
Efficient CCA Timed Commitments in Class Groups
Sri Aravinda Krishnan Thyagarajan

Friedrich Alexander Universität Erlangen-Nürnberg

Nürnberg, Germany

t.srikrishnan@gmail.com

Guilhem Castagnos

Université de Bordeaux, INRIA, CNRS

Talence, France

guilhem.castagnos@math.u-bordeaux.fr

Fabien Laguillaumie

LIRMM, Univ Montpellier, CNRS

Montpellier, France

Fabien.Laguillaumie@lirmm.fr

Giulio Malavolta

Max Planck Institute for Security and Privacy

Bochum, Germany

giulio.malavolta@hotmail.it

ABSTRACT
Timed commitments [Boneh and Naor, CRYPTO 2000] are the timed

analogue of standard commitments, where the commitment can

be non-interactively opened after a pre-specified amount of time

passes. Timed commitments have a large spectrum of applications,

such as sealed bid auctions, fair contract signing, fair multi-party

computation, and cryptocurrency payments. Unfortunately, all prac-

tical constructions rely on a (private-coin) trusted setup and do not

scale well with the number of participants. These are two severe

limiting factors that have hindered the widespread adoption of this

primitive.

In this work, we set out to resolve these two issues and propose

an efficient timed commitment scheme that also satisfies the strong

notion of CCA-security. Specifically, our scheme has a transparent

(i.e. public-coin) one-time setup and the amount of sequential com-

putation is essentially independent of the number of participants.

As a key technical ingredient, we propose the first (linearly) ho-

momorphic time-lock puzzle with a transparent setup, from class

groups of imaginary quadratic order. To demonstrate the appli-

cability of our scheme, we use it to construct a new distributed

randomness generation protocol, where 𝑛 parties jointly sample a

random string. Our protocol is the first to simultaneously achieve

(1) high scalability in the number of participants, (2) transparent

one-time setup, (3) lightning speed in the optimistic case where all

parties are honest, and (4) ensure that the output random string is

unpredictable and unbiased, even when the adversary corrupts 𝑛− 1
parties. To substantiate the practicality of our approach, we imple-

mented our protocol and our experimental evaluation shows that it

is fast enough to be used in practice. We also evaluated a heuristic

version of the protocol that is at least 3 orders of magnitude more

efficient both in terms of communication size and computation

time. This makes the protocol suitable for supporting hundreds of

participants.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484773

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
Timed commitments; Distributed randomness generation

ACM Reference Format:
Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabien Laguil-

laumie, and Giulio Malavolta. 2021. Efficient CCA Timed Commitments

in Class Groups. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 22 pages. https:

//doi.org/10.1145/3460120.3484773

1 INTRODUCTION
Timed commitments [17, 66] allow one to hide a message𝑚 into

a commitment 𝑐 , for a pre-specified amount of time T. Anyone
can recover the committed message 𝑚 by performing a long se-

quential computation, which terminates (approximately) after time

T. The security property of interest is that no amount of parallel

computation can give a significant advantage in opening the com-

mitment earlier than scheduled. Specifically, we are interested in

the strong notion of chosen commitment attack (CCA) security [49]:

The message𝑚 inside the commitment 𝑐 must be kept hidden until

time T, even if the adversary has access to an oracle that instantly

force-opens all commitments (except for the challenge commitment

𝑐).

Timed commitments [8, 19, 25, 45, 49, 57] and timed-based cryp-

tography [15, 40, 63, 74] have seen a recent surge of popularity in the

research community, due to their wide array of applications. Exam-

ples of interest include protocols for distributed randomness genera-

tion [68], contract signing [17], e-voting [57], multi-signature trans-

actions in cryptocurrencies [72], zero-knowledge arguments [44],

and non-malleable commitments [54], among many others.

Yet, there are pertinent questions about this time-based crypto-

graphic primitive that have remain unanswered, and consequently

affected its large scale adoption. We identify two such questions

that have been the major obstacles for the usage of timed com-

mitments (and more in general timed cryptography) in real-life

applications.

(1) Scalability of Sequential Computation. The major limiting

factor of the timed commitment construction is the computational

cost of forcefully opening the commitments. This mechanism is

inherited from solving the underlying time-lock puzzles [66]. This

https://doi.org/10.1145/3460120.3484773
https://doi.org/10.1145/3460120.3484773
https://doi.org/10.1145/3460120.3484773

drawback is significantly amplified in protocols where many users

participate, each with their own commitment. In these situations,

the computational effort needed to learn the output and terminate

the protocol might also growwith the total number of commitments.

We stress that this is not only an environmental concern, but also

constitutes an attack vector for denial-of-service: An attacker can

prolong or even prevent the termination of a protocol by flooding

the network with a massive amount of commitments, that all users

need to forcefully open.

This issue has motivated the development of homomorphic time-

lock puzzles [57] and delay encryption [25], which use additional

structural properties to solve this problem: At any point in time,

only one puzzle/ciphertext needs to be solved, regardless on the

number of participants. However, all of these works consider only

a weak notion of security (analogous to the CPA-security of en-

cryption schemes) and thus are not sufficient for many applications

where the stronger notion of CCA-security is required (more on

this later).

(2) Necessity of Trusted Setup. Virtually all efficient timed com-

mitment schemes rely on the sequentiality of computing squarings

over RSA groups. I.e. they assume that given a group element 𝐺 ,

the fastest algorithm to compute

𝐺
Squaring
−−−−−−−→ 𝐺2

T
mod 𝑁

takes (approximately) T steps given only 𝐺 and 𝑁 , where 𝑁 =

𝑝𝑞 is the product of two large primes. However note that if the

factorization of 𝑁 is known, then this assumption is simply false.

Thus many of these schemes [17, 57] are forced to rely on a trusted

party to sample the RSA modulus 𝑁 and not reveal its trapdoor (i.e.

the prime factors 𝑝 and 𝑞) to anyone. In practice, such trusted party

can be substituted by an execution of a multi-party computation

(MPC) protocol where a set of mutually distrustful jointly generate

the RSA modulus. Efficient protocols for this task exist [34, 41], but

their adoption is cumbersome and error prone. Furthermore, one

needs to assume that at least one of the parties involved in this

MPC protocol is behaving honestly.

A more elegant solution is to design schemes where the setup is

transparent (a.k.a. public-coin): The random coins of the setup algo-

rithm are not required to be kept hidden. This prevents catastrophic

failures of the system, since no one knows the trapdoor and it is

hard to compute a trapdoor even given the random coins. This is not

a concern unique to the timed commitment settings: A large body

of literature on succinct non-interactive arguments (SNARGs) aims

at designing efficient protocols with the same guarantees [9, 22, 73]

and there has been a strong push especially from the cryptocurrency

community advocating for the usage of transparent protocols [1, 2].

Surprisingly, for the case of timed commitments, constructing an

efficient scheme with a transparent setup is a largely unexplored

territory, even given their wide range of applications.

In summary, the large applicability of timed commitment schemes

calls for a scalable solution that satisfies strong security definitions
under minimal trust assumptions.

1.1 Our Contribution
Our main result is a new efficient construction of CCA timed com-

mitments with transparent setup, where the amount of sequential

computation does not scale with the number of users. We then

show how this scheme immediately implies an efficient and scal-

able distributed randomness generation protocol. We discuss our

contributions in more details below.

Efficient CCA Timed Commitments.We present a concretely

efficient construction of CCA timed commitments with a transpar-

ent setup algorithm. The scheme is equipped with a homomorphic

evaluation algorithm that allows us to avoid the computational

blowup in the number of users (the relation between CCA security

and homomorphic evaluation is discussed in details in Section 1.2).

Our construction can be conceptually broken down into three main

steps:

(1) Homomorphic Time-Lock Puzzle: We build a linearly homomor-

phic time-lock puzzle scheme over Z𝑞 , for some prime 𝑞, with

transparent (public-coin) setup from class groups of imaginary

quadratic order [20].

(2) Efficient Simulation-Extractable NIZKs: To make the scheme

CCA secure, we follow the Naor-Yung paradigm [59] and equip

the time-lock puzzle with a non-interactive zero-knowledge

(NIZK) proof 𝜋 certifying the well-formedness of the puzzle.

We then show how to build this proof 𝜋 that is concretely

efficient, has a transparent setup, and satisfies the strong notion

of straight-line simulation extractability.

(3) Cross-Group DLog Equality: In the process of instantiating the

efficient NIZK scheme we develop new techniques to efficiently

prove the equality of discrete logarithm between class groups

(of unknown order) and standard prime order groups, which

might be of independent interest.

One caveat of relying on class groups, as opposed to RSA groups,

is that the time needed to compute the setup is proportional to the

time parameter T (although the size of the public parameters is

independent of T). This seems inevitable since, as opposed to RSA

group, a trapdoor for the scheme is hard to compute even given

the random coins of the setup. This means that one needs to run a

one-time pre-processing phase (that lasts approximately T steps)

to compute the public parameters. As we will discuss later, this is

perfectly acceptable in many applications of interest.

The security of our time-lock puzzle (and consequently of our

CCA timed commitment) relies on the sequential squaring prob-

lem over class groups. Although somewhat less studied than the

sequential squaring over RSA groups, this problem has recently

received a lot of attention [3, 74] and even implemented for usage

in the Chia network [4].

Distributed Randomness Generation. We demonstrate the util-

ity of our timed commitment construction by presenting a dis-

tributed randomness generation protocol among 𝑛 parties, where

the parties jointly generate a 256-bit random string. Our protocol is

the first to simultaneously satisfying all of the following desirable

properties.

(1) All-but-one Corruption: The output random string is unpre-

dictable and unbiased even against an attacker that corrupts any

set of 𝑛−1 parties. The CCA security of our timed commitments

is crucial to achieve this guarantee.

(2) Optimistic Efficiency: In the optimistic case where all of the par-

ties behave honestly, the protocol is extremely efficient and no

sequential computation is done at all. In practice, the sequential

computation aspect would function as a deterrent to misbehave

and we expect most of the executions to terminate without the

need of force-open the commitments.

(3) Scalability: Even in the case where some party misbehaves, the

amount of sequential computation needed to terminate the pro-

tocol is always independent of the number of parties 𝑛. Thus,

increasing the number of parties does not significantly impact

the performance of our protocol, due to the homomorphic prop-

erties of our CCA timed commitment scheme.

(4) Transparent Setup: The protocol has a one-time transparent

(a.k.a. public-coin) setup and it requires otherwise minimal

interaction among parties.

To the best of our knowledge, no prior distributed randomness

generation protocol (even among the less practical ones) satisfied

all the above properties. We discuss these prior works in more detail

in Section 7.

Implementation and Experiments.We implement each of the

cryptographic techniques used in this work and our results show

that our CCA timed commitments are indeed practical. Due to the

strong security requirements, our NIZK proof involves a large num-

ber of exponentiations which results in running times of several

minutes on a single thread. This might be acceptable in applications

where users have a long time to commit. Moreover these exponen-

tiations can be parallelized which results in running times that are

under a minute. Finally, we implemented a heuristic approach using

a sigma protocol that we assume is simulation-extractable when

transformed into a NIZK proof. We gain significant efficiency im-

provements both in terms of bandwidth and running time, suitable

for any application.

1.2 Homomorphism vs CCA Security
An astute reader might wonder why the homomorphic property

of the commitments is not at odds with the CCA-security of the

primitive. It is well-known that fully-homomorphic encryption

cannot be CCA secure since one can simply evaluate some trivial

function (e.g. the identity) homomorphically over the challenge

ciphertext and query the resulting ciphertext to the decryption

oracle. However, for the case of commitments there is a subtle

aspect that one needs to consider: Our CCA timed commitments

come with a proof 𝜋 , which guarantees that the commitment is well-

formed. On the other hand, the homomorphic evaluation algorithm

operates only on the commitments

(𝑐1, 𝜋𝑖 , . . . , 𝑐𝑛, 𝜋𝑛)
Eval(𝑓 ,·)
−−−−−−−→ 𝑐

and in particular does not produce a validity proof 𝜋̃ for the evalu-

ated commitment 𝑐 . This immediately counters the attack outlined

above: Due to the missing proof, the open/decryption oracle will

refuse to open the commitment.

This however does not contradict the usefulness of the homo-

morphic evaluation procedure: Instead of force-opening all commit-

ments, we can compute the function of interest homomorphically

and then force-open (in time T) the single resulting commitment

𝑐 that contains the function output. Depending on the number 𝑛

of input commitments, the savings can be substantial. Note that

this is a purely efficiency-related consideration and does not affect

security, since all commitments can anyway be force-opened in

(parallel) time T.

2 TECHNICAL OVERVIEW
In this section we give a brief outline of the techniques that we de-

velop in this work. Our technical contributions can be conceptually

split into three main steps:

Step I: We construct a homomorphic time-lock puzzle from class

groups of imaginary quadratic order. The scheme has a transparent

setup and supports homomorphic evaluations of linear functions

over Z𝑞 , for some prime 𝑞.

Step II: We turn our time-lock puzzle into a CCA timed commit-

ment by augmenting it with a simulation-extractable NIZK. We

then propose a new special-purpose efficient NIZK scheme with a

transparent setup.

Step III: We show how our CCA timed commitments give raise to

a distributed randomness generation protocol that is concretely

efficient and satisfies many desirable properties.

2.1 Homomorphic Time-Lock Puzzles from
Class Groups

Known constructions of linearly homomorphic time-lock puzzles

(HTLP) [57] are very close to construction of linearly homomor-

phic encryption schemes [60]. A natural approach is thus to adapt

the linearly homomorphic CL encryption scheme [31], based on

class groups, and more precisely the so-called faster variant of

this scheme. In a nutshell, the CL cryptosystem uses the relations

between two class groups, one related to a negative number (a

discriminant) Δ𝑞 = −𝑝𝑞3, 𝐶𝑙 (Δ𝑞), and the other one related to the

square-free (a fundamental discriminant) Δ𝐾 = −𝑝𝑞, 𝐶𝑙 (Δ𝐾). This
makes it possible to build a subgroup of order 𝑞 generated by an

element 𝐹 where the discrete logarithm problem is easy, a situation

similar to the Paillier cryptosystem [60] which uses Z∗
𝑁 2

and Z∗
𝑁

and a subgroup of order 𝑁 . Then a plaintext 𝑚 is encrypted as

in “lifted” Elgamal denoted by (𝐺𝑟 , 𝑝𝑘𝑟 · 𝐹𝑚) defined in a cyclic

subgroup of 𝐶𝑙 (Δ𝑞). The faster variant of the CL scheme works by

defining 𝐺 and pk in a cyclic subgroup G ⊂ 𝐶𝑙 (Δ𝐾), and encrypt-

ing𝑚 as (𝐺𝑟 ,𝜓𝑞 (𝑝𝑘𝑟) · 𝐹𝑚) where 𝜓𝑞 lifts the element to 𝐶𝑙 (Δ𝑞)
where 𝐹 is defined. This is more suitable for our context: all the

NIZK proofs that we need will be defined in 𝐶𝑙 (Δ𝐾) resulting in

more efficient implementation as computation in this group is faster.

Furthermore, this makes it possible to use a sequential squaring

assumption in 𝐶𝑙 (Δ𝐾) where Δ𝐾 is fundamental, a setting simi-

lar to verifiable delay functions (VDF) [74] based on class groups.

However the security of this fast variant was not really analysed

in [31]. We revisit this scheme and show that one can build a HTLP

scheme (with linear homomorphism) from it, by setting the puzzle

𝑍 := (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚)

where 𝐻 := 𝐺2
T
is output by the puzzle setup. The solving proce-

dure simply computes 𝐻𝑟 via repeated squaring of 𝐺𝑟 and obtain

𝐹𝑚 , from which it is easy to extract𝑚 since the discrete logarithm

problem is easy in this subgroup. The security of our HTLP scheme

relies on the HSM𝐶𝐿 assumption (introduced later in [32]), an adap-

tation of Paillier’s DCR assumption in class groups, and a decisional

variant of the sequential squaring assumption. A technical point is

the fact that one can efficiently compute square roots in 𝐶𝑙 (Δ𝐾).
However we observe that this has only a marginal impact on the

parameters. We also show that our HTLP setup in the CL frame-

work is compatible with a transparent setup as other cryptographic

schemes based on class group. As a side contribution, we prove

that the CL fast variant is IND-CPA under the HSM𝐶𝐿 assumption,

which might be of independent interest.

2.2 CCA Timed Commitments
The notion of CCA security for timed commitments is analogous

to the one for encryption schemes: The committed message𝑚 in

𝑐 is required to be hidden (until time T) even if the distinguisher

has access to an oracle that instantly force-opens any commitment

𝑐 ′ ≠ 𝑐 . This models the fact that the adversary cannot maul a com-

mitment 𝑐 to produce a valid commitment 𝑐 ′ for a related message.

One canonical approach to lift schemes to CCA secure one is the

Naor-Yung paradigm [59]. Rephrased for timed commitments, the

idea is to augment a commitment TCom(𝑚) with

(TCom(𝑚), Enc(pk,𝑚), 𝜋)

where Enc is the encryption algorithm of a standard semantically

secure encryption scheme, pk is a public key placed in the common

public parameters, and 𝜋 is a proof that certifies that the commit-

ment and the encryption contain the same message. In the proof,

one can simulate the force-opening oracle by using the secret key sk
to recover𝑚 from Enc(pk,𝑚). Clearly in the actual scheme, the pub-

lic key pk must be sampled uniformly and without the knowledge

of the sk.

How to Sample 𝑝𝑘? The immediate first attempt to implement the

above paradigm would be to sample the public key pk := 𝐾 ∈ G as

an element of the class group 𝐶𝑙 (Δ𝐾) and use it to compute and

Elgamal encryption of𝑚 as Enc(pk,𝑚) := (𝐺𝑠 , 𝐾𝑠 ·𝐺𝑚). Unfortu-
nately this simple attempt runs into an immediate barrier: There is

no known algorithm to obliviously sample a well-formed public key

𝐾 . In other words, the only efficient method to sample an element

𝐾 (public key) in the cyclic subgroupG of the class group uniformly

at random is to first sample an integer 𝑘 (the secret key) and set

𝐾 := 𝐺𝑘 where 𝐺 is the generator of the group. This however re-

quires a fully trusted (private-coin) setup, which contradicts our

goal of having a transparent (public-coin) setup.

This difficulty seems to be curtailed to the class group settings, as

for standard prime-order groups
˜G we know of efficient algorithms

to sample a uniform
˜pk without knowing the corresponding secret

key. With this observation in mind, we can implement the above

paradigm bridging both groups G and
˜G. However, this needs to be

done with care, due to the structural differences among these (e.g.

the groups have different orders, and the order of G is unknown).

