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Abstract—We study the problem of finding the characteristic
scale of a given satellite image. This feature is defined soah
it does not depend on the spatial resolution of the image. Thi
is a different problem than achieving scale invariance, as ften
studied in the literature. Our approach is based on the use of
a linear scale-space and the total variation. The critical cale is
defined as the one at which the normalized total variation reahes
its maximum. It is shown experimentally, both on synthetic ad
real data, that the computed characteristic scale is resotion
independent.

|. INTRODUCTION Fig. 1. An image of SPOT55¢n) taken on Los Angeles, typical example
. . ... of the homogeneous regions of remote sensing imaging. Therdis are
Scale is usually regarded as one of the most significaiodically distributed in this image. We have measureduatly the distance

features for image characterization. A wide body of literat between the centers of two adjacent tanks, which is apprateipn100m.
has been devoted to the examination of images at different
scales, giving birth to the popular scale-space theoryeisév
mathematical tools have concurrently been used to perfofiparacteristic scales are local measures associated to eac
such an analysis: mathematical morphology, wavelet decof®ject or sub-object (see e.g. [3]), yielding a completdesca
positions, differential equations, pyramid decomposgicetc. Spectrum, the scale measure considered in this paper is an
While scale has a clear definition in several domains @verage measure associated to an image or a sub-image.
engineering (architecture, cartography, etc ...), it hasugh Indeed, satellite images present relatively large homeges
fuzzier meaning in digital image processing. There, as fggions for which it is of strong interest to know the mean
Physics, it reflects to some extent the level of refinement efiaracteristic size of objects, see Figure 1. Of courseighis
the representation of the observed world [1]. In this ralen simplification since such images will sometimes contain two
a scale-space representation offers a series of images widithree predominant scales, each one visible in a certagera
details are progressively filtered, from the thinnest to tH¥ resolutions.
coarsest ones, each level providing an image where no detail he derivation of such a resolution independent character-
smaller than a given size is left. This leads to the conceigtic scale was motivated by the need of the CNES (French
of characteristic scale. It is attached to a structure @bjespace agency) to index very large and diverse satellite emag
group of objects or texture) and denotes this precise staledatabases. Such databases are among the fastest growing
a scale-space representation, where this structure is tts¢ nimage archives and space agencies are developing indexing
easily perceived. scheme to be able to handle them efficiently, for instanasgusi
For thinner scales than the characteristic scale, finelgetalata mining techniques, see [4]. Now, these databasestare of
may interfere with the structure making it less salient, fafomposed of images taken at different resolutions, depgndi
coarser scales, the contrast of the structure is blurredyy lon the acquisition satellite involved. To compare the ptsisi
pass filtering or the structure may even have disappearad. L¢ontents of different images, it is therefore needed to agmp
deberg strongly defended this approach and, for an opagdtioresolution invariant indexes. This is in particular theecésr
implementation, proposed an efficient definition by reigtine the characteristic scale, a very efficient image featuretfer
characteristic scale to the scale where a suitable conbimattask of image discrimination, see [5], [6], [7]. Of coursésth
of derivatives assumes a local maximum [2]. goal is not fully achievable. In particular, charactedsicales
In the specific case of remote sensing imaging, the ratioat are small compared to the spatial resolution of the énag
relating the true size of an object to its size in pixels is@ cannot be recovered. More generally, and as can be expected,
constant for a given image and is given by the resolutiothe proposed methodology will rely on some knowledge of the
In this paper, we assume that the resolution is known aadquisition system, a sensible hypothesis in the case ajteem
we address the problem of deriving a characteristic scaensing imaging.
that is related to the physical dimension of a scene contentsFormally, the problem is as follows. There exists an underly
Contrarily to classical approaches in Computer Vision whemg scenef of which we know a discrete versigh Assuming



we have some characteristic scale definition (to be disdusseaximum Kullback divergence after increasing filtering by
in details) S(f), we wish to find an operato$ such that diffusion equations, in [13] the maximum change of entropy,
S(f) = S(f). We shall see that this is possible when makinip [14] the maximum change of generalized entropy, and in
the following assumptions. First, the resolution pfmust [15] the maximum entropy of gray level differences are used
not be too coarse compared to the “continuous” charadterisas definitions. A third kind of approach, popular in remote
scale S(f). Second, it is assumed thdt is obtained from sensing imaging, relies on the use of the variogram of images
f through convolution with a Gaussian kernel and regulaee [16]. However, most methods relying on the use of second
sampling. Last, the characteristic scalé¢f) is defined by order statistics assume that images follow some specifiemod
looking at the maximum of some operator in a linear scalsuch as various point processes [17] or periodic functions
space, a classical method from Computer Vision. This 1g4dt8] and are not suited to complex images for which such
assumption is of primary importance, since this specifiety@ssumptions are not realistic.
of scale definition enables to recover the scale even thoughn this paper, we choose to follow the approach proposed
some information has been lost in the acquisitionfof by Lindeberg because the use of a linear scale-space ngtural
Let us underline that the problem of deriving a characteristllows us to take the acquisition process of the image into
scale independent of the spatial resolution is differeatnfr account when computing a characteristic scale.
the classical requirement that a characteristic scaleldhmri
invariant under a change of scale. Namely, if the function I11. BASIC TOOLS AND SCALE DEFINITION

