IRREGULAR TO REGULAR SAMPLING, DENOISING AND
DECONVOLUTION
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Abstract. We propose a restoration algorithm for band limited images that considers irregular
(perturbed) sampling, denoising, and deconvolution. We explore the application of a family of
regularizers that allow to control the spectral behavior of the solution combined with the irregular to
regular sampling algorithms proposed by H.G. Feichtinger, K. Gréchenig, M. Rauth and T. Strohmer.
Moreover, the constraints given by the image acquisition model are incorporated as a set of local
constraints. And the analysis of such constraints leads to an early stopping rule meant to improve
the speed of the algorithm. Finally we present experiments focused to the restoration of satellite
images, where the micro-vibrations are responsible of the type of distortions we are considering here.
We will compare results of the proposed method with previous methods and show an extension to
zoom.
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1. Introduction. A general image acquisition system may be modelled by the
following image formation model

Z(fk) = (h * u)(fk) + ng,, &L €2, (1.1)

where = = {&, ff:l C R? is a finite set of regular or irregular samples, v : R? — R is
the ideal undistorted image, h : R? — R is a blurring kernel whose Fourier spectrum
h has most of its energy concentrated in the spectral support of u, z is the observed
sampled image which is represented as a function z : = — R, and ng, is, as usual, a
white Gaussian noise with zero mean and standard deviation o.

Reconstructing a signal u : R? — R over an infinite support from a finite set
of samples z(&) is not possible without imposing restrictions. As in most works, in
order to simplify this problem, we shall assume that the functions h and u are periodic
of period N in each direction. That amounts to neglecting some boundary effects.
Let us denote by Qy the interval [0, N[2. Therefore, we shall assume that h,u are
functions defined in Qy. To fix ideas, we assume that h,u € L*(Qy), so that h * u
is a continuous function in Qy [28] (which may be extended to a continuous periodic
function in R?) then the samples (h * u)(£x), & € =, are well defined.

We shall concentrate in the particular case of perturbed sampling and we shall
assume that = is a set of N2 samples which take the particular form

E=7*NOy +(Z° N Qy), (1.2)

where ¢ : R? — R? is a “smooth and small” perturbation function in the sense that

suppé C [—%, %]2 for some period T, > 2 corresponding to the maximum vibration
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frequency and the mean amplitude of the perturbation ([f, |e(z)[*dz/ [, dz]?) is
small with respect to 1 pixel (we refer to Section 2 for a model (2.1) of this perturbation
and also for a general overview of irregular sampling aspects).

Even knowing the exact sampling geometry =, the blurring kernel h and the
statistics of the noise n, the problem of recovering u from z is ill-posed due to the
ill-conditioning of the convolution operator h % u. A common strategy to solve this
ill-conditioning is regularization. And the typical constrained formulation of a regu-
larization method [46] consists in choosing between all possible solutions of (1.1) the
one which minimizes the penalization functional J(u). The image acquisition model
(1.1) is introduced as a constraint in the formulation, but since we can only recover
statistical information about the noise, we have expressed the constraint as an upper
estimate of the noise variance o2. The constrained problem becomes

min  J(u),

subject to 3 [(hx u)(&) — ()P < N2,
ELEE

The regularizer J(u) embodies our a-priori knowledge of the image, specifying its
smoothness properties. The use of the Dirichlet integral fQN | Du|? dz is not satisfac-
tory, mainly due to the unability of the previous functional to resolve discontinuities
(edges) and oscillatory textured patterns, the information corresponding to high fre-
quencies of z being attenuated by it. Indeed, functions in W12() (i.e., functions
u € L%(Q) such that Du € L?(2)) cannot have discontinuities along rectifiable curves.
These observations motivated the introduction of Total Variation (T'V (u) = fQN | Dul)
in image restoration problems by L. Rudin, S. Osher and E. Fatemi in their work
[44]. The a priori hypothesis is that functions of bounded variation (the BV model)
([6, 25]) are a reasonable functional model for many problems in image processing,
in particular, for restoration problems ([44]). Typically, functions of bounded vari-
ation have discontinuities along rectifiable curves, being continuous in the measure
theoretic sense away from discontinuities. The discontinuities could be identified with
edges. The ability of total variation regularization to recover edges is one of the main
features which advocates for the use of this model (its ability to describe textures is
less clear, some textures can be recovered, but up to a certain scale of oscillation).
We refer to [25] for the definition of functions of bounded variation and their basic
properties.

We shall explore in this paper a family of regularizers that takes into account the
spectral decay of the Fourier coefficients in the class of images we are looking for.
In the case of satellite images, this spectral behavior can be estimated by statistical
measures of the decay of Fourier coefficients. The general class of regularizers we
consider is

Ta(u) = /Q A(D)ul (1.3)

where A(D)u is defined by the coefficients of its Fourier series F(A(D)u)(w) =
A(iw)i(w), w € Z% Note that Ja(u) < oo imposes a frequency penalization ac-
cording to the profile A(iw). In practice we choose A(iw) so that |A(iw)| ~ |ZFw[P
for large |w|, 1 < p < 2. This is in consonance with the approach of Grochenig
and Strohmer [32] that proposes to incorporate some a-priori decay in the restoration

process (see Section 2).
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In [4] (see also [5, 13, 43]), the authors proposed a restoration algorithm that
performs denoising using a local estimate of the noise variance around the restored
pixel. In this way, the authors were able to improve the texture recovering of the
method. Following the mentioned proposal we replace the constraint

D (s u) (&) — 2(&)* < N?0?,

ELEE
by
G*|Az(h*u) — 2)?(&) < o?, V& €E, (1.4)

where the sampling operator Az : C(R?) — ¢%(Z) is given by Az(v) = {v(fk)}ivjl and
G is a discrete convolution kernel such that G(§) > 0 for all £ € Zand >, G(&) = 1.

Combining the two ideas described above, the use of a regularizer that takes into
account the spectral decay of images in a certain class (1.3), and the incorporation
of the image acquisition model as a set of local constraints (1.4), we propose the
following constrained variational model for restoring u

muin / |A(D)ul,
Q (1.5)

subject to [G *|Az (h*u) — z|2] (&) < 0o? V& €E.

The constrained formulation (1.5) can be solved using the unconstrained formu-
lation

min max /Q |A(D)u| + % Z M {[G | Az (h*u) — 2] (&) — 0°} (1.6)

U (Ag)>0 oo

where Ay > 0 is a Lagrange multiplier that has to be chosen so that the constraints
(1.4) are satisfied. Let us say explicitly that both the blurring kernel h and the
sampling grid = (alternatively the grid perturbation function €) are assumed to be
known exactly, and that the only thing known about the noise ng, is that it is a
white Gaussian noise with zero mean and known variance o2. Several methods exist
to estimate all these parameters [34] for a given acquisition device and we shall not
address this question here.

The case of recovering an irregularly sampled image on a regular sampling grid
was already considered by the second author in [3], but the blurring kernel h was
assumed to be an ideal window (with Nyquist frequency cutoff), i.e., h= X[=1/2,1/2]2-
Different numerical algorithms were tested in the case where the sampling set is per-
turbed according to (1.2) and they worked relatively well only within a low-frequency
spectral region R C [—a,a]?, where a & 3 — 1/T.. When attempting to recover 4 in
the high frequency band [—1/2,1/2]?\R serious theoretical and numerical problems
appeared and, actually, restoration errors were most important there. Subsequently,
the restoration problem (1.5) was studied in [5] when J(u) is the total variation and
the image acquisition model was incorporated as a set of local constraints on a parti-
tion of the image obtained as a result of a segmentation. The use of local constraints
(1.4) was advocated in [4] and we also adopt this technique here. The main novelty of
this paper consists in the introduction of the frequency adaptive regularization func-
tionals given by (1.3) and the use of (1.4) in the study of restoration with irregular
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to regular bandlimited sampling [32, 42]. Further contributions of the paper (to be
discussed later) relate to a fast numerical algorithm, its convergence proof, and more
useful stopping criteria taking a global error propagation analysis into account.

Let us finally mention that many numerical algorithms have been proposed to
minimize total variation (or similar models) subject to a global constraint as in (1.5)
[44, 29, 14, 48, 17, 18, 19, 20, 24, 16]. Imposing local constraints in a partition of the
image was proposed in [43] and further developed in [13, 5, 4]. In [37] the authors
combined total variation minimization with a set of constraints of type |(hxu—z, )| <
7 where 1) varies along an orthonormal basis of wavelets (or a family of them) and 7 >
0. The aim was also to construct an algorithm which preserves textures and has good
denoising properties. As we will do here, these constraints were incorporated using
Uzawa’s algorithm. In [30], the authors proposed to minimize total variation subject
to a family of local constraints which control the local variance of the oscillatory part of
the signal. The constraints are introduced via Lagrange multipliers with an approach
similar to the one used in [44]. This amounts to adding a spatially varying fidelity
term that locally controls the extent of denoising over image regions depending on
their content. Besides the fact that we use Uzawa’s algorithm and we try to address
the problem of deconvolution and denoising of irregularly sampled images, the work
[30] is quite similar to our approach.

Let us finally explain the plan of the paper. In Section 2 we introduce the problem
of irregular to regular sampling and we discuss the ACT algorithm of Grochenig
and Strohmer [32]. In Section 3 we introduce our frequency adaptive variational
restoration model with local constraints and discuss a computational improvement
introduced by L. Moisan in [38]. In Section 4 we study the existence, uniqueness
and numerical approximation to the model introduced in the previous Section. This
study is completed in Section 5 where we describe a Quasi-Newton algorithm for the
solution of the Euler Lagrange equation corresponding to the energy in (1.6) for fixed
values of the Lagrange multipliers (Ag). In Section 6 we propose a practical stopping
condition for the restoration algorithm for the local constraint model. In Section 7 we
display some experiments concerning restoration and zooming of irregularly sampled
images. Section 8 summarizes the main conclusions of this work.

