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Abstract

The bounded multiple-class binary knapsack problem is a variant of the knapsack
problem where the items are partitioned into classes and the item weights in each
class are a multiple of a class weight. Thus, each item has an associated multiplicity.
The constraints consists of an upper bound on the total item weight that can be
selected and upper bounds on the total multiplicity of items that can be selected
in each class. The objective is to maximize the sum of the profits associated with
the selected items. This problem arises as a sub-problem in a column generation
approach to the cutting stock problem. A special case of this model, where item
profits are restricted to be multiples of a class profit, corresponds to the problem
obtained by transforming an integer knapsack problem into a 0-1 form. However,
the transformation proposed here does not involve a duplication of solutions as the
standard transformation typically does. The paper shows that the LP-relaxation of
this model can be solved by a greedy algorithm in linear time, a result that extends
those of Dantzig (1957) and Balas and Zemel (1980) for the 0-1 knapsack problem.
Hence, one can derive exact algorithms for the multi-class binary knapsack prob-
lem by adapting existing algorithms for the 0-1 knapsack problem. Computational
results are reported that compare solving a bounded integer knapsack problem by
transforming it into a standard binary knapsack problem versus using the multiple-

class model as a 0-1 form.
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1 Introduction

The knapsack problem is a linear integer program with a single constraint, and, as such, it
is a core model in integer programming (arising as relaxation or separation sub-problem).
In its 0-1 version, the variables are restricted to be binary. In the multiple-choice 0-1
knapsack problem, the item set is partitioned into subsets and a solution must include
exactly one item in each subset. In the bounded multiple-choice 0-1 knapsack problem,
there are restrictions on the number of items that can be selected in each subset. The
bounded multiple-class 0-1 knapsack model, that is considered here, is a variation of the
latter. The items are partitioned into classes and the item weights in each class are a
multiple of a class weight. Thus, each item has an associated multiplicity. The con-
straints consists of an upper bound on the total item weight that can be selected and
upper bounds on the total multiplicity of items that can be selected in each class. The

objective is to maximize the sum of the profits associated with the selected items.

To formulate the Bounded Multiple-Class Binary Knapsack Problem (BMCBKP), we
define n classes indexed by ¢ = 1,...n and within each class the items are indexed by
j =1,...,n;. Each class, « = 1,...n, is characterized by a weight, w; € IR,, and a
prescribed upper bound, b; € IR,. Each item (7,j), for i =1,...n and for j = 1,...,n;,
is characterized by its profit p;; € IR, and its multiplicity m,;; € IR,. The capacity of
the knapsack is denoted by W € IR,. Then, the bounded multiple-class 0-1 knapsack

problem takes the form

n ng
max ZZPU Zij (1)

i=1 j=1
[BMCBKP)] 5.t
=1 j=1
Zmijmij S bz fOI‘i:L...n (3)
j=1

z;; € {0,1} fori=1,...,nandforj=1,...,n; (4)

It is assumed that (i) b; w; < W Vi (otherwise b; can be decreased); (ii) Y, b, w; > W
(otherwise the problem is trivial); (4i¢) m;; w; < W V(3,j) (otherwise z;; = 0); and (iv)
m;i; < b; V(i,j) (otherwise z;; = 0).

The bounded multiple-choice 0-1 knapsack problem can be formulated in a similar way
by letting m;; = 1 V(4, j) in (3), but replacing m;; w; by w;; in (2). The multiple-choice
0-1 knapsack problem is a special case of the latter where b; = 1 Vi. In the 0-1 knapsack

problem, n; = 1 Vi and constraints (3) are not needed. The bounded integer knapsack
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problem can be polynomially transformed into a special case of BMCBKP as follows.

Given a bounded integer knapsack problem

maX{ZPz‘yii ZW%‘SVV, yi <bfori=1,...n, ye€ IN"}, (5)

=1 i=1

where b; € IN for each 1 =1,...n, let
n; = |logybi| +1, mj; =2"' and p;;j=m;;p;forj=1,...,n; andi=1,...n. (6)

Then, a solution y of (5) corresponds to a unique solution z of (1-4) and
g
yi:Zmijacij fori=1,...,n. (7)
j=1

Observe that the above 0-1 transformation of a bounded integer knapsack problem is
different from the standard 0-1 transformation, as described in Martello and Toth (1990)
for instance. In the latter, the multiplicity of the last 0-1 variable associated to item i is

computed so as to insure that the item upper bound is satisfied. I.e.,

n;—1

mmlzbz—me fOI"L:LTL (8)
j=1

Then, constraints (3) are not necessary. Thus, the standard 0-1 transformation gives rise
to a pure 0-1 knapsack problem

maX{iiPi]’f“Z iim”w,xwgﬂf, T 6{0’1}22;1"72}’ (9)

i=1 j=1 i=1 j=1

whose LP solution can be computed efficiently by a greedy algorithm (Dantzig, 1957).