f(x,y) is transformed intof(l_m, ]f%) the characteristic scale In this section, we recall the models and mathematical tools
S(/) S.hOUId be transforme(_j into™"S(f). Som(_a WOF"S report to be used in this work, and give a definition of the charac-
experimental results showing that such an invariance slhog ristic scale of an image. Namely, we define the simplified

be enpugh .for the purpose of co_m.putling the scale Qf IOcz%quisition process assumed for images, we introduce the
descriptors issued from images originating from two défer ﬁlassical linear scale-space to be used for scale charatien

sensors (see for instance Figure 1 of [8]). However, as taﬁd we define the total variation of images. We then define

e>_<periment_s of Section .VI W”.l show, .it is our experiencettha}he characteristic scale as the maximizer of a normalized to
without taking into consideration the impact of the senssr r variation in the linear scale-space.

olution, the derived characteristic scale is biased. Opr@gch a) Simplified sampling schemewe assume that the

itsigogﬁa?;gl;'itgi(;n;g;l%o;astt?;gzgnseﬁsgrslcrgli u:iiﬁ::r? scene under study is represented by a continuous function
' f, and that the digital imag¢, at resolutionr is obtained

resolution invariant approaches are compared in SectiomV!I by corvolution and sampling, Moreover, it is assumed that

particular, we will see that our approach yields accuraselts the convolution kernel is Gaussian, with a standard denati

even vyhen the convol_utl_on kernel of the imaging sensor is noL_ r/a proportional to the resolution. This can conveniently
Gaussian. Some preliminary results of the proposed appro%% modeled as:

were presented in [9].

The plan of the paper is the following. In Section Il, fr =T (f ko), (1)
we recall the classical definitions of characteristic ssala where: ) )
Section lll, a first definition of the characteristic scalgigen, ko (2,y) = 1 exp (_x +y ) @)
based on the definition in [2] but differing by the mathemnitic ’ 2702 202 )’

norm used. In Section 1V, the main contribution of this PaPna I,
is presented: we adapt the definition of the characteristites
by taking into account the acquisition process in order to II, = Z O(ir,jr)-
achieve resolution invariance. In Section V, the behavidhe i,j€Z

proposed characteristic scale definition is studied onouari In this context, our goal is to extract froffy a characteristic

synthetic images. In Section VI we test our approach on regly e related tof. Equation (1) is a rough approximation of

data provided by the French space agency (CNES). the real acquisition process, neglecting some importarects
such as noise or contrast changes and assuming a simple

Il. CLASSICAL DEFINITIONS OF CHARACTERISTIC SCALES form for the modulation transfer function of the imaging
device. These limitations will be discussed in Sections)ll

Many definitions of characteristic scales for images ha\éq]d VI c). Moreover, it will also be shown experimentally

been proposed in the literature. The most popular one S o ction v c) that this model is accurate enough for our
probably the aforementioned definition relying on linealse éaurpose
e

space [2], [10]. Many alternatives aiso relying on the u b) Linear scale-spaceAs previously explained, the ba-

of the linear scale-space have been proposed in the f'eldsﬂ,j idea to extract characteristic scales is to track siratt

Computer Vision, See €.0. [8]. Definitions relying on extfaemchanges in scale spaces. In order to deal with images atsgario
of wavelet decompositions, see e.g. [11], can be put in t

; P@solution (as expressed by (1)) we are naturally led to use a
same category. Recently, it has been proposed to use Nsar scale space [19]. For an image R? s R, its linear

linear scale-spaces in a S|m_|lar way, [71. Several altweat scale-space is a functioh: R2 x R, — R defined as:
approaches rely on information theory: in [6] the maximum

entropy between consecutive wavelet subbands, in [12] the L(z,y;t) = ke * f(z,y), 3)

is the Dirac comb orZ?, that is,



where k, is defined by Formula (2). It is easily seen thad homogeneous background. However, the method is of course
L(.,.;+/2t) is a solution of the heat equatioh, = AL, not fully contrast invariant, which could be a problem in the
with initial condition L(., .;0) = f and that, under reasonablecase of objects with very different intensities.

hypotheses, it is the only solution. For this reasbq, .; v/2t) Notice also that due to the use of the linear scale-spacein th
is the classical definition of linear scale-space. Howewer, computation of,,.,, noise is not an issue. Indeed, the size of
prefer the definition given by Formula (3) that simplifie®bjects contributing to the characteristic scale is mucgea
forthcoming computations and allows to directly define descathan one pixel. Therefore, any reasonable noise is removed
that is homogeneous to a distance. from the scale-space image corresponding,tg..