Recall that our time-lock puzzle is of the form

(𝑍1, 𝑍2) = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚) (1)

where (𝐺, 𝐹) are the generators of the respective subgroups and
𝐻 := 𝐺2

T
. As discussed above, the common random string is aug-

mented with a uniformly sampled public key 𝐾̃ ∈ ˜G, where ˜G is a

group of prime order 𝑞. Then the commitment is augmented with a

set of ciphertexts{
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖 · 𝐺̃𝑟𝑖)

}
𝑖∈[𝛼]

(2)

where 𝛼 := ⌊log𝑞⌋ + 1 is the bit-length of 𝑞, along with a proof 𝜋

that certifies that (𝑐𝑖,0, 𝑐𝑖,1) is indeed a “lifted” Elgamal encryption

of 𝑟𝑖 (the 𝑖-th bit of 𝑟), under the public key 𝐾̃ . Note that this is in

some sense equivalent to giving an encryption of𝑚: In particular,

in the proof, the knowledge of the secret keyDLog
𝐺̃
(𝐾̃) = ˜𝑘 , allows

the simulator to reconstruct 𝑟 and consequently recover 𝜓𝑞 (𝐻𝑟),
which in turn reveals 𝑚. Another subtlety to take into account

is that we assumed that the randomness space of the time-lock

puzzles matches exactly the order 𝑞. For the sake of this overview

we are going to ignore these subtleties and we refer the reader to

the technical sections for a precise choice of the parameters.

Efficient NIZK for Cross-Group Relations. In principle, this

solution works and the security analysis can be carried out with

minor modifications to the argument. However, this solution re-

quires an efficient NIZK to prove relations across two groups of

different order, one of which is unknown (the class group). Concrete

efficiency for this class of statements seems to be out of reach of

generic NIZK systems, let alone the ones with a transparent setup.

A recent work by Alamati et al. [?] dealt with NIZK proofs over

cross-group relations (involving RSA groups) in the standard model.

On the contrary, we deal with Class groups and use the random

oracle model to gain practical efficiency. Intuitively, we would like

to reduce the language that we want to prove to a bunch of logical

combination of discrete-logarithm equality proofs within the same
group, for which efficient sigma protocols exist [70].

To do this, we circle back to our original idea, except that now

we let the committer sample the public key 𝐾 in the class group,

instead of placing it in the common reference string. This way, we

can use the trivial algorithm that samples an integer 𝑘 and sets

𝐾 := 𝐺𝑘 . We also further augment the commitment with an bit-

wise encryption of the randomness 𝑟 (as defined above), except that

these ciphertext are computed in the class group, under the newly

sampled key 𝐾 . More concretely, our timed commitment consists

of the puzzle 𝑍 from (1), prime-order group ciphertexts in (2) and

𝐾,
{
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖 ·𝐺𝑟𝑖)

}
𝑖∈[𝛼]

where 𝑟𝑖 is the 𝑖-th bit of 𝑟 . Our NIZK proof must now certify that

the following conditions are met:

1) The public key 𝐾 is correctly sampled from the class group.

2) The class group ciphertexts {𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼] encrypt the bit de-
composition of the randomness 𝑟 used in 𝑍1.

3) Both 𝑖-th ciphertexts (𝑐𝑖,0, 𝑐𝑖,1) and (𝑐𝑖,0, 𝑐𝑖,1) either encrypt 0 or
1.

Statement 1) is a standard proof of knowledge of discrete logarithm

(over the class group), whereas 2) can be reduced to a proof discrete

logarithm equality (again over the class group) by running the

linear reconstruction in the exponent. Thus the only statement that

concerns two different groups is 3). Fortunately, we can split the

statement as

(𝑐𝑖,0, 𝑐𝑖,1) AND (𝑐𝑖,0, 𝑐𝑖,1) Encrypt 0
OR

(𝑐𝑖,0, 𝑐𝑖,1) AND (𝑐𝑖,0, 𝑐𝑖,1) Encrypt 1.

where each clause individually can again be reduced to a standard

proof of discrete logarithm equality (over the respective group). The

clauses are then combined via standard OR andAND composition of

sigma protocols. In some sense, the bridging across the two groups

is delegated to the AND composition of sigma protocols, which can

be implemented very efficiently (e.g. simply use the same challenge

in the sigma protocol). Finally, statements 1), 2), and 3) are again

stitched together via AND composition of sigma protocols.

2.3 Distributed Randomness Generation
We show the applicability of our CCA timed commitment by con-

structing a distributed randomness generation protocol: The proto-

col is run among 𝑛 parties (𝑃1, . . . , 𝑃𝑛), and the objective is to com-

pute a 256-bit random string 𝑟∗, that is, unbiased, and unpredictable
even in the presence of 𝑛 − 1 corrupted parties, that cooperate to

bias the distribution of 𝑟∗. Our protocol proceeds in three phases.

Commitment Phase: Each party 𝑃𝑖 locally samples a random integer

𝑥𝑖 ← Z𝑞 (where Z𝑞 is the message space of the timed commitments)

and generates a timed commitment (𝑐𝑖 , 𝜋𝑖) to such an integer. All

the timed commitments are generated with respect to a fixed time

parameter T, which conservatively bounds the duration of the

commitment phase. Parties broadcast their timed commitments to

other parties which locally verify the validity of each individual

commitment.

(Fast Termination) Opening Phase: Each party 𝑃𝑖 then reveals 𝑥𝑖

along with the random coins used in generating their timed com-

mitment (𝑐𝑖 , 𝜋𝑖). Parties can locally check if the opening is valid, by

recomputing the timed commitments of other parties themselves.

The final random value is computed as 𝑟∗ :=
∑
𝑖∈[𝑛] 𝑥𝑖 by each party.

This optimistic case, where everyone reveals their valid openings

does not require force opening of any of the timed commitments

and the final value 𝑟∗ is generated without the need to perform any

sequential computation.

(Slow Termination) Force-Opening Phase: In the event that one or

more parties do not reveal a valid opening for their commitments,

the other parties need to force-open their commitments to compute

𝑟∗. To avoid a computational blowup in the number of aborting

parties, this is done by evaluating the addition homomorphically
over the commitments

(𝑐1, . . . , 𝑐𝑛)
Eval(sum,·)
−−−−−−−−−→ 𝑐

where 𝑐 contains the output
∑
𝑖∈[𝑛] 𝑥𝑖 = 𝑟

∗
. Thus the output of the

protocol can be obtained by simply force-opening 𝑐 . This phase can

be further optimized by letting a single designated party (say 𝑃 𝑗)

compute the force-opening algorithm along with succinct proof

of correctness [63, 74]. The end result is that the revealing of com-

mitments is publicly verifiable even if one or many parties do not

reveal their valid openings.

Analysis. The resulting output 𝑟∗ is both unbiased and unpre-

dictable. In our analysis, we show a stronger statement: for an

adversary running in time at most T, 𝑟∗ is computationally indis-

tinguishable from a value sampled uniformly from Z𝑞 . For this
analysis to go through, the CCA security of the timed commitment

is crucial: Intuitively, it prevents the adversary from mauling hon-

estly generated commitments and choosing its own 𝑥𝑖 as a function

of the honestly committed values, which would ultimately result in

a biased distribution.

3 PRELIMINARIES
We denote by 𝜆 ∈ N the security parameter and by 𝑥 ← A(in; 𝑟)
the output of the algorithm A on input in using 𝑟 ← {0, 1}∗ as its
randomness. We often omit this randomness and only mention it

explicitly when required. The notation [𝑛] denotes a set {1, . . . , 𝑛}
and [𝑖, 𝑗] denotes the set {𝑖, 𝑖 + 1, . . . , 𝑗}. We model non-uniform
probabilistic polynomial time (PPT) adversaries as families of circuits

{A𝜆}𝜆∈N of size 𝜆𝑂 (1) with 𝜆𝑂 (1) input and output bits. We also

consider the parallel running time of (PRAM) adversaries that we

also model as circuits. The parallel time is determined by the depth

of the circuit and the total running time is determined by the total

size of the circuit.

Non-Interactive Zero-Knowledge Proofs. We make use of non-
interactive zero-knowledge (NIZK) proof [14] for a language L that

allows a prover to convince a verifier about the validity of a certain

statement stmt ∈ L without revealing any other information. We

require a NIZK proof to satisfy the properties of zero-knowledge,

and simulation soundness [67]. We recall the formal definitions

in Appendix A.

Homomorphic Time-Lock Puzzles. Time-lock puzzles [66] allow

one to hide a secret for a certain amount of time T. A homomorphic

time-lock puzzle additionally offers homomorphic evaluation of

several puzzles to generate a single puzzle. The notion was pro-

posed by Malavolta and Thyagarajan [57]. It consists of a setup

algorithm (PSetup), that takes as input a time hardness parameter

T and outputs public parameters of the system pp, a puzzle genera-
tion algorithm (PGen) that, on input the public parameter and a

message, generates the corresponding puzzle. One can then evalu-

ate homomorphically functions over encrypted messages (PEval)
and solve the resulting puzzle in time T (Solve). The security re-

quirement is that for every PRAM adversary A of running time

≤ T𝜀 (𝜆) the messages encrypted are computationally hidden. They

also propose efficient constructions for linear and multiplicative

homomorphism based on the sequential squaring assumption in

the RSA group. Below we recall the formal definitions from [57].

We recall the formal definitions in Appendix A.

Class Groups. Given a non square integer Δ < 0, called discrim-

inant, the imaginary quadratic order of discriminant Δ, denoted

OΔ is the ring Z[(Δ +
√
Δ)/2]. The associated class group 𝐶𝑙 (Δ)

is defined as the quotient of the group of (invertible fractionnal)

ideals of OΔ quotiented by the subgroup of principal ideals. This

a finite abelian group, with an efficiently computable group law

and a compact representation of elements. Basically, elements are

classes of ideals, with a unique reduced representative, which can

be represented by (𝑎, 𝑏), where 𝑎, 𝑏 ∈ N are smaller that

√︁
|Δ|, so

using log
2
(|Δ|) bits. For background on this algebraic object, see

[20].

Cryptography based on class groups was introduced by Buch-

mann and Williams in [21] using the hardness of the discrete

logarithm problem in 𝐶𝑙 (Δ). Another feature of class groups is

that given Δ, the order of 𝐶𝑙 (Δ) (called the class number) is only
known to be computable in sub-exponential time. Consequently,

these groups are good candidates to implement protocols based

on groups of unknown order. This fact has lead to a revival of

class groups based cryptography this last decade. First, class groups

have been used for decentralised protocols without trusted setup

(e.g., accumulators [56], Verifiable Delay Functions [74], Succinct

Non-Interactive Argument of Knowledge [16, 23, 52]). Furthermore,

a linearly homomorphic encryption scheme modulo a prime was

proposed in [31] using these groups.

4 HOMOMORPHIC TIME-LOCK PUZZLE
FROM CLASS GROUPS

We first revisit the setup algorithm of the so-called faster variant

of the CL linearly homomorphic encryption scheme introduced by

Castagnos and Laguillaumie in [31]. To start with, 𝑞 is a 𝜆-bit prime

describing the message space Z𝑞 , and we consider a fundamental

discriminant Δ𝐾 = −𝑝𝑞 whose size 𝜂 (𝜆) is chosen such that best

algorithm to compute the class number takes 𝑂 (2𝜆) time. The CL

setting considers another discriminant Δ𝑞 = 𝑞2Δ𝐾 and relies on

the relations between the class group 𝐶𝑙 (Δ𝑞) and the class group

𝐶𝑙 (Δ𝐾).
More precisely, two maps are crucial in the design of our time-

lock puzzle: First the injective map 𝜓𝑞 : 𝐶𝑙 (Δ𝐾) → 𝐶 (Δ𝑞) that
maps a class 𝑎 ∈ 𝐶𝑙 (Δ𝐾) to 𝑏𝑞 where 𝑏 ∈ 𝐶𝑙 (Δ𝑞) is the class of the
ideal 𝐼 ∩ OΔ𝑞 where 𝐼 is a representative ideal (prime to 𝑞) of the

class 𝑎. The other one is the surjective map 𝜑𝑞 : 𝐶𝑙 (Δ𝑞) → 𝐶 (Δ𝐾)
which maps the class 𝑎 ∈ 𝐶𝑙 (Δ𝑞) to the class of 𝐼OΔ𝐾 where 𝐼 is a

representative ideal (prime to 𝑞) of the class 𝑎. Note the important

properties: for all 𝑎 ∈ 𝐶𝑙 (Δ𝐾), 𝜑𝑞 (𝜓𝑞 (𝑎)) = 𝑎𝑞 and for all 𝑎 ∈
𝐶𝑙 (Δ𝑞), 𝜓𝑞 (𝜑𝑞 (𝑎)) = 𝑎𝑞 . See [31] for details and algorithms to

compute these maps.

The kernel of 𝜑𝑞 is a subgroup of 𝐶𝑙 (Δ𝑞) of order 𝑞 where the
discrete logarithm problem is easy. A canonical generator of this

subgroup is the class 𝐹 ∈ 𝐶𝑙 (Δ𝑞) represented by (𝑞2, 𝑞). We de-

note SolveDL the polynomial time algorithm that computes discrete

logarithms in basis 𝐹 (cf. [31, Fig. 2]).

Castagnos and Laguillaumie choose the primes 𝑝 and 𝑞 such that

𝑝𝑞 ≡ −1 mod 4 and 𝑞 is not a square modulo 𝑝 (in other words, the

Legendre symbol (𝑞/𝑝) = −1). This ensures that the subgroup of

squares of𝐶𝑙 (Δ𝐾) has odd (unknown) order 𝑠 which is half the class
number. An upper bound 𝐵 on 𝑠 can be computed using the class

number formula (cf [58]). It will be needed to sample exponents

uniformly. More precisely, exponents will be sampled in Z𝑞̃ where

𝑞 > 2
𝜆𝐵 is a prime. The reason why we need to use a prime number

will become clear in our construction of CCA timed commitments.

We will work with a cyclic subgroup G ⊂ 𝐶𝑙 (Δ𝐾), generated by

a random square 𝐺 of 𝐶𝑙 (Δ𝐾) (such an element can be efficiently

generated by generating an ideal of OΔ𝐾 above a random splitting

prime, cf [48, Subsection 3.1]). We denote 𝑠 the (unknown) order of

G which is a divisor of 𝑠 . For large 𝑞 we can assume that gcd(𝑠, 𝑞) =
1.

In 𝐶𝑙 (Δ𝑞), we will work with a cyclic subgroup Γ of the squares

of𝐶𝑙 (Δ𝑞) generated by 𝛾 where 𝛾 := 𝛾𝑞𝐹 with 𝛾𝑞 = 𝜓𝑞 (𝐺). We thus

have that Γ is of order 𝑞𝑠 and satisfy Γ ≃ Γ𝑞 × ⟨𝐹 ⟩, where Γ𝑞 = ⟨𝛾𝑞⟩
is the subgroup of 𝑞−th powers, Γ𝑞 := {𝑎𝑞, 𝑎 ∈ Γ}. The HSM𝐶𝐿
assumption (introduced in [32], cf Definition B.3) states that given

an element 𝛿 of Γ it is hard to tell if 𝛿 ∈ Γ𝑞 or not. It can be seen as

an adaptation of Paillier’s DCR assumption in the CL setting.

The class group generator CGGen depicted in Fig. 1 outputs

all these parameters: G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞. Note that this is a public coin
setup: the seeds of the probabilistic prime generators to compute

𝑝, 𝑞 and 𝐺 are published.

The fast variant of the CL encryption scheme that we consider

is described in Appendix C. As a side contribution, we prove in

Theorem C.1 that with a slight modification of the definition of

𝐺 , the indistinguishability of the scheme holds under the HSM𝐶𝐿

assumption (the security of this variant was not really analysed in

[31]).

Our new homomorphic time-lock puzzle from class group is

depicted in Figure 2. The setup consists in running CGGen and

computing 𝐻 := 𝐺2
T
. Then the puzzle is

𝑍 := (𝑍1, 𝑍2) := (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚)

Note that 𝑍2 ∈ Γ and 𝜓𝑞 (𝐻𝑟) is an element of Γ𝑞 . As a result,

retrieving 𝐹𝑚 from 𝑍2 corresponds to solving the computational

subgroup decomposition problem Γ ≃ Γ𝑞 × ⟨𝐹 ⟩ associated to the

HSM𝐶𝐿 assumption. This is done when solving the puzzle, by com-

puting𝜓𝑞 (𝐻𝑟) as𝜓𝑞 ((𝐺𝑟)2
T), and then retrieving𝑚 from 𝐹𝑚 using

the SolveDL algorithm. The homomorphic property of the scheme

follows from the Elgamal structure of the puzzle and the fact that

𝜓𝑞 is an homomorphism.

CGGen(1𝜆, 𝑞): On input the security parameter 1
𝜆
, and a 𝜆

bits prime 𝑞 do the following:

• Let 𝜇 be the bit size of 𝑞. Pick 𝑝 a 𝜂 (𝜆) − 𝜇 bits prime such

that 𝑝𝑞 ≡ −1 (mod 4) and (𝑞/𝑝) = −1
• Δ𝐾 := −𝑝𝑞, Δ𝑞 := 𝑞2Δ𝐾
• Compute 𝐵 an upper bound on the order of 𝐶𝑙 (Δ𝐾)
• Pick a random prime 𝑞 ∈ [2𝜆𝐵, 2𝜆+1𝐵]
• Generate a random square 𝐺 ∈ 𝐶𝑙 (Δ𝐾)
• Compute 𝛾𝑞 = 𝜓𝑞 (𝐺)
• Set 𝐹 the class (𝑞2, 𝑞) in 𝐶𝑙 (Δ𝑞)
• Set 𝛾 := 𝛾𝑞 · 𝐹 and G = ⟨𝐺⟩
• Output pp := (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)

Figure 1: Class Group Generator

Analysis. Intuitively, from the structure of 𝑍2, the puzzle hides𝑚

under the HSM𝐶𝐿 assumption for adversaries that cannot distin-

guish 𝜓𝑞 ((𝑍1)2
T) from random. In the following we thus recall a

definition of a strong sequential squaring assumption, which states

that knowing of the group structure does not help to break the

sequentially of the squaring operation, and analyse it in the context

of class groups.

