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Abstract— In this paper, we propose a new scheme to extrapo- a standard deviation proportional to the resolution. This c
late wavelet features with respect to the resolution. By eXeitly  conveniently be modeled as
taking into account the acquisition process of satellite irages,

we compute how wavelet features behave when the resolution fo=1.f % kyp, 1)
changes. This approach is validated by classifying sateidi images
with different resolutions. where ) ) )
7ty
I. INTRODUCTION ko(2,y) = g2 XP (_ 952 )’ @

Institutions such as the CNES (the French spatial agenciz[),
have recently expressed the need to develop automatic ifi-
dexing schemes to deal with huge databases of satellitesignag I, = Z S(ir,jr)s
One particularity of these databases, compared to e.grahatu i,5E€L
images databases, is that most of the time images have bgag he parametep is a characteristic of the acquisition
acquired by different satellites and therefore have diffieand rocess (the smaller, the more aliased is the image).
usually known resolutions. To index such images, one ise'ehelp ’
fore naturally led to consider resolution invariant featior to [1l. WAVELET FEATURES FOR TEXTURE INDEXATION

develop schemes to compare features at different resofutio Based on numerical experiments, Mallat [8] proposed to
Although many scale invariant features have been prop@sedhiodel the empirical distributions of wavelet coefficients of

the literature, see e.g. [1], [2], [3], resolution invarid@atures naiyral textured images by Generalized Gaussian Disioibsit
have hardly been studied. Indeed, this last problem is mqgggp) :

involved since it necessitates to take the image acquisitio h(u) = Ke—(ul/a)® 3)
process into account. In [4], this process is modeled as a
convolution followed by a sampling and its effect on th&arameters is usually called ashape parameter, since it
computation of a characteristic scale is studied. In thjsepa modifies the slope of the distribution, and is a scale
we make use of the same model and propose a methodpasameter, directly related to the variance of the distidiou
relate wavelet features obtained at different resolutions It is shown in [5], [7] that the parametets and 3 of GGD
Many features have been proposed to index satellite image&n be used as efficient features for texture classificalios.
In this work, only mono-spectral images are considered ap@ssible to compute these parameters from the estimation of
therefore texture features are chosen to classify themeldav the first and second order momentgof[8] : we denote them
features are chosen since they have been proved suitableréspectively bym; = [ |u|h(u)du andmg = [ u?h(u)du.
texture indexation or classification [5], [6], [7]. In this paper, for simplicity, we address the problem of
The plan of this paper is the following. The specific featurg¢lating featuresm; and m» to resolution changes. Since
extracted from wavelet decompositions are presented in Sparametersy and 3 may be computed only using:; and
tion IIl. In Section 1V, a method is given to extrapolate thesmz, extrapolating these features with respect to the reswluti
features from a given resolution to another one.We validagstraightforward. This can be useful when using the Kutbac
these results with some numerical experiments in Section Meibler distance in a classification task, see [7].

is the Dirac comb omZ?, that is,

We then conclude in Section VI. We denote by©,; = {mi(r,t),mz(r,t)} the wavelet
features at scale extracted fromf.,..
Il. MODEL OF THE ACQUISITION PROCESS In order not to be restricted to dyadic resolution changes,

We assume that the scene under study is represented lppatinuous wavelet transform ([9]) is used instead of theemo
continuous functionf, and that the digital imagg, at reso- classical discrete wavelet transform. Moreover, we carsid
lution r is obtained by convolution and sampling. Moreovemother wavelets obtained as derivatives of a Gaussian lkarne
the convolution kernel is always assumed to be Gaussiah, whtorizontal, vertical and diagonal directions. This is matéd



by the simplified model for resolution changes presented furthermore, we also have that :
the previous section, as will be shown by the computations of
Section IV-A. mi(r1,t1)/r1 ~ ma(rz, ta)/re (8)
Figure 11l shows a histogram of absolute values of wavelet ma(r1,t1)/r] ~ ma(re, t2) /73 9
coefficients, illustrating the soundness of the use of GGDs t . Lith
model such distributions.
r0 =17 2 lwarsl

= =2.61,8 = 1.2626
where|f. | is the size of the discrete image, and
10 = 177 2 ol
I _ Remark : A naive assumption could be drawn that for the
: s ) same sceng, if we keep
(a) Marseille (b) Histogram

rxt=C (10)

Fig. 1. (a) Image of Marseille at resolutiod.707m (©CNES); (b) ; ;
Histogram (blue bars) of (a) at scafe(horizontal) and the approximation whereC' is a constant, the parameter set will also be constant

by GGD (red curve). (after the correct normalization). However, this assumpis
not sufficient (especially on remote-sensing images) berdu
considers the resolution change simply by a zooming, which
IV. EXTRAPOLATION OF WAVELET FEATURES THROUGH is not consistent with the acquisition process modeled in
RESOLUTIONS Section II.