In Section 3, we show that the LP-relaxation of problem BMCBKP can also be solved
by a greedy algorithm after ordering of the items by non-increasing profit-per-weight ratio,
thereby extending Dantzig’s result (1957) for the 0-1 knapsack problem. Moreover, we
show that the LP solution can be obtained in linear time by extending the median search
procedure proposed by Balas and Zemel (1980) for the 0-1 knapsack problem. These
results imply that one can derive exact algorithms for the bounded multiple-class 0-1
knapsack problem by replicating what has been done for the 0-1 knapsack problem. We
exemplify this in Section 4. In Section 2, we give some motivations for our interest in
model BMCBKP.



2 Motivations

The main interest of model BMCBKP is that it provides a 0-1 form of the integer knap-
sack problem that does not involve a duplication of solutions. Indeed, with the standard
transformation (8), there are typically various ways of decomposing a solution y of (5)
into a binary solution z that satisfies (7). Hence, the standard transformation introduces

redundant representations of some solutions.

Exact algorithms for the bounded knapsack problem are implicit enumeration ap-
proaches such as branch-and-bound or dynamic programming where the way (order)
in which the enumeration is carried out is a very crucial element in the success of the
method. The formulation of the problem that one uses leads to some “natural” choice of
enumeration strategy. In this context, there is an open debate on whether it is better to
solve bounded integer knapsack problems directly (based on formulation 5) or through
a transformation to a 0-1 form. However, in that debate, the 0-1 form of the bounded
knapsack problem that was considered is that of a standard binary knapsack problem be-
cause one knew how to solve its LP-relaxation (Dantzig, 1957) in linear time (Balas and
Zemel, 1980). But, by introducing redundant representation of solutions, the standard 0-1
transformation (8) will impair the efficiency of the implicit enumeration approach. The
alternative 0-1 transformation of the bounded knapsack problem to model BMCBKP does

not suffer from the same drawback while the LP-relaxation remains solvable in linear time.

Let us briefly summarize the current state of the art for the binary and integer knapsack
problem, mentioning a few issues where the 0-1 form proposed here might be useful. To
our knowledge the current best algorithm for the 0-1 knapsack problem is that of Martello,
Pisinger, and Toth (1997): the combo algorithm combines the better of dynamic program-
ming and branch-and-bound approaches; it is fast and robust, solving most classes of 0-1
knapsack problem (including strongly correlated problems) with thousands of items in a
fraction of a second. The algorithmic research on bounded integer knapsack problems
follows the progresses on 0-1 problems but with some time lag. The latest algorithm to
our knowledge is that of Pisinger (2000). We note that some of Pisinger’s motivations for
developing a direct approach to the integer knapsack problem stem from the drawbacks
of the standard 0-1 transformation which do not arise if one uses the transformation pro-
posed here. For instance, Pisinger (2000) notes that the standard transformation does
not permit the use of bound reduction techniques in solving the problem, since bounds
b; on class 7 items are not explicitly in the model. Moreover, even in a direct approach
to the integer problem, one might exploit the structure of the 0-1 form. For instance,
Pisinger (2000) finds it more efficient to enumerate on the core problem using a dynamic

programming recursion for the 0-1 form, because adding 0-1 components one at the time



allows to eliminate some intermediate states by dominance.