Various non-linear scale-spaces could also be consideredRecall now that we are interested in discrete images ob-
[20], [21], [22], but we restrict ourselves to the linear doe tained from f through Equation (1). In the next section, we
be able to deal with resolution changes, as it will becomarcleshow how to adapt the definition of characteristic scale is th
soon. context.

c) Total variation: The structural changes to be quanti-
fied in the linear scale-space are due to the objects present IV. RESOLUTION INVARIANCE
in the scene. These objects disappear as the scale increaseshe purpose of this section is to derive a method to ensure
The basic idea of the proposed approach is to quantify theat the computed characteristic scale does not depend upon
evolution of geometric structures of the image in the lineake resolution of the image.
scale-space. Therefore, we consider the total variatidn) (T a) Taking the acquisition process into accourRecall
[23] of images, defined (when the image is regular enough) @@t 7 is a continuous function corresponding to a given
TV(f) = [|Vf|. Indeed, the semi-norm TV is related to thecene. Since we assume that the acquisition system performs
geometry of the image through the coarea formula. Writing convolution by a Gaussian kerrigl followed by a sampling
Ex = {z : f(z) > A} for the upper level sets of, if f is at rater = ac, we write:
regular enough, one has

fr=T0.(f % ko),

TV(f) = / per(Ex)dA. where f,. is the sampled version of at resolutionr. The

o . i ) , parametery is a characteristic of the acquisition process.
This implies that for a binary imagd,V'(f) is equal to the * penoting byk, the discrete version of the Gaussian kernel

perimeter of the objects multiplied by their contrast. with standard deviation(t expressed in pixels), we hayg ~

d) Scale definition:Following the general approach of;. . p to some normalization constant which can be dropped).
[2], we define the characteristic scale of an image as the M@X%; s define the discrete scale-space as:

imizer of a suitably normalized differentiable operatar.deal - -

with the geometric contents of the image, we choose to use'rt = ki fr = ki* (. (ko * f)) ~ . (Kpe % (ko % f)) -

a normalized total variationN TV (f;t) = ¢(t) TV (ki * f). (6)
The main idea is that the normalization term must compewhere* is the discrete convolution. The last approximation
sate the decrease of the total variation caused by Gausdlgans that inverting convolution and sampling is possite,
smoothing. We denote by,... the maximizer of the nor- least for non-aliased images such%gs f. In Figure 2, we test
malized TV overt. A natural requirement o, is that the validity of this assumption on a real image. The resuly fu
tmax(f) = Stmax(f*), where f5(x) = f(sx). In Appendix Supports the hypotheses. In addition we can assume (for well
C and D, we show that this implieg(t) = At? and that sampled images) that the total variation of the continuous a
#(t) = t is a good choice for numerical reasons. That is, wdiscrete versions are the same up to a normalization dueto th
define zooming of factorr (this will be confirmed by the numerical
experiments in the following sections). This leads to:

1 1
TV (fr) = =TV (kp % ko * ) = =TV (k gz * f) -
and r " 7)
tmax = argmax. NTV(f;t). (5) b) Normalization choice’A normalization of the discrete
otal variation is now needed in order to relate it to the con-

NTV(fit) =TV (ks f) =t [ 19k fl. @)

Lhnlé ;ig:gfa[;t] ? osrpgﬁ_;zlr;?{?; %f ptg:aa?oﬁrsr.n?r:leaggg npdric:(pg?ev(: glinuous normali_zeq total variatioWI'V' (defined in Equation
comment on the possibility of using other differential cters (4)). Let us define:
than the total variation. Gr(t) =h@) TV (fr1), (8)
e) Robustness to noise and contrast char@bserve that
the characteristic scale definition (5) is invariant undieedr
contrast changes. Indeed, ff — af + b, with a > 0, then
NTV(f;t) — a.NTV(f;t). This is very convenient when tmax, = argmax. Gy (t). 9)
dealing with satellite images, since contrast changes due t N
atmospheric perturbations are often approximated by ameaffi

transform. This invariance is also sufficient when computin 1
h(t) =1\/t* + — (10)
«

where the normalization factdn(¢) is to be chosen. Similarly
to Equation (4), we may define:

Proposition: If we choose in Equation (8):

the scale of scenes made of objects with similar intensities
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- From now on, the values of,.x will be deduced from
g Equation (11).

d) Difference with the “n&ve” normalization choice:ln
e view of Equation (4), the intuitive normalization would not

take into account the filtering process due to the change of
resolution and, therefore, involve a factoimstead ofh(t):

‘ce between the last two terms of Eq(6)
w »

N

N

relative differen

o

o
2 4 6 8 10 1z s 4 s e 1 8 9w

A () =t x TV (fr4) (14)
(a) (b) If, according to this intuition, we Setty.., as
argmaﬁi(A,,A(t)) and deducelpax = T X tmax,., then

Fig. 2. Validation test of Equations (6) and (7). Figure (adws the relative ; ; ;
difference between the total variation of the last two teogh&quation (6) as we can check numerically that the pbtamed vqluengy‘x W"_l .
a function ofc, wheref is the image (b) of Figure 11. The relative differencede@pend much more on the resolution than with the definition
does not exceed0~%. In Figure (b) is shown the ratio between the two firsfrom Equation (11). This fact will be detailed in Section VI,
terms of Equality (7); this ratio varies between 0.98 and HisExperiment see Figure 18
validates the assumption of Equation (7). . ! L

Notice also that whert > 1, then the definitions from

Equations (8) and (14) are equivalent. The choice of theecorr

(with o = /o characteristic of the acquisition process), theformalization given by Equation (10) is important when
the following relation holdst(,.. being defined by (5)): approachesy.x (that istma.x, approaches 1).

