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Abstract— We present a supervised classification model based
on a variational approach. This model is specifically devoted
to textured images. We want to get a partition of an image,
composed of texture regions separated by regular interfaces. Each
kind of texture defines a class. We use a wavelet packet transform
to analyze the textures, charactized by their energy distribution in
each sub-band. In order to have an image segmentation according
to the classes, we model the regions and their interfaces by level
set functions. We define a functional on these level sets whose
minimizers define the optimal classification according to textures.
A system of coupled PDEs is deduced from the functional. By
solving this system, each region evolves according to its wavelet
coefficients and interacts with the neighbour regions in order to
obtain a partition with regular contours. Experiments are shown
on synthetic and real images.

Key-words: Texture, classification, variational approach, level
set, active regions, active contours, multiphase, wavelets, PDE.

I. INTRODUCTION
A. Overview

Image classification consists in assigning a label to each
pixel of an observed image. This label indicates to which
class belongs a pixel. Classification can be seen as a partition
problem. This is one of the basic problem in image processing.
This concerns many applications as for instance landscape
management in teledetection. The classification problem is
closely related to the segmentation one, in the sense that
the goal is to get a partition of the image composed of
homogeneous regions. In the classification problem, each
partition represents a class. Many classification models have
been developed, especially from regions growing algorithms
[1], [2], [3], or by a stochastic approach [4], [5], [6], [7], [8],
and most recently by a variational approach [9], [10], [11],
[12], [13].

The approach which is used here is inspired from [10],
[14], and is based on active contours [9], [15], [16], [17],
[18], [19], [20]. The partition we seek is a minimizer of
a functional. We compute this minimizer by solving the
associated PDE’s system. These PDEs guide the interfaces
(zero level sets) towards the boundary of the optimal partition
thanks to internal (regularity of the interface) and external
(data term and partition) forces.

The kind of approach we use ([10], [14]) has the advantage
to be faster than the statistical one, whereas the results we
get are at least as good as the ones obtained in the statistical
approach (as long as the images we deal with are not too much
noisy) [21]. Through active contours and PDESs, we can easily
introduce regularization constraints on the geometrical shape
of the classification regions.

B. Position of our texture model in the existing literature

There exists many models for textured images in the liter-
ature [22]. Two main directions emerge:

1) Traditional statistical models, especially Markov random
field models (see [4], [7], [5], [8], [6]).

2) Models based on the filtering theory, especially Gabor
filters [23], [24], [12] or wavelets [3], [25], [26], [27],
[28], [29], [30], [31]. Some of them use the theory of
preattentive texture discrimination based on textons [32],
[33].

We have chosen to use the wavelets approach which give an
excellent way to decompose a signal in different sub-bands in
which it is easier to characterize it.

The use of wavelets to analyze textures is not new. There

exists mainly two approaches:

1) Models which assume the independence of the distri-
bution of the wavelets coefficients (see [34], [3], [28],
[29]).

2) Models which assume a spatial dependence (interactions
between the pixels) and through the scales (interactions
between the wavelet coefficients through the scales)
(see [25], [35], [36], [30], [37], [38]. [39], [40]). These
models are based on hidden Markov random fields. Their
estimation is quite difficult and requires sophisticated
algorithm.

We have chosen to use a model of the type proposed by Unser
[3]. We consider that a texture is characterized by the energy of
its wavelet coefficients in each sub-band of the decomposition.
Our choice is confirmed by the quality of the results we get.
Our model is new since, as far as we know, it is the only one
which uses simultaneously an active contour approach guided
by wavelets.



In the existing literature, the closest model is the one
proposed by Paragios and Deriche in [12]. However it differs
on many points:

1) In [12], the authors use a model presented in [18],
and characterize textures with Gabor filters. Historically,
Gabor filters have been introduced before wavelet bases
(see [41]), but the storage cost is very important, and
there exist functions in L2 which cannot be decomposed
into a convergent Gabor coefficients expansion. The
construction of wavelet bases by I. Daubechies (see [42])
had overcome these defaults. Moreover, Gabor filters
are not orthogonal, which may introduce a significant
correlation between coefficients. All these reasons make
the use of wavelets more appropriate.

