Extended Formulations, Column Generation, and stabilization: synergies in the benefit of large scale applications

François Vanderbeck

Co-authors: A. Pessoa, R. Sadykov, E. Uchoa, L.A. Wolsey

EURO/INFORMS, Rome, July 2013

References

- F. Vanderbeck and L. A. Wolsey, Reformulation and Decomposition of Integer Programs, *50 Years of Integer Programming*, editors Junger et al., (2010).
- R. Sadykov and F. Vanderbeck, Column Generation for Extended Formulations, EURO Journal on Computational Optimization (2013).
- A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck, In-Out Separation and Column Generation Stabilization by Dual Price Smoothing, Symp. on Experimental Algor. (SEA), *Lect. Notes in Comp. Sc.* (2013).
- R. Sadykov and al., Solving a Freight Railcar Flow Problem Variant Arising in Russia, *Working Paper* (2013).

Take away messages

An approach based on an extended formulation

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation,
 - Benders projection, and
 - Dantzig-Wolfe dynamic generation.
- With dynamic generation, a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

Outline

- Definitions
- Interests
- Coping with its large size
- 2 Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues
- 3 Large-scale application
 - Freight transport by rail in Russia

Outline

Extented Formulations

Definitions

- Interests
- Coping with its large size
- Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues
- 3 Large-scale application
 - Freight transport by rail in Russia

Combinatorial Optimization Problem

$$(CO) \equiv \min\{c(s): s \in \mathbf{S}\}\$$

where S is the "discrete" set of feasible solutions.

Combinatorial Optimization Problem

$$(CO) \equiv \min\{c(s): s \in \mathbf{S}\}$$

where S is the "discrete" set of feasible solutions.

Formulation

A polyhedron $\mathbf{P} = \{x \in \mathbb{R}^n : Ax \ge a\}$ is a formulation for (CO) iff $\min\{c(s): s \in \mathbf{S}\} \equiv \min\{cx: x \in \mathbf{P}_{\mathbf{I}} = \mathbf{P} \cap \mathbb{N}^n\}.$

A formulation is typically not unique

P and *P'* can be **alternative formulations** for (*CO*) if (*CO*) $\equiv \min\{cx : x \in P \cap \mathbb{N}^n\} \equiv \min\{c'x' : x' \in P' \cap \mathbb{N}^{n'}\}$

warning: can expressed in different variable-spaces.

Stronger formulation (in the same space)

Formulation $P' \subseteq \mathbb{R}^n$ is a **stronger** than $P \subseteq \mathbb{R}^n$ if $P' \subset P$. Then, $\min\{cx' : x' \in P'\} \ge \min\{cx : x \in P\}$

Ideal Formulation

The Convex hull of an IP set, P_I

 $conv(P_I)$ is the smallest closed convex set containing P_I .

$conv(P_I)$ is an ideal polyhedron / formulation

If P_I is defined by rational data, $conv(P_I)$ is a polyhedron.

Given an initial compact formulation:

Projection

The Projection

of
$$Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \ge d\}$$
 on the *x*-space is:
 $\operatorname{proj}_{x}(Q) := \{x \in \mathbb{R}^{n} : \exists w \in \mathbb{R}^{e} \text{ such that } (x, w) \in Q\}.$

The Projection

of
$$Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \ge d\}$$
 on the *x*-space is:
 $\operatorname{proj}_{x}(Q) := \{x \in \mathbb{R}^{n} : \exists w \in \mathbb{R}^{e} \text{ such that } (x, w) \in Q\}.$

Farka's Lemma

Given \tilde{x} ,

$$\{w \in \mathbb{R}^n_+ : Hw \ge (d - G \tilde{x})\} \neq \emptyset$$

if and only if
$$\forall v \in \mathbb{R}^m_+ : vH \le 0, \quad v(d - G \tilde{x}) \le 0.$$

Hence, a polyhedral description of the projection in the *x*-space is:

$$\operatorname{proj}_{x}(Q) = \{x \in \mathbb{R}^{n} : v^{j}(d - Gx) \leq 0 \quad j \in J\}$$

$$\{v^j\}_{j\in J}$$
, exteme rays. of $\{v\in \mathbb{R}^m_+ : vH\leq 0\}$.