Definition 4.1 (Strong Seqential Sqaring Assumption

([57])). Let 𝜆 ∈ N,𝑞 be a 𝜆-bit prime, and (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) the output
of CGGen(1𝜆, 𝑞) and T(·) be a polynomial. Then there exists some
0 < 𝜀 < 1 such that for every polynomial-size adversary (S1,S2) =
{(S1,S2)𝜆}𝜆∈N where the depth of S2 is bounded from above by
T𝜀 (𝜆), there exists a negligible function negl(·) such that

PSetup(1𝜆, 1T, 𝑞): On input the security parameter 1
𝜆
, the

time parameter 1
T
, and a 𝜆 bits prime 𝑞 do the following:

• Run CGGen(1𝜆, 𝑞) to get (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)
• Set 𝐻 := 𝐺2

T

• Output pp := (𝐺,𝐻, 𝐹, 𝑞)
PGen(pp,𝑚): On input public parameters pp = (𝐺,𝐻, 𝐹, 𝑞)
and a message𝑚, do the following:

• Sample 𝑟 ← Z𝑞̃
• Output 𝑍 := (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚)
PEval({𝑍1, . . . , 𝑍𝑛}): On input 𝑍𝑖 = (𝑈𝑖 ,𝑉𝑖) for all 𝑖 , do the

following:

• Compute 𝑈̃ :=
∏𝑛
𝑖=1𝑈𝑖 and 𝑉̃ =

∏𝑛
𝑖=1𝑉𝑖

• Output 𝑍 ∗ := (𝑈̃ , 𝑉̃)
Solve(𝑍): On input 𝑍 = (𝑈 ,𝑉), do the following:

• Compute 𝜔 := 𝑈 2
T

• Output SolveDL (𝑉 ·𝜓𝑞 (𝜔)−1)

Figure 2: Homomorphic Time-Lock Puzzle from Class Group

Pr


𝑏 ′ = 𝑏

������������

𝜏 ← S1 (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞,T(𝜆))
𝑥 ← Z𝑞̃ ;𝑋 := 𝐺𝑥

𝐻0 := 𝑋
2
T(𝜆)

𝑦 ← Z𝑞̃ ;𝐻1 := 𝐺
𝑦
;

𝑏 ← {0, 1}
𝑏 ′ ← S2 (𝑋,𝐻𝑏 , 𝜏)


≤ 1

2

+ negl(𝜆)

Computational versions of the sequential squaring assumption

have been used within class groups in the context of VDF [74]. In

such a setting, the factorization of the discriminant Δ𝐾 is usually

public. As a consequence one can efficiently compute square roots

in G ⊂ 𝐶𝑙 (Δ𝐾) using an algorithm from Lagarias [51], while it

is not possible in Z/𝑛Z when 𝑛 is an RSA modulus of unknown

factorization. From [36, Prop. 3.11], there are two elements of order

dividing 2 in𝐶𝑙 (Δ𝐾), one is the neutral element, and the other one,

𝜖 has order exactly 2 and it is not a square in our setting where the

subgroup of squares has odd order. As the order 𝑠 of G is odd, each

element of G has at least a square root 𝑆 ∈ G. The other one, 𝑆 · 𝜖
is not a square so is not in G. In other word, each element of G as a

unique square root in G.
For our decisional problem, we can use these facts to implement

a meet in the middle attack. Namely, from a challenge, 𝑋,𝐻𝑏 , we

can iteratively compute 𝑋0 := 𝑋,𝑋1 := 𝑋 2, 𝑋2 := 𝑋 4, . . . , and in

parallel 𝑋𝑡 := 𝐻𝑏 , 𝑋𝑡−1 the unique square root of 𝑋𝑡 in G, and

so on. If both ends meet, it means that 𝐻𝑏 is equal to 𝑋 2
T (𝜆)

. In

practice, this is not a huge improvement, because of the complexity

of the square root algorithm, which involves computations of square

roots modulo the prime factors of the discriminant and a reduction

procedure of ternary quadratic forms due to Gauss. This is far more

expensive than squaring in G, and in practice our implementation

using the setting of Section 8 suggests that we gain only a 5% time

improvement using this strategy, we means that one has to increase

T by 5%.

Recent improvements have been obtained to partially parallelize

squarings in class groups with dedicated hardware in [75], which

result in a speedup by a factor 2 compared to a standard CPU. Again,

computing square roots in class group is far more intricate, but

similar techniques might apply to a certain extent.

To conclude, the fact that one can compute square roots only

affects marginally the time parameter of the scheme. We now state

the theorem that ensures the security of our HTLP.

Theorem 4.2. If the strong sequential squaring and HSM𝐶𝐿 as-
sumption hold for the output of the CGGen generator, then the ho-
momorphic time-lock puzzle from Figure 2 is secure.

Proof. Let’s consider a sequence of hybrid games.

Hyb
0
It is the original game.

Hyb
1
In this hybrid game, the only change is the second component

of the time-lock puzzle challenge 𝑍★ = (𝑍★
1
, 𝑍★

2
) which is replaced

by 𝑍★
2
= 𝜓𝑞 (𝐻★) · 𝐹𝑠𝑏 where 𝐻★ = 𝐺𝑦 for 𝑦 picked uniformly at

random in Z𝑞̃ .

Hyb
2
Again, the second component of the time-lock puzzle chal-

lenge 𝑍★ = (𝑍★
1
, 𝑍★

2
) is modified. It is computed as 𝑍★

2
:= 𝛾𝑟 · 𝐹𝑠𝑏

for 𝑟 uniformly at random in Z𝑞𝑞̃ .

We now analyse the transitions:

Hyb
0
≈𝑐 Hyb1 A distinguisher between the two hybrids breaks

the strong sequential squaring assumption. Indeed, let’s construct

(S1,S2) as follows: S1 receives (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞,T(𝜆)) and com-

putes 𝐻 = 𝐺2
T(𝜆)

(which he can do since he is not bounded by T),
feeds A1 with (𝐺,𝐻, 𝐹, 𝑞) and waits for its output (𝜏, 𝑠0, 𝑠1), which
he forwards as his output for his own challenger. Then S2 receives
(𝑋★, 𝐻★, 𝜏). Now S2 runs A2 with 𝑍

★ = (𝑋★,𝜓𝑞 (𝐻★) · 𝐹𝑠𝑏) for
a random bit 𝑏. When A2 outputs his bit 𝑏 ′, S2 outputs the bit

𝑏 == 𝑏 ′. Let us now analyse the situation:

• Either 𝐻★
equals to 𝑋★2

T(𝜆)
and in this case the challenge 𝑍★ =

(𝐺𝑥 ,𝜓𝑞 (𝐻𝑥) · 𝐹𝑠𝑏) is distributed as in Hyb
0
;

• or 𝐻★
is random in G and in this case, 𝑍★ is distributed as in

Hyb
1
.

It means that any distinguisher between Hyb
0
and Hyb

1
will trans-

late into an adversary against the strong sequential squaring as-

sumption.

Hyb
1
≈𝑐 Hyb2 A distinguisher between Hyb

1
and Hyb

2
can be

turned into an attacker against HSM𝐶𝐿 . Let us construct such an

attacker D: he takes as input (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) and 𝛿 . He computes

𝐻 = 𝐺2
T(𝜆)

and feeds A1 with (𝐺,𝐻, 𝐹, 𝑞) and waits for its output

(𝜏, 𝑠0, 𝑠1). NowD runsA2 with 𝑍
★ = (𝐺𝑟 , 𝛿 · 𝐹𝑠𝑏) for a random bit

𝑏 and a random 𝑟 in Z𝑞̃ . When A2 outputs his bit 𝑏
′
, S2 outputs

the bit 𝑏 == 𝑏 ′. We now have:

• Either 𝛿 = 𝛾𝑥𝑞 with 𝑥 ← Z𝑞̃ . In this case, 𝛿 = 𝜓𝑞 (𝐺𝑥) so 𝑍★ is

distributed as in Hyb
1
;

• Or 𝛿 = 𝛾𝑦 with 𝑦 ← Z𝑞𝑞̃ so Z★ is distributed as in Hyb
2
.

It means that any distinguisher between Hyb
1
and Hyb

2
will trans-

late into an attacker against the HSM𝐶𝐿 assumption, which con-

cludes the proof. □

Expanding Message Space. Our HTLP can be generalized into a

scheme with message space Z𝑞𝑡 using Damgård-Jurik’s ideas [37]

for Paillier’s encryption. This generalization was shown in [72]

to be useful in constructing efficient verifiable timed signatures
which has applications in privacy preserving timed payments in

cryptocurrencies.

Indeed, starting from a discriminant Δ𝑞 = 𝑞2𝛿𝐾 , it is possible to

extend the parameters into a scheme with message space Z𝑞𝑡 by

considering the new discriminant Δ𝑞𝑡 = 𝑞
2
𝑡
Δ𝑘 , and 𝐹𝑡 := (𝑞2𝑡 , 𝑞)

in 𝐶𝑙 (Δ𝑞𝑡) which is now of order 𝑞𝑡 . The puzzle becomes 𝑍 :=

(𝐺𝑟 ,𝜓𝑞𝑡 (𝐻𝑟) · 𝐹𝑡𝑚) (using the appropriate mappings between class

groups) and it remains to adapt the SolveDL à la Pohlig-Hellman as

suggested in [31] and analysed in [38]. In this setting, a message is

of size 𝑡 log(𝑞) bits whereas the ciphertext is of size 2 log(𝑝) + (2𝑡 +
2) log(𝑞) so that the expansion factor tends to 2 when 𝑡 grows to

infinity.

5 CCA TIMED COMMITMENTS
In the following we introduce the notion of CCA timed commit-

ments and we propose a new construction.

5.1 Definitions
We recall the definition of CCA timed commitment, an object re-

cently introduced by Katz et al. [49]. Our syntax heavily borrows

from their definitional framework.

Definition 5.1 (Timed Commitments). A timed commitment
scheme consists of PPT algorithms (TSetup, TCom, TVfy, TForceOp)
that are defined below:

TSetup(1𝜆, 1T): the setup algorithm on input the security parameter

1
𝜆 and the time parameter 1T returns a common reference string crs.
TCom(crs,𝑚): the commitment algorithm takes as input a common
reference string crs and a message𝑚 and returns a commitment 𝑐 and
a proof 𝜋 .
TVfy(crs, 𝑐, 𝜋): the verification algorithm takes as input a common
reference string crs, a commitment 𝑐 , and a proof 𝜋 , and returns a bit
𝑏 ∈ {0, 1}.
TForceOp(crs, 𝑐): the force opening algorithm on input a common
reference string crs and a commitment 𝑐 , returns a message𝑚.

As a note on efficiency, all algorithms should run in time poly-

nomial in the security parameter and poly-logarithmic in T, except
for the TForceOp and (possibly) the TSetup algorithms. For correct-

ness, we require that for all 𝜆 ∈ N, all time parameters T ∈ N, and
all messages𝑚 it holds that

Pr[TForceOp(crs, 𝑐) =𝑚] = 1 and Pr[TVfy(crs, 𝑐, 𝜋) = 1] = 1

where crs ← TSetup(1𝜆, 1T) and (𝑐, 𝜋) ← TCom(crs,𝑚). We

define the properties perfect binding, verifiability and CCA security

in the following.

Definition 5.2 (Perfect Binding). A timed commitment
(TSetup, TCom, TVfy, TForceOp) is perfectly binding if for all 𝜆 ∈ N,
all time parameters T ∈ N, all (𝑚0,𝑚1) such that𝑚0 ≠𝑚1, and all
(𝑟0, 𝑟1) ∈ {0, 1}2𝜆 it holds that

TCom(crs,𝑚0; 𝑟0) ≠ TCom(crs,𝑚1; 𝑟1)

where crs← TSetup(1𝜆, 1T).

Definition 5.3 (Verifiability). A timed commitment
(TSetup, TCom, TVfy, TForceOp) is verifiable if there exists a negli-
gible function negl(·) such that for all 𝜆 ∈ N, all time parameters
T ∈ N, and all PPT algorithms A, it holds that

Pr

 1 = TVfy(crs, 𝑐, 𝜋)
∧ 𝑐 ∉ TCom(crs,𝑚)

������ crs← TSetup(1𝜆, 1T)
(𝑐, 𝜋) ← A(crs)
𝑚 ← TForceOp(crs, 𝑐)


≤ negl(𝜆)

Definition 5.4 (CCA Security). A timed commitment
(TSetup, TCom, TVfy, TForceOp) is CCA secure with gap 𝜖 < 1 if
there exists a negligible function negl(·), a polynomial ˜T such that
for all polynomials T > ˜T and all 𝜆 ∈ N, all PRAM algorithms
A = (A1,A2) where A2’s parallel running time is bounded by T𝜖 ,
it holds that

Pr


𝑏 = 𝑏 ′

∧ 𝑐 ∉ Q

����������
crs← TSetup(1𝜆, 1T)
(𝑚0,𝑚1) ← AO

1
(crs)

𝑏 ← {0, 1}
(𝑐, 𝜋) ← TCom(crs,𝑚𝑏)
𝑏 ′ ← AO

2
(𝑐, 𝜋)


≤ 1/2 + negl(𝜆)

where O is an oracle to which the adversary can query with (𝑐, 𝜋) and
if TVfy(crs, 𝑐, 𝜋) = 1, the oracle uses TForceOp(crs, 𝑐) and returns
the output. Here Q denotes the set of commitments queried by A to
the oracle O.

Homomorphic Evaluation.We define an additional homomor-

phic evaluation algorithm that is going to be useful for our main

scheme.

Definition 5.5 (Homomorphic Evluation). A homomorphic
evaluation algorithm TEval for a function family F is defined as
follows.

TEval(crs, 𝑓 , (𝑐1, . . . , 𝑐𝑛)): On input a common reference string crs, a
function 𝑓 ∈ F , and a set of commitments (𝑐1, . . . , 𝑐𝑛), the evaluation
algorithm returns a new commitment 𝑐 .

We only require the following notion of correctness. For all

𝜆 ∈ N, all time parameters T ∈ N, all functions 𝑓 ∈ F , and all

messages (𝑚1, . . . ,𝑚𝑛) it holds that

Pr[TForceOp(crs, 𝑐∗) = 𝑓 (𝑚1, . . . ,𝑚𝑛)] = 1

where 𝑐∗ := TEval(crs, 𝑓 , (𝑐1, . . . , 𝑐𝑛)), crs ← TSetup(1𝜆, 1T) and
(𝑐𝑖 , 𝜋𝑖) ← TCom(crs,𝑚𝑖).

5.2 Construction
In the following we present our efficient scheme for CCA timed

commitments. We assume the existence of a homomorphic time-

lock puzzle (PSetup, PGen, PEval, Solve) over Z𝑞 from class groups

(cf. Section 4) defined over some DDH-hard group G (cf. Theo-

rem B.2) and a DDH-hard prime-order group (cf. Theorem B.1)

generation algorithm (˜G, 𝐺̃, 𝐾̃) ← GGen(1𝜆, 𝑞) that, on input the

security parameter 1
𝜆
and a uniformly sampled prime 𝑞 (of 𝜆 bits)

returns a group description
˜G and two generators (𝐺̃, 𝐾̃). We let

𝛼 := ⌊log𝑞⌋ + 1.

In addition, we assume the existence of a simulation sound NIZK

(Appendix E) proof system (Setup, Prv,Vfy) for each of the follow-

ing languages. For groups of unknown order where computing

square roots is easy, the languages we are able to prove are slightly

different from those in groups of known order. In particular, we

cannot prove the knowledge of the integer value of an exponent 𝑥 ,

but we can prove the knowledge of two integers 𝑘 and 𝜌 such that

𝑥 = 𝑘 · 2−𝜌 modulo the unknown order, which is sufficient for our

applications. An honest prover always sets 𝜌 := 0 when running

the proving algorithm for all of the following languages.

• Language L1 contains all statements (𝐺,𝐾) such that 𝐾 is gen-

erated by 𝐺 , defined as

L1 :=

{
(𝐺,𝐾)

��� ∃ 𝑘, 𝜌, s.t. 𝐾 = 𝐺𝑘 ·2
−𝜌 }

.

• Language L2 contains all the DDH-tuples, defined as

L2 :=

{
(𝐺0,𝐺1, 𝐻0, 𝐻1)

���∃ 𝑠, 𝜌 s.t.𝐻0 = 𝐺
𝑠 ·2−𝜌
0

AND𝐻1 = 𝐺
𝑠 ·2−𝜌
1

}
• Language L3 contains pairs of ciphertexts encrypting the same

bit, defined as

L3 :=


(𝐺,𝐾, 𝐺̃, 𝐾̃)
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]

���������������

∃ {𝑠𝑖 , 𝑠𝑖 , 𝜌𝑖 }𝑖∈[𝛼] s.t.
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2

−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖)
AND

(𝑐𝑖,0,̃𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖)
OR

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2
−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖 ·𝐺)
AND

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖 · 𝐺̃)


Efficiency and Instantiations. The setup algorithm internally

runs the setup of the homomorphic time-lock puzzles, the setup

of the NIZK proof system, and the group generation algorithm

for the DDH-hard prime order group of order 𝑞. All of the above

three algorithms are public coin algorithms (cf. Section 4 and Ap-

pendix E) and therefore our CCA timed commitment scheme also

has a public coin setup. As for the efficiency, the running time of

the setup is proportional to 𝜆 and T (the latter dependency is due

to PSetup(1𝜆, 1T)), however the size of the public parameters is a

fixed polynomial in 𝜆 and it is in particular independent of T.
The commitment algorithm runs the puzzle generation of the

homomorphic time-lock puzzle and generates ElGamal-like cipher-

texts (that encrypt single bits) both in the class group and in the

prime order group. In total, we have [𝛼] (where 𝛼 := ⌊log𝑞⌋ + 1)
ciphertexts in both groups. The algorithm also computes a NIZK

proof of well-formedness (cf. Appendix E). The running time of

the commitment algorithm is bounded by a fixed polynomial in 𝜆

and in particular is independent of T. The verification algorithm

simply runs the verifier routine of the NIZK proof system. The

force open algorithm solves the time-lock puzzle that takes T se-

quential computational steps and the evaluation algorithm runs the

homomorphic evaluation algorithm of the time-lock puzzle.

Analysis. It is easy to show that the scheme satisfies perfect cor-

rectness and perfect binding. In the below theorem we formally

state the security of our CCA timed commitment construction, and

defer the proof to Appendix D.

Theorem 5.6. Let (PSetup, PGen, PEval, Solve) be a secure time-
lock puzzle over a DDH-hard group G, GGen be a DDH-hard group

generator, and (Setup, Prv,Vfy) be simulation-sound NIZK proof sys-
tem. Then the timed commitment construction from Figure 3 satisfies
CCA security and verifiability.

Highly Efficient Heuristic Variant. Provided we assume the

sigma protocol for language L2 is simulation extractable
1
with

a straight-line (i.e. non-rewinding) extractor, we can omit proofs

for languages L2 and L3. Note that simulation soundness of the

sigma protocol can be proven, but extraction requires rewinding.

Our heuristic has a flavor of “knowledge”-type assumptions which

we believe is a reasonable compromise for a significant gain in

efficiency. Similar assumptions about sigma protocols are quite

common: For example, several works in threshold ECDSA signa-

tures [43, 55] propose protocols requiring UC-secure (in particular

straight-line simulation extractable) NIZK. However, favoring ef-

ficiency, their actual implementation uses non-UC-secure sigma

protocols.

