a good practice is to branch on the most loosely defined (larger) subsets
Q C @ that enable one to prune the current fractional solution. However, as we
get deeper into the branch-and-bound tree, it will become necessary to consider
ever smaller (more specific) subsets Q C . In the worst-case a subset Q will

contain (isolate) a single fractional column.

In accordance with the logic outlined above, we branch on the first column
subset Q in the following list that yields a fractional sum ) €0 g (the notation
q; <> b used below stands for b is the binary vector associated with the logarithmic
decomposition of ¢;, i.e. ¢; = E,lélff ] ok br where ¢ = u;(1) as defined in

(20)):
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. Q={geQ:q b, b=1}for I = |log, ¢g™*|,...,0;
ii. Qz{qEQ:q(](—)b, by=1Vl e S} for |S| =2,..., |log, ¢i"*;
iil. Q={geQ:¢ >0 fori=1,....,n;

iv. Qz{qEQ:q,-(—)b, bp=1}fori=1,...,n and [ = |log, ¢™**|,...,0;

7
v. Q={qg€Q:q >k} fori=1,...,nand k=2,...,¢"

max

vii Q={¢€Q:qo=mand ¢ >0}fori=1,...,nand m=2,...,¢*;

vii. Q={g€Q:q« b, b =1 and ¢ < ', bi = 1} for | = [log, ¢&*<|,...,0,
i=1,...,n and k = |log, ¢™*|,...,0.

These branching rules respectively amount to fixing to an integer value the
number of columns with a given multiplicity (i and ii), the number of columns
that include item i (iii), the number of columns that include a specific number of
copies of item 7 (iv and v), the number of columns that include item ¢ and have
multiplicity m (vi), and the number of columns that satisfy to specific restric-
tions on both their multiplicity and their number of duplicates of 4 (vii). This
selection of branching rules and branching priorities is also based on the intuition
built through extensive computational experiments. We only report here what
worked best in practice. Branching rules 1 and 2 are not only the most global
constraints, they are also those that have the biggest impact on the LP bound
because of the way the LP cheats by using patterns with high multiplicity ¢, at
a fractional level. The items ¢ = 1,...,n are indexed in order of non-increasing

weights (i.e. wy > wy > ... > wy,) so that we branch first on the largest items.

In theory, these rules alone might not suffice to eliminate all fractional solu-
tions, and more specific rules might be needed. However, in our computational
tests, we have not encountered any fractional solution that could not be cut off

by adding one of the above disjunctive branching constraints.

6 The Modified Subproblem

Adding cutting planes (22-23) or branching constraints (26) to the master LP

formulation yields modifications to the column reduced costs and hence to the
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subproblem: the dual price associated with the new constraint must appear in
the objective of the subproblem multiplied by a coefficient equal to the column
coefficient in the master constraint. The extent of these modifications depends
on how easy it is to formulate the new objective coefficient in the subproblem.
Inequalities (22) and branching constraints (i-ii) of Section 5 have a contribution
to the column reduced cost that is a function of gy. Branching constraints (iii-v)
see their associated dual price multiplied by a function of ¢; in the subproblem
objective. While inequalities (23) as well as branching constraints (vi-vii) have
a contribution that is a function of both ¢y and ¢g;. Therefore, a generic form of

the modified subproblem is:

n n

v =max G(q) + Y V(q, @)+ F'(g) (27)

n
S.t. Zwi g <W

=1
g <d; Vi

qo, ¢ € IN Vi.

In the original subproblem (18), G(q) = —0o qo, V'(qo, @) = ™ qo ¢;, and
F'(g;) = 0 for all 7. Adding a branching constraint of the form (iii), for instance,
results in defining F'(¢;) = v 6(g;) for the corresponding item %, where v is the
dual variable associated with the branching constraint and 6(z) = 1 if z > 0.
Similarly, if a single cut of the form (23) for a specific 7 and 7 is added to the
master and v is the associated dual variable, function V¥(q, ¢;) takes the form
i o ¢; + v max{0, [%‘1‘“1 —1}. When several additional constraints are present
in the master, each of their contributions is added to the appropriate function
in the objective of the subproblem. Observe that we did not introduce any con-
straints that would have a contribution to the reduced cost that is a function of
more than one item ¢ € {1,...,n} as that would create even more complex mod-
ifications to the subproblem. Also note that we could have avoided the need for
terms F*(g;) in the subproblem objective by defining branching constraints (iii-v)
as Yoegqo Ag < [B] or > [B] instead of o c5A; < @] or > [a]. How-
ever, the latter disjunctive constraints are typically stronger (i.e more restrictive).
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If we fix the multiplicity, say ¢o = m, problem (27) reduces to a bounded

integer knapsack problem:

v™ =max »_ V*(m, ¢) Z F'(g;) (28)
i=1

n
dwigp <W

i=1
g < ui(m) Vi

g € IN Vi.

