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Take away messages

An approach based on an extended formulation

An EASY WAY to bring-in combinatorial structure.

Its size can be coped with by combining ideas of
Restriction / Relaxation,
Benders projection, and
Dantzig-Wolfe dynamic generation.

With dynamic generation, a small % of variables and constraints
are needed; hence it scales up to real-life applications.

Is well suited for efficiency enhancement features: cuts on lifted
variables, Dynamic Progr. state-space-relax., red.-cost-fixing.
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Extented Formulations

Formulation

Combinatorial Optimization Problem

(CO)≡min{c(s) : s ∈ S}
where S is the “discrete” set of feasible solutions.

Formulation

A polyhedron P= {x ∈ Rn : Ax≥ a} is a formulation for (CO) iff
min{c(s) : s ∈ S} ≡ min{cx : x ∈ PI = P∩Nn}.
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Extented Formulations

Alternative formulations

A formulation is typically not unique

P and P′ can be alternative formulations for (CO) if
(CO) ≡ min{cx : x ∈ P∩Nn} ≡ min{c′x′ : x′ ∈ P′ ∩Nn′}
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warning: can expressed in different variable-spaces.

François Vanderbeck Extended Formulations & Column Generation: Synergies 7 / 70



Extented Formulations

Quality of Formulations

Stronger formulation (in the same space)

Formulation P′ ⊆ Rn is a stronger than P⊆ Rn if P′ ⊂ P. Then,
min{cx′ : x′ ∈ P′} ≥min{cx : x ∈ P}
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Extented Formulations

Ideal Formulation

The Convex hull of an IP set, PI

conv(PI) is the smallest closed convex set containing PI .
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conv(PI) is an ideal polyhedron / formulation

If PI is defined by rational data, conv(PI) is a polyhedron.
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Extented Formulations

Extended Formulation

Given an initial compact formulation:
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Extented Formulations

Extended Formulation
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Extented Formulations

Extended Formulation
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Extented Formulations

Extended Formulation

w

1 2 3 4

1

2

3

5

(5)

(4)

x1

1

2

3

5

x2

François Vanderbeck Extended Formulations & Column Generation: Synergies 13 / 70



Extented Formulations

Projection

The Projection

of Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} on the x-space is:
projx(Q) := {x ∈ Rn : ∃ w ∈ Re such that (x, w) ∈ Q}.
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Extented Formulations

Projection

The Projection

of Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} on the x-space is:
projx(Q) := {x ∈ Rn : ∃ w ∈ Re such that (x, w) ∈ Q}.

Farka’s Lemma

Given x̃,
{w ∈ Rn

+ : Hw≥ (d−G x̃ )} 6= ;
if and only if

∀v ∈ Rm
+ : vH ≤ 0, v(d−G x̃ ) ≤ 0.

Hence, a polyhedral description of the
projection in the x-space is:

projx(Q) = {x ∈ Rn : vj(d−Gx) ≤ 0 j ∈ J}

{vj}j∈J , exteme rays. of {v ∈ Rm
+ : vH ≤ 0}.
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Extented Formulations

Extended Formulations

An extended formulation for an IP set PI ⊆ Nn

is a polyhedron Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} such that
PI = projx(Q)∩Nn.
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Extented Formulations

Tight Extended Formulations

A tight extended formulation for an IP set PI ⊆ Nn

is a polyhedron Q= {(x, w) ∈ Rn+e : Gx+Hw≥ d} such that
conv(PI) = projx(Q).
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Extented Formulations

IP Extended Formulations

An extended IP-formulation for an IP set PI ⊆ Nn

is an IP-set QI = {(x, w) ∈ Rn×Ne : Gx+Hw≥ b} s.t.
PI = projxQI.
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Extented Formulations

Reformulation

Change of variables: x=T w
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Extented Formulations

Reformulation: a special case of extended formulation

An extended formulation based on a change of variables: x= Tw.

Q= {(x, w) ∈ Rn+e : Tw = x

Hw ≥ h}.

Then,

projx(Q) = T(W) := {x= Tw ∈ Rn : Hw≥ h, w ∈ Re
︸ ︷︷ ︸

w∈W

}.