Thus, we argue that the debate on whether it is better to solve a bounded integer knap-
sack based on its integer formulation or based on an equivalent 0-1 formulation should
be reviewed in the light of the 0-1 transformation proposed here. The “third way” for
solving a bounded integer knapsack problem that arise for this discussion is: take your
favorite algorithm for the 0-1 knapsack problem, adapt it for solving problem BMCBKP,
and use it to solve your integer knapsack problem. Indeed, the result of this paper is that
the LP-relaxation of BMCBKP can be solved just as efficiently as that of the standard
0-1 knapsack problem. Thus, one can potentially adapt the other features of an exact
algorithm (branch-and-bound / dynamic programming) for the standard binary knapsack
problem to derive an efficient exact algorithm for BMCBKP. We have tested this method
by adapting the standard branch-and-bound algorithm of Horowith and Sahni. Then, we
compared this approach to using a transformation to a standard binary knapsack that we
also solved using the algorithm of Horowith and Sahni. We emphasize that the purpose
of this test was not to develop a competitive algorithm for the bounded integer knapsack,
but simply to compare the solution of an integer knapsack problem through both 0-1
transformations using the same algorithm. Our computational results reported in Section
4 show that the size of the branch-and-bound tree obtained when using the BMCBKP
0-1 form can between 10 and 60 % smaller than that obtained when using the standard
0-1 form.

The applicability of model BMCBKP also concerns the unbounded integer knapsack
problem since in many practical case there are implicit bounds that remain small enough
to allow a 0-1 transformation. Indeed, in the unbounded version of problem (5), we can
set b; = [%J In the instances for the unbounded integer knapsack problem considered
by Martello and Toth (1990), these implicit bounds increase with the number of items,
n, because the knapsack capacity is defined as a fraction of the sum of the item weights.
However, in many practical applications, such as bin packing, cutting stock, vehicle rout-
ing, or other partitioning problems with capacity restrictions, the knapsack capacity does

not increase with the number of items involved.

We came to consider model BMCBKP in our work on the development of efficient
branching rules for use in a branch-and-price algorithm for the cutting stock problem.
When a column generation procedure is used to solve the Gilmore-Gomory LP formu-
lation of the cutting stock problem, the sub-problem is an integer knapsack problem
with implicit bounds. To obtain an integer solution to the cutting stock problem one
needs to combine the column generation procedure with a branch-and-bound procedure.

However, the branching scheme must preserve the tractability of the column generation



sub-problem while yielding a balanced branch-and-bound tree (Vanderbeck, 2000). We
found that transforming the integer knapsack problem into a 0-1 problem allows to im-
plement efficient branching rules that do not modify the structure of the sub-problem.
The branching scheme used consists in enforcing that the number of cutting patterns with
z;; = 1 for some chosen item (¢, j) is integer. After adding a branching constraint that
bounds the number of such cutting patterns used in the solution, the profit of item (4, j) in
the column generation sub-problem is modified to account for the dual variable associated
with the branching constraint (Vanderbeck, 1999). Thus, in the modified sub-problems
that arise in the course of the branch-and-price algorithm, the item profits are no longer

a multiple of the class profits, i.e., typically p;; # m;; p;.

There again, the standard binary knapsack model could be used as a 0-1 form, but we
recommend using model BMCBKP instead. Indeed, in this case, the benefits of reduc-
ing the redundancies in the solution space can be much more significant: the branching
scheme used in the branch-and-price algorithm amounts to defining a partitioning of sub-
problem solution space and enforcing the integrality of the number of columns chosen
in each parts of this partition; thus, symmetries in the sub-problem solution space also
affects the efficiency of the branching scheme for the master problem. The little extra
time that might be needed to solve BMCBKP sub-problem rather than standard binary
knapsack sub-problems should be largely compensated by the time saving that results
from having to consider much fewer branch-and-price nodes. In our study of the cutting
stock problem (Vanderbeck, 1999) we did not explicitly compare the two approaches (us-
ing the standard binary knapsack versus the BMCBKP model for the sub-problem), we
only used model BMCBKP. But, we expect that the reduction in the number of nodes
could be similar to that observed for the integer knapsack problem in the computational
test that are reported in Section 3.

3 Greedy Algorithm for Computing the LP Bound

Let m = " .
._1 n; be the total number of items (7,7) in problem (1-4). Let us order

these items according to non increasing values of the profit per unit of weight, and let us
renumber the items in that order, using index £ = 1,..., m. Let us define p, = p;;, Wy =
m;; w; and My, = m;; to denote respectively the profit, the weight, and the multiplicity
of the item (i, j) that is the k™ position in our ordering. Thus,
152 ﬁm
> > > 10
i > = (10)

Wa W,



Moreover, let K* C {1,...,m} denote the set of positions occupied by class i items in
that ordering, i.e.,

= {k : the k' item in our ordering is some item (4, j) for j € {1,...,n;}} .