2) The introduction of the active contours in our method is
natural: indeed, it comes directly from the functional
we seek to minimize. In [12], the energy does not
have any coupling terms. They are added in the Euler-
Lagrange equations. Moreover, the model in [12] is less
general than the one we propose: it only deals with
the case of an image having textures dispatched on a
textured background. In particular, [12] or [43] show no
segmentation or classification result of an image having
triple junctions (or more).

3) Let us notice that contrary to the model developed in
[10], we do not have a stopping function on the contours:
this function was based on the gradient of the image,
and as we are interested here with textured images,
such an approach is no longer possible. In [12], the
authors also use a stopping term on the contours. But to
implement it, they need the fact that their model deals
with textures components dispatched on a background.
In order to keep our classification model the more
general as possible, we have decided not to use such
a detector of contours. Moreover, it can be checked
experimentally that contours do stop without the use of
such a stopping function.

Our model is also related to [20], [31], but these approaches
deal with image segmentation.

C. Principle of our algorithm

Our classification model is inspired by the work of C.
Samson et al. who have developed a supervised classification
algorithm for non textured images in [10].

The number of classes K present in the image is supposed
to be known, as well as the characteristics of each class.
If 1 < k < K, we will denote by Cl;, the corresponding
class. We consider the classification problem as a partition
problem and the aim is to get an optimal partition of the
image. The domain of the image, €2, is the union of disjoints
sets Qy, (corresponding to Cl;). We use a variational level set
approach. Each €, is characterized by a level set function &
The classification is obtained by minimizing a functional with
respect to ®, with three terms: a partition term, a regularity
term, and a data term.

The paper is organized as follows. Section Il presents the
framework of our classification algorithm using level sets. We
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Classification seen as a partition problem

Fig. 1.

need to construct a data term specific to textures. That is why
in Section Il we give a few precisions about wavelets. We
then characterize textures through their wavelet expansion in
Section IV. We deduce our data term from this study in Section
V, and we present the algorithm we use to minimize it. We
then finish by giving some numerical results on both synthetic
and real textured images in Section VI.

Il. CLASSIFICATION
A. Partition, level set approach

The image is considered as a function ug : @ — R
(where © is an open subset of R?). We denote Cl; =
{z € Q /x belongs to the class k}. In order to get a func-
tional formulation rather than a set formulation, we assume
that for all k = 1... K, Cl; is an open set €, given by a
Lipschitz function &, : Q@ — R such that:

<I>k(a:)>0 if z e Qy
®p(z) =0 ifzely
®,(x) <0 otherwise

(typically, @, is the signed distance function to I'y, @
being then lipschitz as soon as I'y is lipschitz). Qy is thus
completely determined by @, (i.e. z € Qp & H(Pr(z)) =
1, where H is the Heaviside distribution ). The collection
of open sets {2} forms a partition of Q if and only if
Q=U, WU, Tr,and if k # 19, = 3. We denote
Ty, = 09 N 2 the boundary of Q. (except points belonging
also to 90Q), and Ty; = Ty, = T, (T the interface between
Q and €; (see Figure 1).

B. Regularization

We also use the Dirac distribution §. In order that all the
expressions we write have a mathematical meaning, we will
use the classical regular approximations of these distributions
(see Figure 2):

5(1+2+1sin) sifs|<a
Hy(s)=<X 1 if s>a
0 if s < —a

When a — 0, we have §, — § and H, — H (in the
distributional sense).
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Fig. 2. Approximations d,, and H, of the Dirac and Heaviside distributions

C. Functional

Our functional has three terms:
1)

FA(®,... @K)ZA/ iHa(éi)—l (2.1)
: T 2 \g=1

Minimizing this energy term ensures that the result is
indeed a partition of the image. It penalizes the pixels
which are unclassified (Y r—, Ha(®1) = 0), as well as
the ones classified in at least two regions simultaneously
(Zszl H,(®;) > 1). In fact, to get a partition of 2, we
would need to have 31 | H(®(z)) =1, Vo € Q. We
rather minimize the quadratic error, which is easier.