An extended formulation for an IP set $P_I \subseteq \mathbb{N}^n$

is a polyhedron $Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \ge d\}$ such that $P_I = \operatorname{proj}_x(Q) \cap \mathbb{N}^n.$

An extended formulation for an IP set $P_I \subseteq \mathbb{N}^n$

is a polyhedron $Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \ge d\}$ such that $P_I = \operatorname{proj}_x(Q) \cap \mathbb{N}^n.$

A tight extended formulation for an IP set $P_I \subseteq \mathbb{N}^n$

is a polyhedron $Q = \{(x, w) \in \mathbb{R}^{n+e} : Gx + Hw \ge d\}$ such that $\operatorname{conv}(P_I) = \operatorname{proj}_x(Q).$

An extended IP-formulation for an IP set $P_I \subseteq \mathbb{N}^n$

is an IP-set $Q_I = \{(x, w) \in \mathbb{R}^n \times \mathbb{N}^e : Gx + Hw \ge b\}$ s.t. $P_I = \operatorname{proj}_x Q_I.$

Change of variables: x=T w

Reformulation: a special case of extended formulation

An extended formulation based on a change of variables: x = Tw.

$$Q = \{(x, w) \in \mathbb{R}^{n+e} : Tw = x$$
$$Hw \ge h\}.$$

Then,

$$\operatorname{proj}_{x}(Q) = T(W) := \{x = Tw \in \mathbb{R}^{n} : \underbrace{Hw \ge h, w \in \mathbb{R}^{e}}_{w \in W}\}.$$

A reformulation for an IP-set $P_I \subseteq \mathbb{N}^n$

is a polyhedron W along a linear transformation, $\mathbf{x} = \mathbf{T}\mathbf{w}$, s.t. $P_I = T(W) \cap \mathbb{N}^n$

A **IP**-reformulation for an IP-set $P_I \subseteq \mathbb{N}^n$

is an IP-set $W_I = W \cap \mathbb{N}^e$ along a linear transformation, $\mathbf{x} = \mathbf{T}\mathbf{w}$, s.t., $P_I = T(W_I)$

Minkowski's representation: a special case of reformulation

Polyhedron $conv(P_I)$ can be defined by its extreme points and rays:

$$Q = \{(x, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^{|G|}_+ \times \mathbb{R}^{|R|}_+ : x = \sum_{g \in G} x^g \lambda_g + \sum_{r \in R} v^r \mu_r, \sum_{g \in G} \lambda_g = 1\}$$

change of variables: $\mathbf{x} = \mathbf{X} \lambda + \mathbf{V} \mu$.

Special cases:

- $T = \{i\}$: shortest path from r to i
- $T = V \setminus \{r\}$: minimum cost spanning tree

Steiner Tree: Arc flow formulation

Variables

- $x_{ij} \in \{0, 1\}$ arc (i, j) is used or not
- $y_{ij} \in \mathbb{N}$ number of connections going through (i, j)

Steiner Tree: Multi commodity flow formulation

Variable splitting

- $w_{ii}^t \in \{0, 1\}$ arc (i, j) is used to connect terminal t
- $y_{ij} = \sum_k w_{ij}^t$ defines a linear transformation

Steiner Tree: Network design formulation

projection in the x-space

$$\min \sum_{\substack{(i,j) \in A}} c_{ij} x_{ij}$$

$$\sum_{\substack{(i,j) \in \delta^+(S)}} x_{ij} \geq 1 \quad S \ni r, T \setminus S \neq \emptyset$$

$$x \in \{0,1\}^{|A|},$$

Steiner Tree: Network design formulation

projection in the x-space

$$\min \sum_{\substack{(i,j) \in A \\ (i,j) \in \delta^+(S)}} c_{ij} x_{ij} \geq 1 \ S \ni r, T \setminus S \neq \emptyset$$

$$x \in \{0,1\}^{|A|},$$

$$s = \frac{1}{3} x_{ij} \sum_{i=1}^{s} c_{ij} x_{ij} x_{ij} \sum_{i=1}^{s} c_{ij} x_{ij} x_$$

Note: This projection onto the x space

- has the same LP value than the multi-commodity flow formulation
- is better than the initial compact aggregate flow formulation.

Ways to obtain extended formulations

- Variable Splitting
 - Multi-Commodity Flow: $x_{ij} = \sum_k x_{ij}^k$
 - Unary expansion: $x = \sum_{q=0}^{u} q w_q$, $\sum_{q=0}^{u} w_q = 1, w \in \{0, 1\}^{u+1}$
 - Binary expansion: $x = \sum_{p=0}^{\log \lfloor u \rfloor} w_p$, $w \in \{0, 1\}^{\log u}$
- Dynamic Programming Solver → Network Flow LP [Martin et al]
- Separation is easy → Separation LP [Martin et al]
- Reduced coefficent / basis reformulations [Aardal et al]
- Union of Polyhedra [Balas]
- ...

Unary expansion: Time-Indexed Formulation

Single machine scheduling problem (with integer data):

$$S_j \ge S_i + p_i \text{ or } S_i \ge S_j + p_j \ \forall \ i, j$$

requires big M formulation: $S_j \ge S_i + p_i - M(1 - x_{ij})$.