The following proposition shows that LP relaxation of BMCBKP is solved by a greedy
algorithm that consists in considering items in the order (10) and inserting them in the
solution at their maximum feasible level. Intuitively, the result follows from the observa-
tion that, because of the assumption w; ; = m; ; w;, the greedy ordering (10) is also greedy

pkl

with regard to the class upper bound constraints (3), i.e., ~ > % for any two items
2

k1 < ko that belong to the same class.

Proposition 1 A solution of the linear programming relazation of problem (1-4) is ob-

tained as follows. For i € {1,...,n}, let the critical item for class i, ¢; € K*, be such
that
> e <b but > i > by
keKi k<c; keK', k<c;

Let Ki() ={ke K': k<ciandk <1}, I(1)={i : ¢; <1}, and

Z Z Wy, + Z ZTI;LEKZ ) ) We; -
C.

1 keKi(l ieI(l) ¢

Then, let the global critical item, ¢ € {1,...,m}, be the highest indez item such that
W) <W but W(e)+w.>W (11)
and set

x, = 1 fork € K'(c) andi=1,...,n,
1
T, = — (bi— E M) for i€ I(c),

Me., ,
Ci keKi(c)

e = — W-W(@),

c

z, = 0 otherwise.

Proof: First, observe that deﬁning ¢ to be the highest index item satisfying (11) ensures
that if ¢ = ¢; for some 4, then E (W =W(e)) < % (b = > eri(e) w)- Now, we show
that the solution = defined above is optimal for the LP relaxation of (1-4) by exhibiting
a complementary dual solution of the same value. The dual problem takes the form

min{W \ + ibi L —|—in :
i=1 k=1



QI)k)\+mk/Li+Vk Zﬁk VEk EKi and Vi
(A p,v) € RE™™ Y

A dual solution is

1
Wi = (Pe; — We, A) for i € I(c)

Cg

and zero otherwise, and
Vp = P —Wp A — 1y p; for k€ K'(c) and i=1,...,n

and zero otherwise. Let us verify that those values are non-negative, that they satisfy
the dual constraints, and that they yield an objective value equal to the primal objective
value that results from setting = as defined above. Clearly we have A > 0, p; > 0 Vi, since
5}: > 5)6 for ¢; < ¢, and v, > 0 Vk, since m,, W = my W, and ”’“ > pc’ for k € K*(c)

and ¢ = 1,...n. One can also verify case by case the inequality wk A + mk Wi + Vg > Dg
for each k EKi andi=1,...n

oIszcandcz-zc,thenuk:uizoandg—czg—’;.

o If k£ > ¢; and ¢; < ¢, then v, = 0, M., Wy, = My W, and % > r%_i'
<

° Ifk<candk<ci,thenl/kzﬁk—u?k)\—rhkui.

The primal objective is

X3 k+2pcw = Y ) he g (W =)

i keKi(c i€l(c MMes keKi(c)

After using W(c) = 35, D perit) Wk + Dier(e) Des m%l (bi = Y keki(e) M) and regrouping
terms, the primal objective takes the form

W+Z pc’_%~i)r~i (bi— > M)+ Z k——wk)
i€I(c) ¢ kEKi(c) i keKi(c

which is equal to W A+ >" =
i=1 0i i + D p Vi

Clearly, the greedy solution can be obtained in O(mlogm) because the sorting of the

m items is the bottleneck step. But, it can also be computed in linear time by adapting

the procedure proposed by Balas and Zemel (1980) for the 0-1 knapsack problem. The key

observation is that the optimum value of A can be determined independently of the yu;’s

Indeed, for each class ¢, either the class upper bound constraint is active and the knapsack

capacity used by class ¢ items is exactly w; b;, or it is not active and it can be ignored. For



a given (tentative) value A, class ¢ upper bound is active if }_, _ (keKi: my > b If

Pk 52}
Wi
class 7 bound is active, the associated dual value y; and primal solution can be determined

in O(n;) by applying Balas and Zemel’s procedure to the sub-problem

n; ni
max{Zpijacij: Zm”xugbz,ﬂgacwglw} (12)

7j=1 7j=1
Hence, one can determine the optimum dual values A and u;’s and an associated primal
solution to the LP relaxation of BMCBKP using the following procedure, where W denotes

the remaining knapsack capacity and b; denotes the slack to the upper bound for class i.