1.1. Preliminaries and notations. Let us introduce some notation.

For any function u € L?(Qy) (assuming periodicity of period N in each direction)
we denote its Fourier coefficients as

(pz+qy)

1 .
736(19,61)=m/ﬂ u(z,y)e ™ N " dedy  for (p,q) € 2.
N

As in [40], our plan is to compute a band limited approximation to the solution of the
restoration problem. For that, assume for simplicity that M is an even number and
define

M
By := {u € L*(Qy) : s supported in I} where I :={——

M
1,...,—12
5 Th ’2}

We notice that By is a finite dimensional vector space of dimension M? which can

. . . . L M—1
be identified with RM’ by mapping u € By to the vector @ = (u(rap:190))  1—o-
Moreover, if u € By, we may write

way) = D wpqe™

—M<pg<H

(pr+qy)
N



RESTORATION OF IRREGULARLY SAMPLED IMAGES 5

where

R 1 N N _ o lprtad) M M
u(paQ):W Z U<TM7ZM)6 2 Mo 7? <p7QS?
o<r,l<M

Then the values u (7‘%7 l%), 0 < r,l < M, can be recovered as the discrete inverse
Fourier transform of 4(p,q). Hence u € By, can also be identified with the vector of
Fourier coefficients & € RM*. 1 We intend to solve the restoration problem in the
class of band-limited functions B;;. Later on we will comment on this choice. We will
also use the operator notation for Fourier transform Fu that applied to the function
u returns a vector of its Fourier coefficients: 4 = Fu , conversely F' 4 = u denotes
the inverse transform, then F7F = Id.

2. Irregular to regular sampling. Opposed to digital photographs, satellite
images are generally not acquired by a squared array of sensors but by a sweeping
bar of sensors known as TDI (Time Delay Integrator) [45]. This acquisition geometry
called push-broom is widely applied in aerospace imaging applications and, nowadays,
it provides the highest resolution in earth imaging applications. As a consequence of
this progressive acquisition mode, the micro-vibrations of the satellite together with
irregularities in sensors position result in perturbed sampling sets. In most cases,
the knowledge of certain vibration modes and the analysis of acquired images help to
estimate, with high accuracy the, perturbations in the sampling grid, which can be
modeled [3] by

e(z) = Zak(a:)cos(%r(%,x) +ér), zeR? (2.1)
k=1

for some ¢ > 1, where a(z) are smooth modulation functions and the vibration fre-
quencies wy are an order of magnitude (or even more) below the Nyquist frequency of
the sampling rate. The bound on the modulation functions is inversely proportional
to wy, and the number of vibration modes is small. This results in smooth and small
perturbations with |e(z)| no larger than a few pixels, and perturbation slope |Ve(z)]
no larger than about one tenth of a pixel per pixel. As a consequence these pertur-
bations are hardly noticeable and we should talk of perturbed sampling rather than
irregular sampling in those cases. Even if the image distortion is not evident from a
geometrical point of view it is very important to correct the perturbations in image
registration applications where a sub-pixel accuracy is necessary.

In order to be less dependent on a particular physical instrument, in our exper-
iments we used a simplified version of this model which still captures its main char-
acteristics, namely the perturbation function € = (e1,¢e2) is simulated as a discrete
colored noise, i.e. for w € Z? we define

Ew) ~ N(0,6%)  if [w| < N/T. )
=0 otherwise '

where & is chosen in such a way that the standard deviation of ¢;(z) is A for i € {1, 2}.

This gives ¢ = % (we have taken the Fourier transform as an isometry). Thus the

INote that we shall maily study here the critical sampling case M = N. We keep two different
symbols M for the bandwidth and N for the domain size and number of samples, just in order to
make it easier to analyze the zero-padding to double bandwidth M = 2N that is needed in certain
parts of the algorithm.
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behavior of the perturbation is characterized by the two parameters “amplitude”
A and maximal vibration frequency N/T. (or “minimal vibration period” 7). The
precise values of A and 7. used in our experiments will be specified in the experiments
section.

There are many works in the literature dealing with the irregular to regular sam-
pling problem. Let us mention that, according to Kadec’s theorem [35], we have a
perfect recovery of the signal if we consider a perturbed sampling with small perturba-
tions |e(x)| < 0.11. Recall also that Beurling-Landau’s theorem [36], ensures perfect
reconstruction of a function from its samples for arbitrary stable sampling sets [36],
but it requires the (lower) sampling density to be greater than 1. These condition are
very restrictive and do not hold true for most of the image restoration applications.
For a comparison between several iterative methods we refer the reader to [12, 27, 3].

2.1. The ACT algorithm. One of the best performing reconstruction methods
available for irregular to regular sampling is the ACT algorithm (for Adaptive-weights
Conjugate-gradient on Toeplitz-matrix) introduced by Grochenig et. al. in [32]. This
method represents a discrete image u as a trigonometric polynomial of order M /2 in
each variable (for simplicity of notation we shall assume that M is an even number)
so that the interpolation at the sampling points = = {fk}kle C R? becomes

u(ér) = > ae T8 ke {1,...,N?). (2.3)

te{—4+1,...,4}2
Thus, if z represents the irregularly sampled data we may write [32]
z=0Sa, where S = ((sgt)), spe = e BE) (2.4)

i.e. S is the Vandermonde matrix associated to the trigonometric polynomial in (2.3).
Note that S maps a € 2({—2 +1,...,2}2) to z = {2(&)} € £2(E) as given in (2.3).
The bandwidth of the trigonometric polynomial M is chosen to be M < N, so the
system (2.4) is expected to be determined or over-determined.

Following [32], the ACT algorithm recovers the coefficients a of the trigonometric
polynomial by solving the least squares problem

arg min ||V (Sa — 2)|?, (2.5)

where the matrix W = diag({wg }r=1..n2) assigns weights that are inversely propor-
tional to the sampling density at &:

wy, = area(Vy) where Vier={z: oz —&| < |z —&l, Vj#Ek}). (2.6)

If we interpret the discrete data z({x) as a piecewise constant function Y, z(&x)xv;,
then the weights wy guarantee the isometry between the irregular sampling on the
grid Z and its function representation, thus compensating the local variations in the
sampling density. Moreover, by using the weights W, Grochenig and Strohmer provide
an explicit estimate for the rate of convergence of the ACT algorithm [32].

The system of normal equations associated to (2.5) is

STWSa = STW 2. (2.7)

Observe that the M? x M? matrix STWS has a Toeplitz structure [32] and, thus,
STW Sa is efficiently computed in O(M?logy(M?)) time using Fourier methods.
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Moreover the entries of T := STWS and b := STWz can be approximated using
the NFFT [41] in O(M?logy(M?)) time each [32]. Finally, (2.7) is solved using a
conjugate gradient (CG) method. The following algorithm summarizes the method.

Algorithm I: ACT algorithm for a fixed bandwidth M

REQUIRES: N? irregular samples in vector z.

ENSURES: M? regular samples in vector u.

1. Compute T'= STWS and b = STW z using the NFFT.

2. Solve T'a = b using conjugate gradients.

3. Compute the regular samples U(Z%,]%) for (i,5) € {0,..., M — 1}? by ap-
plying the inverse FF'T to a.

Let us note that in the more realistic cases where T is not invertible or ill-
conditioned, the CG solver acts as a regularizer and chooses the minimum norm
solution a among those that satisfy (2.7). This is a constrained variational formu-
lation that can be written using a Lagrange multiplier A > 0 as the unconstrained
minimization problem

min [|a/[* + X||Ta — b||*.

This formulation also applies to the following two variants of the ACT algorithm
[32] that incorporate a-priori spectral decay rate |4(w)| < L¢(w), for some L > 0, of
the image class to be restored (when available). For satellite images this estimation
has been performed by Almansa in [3] and it is given by ¢(w) = (1 + [3Fw|)~? for
some value of p near 1.6.

e The first proposed variant solves CTa = Cb (instead of (2.7)) using the CG
algorithm, where C = diag({¢(w)}we{7%+1w,%}2). Notice that we can

write the problem as

(ACTp)  minlla]® + N|C(Ta b, (2.8)

for some A > 0. Notice that the weighting matrix C'is applied on the residuals
Ta—b and its effect is to reduce the relative cost of errors at high frequencies.
The effect is reflected on CG search directions, affecting the intermediary
solutions that will fit the low frequency before than the higher ones.

e The second ACT variant solves T'd = b where a = Cd. Re-writing it as an
optimization problem, observe that the weights appear now in the regularity
term

(ACTR) IrzinHC*laHer/\HTafbHQ. (2.9)

The spectral weights C~! are now penalizing the apparition of higher fre-
quencies in the solution a and not in the residual.

In either case, if T' is invertible and the CG algorithm converged, then the solution
of both variants coincides with the solution of (2.7). But the CG iteration is truncated
before its convergence mainly due to the ill-conditioning of the operator T. So, the
solutions obtained by the above methods differ because the search directions have
changed. As it can be observed experimentally, incorporating the spectral decay
indeed reduces the restoration errors, specially when applied to the regularity term
in (2.9) (see Table 7.1 in Section 7). In that case, it amounts to finding a solution in
a class of functions with a particular spectral decay.
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REMARK 1. In [32] the authors also proposed to extend the ACT algorithm in
order to consider the presence of Gaussian noise n (with standard deviation o) in the
image formation model: Sa + n = z. This extension is implemented as a stopping
condition for the CG algorithm (Step 2 of Algorithm I), that is designed to avoid the
over-fitting of the solution and hence the amplification of the noise, thus we stop the
CG iterations when

|Sa— z||* < 7N%0? where 7~ 1.

