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Abstract. In this paper, we propose a spatially accurate definition of scale for images. The
proposed definition of local scale relies on the hierarchical structure of the topographic map, the
set of all level lines of an image. Namely, a connected component of a level line is associated to
each point of the image and the scale at this point is then computed from the corresponding shape.
Level lines are selected under the assumption that the blur is uniform over the image, a realistic
assumption for satellite images. First, we discuss the links between the proposed approach and
recent scale definitions making use of the total variation flow or the Rudin-Osher-Fatemi model. This
comparison shed some light on the relationships between morphological and variational approaches
to scale definitions. Then we perform several experiments on synthetic and satellite images, and
numerically compare our local scale definition with results using the linear scale space, variational or
morphological approaches. These experiments suggest that the proposed method enables a robust
and spatially accurate computation of local scales, without the need of complex parameter tuning.

1. Introduction. The notion of scale is of primary importance in digital image
analysis. On the one hand, it is a crucial information to tune the spatial extent of
analysis tools. In remote sensing imaging, the best observation scale is closely related
to the concept of Analysis Scale in geography [37]. The NATO standard STANAG
3769 [38] gives some examples of the best scales for interpreting certain objects in
remote-sensing images. In computer vision, most object recognition or detection
methods includes a scale computation while or before extracting significant features.
As a side product, this also permits to achieve scale invariance, which is necessary
considering the arbitrariness of object distances to the camera.

On the other hand, scale itself is also useful for the classification of single images.
In particular, remote sensing images are often made of several regions showing some
texture-like homogeneity. These regions usually exhibit different size distributions of
their constituents. Moreover, it is tempting to characterize each pixel of such images
by the size of the object(s) (in a sense to be defined) it belongs to. The purpose of
this paper is to show that this idea is feasible and yields spatially accurate features
for describing remote sensing images.

The most classical approach to estimate the scale of structures in an image has
been introduced by [24, 25]. Local scales are computed by studying extrema of dif-
ferential operators in the linear scale-space. This method has been widely applied in
computer vision to select the optimal analysis scale of structures, see e.g. [27, 33].
Similar to this approach, the methods presented in [19, 44, 45, 50] propose to estimate
the salient scale of an image by considering extrema of various information theoretic
operators in the linear scale space. For remote-sensing images, [29] has also proposed
to rely on a linear scale-space to estimate a resolution invariant characteristic scale.
The invariance is achieved by studying the effect of the image acquisition process on
the linear scale-space decomposition. Indeed, the linear scale-space is very conve-
nient since it enables to easily model scale (see e.g. [33]) or resolution [29] changes.
However, using the linear scale space prevents such method from achieving spatial
accuracy. It is well known that the positions of structures that are detected by such
methods is relatively erratic and very sensitive to contrast changes, especially for large
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structures. Therefore, one can expect some difficulty in building up spatially accurate
indexing of images from these methods. Moreover, these methods disregard structures
without significant gradients, for which no scale is computed.

In order to obtain spatially accurate scale measures, it is quite natural to look
toward non-linear approaches. In [20, 21] it is proposed to measure the significant
scales of structures by computing the entropy of the joint distribution of pixels in
a fixed neighborhood. It has been shown, see [21], that such an approach yields
better repeatability and is less sensitive to image perturbation than methods making
use of Gaussian filtering. Other methods enabling the computation of spatially accu-
rate scales are mainly based on non-linear scale spaces, either in a morphological or
variational framework. Recently, several scale measures based on non-linear partial
differential equations have been proposed. In [49, 48], a local definition of scale based
on total variation regularization is introduced. In [8], it is proposed to estimate the
local scales of structures from their evolution speed under the total variation flow.
In both works, the idea is that the evolution time of structures is related to their
scale. Independently, the mathematical morphology school has long ago proposed to
characterize materials by looking at the size distribution of grains, through the use
of the so-called granulometry [17, 41]. Following this idea, it is proposed in [30] to
use the pattern spectrum of images (roughly, the derivative of granulometry) to index
gray-scale images. In the framework of remote sensing imaging, [5, 12] have proposed,
in view of the classification of satellite images, to compute size distributions (called
derivative morphological profile) at each pixel. A closely related approach to the ex-
traction of urban area was previously proposed in [26]. In these works, the proposed
local features contain some information about scale. This information is well localized
thanks to the use of connected morphological filtering of features.

In this paper, our purpose is twofold. First, we introduce a method to compute
a local scale measure following the general approach of granulometries. Contrarily to
previous morphological approaches, the proposed method is auto-dual and does not
necessitate any structuring element. Second, we establish theoretical links between
the variational and morphological approaches to scale computation.

The first contribution is a method to compute a local scale measure (defining a
characteristic scale at each pixel of a digital image) by using the topographic map [10]
of the image. The main idea is that, for each pixel, we associate the scale of the
most significant structure containing it. The definition of this structure relies on the
topographic map, which is made of the connected component of the boundaries of level
sets of the image. More precisely, we make use of the digital image transform presented
in [36], an efficient tool to compute the topographic map, representing an image by
a hierarchical structure (an inclusion tree) of shapes. From this tree we search, for
a given pixel, the most contrasted shape containing it and we associate the scale of
this shape to the pixel. In order to deal with optical blur that is inherent to satellite
images, a new definition of shape is proposed. The underlying idea of this definition is
to group level lines corresponding to the same structure in the image. This grouping is
made possible under the assumption that the optical blur is constant over the image,
an assumption that makes sense for remote sensing images but would be wrong for
natural, everyday life images. Experimental results suggest that the scale measure
is a pertinent feature for remote sensing image classification. In particular, the use
of topographic map yields a very satisfactory spatial accuracy of the scale measure,
especially when compared with linear methods (see Section 6). Our approach is also
compared with methods using either the total variation flow or the morphological
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pattern spectrum.
The second contribution of the paper is to shed light on the relationship be-

tween morphological and variational approaches to the computation of local scale.
In particular, it is shown that, under some hypotheses, approaches relying on the
total variation flow or on the Rudin-Osher-Fatemi model amount to define scale as
a weighted average of the size of shapes containing each pixel. In this framework,
the term “size” refers to the ratio of the area to the perimeter. This result is also
investigated numerically on synthetic and real images.

The paper is organized as follows. In Section 2, we present the topographic map
of an image, the fundamental tool on which our work is based. Then, in Section 3,
we explain how an accurate scale definition can be defined by using the topographic
map. In Section 4, alternative variational definitions of scale are given, and the link
between these approaches and ours is investigated. In Section 5, we illustrate the
method with numerical examples, both on synthetic and real images. In Section 6,
we provide experimental comparison between the proposed local scale measure, linear
approaches, variational methods and the use of the pattern spectrum. In Section 7,
we propose some extensions to the proposed definition of scale.