where wu;(m) is defined by (20). However, the objective function is typically
non-linear. By computing the cost ¢;, associated with each value p that can be

assumed by entry g;, we derive a multiple choice knapsack problem:

nulm

maxz Z Cip Tip (29)

=1 p=0

Formulation (29) involves a pseudo-polynomial number of variables. However, for
our test problems, > ; u;(1) remains reasonably small. Moreover, as we increase

m, the number of variables reduces significantly.

The core knapsack subproblem (28) takes a simpler form if we do not use
branching constraints (iii) and (vi) and we consider a weaker version of cuts (23).
Branching constraints (iv) and (vii) involve a logarithmic decomposition of the
g;s. By transforming problem (28) into its 0-1 form, we can formulate these
contributions in linear terms. The transformation is defined by the change of
variable g; = L5 % ok pi where b € {0,1} for k = 0, ..., [log, ¢ | and
i=1,...,n, where ¢™* = u;(1). In the resulting 0-1 form of the problem (which
is a bounded mutiple-class binary knapsack problem: see Vanderbeck, 1998), the

contribution of a branching constraint of type (iv) for a given [, for instance,
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would be F(q;) = v b}, where v is the associated dual price. The contribution of
cuts (23) can also be expressed linearly in the 0-1 form of the knapsack problem

if we consider a weaker version. Indeed,

[log, g}72* | k
. Y Qo 2 ; Y Qo Gi
S5 (2EE |-yt 3 (e8],
q€Q k=0 ? q€Q:q;>0 z

The 0-1 form of the core knapsack problem (28) involves a polynomial number of
variables and is easier to solve than (29). In our computations, we experimented
with both the multiple choice knapsack and the 0-1 bounded knapsack as core
subproblem. We found that even when using the former, the time spent in the
column generation subproblems remained below 16% of the total CPU time on

average.

In solving subproblem (27), we distinguish between increasingly complex cases
corresponding to various assumptions on functions G, V*, and F'. As we out-
lined in Section 3, a brute force approach to solving subproblem (27) consists in
enumerating all possible values of ¢y and in solving the integer knapsack problem
(28) associated with each value of go. This method is used as a last resort. Below,
we review 3 cases where only an implicit enumeration of all values of gq is needed,

possibly leading to fewer calls to the knapsack solver.

Case 1:

When G is a linear function of gy, V*(qo, ¢;) = qo U*(g;) for some function U for
all 4, and F"(g;) = 0 for all 4 as is the case in particular for the initial master
LP formulation, the procedure presented in Section 3 applies, although (19) may

have to assume the more general form (28).

Case 2:

When G is a non-linear function of gy but V*(qo, ¢;) = qo U'(g;) for some function
Ut for all 4, and F*(¢g;) = 0 for all i as above, the procedure of Section 3 can be
amended so as to be applicable: for a given knapsack solution z* and associated
maximum multiplicity m*, one must enumerate on gy = 1,...,m* to identify
the optimal multiplicity ¢} associated with solution z*; nevertheless, the next
knapsack problem to be considered is defined by setting the item upper bounds

to u;(m* + 1) according to (20). This special case arises when one uses only
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cuts (22) and branching constraints (i-ii). Note that these cuts and branching
constraints, that aim at fixing the pattern multiplicity to their integer values,
have the most significant impact on the lower bound on the minimum number of
different patterns. Hence, one could already obtain a good lower bound without
considering more complex subproblems. Moreover, as we noted above, by defin-
ing branching constraints (iii-v) as 3> .59 Ay < 8] or > [F], we eliminate
the need for terms F*(g;) in the objective of the subproblem. Then, one can also

use branching constraints (iii-v) while satisfying the assumptions of Case 2.