REMARK 2. Notice that the ACT Algorithm is based on the underlying as-
sumption that the data can be represented by a trigonometric polynomial. Other
interpolation models like the B-Spline have been used in the literature [8]. In this
work we will restrict ourselves to trigonometric polynomials mainly because convo-
lutions are more easily modeled in this setting, but we intend to explore the use of
B-splines in the future.

2.2. The ACT + TV extension. In [5] the authors proposed to combine the
ACT algorithm written as (2.5) with total variation regularization, i.e.,

min/ | Dul,
u QN

subject to [|[VIW(Sa — 2)||? < N2

(2.10)

For convenience, let us refer to this model as ACT+TV. As reported in [5] (see also
Table 7.1 in Section 7) we observe an improvement of ACT+TV with respect to the
original ACT algorithm in terms of MSE error, this improvement is mainly attributed
to the edge preserving ability of the TV regularizer.

Inspired by (2.9) we propose to integrate the spectral weight priors given by
the matrix C in the ACT+TV formulation. To motivate our developments in next
Section, let us shortly write the corresponding model. If we denote by @ (resp. u")
the Fourier transform (resp. the inverse Fourier transform) of u, inspired by (2.9) and
the ACT+TV model, we consider the model

\

E

u

min/ | (p(w) ™ Hiwi(w))
QN

subject to |[VW (St — 2)||* < N?o?

This is the idea behind the Frequency Adaptive Regularizer described in the next
section, that allows to model the frequency penalty directly into the regularity term
without changing the data term. Weighting the residuals as in (2.8) reduces the
condition number of T, but distorts the estimations of the noise. And controlling the
condition number of T is not so important in conjunction with TV-like regularizers.
Therefore we shall drop the spectral weights from the data term and only include
them in the regularizer.

3. A Frequency Adaptive Restoration model with local constraints.

3.1. Regularization choice. Our next purpose is to introduce frequency adap-
tive regularization operators and use them for image restoration under local con-
straints that control the variance of the noise in the image acquisition model (1.1).
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Let w € Z2 — A(iw) €@ x@'. Assume that

A(0) =0, A(iw) #0 Yw #0, and |A(iw)| <L (1 + ‘?\Zw ) , Yw € 72,

(3.1)
for some L > 0, K > 0. If u € C*(Q2n) can be extended as a smooth and periodic
function to R?, we define A(D)u by its Fourier coefficients

—

A(D)u(w) = A(iw)i(w) w € 72
We define the functional

Ja(u) = /Q A(D)ul.

Notice that J4(u) can be defined for any u € L?(Qy) such that A(D)u is a Radon
measure.

The total variation J(u) = fQN |Dul| corresponds to the choice A(iw) = 2Ziw.
Recall that functions with finite total variation are a good model for image restoration
since they permit to recover the discontinuities of the image. But, in practice, digital
images may exhibit a stronger decay in its Fourier coefficients than %w|—1 and other
functional models can be acceptable.

Let us stress here the fact that the regularization functional J4 is adapted to
the restoration of functions with infinite resolution and its numerical approximation
restricts the solution to be in a finite dimensional space. We are going to adopt here
the following practical point of view. Since our data consists of a finite set of samples,
we are going to reconstruct a sampled version of the image and therefore we work
in a finite dimensional space. This reflects the fact that digital images have a finite
resolution. Usually, the restored image is modeled as a piecewise constant image (the
values given on the set of pixels), here we consider images as bandlimited functions
with a finite number frequencies since this is a reasonable model for restoring digital
images. Moreover this model is adapted to compute convolutions and permits to
impose easily a frequency decay of the Fourier coefficients.

Let us formulate our regularization functional in a discrete context. If u € By,

then we define
1
Jﬁ(u) e Z
0<r,l<M

(3.2)

o ()]

If A(iw) satisfies (3.1), then J(u) and J§ are seminorms in By, and the only function
u € By such that J4(u) = 0 (resp. such that J4(u) = 0) is u = constant. Thus
Ja(u) and J¢ are norms in the finite dimensional quotient space By /R, hence they
are equivalent. Notice that if v € Bj; and we define Jj’k by replacing M by k in
(3.2), then J%*(u) — Ja(u) as k — co. Unless we intend to zoom and restore the
images, we take M = N, where N? is the number of data.

Assume that the data consists of N2 samples {z(&;)}x. Let G € £°°(Z?), a €
N, be a discrete, positive, normalized convolution kernel such that G(r,l) > 0 and
> (rpezz G(r,1) = 1. Then we propose to minimize the functional

min Jga(u) = Y \/62+|A(D)U(r,l)|2 ;

ueBu 0<ri<N (3.3)

subject to [G Az (h*u) — 2] (&) < 6° V& €

(1]

)
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where 7,8 > 0. The convolution of G and v € ¢*°(Z) is defined in the usual way by
imposing an arbitrary regular grid structure on Z, d.e. (G *v)(§x) = D cz0 G(I —
k)v(&k). In the case of perturbed sampling this regular grid structure may come
from the original unperturbed grid. Otherwise it may be based on a nearest neighbor
computation. It is a common approximation to take the regularizer Jg 4 instead of
J} to avoid the non differentiability at 0.

Let us explain our choice of the operator A(D). The operator A(D) permits us
to penalize the frequencies according to the profile A(iw). Notice that

NN — 1
[A(iw)a(w)| = [AD)uW)| < 5 > AD)u(r| =L
0<r,I<N
for all w = (p, q) € In, hence

L
| Aiw)|

ja(w)] <

If |A(iw)| ~ |27 w|" for large |w], then |4 (w)| decreases as [3Tw|~*. In this way we can
impose the decrease of the Fourier coefficients of u.
In the rest of the paper, we assume that the blurring kernel h satisfies
. M M .
h e L*(Qy), supp h C [—?, 7]27 and h(0,0) = 1. (3.4)

If w € By, then we can compute h % u using the Fourier transform h *u(p,q) =

h(p,q) @ (p,q).
As we mentioned in the introduction, we have incorporated the image acquisition

model (1.1) as a set of local constraints
(G x|Az(hxu) — z?](&) <%, V& €E. (3.5)

Notice that we have used the value & > 0 as an estimate of the standard deviation
of the noise. We will make tests with @ = o and also with values of 7 different from
0. The effective support of G must permit the statistical estimation of the variance
of the noise with (3.5). In Section 6 we will come back to the noise estimation issue
and the choice of 7.

Then we minimize the functional Js a(u) on By subject to the family of con-
straints (3.5). Now, our purpose is to prove that the constrained formulation of
(3.3) can be solved using Uzawa’s method once we guarantee that the assumptions of
Uzawa’s method [26] hold. But before that, we comment on a improved discretization
for the formula (3.3).

3.2. An improved discretization formula. In this Section we follow the pro-
posal made by Moisan in [38]. The basic observation is the following: the computation
of |[Vu|? cannot be done accurately unless we zoom the image. Let us explain this in
detail.

Assume that u € By, that is, we assume that we want to reconstruct a peri-
odic signal of fundamental period [0, N)? whose spectrum is contained in {f% +
1,..., % 2. Then u is determined by (p, q) where (p, q) € Ins := {—% +1,..., % 2,
Let us observe that if v = Vu - Vu then v is again periodic of period [0, N)? and its
spectrum is contained in {—M + 1,..., M }? since

Vﬁuzﬂ*ﬂ.
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That is v is determined by its Fourier coefficients 9(p, q) where now (p,q) € Iaps =
{-M +1,...,M}? and

N 1 rN IN\ _gp;@rta)
_ _ M
0 =pp 2 ”<2M’2M>e o
0<rl<2M
In particular, we observe that [38]

/ v(z,y)dedy = Y 9(pq) / 2 Ny
[0.N)2

2
(p,q)€l2m [0,V)

1 rN lN 27m—(pw+qy) 727m-(pr+ql)
= (2M)2 Z Z v <2]\47 2]\4) /[0 N)2 c toe - dxdy

(p,q)€l2p 0T, I<2M

N2 rN [N
=@ > (mm)
o<r,l<2M

N2 'N IN
dody = ~ o
/[OyN)Qu(x,y) wdy =5 D “(M’ M)

0<r,l<M

that is, we need to double the samples in order to compute the integral of (Vu, Vu) in
[0, N)2. That is we need to zoom the image in order to compute the Dirichlet integral.
If M = N, that is, if we plan to restore an image with N x N degrees of freedom
(therefore given by N x N samples), then we observe that the computation of the
Dirichlet integral involves doubling the number of samples in the term |Vu|? since

1 rol
v(z,y)drdy = - vl =,=].
[ st =5 3 o(55)

0<r,I<2N

The same argument can be applied to the operator A(D)u.

Finally, let us observe that the computation has been done for fQN |A(D)u|? and
not for IQN 6% + |A(D)ul?, 8 > 0. Indeed in this case, an exact computation would
involve an infinite number of samples, but Moisan has shown for the TV case [38]
that doubling the number of variables leads to a good approximation of the above
integral, being a good compromise between precision and algorithmic efficiency.

Let us introduce some notation needed in what follows. For each M € N, we
denote by Xj; the Euclidean space RM*M - The Euclidean scalar product and the
norm in X,; will be denoted by (-,-)x,, and || - ||x,,, respectively, but in absence
of ambiguities we will omit the subindex. Xj; represents the space of images By,
sampled in the regular grid {0,...,M — 1} x {0,..., M — 1} (or given by its Fourier
coefficients @ € ¢2(Ips). Let us introduce the operator

PZXN—>X2N

Plu(k,l)} = {ﬂ (%v é)}r,le{o,.“,QN—l}

where {u(r,1)}ieq0,....n—1} € Xn and % is the function of By defined by the samples

.....
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the operator A(D) as acting on Xox or as acting on X . Notice that if u € Xy we
may write A(D)Pu = PA(D)u. From now on we will avoid (except exeptional cases)
the use of subindexes to specify the function spaces of norms and scalar products. The
function space should be clear from the variables, in particular let us remark that if
the operand contains the oversampling operator P then the function must belong to
Xon (like: (A(D)Pu, A(D)Pu) = (A(D)Pu, A(D)Pu)x,, ) otherwise to Xy.

