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1 GET/Télécom Paris, CNRS UMR 5141, France

CNES-DLR-ENST Competence Center
Email : {bin-luo, gousseau, said.ladjal}@enst.fr

2 CMLA, ENS-Cachan, CNRS UMR 8536, France
Email : aujol@cmla.ens-cachan.fr

Abstract— In this paper, we propose a new scheme to extrapo-
late wavelet features with respect to the resolution. By explicitly
taking into account the acquisition process of satellite images,
we compute how wavelet features behave when the resolution
changes. This approach is validated by classifying satellite images
with different resolutions.

I. INTRODUCTION

Institutions such as the CNES (the French spatial agency),
have recently expressed the need to develop automatic in-
dexing schemes to deal with huge databases of satellite images.
One particularity of these databases, compared to e.g. natural
images databases, is that most of the time images have been
acquired by different satellites and therefore have different and
usually known resolutions. To index such images, one is there-
fore naturally led to consider resolution invariant features or to
develop schemes to compare features at different resolutions.
Although many scale invariant features have been proposed in
the literature, see e.g. [1], [2], [3], resolution invariant features
have hardly been studied. Indeed, this last problem is more
involved since it necessitates to take the image acquisition
process into account. In [4], this process is modeled as a
convolution followed by a sampling and its effect on the
computation of a characteristic scale is studied. In this paper,
we make use of the same model and propose a method to
relate wavelet features obtained at different resolutions.

Many features have been proposed to index satellite images.
In this work, only mono-spectral images are considered and
therefore texture features are chosen to classify them. Wavelet
features are chosen since they have been proved suitable for
texture indexation or classification [5], [6], [7].

The plan of this paper is the following. The specific features
extracted from wavelet decompositions are presented in Sec-
tion III. In Section IV, a method is given to extrapolate these
features from a given resolution to another one.We validate
these results with some numerical experiments in Section V.
We then conclude in Section VI.

II. M ODEL OF THE ACQUISITION PROCESS

We assume that the scene under study is represented by a
continuous functionf , and that the digital imagefr at reso-
lution r is obtained by convolution and sampling. Moreover,
the convolution kernel is always assumed to be Gaussian, with

a standard deviation proportional to the resolution. This can
conveniently be modeled as

fr = Πr.f ∗ krp, (1)

where

kσ(x, y) =
1

2πσ2
exp

(

−x2 + y2

2σ2

)

, (2)

Πr is the Dirac comb onrZ
2, that is,

Πr =
∑

i,j∈Z

δ(ir,jr),

and the parameterp is a characteristic of the acquisition
process (the smallerp, the more aliased is the image).

III. WAVELET FEATURES FOR TEXTURE INDEXATION

Based on numerical experiments, Mallat [8] proposed to
model the empirical distributionsh of wavelet coefficients of
natural textured images by Generalized Gaussian Distributions
(GGD) :

h(u) = Ke−(|u|/α)β

. (3)

Parameterβ is usually called ashape parameter, since it
modifies the slope of the distribution, andα is a scale
parameter, directly related to the variance of the distribution.
It is shown in [5], [7] that the parametersα and β of GGD
can be used as efficient features for texture classification.It is
possible to compute these parameters from the estimation of
the first and second order moments of|u| [8] : we denote them
respectively bym1 =

∫

|u|h(u)du andm2 =
∫

u2h(u)du.
In this paper, for simplicity, we address the problem of

relating featuresm1 and m2 to resolution changes. Since
parametersα and β may be computed only usingm1 and
m2, extrapolating these features with respect to the resolution
is straightforward. This can be useful when using the Kulback-
Leibler distance in a classification task, see [7].

We denote byΘr,t = {m1(r, t), m2(r, t)} the wavelet
features at scalet extracted fromfr.

In order not to be restricted to dyadic resolution changes,
continuous wavelet transform ([9]) is used instead of the more
classical discrete wavelet transform. Moreover, we consider
mother wavelets obtained as derivatives of a Gaussian kernel in
horizontal, vertical and diagonal directions. This is motivated



by the simplified model for resolution changes presented in
the previous section, as will be shown by the computations of
Section IV-A.

Figure III shows a histogram of absolute values of wavelet
coefficients, illustrating the soundness of the use of GGDs to
model such distributions.
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Fig. 1. (a) Image of Marseille at resolution0.707m ( c©CNES) ; (b)
Histogram (blue bars) of (a) at scale5 (horizontal) and the approximation
by GGD (red curve).