2)
K
FB(‘I’l,---;‘I’K)ZZWHFH (2.2)
k=1
This term penalizes the contours length, which prevent
from having too irregulars contours and a lot of small
regions. By using the co-area formula, it is possible to
show that (the proof is given in [10]):
lim 6a(<1>k)|V<I>k|da: = |Fk| (23)
a—0 Jo
Then, in practice, we seek to minimize:
K
FP (@,...,85) = Z%/ 5 (B1) VO (24)
k=1 Q2
3)

Fc((I)la"'JQK)

This last term stands for the data term, and we will
get it from our textures modelization and the maximum
likelihood principle (see Section 1V).

Complete functional: The functional we want to minimize

is the sum of the three previous terms:
F(®y,...,8x) = FA®y,...,05) +FB(®y,...,®x)
+FC(®,...,9K) (2.6)

(2.5)

I1l. ABOUT WAVELETS

The texture analysis uses wavelet transform. We refer the
interested reader to [44], [42], [41], [34], [45].

A. Undecimated wavelets

The algorithm proposed by S. Mallat [34], [44], [45] gives
a non redundant representation of a signal: once the wavelet
transformation has been computed, the number of coefficients
to store remains the same as for the initial signal. Nevertheless,
this algorithm has the drawback to be (a priori) not translation
invariant. As the aim of our work is to classify textured images,
we want to construct a translation invariant feature. That is
why we use wavelet frames (see [3]). The DWF (discrete
wavelet frame) corresponds to the DWT (discrete wavelet
transform) applied to the input signal with all the possible
translations.

B. Wavelet packet transform

A large number of textures can be modelized as quasi-
periodic signals (repetition of the same stucture with slight
variations) whose dominant frequencies lie in median frequen-
cies channels (see [30]). But the DWT decomposes a signal
in a set of channels whose bandwidth is smaller in the low
frequency regions. This turns out to be sufficient for regular
signals whose information is concentrated at low frequencies,
but not for textures. In the case of the DWT, only the low
frequency block is redecomposed. To avoid this drawback, we
use a wavelet packet transform: this way, each block can be
decomposed again.

C. Gray level independence

When an image is decomposed with a wavelet transform or
a wavelet packet transform, all the blocks of the decomposition
have a zero mean, except the block corresponding to the low
frequencies. Its mean corresponds in fact to the mean gray
level of the image. But our aim is to classify textured images:
the mean of the gray level must not be a feature for a texture.
That is why we modify the low frequency block by setting
its mean to zero. We get the same kind of results when we
simply drop this term.

IV. TEXTURE MODELISATION

We are now in position to characterize textures through their
wavelet decomposition.

A. ldea

We consider that a texture is characterized by the energy
of its wavelets coefficients. If we note uq the function which
represents this texture, we can write (to make things clearer,
we use one dimensional notations):

-1
Z ij,n¢j,n

j=—J n

ug = Z UJnPIn + 4.7)
n

where 1 is the mother wavelet, ¢ the scaling function and
J the order of the decomposition. Thus, we consider that a
texture is characterized by the sequence:

((luJ,n|27n € Z)J (le,n 27” € ZJ -J S .7 S _1)) (48)

ug is defined over (2, but we extend it to R? by reflection and
periodization.




Fig. 3. Theoretical graph of the energy distribution in a sub-band (law (4.10))
and experimental histogram (in a sub-band of the wavelet packet transform
of the top right texture of Figure 5) (o = 40.44 and 8 = 1.537).