Thus the improved restoration model is formulated as the constrained minimiza-
tion

min Kg a(u) := Z \/62+|A(D)Pu(r,l)|2 )

ueX
N 0<r,I<2N

subject to [G * |Az (h*u) — 2] (&) < 6° V& € (3.6)

[1]

and Z u(rl) = Z wiz(&) = ZV.

0<r,I<N ELEE

The additional constraint on the global mean of u is required to make sure that there
is a unique solution. Since data fitting is provided by just some loose inequality
constraints, the solution may be undetermined up to a constant (in the kernel of
the regularizer) in areas where the variance of z is smaller than ¢%. The additional
equality constraint fixes this constant by fixing the global mean of u, thus yielding a
unique solution. The details of the uniqueness proof are given in the next section.

REMARK 3. A further improvement of the restoration formula (3.6) allows to
consider the locality of the sampling density by incorporating a weighting function
a(z,y) € Xon

Kpaaw) = S /82 +1]a(r) AD)Pu(r, ).

0<r,I<2N

Local weights for total variation have been used in [39] to reduce the ringing artifacts
in homogeneous regions of the image. But in the present case the weighting function
a(x,y) takes as value the area of the Voronoi cell of the nearest sample (recall (2.6)):
a(x,y) = area(Varg ming [¢o—(2,y)7|)- Lhese values will be bigger than one there where
the gaps are (thus, penalizing the apparition of artifacts) and smaller than one in the
high density areas (where the sampling is more than sufficient).

4. The well-posedness of the model and its numerical solution.

PROPOSITION 4.1. Assume that (3.4) holds. Then there exists a unique minimum
u€ Xn of (3.6).

Proof. Let u,, be a minimizing sequence of (3.6). Since A(D)Pu,, is bounded
in Xon, and w = 0 is the only vanishing frequency for A(iw) we deduce that v,, :=
U — Um(0,0) is bounded in Xy. Now, since @, (0,0) is constrained to be z%, we
have that u,, is bounded in Xy. By extracting a subsequence, if necessary, we may
assume that u, — wu. It is immediate to see that u satisfies the constraints. Since
Kp 4 is lower semicontinuous, we have that w is a minimum of (3.6).

Now, let uj,us be two minima of (3.6). If A(D)Pu; # A(D)Pug, letting u =
Wtz then the strict convexity of Kg a proves that Kga(u) < infuex, Kga, a
contradiction. Thus A(D)Pu; = A(D)Pus and we have uniqueness modulo constants,
i.e., up —ug = ¢ for some ¢ € R. Since (0, 0) = 2(0,0) we deduce that ¢ = 0, and
therefore, uq1 = uo. 0
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REMARK 4. Proposition 4.1 is also true if instead of assuming the average con-
straint in (3.6) we assume that inf.cg G * (z — ¢)? > 2. This can be proved as in
[13, 17]. But in that case, we should also use a different (gradient descent based)
algorithm to minimize (3.6) as described in [13].

From now on, we assume that the constraints are qualified, that is thereisu € Xy
such that

@(0,0) =%z  and (G * |Az(h*u) — 2] (&) < &7, VéL €S, (4.0)

which implies that the set of functions satisfying the constraints is non-empty.
We prove that the solution of (3.6) can be computed by adapting Uzawa’s algo-
rithm. Let > 0 and A\ = ()‘k)év; > 0. Define the Lagrangian function

L£4(u, {A}) = K a(u) + 1 (2(0,0) = 2*)* + Y %([G *| Az (b u) = 2|*](&) — 7).
ExEE

To adapt Uzawa’s algorithm we need the following result which can be proved as in
the proof of Proposition 4.1.
2
THEOREM 4.2. For each A = (\;)h_; > 0, there is a unique solution u of
min L (u, {\}).

ueX N

Proof. Since L#(u, {A}) is lower semicontinuous in w, it suffices to prove that any
minimizing sequence u,, is bounded. Since L#(uy,, {\}) is bounded, we know that
A(D)(t,) and (i,,(0,0) —z“)? are bounded. The boundedness of A(D)(u,,) implies
that ., — 1, (0,0) is bounded. Since (,,(0,0) —z*)? is bounded, then ,,(0,0) is
also bounded. O

We solve (3.6) with Uzawa’s algorithm.

Algorithm II: TV based restoration algorithm with local constraints

1. Choose any set of values A2 >0, k =1,...,N?, and u° > 0.
Iterate from p = 0 until convergence of AP the following steps:
2. With the values of AP, uP solve:

u, = argmin L (u, {\P}). (4.2)
3. Update p and A in the following way:

Pt = 1,

X = max (N + pp([G * |Az(h v wy) — 2P(6) — 67),0) Ver,  (4.3)

where 0 < p, < p, < p*.
PROPOSITION 4.3. Assume that there exists u € Xy such that 4(0,0) =z and
z(&k) = hxu(&) V& € E. Then Uzawa’s algorithm converges to the solution of (3.6).

To prove Proposition 4.3 we need to reformulate problem (3.6) as

i L A _ 4.4
Jninomax L (A} oy ac), (4.4)
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where \ = ()\k)ivjl, aq,a- >0,

L(u, AN}, a) = K a(u) + 3¢, 2 Me([G o+ [Az(hoxw) — 27 (6) — 02)

+appr (w) +a_p(u),

and
o4 (u) :=a(0,0) — 2% and o_(u) = —u(0,0) +z*,

so that the equality constraint is written as the two inequalities ¢ (u) < 0, ¢_(u) < 0.

Since, by Proposition 4.1, problem (3.6) has a solution, the classical existence
result of saddle points (see [26]) proves the existence of a solution of (4.4). Indeed the
following result is classical and can be found, for instance, in [26] (Theorems 4 and 6,
pp. 59-61) or [21] (Theorem 9.3.2).

THEOREM 4.4. Assume that (4.1) holds. Let u be the solution of (3.6). Then
there are ({A\}, aq,a_) > 0 such that (u,{\}, a4, a_) is a solution of (4.4), i. e., a
saddle point of L(,+,+,+). If (u,{\}, aq,a_) is a solution of (4.4), then u is a solution
of (5.6).

Since we will need it below, let us compute the gradient of Kg a(u). For any
v € Xy we have

<VKﬁ,A<u>,v>xN=< A(D)Pu A(D)Pv>
Xon

3%+ A(D) Pul?’

_{prap)T A(D)Pu ;
Zramper) )

for each v € X vanishing on the boundary of {0,..., N — 1}2. Thus, we may write

VKs.a(u) = A(D)TPT ( A(D)Pu ) € Xn.

3% +A(D)Pul?

Now, we notice that PT f is just the restriction operator (subsampling operator) that
considers only the samples of f € Xox in the grid {0,..., N — 1}2
Finally, using this and the last two formulas, we deduce that
A(D)Pu A0N=1Y
B% + |A(D)Pul?

2, .
where 19 N=1}" {5 the discrete normal.

2 1/q
As usual, we denote by [jv]|, = (Zi\[jzl |v(i,j)\q) forany v € Xy, 1 < ¢ < 0.
We denote [|v||oe = max(; j)eq1,....n} [v(4, 7). And for simplicity in the cases where
there is no ambiguity, we shall omit the subindexes for the Ly norm, then |ju|2=]||u]|.
Proof of Proposition 4.3. Let us write Q(u) = (1(0,0) —z%)?, R(u) = G *|Az(h*
u) — z|?. To adapt the convergence proof of Uzawa’s method to our case, we need to

prove that
(a) If U is a bounded subset of Xy then there is a constant o > 0 such that

(VKp a(u) = VEp a(v),u —v) + p(VQ(u) = VQ(v),u — v) > aflu — vl
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for all u,v € U.
(b) R(u) is Lipschitz on bounded sets of Xy and
(c) the sequence u, constructed in Step 2 of the above algorithm is bounded in X .

To prove (a) we use the inequality [47]

g o 5’ E*f/ > ﬁQ |£7€l|2 vé- é»/ c Rk
VB FIER VB FER (BRI ’

with £ = 2 and we compute

D)Pu(r,1)) — A(D)Puv(r,1)|?
oy (B%+ IA D)Pu(r, 1)[2 + [A(D) Po(r, 1)[2)*?

> a Y |A(D)Pu(r,l) — A(D)Pu(r,1)”
(r,0)

<VKQ’A( u) — VKgA JU—v) >

where (r,1) € {0,1,...,2N —1}, the constant « > 0 depends on the bound for U, and

(VQ(u) = VQ(v),u —v) = 2(i(0,0) — 9(0,0))*.

Then (a) follows as a consequence of the two previous inequalities.
(b) Assume that U C X is a bounded set. Let u,@ € U. Since ||G||; < 1, we have

|R(w) — RO < Gl ll(h* u— ) = (v — 2)?]
< 2flzllocll # (= )| + [15 5 ( + 0) ol # (= 0)]
< Cllu—v]

where C' is a constant depending on the norms of h and z and on the bound for U.