Unary expansion: Time-Indexed Formulation

Single machine scheduling problem (with integer data):

$$3 \qquad 2 \qquad 1$$

$$S_3 \qquad S_2 \qquad S_1 \qquad t$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$$

$$S_j \ge S_i + p_i \text{ or } S_i \ge S_j + p_j \forall i, j$$
Change of variables:
$$S_j = \sum_t t w_{jt}$$

with $w_{jt} = 1$ iff job *j* starts at the beginning of [t, t+1].

$$\sum_{j \in J} w_{j0} = 1$$
$$\sum_{j \in J} w_{jt} - \sum_{j \in J} w_{j,t-p_j} = 0 \quad \forall t \ge 1$$

Ways to obtain extended formulations

- Variable Splitting
 - Multi-Commodity Flow: $x_{ij} = \sum_k x_{ij}^k$
 - Unary expansion: $x = \sum_{q=0}^{u} q w_q$, $\sum_{q=0}^{u} w_q = 1, w \in \{0, 1\}^{u+1}$
 - Binary expansion: $x = \sum_{p=0}^{\log \lfloor u \rfloor} w_p$, $w \in \{0, 1\}^{\log u}$
- Dynamic Programming Solver → Network Flow LP [Martin et al]
- Separation is easy → Separation LP [Martin et al]
- Reduced coefficent / basis reformulations [Aardal et al]
- Union of Polyhedra [Balas]
- ...
DP based reformulation: the knapsack example

$$\max\{\sum_{i} p_i x_i : \sum_{i} a_i x_i \le b, x_i \in \mathbb{N}\}\$$

- **DP Recursion:** $V(c) = \max_{i=1,...,n:c \ge a_i} \{V(c-a_i) + p_i\}$
- in LP form:

$$\min V(b)$$

$$V(c) - V(c - a_i) \geq p_i \qquad i = 1, \dots, n, \ c = a_i, \dots, b$$

$$V(0) = 0$$

its Dual: "longest path problem"

DP based reformulation: the knapsack example

$$\max\{\sum_{i} p_i x_i : \sum_{i} a_i x_i \le b, x_i \in \mathbb{N}\}\$$

• DP Recursion: $V(c) = \max_{i=1,\dots,n:c \ge a_i} \{V(c-a_i) + p_i\}$ • in LP form:

$$\min V(b)$$

$$V(c) - V(c - a_i) \geq p_i \qquad i = 1, \dots, n, \ c = a_i, \dots, b$$

$$V(0) = 0$$

• its Dual: "longest path problem"

$$\max \sum_{j=1}^{n} \sum_{r=0}^{b-a_i} c_i w_{ic}$$

$$\sum_{i} w_{ic} = 1 \qquad c = 0$$

$$\sum_{i} w_{ic} - \sum_{i} w_{i,c-a_i} = 0 \qquad c = 1, \cdots, b-1$$

$$\sum_{i} w_{i,c-a_i} = 1 \qquad c = b$$

$$w_{ic} \ge 0 \qquad i = 1, \cdots, n; c = 0, \cdots, b-a_i$$

Variables

- x_{e,t} production of intermediate product of echelon e in period t
- s_{e,t} stock of echelon e product at the end of period t

Dominance property

 \exists opt solution where $x_{e,t} \cdot s_{e,t-1} = 0 \ \forall e, t, \Rightarrow$ production plan is a tree:

Dominance property

∃ opt solution where $x_{e,t} \cdot s_{e,t-1} = 0$ ∀*e*, *t*, ⇒ production plan is a tree:

Dynamic programming

State (e, t, a, b) corresponds to accumulating at echelon e in period t a production covering exactly the demand of periods a, \ldots, b .

$$V(e,t,a,b) = \min\{V(e,t+1,a,b), \\ \min_{l=a,\dots,b}\{V(e+1,t,a,l) + c_{et}^{k}D_{al}^{k} + f_{et}^{k} + V(e,t+1,l+1,b)\}\}$$

DP Recursion:

$$V(e, t, a, b) = \min\{V(e, t+1, a, b), \\ \min_{l=a,\dots,b}\{V(e+1, t, a, l) + c_{et}^{k} D_{al}^{k} + f_{et}^{k} + V(e, t+1, l+1, b)\}\}$$

in LP form:

 $\max V(1, 1, 1, T)$ $V(e, t, a, b) \leq V(e, t + 1, a, b) \forall e, t, a, b$ $V(e, t, a, b) \leq V(e + 1, t, a, l) + c_{et}^{k} D_{al}^{k} + f_{et}^{k} + V(e, t + 1, l + 1, b) \forall e, t, a, b, l$ $V(E + 1, t, a, b) = 0 \forall t, a, b$

its Dual: flow on hyper-arcs

 $w_{e,t,a,l,b} = 1$ if at echelon *e* in period *t* production covers demands from period *a* to period *l*, while the rest of demand up to *b*, shall be covered in the future.