2. Topographic map. In this section, we introduce the main tool to be used
in this paper, the topographic map of an image as introduced and studied in [10, 11,
35, 36]. It is made of the connected components of the topological boundaries of level
sets, thereafter called level lines. It gives a complete representation of the image, in-
variant to local contrast changes. The topographic map has a tree structure, inherited
from inclusion properties of level sets, which enables this image representation to be
computed efficiently.

For an image u : Ω ⊂ R
2 → R, its upper and lower level sets are respectively

defined as

Ψλ = {x ∈ Ω, u(x) ≥ λ} and Ψλ = {x ∈ Ω, u(x) ≤ λ},

for λ ∈ R. Observe that u can be reconstructed using the upper level sets by the
following formula

u(x) = sup{λ ∈ R : x ∈ Ψλ}.

Lower level sets also permit to reconstruct u. Moreover, these sets are globally in-
variant with respect to contrast changes. Each of these family, upper sets on the one
hand and lower sets on the other hand, has a tree structure with respect to inclusion.
Several authors ([40, 10, 11, 18]) have proposed the connected components of level sets
as an efficient way to represent images. This representation enjoys the same contrast
invariant and hierarchical structure as level sets representations while being local, thus
in particular robust to occlusions or local contrast changes. Again, connected com-
ponents of upper sets have a tree structure, as well as connected components of lower
sets. In order to merge both trees, Monasse et al., [35, 36], introduced the concept of
tree of shapes. It relies on the concept of shape. A shape is defined as the union of a
connected component of an upper or lower set together with its holes. The holes of a
set A are defined as the connected components of the complementary set of A which
do not intersect the boundary of Ω. It can be shown that these shapes have a tree
structure. Under some regularity conditions, this tree of shapes is the same as the tree
made of the connected components of topological boundaries of upper (or lower) sets
of the image, the topographic map. In what follows, we use the term topographic map
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(a) (b)

Figure 2.1. Example of FLST : (a) Synthetic image ; (b) Inclusion tree obtained with FLST.

for this tree. An important property of this representation is its auto-duality, that is,
its invariance with respect to the operation u → −u. This implies in practice that
light and dark objects are treated in the same way. As we will see in the following,
it is important for the purpose of this paper to deal with a single tree instead of two
separated ones, since this will enable us to associate a unique contrasted shape to
each pixel.

In order to apply the preceding definition to a discrete image I, it is convenient to
consider a continuous image (defined at each point of its domain) associated to I. Two
straightforward choices are piecewise constant interpolation (each pixel corresponds
to a constant value) and bilinear interpolation. Of course, the bilinear interpolation
is preferable in order to obtain regular lines, free of pixelisation effects. However, this
also implies longer computation time. Moreover, we observed that for the purpose
of this work, namely local scale computation from the topographic map, bilinear
interpolation was unnecessarily complex. In the remaining of the paper, level lines
are computed on piecewise constant interpolations of discrete images. Thanks to its
tree structure, the topographic map of an image can be efficiently computed using
the algorithm presented in [36]. Figure 2.1 shows the result obtained with the FLST
algorithm on a synthetic image. Notice that another implementation has also been
proposed in [43].

We end this section by giving some notations for the attribute of shapes that are
used in the sequel. For a pixel x of an image u, we denote by {fi(x)}i∈A(x) the set of
shapes that contain x, A(x) being the set of indices such that fi(x) ⊂ fi+1(x). For
the sake of clarity, we will omit the x dependency when it is not necessary. For each
shape, we define S(fi) its area, P (fi) its perimeter, and I(fi) the gray level value
associated to fi. The contrast of the shape fi is then defined as the absolute value of
the difference between the gray level values associated respectively to fi and fi−1:

C(fi) = |I(fi) − I(fi−1)| (2.1)

3. Scales of an image. The basic idea of this paper is to associate to each pixel a
shape (i.e. a nod in the FLST) from which its scale can be computed. Such shapes are
obtained by filtering the Topographic Map. Basically, shapes are recursively grouped
in order to account for structures present in the image and the most contrasted groups
are kept, as detailed in Section 3.1. Shape grouping is defined by taking advantage
of the particular structure of satellite images, for which the blur is constant over the
image and depend only on the (usually known) PSF of the acquisition device. This

4



fact is investigated in Section 3.2. Section 3.3 then defines the local scale associated
to each pixel.

3.1. Most contrasted shape. The aim of this section is to propose a method
to extract the most contrasted shapes from the topographic map. A notion of mean-
ingful shape was introduced in [13] and consists roughly in picking the shapes whose
perimeters and contrasts are very unlikely in a noise image, the decision being made
using an a contrario method. In our case, the objective is different. First, we intend to
associate a shape to each pixel. Second, the selection criterion should not rely on the
size of shapes because such a process would bias the following definition of character-
istic scale. In this section, shapes are selected using solely some contrast information.
In Section 7.1, we briefly investigate the use of both contrast and regularity in the
shape selection process.

Using the definition of contrast given by (2.1), the simplest definition of the most
contrasted shape at a pixel would be to define

f̂(x) = farg maxi∈A(x) C(fi). (3.1)

However, this definition is not applicable. Indeed, the definition of contrast by
Formula (2.1) corresponds to the contrast of a given binary structure under the as-
sumption that only one line is associated to the boundary of this structure. Now, in a
natural image, the contours of objects are always blurred by the acquisition process.
As a consequence, a discrete image being quantified, a contour is in fact associated
to a set of level lines. In practice, the contrast of each line is often equal to one.
Therefore, the choice of the most contrasted shape using Equation (3.1) can be am-
biguous at best or even completely meaningless in the presence of strong noise, as will
be illustrated in the experimental section.

A solution to this problem would be to compute the contrast of a line in a neigh-
borhood and to select the most meaningful line along monotone branch of the tree (see
[13]). In the present work, we choose to group lines corresponding to a single structure
by using a simple model of blur. To do so, we recursively sum up the contrasts of
shapes fi and fi+1 such that

S(fi+1) − S(fi) < λP (fi) (3.2)

where λ is a constant.
This criterion relies on the hypothesis that the level lines corresponding to a

blurred contour are regularly separated by a distance λ. Let us remark that in the
one dimensional case, this hypothesis boils down to assuming that the blur is due to a
kernel equal to a characteristic function. This fact will be detailed in Appendix A. If
the kernel has a more complicated shape (e.g. Gaussian), then the distance between
two lines depends on the contrast of the contour, the amount of blurring, and the
quantification of the image. We will see in Appendix A that by assuming a minimum
contrast of the contours and by knowing the width of the blurring kernel, it is possible
to deduce an upper bound for the value of λ. Let us remark that the hypothesis of a
constant blurring kernel for the whole image is realistic in the case of satellite images,
but is less consistent in the case of natural images for which the blur associated to an
object depends on its position (see [22]). We thus recursively define the cumulated
contrast as:

C̄(fi) =

{

C̄(fi−1) + C(fi) if S(fi) − S(fi−1) < λP (fi−1)
C(fi) otherwise
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In other words the cumulated contrast of a shape fi is defined as

C̄(fi) =

i
∑

k=a(i)

C(fk), (3.3)

where, for all i,

a(i) = min{j|∀k = j + 1, . . . , i, S(fk) − S(fk−1) ≤ λP (fk−1)}.