(c) To prove that {u,}, is bounded we observe that

LH(up, {AP}) < L*(u, {\P}), Yu e Xp, (4.5)
for all p. Choosing u € X such that 4(0,0) = z% and z = Az (h *u), we obtain that
Kp,alup) + 1P Q(up) < K a(u),

hence {u,}, is bounded in Xy.
Now, we can adapt the proof of Uzawa’s method to our case (see Theorem 5 in
[26], Sect. 3.1). Since u, satisfies (4.5) we have

(VEg a(up), u—up)+uP (VQ(up), u—up)+(AP, R(u)—R(up)) >0 Vu e Xn. (4.6)
Let u* be the solution of problem (3.6). Since, by Theorem 4.4, we have
Lu* {\}ar,an) < L(u, {A},aq,a) Yu € Xy,
we also have

(VEp a(u®),u—u®) + (A R(u) — R(u"))
Fa (o (u) = ep(u’) +a(p-(u) —p-(u*) 20 (4.7)
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for all w € Xy. Since u* is a solution of (3.6), we have that

and we can add p?(VQ(u*), u—u*) to the inequality (4.7). Taking u = u® in this form
of the second inequalities, and u = u* in (4.6) and adding both of them we obtain

(VEKg a(up) — VEg a(u®),up —u”) + pP(VQ(up) — Q(u*), up — u*)
—aq (o1 (up) — o4 (u)) — a—(p—(up) — p—(u”)) + (N’ = A, R(up) — R(u")) <0

Since
(VKp a(uy) = VEp a(u*),u, — u*) > || A(D)Puy, — A(D)Pu*|?
and

PP (VQ(up) — Q(u”), up — u*) — oy (4 (up) — @4 (u”)) — a—(p—(up) — p—(u"))
= 24 (@ (0, 0) — w¥(0,0))* — (s — a-)(115(0,0) — u¥(0,0))
> Mp(u/\p(07 0) - ZL;(O’ 0))2
for p large enough, we have
(AP =\, R(up) — R(u*)) < —a|A(D) Puy, — A(D)Pu*||* — i (15(0,0) — u*(0,0))?
< —apllup — u*.
(4.8)

Now, the proof follows in a standard way. Let us give the details for the sake of
completeness. Using (4.3), we have

I = X< [A” = X+ pp(R(up) = R(u”))]l.
Taking squares, we have
INFE = X2 < AP = X2 + 205 (N = A, R(up) — R(w")) + pp| R(up) — R(u)|*.
Using (4.8) and (b), we have
IXHE = AI2 < WP = AJI? = 2a0pplup — w||* + pp L2 |Jup — w2
for some L > 0. If we choose p, such that
2000pp — LQpZQ) >v>0
that is
0<p.<pp<p'
we have
INFE = X2 < AP = AP = Al — w1

Then we deduce that ||A? — A|| is decreasing and, thus, has a limit £ > 0. Then letting
p — oo we have that |lu, — u*|| — 0. O
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5. A Quasi-Newton algorithm for the solution of (4.2). The purpose of
this Section is to explain the algorithm used to solve problem (4.2) in Algorithm II.
For convenience, let us denote the convolution and irregular sampling operators, as
Su= Ag(h*u) for any u € Xy.

Observe that the Euler-Lagrange equation corresponding to (4.2) is

A(DY? (PT gzi(ﬁ)(gmz) +200((0,0) — 2%) + ST (G * A\)(Su—z) = 0. (5.1)

To shorten our expressions, let us define the following operators:

Mu = (VG % \)Su, so that MTu=ST (VG * \u),

Nu = a(0,0), b=3ST((G*\)z)+2uz",

A(D)Pu
Alv](u) = A(D)T PT
= AR ( 52+|A<D>Pv|2>

and
T](u) = Al](u) + 2uNu + MT Mu.

where u,v € Xy.
We want to solve (5.1) with a fixed point iteration:

Al (u ) + 2,u./\/u/t\+1 + M Myttt =, (5.2)

The rest of this section is devoted to showing that such a fixed point algorithm
converges to the minimizer of (4.2). Notice that a proof based on convex analysis (the
half-quadratic regularization approach) can be found in [17] in the continuous case,
or in [20, 9] for the discrete case. Further analysis can be found in [1, 23, 48]. Here,
we will extend the proof proposed by Chan and Mulet in [19]. The advantage of such
an approach is that only basic algebra is needed. Moreover, the linear convergence
rate of this algorithm can be shown explicitly. The difference with the approach in
[19] relies on the fact that the operator M is not assumed to be invertible, in our case
the presence of the mean constraint u/N permits to prove the same convergence result
as in [19], without an invertibility hypothesis on M.

REMARK 5. Note that computing MT M in (5.2) entails the computation of an
operator with a Toeplitz structure. Which is efficiently computed in O(N?1log, N?)
steps, as in the ACT algorithm (Section 2.1).

5.1. Existence of u’ and its boundedness. The sequence u! will be defined
iteratively using (5.2).

PROPOSITION 5.1. The equation (5.2) has a unique solution u**' € Xx which is
the minimizer of

2

A(D)Pu 1 —w
e H Friampep7i| TaMuT eV 59
2
A(D)Pu A(D)Pu(r,l
where | Gt S ra|| = Sow | rraorpcag| ond # = V@R
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Proof. Tt is standard that (5.3) admits a unique solution u!*! € Xy. Moreover,
(5.2) is the Euler-Lagrange equation associated to (5.3) and solutions of (5.2) are
minimizers of (5.3). ad

PROPOSITION 5.2. (i) There exists Ko > 0 such that

[A(D)Pu|| < K.
(1) T[u'] is a bounded coercive operator. Indeed we have
(Tlu'Tu, u) > of|ul|? (5.4)

for some a > 0 independent of t.

(#4i) The sequence u' is uniformly bounded.
Proof. Since u!™! is a minimizer of £(u), we have E(u!T!) < £(0) = 1[|2/||? +
w|[Z* |, and thus:

2
1

H (82 + |A(D) Put|2)/*
We have

1
AD)PurH < £(0) = S[11* + pllz**

|A(D) Put+1|?
~ VB2 + [A(D) Put ]| o

A(D) Pyttt
(82 + |A(D)Put[2)/*

Thus ||A(D)Put*||* < 5(0)H\/52+|A(D)put\2H < £(0)\/F + JAD)Pul|Z.
But since we deal with finite dimensional spaces, there exists L > 0 which does
not depend on u! such that ||A(D)Pul|« < L||A(D)Put||. Hence we deduce that

|A(D)Put*||* < £(0)/B% + L2 A(D) Pul?

Assume that [|A(D)Pu'|| < K. Using (5.1), to get that ||A(D)Pu'™| < K, it is
sufficient to choose K > 0 large enough so that

£(0)\/ 32 + L2K? < K2,

(#4) The boundedness of 7 [u!] is immediate and we omit its proof. Let us prove that
7; is a coercive operator. Using the bounds in Step (i), we have

I A(D) Pul*.

1 1
A(D)Pu,A(D)Pu ) > ——
<\/ﬁ2 + |A(D) Puf|? (D) (D) > VB + L2K?
Hence
I
VB + L2K¢
where we wrote u = ug + ¢, with ¢ = Mu and Nug = 0, and we used the fact that

A(D)P is a linear operator whose kernel are the constants. Using Afu']c = 0 and
(ug,c) =0, we get

(AluJu, u) > I A(D) Pull* > axolfuoll?,

[u'](uo + ), u0 + ) + 2N (uo + ¢),uo + ¢)
[u'Jug, uo) + 2puc?
olluol|® + 2uc?.

(T [u'](ug + ¢),up +¢) > (A
> (A
>«
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Thus, we deduce (5.4).

(iii) From (5.4), we know that (7 [u]u'*! u!T1) > afut*!||?. But from (5.1), we
know that (7 [ul]u!™ u!Tt) = (b, ul!Tt) < ||b]|[|u!T?]. We deduce that [Ju'*l]| < H%H.
0

5.22. Convergence of the fixed point algorithm. For simplicity, given A =
(Ae)AZ,, we write £(u) = L£#(u, {\}). Recall that

VoL(u) = Tu](u) — 2uz® — MT2.
Let us finally define
1
G(v,u) = L(u) + (v —u, Vo, L(u)) + 5(1} —u, T u)(v —u))
PROPOSITION 5.3. The following inequality holds for any u,v € Xy

L(v) < G(v,w) (5.5)
Proof. We follow the proof in [19].Since
1
G0, u) — £(0) = £(u) ~ £(0) + (v — v, Vulw)) + 3o — u, Tlul(v — w),
standard computations lead to

G(0,) ~ £00) =3 (- a+ 5o (@ - a?))

a
(r0)

with @ = /B2 +|A(D)Pu(r,])]? and @ = /B2 + [A(D)Pv(r,1)|? where (r,]) €
{0,1,...,2N —1}. Since a,a > 0, and a — b+ ﬁ(b2 —a?) = (a;:)z > 0, we have that
G(v,u) — L(v) > 0. |

PROPOSITION 5.4. (i) The function ut*t! defined by (5.2) is such that:

t+1

u'™ = argmin, G (v, u') (5.6)

ie.: 0=V L(u') + Tu!](u' Tt —ut).
(i1) We have lim;_, ;o ||ulTt — ul|| = 0.

Proof. (i) Let us denote by @ = argmin,G(v,u'). We thus have 0 = V, L(u') +
’{ [ t](g_ - u'). And this last equation is precisely equation (5.2), which implies that
o =ultt
(ii) From (5.5) and (5.6), we have L(u't!) < G(u'Tt ut) < G(u',ut) < L(u?), ie.
(L(u')) is decreasing. Now, from (5.5) and (5.6), we have:

L) < Gut )

Using (5.4), we deduce: 1aflu!™ —u!||? < L(u* — !, T[u)(u' ! —ub)) < L(u!) —
L(ut*1) and (ii) follows. 0
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Fic. 6.1. The relazed optimization problem allows solutions within a band. From the depicted
sequence of solutions uf, the ones that are truly satisfying the constraints are those inside the dotted
ring, since it accounts for the approzimation error n. S stands for the irregular sampling and
convolution operators, Sué is also a sequence defined over the irregular samples and not over the
solution space.