Step 0: Let I ={1,...,n}.
Let K ={1,...,m}.
Let (z1,...,2m) = (0,...,0).
Set W and b; for all 7 equal to the rhs of constraints (2) and (3) respectively.
Step 1: Compute the median A of the values {g—’; : ke K}.
Step 2: Compute G' = {k€ K'NK : B> AYforie I,
AG)={i eIy, qimy > b}, and
W(G) = ZieA(G) w; b; + ZieI\A(G) > keqi W
If W(G) > W () is too small), then let K = U;G%;
goto Step 1.
Else, let K = K\ U;G', W =W — W(Q),
zp=1and by =b; —my for k€ G* and i € I\ A(G),
I =1\ A(G), and, for each class i € A(G), add the solution of (12)
for items k € G* to the current primal solution z.
Step 3: Compute E' = {k € K'NK : g—'; = foriel,
AE)={iel:Y g > b}, and
W(E) = ZieA(E) w; b; + ZieI\A(E) ZkeEi W- .
If W(E) < W (A is too large), then let K = K \ U;E", W =W — W(E),
xp,=1and b; =b; —my fork € E* and i€ I\ A(E),
I =T\ A(E), and, for each class i € A(E), add an arbitrary
selection of (fraction of) items k € E* to the current primal solution z,
so as to satisfy the class upper bound at equality;
goto Step 1.
Else, add an arbitrary selection of (fraction of) items k € U; E* to the
current primal solution x, so as to fill the remaining knapsack

capacity W while satisfying the class upper bounds, b;’s.

Observe that, in Step 3, items & € E* share the same value of 72—’2, which is why

one can select items arbitrarily in E‘. In Step 2, solving sub-problems of type (12) can

9



be done O(}",|G"]) (Balas and Zemel, 1980). In Step 1, finding the median of a set of
values can be done in linear time. Every other operation can be done in constant or
linear time (Balas and Zemel, 1980). At each iteration of the procedure, (i.e for each
goto Step 1 statement), the number of remaining items, |K|, is at least halved. Hence,
if we denote by T'(m) the running time of our procedure for an instance with m items,
we have that T'(m) < ¢; m + ¢ + T(3) for some constants ¢; and c,. By iteratively
applying this inequality, we obtain T(m) < esm+c+$m+c +T(F) < ... <
a(l+i+1+..)m+cslog,m+T(1) < 2¢im+cy logym+T(1). Thus, we have shown
that

Proposition 2 A solution of the linear programming relazation of problem (1-4) can be

obtained in time O(m), where m is the total number of items over all classes.

In its study of the bounded multiple choice knapsack problem, Pisinger (1996) consid-
ers a formulation involving class lower bound constraints or class cardinality constraints
for some classes. The result of Proposition 1 can be extended to such a generalization of
model BMCBKP, where constraints (3) are replaced by

n;
Zmijxij < b fore e U
j=1
n;
Zmi]’fl)i]’ = b fori e E
j=1
n;
Zmijxij > b forz e L
j=1

and the sets U, E, and L are disjoint subsets of the ground set {1,...n}. Then, it is
assumed that . 0w, < W and D pbiwi +> Z?’:l mi; w; > W.

In the case U C {1,...,n}, and E = L = (), one can let b; = oc for i ¢ U, redefine
U ={1,...,n}, and apply Proposition 1. When F # (), the optimal LP solution for the
class ¢ items with ¢ € E can be obtained independently of the other classes because their
capacity consumption will be b; w; in any case. For class ¢ € E, the LP solution is given
by applying the greedy algorithm to

maX{sz-jxj: Zmijﬂf]’:bi, OS.’EJSlV]} (13)

j=1 j=1
Then, items from classes i € FE are removed, the knapsack capacity is reduced by
Y icr bi wi. Similarly, if L # (), one can solve a sub-problem (13) a priory for classes
1 € L. Then, the LP relaxation of remaining problem where items of classes ¢ € L that
are in the greedy solution of (13) have been removed (the unused fraction of eventual
critical items remain in the problem), the items of classes 7 € E have all been removed,

and the knapsack capacity has been updated, is solved according to Proposition 1.
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4 Computational Experiment

We argued that model BMCBKP is useful in providing an alternative 0-1 form for the
bounded integer knapsack problem that does not yield a duplication of solutions and
hence should lead to fewer branch-and-bound nodes (or dynamic programming states).
Here, we proceed to test that claim, showing that using model BMCBKP instead of the
standard 0-1 form of a bounded integer knapsack yields fewer branch-and-bound nodes
and LP bound evaluations.