IV. EXTRAPOLATION OF WAVELET FEATURES THROUGH

RESOLUTIONS

A. Resolution Invariance

The discrete version of the Gaussian kernel with standard
deviation t (t being given in pixels) is denoted bỹkt We
therefore havẽkt ≈ krt. Let us define the discrete wavelet
coefficient as (recall that the wavelets we use are derivative of
the Gaussian kernel) :

wq,r,t = ∆q k̃t ∗ fr = k̃t ∗ ∆qfr (4)

whereq is 0 or 1 and ∆q stands for the difference between
adjacent pixels in the horizontal (q = 0) or vertical (q =
1) direction. Next, we assume that the inversion between
convolution and sub-sampling is licit for non-aliased images
such askσ ∗ f . The validity of this assumption on real images
has been checked in [10]. In addition it is assumed (again,
for well-sampled images) that the derivative of the continuous
and discrete versions are the same up to a normalization due
to the zooming of factorr. The validity of this assumption will
be confirmed by the numerical experiments of the following
sections. Writing∂1 = ∂x and∂2 = ∂y, this yields :

wq,r,t ≈ rkrt ∗ kσ ∗ ∂qf = rk√r2t2+σ2 ∗ ∂qf.

We therefore deduce that :
wq,r,t

r
≈ k

r
√

t2+p2
∗ ∂qf. (5)

Assume now that we have two imagesfr1
and fr2

of the
same scene at resolutionsr1 andr2. From (5), we deduce that
if we choose scalest1 and t2 such that :

r1

√

t21 + p2 = r2

√

t22 + p2 (6)

then :
wq,r1,t1/r1 ≈ wq,r2,t2/r2 (7)

Furthermore, we also have that :

m1(r1, t1)/r1 ≈ m1(r2, t2)/r2 (8)

m2(r1, t1)/r2
1 ≈ m2(r2, t2)/r2

2 (9)

with

m1(r, t) =
1

|fr|
∑

q

|wq,r,t|,

where|fr| is the size of the discrete imagefr, and

m2(r, t) =
1

|fr|
∑

q

|wq,r,t|2.

Remark : A naive assumption could be drawn that for the
same scenef , if we keep

r × t = C (10)

whereC is a constant, the parameter set will also be constant
(after the correct normalization). However, this assumption is
not sufficient (especially on remote-sensing images) because it
considers the resolution change simply by a zooming, which
is not consistent with the acquisition process modeled in
Section II.

B. Extrapolation of wavelet features

The aim of this paper is to propose a way to extrapolate
wavelet features (i.e. the first and second order momentsm1

andm2) from a resolutionr1 to a different resolutionr2. From
equations (5)–(9), we deduce the following scheme : assume
that we havefr1

the image at resolutionr1 of a given scene,
and that we want to predict its features at resolutionr2.

– Compute the wavelet coefficients forfr1
at scalesti, i =

1, 2, 3, ..., N ;
– Estimate the parametersΘr1,ti

from the wavelet coeffi-
cients at scalesti for resolutionr1 ;

– For resolutionr2, compute the scalest′i corresponding to
ti with the help of the function (see Equation (6))

t′i =

√

r2
1

r2
2

(t2i + p2) − p2 (11)

– DefineΘ̃r2,t′
i
= Θr1,ti

at scalest′i.
Thanks to the previous process, it is now possible to com-

pare, on similar bases, images taken at different resolutions
and, for instance, to train classification methods on a set of
images at only one resolution and to apply the recognition
criteria to images at different resolutions.

V. EXPERIMENTS AND RESULTS

A. Validity of the extrapolation of features

In this section, we validate the proposed extrapolation
scheme with some numerical experiments. The CNES (the
French spatial agency) has provided us with images of several
scenes (such as fields, forests and cities, see Figure V-A(a)-(c))
at various resolutions. It is important to note that convolution
kernels used by the CNES are far from being Gaussian.
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Fig. 2. (a)-(c) Three images (c©CNES) ; (d)-(f) graph of m1(r, t)/r as
function of r, and(g)-(i) graph ofm2(r, t)/r2 as function ofr. We display
the case whenr2

p

t2 + p2 is kept constant (withp = 1.3) with solid lines,
and the case whenrt is constant with dash lines

However, we will see that the approximate acquisition model
of Section II yields good numerical results.

In Figure V-A(d)-(f)(resp. (g)-(i)) graphs ofm1(r, t)/r
(resp.m2(r, t)/r2) as functions ofr are presented whenrt
is kept constant (that is when using the naive normalization
of Equation (10)) and whenr

√

t2 + p2 (here p = 1.30)
is kept constant (see Equation (6)). The resolutionr ranges
from 0.707m to 2.5m. For the image at resolution0.707m
(the highest available resolution),m1 and m2 are computed
at scale5 and in the horizontal direction. It may be seen
that using Equation (10) (that is forgetting the convolution
step in the model of resolution change) does not yield a
constant parameter set, especially when the resolution change
is large. In such cases, one must use Equation (6) to extrapolate
features.