6 DISTRIBUTED RANDOMNESS GENERATION
We now show how a CCA timed commitment allows us to build an

efficient distributed randomness generation protocol.

6.1 Definition
We consider a setting where there are 𝑛 parties (𝑃1, . . . , 𝑃𝑛) want to
jointly compute a random string. The definitions that we present,

are tailored to our settings and allow us to model the following

properties of interest:

• Public-Coin Setup: The protocol assumes a one-time (public-coin)

setup that produces a short string (pp) that is made available to

all participants.

• Non-Interactive: The protocol consists of a single round of inter-

action among users.

• All-but-one Corruption: The protocol is resilient against the cor-
ruption of all but one participants.

Syntactically, the protocol consists of the following interfaces. A

setup algorithm RSetup is run at the beginning that outputs the

public parameters pp to all the parties in the system. The parties

locally run a randomness generation algorithm RGen that outputs

a randomness commitment 𝑣 , which is then published on a bulletin

board or broadcast to all parties. Finally, each participant can locally

run the randomness computation algorithm RComp to generate

the final random value. The formal interfaces are given below.

Definition 6.1 (Distributed Randomness Generation). A
distributed randomness generation protocol ΠDRG consists of three
PPT algorithms (RSetup,RGen,RComp) that are defined as follows.
pp← RSetup(1𝜆): the setup algorithm takes as input the security

parameter 1𝜆 and outputs the public parameters pp.
𝑣 ← RGen(pp): the randomness generation algorithm takes as input
the public parameters pp, and internally samples random coins to
output a randomness commitment 𝑣 .
𝑟 ← RComp(pp, {𝑣1, . . . , 𝑣𝑛}): the distributed randomness

computation algorithm takes as input the public parameters pp, a set
of values 𝑣1, . . . , 𝑣𝑛 and outputs a beacon value 𝑟 .
1
A notion where the simulator is able to simulate proofs for an adversary and is also

able to extract the witness from a proof output by the adversary [46].

TSetup(1𝜆, 1T): On input the security parameter 1
𝜆
and the time parameter 1

T
, do the following:

• Sample pp← PSetup(1𝜆, 1T, 𝑞) and parse pp = (𝐺,𝐻, 𝐹, 𝑞). Sample crs′ ← Setup(1𝜆) and (˜G, 𝐺̃, 𝐾̃) ← GGen(1𝜆, 𝑞).
• Set crs = (crs′, pp, ˜G, 𝐺̃, 𝐾̃) and output crs.
TCom(crs,𝑚): On input a common reference string crs and a message𝑚, do the following:

• Sample 𝑟 ← Z𝑞̃ , and compute 𝑍 ← PGen(pp,𝑚; 𝑟), where 𝑍 = (𝑍1, 𝑍2) = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚).
• Sample 𝑘 ← Z𝑞̃ and set 𝐾 := 𝐺𝑘 . Let 𝛼 := ⌊log𝑞⌋ + 1.
• For 𝑖 ∈ [𝛼], sample (𝑠𝑖 , 𝑠𝑖) ← Z𝑞̃ , and let 𝑟𝑖 is the 𝑖-th bit of 𝑟 . Compute

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖 ·𝐺𝑟𝑖) and (𝑐𝑖,0, 𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖 · 𝐺̃𝑟𝑖)
• Compute the NIZK proof 𝜋 for the statement stmt := (𝑍,𝐺, 𝐾, 𝐺̃, 𝐾̃, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) that certifies that

(𝐺,𝐾) ∈ L1 and

(
𝐺,𝐾,

𝛼∏
𝑖=1

𝑐2
𝑖−1
𝑖,0 ,

𝛼∏
𝑖=1

𝑐2
𝑖−1
𝑖,1 · 𝑍

−1
1

)
∈ L2 and (𝐺,𝐾, 𝐺̃, 𝐾̃, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) ∈ L3

• Set the commitment 𝑐 = (𝑍, 𝐾, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) and return (𝑐, 𝜋)
TVfy(crs, 𝑐, 𝜋): On input a common reference string crs, a commitment 𝑐 := (𝑍, 𝐾, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) (where 𝛼 := ⌊log𝑞⌋ + 1),
and a proof 𝜋 , return 1 if and only if Vfy(crs, stmt, 𝜋) = 1.

TForceOp(crs, 𝑐): On input a common reference string crs and a commitment 𝑐 , return Solve(pp, 𝑍).
TEval(crs, 𝑓 , (𝑐1, . . . , 𝑐𝑛)): On input a common reference string crs, a function 𝑓 ∈ F , and a set of commitments (𝑐1, . . . , 𝑐𝑛), return
PEval(pp, 𝑓 , (𝑍1, . . . , 𝑍𝑛)).

Figure 3: Construction of CCA Timed Commitments

In terms of security, we want that the final random value gener-

ated by RComp is indistinguishable from a uniform random string.

More precisely, we consider a time bound T on the duration of

the randomness generation protocol and we consider an adversary

whose parallel running time is bounded by T. The adversary cor-

rupts any proper subset of the parties involved and has access to an

oracle that mimics the behaviour of honest parties: That is, the ora-

cle runs the randomness generation algorithm RGen by internally

sampling random coins and returning the output to the adversary.

The adversary outputs the randomness commitment values of all

the corrupt parties. A bit 𝑏 is chosen randomly, and if 𝑏 = 0, the

value 𝑟0 is returned to the adversary that is generated by running

RComp on the adversary’s randomness commitments and the re-

sponses of the oracle queries. If 𝑏 = 1, then 𝑟1 is sampled uniformly

and returned to the adversary. The adversary outputs a bit 𝑏 ′ as its
guess. The distributed randomness generation protocol is said to be

T-Indistinguishable Randomness (IND-RAN) if the probability that

𝑏 = 𝑏 ′ is negligibly close to 1/2. The above intuition is captured in

the formal definition below.

Definition 6.2 (T-Indistinguishable Randomness). A dis-
tributed randomness generation protocolΠDRG satisfies Indistinguish-
able randomness (IND-RAN) with a gap 𝜖 < 1, if there exists a neg-
ligible function negl, a polynomial ˜T such that for all polynomials
T > ˜T and for all 𝜆,T ∈ N, and all PPT adversaries A with parallel
running time bounded by T𝜖 , it holds that

Pr


𝑏 = 𝑏 ′∧
𝑉 ′ ≠ ∅

������������

pp← RSetup(1𝜆)
𝑏 ← {0, 1}
𝑉 ← ARGen(pp) (pp)
𝑟0 ← RComp(pp,𝑉 ∪𝑉 ′)
𝑟1 ← {0, 1}𝜆
𝑏 ′ ← A(pp, 𝑟𝑏)


≤ 1/2 + negl(𝜆)

where 𝑉 ′ denotes the set of answers to queries to the RGen oracle.

We discuss how IND-RAN notion captures standard properties

for randomness generation considered in prior works.

Unpredictability. Prior works consider adversarial machines that

cannot predict any non-trivial information about the final random

value with a non-negligible probability. Our IND-RAN notion mod-

els the stronger notion of computational indistinguishability with

respect to a uniformly sampled string. This trivially implies unpre-

dictability against any T-bounded (but possibly parallel) adversary.

Note that the T condition is necessary, since after time T the ran-

domness is revealed to all participants as the output of the protocol.

Bias-Resistance. A scheme for distributed randomness generation

satisfying our IND-RAN notion also satisfies bias-resistance [68]:

This is because if an adversary can bias the final outcome of the

protocol even by a single bit, it can also distinguish it from a truly

random string with the same probability.

All-but-one corruption. The winning condition in our IND-RAN

notion requires the adversary to query the RGen(pp) at least once,
and its output is included in the computation of the random string.

This models the fact that at least one honest user must be in the

system, while the rest can be corrupt.

6.2 Our Protocol
We present a distributed randomness generation protocol ΠDRG
(Figure 4) where 𝑛 parties 𝑃1, . . . , 𝑃𝑛 jointly compute a random

integer in Z𝑞 , for some prime 𝑞. The protocol’s maximum running

time is T and uses our homomorphic CCA timed commitment

(cf. Section 5).

RSetup(1𝜆, 1T): The setup algorithm samples and returns

pp := crs← TSetup(1𝜆, 1T).
RGen(pp): The randomness generation algorithm does the

following:

• Sample 𝑠 ← Z𝑞 .
• Generate a timed commitment (𝑐, 𝜋) ← TCom(crs, 𝑠).
• Output 𝑣 := (𝑐, 𝜋).
RComp(pp, {𝑣1, . . . , 𝑣𝑛}): The distributed randomness

computation algorithm does the following:

• For 𝑖 ∈ [𝑛]:
– Parse each value 𝑣𝑖 := (𝑐𝑖 , 𝜋𝑖).
– Check if TVfy(crs, 𝑐𝑖 , 𝜋𝑖)

?

= 1, if not discard 𝑣𝑖 .

• Compute 𝑐∗ ← TEval(crs, +, 𝑐1, . . . , 𝑐𝑛), where + denotes
addition over Z𝑞 .
• Force open 𝑟∗ ← TForceOp(crs, 𝑐∗).
• Output 𝑟∗.

Figure 4: Distributed Randomness Generation protocol

The setup algorithm simply runs the setup of the timed com-

mitment to generate the public parameters. Given that our timed

commitment scheme (cf. Section 5) has a non-interactive transpar-

ent (public-coin) setup, our setup algorithm for ΠDRG inherits the

same. The randomness generation algorithm is run individually by

each party 𝑃𝑖 and internally samples a random integer in Z𝑞 and

generates a timed commitment to such an integer, along with a

proof 𝜋 . Finally, the output of the protocol is computed by combin-

ing all timed commitments (such that the corresponding proof 𝜋

verifies) and solving the resulting commitment via the force open

algorithm.

Optimistic Efficiency. In the optimistic case where all the parties

are honest, after everyone broadcasts their randomness commit-

ment, the parties can simply broadcast the openings: The random

integer 𝑠 that they committed to in the timed commitments, and the

random coins used in generating the timed commitment. Parties

can verify the openings in a canonical way, by recomputing the

timed commitments canonically and checking if this is what was

received earlier. The parties can simply add the random integers

from the openings in plain, to compute the final randomness. This

way no party needs to run the force opening algorithm of the timed

commitments, which is the computationally expensive step.

Public Verifiability. The protocol as described above requires all

parties to run the force opening algorithm (which internally runs

T sequential squarings) to output the final randomness. We can

modify our protocol to add efficient verifiability for this computa-

tion if the party computing the squaring operation also produces a

succinct and efficiently verifiable proof of correct computation. This

is exactly the same class of functions that is computed in verifiable
delay functions (VDFs) [15]. Wesolowski [74] gave a construction of

VDF for sequential squaring in the class group setting, where the

user performing the squaring operations can succinctly prove that

the computation was performed correctly. Verifying this proof only

takes logarithmic steps in the number of squarings performed.

Now, even in the pessimistic settings where some party does not

broadcast their opening, only a single party has to run the (expen-

sive) sequential computation and can convince all other participants

of the correctness of the computation.

Scalability. The homomorphism of the timed commitments is

exploited in the distributed randomness computation algorithm:

Instead of force-opening each of the 𝑛 timed commitments, the

homomorphic evaluation results in a single timed commitment

to force open. Therefore as 𝑛 increases, the computational cost

of computing the final randomness remains (approximately) the

same. This evaluation operation is very efficient and adds only

negligible overhead, as it only requires 2(𝑛 − 1) group operations

for evaluating over 𝑛 commitments.

Analysis.Our security guarantee is stated formally in the following

theorem. We defer the formal analysis to Appendix F.

Theorem 6.3. Let (TSetup, TCom, TForceOp) be a perfectly bind-
ing CCA timed commitment. Then the protocol ΠDRG has indistin-
guishable randomness.

7 RELATEDWORK
Timed Commitments and Time-Lock Puzzles. Time-lock puz-

zles can be constructed in RSA groups assuming the sequentiality

of the squaring operation [66]. Boneh and Naor [17] built on the

above construction to introduce the notion of timed commitments.

The notion of homomorphic time-lock puzzles has been recently

introduced in [57] where it was shown how to build linearly and

multiplicatively homomorphic time-lock puzzles over RSA groups.

In a later work, Brakerski et al. [19] showed how to construct fully

homomorphic time-lock puzzles, additionally assuming multi-key

fully homomorphic encryption. Due to the reliance on RSA groups,

all of these schemes assume a trusted setup to sample the RSA mod-

ulus 𝑁 .
2
The notion of non-malleable time-lock puzzles has been

recently explored in a sequence of works [8, 45, 49]. This notion is

intimately related to CCA timed commitments, although all of the

scheme proposed do not support homomorphic operations, nor they

have been implemented. Finally, we mention that time-lock puz-

zles can also be constructed from supersingular isogenies [25] and

succinct randomized encodings [12], although the constructions

are significantly less efficient than the RSA-based ones.

Randomness Generation. There has been a long line work study-

ing distributed randomness generation starting from Blum [13]

and Rabin [65] who introduced the notion. Threshold techniques

like threshold publicly-verifiable secret sharing [27, 50, 69, 71] and

threshold signature schemes [26, 47] have been used to generate

2
It has been shown [52] that in many cases one can substitute RSA groups with RSA-

UFO group (where the modulus is a large randomly chosen integer), which have the

advantage of having a public-coin setup. It is plausible that a similar approach would

give us homomorphic time-lock puzzles with public-coin setup, however the scheme

would be completely impractical.

randomness in a distributed manner. These proposals require that at

least a majority of the parties are honest. Note that this is inherent,

since no protocol in the standard model (as opposed to approaches

that make timing-like assumptions, such as ours) can yield secure

coin tossing if all-but-one parties are corrupted [35].

Verifiable Random Functions (VRFs) have been used in Algo-

rand [33] and Ouroboros Praos [39] to generate randomness as a

byproduct of their consensus mechanism. However these protocols

fail to achieve strong bias-resistance guarantees as the adversary

could refuse to publish a block if the randomness outcome is un-

desirable to him [69]. Bonneau et al. [18] and Bentov et al. [10]

show that we can extract almost uniformly distributed bits from a

sequence of Bitcoin blocks, but the adversary can bias the result as

shown in [62].

Verifiable Delay Functions (VDFs) that have been recently stud-

ied [15, 40, 63, 74] to build bias-resistant and unpredictable random-

ness generation as one of the main applications. Randao [5, 6] is one

such proposal where users contribute randomness in plain and the

aggregation of these values is hashed and used as a starting point

to compute the VDF. Similar protocols where also considered that

use VDFs [24, 53, 68]. However these proposals require a trusted

setup (to generate the RSA modulus 𝑁) and even when all parties

are honest (optimistic case), one party still has to compute the delay

function. In practice, this means that a specialized hardware that

performs squaring operations is running at all times.

UC secure time-lock puzzles [8] and non-malleable time-lock

puzzles [45] were used to construct coin flipping protocol that

satisfied optimistic efficiency, all-but-one corruption, and public

verifiability. However their protocols do not scale well with the

number of users as their time-lock puzzle constructions do not

support homomorphic evaluation. Moreover, we are not aware of

any implementation of their proposals.

8 EXPERIMENTAL EVALUATION
We implement our CCA Timed commitment construction, run ex-

periments and report the evaluation results here.

Experimental Setup.We have implemented our CCA Timed Com-

mitments using Sagemath with calls to PARI native C Library [61]

for the operations in class groups. All benchmarks were done us-

ing a single thread on a standard laptop (Intel Core i5-6267U @

2.90GHz). Our experiments have been run for security levels of

𝜆 = 112 and 128 bits. The fundamental discriminant Δ𝐾 has there-

fore respective sizes of 1338 bits and 1827 bits following estimates

from [11]. The prime 𝑞 that defines the plaintext space Z𝑞 is set to

have 256 bits, which is a classical target in practice for randomness

generation.

As the prime𝑞 equals 𝐵 ·2𝜆 , it has size𝛼 = 786 bits (resp.𝛼 = 1042

bits with 𝜆 = 128). The Elgamal encryptions needed for the NIZK

proof of well-formedness are done in a group
˜G of prime order 𝑞

instantiated as a subgroup of Z∗
𝑃
with 𝑃 − 1 = ℓ𝑞 for a ℓ such that

the prime 𝑃 is of size 2048 to have a 112 bit security against DL

computations (resp. size 3072 for 128 bits security). We used SHA3-

256 to implement the random oracles H1 and H2, and SHAKE256

for H3.

Communication Size Costs. Our time-lock puzzle 𝑍 is composed

of an element of 𝐶𝑙 (Δ𝐾) and one of 𝐶𝑙 (Δ𝑞). At the 112 bits (resp.

Table 1: Communication cost of CCA Timed Commitments.
(H) denotes our heuristic variant.

𝜆 (bits) crs (kB) 𝑐 (kB) 𝜋 (kB)

112 1.24 667.88 1721.34

128 1.77 1276.94 3213

112 (H) 0.47 0.4 0.48

128 (H) 0.62 0.52 0.64

128 bits) security level, this is 3208 bits (resp. 4166 bits). Notice

that using a recent compression technique of [42] this could be

reduced by a factor 3/4. The sizes for our CCA timed-commitment

can be found in Table 1: 𝑐 contains a puzzle𝑍 together with Elgamal

encryptions of the bits of the randomness used to create 𝑍 both in

the class group G and the prime order group
˜G and 𝜋 is the NIZK

proof.

One can dramatically improve these sizes using a heuristic vari-

ant. In this variant we replace the complex NIZK proof by a sigma

protocol that prove the well-formedness of the time-lock puzzle 𝑍

for which we assume straight-line extractability. More precisely, to

prove that (𝑍1, 𝑍2) = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚) relatively to 𝐺 and 𝐻 for

some 𝑟 and𝑚, we can straightforwardly adapt the proof from [29]

that a CL ciphertext is well formed to our fast variant, which allows

a direct extraction of the message𝑚. This reduce the size of the

crs as we do not need to define
˜G. Moreover, the size of 𝑐 shrinks

a lot as we do not need to re-encrypt bit by bit the randomness 𝑟 .

The proof 𝜋 now only contains this NIZK of well-formedness of a

ciphertext under the vast variant of CL.

Computation Time Costs.We set the parameter T = 2
26

which

corresponds to an time-lock opening time of roughly 45 minutes

for 𝜆 = 112 (resp. one hour for 𝜆 = 128) in our local machine.

This corresponds to the timing of TForceOp. The running time of

TSetup is dominated by the generation of the puzzle: the group

generators CGGen and GGen only take a couple of seconds. The

running time of TCom and TVfy does not depend on T and it is

dominated by the computation of a huge number of exponentiations.