We are now in position to state a convergence result.

THEOREM 5.5. The sequence u' defined by (5.2) converges to the solution of
(4.2)

Proof. From Proposition 5.2.(iii), we know that u' is uniformly bounded. There
exists u such that we can extract a convergent subsequence, which we still denote by
ul, with u® — u as t — +o00. From Proposition 5.4.(ii) , we know that u!T! is also
convergent and u'*t! — u as t — +o0. Letting t — 400 in equation (5.2), we deduce
that w is the solution of (5.1) (and thus of (4.2)). By uniqueness of the solution of
(4.2), we conclude that the whole sequence u’ converges to u, solution of (4.2). 0

We end this section by stating a result about the convergence rate. We denote
by @ the solution of Problem (4.2). We use the following notations:

G(a,u') — L(w)
(4 — ut, Tut] (@ — ut))

Tt = 1
2

and
ni=1— Amin(T[0) ' V2L(T))

where Apin (M) denotes the smallest eigenvalue of the matrix M; in particular if M
is positive definite then Ay, (M) > 0
PROPOSITION 5.6.
1. L) — £(7) < (L) — £(@)).
2.1 <1and 0 <~ <mn, fort sufficiently large. In particular, L(u') has a
linear convergence rate of at most n.
3. u' is r-linearly convergent with a convergent rate of at most \/1.
Proof. We refer the interested reader to the proof of Theorem 6.1 in [19] which
can easily be extended to our case. 0

6. Band constraints and stop conditions. Coming back to the optimization
problem (3.6), since both the functional Kg 4(u) and the constraints are convex,
and the constraint’s feasible set V' does not contain the absolute min of Kg a(u),
then the solution lies in the boundary of V. In practice, computing a solution in
OV is not only computationally too expensive (due to the size of the problems), but
also unnecessary because of the noise. Since we rely on noise estimates that have a
certain accuracy, exceeding this accuracy in the data fitting is useless (as we will see
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later in this section). Moreover, as it has been observed in all numerical experiments
[14, 16, 17, 18, 19, 20, 24, 29, 10, 31, 44, 48], using total variation as regularizer in
denoising or restoration generally carries some loss of texture and it is not desirable
to compute the solution that (absolutely) minimizes the TV but to keep a solution
with a slightly higher TV value in order to avoid the loss of textures.

As a consequence, to avoid this degradation, the rule of thumb has been ever
since to remove less noise than noise is actually present in the image. Gilboa studied
this in [10] and concluded that in terms of SNR the optimal selection of & is between
0.7 and 0.8 times the value of o. In what follows we will modify the constraints to
account for this change:

(1]

[G* |Ag (hxu) — 2|°] (&) < 6% V&, €

where & < o, and we denote 7 the noise with variance 2. That is, we do not remove
all noise in order to keep more texture in u: z = S(ug + S~ 1(n — 7)) + 7 and we
identify ug + S~ (n — n) with w.

Motivated by this observation and by the fact that, due to noise, there is always
some uncertainty in the neighborhood of 0V, we will avoid the computational overhead
of getting to OV by stopping the algorithm as soon as the solution is close to it. This
is the notion behind the band constraint

(1—a)a® < [Gx|Az (hxu) —2[*] (&) < (14 a)5® V& € E, (6.1)

with a > 0. The constraint described by equation (6.1) is clearly non-convex, and
therefore it cannot be integrated in the method presented here. But since Uzawa’s
algorithm always pushes the solution towards the boundary of the feasible set, then
(at least in practice) it can be used to stop Uzawa’s loop by testing if (6.1) is fulfilled.

In what follows we will see that even considering relaxed constraints like (6.1), it
is not possible to fulfill all the local constraints at once, since they rely on a statis-
tical estimation of the noise. Then we will see how this relaxation of constraints is
used to early stop Uzawa’s iterations and this helps to improve the efficiency of our
implementation.

In our experiments, we have chosen & = 0.80 and « such that 0.8(1 + «) < 1.

6.1. Expected number of satisfied constraints in the band. Let us sum-
marize the arguments of [4]. Each local constraint relies on a local estimate of the
residual variance

Sc(&) = [G*[Az (hxu) — 2] (&) = [G = [7]*] (&) (6.2)

where G is a Gaussian or uniform window centered at the interest point and ng
denotes a zero mean Gaussian noise and variance o2 (recall that we are going to
remove only a noise of variance 62 < ¢?). Since Sg is a random variable itself, the
number of satisfied constraints is estimated by the probability P[Sg < (1 + «)5?] in
the case of the ball shaped constraint, or P[(1 — a)5? < Sg < (1 + «a)5?] for the
band constraint. Observe that a constraint of the type Sg = &2 (that is in practice
imposed when solving exactly (3.6)) was already doomed to failure since it has zero
probability P[Sg = %] = 0.

Using the Central Limit Theorem gives only a loose estimate of the probability
distribution of Sg. To improve the estimation of the expected number of satisfied
constraints let us simplify Se. Approximating the discrete convolution with G (of
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FiG. 6.2. Relation between the expected number of satisfied constraints and the radius r of the
disk used for the local noise estimation. The graph shows the curves computed for different widths
of the band a.

standard deviation 7) by a mean over a disk I of radius r = 27 we can define a
simpler estimator Sy = ﬁ > wer M-

For the case of the ball constraint, the expected number of satisfied constraints
is the number of pixels times

Z(%)2 < (1+a)[].

kel

=P

P[S; < (1 +a)5? |I|an (1+a)o
kel

Notice that in the rightmost equation Y, ; (%)2 is a sum of |I| squared normalized
Gaussian random variables, so it follows a chi-square distribution with || degrees of
freedom (x%(|I|)). And the probability can be computed using the incomplete gamma
function T'(a,z) = [ t*~tetdt

P[S; < (14+a)5%) = P[\(I) < 1+ a)lI]] =T <(1+f)m ';') |

In the case of the band constraint the expected number of satisfied constraints N («, )
is the number of pixels times the following probability

Pl- o <5< 1 rape =r (LERUL Y (ool Y g

Equation (6.3) expresses the expected proportion of satisfied constraints as a function
of the radius of the disk r (|I| = 7r?) and the width of the band a.. We plot in Figure
6.2 this function, for different values of « to give an intuition of its behavior. Notice
that the expected number of satisfied constraints decreases as we reduce the band
width « or the radius r. This allows us to compute one parameter as a function of the
other two, i.e. using a disk of radius r = 13 (or a Gaussian with standard deviation
7.0) and defining a band of width 0.26% (a = 0.1) gives 89% of satisfied constraints. In
practice, either we specify o, r and then the expected number of satisfied constraints
is N(a,r), or we give a and N, and we compute r so that N(«,r) = N,. We have
taken the second option in the experiments displayed in Section 7.

REMARK 6. Observe that in (6.2) the estimation of the noise variance corresponds
to the case when the mean of the random variable is zero. Indeed, the global mean is
enforced to be zero in (3.6). We should also impose that the local means are zero with
a new set of constraints, otherwise Sg will be an overestimation of the noise variance.
Adding the local mean constraint >, = |G * (Az(h * u) — 2)2(&) = 0 in (3.6)
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FiGc. 6.3. Truncation of the Quasi-Newton method. The first sequence shows the error evolution
along the Quasi-Newton iterations, without applying the stopping condition for the CG algorithm.
The second sequence was obtained stopping the CG with the empirical bound, observe that the two
sequences are indistinguishable. The third sequence depicts the estimated error used to effectively
stop the Quasi-Newton iterations, as soon as the desired error is achieved.

TABLE 6.1
Relation between the width of the constraint band and the restoration time. Reducing the width
of the band increases the computational cost of the restoration algorithm. In the table the value of
n was selected according to the rule n = %(\/1 + ad — /1 —ad), and & = 1. All the reported times
correspond to experiments ran on a 1.6 Ghz CPU restoring a 256 X 256 pizels image.

Band Width Effective Band Total

parameter: a | \/(1-a)d+1n +/(14+ &) —n | running time
0.60 0.84 1.05 3 min 3 sec
0.34 0.93 1.04 3 min 37 sec
0.22 0.96 1.03 4 min 58 sec
0.10 0.98 1.02 18 min

adapts to the formalism developed in this paper. But to avoid the computational
overhead of its implementation, and since the overestimation plays in favor of the
relaxation arguments presented earlier in this section, we will not include it in the
present formulation.

6.2. Practical stopping conditions for an efficient implementation. Us-
ing (6.3) we may derive a practical rule to stop Uzawa’s loop. Indeed, the user specifies
a and the proportion of constraints N, /N that must lie within the band of width
a, and the algorithms deduces the radius r of the kernel G such that N(a,r) = N,.
Then we iterate the Uzawa’s loop in Algorithm IT until the number of pixels that
satisfy the constraint (6.3) is N,,.