Next, Figure V-A(a)-(c)(resp. (d)-(f)) show the extrapola-
tions ofm1(resp.m2) from a resolution of1m to a resolution
of 3.175m according to the scheme presented in Section IV-
B, as well as the results obtained by the same scheme except
that Equation (11) is replaced byt′i = riti/r2. It can be
seen that when taking into account the convolution step in
the resolution change, the parameter sets extracted from two
different resolutions are nearly identical, which enablesthe
classification of images at different resolutions.

B. Classification

In this subsection, we carry out the supervised classification
of satellite images. The features we use are the first and second
order momentsm1 and m2, and we use the extrapolation
scheme proposed in Section IV-B to compare parameter set
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Fig. 3. Extrapolation ofm1 ((a)-(c)) and extrapolation ofm2 ((d)-(f) ),
starting from resolution1m up to3.175m for the images shown in Figure V-
A(a)-(c). Dash lines show the extrapolation results obtained by using the
scheme proposed in Section IV-B but replacing Equation (11)by t′

i
= r1ti/r2

(the naive normalization). Solid lines : in each figure, there are in fact two
lines which perfectly coincide with each other. They represent respectively the
moments estimated directly on the images at resolution of3.175m (the ground
truth) and the extrapolation results obtained by using the scheme proposed in
Section IV-B.

extracted at different resolutions.
We built a database composed of images at different re-

solutions (see Figure 4 and Table I). We intend to clas-
sify it into three classes : fields, forests and cities. The
examples are extracted manually from4 kinds of satellite
images (respectively at3 resolutions) : Quickbird Panchro-
matic (0.61m) [11], Quickbird Multi-spectral (2.44m) [11],
SPOT 5 THR (2.5m) [12] and SPOT5 HMA (5m). First
and second order moments of wavelet coefficients are used
for characterizing this images. We recall that derivativesof
Gaussian kernels are used as wavelets (in the horizontal,
vertical, and diagonal directions). Since rotation invariance
is important (objects of the same type may have different
orientations), the mean values in the four directions are taken
as features.

First, the performance of classification is tested on the
SPOT5 HMA images by cross validation, using wavelet coef-
ficients at scales1, 2 and 4. Then all the images of SPOT5
HMA are used for training the classifiers in order to classify
the other images (i.e. the Quickbird Panchromatic images,
the Quickbird Multi-spectral images and the SPOT 5 THR
images). For this purpose, the first and second order moments
m1 and m2 for these three kinds of images are computed at
scales ranging from1 to 64. They are then compared with the
features extracted from SPOT5 HMA images for classification.

We compare the classification results obtained respectively
whenp = 0.00 (i.e. when using Equation (10)) andp = 0.50
(when using (6)). Notice that the value ofp is smaller than
in Section V-A, because the images for classifications are not
obtained by the same captors as the images used in Section V-
A. The images used here are more aliased (consequently less
blurred) than those shown in Figure V-A.

In Table II, the classification results using Knn (K nearest
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Fig. 4. Image samples : (a)-(c) Images of Quickbird Panchromatic (0.61m) ;
(d)-(f) Images of Quickbird Multispectral (channel 1, 2.44m) ; (g)-(i) Images
of SPOT5 THR (2.5m) ; (j)-(l) Images of SPOT5 HMA (5.0m).

TABLE I

NUMBER OF SAMPLES FOR EACH TYPE

image type QB PAN QB MUL SPOT5THR SPOT5HMA
field 7 8 38 100
forest 17 8 25 100
city 39 31 12 305
total 63 47 75 505

neighbor, that is, each sample is labeled according to the
nearest training sample) are displayed. It can be seen that
the use of Equation (6) always (though slightly) improve the
classification results when compared with those obtained with
the help of Equation (10). This improvement is less significant
when resolution changes increase, because whenr2 � r1, we
haveti � p in Equation (11), yieldingt′i ≈ r1ti/r2. This can
be noticed in the first column of Table II.

VI. CONCLUSIONS

In this paper, we have proposed a scheme for extrapolating
the wavelet features, which allows us to compare images taken
at different resolutions. We first checked experimentally the
validity of this scheme. This approach is then applied for the

TABLE II

CLASSIFICATION RESULTS(KNN, k = 1)

image type QB PAN QB MUL SPOT5THR SPOT5HMA
resolution 0.61m 2.44m 2.5m 5.0m(c.v.)
wavelet

(p = 0.5) 84.12% 82.97% 85.33% 96.63%
wavelet

(p = 0.0) 84.12% 80.85% 82.67% 96.63%

classification of images at several resolutions. The classifica-
tion performances are slightly improved by our scheme, com-
pared to a naive approach where resolution change is simply
modeled by a zoom. We believe that these improvements can
be much more significant on larger databases and plan to carry
out such experiments. We are also currently comparing the
proposed approach with the use of different texture features
(such as Haralicks features, [13]).
Acknowledgements :We thank Mihai Datcu, Alain Giros and
Henri Maı̂tre for their advice and comments.
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