Note that contrary to the solving of the puzzle, these phases can be

parallelized: the running times of TCom and TVfy can be reduced

by a factor of 𝑁 by working with 𝑁 threads. The corresponding

benchmarks can be found in Table 2. Despite the complexity of

our proven NIZK proof of well-formedness, the timings remain

practical, especially in a context where we can use parallelization

for TCom and TVfy and applications with large time-lock opening

time. We also report running time for the heuristic version (lines

(H)) where we obtain a highly efficient protocol. We also report in

Table 3 timings with T = 2
19

which gives an opening time around

5 seconds which shows that TCom and TVfy are independent of T.

Parallelisation. Our implementation uses only a single thread and

is therefore non-optimized. We expect the performance to substan-

tially improve with optimisations. In particular, independent expo-

nentiations during the commitment generation can be performed

using several threads in parallel. For instance, a workstation with 2

Dodeca Core processors, a 112 bits security commitment takes 5 sec

using 48 threads. Furthermore, optimisations in the basic arithmetic

Table 2: Running time of CCA Timed Commitments on a
single thread reported in seconds with T = 2

26. (H) denotes
our heuristic variant.

𝜆 (bits) TSetup TCom TVfy TForceOp

112 2617 244 194 2594

128 3691 600 468 3682

112 (H) 2596 0.194 0.116 2584

128 (H) 3641 0.341 0.203 3635

Table 3: Running time of CCA Timed Commitments on a sin-
gle thread reported in seconds with T = 2

17 for our heuristic
variant.

𝜆 (bits) TSetup TCom TVfy TForceOp

112 (H) 7.99 0.2 0.120 5.272

128 (H) 13.474 0.337 0.205 7.259

in class groups is largely unexplored unlike in finite fields, leaving

open a lot of improvements in this direction.

9 CONCLUSIONS
In this work we constructed a timed commitment scheme with a

transparent setup, homomorphic evaluation properties, and satisfy-

ing CCA security. Along theway, we introduced new technical tools,

such as a homomorphic time-lock puzzle scheme over class groups

and a new simulation-extractable NIZK proof of well-formedness,

that may be of independent interest. As an application, we proposed

a new distributed randomness generation protocol that satisfies

many desirable efficiency and security properties. As a next step,

we plan to explore further applications of our randomness gen-

eration protocol and its integration in complex scenarios such as

cryptocurrencies or blockchain consensus.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their comments in im-

proving the work. This work was supported by the French ANR

ALAMBIC project (ANR-16-CE39-0006). This work was also par-

tially supported by the Deutsche Forschungsgemeinschaft (DFG –

German Research Foundation) under 442893093, and by the state

of Bavaria at the Nuremberg Campus of Technology (NCT).

REFERENCES
[1] [n.d.]. https://academy.binance.com/en/articles/zk-snarks-and-zk-starks-

explained.

[2] [n.d.]. https://tinyurl.com/6c2ydjx2.

[3] [n.d.]. The Chia Network Blockchain. https://www.chia.net/assets/

ChiaGreenPaper.pdf.

[4] [n.d.]. Chia VDF Competition Guide. https://medium.com/@chia.net/chia-vdf-

competition-guide-5382e1f4bd39.

[5] [n.d.]. Minimal VDF Randomness Beacon. https://ethresear.ch/t/minimal-vdf-

randomness-beacon/3566.

[6] [n.d.]. Randao++. https://www.reddit.com/comments/4mdkku.

[7] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. 2011. How to Garble

Arithmetic Circuits. In 52nd FOCS, Rafail Ostrovsky (Ed.). IEEE Computer Society

Press, Palm Springs, CA, USA, 120–129. https://doi.org/10.1109/FOCS.2011.40

[8] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine

Oechsner. 2020. TARDIS: A Foundation of Time-Lock Puzzles in UC. Cryptology

ePrint Archive, Report 2020/537. https://eprint.iacr.org/2020/537.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology ePrint

Archive, Report 2018/046. https://eprint.iacr.org/2018/046.

[10] Iddo Bentov, Ariel Gabizon, and David Zuckerman. 2016. Bitcoin Beacon.

arXiv:1605.04559 [cs.CR]

[11] Jean-François Biasse, Michael J. Jacobson, and Alan K. Silvester. 2010. Security

Estimates for Quadratic Field Based Cryptosystems. In ACISP 10 (LNCS, Vol. 6168),
Ron Steinfeld and Philip Hawkes (Eds.). Springer, Heidelberg, Germany, Sydney,

NSW, Australia, 233–247.

[12] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-

tanathan, and Brent Waters. 2016. Time-Lock Puzzles from Randomized Encod-

ings. In ITCS 2016, Madhu Sudan (Ed.). ACM, Cambridge, MA, USA, 345–356.

https://doi.org/10.1145/2840728.2840745

[13] Manuel Blum. 1982. Coin Flipping by Telephone. In Proc. IEEE Spring COMPCOM.

133–137.

[14] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-

Knowledge and Its Applications (Extended Abstract). In 20th ACM STOC. ACM
Press, Chicago, IL, USA, 103–112. https://doi.org/10.1145/62212.62222

[15] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable

Delay Functions. In CRYPTO 2018, Part I (LNCS, Vol. 10991), Hovav Shacham and

Alexandra Boldyreva (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA,

USA, 757–788. https://doi.org/10.1007/978-3-319-96884-1_25

[16] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2019. Batching Techniques for Accu-

mulators with Applications to IOPs and Stateless Blockchains. In CRYPTO 2019,
Part I (LNCS, Vol. 11692), Alexandra Boldyreva and Daniele Micciancio (Eds.).

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 561–586. https:

//doi.org/10.1007/978-3-030-26948-7_20

[17] Dan Boneh and Moni Naor. 2000. Timed Commitments. In CRYPTO 2000 (LNCS,
Vol. 1880), Mihir Bellare (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA,

USA, 236–254. https://doi.org/10.1007/3-540-44598-6_15

[18] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a

public randomness source. Cryptology ePrint Archive, Report 2015/1015. https:

//eprint.iacr.org/2015/1015.

[19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. 2019. Lever-

aging Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-Lock

Puzzles. In TCC 2019, Part II (LNCS, Vol. 11892), Dennis Hofheinz and Alon

Rosen (Eds.). Springer, Heidelberg, Germany, Nuremberg, Germany, 407–437.

https://doi.org/10.1007/978-3-030-36033-7_16

[20] J. Buchmann and U. Vollmer. 2007. Binary Quadratic Forms. An Algorithmic
Approach. Springer.

[21] Johannes Buchmann and Hugh C. Williams. 1988. A Key-Exchange System Based

on Imaginary Quadratic Fields. Journal of Cryptology 1, 2 (June 1988), 107–118.

https://doi.org/10.1007/BF02351719

[22] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs from

DARK Compilers. In Advances in Cryptology – EUROCRYPT 2020, Anne Canteaut
and Yuval Ishai (Eds.). Springer International Publishing, Cham, 677–706.

[23] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs from

DARK Compilers. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut
and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb, Croatia, 677–706.

https://doi.org/10.1007/978-3-030-45721-1_24

[24] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. 2017. Proofs-of-delay

and randomness beacons in Ethereum.

[25] Jeffrey Burdges and Luca De Feo. 2020. Delay Encryption. Cryptology ePrint

Archive, Report 2020/638. https://eprint.iacr.org/2020/638.

[26] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random oracles in

constantipole: practical asynchronous Byzantine agreement using cryptography

(extended abstract). In 19th ACM PODC, Gil Neiger (Ed.). ACM, Portland, OR,

USA, 123–132. https://doi.org/10.1145/343477.343531

[27] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable Randomness At-

tested by Public Entities. In ACNS 17 (LNCS, Vol. 10355), Dieter Gollmann, Atsuko

Miyaji, and Hiroaki Kikuchi (Eds.). Springer, Heidelberg, Germany, Kanazawa,

Japan, 537–556. https://doi.org/10.1007/978-3-319-61204-1_27

[28] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2019. Two-Party ECDSA from Hash Proof Systems and Efficient

Instantiations. In CRYPTO 2019, Part III (LNCS, Vol. 11694), Alexandra Boldyreva
and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 191–221. https://doi.org/10.1007/978-3-030-26954-8_7

[29] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2020. Bandwidth-efficient threshold EC-DSA. Cryptology ePrint

Archive, Report 2020/084. https://ia.cr/2020/084.

[30] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and

Ida Tucker. 2020. Bandwidth-Efficient Threshold EC-DSA. In PKC 2020, Part II
(LNCS, Vol. 12111), Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and

Vassilis Zikas (Eds.). Springer, Heidelberg, Germany, Edinburgh, UK, 266–296.

https://doi.org/10.1007/978-3-030-45388-6_10

https://academy.binance.com/en/articles/zk-snarks-and-zk-starks-explained
https://academy.binance.com/en/articles/zk-snarks-and-zk-starks-explained
https://tinyurl.com/6c2ydjx2
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://medium.com/@chia.net/chia-vdf-competition-guide-5382e1f4bd39
https://medium.com/@chia.net/chia-vdf-competition-guide-5382e1f4bd39
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://www.reddit.com/comments/4mdkku
https://doi.org/10.1109/FOCS.2011.40
https://eprint.iacr.org/2020/537
https://eprint.iacr.org/2018/046
https://arxiv.org/abs/1605.04559
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-44598-6_15
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2020/638
https://doi.org/10.1145/343477.343531
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-030-26954-8_7
https://ia.cr/2020/084
https://doi.org/10.1007/978-3-030-45388-6_10

[31] Guilhem Castagnos and Fabien Laguillaumie. 2015. Linearly Homomorphic

Encryption from DDH. In CT-RSA 2015 (LNCS, Vol. 9048), Kaisa Nyberg (Ed.).

Springer, Heidelberg, Germany, San Francisco, CA, USA, 487–505. https://doi.

org/10.1007/978-3-319-16715-2_26

[32] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. 2018. Practical Fully

Secure Unrestricted Inner Product Functional Encryption Modulo p. In ASI-
ACRYPT 2018, Part II (LNCS, Vol. 11273), Thomas Peyrin and Steven Galbraith

(Eds.). Springer, Heidelberg, Germany, Brisbane, Queensland, Australia, 733–764.

https://doi.org/10.1007/978-3-030-03329-3_25

[33] Jing Chen and Silvio Micali. 2017. Algorand. arXiv:1607.01341 [cs.CR]

[34] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler

Rosefield, and Abhi Shelat. 2020. Multiparty Generation of an RSA Modulus.

In Advances in Cryptology – CRYPTO 2020, Daniele Micciancio and Thomas

Ristenpart (Eds.). Springer International Publishing, Cham, 64–93.

[35] Richard Cleve. 1986. Limits on the Security of Coin Flips when Half the Processors

Are Faulty (Extended Abstract). In 18th ACM STOC. ACM Press, Berkeley, CA,

USA, 364–369. https://doi.org/10.1145/12130.12168

[36] D. A. Cox. 1999. Primes of the form 𝑥2 + 𝑛𝑦2 . John Wiley & Sons.

[37] Ivan Damgård and Mats Jurik. 2001. A Generalisation, a Simplification and Some

Applications of Paillier’s Probabilistic Public-Key System. In PKC 2001 (LNCS,
Vol. 1992), Kwangjo Kim (Ed.). Springer, Heidelberg, Germany, Cheju Island, South

Korea, 119–136. https://doi.org/10.1007/3-540-44586-2_9

[38] Parthasarathi Das, Michael J. Jacobson Jr., and Renate Scheidler. 2019. Improved

Efficiency of a Linearly Homomorphic Cryptosystem. In Codes, Cryptology and
Information Security. Springer, To appear.

[39] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In EUROCRYPT 2018, Part II (LNCS, Vol. 10821), Jesper Buus Nielsen
and Vincent Rijmen (Eds.). Springer, Heidelberg, Germany, Tel Aviv, Israel, 66–98.

https://doi.org/10.1007/978-3-319-78375-8_3

[40] Luca De Feo, SimonMasson, Christophe Petit, and Antonio Sanso. 2019. Verifiable

Delay Functions from Supersingular Isogenies and Pairings. In ASIACRYPT 2019,
Part I (LNCS, Vol. 11921), Steven D. Galbraith and Shiho Moriai (Eds.). Springer,

Heidelberg, Germany, Kobe, Japan, 248–277. https://doi.org/10.1007/978-3-030-

34578-5_10

[41] Cyprien Delpech de Saint Guilhem, Eleftheria Makri, Dragos Rotaru, and Titouan

Tanguy. 2021. The return of Eratosthenes: Secure Generation of RSA Moduli

using Distributed Sieving. Cryptology ePrint Archive, Report 2021/565. https:

//eprint.iacr.org/2021/565.

[42] Samuel Dobson, Steven D. Galbraith, and Benjamin Smith. 2020. Trustless Groups

of Unknown Order with Hyperelliptic Curves. Cryptology ePrint Archive, Report

2020/196. https://eprint.iacr.org/2020/196.

[43] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. 2019. Threshold

ECDSA from ECDSAAssumptions: The Multiparty Case. In 2019 IEEE Symposium
on Security and Privacy (SP). 1051–1066. https://doi.org/10.1109/SP.2019.00024

[44] C. Dwork and M. Naor. 2000. Zaps and their applications. In Proceedings 41st
Annual Symposium on Foundations of Computer Science. 283–293. https://doi.org/

10.1109/SFCS.2000.892117

[45] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. 2020. Non-

Malleable Time-Lock Puzzles and Applications. Cryptology ePrint Archive,

Report 2020/779. https://eprint.iacr.org/2020/779.

[46] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and

Constant Size Group Signatures. In ASIACRYPT 2006 (LNCS, Vol. 4284), Xuejia Lai
and Kefei Chen (Eds.). Springer, Heidelberg, Germany, Shanghai, China, 444–459.

https://doi.org/10.1007/11935230_29

[47] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. DFINITY Tech-

nology Overview Series, Consensus System. arXiv:1805.04548 [cs.DC]

[48] Detlef Hühnlein, Michael J. Jacobson Jr., Sachar Paulus, and Tsuyoshi Takagi.

1998. A Cryptosystem Based on Non-maximal Imaginary Quadratic Orders

with Fast Decryption. In EUROCRYPT’98 (LNCS, Vol. 1403), Kaisa Nyberg (Ed.).
Springer, Heidelberg, Germany, Espoo, Finland, 294–307. https://doi.org/10.1007/

BFb0054134

[49] Jonathan Katz, Julian Loss, and Jiayu Xu. 2020. On the Security of Time-Lock

Puzzles and Timed Commitments. In TCC 2020, Part III (LNCS, Vol. 12552), Rafael
Pass and Krzysztof Pietrzak (Eds.). Springer, Heidelberg, Germany, Durham, NC,

USA, 390–413. https://doi.org/10.1007/978-3-030-64381-2_14

[50] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In

CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham

(Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 357–388. https:

//doi.org/10.1007/978-3-319-63688-7_12

[51] J.C Lagarias. 1980. Worst-case complexity bounds for algorithms in the theory

of integral quadratic forms. Journal of Algorithms 1, 2 (1980), 142–186. https:

//doi.org/10.1016/0196-6774(80)90021-8

[52] Russell W. F. Lai and Giulio Malavolta. 2019. Subvector Commitments with Appli-

cation to Succinct Arguments. In CRYPTO 2019, Part I (LNCS, Vol. 11692), Alexan-
dra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany,

Santa Barbara, CA, USA, 530–560. https://doi.org/10.1007/978-3-030-26948-7_19

[53] Arjen K. Lenstra and Benjamin Wesolowski. 2015. A random zoo: sloth, unicorn,

and trx. Cryptology ePrint Archive, Report 2015/366. https://eprint.iacr.org/

2015/366.

[54] Huijia Lin, Rafael Pass, and Pratik Soni. 2017. Two-Round and Non-Interactive

Concurrent Non-Malleable Commitments from Time-Lock Puzzles. In 58th FOCS,
Chris Umans (Ed.). IEEE Computer Society Press, Berkeley, CA, USA, 576–587.

https://doi.org/10.1109/FOCS.2017.59

[55] Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical

Distributed Key Generation and Applications to Cryptocurrency Custody. In

ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng

Wang (Eds.). ACM Press, Toronto, ON, Canada, 1837–1854. https://doi.org/10.

1145/3243734.3243788

[56] Helger Lipmaa. 2012. Secure Accumulators from Euclidean Rings without Trusted

Setup. In ACNS 12 (LNCS, Vol. 7341), Feng Bao, Pierangela Samarati, and Jianying

Zhou (Eds.). Springer, Heidelberg, Germany, Singapore, 224–240. https://doi.

org/10.1007/978-3-642-31284-7_14

[57] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. 2019. Homomorphic

Time-Lock Puzzles and Applications. In CRYPTO 2019, Part I (LNCS, Vol. 11692),
Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Ger-

many, Santa Barbara, CA, USA, 620–649. https://doi.org/10.1007/978-3-030-

26948-7_22

[58] Kevin S. McCurley. 1989. Cryptographic key distribution and computation in

class groups. In Number Theory and Applications (Proc. NATO Advanced Study
Inst. on Number Theory and Applications, Banff, 1988), Richard A. Molin (Ed.).

Kluwer, Boston.

[59] Moni Naor and Moti Yung. 1990. Public-key Cryptosystems Provably Secure

against Chosen Ciphertext Attacks. In 22nd ACM STOC. ACM Press, Baltimore,

MD, USA, 427–437. https://doi.org/10.1145/100216.100273

[60] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT’99 (LNCS, Vol. 1592), Jacques Stern (Ed.).

Springer, Heidelberg, Germany, Prague, Czech Republic, 223–238. https://doi.

org/10.1007/3-540-48910-X_16

[61] PARI Group 2020. PARI/GP version 2.11.4. PARI Group, Univ. Bordeaux. available
from http://pari.math.u-bordeaux.fr/.

[62] Cecile Pierrot and Benjamin Wesolowski. 2016. Malleability of the blockchain’s

entropy. Cryptology ePrint Archive, Report 2016/370. https://eprint.iacr.org/

2016/370.

[63] Krzysztof Pietrzak. 2019. Simple Verifiable Delay Functions. In ITCS 2019, Avrim
Blum (Ed.), Vol. 124. LIPIcs, San Diego, CA, USA, 60:1–60:15. https://doi.org/10.

4230/LIPIcs.ITCS.2019.60

[64] David Pointcheval and Jacques Stern. 1996. Security Proofs for Signature Schemes.

In EUROCRYPT’96 (LNCS, Vol. 1070), Ueli M. Maurer (Ed.). Springer, Heidelberg,

Germany, Saragossa, Spain, 387–398. https://doi.org/10.1007/3-540-68339-9_33

[65] Michael O. Rabin. 1983. Randomized Byzantine Generals. In 24th FOCS. IEEE
Computer Society Press, Tucson, Arizona, 403–409. https://doi.org/10.1109/SFCS.

1983.48

[66] R. L. Rivest, A. Shamir, and D. A. Wagner. 1996. Time-lock Puzzles and Timed-
release Crypto. Technical Report. Cambridge, MA, USA.