DP based reformulations

[Martin et al OR90] When a problem can be solved by dynamic programming,

$$V(l) = \min_{(J,l)\in\mathscr{A}} \{ \sum_{j\in J} V(j) + c(J,l) \},\$$

an extended formulation consist in modeling a decision tree in an hyper-graph

Ways to obtain extended formulations

- Variable Splitting
 - Multi-Commodity Flow: $x_{ij} = \sum_k x_{ij}^k$
 - Unary expansion: $x = \sum_{q=0}^{u} q w_q$, $\sum_{q=0}^{u} w_q = 1, w \in \{0, 1\}^{u+1}$
 - Binary expansion: $x = \sum_{p=0}^{\log \lfloor u \rfloor} w_p$, $w \in \{0, 1\}^{\log u}$
- Dynamic Programming Solver → Network Flow LP [Martin et al]
- Separation is easy → Separation LP [Martin et al]
- Reduced coefficent / basis reformulations [Aardal et al]
- Union of Polyhedra [Balas]
- ...

Outline

Definitions

Interests

- Coping with its large size
- Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues
- 3 Large-scale application
 - Freight transport by rail in Russia

Improved formulation (better LP bound & rounding heuristic)

extra variables ↓ tighter relations, linearisation

Improved formulation (better LP bound & rounding heuristic)

Simpler formulation (captures the combinatorial structure)

extra variables ↓ fewer constaints structure built into var. definitions

- Improved formulation (better LP bound & rounding heuristic)
- Simpler formulation (captures the combinatorial structure)
- Oirect use of a MIP-Solver (solved by standard tools)

- Improved formulation (better LP bound & rounding heuristic)
- Simpler formulation (captures the combinatorial structure)
- Direct use of a MIP-Solver (solved by standard tools)
- Bich variable space (to express cuts or branching)

Vehicle routing: $x_a = \sum_{l=0,...,C} w_l^a$ $w_q^a = 1$ if vehicle on arc *a* with load *l*,

$$\sum_{l} \sum_{a \in \delta^{-}(i)} lw_{l}^{a} - \sum_{l} \sum_{a \in \delta^{+}(i)} lw_{l}^{a} = d_{i}$$

→ knapsack cover cuts.

[Uchoa]

Outline

- Definitions
- Interests
- Coping with its large size
- Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues
- 3 Large-scale application
 - Freight transport by rail in Russia

Coping with size: Related work on Multi-Route-VRP

[Macedo, Alves, Valerio de Carvalho, Clautiaux, Hanafi. EJOR2011]

• w_{st}^r — nb of vehicles using route r that starts in s and ends in t

Coping with size: Related work on Multi-Route-VRP

[Macedo, Alves, Valerio de Carvalho, Clautiaux, Hanafi. EJOR2011]

Relaxation

- round-up start time: $S = \{s : \lceil s \rceil = S\}$
- round-down termination time: $T = \{t : \lfloor t \rfloor = T\}$
- define relaxed route arcs : $w_{S,T}^r = \sum_{s \in S, t \in T} w_{s,r}^r$.

Automatic Desaggragation Algorithm:

- Solve problem over aggregate time periods.
- 2 Try to build a desaggregate feasible solution.
- If it fails, desaggregate the time period of conflict.

- Use of a relaxation [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation
 - \rightarrow static outer approximation of the extended formulation

- Use of a relaxation [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation
 - \rightarrow static outer approximation of the extended formulation
- Our State of a restriction
 - define only some transitions in a dynamic program
 - up-rounding of durations
 - \rightarrow static inner approximation of the extended formulation

- Use of a relaxation [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation
 - \rightarrow static outer approximation of the extended formulation
- Our Content of a restriction
 - define only some transitions in a dynamic program
 - up-rounding of durations
 - \rightarrow static inner approximation of the extended formulation

- Use of a relaxation [Van Vyve & Wolsey MP06]
 - Drop some of the constraints
 - Aggregate commodities/nodes (down-rounding of durations)
 - Partial reformulation
 - \rightarrow static outer approximation of the extended formulation
- Our State of a restriction
 - define only some transitions in a dynamic program
 - up-rounding of durations
 - \rightarrow static inner approximation of the extended formulation
- Projection: Benders' cuts (applying Farkas Lemma)

 → dynamic outer approximation of the extended formulation
- Dynamic generation: delayed column-and-row generation.