Case 3:

When the only assumption is that V*(qo, ¢;) = qo U*(¢;), as is the case so long as
we do not use cuts (23) and branching constraints (vi-vii), the subproblem can
still be solved through an implicit enumeration on g, using a branch-and-bound
procedure. Each node problem is defined by restricting g € [a, b]: i.e. at the root

qo € [0, gg"*], while leaf nodes correspond to a fixed value of go. For ¢y € [a, b],
the subproblem is SP(a,b) =

v(a,b) = max{G(q) +q U(q)+ F(q) :a < gy <), ZwiQi <W, qq; <d;Vi},

where U(q) = Y7, U%(¢;) and F(q) = X", F'(g;). To obtain an upper bound
on v(a, b), we relax constraints gg ¢; < d; into a ¢; < d; for all 4, which leads to a

decomposition:

v(a,b) < max Glg) + max g Uq) + Flg)
a<q <b 2Liwi g < W
a<q<b
The first problem can be solved by a simple enumeration. For the second problem,

note that if (¢j,qi,...,q;) is an optimal solution, then either U(¢*) < 0 and
g; =aor U(g*) > 0 and ¢; = b. Therefore, we solve the two knapsack problems

v* =max aU(q) + F(q) and v*=max bU(q) + F(q)
2w g < W Yiwiq < W
¢ < |%] Vi g < | % Vi
and we derive the upper bound

Upper Bound: max G(g) + max{v® v’}
a<¢g <b
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Let 2% and 2 denote the optimal solution of the two knapsack problems and
m® and m® denote their maximum multiplicity. Note that 2° solves problem
SP(a,a). If m® > b, then z° solves problem SP(b,b). Indeed, z° is a feasible
solution to SP(b,b) and the existence of a strictly better solution & to SP(b,b)
would imply bU (%) + F(£) > bU(z") + F(x°), which contradicts the definition of
2°. We use z° and z° to derive lower bounds (to be compared to the incumbent
solution to SP(0, ¢f"®*)) by optimising in g, for the fixed partial solutions z* and
zb, ie.
Lower Bound: LB® = F(z%) + max G(q)+ qU(z%)
g<m*

and LB is defined in the same way. As we observed above, LB® is also a valid
upper bound on SP(a,a). Hence, if the current node cannot be pruned, we will
need to divide problem SP(a + 1,b). Moreover, if m® > b, LB? is a valid upper
bound on SP(b,b) and the remaining problem is SP(a + 1,b — 1). If branching
is needed, we partition the remaining interval of ¢, values in such a way that
the current upper bound will no longer be valid in any of the two sub-nodes.
For instance, in the case v®* < v® and a < m® < b, we divide SP(a + 1,b) into
SP(a+1,m®) and SP(m® + 1,b).

7 Implementation Details

Before tackling the pattern minimisation problem, we solve the associated cutting
stock problem using the algorithm presented in Vanderbeck (1996). The solution
of CSP provides an initial incumbent solution for PMP and we set K to be the
number of stock sheets used in the CSP solution. Then, we compute the L2 lower
bound (see Martello and Toth, 1990) for the corresponding Bin Packing Problem
(BBP) that is derived by setting d; = 1 for all i, and we use it as an initial lower
bound for PMP. At the root node, the master initially contains a single column,
with entries equal to the constraint RHS for greater or equal to constraints and
zero otherwise. This column corresponds to an artificial variable whose cost is
set equal to that of the incumbent solution. The artificial variable enables us to
combine the Phase 1 and the Phase 2 of the simplex algorithm. It will remain
in the master formulation at all time. We found that initialising the master with

the CSP solution resulted in longer computation times.
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At each iteration of the column generation procedure, a valid lower bound
on the master LP solution can be derived from the optimal reduced cost value.
(The solution of the restricted master LP that only includes a subset of columns
is an upper bound on the master LP solution.) For the cutting stock problem,
the best such lower bound is due to Farley (1990) (see Vanderbeck, 1996, for a

comparison with the Lagrangian bound). At a given branch-and-bound node u,

5

where ZF is the current value of the restricted master LP and v, is the value of

Farley’s bound is given by

the solution of the column generation subproblem defined by (27). Let LB denote
the current best valid lower bound for PMP, and LB* denote the current lower
bound at node u (i.e the maximum of LB and all computed Farley’s bounds at
node u). The column generation procedure is interrupted when either no more
columns with negative reduced costs can be found, or the master LP gap is closed
(i.e. ZE < LB"), or the current lower bound is worse than an aspiration level
that we define as LB + 1 (i.e. LB* > LB +1).