[67] Amit Sahai. 1999. Non-Malleable Non-Interactive Zero Knowledge and Adaptive

Chosen-Ciphertext Security. In 40th FOCS. IEEE Computer Society Press, New

York, NY, USA, 543–553. https://doi.org/10.1109/SFFCS.1999.814628

[68] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and E.

Weippl. 2020. RandRunner: Distributed Randomness from Trapdoor VDFs with

Strong Uniqueness. IACR Cryptol. ePrint Arch. 2020 (2020), 942.
[69] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl. 2020. HydRand: Efficient

Continuous Distributed Randomness. In 2020 IEEE Symposium on Security and
Privacy (SP). 73–89. https://doi.org/10.1109/SP40000.2020.00003

[70] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart

Cards. In CRYPTO’89 (LNCS, Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg,

Germany, Santa Barbara, CA, USA, 239–252. https://doi.org/10.1007/0-387-

34805-0_22

[71] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-

Resistant Distributed Randomness. In 2017 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, San Jose, CA, USA, 444–460. https:

//doi.org/10.1109/SP.2017.45

[72] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Döt-

tling, Aniket Kate, and Dominique Schröder. 2020. Verifiable Timed Signa-

tures Made Practical. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (Virtual Event, USA) (CCS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 1733–1750. https:

//doi.org/10.1145/3372297.3417263

[73] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.

2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA,

USA, 926–943. https://doi.org/10.1109/SP.2018.00060

https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-030-03329-3_25
https://arxiv.org/abs/1607.01341
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://eprint.iacr.org/2021/565
https://eprint.iacr.org/2021/565
https://eprint.iacr.org/2020/196
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/SFCS.2000.892117
https://doi.org/10.1109/SFCS.2000.892117
https://eprint.iacr.org/2020/779
https://doi.org/10.1007/11935230_29
https://arxiv.org/abs/1805.04548
https://doi.org/10.1007/BFb0054134
https://doi.org/10.1007/BFb0054134
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1016/0196-6774(80)90021-8
https://doi.org/10.1016/0196-6774(80)90021-8
https://doi.org/10.1007/978-3-030-26948-7_19
https://eprint.iacr.org/2015/366
https://eprint.iacr.org/2015/366
https://doi.org/10.1109/FOCS.2017.59
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
http://pari.math.u-bordeaux.fr/
https://eprint.iacr.org/2016/370
https://eprint.iacr.org/2016/370
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1109/SFCS.1983.48
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1145/3372297.3417263
https://doi.org/10.1109/SP.2018.00060

[74] Benjamin Wesolowski. 2019. Efficient Verifiable Delay Functions. In EURO-
CRYPT 2019, Part III (LNCS, Vol. 11478), Yuval Ishai and Vincent Rijmen (Eds.).

Springer, Heidelberg, Germany, Darmstadt, Germany, 379–407. https://doi.org/

10.1007/978-3-030-17659-4_13

[75] Danyang Zhu, Yifeng Song, Jing Tian, Zhongfeng Wang, and Haobo Yu. 2020.

An Efficient Accelerator of the Squaring for the Verifiable Delay Function Over

a Class Group. In 2020 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS). 137–140. https://doi.org/10.1109/APCCAS50809.2020.9301680

A MORE PRELIMINARIES
Time-Lock Puzzles.We recall the definition of standard time-lock

puzzles [12]. For conceptual simplicity we consider only schemes

with binary solutions.

Definition A.1 (Time-Lock Puzzles). A time-lock puzzle is a
tuple of two algorithms (PGen, Solve) defined as follows.
𝑍 ← PGen(T, 𝑠): a probabilistic algorithm that takes as input a
hardness-parameter T and a solution 𝑠 ∈ {0, 1}, and outputs a puzzle
𝑍 .

𝑠 ← Solve(𝑍): a deterministic algorithm that takes as input a puzzle
𝑍 and outputs a solution 𝑠 .

The correctness requirement is that for all 𝜆 ∈ N, for all polyno-
mials T in 𝜆, and for all 𝑠 ∈ {0, 1}, it holds 𝑠 = Solve(PGen(T, 𝑠)).
The security definition is described below.

Definition A.2 (Security). A scheme (PGen, Solve) is secure
with gap 𝜀 < 1 if there exists a polynomial ˜T(·) such that for all
polynomials T(·) ≥ ˜T(·) and every polynomial-size adversary A =

{A𝜆}𝜆∈N of depth ≤ T𝜀 (𝜆), there exists a negligible function negl,
such that for all 𝜆 ∈ N it holds that

Pr

[
𝑏 ← A(𝑍)

�� 𝑍 ← PGen(T(𝜆), 𝑏)
]
=

1

2

+ negl(𝜆) .

Homomorphic Time-Lock Puzzles. We formally describe the

notions we require from a homomorphic time-lock puzzle scheme.

Definition A.3 (Homomorphic Time-Lock Puzzles). Let C =

{C𝜆}𝜆∈N be a class of circuits and let 𝑆 be a finite domain. A homo-
morphic time-lock puzzle scheme HTLP with respect to C and with
solution space 𝑆 is tuple of four algorithms (PSetup, PGen, Solve,
PEval) defined as follows.
pp← PSetup(1𝜆,T): a probabilistic algorithm that takes as input a

security parameter 1𝜆 and a time hardness parameter T, and outputs
public parameters pp.

𝑍 ← PGen(pp, 𝑠): a probabilistic algorithm that takes as input public
parameters pp, and a solution 𝑠 ∈ 𝑆 , and outputs a puzzle 𝑍 .
𝑠 ← Solve(pp, 𝑍): a deterministic algorithm that takes as input public
parameters pp and a puzzle 𝑍 and outputs a solution 𝑠 .

𝑍 ′ ← PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛): a probabilistic algorithm that takes
as input a circuit𝐶 ∈ C𝜆 , public parameters pp and a set of 𝑛 puzzles
(𝑍1, . . . , 𝑍𝑛) and outputs a puzzle 𝑍 ′.

Security requires that the solution of the puzzles is hidden for all

adversaries that run in (parallel) time less than T. We additionally

require compactness that requires that the size of the homomor-

phically evaluated puzzles does not depend on the function that is

evaluated.

Definition A.4 (Security of HTLP [57]). An HTLP scheme con-
sisting of (PSetup, PGen, Solve, PEval), is secure with gap 𝜀 < 1 if
there exists a polynomial ˜T(·) such that for all polynomials T(·) ≥
˜T(·) and every polynomial-size adversary A = {(A1,A2)𝜆}𝜆∈N
where the depth of A2 is bounded from above by T𝜀 (𝜆), there exists
a negligible function negl, such that for all 𝜆 ∈ N it holds that

Pr


𝑏 = 𝑏 ′

����������
pp← PSetup(1𝜆,T(𝜆))
(𝜏, 𝑠0, 𝑠1) ← A1 (1𝜆, pp)
𝑏 ←$ {0, 1}
𝑍★← PGen(pp, 𝑠𝑏)
𝑏 ′ ← A2 (pp, 𝑍★, 𝜏)


≤ 1

2

+ negl(𝜆)

and (𝑠0, 𝑠1) ∈ 𝑆2.

Definition A.5 (Compactness [57]). Let C = {C𝜆}𝜆∈N be a
class of circuits (along with their respective representations). An HTLP
scheme (PSetup, PGen, Solve, PEval) is compact (for the class C) if
for all 𝜆 ∈ N, all polynomials T in 𝜆, all circuits𝐶 ∈ C𝜆 and respective
inputs (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆𝑛 , all pp in the support of PSetup(1𝜆,T), and
all 𝑍𝑖 in the support of PGen(pp, 𝑠𝑖), the following two conditions are
satisfied:
• There exists a fixed polynomial 𝑝 (·) such that |𝑍 | = 𝑝 (𝜆, |𝐶 (𝑠1,
. . . , 𝑠𝑛) |), where 𝑍 ← PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛).
• There exists a fixed polynomial 𝑝 (·) such that the runtime of
PEval(𝐶, pp, 𝑍1, . . . , 𝑍𝑛) is bounded by 𝑝 (𝜆, |𝐶 |).

Non-Interactive Zero-Knowledge Proofs. A NIZK proof [14]

allows a prover to convince a verifier about the validity of a certain

statement without revealing anything beyond that. We recall the

syntax in the following.

Definition A.6 (NIZK). Let L be an NP-language with relation
R. A NIZK system for R consists of the following efficient algorithms.

crs← Setup(1𝜆): On input the security parameter 1𝜆 , the setup al-
gorithm returns a common reference string crs.
𝜋 ← Prv(crs, stmt,wit): On input the common reference string crs,
a statement stmt, and a witness wit, the prover algorithm returns a
proof 𝜋 .
0/1← Vfy(crs, stmt, 𝜋): On input the common reference string crs,
a statement stmt, and a proof 𝜋 , the verifier algorithm returns a bit
𝑏 ∈ {0, 1}.

Correctness requires that for all 𝜆 ∈ N and all pairs (stmt,wit) ∈
R it holds that

Pr[Vfy(crs, stmt, Prv(crs, stmt,wit)) = 1] = 1

where crs←$ Setup(1𝜆).
We recall the definition of zero-knowledge in the following.

Definition A.7 (Zero-Knowledge). A NIZK system for R is
zero-knowledge if there exists a PPT algorithm (Sim0, Sim1) such
that for all pairs (stmt,wit) ∈ R and for all PPT distinguishers the
following distributions are computationally indistinguishable(

crs← Setup(1𝜆), 𝜋 ← Prv(crs, stmt,wit)
)
≈(

crs∗, 𝜋 ← Sim1 (crs, stmt, td)
)

where (crs∗, td) ← Sim0 (1𝜆).

https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1109/APCCAS50809.2020.9301680

We require that the protocol satisfies the strong notion of simu-

lation soundness [67].

Definition A.8 (Simulation Soundness). A NIZK system for R
is simulation-sound if there exists a negligible function negl(·) such
that for all 𝜆 ∈ N and all PPT algorithms A it holds that

Pr

[
1 = Vfy(crs, stmt, 𝜋)
∧ stmt ∉ 𝑄 ∧ stmt ∉ L

���� (crs, td) ← Sim0 (1𝜆)
(𝜋, stmt) ← AO(·) (crs)

]
= negl(𝜆)

whereO takes as input a (possibly false) statement stmt and returns
Sim1 (crs, stmt, td) and we denote by 𝑄 the list of queries issued by
A.

B ASSUMPTIONS
We give the formal definition of a DDH-hard prime order group.

Definition B.1 (DDH-hard prime order group). We say that
a group generation algorithm ˜GGen is DDH hard if there exists a
negligible function negl, such that for all 𝜆 ∈ N, all PPT adversaries
A the following holds:

Pr


𝑏 ′ = 𝑏

���������������

(˜G, 𝐺̃, 𝑞) ← ˜GGen(1𝜆)
𝑥,𝑦, 𝑧 ← Z∗

𝑞̃

𝑋̃0 := 𝑋̃1 = 𝐺̃
𝑥

𝑌̃0 := 𝑌̃1 = 𝐺̃
𝑦

𝑍0 := 𝐺̃
𝑥𝑦 and 𝑍1 := 𝐺̃𝑧

𝑏 ← {0, 1}
𝑏 ′ ← A(˜G, 𝑞, 𝐺̃, 𝑋̃𝑏 , 𝑌̃𝑏 , 𝑍𝑏)


≤ 1

2

+ negl(𝜆)

We can extend the above definition to the case of a class group

where the order of the group is not known. In this case, the values

𝑥,𝑦, 𝑧 are sampled uniformly at random from a domain exponen-

tially larger than the upper bound on the group order.

Definition B.2 (DDH-hard unknown order group). We say
that a group generation algorithm CGGen is DDH hard if there exists
a negligible function negl, such that for all 𝜆 ∈ N all 𝜆 bit primes 𝑞,
and all PPT adversaries A the following holds:

Pr


𝑏 ′ = 𝑏

��������������

(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)
𝑥,𝑦, 𝑧 ← Z∗

𝑞̃

𝑋0 := 𝑋1 = 𝐺
𝑥

𝑌0 := 𝑌1 = 𝐺
𝑦

𝑍0 := 𝐺
𝑥𝑦 and 𝑍1 := 𝐺𝑧

𝑏 ← {0, 1}
𝑏 ′ ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞, 𝑋𝑏 , 𝑌𝑏 , 𝑍𝑏)


≤ 1

2

+ negl(𝜆)

We also recall the subgroup membership assumption.

Definition B.3 (Hard Subgroup Membership ([32])). We say
that a group generation algorithm CGGen is HSM𝐶𝐿 hard if there
exists a negligible function negl, such that for all 𝜆 ∈ N, all 𝜆 bit
primes 𝑞, and all PPT adversaries A, the following holds:

Pr


𝑏 ′ = 𝑏

����������
(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)

𝑟0 ← Z𝑞𝑞̃ and 𝑟1 ← Z𝑞̃
𝛿0 := 𝛾

𝑟0 and 𝛿1 := 𝛾
𝑟1
𝑞

𝑏 ← {0, 1}
𝑏 ′ ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞, 𝛿𝑏 , SolveDL)


≤ 1

2

+ negl(𝜆)

We recall the strong root assumption for class groups.

Definition B.4 (Strong root assumption [30]). We say that
the strong root assumption holds for the class group generationCGGen
if there exists a negligible function negl, such that for all 𝜆 ∈ N, all
PPT adversaries A the following holds:

Pr


𝐺 = 𝑈 ℓ

ℓ ≠ 1, 2𝑘 ,∀𝑘

������(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)
𝐻 ← G

(𝑈 , ℓ) ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞, 𝐻)


≤ negl(𝜆)

We recall the 2
𝜆
-low order assumption for class groups.

Definition B.5 (𝛾-Low order assumption [30]). We say that
the 𝛾-low order assumption holds for the class group generation
CGGen for a given 𝛾 if there exists a negligible function negl, such
that for all 𝜆 ∈ N, all PPT adversaries A the following holds:

Pr


𝑈 ℓ = 1

𝑈 ≠ 1

1 < ℓ < 𝛾

������(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞) ← CGGen(1𝜆, 𝑞)
(𝑈 , ℓ) ← A(G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)

 ≤ negl(𝜆)

C CL FAST VARIANT
We describe here a slightly modifed version of the faster variant

of CL encryption which is sketched in [31], and provide a clean

security proof under the hard subroup membership assumption,

HSM𝐶𝐿 , introduced in [32] (cf. Definition B.3).

The main difference with the scheme from [31] is the fact that

instead of choosing 𝜑𝑞 (𝛾) as a generator of G we choose𝐺 as the

𝑞-th power of this element (so G =𝜑𝑞 (𝛾)𝑞) in order for the IND-CPA
proof to go through. Thanks to this slight modification, we are able

to prove the security of this scheme under the HSM𝐶𝐿 assumption

(see Theorem C.1), instead of the “non-standard” assumption stated

in [31]. Remark that 𝑠 is the (unknown) order of 𝐺 and of 𝛾𝑞 =

𝜓𝑞 (𝐺), since𝜓𝑞 is an injective homomorphism.

Theorem C.1. Let CGGen be a HSM𝐶𝐿-hard group generator,
then the above cryptosystem is IND-CPA-secure.

Proof. We describe a sequence of games whose transitions

are then analysed to show that our fast variant of CL is secure

under the HSM𝐶𝐿 assumption. Recall that 𝐺 = 𝜑𝑞 (𝛾)𝑞 so that

𝐺 = 𝜑𝑞 (𝜓𝑞 (𝑅))𝑞 = 𝑅𝑞
2

and 𝑞 is prime to 𝑠 and 𝐹 is in the kernel of

𝜑𝑞 . The fact that the composition of𝜑𝑞 and𝜓𝑞 is the exponentiation

to the 𝑞 is crucial in the proof.

Hyb
0
: This is the original IND-CPA game.

Hyb
1
: The public key is computed as follows: first sample 𝑘 ′ ← Z𝑞̃

and set 𝐻 = 𝜑𝑞 (𝛾)𝑘
′
.

Setup(1𝜆, 𝑞):
• Let 𝜇 be the bit size of 𝑞. Pick 𝑝 a 𝜂 (𝜆) − 𝜇 bits prime such

that 𝑝𝑞 ≡ −1 (mod 4) and (𝑞/𝑝) = −1
• Δ𝐾 := −𝑝𝑞, Δ𝑞 := 𝑞2Δ𝐾
• Compute 𝐵 an upper bound on the order of 𝐶𝑙 (Δ𝐾) and
set 𝑞 = 2

𝜆𝐵

• Generate a random square 𝑅 ∈ 𝐶𝑙 (Δ𝐾)
• Compute 𝛾𝑞 = 𝜓𝑞 (𝑅)
• Set 𝐹 := (𝑞2, 𝑞) in 𝐶𝑙 (Δ𝑞)
• Set 𝛾 := 𝛾𝑞 · 𝐹 and compute 𝐺 = 𝜑𝑞 (𝛾)𝑞
• Set G = ⟨𝐺⟩
• Output pp := (G,𝐺, 𝐹,𝛾,𝛾𝑞, 𝑞)
KeyGen(G,𝐺, 𝐹,𝛾,𝛾𝑞):
• Sample 𝑘 ← Z𝑞̃
• Compute 𝐻 = 𝐺𝑘

• Return 𝑝𝑘 = 𝐻 and 𝑠𝑘 = 𝑘

Encrypt(𝑝𝑘,𝑚 ∈ Z𝑞):
• Sample 𝑟 ← Z𝑞̃
• Compute 𝐶1 = 𝐺

𝑟
and 𝐶2 = 𝜓𝑞 (𝐻𝑟) · 𝐹𝑚

• Return 𝐶 = (𝐶1,𝐶2)
Decrypt(𝑠𝑘, (𝐶1,𝐶2)):

• Return SolveDL (𝐶2 ·𝜓𝑞 (𝐶𝑘1)
−1)

Figure 5: Modified fast variant of CL

Hyb
2
: Let 𝑍★ = 𝛾𝑟

′
𝑞 with 𝑟 ′ ← Z𝑞̃ . The challenge ciphertext is made

up as follows: 𝐶★
1
= 𝜑𝑞 (𝑍★) and 𝐶★

2
= (𝑍★)𝑘′ · 𝐹𝑚𝑏 .

Hyb
3
: We change the definition of 𝑍★: 𝑍★ = 𝛾𝑟

′
with 𝑟 ′ ← Z𝑞𝑞̃ .

We now argue the indistinguishability of the hybrids.

Hyb
0
≡ Hyb

1
: In Hyb

1
, 𝐻 = 𝜑𝑞 (𝛾)𝑘

′
= 𝜑𝑞 (𝛾)𝑘𝑞 = 𝐺𝑘 for some

𝑘 ∈ Z𝑠 since gcd(𝑠, 𝑞) = 1. Furthermore, 𝑘 and 𝑘 ′ follow the same

distribution in Z𝑠 . Therefore, the public key has the right form.