 → dynamic inner approximation of the extended formulation

Outline

Extented Formulations

- Definitions
- Interests
- Coping with its large size
- Dynamic Row-and-Column Generation
 Methodology
 - Practical issues
- 3 Large-scale application
 - Freight transport by rail in Russia

Decomposition + SP Reformulation

Assumption

Subproblem P_I admits an **IP-reformulation** W_I : \exists polyhedron

$$W = \left\{ Hw \ge h, w \in \mathbb{R}_{+}^{e} \right\}$$

and a linear transformation T, such that

$$P_I = \operatorname{proj}_x(W_I) = T(W_I) = \left\{ x = T_W : H_W \ge h, w \in \mathbb{N}^e \right\}$$

Assumption

Subproblem P_I admits an **IP-reformulation**, W_I : \exists polyhedron

$$W = \{Hw \ge h, w \in \mathbb{R}_{+}^{e}\}$$

and a linear transformation, T, s.t.

$$P_I = \operatorname{proj}_x(W_I) = T(W_I) = \left\{ x = T_W : H_W \ge h, w \in \mathbb{N}^e \right\}$$

Original formulation Extended reformulation $[\mathsf{R}] \equiv \min \left\{ c \, T \, w \right\}$ $[\mathsf{F}] \equiv \min \Big\{ c \, x \Big\}$ $ATw \geq a$ $Ax \geq a$ $Hw \geq h$ $Bx \geq b$ $x \in \mathbb{N}^n \}$ $w \in \mathbb{N}^{e}$ Special case: Dantzig-Wolfe Reformulation Applying Minkowski $[\mathsf{M}] \equiv \min \Big\{ \sum_{g \in G} c \, x^g \, \lambda_g \Big\}$ $x = \sum_{g \in G} x^g \lambda_g$ $\sum_{g\in G} A x^g \lambda_g \geq a$ $\sum_{g \in G} \lambda_g = 1$ $\lambda \in \{0,1\}^{|G|}$

Column-and-row generation

- Dynamic generation of the variables of [R] by bunch, solving the column generation subproblem of [M] over *W*_{*I*}.
- Adding rows that become active.

Restricted reformulations

$$\overline{S} = \{w^{s}\}_{s \in \overline{S}}: \text{ a subset of integer solutions to } W_{I}.$$

$$\overline{w} = \text{restriction of } w \text{ to the non-zero components in } \overline{S}.$$

$$\overline{G} = \{g \in G : x^{g} = T w^{s}, s \in \overline{S}\}$$

$$[\overline{R}_{LP}] \equiv \min \left\{ c \,\overline{T} \,\overline{w} \qquad [\overline{M}_{LP}] \equiv \min \left\{ \sum_{g \in \overline{G}} c \, x^{g} \, \lambda_{g} \right\}$$

$$A \,\overline{T} \,\overline{w} \geq a$$

$$\overline{H} \,\overline{w} \geq h$$

$$\overline{w} \in \mathbb{R}_{+}^{\overline{e}} \right\}$$

$$\sum_{g \in \overline{G}} A \, x^{g} \, \lambda_{g} \geq a$$

$$\sum_{g \in \overline{G}} \lambda_{g} = 1$$

$$\lambda \in \mathbb{R}_{+}^{|\overline{G}|}$$

Restricted reformulations

 $\left[\overline{R}_{I}\right]$

$$\overline{S} = \{w^{s}\}_{s \in \overline{S}}: \text{ a subset of integer solutions to } W_{I}.$$

$$\overline{w} = \text{restriction of } w \text{ to the non-zero components in } \overline{S}.$$

$$\overline{G} = \{g \in G : x^{g} = T w^{s}, s \in \overline{S}\}$$

$$\overline{R}_{LP}] \equiv \min \left\{ c \overline{T} \overline{w} \qquad [\overline{M}_{LP}] \equiv \min \left\{ \sum_{g \in \overline{G}} c x^{g} \lambda_{g} \right\}$$

$$A \overline{T} \overline{w} \geq a$$

$$\overline{H} \overline{w} \geq \overline{h} \qquad \sum_{g \in \overline{G}} A x^{g} \lambda_{g} \geq a$$

$$\overline{W} \in \mathbb{R}_{+}^{\overline{P}} \right\}$$

$$\sum_{g \in \overline{G}} \lambda_{g} = 1$$

$$\lambda \in \mathbb{R}_{+}^{|\overline{G}|} \right\}$$
Proposition 1

 $v^{[M_{LP}]} =_* v^{[R_{LP}]} \le v^{[\overline{R}_{LP}]} \le v^{[\overline{M}_{LP}]}$ (*) if tight reformulation

Column-and-row generation procedure

Step 1: Solve $[\overline{R}_{LP}]$ and collect the **dual solution** $\overline{\pi}$ associated to constraints $A \overline{T} \overline{z} \ge a$, only.