When the column generation procedure is interrupted, we check whether the
artificial variable is still in the basic master LP solution. If so, we increase its
cost and return to the column generation procedure. Otherwise, we search for
a most violated cut (22-23). If a violated cut is found, we add it to the master
and return to the column generation procedure. Otherwise, if the node cannot
be temporarily pruned by bound (i.e. if LB* = LB), we branch using the first
disjuntive constraints defined by rules (i) to (viii) of Section 5 that is violated
by the current LP solution. The next node to be processed is selected according
to the best-bound-first priority rule and, amongst nodes with the same lowest
bound, LB, we select the deepest. This tree search strategy, together with in-
terrupting node computation when the node bound exceeds the aspiration level
LB + 1, ensures that our algorithm focuses on finding an integer solution of cost
LB first. It will either find one or it will prove that the lower bound LB can be
incremented by one unit. In the latter case, the branch-and-bound nodes u for
which LB* is equal to LB + 1 will be re-visited.

On completion of the column generation procedure at the root node, we ap-
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ply a straightforward rounding heuristic. Subsequently, we apply this heuristic
before examining a new node (having deleted all branching constraints) provided
that 3 n new columns have been generated since the last application. The heuris-
tic consists in recursively rounding a fractional master variable up to 1. Vari-
ables that are fixed in this way are eliminated from the optimisation problem: we
amend the RHS of the master constraints to account for the part of demands that
are covered by the selected columns, for their usage of stock sheets, and for their
contribution to the cuts and branching constraints. Before rounding takes place,
however, variables that are at value 1 are fixed to that value. As we fix more and
more variables the size of the master problem reduces. After fixing a variable, we
return to the column generation procedure, generating columns for the reduced-
size master (they are of course valid for the full problem). This is important
since it is very likely that the current set of columns does not include a feasible
solution. The procedure terminates when the lower bound obtained in the course

of the column generation procedure is worse than the current incumbent solution.

In the rounding procedure, the variable that has the largest value is selected
for rounding. The first variable that is rounded-up can be seen as the seed of the
heuristic solution. Variables that have been used as seed in previous application
of the rounding procedure are recorded and can no longer be selected as the first
variable to be rounded. When all variables currently in the solution have been a
seed, the recorded list of seeds is reinitialised to the empty list. In one application
of the heuristic, the rounding procedure is repeated (1 + 3 x optimality gap)
times, each time with a different seed. Of course, this number of passes and how
often we apply the heuristic procedure are parameters. The values that we give
here illustrate what seemed to work well in our experiments. The cutting plane
algorithm also involves some parameters, such as the violation threshold (set at
0.001) and whether or not we apply it within the rounding heuristic. Although the
separation procedure is quite fast, the cutting plane procedure is time consuming
because it requires returning to the column generation procedure every time a
cut is added. Therefore, we do not use it during the rounding heuristic. The cuts
that have been generated at each node are recorded as local cuts to be used in
all descendent nodes. At each call of the separation routine, we erase the cuts

currently in the formulation for which the slack is greater than 0.2.
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8 Computational Results

Our algorithm was tested on a set of real-life instances. In Table 1, the instances
whose name includes the letters kT were provided by Greycon Ltd, a software
company specialised in cutting stock problems (commercial code DeckleBench™ )
and directed by Dr. Goulimis. They are representative of the hardest one-
dimensional cutting stock problems that arise in practice. The other test prob-
lems were obtained from Vance (1996): the smaller problems are real-life instances
while the larger ones have been constructed by combining several real-life prob-
lems into one. The algorithm was implemented in C. CPLEX 3.0 was used to
solve the master LPs. The computations were carried out on an HP9000/712/80
workstation with 64Mb of main memory. Computations are interrupted after 2
hours of CPU time.

In Table 1, we present our numerical results. The columns of the table contain

the following entries:

name is the name of the instance;
n is the number of items,

N is the number of variables in the core knapsack problem (29),i.e. N =Y, u;(1)
where u;(go) is defined in (20); the ratio 2T gives the average number of times

an item can fit in the knapsack;

BBP is the initial lower bound obtained by computing the L2 bound for the
associated BBP;

Mlp is the value of the master LP relaxation before applying the cutting plane

procedure;

MC is the value of the master LP relaxation after adding all violated cuts (22-
23);

LB is the best known lower bound that we could prove by running the branch-

and-bound procedure for no more than 2 hours of CPU time;