Note that the simulator does not know the “correct” secret key 𝑘 .

Hyb
1
≡ Hyb

2
:

In Hyb
2
, 𝐶★

1
= 𝜑𝑞 (𝛾𝑟

′
𝑞) = 𝜑𝑞 (𝛾)𝑟

′
= 𝜑𝑞 (𝛾)𝑞𝑟 = 𝐺𝑟 for a 𝑟 that

satisfies 𝑟 ′ = 𝑞𝑟 mod 𝑠 . Again, it exists since gcd(𝑞, 𝑠) = 1. On the

other hand, 𝐶★
2
= 𝛾𝑟

′𝑘′
𝑞 · 𝐹𝑚𝑏 .

But𝜓𝑞 (𝐻𝑟) = 𝜓𝑞 (𝜑𝑞 (𝛾)𝑘
′)𝑟 = 𝜓𝑞 (𝜑𝑞 (𝛾))𝑘

′𝑟
.

Since𝜓𝑞 (𝜑𝑞 (𝑎)) = 𝑎𝑞 for all 𝑎 ∈ 𝐶𝑙 (Δ𝐾), this is equal to 𝛾𝑘
′𝑟𝑞 =

𝛾
𝑘′𝑟𝑞
𝑞 = 𝛾𝑘

′𝑟 ′
𝑞 . This means that𝐶★ = (𝐺𝑟 ,𝜓𝑞 (𝐻𝑟) · 𝐹𝑚𝑏 is a genuine

ciphertext of𝑚𝑏 for the public key 𝐻 .

Hyb
2
≈𝑐 Hyb3: The indistinguishability follows from reduction

against the HSM𝐶𝐿 assumption.

We now prove that𝐶★ perfectly hides𝑏 inHyb
3
. From the challenge

ciphertext one gets 𝐶★
1
= 𝜑𝑞 (𝛾)𝑟

′
where 𝑟 ′ ← Z𝑞𝑞̃ . As 𝜑𝑞 (𝛾) is of

order 𝑠 , from an information theoretical point of view, the only

information known from the adversary on 𝑟 ′ is modulo 𝑠 . But 𝑟 ′ is
closed to uniform modulo 𝑞𝑠 , and gcd(𝑞, 𝑠) = 1, so 𝑟 ′ modulo 𝑞 is

still uniformly distributed for the adversary.

Eventually,𝐶★
2
= (𝛾𝑟 ′)𝑘′ ·𝐹𝑚𝑏 = (𝛾𝑞 ·𝐹)𝑟

′𝑘′ ·𝐹𝑚𝑏 = 𝛾𝑟
′𝑘′
𝑞 ·𝐹𝑚𝑏+𝑟 ′𝑘′ .

As 𝑟 ′𝑘 ′ remains uniform modulo 𝑞 it acts as a one-time pad on𝑚𝑏
(note that 𝑘 ′ ≠ 0 with overwhelming probability) , which means

that the challenge ciphertext does not reveal any information on

𝑚𝑏 .

□

D SECURITY ANALYSIS OF CCA TIMED
COMMITMENT

In this section we present the formal proof for the security of our

CCA Timed commitment construction Figure 3.

Proof of Theorem 5.6. The proof for CCA security proceeds

by defining a series of hybrid distributions and then arguing about

the indistinguishability of the neighbouring experiments.

Hyb
0
: This is identical to the original CCA experiment, except that

we fix the bit 𝑏 = 0.

Hyb
1
: In this hybrid we compute the NIZK proof for the challenge

commitment using the simulator (Sim0, Sim1).
Hyb

2
: In this hybrid we compute, for all 𝑖 ∈ [𝛼] (where 𝛼 :=

⌊log𝑞⌋ + 1), (𝑐𝑖,0, 𝑐𝑖,1) and (𝑐𝑖,0, 𝑐𝑖,1) as encryptions of 0 in the chal-

lenge commitment. I.e., we fix 𝑟𝑖 = 0, regardless on the value of

𝑟 .

Hyb
3
: In this hybrid we sample 𝐾̃ as a 𝐺̃

˜𝑘
for some uniformly at

random integer
˜𝑘 from Z𝑞̃ .

Hyb
4
: Here we change the way we simulate the oracle O. On input

a valid commitment 𝑐 , instead of using Solve(𝑍) to solve the puzzle,
use

˜𝑘 to decrypt (𝑐𝑖,0, 𝑐𝑖,1) to obtain 𝑟𝑖 , for 𝑖 ∈ [𝛼] (where 𝛼 :=

⌊log𝑞⌋ +1). Compute 𝑟 :=
∑𝛼
𝑖=1 2

𝑖 ·𝑟𝑖 . Now recover𝑚 from (𝑍1, 𝑍2)
by computing SolveDL (𝑍2 ·𝜓𝑞 (𝐻𝑟)−1).
Hyb

5
: We switch 𝑍 in the challenge ciphertext from PGen(pp,𝑚0)

to PGen(pp,𝑚1).
Hyb

6
. . .Hyb

9
: We revert the changes made in hybrids Hyb

4
. . .

Hyb
1
.

Observe that Hyb
9
is identical to the CCA experiment, except with

the bit 𝑏 fixed to 𝑏 = 1. To conclude the proof, we now argue on

the indistinguishability of the hybrid executions.

Hyb
0
≈𝑐 Hyb1: This follows from the zero-knowledge property of

the NIZK proofs.

Hyb
1
≈𝑐 Hyb2: The indistinguishability follows from a standard

hybrid argument (over each 𝑖 ∈ [2 · 𝛼], where 𝛼 := ⌊log𝑞⌋ + 1)
and a reduction against the DDH assumption (cf. Theorem B.1

and Theorem B.2).

Hyb
2
≡ Hyb

3
: The two hybrids define two identical distributions,

so the change here is only syntactical.

Hyb
3
≈𝑐 Hyb4: The only difference between the two hybrids is in

the simulation of the oracle O, therefore the two hybrids differ

only in the case that the output of O differs on some input query

of the adversary. Observe that this can happen only if the value 𝑟

extracted inHyb
4
is not the randomness used in generating (𝑍1, 𝑍2),

i.e., 𝐺𝑟 ≠ 𝑍1.

By the simulation-soundness of the NIZK, for 𝛼 := ⌊log𝑞⌋ + 1,
we have that(

𝐺,𝐾,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,0,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,1 · 𝑍
−1
1

)
=

(
𝐺,𝐾,

𝛼∏
𝑖=1

𝐺𝑠𝑖 ·2
−𝜌𝑖 ·2𝑖 ,

𝛼∏
𝑖=1

𝐾𝑠𝑖 ·2
−𝜌𝑖 ·2𝑖 ·𝐺𝑟𝑖 ·2

𝑖

· 𝑍−1
1

)
=

(
𝐺,𝐾,𝐺

∑𝛼
𝑖=1 𝑠𝑖2

−𝜌𝑖 ·2𝑖 , 𝐾
∑𝛼
𝑖=1 𝑠𝑖2

−𝜌𝑖 ·2𝑖 ·𝐺
∑𝛼
𝑖=1 𝑟𝑖 ·2𝑖 · 𝑍−1

1

)
=

(
𝐺,𝐾,𝐺𝑠

′
, 𝐾𝑠

′
·𝐺

∑𝛼
𝑖=1 𝑟𝑖 ·2𝑖 · 𝑍−1

1

)
∈ L2

with 𝑠 ′ =
∑𝛼
𝑖=1 𝑠𝑖2

−𝜌𝑖 · 2𝑖 , which in particular means

𝐺
∑𝛼
𝑖=1 𝑟𝑖 ·2𝑖 = 𝑍1

and therefore (𝑟1, . . . , 𝑟𝛼) is the bit decomposition of the discrete

logarithm of 𝑍1 in base 𝐺 . Furthermore, we have that (𝑐𝑖,0, 𝑐𝑖,1)
encrypts the same bit as (𝑐𝑖,0, 𝑐𝑖,1), for all 𝑖 ∈ [𝛼]. It follows that de-
crypting (𝑐𝑖,0, 𝑐𝑖,1) yields a valid bit decomposition of 𝑟 , the discrete

logarithm of 𝑍1 in base 𝐺 , except with negligible probability.

Hyb
4
≈𝑐 Hyb5: The indistinguishability follows from a reduction

to the hiding property of the time-lock puzzle. The only non-trivial

aspect of the reduction is the running time needed to answer the

queries of the adversary to the oracle O. Note however that the
running time of the simulated oracle is independent of T, so the

running time of the reduction is only a polynomial (in 𝜆) factor

slower than that of the adversary.

Indistinguishability of the hybrids Hyb
5
. . .Hyb

9
follows along the

same lines. This concludes the proof for CCA security.

The proof for verifiability follows from the soundness of the

NIZK proof system. Notice that the winning condition of the verifi-

ability property requires TVfy(crs, 𝑐, 𝜋) = 1 and 𝑐 ∉ TCom(crs,𝑚).
The latter conditionmeans that the commitments is not well-formed

according to TCom. Therefore, it must be the case thatVfy(crs, stmt,
𝜋) = 1 and one of the following holds:

(𝐺,𝐾) ∉ L1

or (
𝐺,𝐾,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,0,

𝛼∏
𝑖=1

𝑐2
𝑖

𝑖,1 · 𝑍
−1
1

)
∉ L2

or

(𝐺,𝐾, 𝐺̃, 𝐾̃, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]) ∉ L3

where 𝛼 := ⌊log𝑞⌋ +1. The above event immediately contradicts the

soundness of at least one of the NIZK proof systems that we use for

the languages. We can therefore conclude that the probability with

which the above event occurs is at most negligible in the security

parameter. This concludes the proof for verifiability. □

E EFFICIENT NIZK PROTOCOLS
Let 𝛼 := ⌊log𝑞⌋ + 1. We consider the statement

stmt = (𝑍1, 𝑍2,𝐺, 𝐾, 𝐺̃, 𝐾̃, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼])

as defined in Section 5. For simplicity we split the statement that

we want to prove in the following languages:

• Language L1 contains all statements stmt1 := (𝐺,𝐾) such that

𝐾 is generated by 𝐺 , defined as

L1 :=

{
(𝐺,𝐾)

��� ∃ 𝑘, 𝜌 s.t. 𝐾 = 𝐺𝑘 ·2
−𝜌 }

.

• Language L2 contains statements

stmt2 := (𝐺,𝐾,𝐻0, 𝐻1)
defined as

L2 :=

{
(𝐺,𝐾,𝐻0, 𝐻1)

���∃ 𝑠, 𝜌 s.t.𝐻0 = 𝐺
𝑠 ·2−𝜌

AND𝐻1 = 𝐾
𝑠 ·2−𝜌

}
,

where 𝐻0 :=
∏𝛼
𝑖=1 𝑐

2
𝑖−1
𝑖,0

and 𝐻1 :=
∏𝛼
𝑖=1 𝑐

2
𝑖−1
𝑖,1
· 𝑍−1

1
.

• Language L3 contains statements

stmt3 := (𝐺,𝐾, 𝐺̃, 𝐾̃, {𝑐𝑖,0, 𝑐𝑖,1, 𝑐𝑖,0, 𝑐𝑖,1}𝑖∈[𝛼]),
defined as

L3 :=


(𝐺,𝐾, 𝐺̃, 𝐾̃)
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]
{𝑐𝑖,0, 𝑐𝑖,1 }𝑖∈[𝛼]

���������������

∃ {𝑠𝑖 , 𝑠𝑖 , 𝜌𝑖 }𝑖∈[𝛼] s.t.
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2

−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖)
AND

(𝑐𝑖,0,̃𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖)
OR

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 ·2
−𝜌𝑖
, 𝐾𝑠𝑖 ·2

−𝜌𝑖 ·𝐺)
AND

(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖 · 𝐺̃)


While we present individual protocols for each language, our system

will prove the conjunction of such statements. This can be achieved

by standard AND composition of sigma protocols. The protocols are

presented in Figures 6 to 8 and they assume three hash functions

H1,H2 : {0, 1}∗ → Z
2
𝜆 and H3 : {0, 1}∗ → (Z

2
𝜆)𝛼 modelled

as random oracles. These functions can be obtained by a single

random oracle via standard domain separation techniques, but for

simplicity we treat them as independent oracles. In all protocols, we

assume that the prover checks that the elements of the statements

belong to the correct groups as in standard discrete log based ZK

proofs. For instance, for elements of the class groups, one has to

check that there are squares, which can be done in polynomial time

(cf. [51]). The setup algorithm solely consists of the sampling of the

corresponding hash function, and it is therefore omitted. We recall

the following standard lemma, proven e.g. in [7].

Lemma E.1. Let𝑈 [0,𝑟] be the uniform distribution on the interval
[0, 𝑟] and 𝛽 ∈ Z. Then the statistical distance between 𝑈 [0,𝑟] and
𝑈 [0,𝑟] + 𝛽 is 𝛽/𝑟 .

We now proceed with the analysis our protocols. We remark

that many of these proofs are already well known in the literature

(e.g. some proofs for the CL encryption scheme can be found in

[28, 30]) and we present them here only for completeness.

Theorem E.2 (Zero-knowledge). The protocol in Figure 6 satis-
fies statistical zero-knowledge in the random oracle model.

Proof of Theorem E.2. The simulator on input (crs, stmt), pic-
ks 𝑡 ′

𝐾
← Z𝑄 and 𝑒 ′ ← Z

2
𝜆 . It then computes 𝐾 ′

0
:= 𝐺𝑡

′
𝐾 /𝐾𝑒′ and

sets the random oracle H1 (stmt, 𝐾 ′
0
) := 𝑒 ′. It outputs 𝜋 := (𝐾 ′

0
, 𝑡 ′
𝐾
)

as its proof. Notice that for a randomly sampled 𝑡 in the honest

proof the statistical distance between 𝑡 ′
𝐾
and 𝑡 + 𝑒 · 𝑥 is 2

𝜆 · 𝑞/𝑄
(following from Lemma E.1) which is negligible. Therefore the joint

distribution of (𝐾 ′
0
, 𝑡 ′
𝐾
, 𝑒 ′) computed by the simulator is statistically

close to computing (𝐾0, 𝑡 + 𝑒 · 𝑥, 𝑒) honestly. □

PrvL1
(crs, stmt,wit): The prover routine does the following:

• Sample 𝑡 ← Z𝑄 , where 𝑄 = 𝑞 · 22𝜆 , compute 𝐾0 := 𝐺
𝑡

• Compute 𝑒 ← H1 (stmt, 𝐾0)
• Compute 𝑡𝐾 := 𝑡 + 𝑒 · 𝑥
• Set the proof 𝜋 := (𝐾0, 𝑡𝐾 , 𝑒)

VfyL1

(crs, stmt, 𝜋): The verifier routine does the following:
• Parse 𝜋 := (𝐾0, 𝑡𝐾 , 𝑒)
• Check if 𝑒

?

= H1 (stmt, 𝐾0), if so continue, otherwise output 0

• Check if 𝐺𝑡𝐾
?

= 𝐾0 · 𝐾𝑒 . If successful, output 1, else output 0.

Figure 6: Prover and Verifier routine for NIZK proof for statements in language L1

Theorem E.3 (Simulation Soundness). The protocol in Figure 6
satisfies simulation soundness provided the 2𝜆-low order assumption
and the strong root assumption holds in G, in the random oracle
model.

Proof of Theorem E.3. In the following we assume without

loss of generality that the reduction is given ahead of time the

false statement stmt and the more general claim follows with a

polynomial loss (by guessing the right query of the adversary to

the random oracle). The proof consists of a reduction against the

2
𝜆
-low order assumption and the strong root assumption. Consider

a reduction R that on input G, generates crs and gives it to the

adversary A. The adversary A may query statements stmt to the

reduction and the reduction returns simulated proofs. The reduction

sets and answers random oracle queries to H1 via lazy sampling.

At some point in the execution, the adversary makes a query of the

form (stmt, 𝐾0) to the random oracle H1. The reduction forks the

execution of the game by answering with two different integers

(𝑒, 𝑒 ′) ← Z𝑄 such that 𝑒 ′ ≠ 𝑒 . By the forking lemma [64], with

inverse polynomial probability the adversary outputs two accepting

proofs 𝜋 := (𝐾0, 𝑡𝐾 , 𝑒) and 𝜋 ′ := (𝐾0, 𝑡 ′𝐾 , 𝑒
′) on the statement stmt.

The reduction computes (𝑡𝐾 − 𝑡 ′𝐾), (𝑒 − 𝑒
′) and

𝛾 := gcd(𝑡𝐾 − 𝑡 ′𝐾 , 𝑒 − 𝑒
′) .

We denote

𝜇 := 𝐺

𝑡𝐾 −𝑡′𝐾
𝛾 · 𝐾−

𝑒−𝑒′
𝛾

which is either 1 or different from 1. In the case 𝜇 ≠ 1, we clearly

have 𝜇𝛾 = 1. Given the maximum value of (𝑒 − 𝑒 ′) is at most 2
𝜆

and 𝛾 divides (𝑒 − 𝑒 ′), the reduction outputs (𝜇,𝛾) as a solution to

2
𝜆
-low order assumption.

Now suppose that 𝜇 = 1. Let us denote 𝐸 := 𝑒−𝑒′
𝛾 , so that

𝐺

𝑡𝐾 −𝑡′𝐾
𝛾 = 𝐾𝐸 . We have two cases here,

(1) In the first case we suppose that 𝐸 = 2
𝜌
for some integer 𝜌 . In

this case we can compute 𝑥 :=
𝑡𝐾−𝑡 ′𝐾
𝛾 such that 𝐺𝑥 = 𝐾2

𝜌
or

equivalently𝐺𝑥 ·2
−𝜌

= 𝐾 as𝐺,𝐾 are checked to be in the correct

groups (in our applications with class groups, one checks that

𝐺 and 𝐾 are squares which means that they have odd orders).

But since stmt ∉ L1, this case is not possible.

(2) In the second case. We have for some (𝛼, 𝛽) that
𝛼 (𝑡𝐾 − 𝑡 ′𝐾) + 𝛽 (𝑒 − 𝑒

′) = 𝛾

which can be efficiently computed by the extended Euclidean

algorithm. Observe that

𝐺𝛾 = 𝐺𝛼 (𝑡𝐾−𝑡
′
𝐾
)+𝛽 (𝑒−𝑒′)

𝐺𝛾 = 𝐺𝛼 (𝑡𝐾−𝑡
′
𝐾
)𝐺𝛽 (𝑒−𝑒

′)

𝐺𝛾 = 𝐾𝛼 (𝑒−𝑒
′)𝐺𝛽 (𝑒−𝑒

′)

𝐺𝛾 = (𝐾𝛼𝐺𝛽) (𝑒−𝑒
′) .