If a(i) is not defined (that is if (3.2) is not satisfied), then C̄(fi) = C(fi). The
cumulated contrast of fi is therefore obtained by adding the contrasts of close enough
level lines. These lines usually correspond to the same contour in the image, as
investigated in the next section. The most contrasted shape associated to x is then
defined as:

f̂c(x) = farg maxi∈N C̄(fi(x)) (3.4)

In the case when the maximum is reached at more than one index, then the smaller
one is chosen. We conclude this section by noticing that a method to group level lines
relying on criteria similar to Formula (3.2) (but using no perimeter information) was
proposed in [34] as an efficient alternative to shock filters, in the framework of image
restoration.

3.2. Level lines, edges and blur. In this section, we investigate the validity
of the use of Formula (3.2) for grouping lines corresponding to a single edge. More
precisely, we are interested in finding values of λ for which this formula holds true for
consecutive level lines along an edge.

Let fi and fi+1 be two consecutive shapes corresponding to the same object, an
object being defined as a constant times the indicator function of some set smoothed
by the acquisition kernel. Writing q for the quantization step and neglecting sampling,
we have, for some gray level l, fi = ∂Ψl = {x ∈ Ω / u(x) = l} and fi+1 = ∂Ψl+q.
Now, as noticed in [15], if x(s) is a parameterization of ∂Ψl, then ∂Ψl+q can be
approximated, for small q by:

x̃(s) = x(s) + q
∇u

|∇u|2 (3.5)

If we now assume that |∇u| ≥ C for some C > 0, then fi+1 ⊂ fi⊕D(qC−1), where
⊕ stands for the Minkowski1 addition and D(r) is a disk of radius r centered at the
origin. On the other hand, assuming that fi is a convex set, the area of fi ⊕D(qC−1)
is (Steiner formula [47])

S(fi ⊕ D(
q

C
)) = S(fi) + π

( q

C

)2

+
q

C
P (fi).

This suggests that Formula (3.2) enables one to group level lines corresponding to the
same edge as soon as λ > qC−1. The values of C ensuring that |∇u| ≥ C depend on
both the contrast of the object and the blur kernel. On the other hand the value of
λ should not be too large in order not to group level lines corresponding to different

1let A and B be two sets; A ⊕ B = {x + y, x ∈ A, y ∈ B}.
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(a) (b) (c)

Figure 3.1. (a) Synthetic image; (b) Image of scale using the area; (c) Image of scale using
equation (3.7).

edges. For a blur kernel of width σ and an object of contrast G, the minimum value
of C that can be chosen is approximately equals to Gσ−1, so that λ can roughly be
chosen to be qσG−1. In Appendix A, this result is investigated further for two blur
kernels (indicator function and Gaussian kernel) in the one-dimensional case. For
typical values of q, G and σ, we can use a value of λ = 1 (in pixels) to group lines
corresponding to the same object.

3.3. Scale definition. Recall that the most contrasted shape at each pixel is
defined by Formula (3.4). In order to define the scale at each pixel, we choose to

consider as final shape associated to x the shape f̂(x) minus the most contrasted
shapes embedded inside itself. Observe that these shapes provide a partition of the
image domain. The main reason for this choice is as follows. Let us recall indeed that
a shape is a connected component of a level set whose holes have been filled in. On
Figure 2.1, the shape F contains the pixels of the shape H . Intuitively, this shape
corresponds to the objects in the image minus the objects that occlude them. Now
in satellite images occlusion is not preponderant, and contrasted shapes containing
other contrasted shapes often correspond to road or river networks. To accurately
represent such structures, we eventually decide to define the most contrasted shape
associated to a pixel x as:

f̃(x) = f̂(x) \
⋃

f̂(y)(f̂(x)

f̂(y), (3.6)

i.e. the shape f̂(x) minus the most contrasted shapes strictly embedded in it. Other
choices would be possible in the framework of other applications.

The last step consists in associating a scale E(x) to the pixel x. We choose to
define the scale as

E(x) = S(f̃(x))/P (f̃ (x)) (3.7)

so that the geometry of f̃(x) is taken into account. In particular, long and thin shapes
(e.g. the roads) correspond to relatively small scales, even though their area can be
quite large. Figure 3.1 shows a synthetic example of scale computation illustrating
this fact. Let us remark that if scale is defined as the area, then the scale of the
thin structure around the rectangles is much larger than the ones of the rectangles.
In the next section, this definition of scale is compared to related notions that have
been proposed in a variational framework for image analysis. Then in Section 5, we
validate definition (3.7) with various numerical experiments.
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4. Link with variational definitions of scales. Two definitions of local scale
related to the total variation of images have been recently proposed in the litera-
ture and are presented in Section 4.1. In Section 4.2 a geometrical interpretation of
these definitions is given and the link between them is clarified. These are actually
closely connected with the scale definition of this paper, as investigated in Section 4.3.
Roughly speaking, methods relying on the total variation define the scale at each pixel
as a weighted average over many shapes of the ratio area/perimeter, whereas the ap-
proach proposed in this paper define scale using the same ratio but relies on only one
shape per pixel.

4.1. Variational definitions of scale.

4.1.1. Definition based on total variation regularization. Strong and Chan
have proposed in [49] to define the scales in an image by using the Rudin-Osher-Fatemi
model [39] (ROF). Recall that the ROF model (or total variation regularization) con-
sists, given an image f , in finding the solution u of:

inf
u

(
∫

|Du| + 1

2T
‖f − u‖2

L2

)

(4.1)

It is shown in [49] that if the scale of a set E is defined as S(E)
P (E) (ie its area divided

by its perimeter, as done in Equation (3.7)) and if f is a binary image of a disk, then
the intensity change between u and f inside this disk is inversely proportional to its
scale, ie

δ =
T

scale
. (4.2)

Therefore, the idea in [49] to define scales in an image is to use the gray level
difference at each pixel between u and f . The scale at each pixel x is defined as

scale(x) = T.|u(x) − f(x)|−1. (4.3)

Observe that, in general, this definition of scale depends on the parameter T .
It was later noticed in [48] that in fact this notion of scale is related to the polar

semi-norm associated to the total variation, the so-called G norm introduced by Meyer
in [32]. Indeed, a possible definition of the G norm of an image f with zero mean is
[48]:

‖f‖G = sup
E⊂Ω

∫

E f

P (E, Ω)
(4.4)

where P (E) stands for the perimeter of E, as defined for instance in [2]. The G norm
of an image can therefore be seen as an area divided by a perimeter. These relations
have been used in [48] to propose a variant of the ROF model where the user gives
as input of the algorithm the minimal scale in the original image f which is to be
preserved (smaller scales are considered as noise and therefore wiped out).

