Exercice 1 Soit f la fonction de \mathbb{R}^2 définie par $f(x,y) = x^2 + y^2 - 2x - 4y$. Trouver les points critiques de f, préciser s'il s'agit d'extrema locaux.

Exercice 2 Soit f la fonction de \mathbb{R}^2 définie par $f(x,y) = x + e^x y - y$. Trouver les points critiques de f. Préciser s'il s'agit d'extrema locaux.

Exercice 3 Calculer l'intégrale $\int_{x=1}^{2} \int_{y=0}^{1} \frac{e^{-y}}{x\sqrt{x}} dx dy$.

Exercice 4 Calculer $\int_D f(x,y) d(x,y)$ pour les fonctions f et domaines D suivantes :

$$f(x,y) = x^2(2y+1), \quad D = [-1,1] \times [0,1]$$

 $f(x,y) = \sqrt{x+y}, \quad D = [0,1] \times [0,1]$

Exercice 5 Calculer pour

$$D = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0, x + y \le 1\}$$
$$\int_D xy \, d(x, y)$$

Exercice 6 Calculer pour $D = \{(x, y) \in \mathbb{R}^2 : xin[0, 1], x \le y \le x^2\}$ $\int_{D} x^2 d(x, y)$

Exercise 7 Calcular pour $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 - x \le 0\}$ $\int_D x d(x,y)$

Exercice 8 Étudier les points critiques de fonctions

$$f(x,y) = 4xe^{-x^2 - y^2} \quad g(x,y) = \frac{\cos(x)}{y^2 + 1} \quad h(x,y) = x^3 - xy + y^2$$
$$u(x,y) = x^2 + xy + y^2 - 3x - 6 \quad v(x,y) = x^2 + 2y^2 - 2xy - 2y - 5$$

Exercice 9^* Soient X > 0 et

$$D = \left\{ (x,y) \in \mathbb{R}^2, \, x^2 + y^2 \leqslant X^2 \right\} \qquad \text{et} \qquad \Delta = \left\{ (x,y) \in \mathbb{R}^2, \, -X \leqslant x \leqslant X \, \, \text{et} \, \, -X \leqslant y \leqslant X \right\}.$$

Calculer $I(X)=\iint_D e^{-(x^2+y^2)}dxdy$. Soit $J(X)=\iint_\Delta e^{-(x^2+y^2)}dxdy$. Utiliser I pour donner un encadrement de J(X). En déduire $\lim_{X\to +\infty}J(X)$.

Exercice 10* Soit un réel q fixé, pour tout point M de coordonnées (x, y) du plan \mathbb{R}^2 , on définit $f(M) = \frac{q}{r}$ où $r = \left\| \overrightarrow{OM} \right\|$.

Exprimer f comme une fonction de $(x, y) \in \mathbb{R}^2$.

Calculer les dérivées partielles $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ pour tous $x,y \in \mathbb{R}$.

En déduire que pour tout $(x,y) \in \mathbb{R}^2$, $\overrightarrow{\nabla} f(x,y) = -\frac{q}{r^2} \overrightarrow{u}$ où $\overrightarrow{u} = \frac{\overrightarrow{OM}}{\|\overrightarrow{OM}\|}$.