A. Resolution Invariance B. Extrapolation of wavelet features

The discrete version of the Gaussian kernel with standardThe aim of this paper is to propose a way to extrapolate
dhewa]:uon th(t being given in p|>éelfs) is r:jer:joted bk, Wel wavelet features (i.e. the first and second order moments
t erf?_ ore avek, N”k;]t Lﬁt us ellne the |scretcej vx_/a;/;;:e ndms) from a resolution-, to a different resolutioms. From
cr?e icient as (lieca It at the wavelets we use are dersaiv. o ations (5)—(9), we deduce the following scheme : assume
the Gaussian kemel) : that we havef,, the image at resolution; of a given scene,
Wyrt = Dok % fr = Ky % Ay f, (4) and that we want to predict its features at resolutign

— Compute the wavelet coefficients fér, at scaleg;, i =
whereq is 0 or 1 and A, stands for the difference between 1,2,3,..,N;

adjacent pixels in the horizontal; (= 0) or vertical ¢ = — Estimate the paramete6,, ;, from the wavelet coeffi-
1) direction. Next, we assume that the inversion between cients at scales; for resolutionr; :
convolution and sub-sampling is licit for non-aliased ireag — For resolution-;, compute the scale$ corresponding to

such ask, * f. The validity of this assumption on real images  ¢; with the help of the function (see Equation (6))
has been checked in [10]. In addition it is assumed (again,
for well-sampled images) that the derivative of the contims

2
N L 2
and discrete versions are the same up to a normalization due ti r3 (t5 +p?) —p (11)

to the zooming of factor. The validity of this assumption will
be confirmed by the numerical experlments of the following — Define®,, » = ©,, , at scaleg!.

sections. Writingd; = d, and 9, = 9, this yields : Thanks to the previous process, it is now possible to com-
pare, on similar bases, images taken at different resolsitio
Wt A Thyt % ko % Ogf = Tk jraygz * Og f. and, for instance, to train classification methods on a set of

images at only one resolution and to apply the recognition
criteria to images at different resolutions.

We therefore deduce that :
Wq,r,t
D~ k: * 0, f. 5

r T2 4p? uf ®) V. EXPERIMENTS AND RESULTS

Assume now that we have two imagg¢s and f,, of the A validity of the extrapolation of features
same scene at resolutionsandr,. From (5), we deduce that

if we choose scales, andt, such that - In this section, we validate the proposed extrapolation

scheme with some numerical experiments. The CNES (the

- /tf 42 =1y /t§ + p2 (6) French spatial ag_ency) has provided_ us with im_ages of severa
scenes (such as fields, forests and cities, see Figure W(&)a)
then : at various resolutions. It is important to note that contiolu

Wy b1 [T1 R Warg ity /T2 (7) kernels used by the CNES are far from being Gaussian.
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P ] W Fig. 3. Extrapolation ofm; ((a)-(c)) and extrapolation ofno ((d)-(f) ),
e starting from resolutiorim up to3.175m for the images shown in Figure V-
A(a)-(c). Dash lines show the extrapolation results oletaiby using the
scheme proposed in Section IV-B but replacing Equation 4 = r1t;/r2
(the naive normalization). Solid lines : in each figure, ¢hare in fact two
T Ml T T Ml F T eia® © " lines which perfectly coincide with each other. They reprigsespectively the
(g) (h) 0] moments estimated directly on the images at resolutich1df5m (the ground
truth) and the extrapolation results obtained by using theme proposed in
Section IV-B.

Fig. 2. (a)-(c) Three images ©CNES); (d)-(f) graph ofm(r,t)/r as
function of r, and(g)-(i) graph ofmz (r,t)/r? as function ofr. We display
the case whem2+/t2 + p2 is kept constant (witlp = 1.3) with solid lines,
and the case whent is constant with dash lines extracted at different resolutions.