4.1.2. Definition based on the total variation diffusion. The properties of
total variation diffusion have also been used in [7, 8] to introduce a definition of scale
in images. Let us recall that the solution u of the total variation diffusion satisfies

{

u(., 0) = f
∂u
∂t = div

(

Du
|Du|

)

(4.5)
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In [46], the authors have proved the equivalence for 1-dimensional signal of total
variation regularization (ROF model) and total variation diffusion. They have derived
the same type of results as in [49] (where the considered functions were 2-dimensional
radially symmetric signals). In particular, when using the total variation diffusion on
an image, a constant region evolves with speed 2/m where m is the number of pixels
in the considered region.

Therefore in [8] the authors have proposed to define the scale m of a region (in
dimension 1) as:

1

m
=

1

2

∫ T

0 |∂tu| dt

T
(4.6)

where T is the evolution time of the total variation diffusion.
In the same paper, the following definition of scale m is then proposed for 2-

dimensional images

1

m
=

∫ T

0 |∂tu| dt

T
. (4.7)

See [8] for practical details about this definition. Combining this scale feature with
other orientations and magnitudes features, good segmentation results of textured
images are reported in [8].

4.2. Equivalence and geometrical interpretation. As already said, results
from [49] provide a geometrical interpretation of the scale definition given by For-
mula (4.3). On the other hand, equivalence results between total variation regular-
ization (Formula (4.1)) and total variation flow (Formula (4.5)) are provided in [46].

We now summarize some recent mathematical results in order to further investi-
gate the definitions of scale given by Formula (4.3) and (4.7), as well as to clarify the
link with the definition of scale given in the present paper, Formula (3.7). These results
have been proved by V. Caselles and his collaborators in a series of papers [3, 4, 9, 1].
In particular, it is shown that, if an image f is the characteristic function of a convex
set C, i.e. f = 1C , then total variation regularization is equivalent to total variation

flow. In both cases, the evolution speed of a convex body C is P (E)
|E| where E is the

Cheeger set of C (see [1]), that is, E is a solution of minK⊂C
P (K)
|K| . The set C is said

to be a Cheeger set in itself if it is itself a solution to this minimization problem. In
dimension 2, a necessary and sufficient condition for C to be a Cheeger set in itself

is that C is convex and the curvature of C is smaller than P (C)
|C| . A disk is thus a

Cheeger set in itself.
Assume that f = 1C , with C Cheeger set in itself. Then it is shown in [4] that

the solution of the total variation flow, Equation (4.5), or equivalently of the total
variation regularization, Equation (4.1), is given by

u(x, T ) = max

((

1 − T
P (C)

|C|

)

, 0

)

1C (4.8)

The evolution speed of C is thus P (C)
|C| (and in the case when C is a disk, this is what

was proved by Chan and Strong in [49]).
As a consequence, in the case when the considered image f is the characteristic

function of a Cheeger set, then both definitions of scale (4.2) and (4.7) are equivalent.
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Notice that in this particular case these two definitions of scale are also equivalent to
the one proposed in this paper (3.7). With all three definitions (4.2), (4.7), and (3.7),

the scale of C is equal to |C|
P (C) . From now on this will be our definition of the scale

of a Cheeger set. Of course, in the case of more complicated images, the equivalence
does not hold any more. However, in the case of towers of Cheeger sets (that is, a
sequence of embedded Cheeger sets), provided that some geometric conditions are
satisfied [3], then Formula (4.8) can be generalized (both for total variation flow and
regularization) and thus definitions (4.2) and (4.7) are still equivalent. In particular,
this is the case for a tower of circles [3] (with no further assumptions).

4.3. Relationship with our definition of scale. We have already seen that
in the case when the image is made of a single object, f = 1C , with C Cheeger set in
itself, then the two variational scale definitions (4.2) and (4.7) are equivalent to the
scale definition introduced in this paper, Formula (3.7). In these cases, the scale of C

is equal to |C|
P (C) .

We now consider an image f with two objects. For the sake of clarity, we assume
that f is made of two circles C1 and C2 with radiuses r1 < r2 and with the same center
(see Figure 4.1 (a)). That is, the image has constant gray level values G1, G2 and G3,
respectively on C1, C2\C1, and the background. We also assume that G1 ≥ G2 ≥ G3.
We denote the contrast of objects by δ1 = G1 − G2 and δ2 = G2 − G3. We finally
assume that δ2 ≥ r1

r2−r1
δ1.

Notice that from what we explained in the previous subsection, definitions (4.2)
and (4.7) are equivalent in this case (tower of circles). We therefore only consider
(4.7) to compute the scale. In order to simplify the computations, we assume that the
image size is sufficiently large, so that we can ignore the evolution of the background.
As soon as we start evolving (4.5), C2 goes down with speed 1/r2, and C1 with speed
1/r1 + 1/r2. At t1 = r1δ1, the small circle C1 disappears into C2, and C2 keeps going
down at speed 1/r2 until t2 = r2δ2, when it also disappears. Thus, the average
evolution speed v(x; t) of a pixel x in C1 is the following:

v(x; t) =











1
r1

+ 1
r2

, t ≤ t1
δ1+t/r2

t = 1
r2

+ t1
t

1
r1

, t1 ≤ t ≤ t2
1
t (δ1 + δ2) = t1

t
1
r1

+ t2
t

1
r2

, t ≥ t2

(4.9)

Notice that in this case, the average speed v(x; t) given by Formula (4.9) is exactly
the scale at point x both with definitions (4.2) and (4.7). In Figure 4.1 (b), we display
the scale computed at the center pixel on the image using definitions (4.2) and (4.7)
with finite difference schemes, as well as the scale obtained with Formula (4.9). The
equivalence is numerically confirmed in this case : the three graphs are almost equal.

Now, observe that the scale given by (4.9) , which is the inverse of the average
speed v, is a weighted average of the scales of the two shapes (disks in this case)
containing the center pixel, r1 and r2. Therefore, in this simple case, both variational
definitions of scale given by Formula (4.2) or (4.7) yield a scale that is a weighted
average of the shapes containing a pixel. Observe that different hypotheses on the
gray level values of the image would also lead to some weighted averages similar to
Formula (4.9).