Step 2: Obtain a solution w^* of the pricing problem:

$$\min\{(c - \overline{\pi}A) T w : w \in W_I\}$$

Step 3: Compute the Lagrangian dual bound: $L(\overline{\pi}) \leftarrow \overline{\pi} a + (c - \overline{\pi}A) T w^*, \beta \leftarrow \max\{\beta, L(\overline{\pi})\}.$ If $v^{[\overline{R}_{LP}]} \leq \beta$, STOP.

Step 4: Update \overline{S} by adding solution w^* and iterate

Proposition 2

Either $v_{LP}^R \leq \beta$ (stopping condition), or some of the components of w^* have negative reduced cost in $[\overline{R}_{LP}]$.

Example: parallel machine scheduling

Solve the pricing subproblem (obtain a pseudo schedule)

Solve the pricing subproblem (obtain a pseudo schedule)

Obsaggregate the subproblem solution in arc variables w.

Solve the pricing subproblem (obtain a pseudo schedule)

Obsaggregate the subproblem solution in arc variables w.

Solution Add them to $[\overline{R}]$ along with the associated flow conservation constraints.

Solve the pricing subproblem (obtain a pseudo schedule)

② Disaggregate the subproblem solution in arc variables w.

- Solution Add them to $[\overline{R}]$ along with the associated flow conservation constraints.
- Solve the restricted extended formulation $[\overline{R}]$ and update dual prices.

Machine scheduling: example of convergence

	Column generation for [M]	Column-and-row generation for [R]
Initial solution	0000000000	00000000000
Iteration	Subproblem solution	Subproblem solution
1	0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000
2	00000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3	000000000000000000000000000000000000000	6606666666
10	0000000000	
11	00000000000	
Final solution	0000000000	0°00°0°0°0°0

Machine scheduling: recombination property

$$\overline{S} = \{w^1, w^2\}$$

Machine scheduling: recombination property

$$\overline{S} = \{w^1, w^2\}, \qquad \hat{w} \in \overline{W} \setminus \operatorname{conv}(w^1, w^2)$$

Machine Scheduling: numerical results

• Averages on 25 instances (OR-library) with $p_i \in [1, ..., 100]$.

		Cplex 12.1 Colomn gen.		Column-and-row			
		for [R]	for [M]		generation for [R]		
m	n	сри	#it	сри	#it	vars	сри
1	25	7.1	337	0.9	124	3.8%	0.8
1	50	132.6	1274	24.2	246	2.7%	8.6
1	100	2332.0	8907	1764.4	455	1.9%	61.3
2	25	4.1	207	0.3	97	3.9%	0.2
2	50	109.2	645	5.7	173	2.8%	1.9
2	100	3564.4	2678	115.5	319	2.1%	14.9
4	50	18.7	433	1.5	167	3.0%	0.7
4	100	485.7	1347	27.9	295	2.2%	5.2
4	200	>2h	4315	409.4	561	1.5%	39.4

#it number of column generation iterations

vars percentage of *w* variables that are generated

cpu solution time, in seconds

Machine Scheduling: results with stabilization

		Colom	n gen.	Column-and-row			
		for	[M]	generation for [R]			
т	n	#it	сри	#it	vars	сри	
1	25	150	0.2	96	2.6%	0.4	
1	50	354	3.8	172	1.7%	4.0	
1	100	781	39.5	299	1.3%	31.1	
2	25	142	0.2	87	3.3%	0.2	
2	50	323	1.7	158	2.2%	1.6	
2	100	715	17.3	275	1.6%	11.3	
4	50	287	0.6	154	2.6%	0.6	
4	100	638	8.7	264	1.8%	4.6	
4	200	1553	87.7	481	1.2%	33.4	

Multi-item Multi-echelon Lot-sizing: extended formulation

• x_{et}^i, s_{et}^i — production/stock for item *i* at echelon *e* in period *t* • $y_{et}^i \in \{0, 1\}$ — setup for item *i* at echelon *e* in period *t*

coupling constraints:
$$\sum_{i} y_{et}^{i} \leq 1 \quad \forall e, t$$

Subproblems

DP based extended formulation as a flow in a hypergraph:

 wⁱ_{e,t,a,l,b} = 1 if at echelon e in period t production covers demands for item i from period a to period l, while the rest of demand up to b, shall be covered in the future.