1 V. RELATING tyax TO THE GEOMETRY OF THE IMAGE
tmax & /122 . F 02 Ry 12 + —. (11) . . . . .
v axr L g2 In this section, we investigate the link between the charac-

teristic scalet,.x, as defined in Section Il for a continuous
image, and the geometric contents of the image. For this
purpose, following the example in [2], we first consider vas

Proof:
Using Equation (7):

Gr(t) =~ lh(t) TV (’WW * f) simple one-dimensional functions, for which we perform eom
r putations and numerical approximations. Then, we tackde th
— 1w NTV (f; \/m) ) two-dimensional case by performing numerical simulations
" Vr?t? + o2 discrete synthetic images. We experimentally show thatafo
Hence: periodic scene with spatial peridd, the critical scale defined

1 h(t) in Equation (5) is such that,,x ~ 0.15D. The purpose of
G, (t) % ——==NTV (f; Vrit? + 02) . (12) this section is to show that the constant linkifig. to the

" 1+ = period is quite stable over a variety of periodic signals, fo

which the notion of characteristic scale is clear. Of course

Sinceh(t) is given by (10), we then obtain: real signals are much more complicated and Section VI will

1 : o
Go(t) ~ ~NTV (f; \/m) (13) deal with real satellite images.
r
We thus deduce (11) from (5) and (9). A. Continuous one-dimensional examples
- In order to consider cases with tractable computations,

we define ¢, for a one-dimensional functiory as in

c) Practical considerations:For a discrete image atFormula (5). For 1D signals the gradient is replaced by
resolutionr we measuré,,.,, and derive the value of,,., the derivative and:; by a one-dimensional Gaussian in the
using Equation (11). Notice that it is impossible to find gomputation of NT'V(f;t) .
characteristic scalg,.. smaller tharo (which is comparable a) Sinus function:Assuming thatf is a sinus of period
to r). More generally, when the resolution of the image i®, restricted tg—7, 7] C R, it may be shown that if’/D —
larger than the actual characteristic sdale, the computation oo (so that boundary effects can be neglected) then —
becomes unreliable. Experiments show that, is retrievable D/27 ~ 0.15D, as already mentioned in [24], [2].

as long as" < tiax. b) Sum of GaussiansAssume thatf is a function
Of course, a general image can contain several charaiterigefined on[—7', 7] C R as:
scales. A scale can therefore be a characteristic of some K-1 1 R
- . . —(z—(2k+1)D/2)
scene for a specific range of resolution. As will be seen flx) = Z 202 , (15)

in the numerical experiments section, the characteristides kg V2mu?
tmax that we compute with Equation (11) corresponds to the | f is the restriction td—7', 7] of a sum of Gaussians, the
smallest retrievable scale in the image. For instance, @8rsh spatial period of this sum beinf. Assuming that > 1 (or
on Figure 14(d)), the characteristic scale of the image ¢fs. D) in order to neglect boundary effects, we obtain:
Roujan (see Figure 11(d)) is 0.4m (due to the details inside t oK1

fields) if the resolution of the image is smaller than 0.4m, -y (7.4 ~ 2t L4 % 1o 3 (_Ukleq’%Q
whereas when the resolution gets larger the charactesistie ’ Dqg\/2m P ’
jumps to 30m (due to the size of the fields itselves). (16)



whereq = v/v? + t2. This result is obtained by noticing thatD and Figure 5 (b) shows the plot of,../D as a function
the total variation may be computed on each monotonous parft.v. Here again we obtain,,,, ~ 0.15D and observe that
The graph of NTV(f;t) as a function oft is shown on ty../D depends very little om.

Figure 3. On Figure 4 (a), the graph 6f.x is displayed

as a function ofD, v being constant. One observes thai - o
tmax =~ 0.15D, a result very similar to the one for the « =
sinusoidal case. Figure 4 (b) shows../D as a function of . I oo )
v, D being constant. One can check that./D ~ 0.15. In I R R s S
this casetmax is related to the period of the signal but not to  ** i
the width of each Gaussian. gt

(8) tmax as function ofD (b) tmax/D as a function ofy

Fig. 5. tmax for a sum of Heaviside functions (see Equation (17)). We khec
numerically thatt,ax =~ 0.15D where D is the spatial period. In Figure (a)
v = 10 and in Figure (b)D = 40.

To summarize, in cases a), b) and c¢), it may be computed
or observed that,,., ~ 0.15D, which indicates that neither

Fig. 3. Plot of NT'V(f;¢) as a function of, when f is a sum of Gaussians the shape nor the size of the pattern seem to influence much

as in Equation (15) € [0.1,40] andK = 10, D = 40, v = 10. NTV (f;t ; ;
reacheg its ma&im)ltJm E:Wmax ]: 6.4 ! (30 tmax in the cases of-D functions.