A reformulation for an IP-set PI ⊆ Nn

is a polyhedron W along a linear transformation, x= Tw, s.t.
PI =T(W)∩Nn

A IP-reformulation for an IP-set PI ⊆ Nn

is an IP-set WI =W ∩Ne along a linear transformation, x= Tw, s.t.,
PI = T(WI)
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Extented Formulations

Minkowski’s representation: a special case of reformulation

Polyhedron conv(PI) can be defined by its extreme points and rays:

Q= {(x,λ,µ) ∈ Rn×R|G|+ ×R
|R|
+ : x=

∑

g∈G

xgλg+
∑

r∈R

vrµr,
∑

g∈G

λg = 1}

change of variables: x= Xλ+Vµ.
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Extented Formulations

Example: Steiner Tree
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Extented Formulations

Example: Steiner Tree
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Special cases:
T = {i} : shortest path from r to i
T = V \ {r} : minimum cost spanning tree
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Extented Formulations

Steiner Tree: Arc flow formulation

Variables

xij ∈ {0, 1}— arc (i, j) is used or not

yij ∈ N— number of connections going through (i, j)
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Extented Formulations
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Extented Formulations

Steiner Tree: Multi commodity flow formulation

Variable splitting

wt
ij ∈ {0, 1}— arc (i, j) is used to connect terminal t

yij =
∑

k wt
ij — defines a linear transformation

min
∑

(i,j)∈A

cijxij

∑
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rj = 1 t ∈ T
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ij = 1 i= t ∈ T
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j∈V−(i)

wt
ji−
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j∈V+(i)

wt
ij = 0 i ∈ V \ {r, k}, t ∈ T

wt
ij ≤ xij (i, j) ∈ A, t ∈ T

w ∈ R|K|×|A|+ ,

x ∈ {0, 1}|A|
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Extented Formulations

Example: Steiner Tree
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Extented Formulations

Steiner Tree: Network design formulation

projection in the x-space

min
∑

(i,j)∈A

cijxij

∑

(i,j)∈δ+(S)

xij ≥ 1 S 3 r, T \ S 6= ;

x ∈ {0, 1}|A|,
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Note: This projection onto the x space

has the same LP value than the multi-commodity flow formulation

is better than the initial compact aggregate flow formulation.
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Extented Formulations

Ways to obtain extended formulations

Variable Splitting
Multi-Commodity Flow: xij =

∑

k xk
ij

Unary expansion: x=
∑u

q=0 q wq,
∑u

q=0 wq = 1, w ∈ {0, 1}u+1

Binary expansion: x=
∑logbuc

p=0 wp, , w ∈ {0, 1}log u

Dynamic Programming Solver→ Network Flow LP [Martin et al]

Separation is easy→ Separation LP [Martin et al]

Reduced coefficent / basis reformulations [Aardal et al]

Union of Polyhedra [Balas]

. . .
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Extented Formulations

Unary expansion: Time-Indexed Formulation

Single machine scheduling problem (with integer data):

t

0 1 2 3 4 5 6

S3

3

S2

2

S1

1

Sj ≥ Si+ pi or Si ≥ Sj+ pj ∀ i, j

requires big M formulation: Sj ≥ Si+ pi−M(1− xij).

Change of variables: Sj =
∑

t
t wjt

with wjt = 1 iff job j starts at the beginning of [t, t+ 1].
∑

j∈J

wj0 = 1

∑

j∈J

wjt −
∑

j∈J

wj,t−pj
= 0 ∀t ≥ 1
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Extented Formulations

DP based reformulation: the knapsack example

max{
∑

i

pixi :
∑

i

aixi ≤ b, xi ∈ N}

DP Recursion: V(c) =maxi=1,...,n:c≥ai
{V(c− ai) + pi}

in LP form:

min V(b)

V(c)−V(c− ai) ≥ pi i= 1, . . . , n, c= ai, · · · , b

V(0) = 0

its Dual: “longest path problem”

0 1 2 3 4 5 6 7
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min V(b)

V(c)−V(c− ai) ≥ pi i= 1, . . . , n, c= ai, · · · , b

V(0) = 0

its Dual: “longest path problem”

max
∑n

j=1

∑b−ai
r=0 ciwic
∑

i wic = 1 c= 0
∑

i wic−
∑

i wi,c−ai
= 0 c= 1, · · · , b− 1

∑

i wi,c−ai
= 1 c= b

wic ≥ 0 i= 1, · · · , n; c= 0, · · · , b− ai
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Extented Formulations