B. Probability distribution of the energy

S. Mallat checked experimentally (see [34]) that the distri-
bution of the modulus of the wavelet coefficients in a sub-band
of any image follows a generalized gaussian law of the form:

px(z) = Aexp (— (g)ﬁ) Iz>0

He checked it for the classical wavelet transform, and we
made experiments to verify that this still remains true for the
wavelet packet transform. As we consider that textures are
characterized by their energy, we compute the distribution law
of the square of the wavelet coefficients in a sub-band. We get
it from (4.9):

px2(y) = %exp <— (%)3 Iy>o

This kind of distribution is even pickier than the one given
by (4.9). The parameter 3 modifies the decrease of the
pick, and a models the variance. Experimentally, we have
checked that the distribution of the energy inside a sub-band
is well approximated by a law of this type. Figure 3 shows
the probability density function (4.10) effectively match the
histogram of the squares of the wavelet packet coefficients in
a sub-band. A texture will be charctarized by the parameters
« and g in each sub-band.

(4.9)

(4.10)

C. Computation of the parameters of the energy distribution

Our goal is to carry out supervised classification for textured
images. “Supervised” means the fact that we know a priori the
number of classes which can be found in the image, as well
as the parameters of each class. The class parameters « and g3
can be computed from the first and second order moments of
the energy distribution in each sub-band (and we will know
these moments). Let us compute these moments.

Fig. 4. Graph of F—1 (given by (4.17))

Gamma function: The function T" is defined on R by:

+o0
I(t) =/ e “ut~tdu (4.11)
0
By using the fact that [, px (z)dz =1, we get:
A-_b (4.12)

Let us denote Y = X2, We compute the first and second
order moments of Y, M; = E(Y) and M, = E(Y'?), where:
E(Z) = [ 2pz(2)dz. We find:

B = B(x?) = AR (3
M, =E(Y)=EX") = 3 r (ﬂ) (4.13)
_ EB(y? oy _ PAL(5
M, = E(Y?) = E(X*?) 5 r (ﬂ) (4.14)
(4.15)
r(5H)r(s)
_p (M
B=F (Mz) (4.16)
with:
r(2)
F(z) T (;) T (%) (4.17)

The graph of F—! is computed numerically and is shown on

Figure 4. In practice, %12 ranges over (0.1,0.45) where F—1
is stable.



V. COMPLETE FUNCTIONAL

A. Hypotheses

From the modelization we made in the previous section,
we now deduce the data term we use in our algorithm. We
compute a wavelet packet decomposition of the image (up to
the second order in practice): we get I channels (I = 16 in
practice). We denote by S the set of the pixels of the image.

Definition 5.1. In what follows, we will call the energy at pixel
s in S the vector U(s) = (u1(s),---,ur(s)), where u;(s) is
the square of the wavelet coefficient in the sub-band ¢ at pixel
s. u(s) will be the texture’s feature at pixel s.

Hypotheses:

(H1) We assume that, for each texture ¥ = 1...K, in
each channel i = 1...1, the squares of the wavelet packet
coefficients follow a law of the type (4.10) of mean Ml’“” and
of second order moment M},

(H2) We consider that the different channels are indepen-
dent. This is an approximation but it allows simple modeling.

As we mentioned before, our goal is to perform superwsed
classification. The first and second order moments M; k-t and
M,y ki are assumed to be known by the user.

B. Data term

The goal is to find for each pixel the class which makes the
observed energy U the most likely. In other words, we use the
maximum likelihood estimator for the data term. We want to
maximize P(U|C1), where C! is the assumed class. In fact,
we are going to maximize the log-likelihood, which amounts
to minimize, assuming that the conditional probabilities are
independant (Cl, is the assumed class of the pixel s):

—In(P(UIC)) = =) In(PU(s)[Cl,))
SES
= _Ezm (s)|Cls = k)6 (CLy)
k=1 s€S

where 5, (Cl,) = 1 if s belongs to the class %, 0 otherwise.
According to our hypotheses (H 1) and (H 2), we have:

uz_(s) Br
H - a}'c
(5.18)
The parameters A;, o) and j3;, are computed from the first
and second order moments thanks to formulae (4.12), (4.15)

and (4.16).
It can now be deduced:

PU(s)|ICls = k) =

K 1

=> 3" Bi(s)6(Cls)

k=1 i=1 s€S

PU|CL) (5.19)

where

i
k

H
Bi(s)=—InAi +1n2+ % Inwu;(s)+ (%(-ﬂ) (5.20)

To get our fitting term to the data coherent with the two
other terms of our functional, and also to simplify notations,
we formally write it in a continuous framework:

K

ZZ dz

k=1 i=1

FC(®y,...,® (5.21)

We approximate (5.21) by:

K 1
ZZ/QHa (®r)Bi(x)dr (5.22)
k=1 i=

1

FS(®4,...,0x

C. The functional

We are now able to completely write the functional which
models the classification problem for textured images:

A K ’
=§/Q<I;Ha(<1>k)—1)

K K I
+ka/ ba (Br) |V +Zek2/ H(®)Bj (z)dx
k=1 Q k=1 i=1"%

The classical mathematical minimization results do not
apply to our functional. Its mathematical study is under inves-
tigation (existence and uniqueness of functions ®4,...,®x
minimizing our functional).

F(®q,...,®

D. Remark

We have tried other criteria than energy, especially entropy.
But in our preliminary trials, energy has proved to be the
most interesting criterion. Moreover, in [46], the authors show
experimentally that energy is more adapted than entropy for
texture features. That is why we have considered energy.

E. Euler-Lagrange Equations

If ®1,...,®x minimize the functional F', then necessarily
(if furthermore the ®¢,...,®x verify some regularity con-
ditions (see [9] for instance)), we have for £ = 1...K:
gTFk = 0. Assuming that Neumann conditions are verified, the
associated Euler-Lagrange equations to F' give the following
system composed of K-coupled PDE’s (see the appendix of

[10] for instance): we have for k=1... K
K
0= Al (Z H, (9 )

T
— ko (B )div (&ﬁ) + exbal (Z Bi(x ) (5.23)




F. Dynamical scheme
To solve the PDE’s system (5.23), we embed it in the
following dynamical scheme (k = 1... K):

0Py,

5p = ~9a(®) l,\ (Z Ho(®,) - 1)
—ypdiv (%) + ek <Z Bi(x))]

i=1

(5.24)

where the initial condition ®,(0,z) is the Euclidean signed
distance function to the zero level set ®,.

We discretize this system with finite differences (see [10]).
We arbitrarily set & € R* (in our experiments, we have
used a = 3.0). We need to set o small enough so that the
approximations of the Dirac and Heaviside distributions (.,
and H,) remain reasonable. We also prefer « to be small since
the bandwidth on which PDE’s (5.24) are not empty depends
on it (if & € N, it contains 2a — 1 pixels width when ¢, is
the signed distance to its zero level set). On the contrary, we
need « not to be too small so that the band contains enough
pixels to compute the different terms of (5.24).

G. Reinitialization

The ®;, are initialized as Euclidean signed distance func-
tions. Nevertheless, as in the classical active contour method
[9]), the evolution of the ®; with respect to (5.24) does not
keep them as Euclidean signed distance functions to their zero
level sets. This prevents the convergence of (5.24) towards
some &; minimizing F. That is why it is necessary to
periodically reinitialize the &4, functions into Euclidean signed
distance functions. To do so, we use the PDE:

%—T +sign(®5) (VS| — 1) =0 (5.25)

A theoretical study of this PDE, as well as an extension to
more general Hamiltonians can be found in [47]. A theoretical
proof of the convergence of the algorithm we present here is
still under investigation.