B. Discrete synthetic images

o o In order to experimentally confirm the linear relation be-

5 - ‘ tweent,., and the spatial period of signal®(in the pre-

as ,,,,, ceding examples) in the case of images, we consider syotheti
discrete periodic images using various patterns. Two nt&s.

of such images are displayed in Figure 6 (sum of Gaussians

0.3
6| G

4

.
0 0.1
35 o

8
.
3 o 0.05

with standard deviatiom) and 7 (sum of squares with width
v), together with the associated graphsMf'V as functions
() tmax as function ofD (b) tmax/D as a function ofy of t. Figure 8 (a) shows the graph tf... as a function ofD

and Figure 8 (b) shows the graphf.,/D as a function of
Fig. 4. Plot oftmax for a sum of Gaussian functions (see Equation (15)}* for S_ums of Gaussians. Figures 9 (a) E_ind (b) show th(—?' same
(@)tmax as a function ofD, with v = 5 (we check numerically thatmax ~ quantity for sums of squares. Comparing these two figures
0.15D, D being the spatial period); (#.ax as afunction ob, with D = 40.  yespectively with Figure 4 and Figure 5, we conclude that the
o . _ . shape of patterns as well as their size have little influemce o
c) Sum of Heaviside functiongn order to investigate the the measure. Moreover, we see that, ~ 0.15D still holds
sensitivity oft,,.x to the shape of "objects”, we consider then dimension 2.
following example, still in 1D to yield tractable computats:
f is defined on—T',T] by

flz) = .Z H(x —iD) (17)

where 0.1
, z € |0,v
H(z) = { 0, otherwise

with v € (0, D). Assuming that << D andv ~ D/2, then
it may be shown using standard computations that:

(18)

-
-
»
»
»
»
»
»
»
»
»
»

(a) Periodic sum of Gaussians (b) Graph of NTV

D—wv D—w
NTV(f;t) = Ct|2erf| ——— | —erf| ——

2\/57f 2t Fig. 6. A periodic Gaussian function withh = 40 andv = 10 (standard

N (2 f( v ) f( v )) (19) deviation of each Gaussian) and the graph of the correspgnutirmalized

ern{ ——— | —en{ — total variation. The maximum is reached for= 6.1.
2V/2t V2t
where erfz) = % fo”” e~ and C is a constant. Satellite images are of course not exactly periodic. In porde

Figure 5 (a) shows numerical computationstgf., taken to check that the above empirical observation still holds in
as the zero of the derivative of Formula (19) as a function die case of randomly pertubated images, we performed the
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(@) (b)

(@) Periodic sum of squares (b) Graph of NTV Fig. 10. (a) An example of a quasi-periodic synthetic imagavhich the
position of each square is randomly perturbated.t{%& for 20 realizations.

Fig. 7. Animage composed of squares with spatial pefioe- 40, and the

side of each square equal 10 pixels, and the graph of the corresponding

normalized total variation. The maximum is reached ffet 6.1. . . . .
images in the domain of remote sensing.

L o D8 Rreten T O At first, starting from several images with resolution equal

5 to 25 cm, we create a series of lower resolution images using

E 02 Formula (1), i.e. using a down-sampling scheme in which
B A filtering is made using a Gaussian impulse response. We call

o 01 it the ideal down-sampling.

? Then, we make use of series of images provided by the

e m W s 5w, ® = CNES which precisely simulate the images which would

be obtained with different sensors operating with various
resolutions from a satellite, i.e. by taking into accoung th

] , , different effects of sampling, integration, acquisitiame, etc.
Elghfgiang?)w(;rﬁg?ax:f;%s.1a5 If;‘;”(%t)'ogrggﬁ é‘gi:x”/ 5 a53) ;Ofrufl‘étrﬂfn %ff and therefore providing the actual impulse response ofsens
v (with D = 40) for sums of Gaussians, we obtalifax/D = 0.15. Notice that in all the experiments presented in this section
we have usedv = 1 in Formula (11). This implicitly implies
the assumption that the acquisition process is modeled by

following experiment. We start with periodic images of s®sa Equation (1) witha: = 1, although the real acquisition process
with a periodicity of D = 20. We perturbate the position ofjs ynknown to us.

each square with random horizontal and vertical transiatio
the shifts being uniformly distributed between - 5 and Sgs
pixels. Moreover, the gray level of each square is random arg
uniformly distributed between 64 and 255. An example of suc s
a synthetic image is shown in Figure 10(a). On Figure 10(bf
values oftm% are displayed for20 different realizations.
The mean value of% is 0.16, which confirms the relation
obtained in the periodic case.