UB is the best incumbent solution value that we encountered in the course of
the algorithm (either it was obtained during the rounding heuristic, or it

has arisen as an intermediate solution to a node master LP);
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CSP is the number of different patterns in our solution of the standard cutting

stock problem, which was denoted by Z in Section 1;
K is the minimal number of stock sheets required;

dth is the maximum depth of the branch-and-bound tree achieved during our

(at most 2 hours of) computations;
nod is the number of node problems solved in the branch-and-bound tree;
mast is the number of master LPs that were solved in the course of the algorithm;

sp is the number of subproblems (27) that were solved in the course of the

algorithm;
cuts is the number of cuts that were generated in the course of the algorithm;

timLb is the total CPU time in seconds up to the last improvement in the lower

bound LB;

timUb is the total CPU time in seconds up to the last improvement in the
incumbent solution and the upper bound UB; if the problem was solved
to optimality within the allocated 2 hours of CPU time, then the largest
of timLb and timUb represents the total CPU time needed to solve the

problem;

tM is the percentage of the total time (i.e. 2 hours for the problems that were

not solved to optimality) that was used to solve master LPs;
tSp is the percentage of the total time that was used to solve subproblems.

The last row of the Table 1 gives the average figures over the 16 problem instances.

Out of the 16 problem instances, 12 were solved to optimality. For the others,
a solution was found within 1 unit of optimality. (For problem 7p18, we found
a primal solution of value 6, while running the algorithm with another set of
parameters.) The hardest problems seem to be those with high N and K. The
larger these inputs are, the larger the solution space (i.e. large N and K imply
a large number of different cutting patterns and multiplicities). The algorithm

spends most of its time (71.7% on average) solving master LPs. Although adding
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cuts to the master makes the LP harder to solve, it is worthwhile because it yields
better bounds, a smaller branch-and-bound tree, and hence fewer master LPs to
solve. Moreover, the cuts also contribute to the emergence of integer solutions.
To reduce the number of master LPs that have to be solved, it is also essential
to implement strong criteria for the early termination of the column generation
procedure (such as the aspiration level criteria presented in the previous Section)
and to derive an efficient branching scheme. Given that, for our test data, solving
master LPs is the computational bottleneck of our algorithm, we do not hesitate
using even the branching constraints that yield the most complex modifications
to the subproblem and we do not use the weaker version of the cuts which would
allow us to linearise the objective of the core knapsack subproblem. However, the
time spent in generating columns remains reasonable (15.9 % of the total time

on average).

9 Concluding Remarks

An application that implicitly requires a huge number of setup variables was
considered. Such a model, involving the selection of patterns with a fixed cost
attached to their use, may find applications beyond the cutting stock problem.
We have seen that re-defining patterns so as to include their multiplicity in their
definition leads to a strong formulation. This approach amounts to applying
Dantzig-Wolfe decomposition to a non-linear integer program ([P] in this case).
The strength of the resulting master formulation is due to the fact that we effec-

tively model setups within the pattern generation subproblem.

In an effort to limit the complexity of the separation of rank 1 C-G cuts for
the knapsack polytope (defined by a single row of our master integer program),
we have identified a subclass of inequalities that can be seen as super-additive
inequalities and that dominates the class of rank 1 C-G cuts. Proposition 1
should be of interest beyond this particular application. Interesting issues are
the questions of whether this subclass can be restricted even further and what

facet-defining inequalities are encompassed by this subclass.

Using cutting planes in a context of dynamic generation of columns raises the

issue of subproblem tractability. Previous work in the area involved cuts that did
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not imply any modifications to the subproblem. Here, the cuts we used resulted
in non-linearities in the core knapsack subproblem. We refrained from using cuts
based on more than one row of the master because of their effect on the sub-
problem. Note that some classes of cuts, where the coefficient cannot be defined
in closed form as a function of the column entries, are not amenable to column
generation. For instance, cover inequalities for the knapsack polytope would not
be practical to use in this context unless cover membership can be expressed as

a function of the column entries that can be modelled in the subproblem.

As with most approaches for difficult combinatorial problems, decomposition
is a divide and conquer method. The problem is divided into a master and a
subproblem. The tractability of the problem is that of the most difficult (the
computational bottleneck) of these two components. Hence it is important to
balance the difficulty between master and subproblem, which led to considering
a complex subproblem in this case (we found it worthwhile to use cutting planes
even though it made our subproblems harder to solve). The second computational
tip we learned from this study is that partial enumeration is a very effective
optimisation tool when the enumeration is sufficiently restricted. Indeed, we
initially tackled the subproblem by linearising the products gy ¢;. We later found

that solving O(K') knapsack problems instead was very much faster.
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