DP based reformulation: Multi-Echelon Lot-Sizing

Variables

xe,t — production of intermediate product of echelon e in period t

se,t — stock of echelon e product at the end of period t

xe,t + se,t−1 = xe+1,t + se,t for e= 1, . . . , E− 1

xe,t + se,t−1 = dt + se,t for e= E

t

e= 1

e= 2

e= 3
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Extented Formulations

DP based reformulation: Multi-Echelon Lot-Sizing

Dominance property

∃ opt solution where xe,t · se,t−1 = 0 ∀e, t,⇒ production plan is a tree:

t

e= 1

e= 2

e= 3

Dynamic programming

State (e, t, a, b) corresponds to accumulating at echelon e in period t a
production covering exactly the demand of periods a, . . . , b.

V(e, t, a, b) = min{V(e, t+ 1, a, b),

min
l=a,...,b

{V(e+ 1, t, a, l) + ck
et Dk

al + f k
et +V(e, t+ 1, l+ 1, b)}}
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Extented Formulations

DP based reformulation: Multi-Echelon Lot-Sizing

DP Recursion:

V(e, t, a, b) = min{V(e, t+ 1, a, b),

min
l=a,...,b

{V(e+ 1, t, a, l) + ck
et Dk

al + f k
et +V(e, t+ 1, l+ 1, b)}}

in LP form:

max V(1, 1, 1, T)

V(e, t, a, b) ≤ V(e, t+ 1, a, b) ∀e, t, a, b

V(e, t, a, b) ≤ V(e+ 1, t, a, l) + ck
et Dk

al + f k
et +V(e, t+ 1, l+ 1, b) ∀e, t, a, b, l

V(E+ 1, t, a, b) = 0 ∀t, a, b

its Dual: flow on hyper-arcs
we,t,a,l,b = 1 if at echelon e in period t production covers demands
from period a to period l, while the rest of demand up to b, shall be
covered in the future.
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Extented Formulations

DP based reformulations

[Martin et al OR90] When a problem can be solved by dynamic programming,

V(l) = min
(J,l)∈A

{
∑

j∈J

V(j) + c(J, l)},

an extended formulation consist in modeling a decision tree in an hyper-graph

21

7

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

François Vanderbeck Extended Formulations & Column Generation: Synergies 35 / 70



Extented Formulations

Ways to obtain extended formulations

Variable Splitting
Multi-Commodity Flow: xij =

∑

k xk
ij

Unary expansion: x=
∑u

q=0 q wq,
∑u

q=0 wq = 1, w ∈ {0, 1}u+1

Binary expansion: x=
∑logbuc

p=0 wp, , w ∈ {0, 1}log u

Dynamic Programming Solver→ Network Flow LP [Martin et al]
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Extented Formulations
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Extented Formulations

Extended formulation: Interests

1 Improved formulation (better LP bound & rounding heuristic)

extra variables
↓

tighter relations,
linearisation

w

1 2 3 4

1

2

3

5

(5)

(4)

x1

1

2

3

5

x2

2 Simpler formulation (captures the combinatorial structure)
3 Direct use of a MIP-Solver (solved by standard tools)
4 Rich variable space (to express cuts or branching)

Vehicle routing: xa =
∑

l=0,...,C wa
l

wa
q = 1 if vehicle on arc a with load l,

∑

l

∑

a∈δ−(i)

lwa
l −
∑

l

∑

a∈δ+(i)

lwa
l = di

→ knapsack cover cuts.

i

l w_l

l w_l

d_i

[Uchoa]
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l −
∑

l

∑

a∈δ+(i)

lwa
l = di

→ knapsack cover cuts.

i

l w_l

l w_l

d_i

[Uchoa]
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Extented Formulations

Outline

1 Extented Formulations
Definitions
Interests
Coping with its large size

2 Dynamic Row-and-Column Generation
Methodology
Practical issues

3 Large-scale application
Freight transport by rail in Russia
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Extented Formulations

Coping with size: Related work on Multi-Route-VRP

[Macedo, Alves, Valerio de Carvalho, Clautiaux, Hanafi. EJOR2011]