() tmax as a function ofD (b) tmax/D as a function ofv

VI. APPLICATION TO SATELLITE IMAGES

In this section several experiments are presented to demcFa
strate the invariance af,.x with respect to resolution on real (a) Marseille

t__JD as function of D (v=10) t__ /D as function of v (D=40)
masd o

20 25 30 35 40 10 12 14 16 18 20 22

() tmax as a function ofD () tmax as a function ofD

(c) Didrai (d) Roujan

Fig. 9. (a) Graph oftmax as a function ofD (with v = 10) for sums of
squares, showing thatnax =~ 0.15D; (b) Graph oftmax/D as a function Fig. 11. Aerial images with 25 cm resolutiG CNES: (a) and (b) 2 cities
of v (with D = 40) for sums of squares, showing thafax/D ~ 0.15. with different urban tissues, (c) a forest, (d) agriculturelds.



a) Computation oft,,, using Formula (11): On Fig-

ure 12, we display the graphs of the normalized total vanmati % “
==————

for the 4 images shown in Figure 11 (at resolutios 25¢m).

There is at least one local maximum in each case. In the case of

cities (Marseille or Toulouse), the characteristic scalelated

to the size of the buildings and streets. In the case of theaDid

image (forest), the scale is related to the vegetation. Nt —— :

in the case of the Roujan image (fields), there are two local (@) image of vineyards (b) NTV calculated on the vineyards

maxima, the narrow one (zoomed in Figure 12 (e)) is related

to the vineyards, and the large one to the fields. Figure 3 13 zoom on vineyards issued from the Roujan image ajsal on

displays a zoomed area of Figure 11 composed of vineyardgure 11 (d). The characteristic scale appears at resol@i4m. Using the

The spatial period of the vineyard3 may be computed from 'elation tmax ~ 0.15D, we see that the distanc® between 2 rows of
L. : . vineyards is roughly 2.7m.

the characteristic scalg,.., using the relatiot,, ., ~ 0.15D.

We find that the distance between two vineyard rows is roughly
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is fine enought.x is the characteristic scale corresponding

2.7m, a result which we were able to check on the image for,
to the vineyards. But when gets larger, then the vineyards

such a regular and periodic structure with the result shown in Figure 12 (d). When the resolution
disappear (one no longer sees them in the images)t.and
is then related to the size of the fields.
(a) Marseille (b) Toulouse

&)
e .m\n Y
o ()

o
\

t

o
-
5

3|

05 1 15
resolution of image (m)

(a) Marseille (b) Toulouse

1 2 3
resolution of image (m)

H

N
-
N

=

0|

Normalized Total Variation
e
=
Normalized Total Variation
e =
S 5

. 8| /
2 4 8 10 30 40 2

6 20
meters meters

e

(c) Didrai (d) Roujan 15

0.5] . 10|

-
®

0 0.2 08 1 0 1 2 3 4

0.4 0.6
resolution of image (m) resolution of image (m)

(c) Didrai (d) Roujan

o
5

N
Iy

-
Iy

Fig. 14. Characteristic scalég,.x as a function of the resolution, for the 4
scenes shown in Figure 11. The images at different resoluioe obtained by
down-sampling the 25 cm images using the ideal acquisitiodehpresented
08 b e 2 in Section IV (witha = 1), i.e. with a Gaussian convolution kernel. Notice
that the characteristic scale is almost independent frarelolution.
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(e) Roujan(zoomed)

Fig. 12. NTV as a function of/r2t2 + o2 computed for the 4 images c) VaIid_ation of the simplifieq acquisition mOd.dh or-
of Figure 11 with resolution = 0.25m. (a) Marseille:tmax = 4.8m; (b) der to examine the case where different sensors with differe

tTSUIIOUST:tm}? = QTﬁmf (Ct) Didralir tmftt:;mz 12;;1: (d) R%Ujan: tfgere _?_re resolutions and different impulse responses are used, kee ta
o loea maxa, Tne =t one st positnt, the secend one & 09SK9N avantage of a series of images provided by the CNES,
including the four images of Figure 11. For each scene, 33
b) Resolution invariance:ln order to confirm that the images are available at resolutions ranging from 25 cm to
characteristic scale extracted from the images is indeg@nd10.08 m (see Table I), each one taken with the exact impulse
from the resolution of the sensot,.{,x does not depend onresponse of a real sensor. These images have been obtained
r), we made the following experiments. For a given scenby numerical simulations performed by the CNES, using heria
an imageg, at resolutionr is generated (using Formula (1)images and a realistic model of data acquisition. The inguls
with « = 1), and the maximizet,,., is computed. Figure 14 response is resolution dependent, roughly isotropic, amd n
shows the graph of.. as a function ofr. As expected, it Gaussian. The use of a non-Gaussian impulse response in
shows that .. is almost constant (as long as< t,,.x). place of a Gaussian one makes the derivation of a relation
Remark that in the case of Roujan, where two differesimilar to (11) difficult. However, we will see below that
characteristic scales are present, the plot,Qf; is coherent approximating the impulse response with a Gaussian kernel,



TABLE |
Available resolutions (meters)