Multi-echelon lot-sizing: recombination property

$$\overline{S} = \{w^1, w^2\}, \quad \hat{w} \in \overline{W} \setminus conv(w^1, w^2)$$

Multi-echelon lot sizing: results with stabilization

Averages for 10 instances are given

			Colomn gen.		Column-and-row			
			fc	or [M]	generation for [R]			
E	K	Т	#it	сри	#it	vars	сри	
2	10	50	126	1.7	29	0.57%	1.6	
2	20	50	79	1.8	27	0.44%	3.1	
2	10	100	332	38.0	43	0.15%	8.1	
2	20	100	232	31.5	38	0.14%	20.0	
3	10	50	187	11.8	38	0.16%	5.5	
3	20	50	112	12.0	33	0.12%	9.8	
3	10	100	509	454.5	49	0.02%	36.4	
3	20	100	362	520.4	48	0.02%	103.1	
5	10	50	296	62.6	48	0.10%	16.3	
5	20	50	223	66.8	42	0.07%	34.3	
5	10	100	882	4855.9	61	0.01%	134.0	
5	20	100	362	4657.8	56	0.01%	386.1	

François Vanderbeck Extended Formulations & Column Generation: Synergies 56/70

Outline

Extented Formulations

- Definitions
- Interests
- Coping with its large size

2 Dynamic Row-and-Column Generation

- Methodology
- Practical issues

3 Large-scale application

Freight transport by rail in Russia

Solve the compact formulation

Step 2: Obtain a solution x^* of the pricing problem:

 $\min\{(c - \overline{\pi}A) x : x \in P_I\}.$

Solve the compact formulation

Step 2: Obtain a solution x^* of the pricing problem:

 $\min\{(c-\overline{\pi}A)x: x \in P_I\}.$

Solve the compact formulation

Step 2: Obtain a solution x^* of the pricing problem:

$$\min\{(c-\overline{\pi}A)x: x \in P_I\}.$$

Lifting set:

$$T^{-1}(x) := \{ w \in \mathbb{N}^e : T w = x; H w \ge h \}$$

Solve the compact formulation

Step 2: Obtain a solution x^* of the pricing problem:

 $\min\{(c-\overline{\pi}A)x: x \in P_I\}.$

Lifting set:

$$T^{-1}(x) := \{ w \in \mathbb{N}^e : T w = x; H w \ge h \}$$

Solving a "preprocessed" feasibility MIP

Example of the Knapsack Problem:

Solve the compact formulation

Step 2: Obtain a solution x^* of the pricing problem:

 $\min\{(c-\overline{\pi}A)x: x \in P_I\}.$

Lifting set:

$$T^{-1}(x) := \{ w \in \mathbb{N}^e : T w = x; H w \ge h \}$$

Solving a "preprocessed" feasibility MIP

Example of the Knapsack Problem:

Solve the compact formulation (while no master constr. on w)
 Step 2: Obtain a solution x* of the pricing problem:

$$\min\{(c - \overline{\pi}A)x : x \in P_I\}.$$

Lifting set:

$$T^{-1}(x) := \{ w \in \mathbb{N}^e : T w = x; H w \ge h \}$$

Solving a "preprocessed" feasibility MIP

Lifting operator:

$$x^* \to w^* \in T^{-1}(x^*)$$

Breaking symmetries

Solve the compact formulation (while no master constr. on w)

$$\min\{(c-\overline{\pi}A)x: x\in X\}.$$

$$x^* \to w^* \in T^{-1}(x^*)$$

Use a forward labelling Dynamic Program

Handling the underlying graph implicitly

Solve the compact formulation (while no master constr. on w)

$$\min\{(c-\overline{\pi}A)x: x\in X\}.$$

$$x^* \to w^* \in T^{-1}(x^*)$$

2 Use a forward labelling Dynamic Program

Handling the underlying graph implicitly

Use successive approximations: restrictions or relaxations

Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012

Dynamic Graph Generation for Shortest Path in Time Expanded Networks]

Train Timetabling

Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012

Dynamic Graph Generation for Shortest Path in Time Expanded Networks]

Train Timetabling

Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012

Dynamic Graph Generation for Shortest Path in Time Expanded Networks]

Assumption

Capacity as only linking constraints \Rightarrow reduced $\cos t = \overline{c}_a \ge c_a \forall a \in A$.

Proposition

Given a restricted graph $\overline{G} \subset G$ and its augmentation G^+ : $G^+ = \overline{G} \cup \delta(\overline{G}) \cup SP(\delta(\overline{G}))$ Let $\hat{c}_a = \overline{c}_a$ for $a \in \overline{G}$, and c_a otherwise. Let $P^* = \operatorname{argmin}\{\hat{c}(P_{st}) : P_{st} \in G^+\}$. If $P^* \in \overline{G}$, then $P^* = \operatorname{argmin}\{\overline{c}(P_{st}) : P_{st} \in G\}$. Otherwise, $\overline{G} \leftarrow \overline{G} \cup P^*$.