Variables

wr
st — nb of vehicles using route r that starts in s and ends in t

0 1 2 3 4 5 6 7 8 9

w3,7

min
∑

rst

cr
st wr

st

∑

r3i,s,t

wr
st = 1 ∀order i

∑

rt

wr
0t = V

∑

r,t

wr
τt −

∑

r,s

wr
sτ = 0 ∀τ > 1

wr
st ∈ {0, 1} r, s, t
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Extented Formulations

Coping with size: Related work on Multi-Route-VRP

[Macedo, Alves, Valerio de Carvalho, Clautiaux, Hanafi. EJOR2011]

Relaxation

round-up start time: S = {s : dse= S}
round-down termination time: T = {t : btc= T}
define relaxed route arcs : wr

S,T =
∑

s∈S,t∈T wr
s,r.

0 1 2 3 4 5 6 7 8 9 10 11 12

w5,9

0 2 4 6 8 10 12

w6,8

Automatic Desaggragation Algorithm:
1 Solve problem over aggregate time periods.
2 Try to build a desaggregate feasible solution.
3 If it fails, desaggregate the time period of conflict.
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Extented Formulations

Mastering the size extended formulations

1 Use of a relaxation [Van Vyve & Wolsey MP06]

Drop some of the constraints
Aggregate commodities/nodes (down-rounding of durations)
Partial reformulation

→ static outer approximation of the extended formulation

2 Use of a restriction
define only some transitions in a dynamic program
up-rounding of durations

→ static inner approximation of the extended formulation

3 Projection: Benders’ cuts (applying Farkas Lemma)
→ dynamic outer approximation of the extended formulation

4 Dynamic generation: delayed column-and-row generation.
→ dynamic inner approximation of the extended formulation
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Dynamic Row-and-Column Generation

Outline

1 Extented Formulations
Definitions
Interests
Coping with its large size

2 Dynamic Row-and-Column Generation
Methodology
Practical issues

3 Large-scale application
Freight transport by rail in Russia
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Dynamic Row-and-Column Generation

Extended formulation based on a subproblem

Original formulation

[F]≡min
n

c x

A x ≥ a

B x ≥ b

x ∈ Nn
o

Subproblem

P≡
n

B x ≥ b

x ∈ R+n
o

PI = P∩Nn

Decomposition + SP Reformulation
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Extended formulation based on a subproblem

Original formulation

[F]≡min
n

c x

A x ≥ a

B x ≥ b

x ∈ Nn
o

Subproblem

P≡
n

B x ≥ b

x ∈ R+n
o

PI = P∩Nn

Assumption

Subproblem PI admits an IP-reformulation WI : ∃ polyhedron

W =
�

Hw≥ h, w ∈ R+e	

and a linear transformation T , such that

PI = projx(WI) = T(WI) =
n

x= Tw : Hw≥ h, w ∈ Ne
o
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Dynamic Row-and-Column Generation

Extended formulation based on a subproblem

Original formulation

[F]≡min
n

c x

A x ≥ a

B x ≥ b

x ∈ Nn
o

Extended reformulation

[R]≡min
n

c T w

A T w ≥ a

H w ≥ h

w ∈ Ne
o

Assumption

Subproblem PI admits an IP-reformulation, WI : ∃ polyhedron

W =
�

Hw≥ h, w ∈ R+e	

and a linear transformation, T , s.t.

PI = projx(WI) = T(WI) =
n

x= Tw : Hw≥ h, w ∈ Ne
o

Column-and-row generation

Dynamic generation of the variables of [R] by bunch, solving the
column generation subproblem of [M] over WI .

Adding rows that become active.
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Original formulation
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n

c x

A x ≥ a

B x ≥ b

x ∈ Nn
o

Extended reformulation

[R]≡min
n

c T w

A T w ≥ a

H w ≥ h

w ∈ Ne
o

Special case: Dantzig-Wolfe Reformulation

[M]≡min
n
∑

g∈G

c xg λg

∑

g∈G

A xg λg ≥ a

∑

g∈G

λg = 1

λ ∈ {0, 1}|G|
o

Applying Minkowski
x=
∑

g∈G xg λg

x1

x2

x3

x4

Column-and-row generation

Dynamic generation of the variables of [R] by bunch, solving the
column generation subproblem of [M] over WI .
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Dynamic Row-and-Column Generation