The truncation error of the Quasi-Newton has three sources: (i) truncation of
the Quasi-Newton iterations themselves, (ii) truncation of the nested CG loop, and
(iii) propagation of the CG error along QN iterations. Here we summarize how to
estimate and control the combination of the three errors for a given (global) target
error bound on the QN result |lu, —ub||* < n/||S||. Using standard error propagation
analysis [22] and the knowledge that QN is at least linearly convergent we can estimate
the global error if we can estimate (ii) and bound the inverses of the operators 7 [uf]
and their dependence on u?. In our case these bounds are estimated empirically, and
the CG error is approximated by its residual. Figure 6.3 shows that this procedure is
quite effective in practice. First our CG stopping condition makes the truncated QN
sequence indistinguishable from the non-truncated QN sequence (i.e. the one with CG
iterated until exact convergence is reached, and thus not affected by CG truncation
errors (ii) and their propagation (iii)). This is because the actual QN truncation
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Fic. 7.1. Image used in the denoising experiment. At left: the reference image is non-aliased,
and it has 149 X 149 pizels. It was multiplied by a smooth window vanishing on the borders in order
to avoid periodization artifacts (not shown). In this image the mean fourier coefficients amplitudes
decay like (2mw/N)~12 (center). At right, is shown the perturbed sampled image. The perturbation
have an amplitude of A = 0.88 pizels (standard deviation of e(x)), and where simulated according
to (2.2) as colored noise with the spectral content inside [—0.5/Te,0.5/T:]? for T. = 10.

error (with either CG truncated or not) is considerably over-estimated by our error
propagation analysis as shown in Figure 6.3. This also means that the desired error
is achieved much faster than predicted by the our error bounds.

Let us now take into account the truncation error of the Quasi-Newton method
in the determination of the band constraints. Assume that we are computing Quasi-
Newton solution u,, and we have controlled the errors [|Su,—Suj || < ||S||[lup—uj,|| < n,
where u; denotes the solution obtained at the ¢t —th iteration of the method. Then we
may erode the band by 7 as seen in Figure 6.1. In this way we ensure that if we stop
the Quasi-Newton solution with the criterion [|S|||ju, — ul|| <7, we are sure that we
have truncated a solution w, that satisfies (6.3). Clearly n must satisfy the inequality
n < 3(vV1+ao —/1—ac) and we have taken 1 := é(\/l + ao — /1 — ao). Figure
6.1 shows the band and its reduced version for a single constraint.

Finally, we notice that the computational complexity of the algorithm increases
if we reduce the width of the band. Indeed, taking a — 0 makes it harder to satisfy
the constraints. And to illustrate this we display in Table 6.1 the computation times
corresponding to some values of a.

7. Experiments. To test and compare the proposed algorithm we devised the
following experiments that highlight separately different characteristics of the method.
First we show an experiment of restoration of an irregularly sampled image with noise.
In this experiment we compare different variants of the proposed algorithm with the
ACT Algorithm and its variants [32], and the algorithm in [5]; moreover this case
serves as a preliminary testbed for the choice of regularizer A(D)u. Then, in Sub-
section 7.1, we display experiments on denoising and deconvolution. Finally in the
last subsection we consider the full restoration problem, with deconvolution, denois-
ing, and zooming. All the experiments were performed with simulated images. The
perturbations e(z) were computed according to the model (2.2), with an amplitude
A = 0.88 (standard deviations of €(z)), and where supp & C [—%5, %]2 for T. = 10.
The perturbed samples z were computed with a high accuracy (usually 10~8) by
approximating the irregular sampling formula (2.3) with the transposed NFFT [41].
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TABLE 7.1

Comparison of the algorithms in the irreqular to regular sampling and denosing task. These
results correspond to the restoration of the image shown in Figure 7.1, corrupted by a white Gaussian
noise with standard deviation o = 1. The error column is obtained by comparing the restored image
u with the ground truth ug with the RMSE(u,up) = (%Hu —ug||?)Y/2. Its values evidence that all
the algorithms achieve errors similar to the noise variance. In all the experiments the power of the
removed noise was set to be %HSu —2||2 ~ 0.908, this allows to improve the result’s RMSE and the
visual quality of the restored images.

[ Algorithm | Regularizer [ RMSE |
ACT [32] or (2.5) 1.354
ACTp (2.8) residual preconditioning 1.121
ACTpR (2.9) regularity preconditioning 1.049
ACT+TV [5] or (2.10) 0.961
QN+TV [A(iw)| = |3 w] 0.904
QN4FAR |A(iw)| = | 22 w6 Jg,a(u) eq. (3.3) 0.771
QN+FAR [A(iw)| = |ZFw|'? 0.745
QN+TV [A(iw)| = [ ZFw] 0.874
QN+FAR |A(iw)| = |2 w|!-6 Kpg,a(u) eq. (3.6) | 0.776
QN+FAR |A(iw)| = |ZF w|'? 0.757

9 o ; 0.016 o
8 U / —_—
3 7 |2nuN|1-f! _ 828?21 FAR(19) -
g 2 oo
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(a) Spectral profiles. (b) Errors in the restored images.

Fic. 7.2. Denoising experiments with different selections of spectral profiles A(iw). Using the
spectral profile that fits the model for the ground truth image, reduces the error.

Finally, we added a white noise of standard deviation o to the irregular samples. In
the experiment displayed here, we have taken o = 1 gray levels (i.e.the noise power
is 890 times smaller than the image power, SNR = 29.5dB). The perturbed image
shown in Figure 7.1 was simulated according to this procedure.

To quantify the errors we adopt the classical root mean squared error measure
RMSE(u, ug) = (% |lu — uo||*)/? against the ground truth image (denoted as up),
and the method noise for a qualitative analysis. The method noise was originally
aimed to compare denoising algorithms, it consists in subtracting the restored image
to the noisy one, and studying the remaining noise. In our context assuming an
image formation model like (1.1) and denoting u the image obtained by a restoration
algorithm, the method noise becomes (z — Su), where z are the noisy samples and S
stands for the irregular sampling and convolution operators. Since the restoration is
expected to recover the original image u ~ ug, this method noise should be as similar
to a white noise as possible. In addition, since we would like the original image ug not
to be altered by restoration method, the method noise should be as small as possible
within the allowed regular functions.
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(a) ACTg (b) ACT+TV (c) QN+TV (d) QN+FAR
eq. (2.9) regular- eq. (2.10) eq. (3.6) with eq. (3.6) with
izer precondition RMSE= 0.961 [A(iw)| ~ |27TT“’|:l [A(iw)| ~ |2"T‘*’|1'9
RMSE= 1.049 RMSE= 0.864 RMSE= 0.757

Fia. 7.3. Method noise of the different algorithms in the experiment of irregular to regular
sampling plus denoising. The images in the first row display the method noise (z — Su) for different
methods, less visible structure indicates a better reconstruction. The images display the grayscale
range [—3, 3] scaled to [0,255] (the full grayscale range of the image z is [0,155]). In the second row
we show the corresponding Fourier transforms, the spectrum highlights the structures that are barely
vistble in the spatial domain.

We report in Table 7.1 the results of the denoising experiments. Observe the quan-
titative improvement of proposed algorithm with respect to previous ones. In Figure
7.3 are shown the method noise of the results obtained by the ACTg algorithm, the
ACT+TYV algorithm and the proposed algorithm with and without spectral weights.
Observe (specially in the Fourier transforms) how the method noise of the proposed
algorithm retain less structure, meaning that the method removes just the noise with
less alteration of the texture.

Also notice that imposing a spectral profile produces a consistent improvement
in all the cases (|3Fw| vs. |ZFw|"® vs. |2Fw|"?), and that imposing the profile cor-
responding to the coefficient decay of the reference image (Figure 7.1) produces the
best results. The precise computation of gradients described in formula (3.6) Kg 4(u)
(see Section 3.2) also represents a small improvement but it comes at a very high
computational cost. Observe that the lowest RMSE corresponds to the case of the
regularizer (3.3) combined with the strong spectral profile, in this case the strong
penalty to higher frequencies inhibits the apparition of aliasing artifacts due to the
coarse discretization of the regularizer.

In Figure 7.2 we analyze the frequency distribution of the error of the restored
images with respect to the reference image (GT). Using the total variation, the low
frequencies are heavily penalized and most of the errors come from them, but imposing
the profile corresponding to this image (|3Fw|"?) we reduce the errors in the low
frequency range.

Lastly let us mention about the impact of the practical stopping conditions pro-
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(b) Noisy, blurred and irregularly sam-
pled image.
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Fic. 7.4. Image used in the deconvolution experiment. The fourier coefficients amplitudes of
the reference image (257 x 257 pizels) decay as (2mw/N)~1-1.

posed in Section 6, it allows a significant speed up of the algorithm reducing the
execution times from 200 sec (stopping after 50 iterations), to 30 sec for images of
size 149 x 149 pixels.

REMARK 7. We also tested the algorithm with an image created by random
sampling, while solving for the perturbed case we achieved an error of RMSE = 0.771,
for a randomly sampled image it is only possible to achieve an RMSE = 1.295.

7.1. Denoising and deconvolution. We consider in this Section the denoising
and deconvolution of irregularly sampled images. For that we include in our image
formation model the MTF corresponding to SPOT 5 HRG (High Resolution Geo-
metric) satellite with Hipermode sampling [33]. Shortly, Hipermode is a push-broom
acquisition mode that uses two shifted bars of sensors to sample on a double-density
grid. The MTF associated to this system is modeled by

. o /a3 N N
h(p,q) = sinc, (%) sinc, (%) e PIFl e~ T VP gine (%) 5 <p,q< 5
optics SN———

sensor movement
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Fi1G. 7.5. Deconvolution experiments with different selections of spectral profiles A(iw). Using
the spectral profile that fits the model for the ground truth image, reduces the error.

TABLE 7.2
Comparison of the algorithms in the irregular to reqular sampling and deconvolution task.