- Coping with the size of the Subproblem
- Coping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations

- Coping with the size of the Subproblem
- Opping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - \rightarrow Disaggregate only if it yields recombinations

- Coping with the size of the Subproblem
- Coping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence

- Coping with the size of the Subproblem
- Coping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence

- Dual oscillations
- Tailing-off effect
- Primal degeneracy

- Coping with the size of the Subproblem
- Coping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence
 - Stabilization techniques
 - → Penalty functions & Smoothing

- Coping with the size of the Subproblem
- Opping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence
 - Stabilization techniques
 - → Penalty functions & Smoothing
 - → Disaggregations/Recombinations

- Coping with the size of the Subproblem
- Opping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence
 - Stabilization techniques
 - → Penalty functions & Smoothing
 - → Disaggregations/Recombinations (add waiting arcs)

- Coping with the size of the Subproblem
- Coping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence
 - Stabilization techniques
 - → Penalty functions & Smoothing
 - → Disaggregations/Recombinations (add waiting arcs)
 - Strategies for column generation
 - \rightarrow Build a global solution to the master at each iteration

- Coping with the size of the Subproblem
- Coping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence
 - Stabilization techniques
 - → Penalty functions & Smoothing
 - → Disaggregations/Recombinations (add waiting arcs)
 - Strategies for column generation
 - \rightarrow Build a global solution to the master at each iteration
 - \rightarrow Stage-by-stage approach: decreasing restriction/relaxation level

- Coping with the size of the Subproblem
- Coping with the size of the Master
 - → Preprocessing
 - → Master cleanup
 - → Disaggregate only if it yields recombinations
- Acceleration of column generation convergence
 - Stabilization techniques
 - → Penalty functions & Smoothing
 - → Disaggregations/Recombinations (add waiting arcs)
 - Strategies for column generation
 - \rightarrow Build a global solution to the master at each iteration
 - \rightarrow Stage-by-stage approach: decreasing restriction/relaxation level
- Combination with cut generation
 - → Lifting added variables

Outline

Extented Formulations

- Definitions
- Interests
- Coping with its large size
- Dynamic Row-and-Column Generation
 - Methodology
 - Practical issues
- 3 Large-scale application
 - Freight transport by rail in Russia

The freight car routing problem

[R.Sadykov et al, 2013]

Each **type of railcar** defines a commodity $c \in C$

Multi-commodity flow formulation

Variables

•
$$x_a \in \mathbb{N}$$
 — nb of cars using arc $a \in A_c$, $c \in C$

• $y_d \in \{0, 1\}$ — demand d is accepted or not

$$\begin{aligned} \max \sum_{c \in C} \sum_{a \in A_c} p_a \, x_a \\ \sum_{c \in C_q} \sum_{a \in A_{cd}} x_a \geq n_d^{\min} \, y_d & \forall d \\ \sum_{c \in C_q} \sum_{a \in A_{cd}} x_a \leq n_d^{\max} \, y_d & \forall d \\ \sum_{a \in \delta^-(v)} x_a - \sum_{a \in \delta^+(v)} x_a = b_v & \forall c \in C, v \in V_c \\ x_a \in \mathbb{N} & \forall c \in C, a \in V_c \\ y_d \in \{0, 1\} & \forall d \end{aligned}$$

LP-Solution approaches

- Direct: solving a multi-commodity flow problem using *Clp* (specifically modified)
- Standard Column Generation: a column is
 Option A: A full planning for a type of car (decomposition per commodity)

Option B: A in-tree into a sink

(decomposition per sink)

Option C: A path for origin to destination (decomposition per pair o-d)

Column Generation for Extended Formulation: using option A.

1'025 stations, up to 6'800 demands, 11 car types, 12'651 cars, and 8'232 sources \rightarrow 300 thousands nodes and 10 millions arcs.

 \leq 15 iterations, about 3% of the arc variables have been generated

An approach based on an extended formulation

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.
- With dynamic row-and-column generation, a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.
- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.
- With dynamic row-and-column generation, a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining generic ideas of
 - Restriction / Relaxation [Soumis et al]
 - Benders projection [Van Vyve & Wolsey, EJCO, 2013]
 - Dantzig-Wolfe dynamic generation.
- With dynamic row-and-column generation, a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.
- With dynamic row-and-column generation [M. Goycoolea et al 2013], a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.
- With dynamic row-and-column generation, a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

- An EASY WAY to bring-in combinatorial structure.
- Its size can be coped with by combining ideas of
 - Restriction / Relaxation
 - Benders projection
 - Dantzig-Wolfe dynamic generation.
- With dynamic row-and-column generation, a small % of variables and constraints are needed; hence it scales up to real-life applications.
- Is well suited for efficiency enhancement features: cuts on lifted variables, Dynamic Progr. state-space-relax., red.-cost-fixing.