0.250 | 0.281 | 0.315 | 0.354 | 0.397 | 0.445 | 0.500
0.561 | 0.630 | 0.707 | 0.794 | 0.891 | 1.00 1.12
126 | 1.41 159 | 1.78 | 2.00 | 2.25 | 2.52
283 | 317 | 356 | 4.00 | 449 | 504 | 5.66
6.35 | 7.13 | 8.00 | 8.98 | 10.08

that is using Equation (11), leads to good numerical result§g
Due to the non-linearity of the total variation, we have no
theoretical explanation for this fact. (a) Marseille 2
Figure 15 shows the graph @f,.x as a function of the o
resolution. Results are very similar to those of Figure 14. Wg
observe that,, ., is almost constant (as long as the resolutio
r < tmax). Figure 16 shows four other scenes taken from th
series of images provided by the CNES. The correspondi
graphs oft,.x as a function of the resolution are displaye
on Figure 17; again,,.x is almost constant. 3
We conclude that even though the kernel is not Gaussiag
the approximations made in section 1V are still valid. :
If instead of using the original relation (11) introduceds
in this paper, we make use of the intuitive normalization of (C) Toulouse 3 (d) Roujan 2
Equation (14), we obtain the plots of Figure 18. As expected,
in this case, the estimatega. is much more sensitive to the Fig. 16. Aerial images with 25 cm resolutig® CNES: (a), (b) (c) 3 cities

resolution. with different urban tissues, (d) agricultural fields.
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Fig. 15. Characteristic scalgn.x as a function of the resolution, on the Fig. 17. Same experiment as in Figure 15 for the 4 scenes afép. Again

4 scenes shown in Figure 11. The images at different resolutare issued he characteristic scales are almost invariant when thautimn changes.
from the series of images provided by CNES. Even though tmeadotion

kernel is no longer Gaussian, the characteristic scalesalamest invariant
when the resolution changes.

8m (using the map scale shown on Figure 20(b)). Using
d) Results on images taken with different captots: formL_JIa 11, and the same vglue: 1 as before, the value of
Figure 1 is displayed an image of periodically distributéld olmax iS deduced to be approximatelly, 5m. HenceD ~ 93m.
tanks. Figure 19(b) shows the graph ST’V as a function Th|s is consistent with the computation made with the CNES
of the resolutionr. The value oft,,.. is then deduced to be 'Mage.
approximatelyl 6m. Recall that in Section V, we have found
experimentally that,,., ~ 0.15D, where D is the spatial VIl. CONCLUSION AND FUTURE PROSPECTS
period. In this case we deduce that~ %rﬁfg ~ 107m. A new method to compute a characteristic scale for a given
To further check the captor invariance tf.., an image image has been proposed, which does not depend on the

of the same region has been found MGoogleEarth (see resolution (as long as the objects are larger than one pixel)
Figure 20(a)). The size of a pixel of this image is roughlyhis method explicitly takes into account the role of the




y when the resolution is close Q...

25/ APPENDIX

N A. Localization issue

The scale measurement we have introduced can be localized
R using a sliding window. The scale of a single pixel is then
computed as the scale on the window centered around this

ixel. To illustrate this approach, we have processed the
Fig. 18. Characteristic scalgnax as a function of the resolution, for the P bp P

Toulouse image, Figure 11(b). The scalg.x is computed with the naive Marsei!le image (Se_e Figure 21 a). We use the image at
normalization given by Equation (14). Notice that the resilless invariant resolution 0.707m, with size 1440 x 1440. The analysis is

to resolution changes than in the case of Figure 15(b). Inethge[0.25, 2m)], made using a window with siz256 x 256, and the window is

the variation of the value i48% with the proposed method (Figure 15 (b)) . .

and40% with the naive normalization. moved by32 pixels at each step. On Figure 21 (b), we show
the computed values a@f, ..

Notice in particular that,, . is larger in the top left corner.

) ' ‘ Looking at Figure 21 (a), one sees that this corresponds to

. larger buildings and structures in the original image.
on different images issued from the remote sensing domain.

(b)
We have also shown on various examples that the position of

L. . Fig. 21. (a) Image of Marseille (resolutidn707m, size 1440 x 1440); (b)
the maximizer of the normalized TV does not depend on thigage of the corresponding values 6fax (the largertmax, the whiter the

object shapes, but merely on the distances between stesctugray level value in (b)).
This approach is foreseen to find applications for the prob-
lem of satellite image indexing. As explained in the introdu
tion of the paper, it is indeed a major asset that features Bo Alternative definitions of .y
not depend on the resolution. In fact, the proposed resoluti

independent approach can be extended to other linear ésatyh, , .o teristic scale with other semi-norm than the totebva

suph as wavelet coefficients [25]. This is the subject of ope, Ag discussed by Lindeberg [2], any normalized Gaussia
going work. Moreover, we expect to find the texture/ geometny i ative can be considered to achieve scale invarianme. F

behleavg)r of afslcfene}, followmg: 'd‘?as T/;croduced_m |[2§]i§rh'instance, instead of using Equation (11), we could define the
could be useful for feature selection. More precisely, itldo ., - - eristic scale as:

be decided in advance whether texture specific featuredcghou
be used or if object recognition tools should be preferred. th o= argmtaxNL(f;t) (20)
¢From a more theoretical point of view, the effect of sangplin

on total variation could be understood more deeply, espygciavhere NL(f;t) = ¢* [ |[V2(f * k;)|dz. We have computed
t .. both on synthetic images and remote sensing images.
The results are shown in Figure 22.