The reduction outputs (𝐾𝛼𝐺𝛽 , 𝐸) as its solution to the strong

root problem since 𝐸 is not a power of 2 or a solution to the

2
𝜆
-low order assumption as before. Thus we arrive at a contra-

diction, which proves the simulation soundness of the protocol.

□

Theorem E.4 (Zero-knowledge). The protocol in Figure 7 satis-
fies statistical zero-knowledge in the random oracle model.

Proof of Theorem E.4. The simulator samples 𝑡 ′
𝐺,𝐾

← Z𝑄

and 𝑒 ′ ← Z
2
𝜆 . It then computes 𝐺 ′

0
:= 𝐺

𝑡 ′
𝐺,𝐾 /(𝐻0)𝑒

′
and 𝐾 ′

0
:=

𝐾
𝑡 ′
𝐺,𝐾 /(𝐻1)𝑒

′
and sets the random oracle

H2 (stmt,𝐺 ′
0
, 𝐾 ′

0
) := 𝑒 ′.

It outputs the proof 𝜋 := (𝐺 ′
0
, 𝐾 ′

0
, 𝑡 ′
𝐺,𝐾

, 𝑒 ′). By Lemma E.1 the simu-

lated proof is statistically close to the honest one. □

Theorem E.5 (Simulation Soundness). The protocol in Figure 7
satisfies simulation soundness provided the 2𝜆-low order assumption
and the strong root assumption holds in G, in the random oracle
model.

Proof of Theorem E.5. The proof follows along the lines of the

argument for Theorem E.3 and it boils down to showing that it is

possible to extract a solution to the 2
𝜆
-low order assumption or the

strong root problem given two accepting transcripts with the same

first message 𝜋 := (𝐺0, 𝐾0, 𝑡𝐺,𝐾 , 𝑒) and 𝜋 ′ := (𝐺0, 𝐾0, 𝑡
′
𝐺,𝐾

, 𝑒 ′).
□

Theorem E.6 (Zero-knowledge). The protocol in Figure 8 is
zero-knowledge in the random oracle model.

Proof of Theorem E.6. We describe the simulator for a single

index 𝑖 ∈ [𝛼] and the algorithm can be extended to the more

general case in a natural way. The simulator picks 𝑑𝑖,1, 𝑑𝑖,2 ← Z2𝜆 ,
𝑟𝑖,1, 𝑟𝑖,2 ← Z𝑄 and 𝑟𝑖,1, 𝑟𝑖,2 ← Z𝑞̃ . It then sets

PrvL2
(crs, stmt,wit): The prover routine does the following:

• Sample 𝑡 ← Z𝑄 , where 𝑄 = 𝑞 · 22𝜆 , compute 𝐺0 := 𝐺
𝑡
and 𝐾0 := 𝐾

𝑡

• Compute 𝑒 ← H2 (stmt,𝐺0, 𝐾0)
• Compute 𝑡𝐺,𝐾 := 𝑡 + 𝑒 · 𝑠
• Set the proof 𝜋 := (𝐺0, 𝐾0, 𝑡𝐺,𝐾 , 𝑒)

VfyL2

(crs, stmt, 𝜋): The verifier routine does the following:
• Parse 𝜋 := (𝐺0, 𝐾0, 𝑡𝐺,𝐾 , 𝑒)
• Check if 𝑒

?

= H2 (stmt,𝐺0, 𝐾0), if so continue, otherwise output 0

• Check if 𝐺𝑡𝐺,𝐾
?

= 𝐺0 · 𝐻𝑒
0
and 𝐾𝑡𝐺,𝐾

?

= 𝐾0 · 𝐻𝑒
1
. If unsuccessful, output 0.

Figure 7: Prover and Verifier routine for NIZK proof for statements in language L2

• 𝑒𝑖 = (𝑑𝑖,1 + 𝑑𝑖,2) mod 2
𝜆

• 𝐴𝑖,1 := 𝐺𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1
• 𝐵𝑖,1 := 𝐾𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
• 𝐴𝑖,2 := 𝐺𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2
• 𝐵𝑖,2 := 𝐾𝑟𝑖,2 · (𝑐𝑖,1/𝐺)𝑑𝑖,2
• 𝐴̃𝑖,1 := 𝐺̃𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1
• 𝐵̃𝑖,1 := 𝐾̃𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
• 𝐴̃𝑖,2 := 𝐺̃𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2
• 𝐵̃𝑖,2 := 𝐾̃𝑟𝑖,2 · (𝑐𝑖,1/𝐺̃)𝑑𝑖,2 .
It sets the random oracle H3 accordingly at the 𝑖-th point with

𝑒𝑖 . The values (𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, 𝐴̃𝑖,1, 𝐵̃𝑖,1, 𝐴̃𝑖,2, 𝐵̃𝑖,2) output by the

simulator are statistically close to that in a honestly generated proof.

This is because 𝑤𝑖 if sampled uniformly from Z𝑄 is distributed

statistically close to 𝑟𝑖,1 + 𝑠𝑖 · 𝑑𝑖,1 (Lemma E.1). □

Theorem E.7 (Simulation Soundness). The protocol in Figure 8
satisfies simulation soundness provided the 2𝜆-low order assumption
and the strong root assumption holds in G, in the random oracle
model.

Proof of Theorem E.7. As before, we assume without loss of

generality that the false statement (and the index 𝑖 where the state-

ment fails) is fixed ahead of time. This assumption can be lifted

with a polynomial loss in the success probability of the reduction by

guessing the correct query to the random oracle. In what follows,

we assume that the false statement only pertains to the prime-order

group
˜G. For the case of the class group elements, the argument

is similar to the proof of Theorems E.3 and E.5. Our reduction R
computes simulated proofs up until the point where the adversary

made the random oracle query on the false statement. Here the

reduction forks the execution and sets the 𝑖-th output of the random

oracle to two different values (𝑒𝑖 ≠ 𝑒 ′𝑖). By the forking Lemma [64],

with inverse polynomial probability the adversary outputs two ac-

cepting proofs containing 𝐴̃𝑖,1, 𝐴̃𝑖,2, 𝐵̃𝑖,1, 𝐵̃𝑖,2, 𝑑𝑖,1, 𝑑𝑖,2, 𝑟𝑖,1, 𝑟𝑖,1 and

𝐴̃𝑖,1, 𝐴̃𝑖,2, 𝐵̃𝑖,1, 𝐵̃𝑖,2, 𝑑
′
𝑖,1
, 𝑑 ′
𝑖,2
, 𝑟 ′
𝑖,1
𝑟 ′
𝑖,1

(among other elements from G).

Since 𝑒𝑖 ≠ 𝑒
′
𝑖
, it must be the case that either 𝑑𝑖,1 ≠ 𝑑

′
𝑖,1

or 𝑑𝑖,2 ≠

𝑑 ′
𝑖,2
. If we have 𝑑𝑖,1 ≠ 𝑑

′
𝑖,1
, then the reduction computes

𝑠𝑖 :=

(
𝑟𝑖,1 − 𝑟 ′𝑖,1

)(
𝑑 ′
𝑖,1
− 𝑑𝑖,1

)

from 𝐴̃𝑖,1, such that 𝑐𝑖,0 = 𝐺̃
𝑠𝑖
. Similarly from 𝐵̃𝑖,1 we have 𝑐𝑖,1 = 𝐾̃

𝑠𝑖
,

therefore we have extracted the witness to the relation. If 𝑑𝑖,2 ≠ 𝑑
′
𝑖,2
,

then the reduction computes

𝑠𝑖 :=

(
𝑟𝑖,2 − 𝑟 ′𝑖,2

)(
𝑑 ′
𝑖,2
− 𝑑𝑖,2

)
from 𝐴̃𝑖,2, such that 𝑐𝑖,0 = 𝐺̃

𝑠𝑖
. From

˜𝑏𝑖,2 we have that𝐾
𝑠𝑖 = (𝑐𝑖,1/𝐺̃)

and therefore 𝑠𝑖 is a valid witness for the relation. It is not possible

for both 𝑑𝑖,1 ≠ 𝑑
′
𝑖,1

and 𝑑𝑖,2 ≠ 𝑑
′
𝑖,2
, since this would mean we have

𝑐𝑖,1 = 𝐾̃
𝑠𝑖 = 𝐾̃𝑠𝑖 ·𝐺 . Therefore we are able to extract a valid witness

in one of the branches, which contradicts the fact that the statement

was false. □

F SECURITY ANALYSIS OF DISTRIBUTED
RANDOMNESS GENERATION PROTOCOL

Proof of Theorem 6.3. We assume for simplicity that the ad-

versary corrupts all but one parties and the honest party is 𝑃1. We

define the following series of hybrid distributions.

Hyb
0
: Is identical to the IND-RAN experiment with the bit 𝑏 fixed

to 𝑏 = 0, i.e. A is given the honestly computed 𝑟0.

Hyb
1
: This is identical to the previous hybrid except that now each

of the commitments output by the adversary are individually force-

opened using TForceOp. Let (𝑠2, . . . , 𝑠𝑛) be the resulting integers

and let 𝑠1 the integer sampled by the honest 𝑃1 (in the call to the

RGen protocol). Then the adversary is given

𝑟0 =

𝑛∑︁
𝑖=1

𝑠𝑖 .

Hyb
2
: This is identical to the previous hybrid except that we com-

pute

𝑟0 =

𝑛∑︁
𝑖=2

𝑠𝑖 + 𝑠

where 𝑠 ← Z𝑞 is sampled uniformly and independently from 𝑠1.

Hyb
3
: Here the adversary is given a uniformly sampled integer.

Note that the latter hybrid is identical to the experiment IND-RAN

with the bit 𝑏 fixed to 𝑏 = 1. We now argue the indistinguishability

of the hybrids.

PrvL3
(crs, stmt,wit): The prover routine does the following:

• For 𝑖 ∈ [𝛼], do the following:

– If 𝑟𝑖 = 1, i.e.,

(
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖 ·𝐺)

∧(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖 · 𝐺̃)) , do the following:

∗ Sample𝑤𝑖 , 𝑟𝑖,1 ← Z𝑄 , 𝑤̃𝑖 , 𝑟𝑖,1 ← Z𝑞̃ and 𝑑𝑖,1 ← Z2𝜆
∗ Set 𝐴𝑖,1 := 𝐺

𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1 , 𝐵𝑖,1 := 𝐾𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
∗ Set 𝐴̃𝑖,1 := 𝐺̃

𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1 , 𝐵̃𝑖,1 := 𝐾̃𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1
∗ Set 𝐴𝑖,2 := 𝐺

𝑤𝑖
, 𝐵𝑖,2 := 𝐾

𝑤𝑖

∗ Set 𝐴̃𝑖,2 := 𝐺̃
𝑤̃𝑖
, 𝐵̃𝑖,2 := 𝐾̃

𝑤̃𝑖

– If 𝑟𝑖 = 0, i.e.,

(
(𝑐𝑖,0, 𝑐𝑖,1) = (𝐺𝑠𝑖 , 𝐾𝑠𝑖)

∧(𝑐𝑖,0,̃𝑐𝑖,1) = (𝐺̃𝑠𝑖 , 𝐾̃𝑠𝑖)) , do the following:

∗ Sample𝑤𝑖 , 𝑟𝑖,2 ← Z𝑄 , 𝑤̃𝑖 , 𝑟𝑖,2 ← Z𝑞̃ and 𝑑𝑖,2 ← Z2𝜆
∗ Set 𝐴𝑖,1 := 𝐺

𝑤𝑖
, 𝐵𝑖,1 := 𝐾

𝑤𝑖

∗ Set 𝐴̃𝑖,1 := 𝐺̃
𝑤̃𝑖
, 𝐵̃𝑖,1 := 𝐾̃

𝑤̃𝑖

∗ Set 𝐴𝑖,2 := 𝐺
𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2 , 𝐵𝑖,2 := 𝐾𝑟𝑖,2 · (𝑐𝑖,1/𝐺)𝑑𝑖,2

∗ Set 𝐴̃𝑖,2 := 𝐺̃
𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2 , 𝐵̃𝑖,2 := 𝐾̃𝑟𝑖,2 · (𝑐𝑖,1/𝐺̃)𝑑𝑖,2

• Compute (𝑒1, . . . , 𝑒 [𝛼]) ← H3 (stmt, {𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, 𝐴̃𝑖,1, 𝐵̃𝑖,1, 𝐴̃𝑖,2, 𝐵̃𝑖,2}𝑖∈[𝛼])
• For 𝑖 ∈ [𝛼], do the following:

– If 𝑟𝑖 = 1, do the following:

∗ Compute 𝑑𝑖,2 := (𝑒𝑖 − 𝑑𝑖,1) mod 2
𝜆

∗ Compute 𝑟𝑖,2 := 𝑤𝑖 − 𝑠𝑖 · 𝑑𝑖,2, 𝑟𝑖,2 := (𝑤̃𝑖 − 𝑠𝑖 · 𝑑𝑖,2) mod 𝑞

– If 𝑟𝑖 = 0, do the following:

∗ Compute 𝑑𝑖,1 := (𝑒𝑖 − 𝑑𝑖,2) mod 2
𝜆

∗ Compute 𝑟𝑖,1 := 𝑤𝑖 − 𝑠𝑖 · 𝑑𝑖,1, 𝑟𝑖,1 := (𝑤̃𝑖 − 𝑠𝑖 · 𝑑𝑖,1) mod 𝑞

• Output 𝜋 := {𝑒𝑖 , 𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, 𝐴̃𝑖,1, 𝐵̃𝑖,1, 𝐴̃𝑖,2, 𝐵̃𝑖,2, 𝑑𝑖,1, 𝑑𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2}𝑖∈[𝛼]
VfyL3

(crs, stmt, 𝜋): The verifier routine does the following:

• Parse 𝜋 := {𝑒𝑖 , 𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, 𝐴̃𝑖,1, 𝐵̃𝑖,1, 𝐴̃𝑖,2, 𝐵̃𝑖,2, 𝑑𝑖,1, 𝑑𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,1, 𝑟𝑖,2}𝑖∈[𝛼]
• Check if (𝑒1, . . . , 𝑒𝛼)

?

= H3 (stmt, {𝐴𝑖,1, 𝐵𝑖,1, 𝐴𝑖,2, 𝐵𝑖,2, 𝐴̃𝑖,1, 𝐵̃𝑖,1, 𝐴̃𝑖,2, 𝐵̃𝑖,2}𝑖∈[𝛼])
• For 𝑖 ∈ [𝛼], check if all the following hold, and output 0 otherwise:

– 𝑒𝑖
?

= (𝑑𝑖,1 + 𝑑𝑖,2) mod 2
𝜆

– 𝐴𝑖,1
?

= 𝐺𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1

– 𝐵𝑖,1
?

= 𝐾𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1

– 𝐴𝑖,2
?

= 𝐺𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2

– 𝐵𝑖,2
?

= 𝐾𝑟𝑖,2 · (𝑐𝑖,1 ·𝐺−1)𝑑𝑖,2

– 𝐴̃𝑖,1
?

= 𝐺̃𝑟𝑖,1 · (𝑐𝑖,0)𝑑𝑖,1

– 𝐵̃𝑖,1
?

= 𝐾̃𝑟𝑖,1 · (𝑐𝑖,1)𝑑𝑖,1

– 𝐴̃𝑖,2
?

= 𝐺̃𝑟𝑖,2 · (𝑐𝑖,0)𝑑𝑖,2

– 𝐵̃𝑖,2
?

= 𝐾̃𝑟𝑖,2 · (𝑐𝑖,1 · 𝐺̃−1)𝑑𝑖,2
• If all the above conditions hold, output 1, else output 0.

Figure 8: Prover and Verifier routine for NIZK proof for statements in language L3

Hyb
0
≈𝑐 Hyb1: By the perfect correctness of the commitment sche-

me, the hybrids only differ in the case where one of the commit-

ments output by the adversary is not well-formed. However, such

a commitment is always rejected unless the adversary computes a

proof 𝜋 for a false statement, which contradicts the verifiability of

the CCA timed commitment scheme.

Hyb
1
≈T𝜖 Hyb

2
: We show this indinstinguishability via a reduction

to the CCA security of the timed commitment scheme. Let A be

a PPT adversary with depth less than T𝜖 (for some 𝜖 < 1) that

distinguishes between the two hybrids. The reduction R against

the CCA security of the timed commitment proceeds as follows. The

reduction obtains crs of the timed commitment scheme. When the

adversary queries the RGen oracle, the reduction locally samples

(𝑠0, 𝑠1) ← Z𝑞 and sends (𝑠0, 𝑠1) to its challenger. It receives (𝑐, 𝜋)
from its challenger and sends (𝑐, 𝜋) to the adversary as reply to the

oracle query. The adversary outputs 𝑉 := {(𝑐2, 𝜋2), . . . , (𝑐𝑛, 𝜋𝑛)}.
The reduction forwards each of these to its own oracle O. If the
oracle responds with ⊥ for any of the pairs (𝑐𝑖 , 𝜋𝑖), the reduction
sets𝑚𝑖 = 0. Otherwise, the reduction receives𝑚𝑖 as a response and

defines a set {𝑚2, . . . ,𝑚𝑛}. The reduction sets

𝑟 =

𝑛∑︁
𝑖=2

𝑚𝑖 + 𝑠0

and returns 𝑟 to the adversary. The adversary responds with a bit

𝑏 ′ and the reduction outputs 𝑏 ′ as its own answer to the challenger.

This concludes the description of R.
Notice that the reduction is efficient and it running time is only a

polynomial (in 𝜆) factor slower than A. The reduction violates the

CCA security of the timed commitments with the same probability

as A violates the IND-RAN security. To see this, observe that we

have two cases where (𝑐, 𝜋) embeds 𝑠0 or 𝑠1. If (𝑐, 𝜋) indeed embeds

𝑠0, then 𝑟 is distributed as in hybridHyb
1
, otherwise 𝑟 is distributed

uniformly, as in Hyb
2
. This is a contradiction to the CCA security

of the timed commitments.

Hyb
2
≡ Hyb

3
: Since 𝑠 is uniformly chosen and Z𝑞 defines a field,

the two hybrid distributions are identical. □

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Homomorphism vs CCA Security

	2 Technical Overview
	2.1 Homomorphic Time-Lock Puzzles from Class Groups
	2.2 CCA Timed Commitments
	2.3 Distributed Randomness Generation

	3 Preliminaries
	4 Homomorphic Time-Lock Puzzle from Class Groups
	5 CCA Timed Commitments
	5.1 Definitions
	5.2 Construction

	6 Distributed Randomness Generation
	6.1 Definition
	6.2 Our Protocol

	7 Related Work
	8 Experimental Evaluation
	9 Conclusions
	References
	A More Preliminaries
	B Assumptions
	C CL fast variant
	D Security Analysis of CCA Timed Commitment
	E Efficient NIZK protocols
	F Security Analysis of Distributed Randomness Generation Protocol