In contrast, with the definition of scale introduced in this paper (Formula (3.7)),
the scale at each pixel is the scale of only one shape, the most contrasted shape
containing this pixel. In this simple case, the scale of the central pixel is r1 or r2,
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depending whether δ1 > δ2 or not. In the example of Figure 4.1 (a), the scale of a
pixel of C1 is r1.

Two consequences can be drawn from this example. First, and anticipating on the
experimental section, this explain why the definition of scale introduced in this paper
is spatially more accurate than variational definitions from [8] or [49]. Moreover, this
also explains an observation from [8], where it was noticed that the definition given
by (4.7) works better when using an integration time T smaller than T̃ , the time
needed to obtain a constant image under total variation flow. The authors of [8]
explain that they observe a bias towards large scale when using T̃ : this bias is due
to the averaging of scale over all shapes that contain the pixels. By using a smaller
T , one avoids to average over very large shapes. As one can notice on the graph of
Figure 4.1 (b), the scale value obtained with definitions (4.2) or (4.7) is far from being
constant: the choice of the parameter T in (4.2) or (4.7) has a strong impact on the
resulting scale.

4.4. Difference between definitions (4.2) and (4.7). We have just seen
examples when definitions (4.2) and (4.7) are equivalent. However, this equivalence is
not true in general. The equivalence is valid as long as the evolution of the gray level
of the pixels is monotone. For instance, in Figure 4.1, the gray value of the central
pixel is always decreasing during the evolution process of Equations (4.1) and (4.5).
But when the evolution is no longer monotone, definitions (4.2) and (4.7) are no longer
equivalent, and (4.2) fails to give a correct scale.

Consider for instance the case of Figure 4.2 (a) (contrarily to Figure 4.1 (a), the
gray level value of the small circle is smaller than the one of the large circle). During
the evolution process, the gray values of the pixels in the small circle first increase,
until the small circle merges with the large one. Afterwards, the gray values of these
pixels decrease, until they reach the average gray level value of the original image.
We can therefore choose a time t (t ≈ 545 for the case of Figure 4.2 (a)) for which
the gray level value of the small circle is almost the same as its original value (before
evolution): with definition (4.2), this implies a large scale. On Figure 4.2 (b), we show
the scale map corresponding to Figure 4.2 (a), computed using Formula (4.2). It can
be noticed that the larger scale is the one of the small circle (it is even larger than the
one of the background). Thanks to the absolute value used in definition (4.7), (4.7)
does not suffer from this problem when the evolution is not monotonous. Notice that
with our definition of scale, Formula (3.7), this type of problem does not occur either.

The case of Figure 4.1 (a) is not that unusual in an image: indeed, as soon as an
image is corrupted by some noise, then such cases occur. In Figure 4.3, we show the
scale map computed with (4.2) on a noisy synthetic image. We can observe that even
if the noise level is rather low, the scale map is not correct: this is due to the fact
that many pixels have a non monotone behavior.

This is the reason why in Section 6, we compare our method with the one relying
on Formula (4.7) (and not Formula (4.2)).

5. Experiments. In this section, we perform experiments on both synthetic and
real images. We first apply the method described in Section 3.1, aiming at extracting
the most contrasted shape at each pixel, to an image made of a single blurred and
noisy shape. We then compute scale maps on various satellite images with high or
very high resolutions. Our implementations make use of the FLST available in the
free image processing library Megawave22 . Computation time is image dependent,

2http://www.cmla.ens-cachan.fr/Cmla/Megawave/
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Figure 4.1. (a) Synthetic image (size 512 × 512) with two concentric circles (radius r1 = 5,
r2 = 30, δ1 = 80, δ2 = 70); (b) Graph of the average evolution speed v(x; t) of the center pixel as
function of total evolution time t. The two other curves are the ones of the scale computed with (4.2)
[49] and (4.7) [8].) The three curves are almost equal: definitions (4.2) and (4.7) are equivalent in
this case.

but a typical value is of the order of 1 to 5 seconds for a 1000 × 1000 image on a
Pentium 4 at 3.2 GHz.

5.1. Synthetic images. In this section, we perform an experiment on a simple
synthetic image to demonstrate the utility of the cumulated contrast of shapes, as
defined by Formula (3.3), to extract the most contrasted shape at each pixel. We con-
sider a rectangle blurred by a Gaussian kernel with standard deviation 3 and corrupted
with a Gaussian noise with standard deviation 30 (SNR ≈ 17), see Figure 5.1 (a).
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(a) (b)

Figure 4.2. (a) Synthetic image with two concentric circles (contrary to Figure 4.1 (a), the
gray level value of the small circle is smaller than the one of the large one); (b) Corresponding scale
map computed with definition (4.2) [49] (with t = 545). We can observe that since the evolution
of the gray values of the pixels in the small circle is not monotonous the scale values computed on
these pixels are not correct.

We first apply Equation (3.1) to extract the most contrasted shapes as displayed
in Figure 5.1 (d). For visualization, the gray level values on this figure correspond to
the areas of the shapes. Figure 5.1 (b) shows the contrasts (as defined by Formula (2.1)
of the shapes containing the center point of the rectangle. The horizontal axis cor-
responds to the areas of the shapes and the vertical axis corresponds to the contrast
values. We then perform the same experiment using Formula (3.3) to define the (cu-
mulated) contrast of shapes. Corresponding results are displayed in Figures 5.1 (c)
and (e). It can be observed that many most contrasted shapes computed using For-
mula (3.1) correspond to noisy structures, since the contrast of the rectangle is then
spread over many shapes. In comparison, using the definition of cumulated contrast
following Formula (3.3) enables to correctly retrieve the blurred rectangle.

5.2. Satellite images. In this section, we compute scale maps on real satellite
images using the approach presented in Section 3. We first consider SPOT5 HMA
images, that have a resolution of 5 meters. Most contrasted shapes are extracted using
Formula (3.4). We choose to use a value of λ = 1. As explained in Section 3.2, this is
reasonable for typical values of blur and contrast. Appendix A makes this observation
more precise in the case of a one-dimensional Gaussian kernel, which constitutes an
approximation of the PSF (Point Spread Function) of satellite captors such as those
of SPOT5 HMA, see [28].

In Figure 5.2 is displayed a SPOT5 HMA image of Los Angeles (mainly urban
area) together with its computed scale map. It can be observed that the computed
scales are spatially very accurate (e.g. at the edges of buildings and warehouses).
Moreover, these scales are in good qualitative agreement with the size of structures
of the image (large for warehouses and smaller for individual houses on the left).
One also observes that computed scales are largely constant inside objects. Notice
also that the road network is attributed relatively small scales, in agreement with
Formula (3.7). The same observations can be made on the SPOT5 HMA image of a
urban area near Toulouse displayed in Figure 5.3 (b). These experiments also suggest
that the computed local scales are pertinent features for segmenting images. This fact
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(a) (b)

(c) (d)

Figure 4.3. (a) Image of a circle without noise; (b) scale map corresponding to to (a) computed
with (4.2). For better visualization, the logarithmic values of scales are presented; (c) Image of a
circle with Gaussian noise of standard deviation 20; (d) scale map corresponding to (c) computed
with (4.2). For visualization issue, the logarithmic values of scales are presented. This illustrates
the sensitivity to noise of definition (4.2) [49].

will be further investigated in Section 7.2.