In that purpose, we have generated random instances of the bounded integer knap-
sack as in Pisinger (2000) and we have proceeded to solve them in two ways: firstly, by
transforming them to a standard binary knapsack problem and solving them using the
branch-and-bound algorithm of Horowith and Sahni (see Martello and Toth, 1990, pages
30-31 and Nemhauser and Wolsey, 1988, pages 455-456); secondly, by transforming them
to a BMCBKP and solving them using an adapted version of Horowith and Sahni branch-
and-bound algorithm. We chose the classic algorithm of Horowith and Sahni for it being
well-known and for its simplicity (it is easy to adapt it for BMCBKP). Our purpose is
clearly not to develop a competitive algorithm for the bounded knapsack problem but

just to test the impact of choosing a 0-1 form rather than another.

In brief, the algorithm Horowith and Sahni for the standard binary knapsack prob-
lem is a depth first search branch-and-bound procedure. The knapsack items are sorted
beforehand in order of non increasing ratio of profit over weight (breaking ties using a
non increasing order of the weights). The LP bound is computed at the root node and
re-computed only when the branching decisions implies that it may have changed. The
branching strategy consists in plunging depth by setting variables to one as long as the
remaining capacity allows it (a forward move), then the next variable is set to zero before
re-computing the LP-bound. If the node can be pruned, backtracking takes place by
returning to the last variable set to one and setting it to zero. Every time the bottom of

the tree is reached (all variables being set) the incumbent is updated.

The same procedure can be used to solve the BMCBKP. The only adaptations re-
quired consist of computing the LP-bound according to Proposition 1 and keeping track
of the remaining class capacities as well as the global capacity. However, in the case of a
BMCBKP obtained as the 0-1 form of a bounded knapsack problem, the item profit are
a multiple of the class profit, i.e. p;; = m;; p; V(i,j). Hence, all items in a class share
the same ratio %JJ and can be placed in successive position in the greedy ordering. Then,
computing the LP bound is done as for the bounded integer knapsack problem which
requires less operations than the method of Proposition 1 valid for a general BMCBKP.

11



The resulting algorithm is presented in Table 1. We also use this simplification of the LP

bound computation when solving the standard 0-1 form.

We generated random instances of the bounded integer knapsack problem with n
classes (products), for n = 100, 300, and 1000. The weights, w;, are integer and uni-
formly distributed in [1, R] with R = 1000 or 10000. Uncorrelated instances are obtained
by generating profits in the same way as the weights, while correlated instances are ob-
tained by generating profits, p;, uniformly distributed in [w; — R/10, w; + R/10] such that

pi > 1. The upper bounds, b;, are uniformly distributed in [5,10], and the knapsack

Zq; wi
4

solution methods, we measure the number of branch-and-bound nodes (this number is

capacity is set equal to a fraction of the weight sum: W = . To compare the two
incremented each time we set a variable to 1 or 0), the number of times we compute the
LP-bound, and the time it takes to solve the 0-1 problem. For a given choice of n, R,
and correlation, we generate and solve 100 random instances. Then, we compare the total
number of B-a-B nodes, bound evaluations, and CPU time for both method and compute
the relative difference as a percentage according to: percentage = °=% x 100, where b is

b
the bigger number and s the smaller.

12



Table 1: Pseudo-code of Horowith and Sahni algorithm adapted for the solution of the
BMCBKP 0-1 form of a bounded integer knapsack problem