Restricted reformulations

S = {ws}s∈S: a subset of integer solutions to WI .
w = restriction of w to the non-zero components in S.
G = {g ∈ G : xg = T ws, s ∈ S}

[RLP]≡min
n

c T w

A T w ≥ a

H w ≥ h

w ∈ Re
+

o

[MLP]≡min
n
∑

g∈G

c xg λg

∑

g∈G

A xg λg ≥ a

∑

g∈G

λg = 1

λ ∈ R|G|+
o

Proposition 1

v[MLP] =∗ v[RLP] ≤ v[RLP] ≤ v[MLP] (∗) if tight reformulation
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Dynamic Row-and-Column Generation

Column-and-row generation procedure

Step 1: Solve [RLP] and collect the dual solution π associated
to constraints A T z≥ a, only.

Step 2: Obtain a solution w∗ of the pricing problem:

min{(c−πA) T w : w ∈WI}

Step 3: Compute the Lagrangian dual bound:
L(π)← π a+ (c−πA) T w∗, β ←max{β , L(π)}.
If v[RLP] ≤ β , STOP.

Step 4: Update S by adding solution w∗ and iterate

Proposition 2

Either vR
LP ≤ β (stopping condition),

or some of the components of w∗ have negative reduced cost in [RLP].
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Dynamic Row-and-Column Generation

Example: parallel machine scheduling

t

0 1 2 3 4 5 6

S3

3
S2

2
S1

1

[R]≡min
n
∑

jt

cjt wjt

T−pj
∑

t=0

wjt = 1 ∀j ∈ J

∑

j∈J

wj0 = m

∑

j∈J

wjt −
∑

j∈J

wj,t−pj
= 0 ∀t ≥ 1

wjt ∈ {0, 1} ∀j, t
o

[M]≡min
n
∑

g∈G

cg λg

∑

g∈G

T−pj
∑

t=0

wg
jt λg = 1 ∀j ∈ J

∑

g∈G

λg = m

λg ∈ {0, 1} ∀g ∈ G
o
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Dynamic Row-and-Column Generation

Machine scheduling: column-and-row generation

1 Solve the pricing subproblem (obtain a pseudo schedule)

t3 2 2

2 Disaggregate the subproblem solution in arc variables w.

0 1 2 3 4 5 6 7

w30 w23 w25

3 Add them to [R] along with the associated flow conservation
constraints.

4 Solve the restricted extended formulation [R] and update dual
prices.
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Dynamic Row-and-Column Generation

Machine scheduling: example of convergence

Iteration Subproblem solution

Initial solution

· · · · · ·

Final solution

Column generation for [M]

1

2

3

10

11

Column-and-row
generation for [R]

Subproblem solution
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Dynamic Row-and-Column Generation

Machine scheduling: recombination property

S = {w1, w2}

, ŵ ∈W \ conv(w1, w2)

t

w1

w2

3 2 2

5 1 1

0 1 2 3 4 5 6 7
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t

w1

w2

ŵ

3 2 2

5 1 1

5 2

0 1 2 3 4 5 6 7
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Dynamic Row-and-Column Generation

Machine Scheduling: numerical results

Averages on 25 instances (OR-library) with pj ∈ [1, . . . , 100].

Cplex 12.1 Colomn gen. Column-and-row
for [R] for [M] generation for [R]

m n cpu #it cpu #it vars cpu
1 25 7.1 337 0.9 124 3.8% 0.8
1 50 132.6 1274 24.2 246 2.7% 8.6
1 100 2332.0 8907 1764.4 455 1.9% 61.3
2 25 4.1 207 0.3 97 3.9% 0.2
2 50 109.2 645 5.7 173 2.8% 1.9
2 100 3564.4 2678 115.5 319 2.1% 14.9
4 50 18.7 433 1.5 167 3.0% 0.7
4 100 485.7 1347 27.9 295 2.2% 5.2
4 200 >2h 4315 409.4 561 1.5% 39.4

#it number of column generation iterations
vars percentage of w variables that are generated
cpu solution time, in seconds
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Dynamic Row-and-Column Generation