Let us also notice that the resolution of the images being known and the computed
scale corresponding to the size of a geometrical element, this scale is directly related
to the true size of the structures in the image. Such an accurate result cannot be
obtained when using a definition of scale relying on a linear scale-space approach,
even though some approximations in this direction are possible, see [29].

Figure 5.4 shows the scale map obtained from a SPOT5 THR image [23] of Mar-
seille with resolution 2.5m. In this clever imaging system, two images captured by
two different CCD line arrays are interpolated to generate the high resolution image.
The PSF of SPOT5 THR images is much more complicated than those of HMA im-
ages and cannot be modelled in a simple way, for instance using a Gaussian kernel.
Therefore, the computations of Appendix A cannot be applied directly. However, the
slope of these PSF is sharp enough so that a value of λ = 1 still allows to group shapes
using the scheme presented in Section 3.1, as explained in Section 3.2.
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Figure 5.1. (a) Synthetic image of a rectangle degraded by blur and additive noise; (b) and (c)
Values of the contrasts ((b): plain contrast, (c): cumulated contrast) of the shapes containing the
central pixel as a function the area of the shape; (d) and (e) Corresponding area map ((d): using
plain contrast, (e): using cumulated contrast) (for visualization, the gray level values correspond to
the logarithm of the area).
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Figure 5.2. (a) Image of Los Angeles, SPOT5 (5m) c©CNES; (b) Corresponding scale map.
Notice the spatial accuracy of the method.
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Figure 5.3. (a) Image of Toulouse, SPOT5 (5m) c©CNES; (b) Corresponding scale map.
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Figure 5.4. (a) Image of Marseille, SPOT5 (2.5m, 512 × 512) c©CNES; (b) Corresponding
scale map.

Finally we present the scale map for a QuickBird Panchromatic image with a
resolution of 0.6m, taken at Ouagadougou. In [28], is has been shown that the PSF of
Quickbird satellites can also be approximated by a Gaussian kernel. Again we use a
value of λ = 1. Considering the high resolution of QuickBird images, shapes smaller
than 16 pixels are not taken into consideration. This is equivalent to the application
of a grain filter of size 16 before the computation of the scale map, see [31]. The scale
map is shown in Figure 5.5. Again it can be observed that for most structures, such
as the big buildings on the top left, computed scales are spatially accurate. However,
for the city block in the middle of the image, the scale of the shape corresponding
to the whole block has been associated to all pixels of this shape. This shows one
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Figure 5.5. (a) Image of Ouagadougou, Quick-Bird (0.6m, 512 × 512) c©CNES; (b) Corre-
sponding scale map.

of the limitation of the method : to each pixel is associated the scale of exactly one
structure. A natural extension of the method would be to compute a scale profile at
each pixel, in a way similar to [12].

6. Comparisons with other methods.

6.1. Methods based on the linear scale space. Lindeberg [25] has proposed
to use normalized derivatives in the linear scale space in order to select characteristic
scales in an image. The main idea of this approach is to detect local extrema over
scales of these normalized derivatives, the most popular of which is the normalized
Laplacian. In order to get a scale map, that is to define a scale at each pixel, we
compute at each point the scale (if it exists) at which the normalized Laplacian
reaches its extremum. In Figure 6.1, scales are computed for the previously used
image of Los Angeles (SPOT5). Recall that this image has a resolution of 5m. It can
be observed that the scale map computed by the method of Lindeberg is quite noisy.
The linear scale space approach suffers from the following drawbacks:

• the normalized Laplacian does not always have a maximum at each pixel.
Thus, scale is not defined at some pixels, in particular along contours ;

• even within the same physical object, computed scales are quite variable.
• computed scales are not spatially accurate as a consequence of the use of a

linear scale space.
A variant has been proposed in [29] to define a global scale for an image. It is based

on extrema of the total variation. As shown in this paper, localizing this approach
using a sliding window does not yield results that are spatially very accurate, as can
be expected when using the linear scale-space as an analysis tool.

6.2. Methods based on non-linear scale-space.

6.2.1. Comparison with variational methods. In Section 4, we have com-
pared our scale definition with the scale definitions proposed by [8] and [49], which are
based respectively on the total variation flow and the Rudin-Osher model. We have

17



 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500
2

4

6

8

10

12

14

16

(a) (b)

Figure 6.1. (a) Image of Los Angeles, SPOT5 (5m) c©CNES; (b) Scale map obtained by plotting
the scale (if any) at which the normalized Laplacian reaches its maximum in the linear scale-space,
following the general framework of [25]. Notice that the use of the linear scale-space yields a poor
spatial accuracy.

also explained why these two approaches ([8] and [49]) are equivalent under some reg-
ularity assumptions. Therefore, in this paragraph, we only use scale maps computed
by the method of [8] for experimental comparisons.

We use two different numerical approaches. The first one is a classical finite
difference scheme, while the second implementation is based on the FLST, as proposed
in [14]. Using this second implementation, the evolution speed of a given pixel is the
area of the shape f0 containing this pixel, divided by its perimeter. That is, the gray
value u(x) of the pixel at location x evolves with speed P (f0(x))S(f0(x))−1. We can
therefore define the scale of a pixel using the evolution speed at this pixel in a way
similar to Equation (4.7). Notice that a consequence of Equation (4.8) is that the
total variation minimization based on FLST (proposed in [14]) is therefore equivalent
to the classical total variation minimization (4.5) in the case when the image is the
indicator function of a set that is a Cheeger set in itself, as explained in Section 4.2.

On Figure 6.2 are displayed the scale maps of the previously shown images of
Toulouse, Los Angeles, Marseille and Ouagadougou. On Figures 6.2 (a)-(d), we show
the results obtained with classical finite differences, using Equations (4.5) and (4.7).
On Figures 6.2 (e)-(h), the results with the FLST implementation of Equations (4.5)
and (4.7) are shown. In both cases, the total evolution time is T = 60.