Step 0: Let ¢ = 1,...,n be the class index in the order of non increasing ratio 2-.
Let k =1,...,m be the item index in the order of increasing class index

and decreasing multiplicity m; within each class .
Let i(k) =i : k € K* denote the class associated to item k = (3, 7).
Let (z1,.-.yZm) = (Y15 Ym) = (0,...,0) (x records the incumbent solution).
Set W and b; for all 7 be the rhs of constraints (2) and (3) respectively
and u; =3 7%, m;j;. Set 2 =0, inc =0, k = 1.
Step 1: Compute UB: ub=2z; c =W,
for (i =i(k); i <n; i+) if (min{b;, u;} > 0){
if (min{b;, u;}w; < ¢) { c—= min{b;, u; }w;; ub+= min{b;, u;}p;; }
else {ub+= -p;; break; } }
if (ub <'inc) goto Step 4;
Step 2: Forward Move:
while ((k < n)and (0, <= W)and (M, <= b))
{ e =15 24= Pr; W—=1g; biggy—= M Uiry—= Mug; k++; }
if (k> n)or (W ==0) /* leaf node reached */ {
if (z>inc) {inc=z x=uy;}
goto Step 4; }
Step 3: Setting to Zero:
Yr = 0; uik)—= 1y; k++; /* setting an item to 0 reduces wu;y) */
if (k > n) /* leaf node reached */ {
if (z>inc) {inc=2z x=y;}
goto Step 4; }

goto Step 1;
Step 4: Backtracking:
l=k—1,
/* if the last item is set to 1, go back one level */
if (i ==1) { 51 =0; 2—= pi; W= dy; biy+= 3 wigy+= my; I—; }

/* go back to last item set to 1 */

for ;1> 1;1—) { if (yy == 1) break; else u;uy+= my; }
if (I ==0) return (inc, ©);

/* set it to 0 */

y =05 z—= pi; W= wy; bigy+= my;

k =14 1; goto Step 1;
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In Table 2, we report these percentages. A negative percentage, say —50%, indicates
that solving the BMCBKP 0-1 form rather than solving the standard 0-1 form lead to a
50% reduction of that counter. Thus, our computational results are that across correlated
and uncorrelated instances with 100 to 1000 products, using BMCBKP rather than the
standard 0-1 form can give rise to a decrease in the size of the branch-and bound tree
(and thus the number of bound evaluations) that varies between 10 and 58 percent, while
the computation time decreases are a little less significant. The time comparison is not
exactly in line with that of the counters because for each item taken in or off the knapsack
solution, there is an additional operation to update the class capacity for the BMCBKP;
moreover, extra tests must be implemented to check whether an item fits in the remaining

class capacity.

Table 2: Comparison of the resolution of integer knapsack problems by transformation
to a binary knapsack versus a multiple class knapsack problem: percentage differences
in number of branch-and-bound nodes, upper bounds evaluations, and CPU time when
using Horowith and Sahni branch-and-bound algorithm for both binary and multiple class

knapsack problems.

Uncorrelated Correlated
n R=1000 R=10000 | R=1000 R=10000
BB nodes -39.0 -46.9 -58.4 -54.5
100  bound eval -37.8 -46.2 -58.2 -54.3
CPU time -27.7 -45.8 -53.6 -54.1
BB nodes -25.6 -27.3 -44.2 -43.0
300 bound eval -24.1 -25.9 -44.1 -42.8
CPU time -13.0 -23.5 -39.6 -44.2
BB nodes -10.3 -11.6 -15.8 -26.7
1000 bound eval -5.81 -7.81 -13.3 -25.8
CPU time -10.6 -8.84 -12.3 -17.4

Thus, our computational test show that using the BMCBKP 0-1 form rather than the
standard 0-1 form can yield a significant reduction in the size of the branch-and-bound
tree. The difference get more significant as the problems get harder. In particular, re-
ducing the knapsack capacity yields bigger differences: for example, if we set W = %,
the results for correlated instance n = 1000 and R = 1000 are BB nodes = -32.2, bound
eval = -31.7, CPU time = -23.2. The difference between the two approaches becomes less
significant as n increases. We believe that this is due to item profit and weight being gen-

erated within constant intervals: thus, as n increases, there are more items with similar
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characteristics which results in both methods having more difficulties and their difference
vanishing. The fact that the difference between the 2 approaches is more significant for

R = 10000 seems to support this analysis.

This comparison between the two 0-1 forms is just indicative as it would probably be
somewhat different had we used/adapted another classic algorithm for the binary knap-
sack problem. In any case, this computational experiment also demonstrates our claim
that model BMCBKP can be solved to optimality as easily as a binary knapsack problem:
algorithms can be derived by adapting those developed for the binary knapsack and com-
putation time can be expected to be of the same order of magnitude. BMCBKP instances

with item profits p; ; # m; ; p; where solved just as easily in our study of the cutting stock
problem (Vanderbeck, 1999).
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