[ Algorithm [ Regularizer [ RMSE ]
ACT+TV [5] 8.620
QN-+FAR [A(iw)] = | 2T w|16 7.537
QN4TV |A(iw)| = |2”w|1 Jg,a(u) eq (3.3) 7.408
QN+FAR |A(iw)| = |2’*w|O 4 8.337
QN+FAR |A(iw)| = |2’f |1-6 7.684
QN+TV |A(iw)| = 2"w1 7.444
QN+FAR‘ |z§{(13.)|)| iy |2’T¢|u|0 4 Ko.alwyea 36) 1700,
QN+FAR |A(iw)| ~ |2 w|%4 for |w| > & 7.287
regular QN+FAR \A(iw)\ = 2wt Ks a(u) eq (3.6) | 7.479

where oy = 1.87, 1 = 0.89 and where sinc,(x) = 1 if & = 0 or sinc,(x) = M if
2 # 0. This function has its first zero crossing at frequency N/2 = 1/2Hz, while at
frequency 1/4H z the power of the MTF is only 1%, meaning that outside the spectral
support [-N/2, N/2]? (or [~1/2,1/2]?> Hz)the filter there is almost no information.
To simulate a blurred, noisy and irregularly sampled image of size N x N we start
with a reference image ug € Xon. Then we compute the MTF h over the extended
frequency interval [—1,1]? and we apply it to the original high resolution image ug.
Finally, the samples z (Figure 7.4) are obtained by subsampling on the irregular grid

2((r, 1) +e(r) = 3 2Rt e G Vao(w)  (r 1) € Z2.

we{—=N+1,...,N}2

In this way, we consider the effects of the aliasing introduced by the irregular sampling.
Since the restored image u is defined on the spectral support [—1/2,1/2]2, it cannot be
directly compared with the original high resolution image (with support in [—1, 1]?).
So, in order to compute the a-posteriori error, we compute a low resolution ground
truth image by subsampling a filtered version of wug, where the filter is a smooth
low-pass filter K[_; 1j2. Using the notation of of Section 3.2, the subsampling by a
factor of 2 is represented by the operator PT. Thus, we compute the error MSE =
ﬁHPTK[_M]zuO - K[_1/271/2]2u\|2, where, to avoid any bias in the computation of
the error, we also applied the previous filter (in a restricted form K (~1/2,1 /2]2) to the
restored image wu.
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AT AR AR i
ACT+TV (RMSE=8.620) QN+TV (RMSE=7.444)

Fic. 7.6. Restoration with deconvolution computed with ACT+TV [5] (left), and with QN+TV
(right) using (3.6). In the first row are shown the restored images. In the second row, the method
errors, that are re-scaled from [-5,5] (the range of the image is [0,255]). The third row is shown the
Fourier transform of the method noise (it should resemble the white noise).
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TABLE 7.3
Deconvolution denoising and 2X zoom experiments.

[ Algorithm [ Regularizer [ RMSE ]
ACT+TV [5] 6.752
QN+FAR [A(iw)| ~ |ZZw[1S for || > T 6.114
QN+TV |A(iw)| = | 2wl Js,a(u) eq (3.3) 6.292
QN+FAR |A(iw)| ~ |22 w|® for |w| > & 6.904
QN+FAR [A(iw)| ~ [Zw[!0 for [w] > I 6.183
QN+TV |A(iw)| = | ZFwl|? Kg a(u) eq (3.6) | 6.190
QN+FAR |A(iw)| ~ [2Fw|® for |w| > & 6.281

In Figure 7.1 and Table 7.2 are reported the results of the restoration exper-
iments with the Hipermode MTF. Let us start remarking that the filter h makes
the restoration harder per-se, since the the error obtained after the restoration of a
blurred but regularly sampled image (last row of Table 7.2) is almost equal to the
corresponding irregular case. This is also confirmed by the small variability between
all the results. Anyway, the proposed algorithm outperforms ACT+TV [5] mainly
due to the local formulation of the constraints. This is particularly evident in Figure
7.1 when observing the Fourier transforms of the method noise (z — Su). As in the
denoising case, the improved restoration formula (Section 3.2) produced a marginal
improvement compared to the high computational cost that must be paid.

We observed that manipulating the spectral profile A(D) does not produce im-
provements consistent with the denoising case (see Figure 7.5). This is because the
reference image has a spectral decay different from the target image class (|2Fw|").
Indeed the fourier coefficients decay of the reference image decay as (|ZFw|™!), ex-
plaining why the best results are obtained with the total variation. Notice in Figure
7.5(b) that the total variation controls the error in the low frequency range, but in
the high frequency range is is too conservative and does not allow the spectral ex-
trapolation, contrary to the effect of the [2Xw|%4. This observation motivates the
following experiment, building a profile that combines, in the low frequency range,
the decay proper of the total variation, with the decay similar to \%w|0'4 in the high
frequency range. The result of this experiment is shown in the Table 7.2 and its profile
is depicted in the Figure 7.5(b), there we can confirm the desired effect.

7.2. Extension to zooming. Zooming requires to interpolate and restored the
image while preserving and enhancing the shapes, this can be seen as a spectrum
extrapolation problem. The basic idea is to fit, in as much as this is possible, the
low frequency components of the restored and zoomed image to the original data,
and to extrapolate the spectrum to the rest of the frequency domain by means of the
regularization functional. This regularization allows to recover some high frequencies,
which is indeed much more convenient than just filling them with zeros, a technique
which is known to produce ringing.

Since the FAR regularizer allows to control the spectral behavior of a solution,
in particular the extrapolated part, it will allow to improve the zoom results. Let us
first extend the formulation (3.6) to consider the restoration of irregularly sampled
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images with a zoom of factor n

min = Kj 4(u) := Z \/ﬂ2 +|A(D)Pu(r,))*

ueXnN 0<ri<2nN
subject to [G  |Az (h*pxu) — 2|*] (&) < 0® V& €E (7.1)
and Y u(rl) =) wez()

o<r,l<nN ELEE

The zoomed and restored image u is a vector of size nN x nIN (we recall that the size
of zis N x N), and p is a spectral projector (e.g. p = xr or a prolate function) on
a low-band region R which depends both on the MTF and the sampling set. In the
context we are considering here, p will be different from zero in the frequency band
corresponding to the resolution of the data [—1/2,1/2]? and the constraint is saying
that the data is explained by the lower frequency part of h* p* u. The regularization
functional Kj 4(u) penalizes the oscillations that may appear when we extrapolate
the high frequencies in the spectral region [—n/2,n/2]?\ [~1/2,1/2]2. Let us mention
that, as discussed in [3] in the context of regular sampling, the right choice of the
spectral region R permits to reduce the aliasing effects, but we shall not consider this
problem here. For us, if we want to restore and zoom the image u by a factor n, p will
be different from zero on the region R = [-1/2,1/2]? and zero on [-n/2,n/2]*\R .
This is a way to impose that the restored image fits the data z at low frequencies and
the high ones are extrapolated via the minimization of K} 4(u). This minimization
problem (7.1) with p(w) = 1, (w) is a direct extension of the oversampling and
denoising method introduced by Malgouyres and Guichard [40] to the more general
case of irregular to regular sampling, deconvolution, denoising and oversampling.

The experiments were performed with images simulated using the same procedure
as in the deconvolution experiments. Since this time the restored image and the
reference image have the same size, they can be directly compared. In Figure 7.7 are
shown the distorted and the reference image as well as two restorations.

Let us first comment on the stair-casing effect that is noticeable in the bottom left
image of Figure 7.7. It is a common observation that the total variation introduces a
stair-casing effect in the restored images, but let us point out that in our case where
the derivatives are computed analytically this effect may not appear. When it appears
is due to the poor discretization of the total variation. Notice that the same image
processed with a finer approximation as proposed in Section 3.2 does not exhibit this
artifact, see bottom right image in Figure 7.7. As we mentioned above, the aliasing
effect product of the coarse discretization of the total variation was negligible in the
cases of restoration without zoom. But when zooming it is important to avoid this
effect since it produces un-natural looking images.

The final quality of the zoomed image is influenced by the penalty in the frequen-
cies imposed by the regularization term. In Table 7.3 we display the results obtained
with different penalization profiles, and we observe that the best results are obtained
by imposing the decay |A(iw)| ~ |ZFw|"S.

In contrast with the previous applications, in the present case, not removing all
the noise leads to some noise artifacts. The noise is defined over the original grid
(be either regular or irregular), but any residual of the original noise becomes a low
frequency colored noise in the zoomed image that is visible as artifacts.
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(b) Irregular samples.

(¢) Zoomed with QN+TV using (3.3). (d) Zoomed with QN+TV using (3.6).

Fic. 7.7. Deconvolution denoising and zoom. We display the QN+ TV results since the reference
image have a spectral decay like: (%T“")l'l‘ The stair-casing effect in (c) (RMSE: 6.292) is due to
the poor discretization of the total variation in (3.3). In (d) (RMSE: 6.190) we observe the result
obtained with a finer discretization of the total variation (3.6).

8. Conclusions. We have proposed an algorithm for the restoration of band
limited images that considers irregular (perturbed) sampling, denoising, and decon-
volution. We have combined the the irregular to regular sampling algorithms proposed
by H.G. Feichtinger, K. Grochenig, M. Rauth and T. Strohmer [32] with the appli-
cation of a family of regularization terms that allow to control the spectral behavior
of the solution. Moreover, the constraints given by the image acquisition model are
incorporated as a set of local constraints. We have presented experiments focused to
the restoration of satellite images, where the micro-vibrations are responsible of the
type of distortions we are considering here. We have shown in the experiments that
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the combination of frequency adaptive regularization with local constraints is able to
transfer from irregular to regular sampling in case of noisy images. Since high frequen-
cies that have been killed by the MTF, in the case of deconvolution and denoising,
its recovery is favored by a small spectral penalty at high frequencies. Finally, we
have discussed the application of our model to the zooming of irregularly sampled,
convolved and noisy images.

Currently, we plan to adapt our algorithm to the use splines as the underlying
interpolation model, and to introduce anti-aliasing filters to handle the case of aliased
data.
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