The first observation is that all these methods yield a much better spatial ac-
curacy than approaches based on the linear scale-space (see Figure 6.1). Second,
one can observe that the scale maps displayed on Figures 6.2 (a)-(d) and (e)-(h) are
more noisy than the ones obtained using the method presented in this paper, see Fig-
ure 5.2-5.5. Third, regions of the original images with homogeneous scales are more
clearly identified in Figure 5.2-5.5 than with both methods using the total variation
flow to define scales. Fourth, approximating the total variation using the FLST, Fig-
ure 6.2 (e)-(l), yields results that seem more usable for classification tasks than the
results obtained when approximating the flow with finite differences. But it appears
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quite clearly on these four examples that the approach presented in this paper yield
sharper results. This is probably due to the definition of scale given by Formula (3.7):
only one contrasted shape is selected for each pixel, in contrast with the averaging
effects as described by Formula (4.9) and previously illustrated on Figure 4.1 (b).

6.2.2. Comparison with methods relying on connected filters. As men-
tioned in the introduction, the mathematical morphology school has proposed several
ways to extract scale informations from digital images, within the general framework
of granulometry [17, 41]. These methods are clearly related to our approach, since
the topographic map is computed from level sets of the image and in this sense is
a morphological representation tool. More precisely, the topographic map is made
of connected components of level sets, and is therefore closely related to connected
filters [40]. In [26], it is proposed to use such connected filters to compute the size
distribution of structures in the image, in view of the classification of urban area.
Similarly [42, 12] have proposed to use the differential morphological profile (DMP) to
classify satellite images. Starting from an image I, a series of images Ir (respectively
Ir) are first obtained by applying opening (respectively closing) by reconstruction
with structuring elements of size r. The DMPs are then defined at each pixel as the
derivative of gray level values as a function of r. The DMP obtained using Ir corre-
sponds to bright structures, whereas the DMP obtained with Ir corresponds to dark
structures. It is shown in [12] that such features are very efficient for remote sensing
image classification.

In order to compare such approaches with the notion of scale introduced in this
paper, we can define a scale at each pixel, obtained as the value of r for which the
maximum value over the two DMPs is reached. We call this local scale the DMP-scale.
We use disks of radius r as structuring elements. On Figure 6.3 (a)-(d), are displayed
DMP-scales for the same images as in the previous section, when the values of r used
to compute the DMP vary from 1 to 10 pixels. On Figure 6.3 (e)-(h) are displayed
the results when r varies from 1 to 30 pixels. Several observations can be made from
these experiments. First, DMP-scales are spatially very accurate, similarly to the
local scales introduced in this paper. This is a consequence of the use of connected
filters. These results are also less noisy than the results shown in the previous section,
using the total variation flow, see Figure 6.2 (a)-(h).

However, the approach based on connected filters suffers several drawbacks. First,
connected filters are usually not auto dual, i.e. we have to use two operators (open-
ing/closing by reconstruction in the case of Figure 6.3) in order to characterize bright
and dark objects respectively. Therefore, the use of connected filters makes it nec-
essary to merge information originating from two distinct inclusion trees, preventing
ones from having simple local scale definitions. In contrast, using the topographic
map to define scale enables us to deal with bright and dark objects in the same way
and at the same time. Second, the computation of DMP necessitates the choice of
a structuring element. In contrast, the topographic map permits to handle shapes
directly and to filter or select them depending on geometric attributes. Last, the
results strongly depend on the values of r that are considered for the computation of
the DMP, that is, on the choice of filter sizes, as shown in Figure 6.3. In particular,
if one defines the scale as the value for which the DMP reaches its maximum, results
will clearly be very dependent on the quantization of the DMP. When using the to-
pographic map to compute local scales, this issue is solved thanks to the notion of
cumulated contrast introduced in Section 3.1.
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Figure 6.2. (a-d) Scale map obtained by using the total variation diffusion, see (4.7). (e-g)
Scale map obtained by using the total variation diffusion, but this time using a numerical scheme
relying on the FLST.
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Figure 6.3. (a)-(d) Scale maps obtained by the method derived from [12] with connected filters
of sizes varying from 1 to 10 pixels. (e)-(g) Scale maps obtained by the method derived from [12]
with connected filters of sizes varying from 1 to 30 pixels.
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7. Extensions. In this section, two extensions of the method introduced in Sec-
tion 3.3 to compute local scales are introduced. We first present an alternative choice
for selecting the most significant shape at each pixel relying on both contrast and
regularity instead of contrast only. We then propose an image segmentation method
relying only on scale information.

7.1. Alternative criteria for extracting most significant shapes. Up to
now, the criterion used to select the most significant shape containing a pixel is the
contrast (see Equations (3.4) and (3.6)). Nevertheless, depending on the application,
this choice may be changed. For instance, it may be interesting to add a regularity
criterion when selecting the most significant shape. We can define the most significant
shape f̂(x) at a pixel x as:

f̂(x) = farg maxi∈N T (fi), (7.1)

where T (fi) = C̄(fi) ×
(

S(fi)
P (fi)2

)γ

and γ is a weighting parameter controlling the

regularity of the shape (the larger γ, the more regular the shape)). Notice that this
regularity criterion is scale invariant. The corresponding most significant connected
component is then defined as:

f̃(x) = f̂(x) \
⋃

f̂(y)⊂f̂(x)

f̂(y). (7.2)

This criterion favors regular and compact shapes (instead of elongated shapes or
shapes having irregular perimeters). Remark that when γ = 0, Equations (7.1)
and (7.2) reduce to Equations (3.4) and (3.6).

We illustrate the role of this alternative criterion in Figure 7.1. An image of
Beijing (Quick-Bird (0.6m)) is displayed in Figure 7.1 (a). In Figure 7.1 (b), we
show the scale obtained by using Equations (3.4) and (3.6) (that is by using only the
contrast as a selection criterion). In Figure 7.1 (c), we show the scale obtained by using
Equations (7.1) and (7.2) (that is by using both contrast and regularity as selection
criteria). We use γ = 0.5 in (7.1). Notice that by using this alternative criterion,
we get more scales corresponding to the geometrical shapes (that have relatively low
contrast) in the garden (in the center of the image) than when using only contrast.
Let us finally emphasize that the geometric nature of the proposed algorithm (using
significant shapes to define scales), enables a large flexibility to assign a scale at each
pixel.

7.2. Image segmentation based on scale map. In this section, we briefly
investigate how scale can be used as a feature for image classification or segmentation
tasks. We propose to segment remote sensing images by using only the scale infor-
mation. Notice that the scale attribute could of course be combined with other more
classical features (e.g. wavelet features) to derive more sophisticated segmentation
algorithms.

The segmentation scheme we use here is based on the following steps. We first
compute a scale map of the image using Equation (3.7). A pre-segmentation is then
performed by a k-means [16] method using the local scale of each pixel, resulting in
labels lx ∈ {1, . . . , k} at each pixel x. The initial cluster centers (c0(l))l=1,...,k are

chosen as c0(l) = l × supx∈Ω(E(x)
k .
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(a) (b) (c)

Figure 7.1. (a) Image of a garden in Beijing (Quick-Bird (0.6m)); (b) Most significant shapes
extracted from (a) by using Equations (3.4) and (3.6) (using only contrast); (c) Most significant
shapes extracted from (a) by using Equations (7.1) and (7.2) (using contrast and regularity) with
γ = 0.5. The gray level value of each pixel x is the mean value of the pixels of the most significant
shape at x.