Machine Scheduling: results with stabilization

Colomn gen. Column-and-row
for [M] generation for [R]

m n #it cpu #it vars cpu
1 25 150 0.2 96 2.6% 0.4
1 50 354 3.8 172 1.7% 4.0
1 100 781 39.5 299 1.3% 31.1
2 25 142 0.2 87 3.3% 0.2
2 50 323 1.7 158 2.2% 1.6
2 100 715 17.3 275 1.6% 11.3
4 50 287 0.6 154 2.6% 0.6
4 100 638 8.7 264 1.8% 4.6
4 200 1553 87.7 481 1.2% 33.4
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Dynamic Row-and-Column Generation

Multi-item Multi-echelon Lot-sizing: extended formulation

xi
et, si

et — production/stock for item i at echelon e in period t
yi

et ∈ {0, 1}— setup for item i at echelon e in period t

coupling constraints:
∑

i

yi
et ≤ 1 ∀e, t

Subproblems

t

e= 1

e= 2

e= 3

DP based extended formulation as a flow in a hypergraph:

wi
e,t,a,l,b = 1 if at echelon e in period t production covers demands

for item i from period a to period l, while the rest of demand up to
b, shall be covered in the future.
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Dynamic Row-and-Column Generation

Multi-echelon lot-sizing: recombination property

S = {w1, w2}, ŵ ∈W \ conv(w1, w2)

w1

e= 1

e= 2

e= 3

w2

e= 1

e= 2

e= 3

ŵ

e= 1

e= 2

e= 3
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Dynamic Row-and-Column Generation

Multi-echelon lot sizing: results with stabilization

Averages for 10 instances are given

Colomn gen. Column-and-row
for [M] generation for [R]

E K T #it cpu #it vars cpu
2 10 50 126 1.7 29 0.57% 1.6
2 20 50 79 1.8 27 0.44% 3.1
2 10 100 332 38.0 43 0.15% 8.1
2 20 100 232 31.5 38 0.14% 20.0
3 10 50 187 11.8 38 0.16% 5.5
3 20 50 112 12.0 33 0.12% 9.8
3 10 100 509 454.5 49 0.02% 36.4
3 20 100 362 520.4 48 0.02% 103.1
5 10 50 296 62.6 48 0.10% 16.3
5 20 50 223 66.8 42 0.07% 34.3
5 10 100 882 4855.9 61 0.01% 134.0
5 20 100 362 4657.8 56 0.01% 386.1
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Dynamic Row-and-Column Generation

Outline

1 Extented Formulations
Definitions
Interests
Coping with its large size

2 Dynamic Row-and-Column Generation
Methodology
Practical issues

3 Large-scale application
Freight transport by rail in Russia
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Dynamic Row-and-Column Generation

Coping with the size of the Subproblem

1 Solve the compact formulation
Step 2: Obtain a solution x∗ of the pricing problem:

min{(c−πA) x : x ∈ PI}.

x1
1 2 3 4

1

2

3

5

(7)

(6) (5)

(4)

x2

W1

W2

W3
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Dynamic Row-and-Column Generation

Coping with the size of the Subproblem

1 Solve the compact formulation

(while no master constr. on w)

Step 2: Obtain a solution x∗ of the pricing problem:

min{(c−πA) x : x ∈ PI}.

Lifting set:

T−1(x) := {w ∈ Ne : T w= x; H w≥ h}

Solving a “preprocessed” feasibility MIP

x

W1

W2

W3

w = T x
−1

Lifting operator:

x∗→ w∗ ∈ T−1(x∗)

Breaking symmetries
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Dynamic Row-and-Column Generation

Coping with the size of the Subproblem

1 Solve the compact formulation (while no master constr. on w)

min{(c−πA) x : x ∈ X}.

x∗→ w∗ ∈ T−1(x∗)

2 Use a forward labelling Dynamic Program

s t

stage 0 stage 1 stage 2 stage 3 stage Nï1 stage N stage N+1

state
finalInitial

state

...

...

...

...

...

...

= state

= transition

Handling the underlying graph implicitly

3 Use successive approximations: restrictions or relaxations
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Dynamic Row-and-Column Generation

Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012
Dynamic Graph Generation for Shortest Path in Time Expanded Networks]

time

space

Train Timetabling
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Dynamic Row-and-Column Generation

Coping with the Subproblem: Related work

[F. Fischer, C. Helmberg, MP2012
Dynamic Graph Generation for Shortest Path in Time Expanded Networks]

Assumption

Capacity as only linking constraints⇒ reduced
cost = ca ≥ ca∀a ∈ A.