V1. NUMERICAL RESULTS
A. Choice of parameters

Wavelets: As we explained before, we have chosen in our
experiments to use wavelet packet decompositions of the
second order to compute the data term. We have tested
different kinds of wavelets, and we have chosen to use the
Daubechies wavelet with ten vanishing moments (see [42],
[44]), this choice appearing to give the best results.
Information given by the user: As the classification is here
supervised, the user has to provide the number of classes
(textures), as well as the parameters of each class (the first and
second order moments of the energy distribution in each sub-
band of the wavelet packet decomposition). In our numerical
examples, we compute the parameters of each texture from a
sample of it. It seems that our method is quite robust with
respect to these parameters: changing the sample on which
they are computed does not affect the classification result
significantly.

Data term
= ;: 11 - ql"-.

Image to classify

e

| Contours (696 iterations) | Classification (696 iterations)

=

1

Fig. 5. Classification of a synthetic image composed of four textures

Parameters: In our experiments, we always choose e; =
-=eg =10andyn = --- = 9 = v (v € Ry).
There remain only two parameters to tune: the partition
term coefficient A, and the common value of the contour
regularization terms «. The parameter A is first determined
with a value large enough in order to ensure at the end of the
algorithm that the partition constrainst is satisfied. The results
are not sensitive to variations of A, provided it is large enough.
Second, the regularization parameter ~. Variations of v give
more or less regular solutions. This parameter is tuned by trial
and error.
Initialization: To get an automatic initialization, and to make
it independent of the user, we have then used “seeds”: we
split the initial image into small sub-images (in practice 5*5
images). In each sub-image, for each class &, we compute the
data term by assuming that all the pixels of the sub-image
belong to the same class k. We set all the pixels in the sub-
image to the class k for which the whole sub-image’s energy
is the smallest. We have used this initialization in the examples
presented here-after.

B. Examples:

In the Figures 5 to 8, we represent the data term by giving
to each pixel of the image the class for which its energy is
the smallest. This is the classification that we would get if
we only used the data term (Maximum Likelihood criterion).
Our algorithm is quite fast: for instance, it took us a little
more than 4 minutes to process the example of Figure 6 with
a processor of 800 MHz and 128 kByte of RAM (the size of
the image being 128*128).

1) Synthetic image with four textures: In this example (see
figure 5), one sees clearly that our model can handle with
triple junctions. On the contrary, as in the classical approach
of the Mumford-Shah functional [48], the junction of four
textures give two triple junctions in the classified image (at
120 degrees). It is also worth noticing that our algorithm can



Image to classify

Image to classify (*) Data term

| Contours (645 iterations) | Classification (645 iterations)

Fig. 6. Classification of a synthetic image composed of two textures

Data term
]

| Contours (674 iterations)

Fig. 7. Classification of a synthetic image with six textures

differentiate these four textures although they are visually very
close.

2) Synthetic image with two textures: This example (see
figure 6) shows that our model can handle with any kind of
geometrical shape (contrary to the model proposed in [13] for
instance).

3) Synthetic image with six textures: This example (see
figure 7) shows that our model can handle complex textured
images. Here, some of the textures are visually very close, and
the geometrical shape of the contours are quite well detected.
To get more homogeneous classes, we have applied here a
Gaussian mask to the data term.

4) Case of a real image with a zebra: This example (see
figure 8) also shows that our model can handle with any

| Contours (345 iterations) | Classification (345 iterations)

Fig. 8. Classification of a zebra on a background.

(*) Copyright © Corel. All rights reserved.

geometrical shape. The parameters of the background were
computed from a sample of grass under the zebra.

VIlI. CONCLUSION

We have presented a variational model based on a level
set formulation to classify textured images. The proposed
algorithm produces segmentation of an entire image according
to a priori known texture parameters, by using level sets
allowing multiple junctions. The level sets evolve according to
wavelet coefficients and interact between each other. The use
of level sets enables us to easily introduce constraints on the
regions and their contours. It also has the advantage to handle
automatically topological changes. In a future work, we plan to
do a complete theoretical study of our model, and to combine
textured and non textured regions in a single classification
process.
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