After the pre-segmentation, a Markov Random Field is used to regularize the
contour of the segmentation by minimizing a potential energy defined as follows :

U(lx|C̄(x; lx))) = βP (x; lx) +
∑

y∈Nx

δ(lx, ly), (7.3)

where ĉ(lx) is the cluster center after k-means, P (x; lx) = |E(x) − ĉ(lx)| , β is a
non-positive weighting parameter, Nx is the 4-neighborhood of x, and

δ(lx, ly) =

{

−1, lx = ly
1, otherwise

(7.4)

The ICM (Iterative Conditional Mode) [6] algorithm is finally used to minimize the
energy.

On Figure 7.2 is shown a segmentation result obtained with this approach. The
original image of Toulouse is displayed on Figure 7.2 (a), and the scale map obtained
from this image is displayed on Figure 7.2 (b). Notice that the scale map is already
quite regular and not that far from a usable segmentation result. Figure 7.2 (c)
presents the segmentation result obtained from this scale map after k-means and MRF
modelling. A total of 8 labels have been used and the parameter of Equation (7.3)
has been set to β = 1. Ten iterations are performed for the ICM algorithm. The first
observation concerns the high spatial accuracy of the segmentation. Moreover, notice
that using only one feature (the scale) a classification of the image between urban
areas and non-urban areas is obtained: indeed, small scales occur in the urban parts
of the image, while large scales characterize the non-urban parts.

8. Conclusions and perspectives. In this paper, we have proposed a method
to define a local scale at each pixel of an image by using the topographic map. The
scale of a pixel is defined as the scale of the most contrasted shape containing this pixel.
Our approach has been validated by carrying out a large number of experiments on
various satellite images. These experiments indicate that the method gives robust and
spatially very accurate results. These results do not involve any complex parameter
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(a) (b) (c)

Figure 7.2. (a) Image of Toulouse c©CNES; (b) Scale map computed from (b); (c) Segmentation
result.

tuning. Notice also that this approach is devoted to remote sensing images, since, in
order to define the contrast of level lines, it is assumed that blur is uniform over the
image. Nevertheless, the method could be applied to natural images for which the
blur is uniform (e.g. focus at infinity) or extended to the case of non uniform blur
(e.g. with an adaptive choice of λ in Equation (3.2)).

Another contribution of this paper is the study of the links between the proposed
method and previous variational definitions of scale. This somehow bridges a gap
between morphological and variational methods to compute scales in an image.

The proposed scale measure appears to be an efficient feature for image classifi-
cation or segmentation. Moreover, this feature can be expected to be complementary
to more traditional features, such as wavelet features, which often rely on some linear
filtering of the image. Combined with the fact that our scale measure is spatially very
accurate, this could lead to interesting applications in remote sensing image indexing.

Finally, we point out that the proposed approach is relatively generic and that, as
briefly presented in Section 7.1, other selection criteria can be used to extract the most
significant shape for each pixel. In a different direction, it seems quite promising to
keep more than one scale information at each point and to investigate the hierarchical
structure of shapes at each point. This could lead to interesting image analysis tools
for satellite or texture images.

Appendix A. One-dimensional discontinuity and blur.
In this appendix we investigate further, in the one-dimensional case, the choice

of parameter λ in Equation (3.2). Recall that this value should be chosen not too
small in order to group level lines corresponding to the same edges, and not too
big to avoid grouping lines corresponding to different structures. In Section 3.2, we
use the approximation given by Formula (3.5) to explain why choosing a value of
λ = 1 is reasonable for usual value of contrast, blur and quantization step. We now
investigate more precisely the spacing between consecutive ”lines” along a quantized
step function, in dimension one. In dimension two, computations become very tricky
and were not carried out.

Let H(x) be the Heaviside function :

H(x) =

{

1, x ≤ 0
0, otherwise

(A.1)

A contour in dimension 1 can be written as CH(x) where C is the contrast of the
contour. The smoothed contour is then g(x) = CH(x) ∗h, where h is the convolution
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kernel. We will consider two cases for the blurring kernel : rectangular function and
Gaussian kernel. We denote by gq(x) the signal obtained by quantifying g(x) with a
quantification step of q and by gq,r the quantified and sampled signal with a sample
step of r. In the following computations, we always consider r = 1.

Rectangular kernel. If the convolution kernel is a rectangular function, i.e. h =
1
σ (H(x − σ) − H(x)), we have:

g(x) =
1

σ
CH(x) ∗ (H(x − σ) − H(x))

=







C, x ≤ −σ
C
2 (1 − x

σ ), x ∈ (−σ, σ)
0, x ≥ σ

The value of λ̃ is the width between two consecutive jumps of gq(x), i.e. :

|g(λ̃ + x) − g(x)| = q.

When x ∈ (−σ, σ), we thus have:

λ̃ =
2σq

C
(A.2)

We thus have λ̃ < 1 (enabling one to use a value λ = 1 in Formula (3.2)) as
soon as σ is smaller than half the relative contrast of the edge, Cq−1, which seems
reasonable.

Gaussian kernel. If the convolution kernel is Gaussian, i.e. h = kσ(x), we have:

g(x) = CH(x) ∗ kσ =
C

2
(1 − erf(

x√
2σ

))

Contrarily to the previous case, the width of the jumps of the function gq(x) are

different. We define λ̃ as the largest width between two consecutive jumps of gq(x).
That is,

λ̃ = sup
l
{ l | gq(l + x) = gq(x), l ∈ R, 0 < gq(x) < C}.

Let us remark that since ∂xg(x) is symmetric (the blurring kernel is symmetric), we
can consider only x < 0 or x > 0. Moreover, since when x < 0, |∂xg(x)| is non-
decreasing, the largest value of l is indeed the width between the first and second
jumps of gq(x). The first jump of gq(x) is computed as

x̂ = sup{ x | |C − g(x)| ≤ q},

and therefore

λ̃ = sup
l
{ l | |g(x̂ + l) − g(x̂)| ≤ q}.

We thus have:
{

erf( x̂√
2σ

) = 2q
C − 1

erf( 1√
2σ

(x̂ + λ̃)) = 4q
C − 1

(A.3)
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As in the rectangular function case, we can see that λ̃ is non-increasing with
respect to the contrast of the contour, non-decreasing with respect to the width of
the kernel, and non-decreasing with respect to the quantification step. In practice,
for reasonable contrast and blur (C > 15 and σ < 3), Equation (A.3) yields λ̃ < 1, in
which case the value λ = 1 can be used to apply Formula 3.2.
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