Proposition

Given a restricted graph G⊂ G and its
augmentation G+:

G+ = G∪δ(G)∪ SP(δ(G))
Let ĉa = ca for a ∈ G, and ca otherwise.
Let P∗ = argmin{ĉ(Pst) : Pst ∈ G+}.

If P∗ ∈ G, then P∗ = argmin{c(Pst) : Pst ∈ G}.
Otherwise, G← G∪P∗.
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Dynamic Row-and-Column Generation

Practical issues

1 Coping with the size of the Subproblem

2 Coping with the size of the Master

→ Preprocessing
→ Master cleanup
→ Disaggregate only if it yields recombinations

3 Acceleration of column generation convergence

Stabilization techniques

→ Penalty functions & Smoothing
→ Disaggregations/Recombinations

(add waiting arcs)

Strategies for column generation
→ Build a global solution to the master at each iteration

→ Stage-by-stage approach: decreasing restriction/relaxation level

4 Combination with cut generation
→ Lifting added variables
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Large-scale application

Outline

1 Extented Formulations
Definitions
Interests
Coping with its large size

2 Dynamic Row-and-Column Generation
Methodology
Practical issues

3 Large-scale application
Freight transport by rail in Russia
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Large-scale application

The freight car routing problem

[R.Sadykov et al, 2013]

initial car distribution transportation demand

François Vanderbeck Extended Formulations & Column Generation: Synergies 65 / 70



Large-scale application

Time-Expanded-Network

Each type of railcar defines a commodity c ∈ C

· · ·

· · ·

· · ·

station 1

station 2

station 3

· · · · · · · · · · · ·

· · · · · · · · · · · ·
waiting arc

empty transfer arc

loaded transfer arc

time
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Large-scale application

Multi-commodity flow formulation

Variables

xa ∈ N— nb of cars using arc a ∈ Ac, c ∈ C

yd ∈ {0, 1}— demand d is accepted or not

max
∑

c∈C

∑

a∈Ac

pa xa

∑

c∈Cq

∑

a∈Acd

xa ≥ nmin
d yd ∀d

∑

c∈Cq

∑

a∈Acd

xa ≤ nmax
d yd ∀d

∑

a∈δ−(v)

xa−
∑

a∈δ+(v)

xa = bv ∀c ∈ C, v ∈ Vc

xa ∈ N ∀c ∈ C, a ∈ Vc

yd ∈ {0, 1} ∀d
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Large-scale application

LP-Solution approaches

Direct: solving a multi-commodity flow problem using Clp
(specifically modified)

Standard Column Generation: a column is

Option A: A full planning for a type of car
(decomposition per commodity)

Option B: A in-tree into a sink
(decomposition per sink)

Option C: A path for origin to destination
(decomposition per pair o-d)

Column Generation for Extended Formulation: using option A.
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Large-scale application

Real-life instances

1’025 stations, up to 6’800 demands, 11 car types, 12’651 cars, and
8’232 sources→ 300 thousands nodes and 10 millions arcs.
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Direct
ColGen

ColGenEF

Horizon Direct ColGenEF
80 5m24s 1m52s
90 7m05s 1m47s

100 9m42s 2m19s
110 13m38s 3m11s
120 17m19s 3m57s
130 25m52s 5m03s
140 35m08s 5m25s
150 44m58s 7m02s
160 57m11s 8m19s
170 1h13m58s 10m53s
180 1h26m46s 12m16s

≤ 15 iterations, about 3% of the arc variables have been generated
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Large-scale application

Take away messages

An approach based on an extended formulation

An EASY WAY to bring-in combinatorial structure.

Its size can be coped with by combining ideas of
Restriction / Relaxation
Benders projection
Dantzig-Wolfe dynamic generation.

With dynamic row-and-column generation, a small % of variables
and constraints are needed; hence it scales up to real-life
applications.

Is well suited for efficiency enhancement features: cuts on lifted
variables, Dynamic Progr. state-space-relax., red.-cost-fixing.

Perspectives
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