We built a database composed of images at different re-
solutions (see Figure 4 and Table I). We intend to clas-
However, we will see that the approximate acquisition modggy it into three classes : fields, forests and cities. The
of Section Il yields good numerical results. examples are extracted manually fromkinds of satellite
In Figure V-A(d)-(f)(resp. (9)-(i)) graphs ofni(r,t)/7 images (respectively at resolutions) : Quickbird Panchro-
(resp.mo(r,t)/r%) as functions ofr are presented whert  matic (.61m) [11], Quickbird Multi-spectral £.44m) [11],
is kept constant (that is when using the naive normalizati@poT 5 THR 2.5m) [12] and SPOT5 HMA %m). First
of Equation (10)) and whem/t> +p? (herep = 1.30) and second order moments of wavelet coefficients are used
is kept constant (see Equation (6)). The resolutioranges for characterizing this images. We recall that derivatioés
from 0.707m to 2.5m. For the image at resolutiod.707m  Gaussian kernels are used as wavelets (in the horizontal,
(the highest available resolution); andm; are computed yertical, and diagonal directions). Since rotation inzade
at scale5 and in the horizontal direction. It may be seeny important (objects of the same type may have different
that using Equation (10) (that is forgetting the convolntiogrientations), the mean values in the four directions akerta
step in the model of resolution change) does not yield g& features.
constant parameter set, especially when the resolutiongeha  First, the performance of classification is tested on the
is large. In such cases, one must use Equation (6) to exa@pokpOT5 HMA images by cross validation, using wavelet coef-
features. ficients at scaled, 2 and4. Then all the images of SPOT5
Next, Figure V-A(a)-(c)(resp. (d)-(f)) show the extrapolapa are used for training the classifiers in order to classify
tions of m, (resp.m) from a resolution ofi/m to a resolution the other images (i.e. the Quickbird Panchromatic images,
of 3.175m according to the scheme presented in Section I¥he Quickbird Multi-spectral images and the SPOT 5 THR
B, as well as the results obtained by the same scheme exGgpiges). For this purpose, the first and second order moments
that Equation (11) is replaced by = rit;/ry. It can be . andm, for these three kinds of images are computed at
seen that when taking into account the convolution step dgales ranging fron to 64. They are then compared with the
the resolution change, the parameter sets extracted fram §¥atyres extracted from SPOT5 HMA images for classification
different resolutions are nearly identical, which enatles  \ve compare the classification results obtained respegtivel
classification of images at different resolutions. whenp = 0.00 (i.e. when using Equation (10)) and= 0.50
(when using (6)). Notice that the value pfis smaller than
in Section V-A, because the images for classifications ate no
In this subsection, we carry out the supervised classifinatiobtained by the same captors as the images used in Section V-
of satellite images. The features we use are the first andidecé. The images used here are more aliased (consequently less
order momentsn; and ms, and we use the extrapolationblurred) than those shown in Figure V-A.
scheme proposed in Section IV-B to compare parameter setn Table I, the classification results using Knf' (nearest

B. Classification



TABLE I
CLASSIFICATION RESULTS(KNN, k& = 1)

image type| QB_.PAN | QB.MUL | SPOTSTHR | SPOT5HMA
resolution 0.61m 2.44m 2.5m 5.0m(c.v.)
wavelet

(p = 0.5) 84.12% 82.97% 85.33% 96.63%
wavelet

(» =0.0) 84.12% 80.85% 82.67% 96.63%

classification of images at several resolutions. The dlaasi

tion performances are slightly improved by our scheme, com-
pared to a naive approach where resolution change is simply
modeled by a zoom. We believe that these improvements can
be much more significant on larger databases and plan to carry
out such experiments. We are also currently comparing the
proposed approach with the use of different texture feature
(such as Haralicks features, [13]).
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Fig. 4. Image samples : (a)-(c) Images of Quickbird Pancht@a{0.61m);
(d)-(f) Images of Quickbird Multispectral (channel 1, 2wy (9)-(i) Images
of SPOT5 THR (2.5m); (j)-(I) Images of SPOT5 HMA (5.0m).

TABLE | (7]
NUMBER OF SAMPLES FOR EACH TYPE
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