On Figure 22(a), we show the values df,,, /D for
various periodic images of squares with peridd as in
Section V-B. It can be seen thdf,,, ~ 0.20D. Recall that
we have experimentally shown that,.. defined with the
normalized total variation satisfieg,.x ~ 0.15D. We thus
havet! .. ~ 1.33tmax. This same relation can be observed

; on Figure 22(b). Nevertheless, we have decided to use the
(b) (c) normalized total variation with Equation (11) for the two

! o following reasons:
Fig. 20. (a) Image on Los Angeles with oil tank&GoogleEarth; (b) . . . . .
Legend of the image, the resolution is approximaty6m; (c) NTV values 1) This definition is directly related to the geometric con-

calculated as the function of resolution. The characterstaletmax14.5m. tents of a scene. Indeed, the coarea formula [23], as

05 1
resolution of image (m)

20 40 60 80 100 120 140
resolution (m)

Fig. 19. (a) Image on Los Angeles with oil tanks taken by SPQ¥%5).
(©CNES; (b) Graph of NTV as a function of the resolution. Therahteristic
scaletmax IS equal to 16m.

acquisition sensor. It has been shown to be robust and stable (@)

In this section, we discuss the possibility for measurirg th

100 120

60 80
resolution (m)
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D. Power of normalization factor: why we s& =1

The constantd does not affect,,.x. The reason why we
choseB =1 is essentially of a numerical nature. i is too
small, thenNTV decreases very fast, implying a very small
o value oft,,.x. This becomes a severe drawback when comput-

O ing the scale of low resolution images. On the other hdnd,
Fig. 22. (a) graph ofL, . /D for synthetic images (made of periodic squarescannOt. be too Iargg. Indeed, we have Ch?Cke-d experimentally
with spatial periodD)Igzxa function ofD where D = 40 (see Section V-B); on the images provided by the CNES that in this case the graph
(b) graph of NL computed on the image of Marseille (see Figure 11) #f NT'V becomes flat and the relative error for the numerical
resolutionr = 0.25m. value oft,,.. gets larger. In such a case, the localization of the

extremum is not reliable. We found experimentally thatisgtt

recalled in Section IIl, relates the total variation of ad? = 1 is a good compromise between these two drawbacks.

image to the perimeter of objects_ A Sharp object in Moreovel’, this choice is coherent with the one in [2] As an

scene is blurred in the Gaussian scale-space. NevertB%ample, Figure 23 displays the graph of NTV with= 1.3

less, the total variation of the blurred object can be seéhthe case of Didrai image. We may see that this value already

as an approximation of its perimeter thanks to the coargkes it difficult to compute.,.., whereas it is easier from

formula. Figure 12 (c).
2) Using the total variation, only first order derivatives of

the image are involved: there is no need to increase the

complexity of the algorithm by computing higher order

derivatives.

oooooooooooo

C. Normalization issue revisited

The characteristic scale of a continuous imggkas been 1
defined as:

tmax = argma&i d)(t) / |V(kt * f)|’ Fig. 23.

1.
with ¢(t) = t. In this section, we show why it is reasonable tg(t) =t
choosep(t) = ¢t while the next section explains wh§ = 1
has been chosen.
Since we want,,,. to be related to the size of objects inE. Numerical issues
the imagef, we naturally assume (scale-invariance) that: Numerically, the total variatio’V(I) of an imageT is
tmax (f) = Stmax(f*), (21) classically computed with the following expression:

NTV calculated on the image of Didrai with normafiaa factor

5(+) — ; 1
where f*(x) = f(sx). Foranyt, > 0 ands > 0, let us define 7y (1) = 5 Z \/(qu,j — L)+ Loy — Lign)?
1,7
Fy(to) = 9, log (¢(ﬁ)/|st ‘ kt|) (to).

When computing the linear scale-space, we use a logarith-

Equation (21) implies that mic scale step, i.e.
to te{1.12", n=0,1,...}, inorder to preserve the precision
Fi(to) =0=F; <;) = 0. (22) at small scales and to speed up the computation at largesscale
In order to increase the speed of the Gaussian convolution,
Now, the semi group property of the Gaussian kernel is used. The
lo complexity of the algorithm for computing,. is O(N) (N
Fsl—) = s01 t Vfs ksl | (& _ - ax / .
(s) 500108 <¢( /8)/| T x k. |) (to) is the number of pixels). On a PIV 3.2GHz machine with
. 1024M memory, the computation time @f... for an image
= sOlog | ¢(t/s)s /|Vf * kel | (to) with size 0f1024 x 1024 pixels is abouR5s (where maximal
/ scale is37).
& le is37)
= an/S) + s0ilog [ [V f k| (to) Acknowledgment We thank the CNES for providing us
& & with the images, and Alain Giros (CNES) and Mihai Datcu
= E(tO/S) +s (Fl(to) - E(tO)) ) (DLR) for fruitful discussions.
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