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Abstract

We construct an algorithm to split an image into a sum u 4 v of a bounded variation
component and a component containing the textures and the noise. This decomposition
is inspired from a recent work of Y. Meyer. We find this decomposition by minimizing a
convex functional which depends on the two variables v and v, alternately in each variable.
Each minimization is based on a projection algorithm to minimize the total variation. We
carry out the mathematical study of our method. We present some numerical results.
In particular, we show how the u component can be used in nontextured SAR image
restoration.
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1 Introduction

1.1 Preliminaries

Image restoration is one of the major goals of image processing. A classical approach consists in
considering that an image f can be decomposed into two components u+v. The first component
u is well-structured, and has a simple geometric description: it models the homogeneous objects



which are present in the image. The second component v contains the oscillating patterns (both
textures and noise). An ideal model would split an image into three components u + v + w,
where v should contain the textures of the original image, and w the noise.

In Section 1, we begin by recalling some models proposed in the literature. Then our model
is introduced in Section 2. We give a powerful algorithm to compute the image decomposition
we want to get. We carry out the mathematical study of our model in Section 3. We then
show some experimental results. We compare our algorithm with the classical total variation
minimization method in Section 4. In Section 5, we give an application to SAR images, the u
component being a way to carry out efficient restoration.

1.2 Related works
1.2.1 Rudin-Osher-Fatemi’s (ROF) model:

Images are often assumed to be in BV (2), the space of functions with bounded variation (even
if it is known that such an assumption is too restrictive [1]). We recall here the definition of
BV () (we suppose that 2, the domain of the image, is a bounded Lipschitz open set):

Definition 1.1. BV/(Q) is the subspace of functions v € L'(€) such that the following
quantity is finite:

J(u) = sup {/QU(fr)diV (&(x))dz /€ € Co(UR?), [|€]l o) < 1} (1.1)

BV () endowed with the norm ||u| gy () = ||u||L1(@) + J(u) is a Banach space.

If u € BV(Q), the distributional derivative Du is a bounded Radon measure and (1.1)
corresponds to the total variation |Dul(€2).

In [11], the authors decompose an image f into a component u belonging to BV (2) and a
component v in L?(£2). In this model v is supposed to be the noise. In such an approach, they
minimize (see [11]):

1
inf J(w) + oIl 1.2
(u,v)eBV(Q)ISLQ(Q)/f:u-m ( (u) + 2\ HUHLQ&)) (1.2)

In practice, they compute a numerical solution of the Euler-Lagrange equation associated
to (1.2). The mathematical study of (1.2) has been done in [4].

1.2.2 Meyer’s model:

In [8], Y. Meyer points out some limitations of the model developed in[11]. He proposes a
different decomposition which he believes is more adapted:

inf J(u) + aljv 1.3
e BV R e s (W) T V) (1.3)

The Banach space G(R?) contains signals with large oscillations, and thus in particular
textures and noise. We give here the definition of G(R?).

Definition 1.2. G(R?) is the Banach space composed of the distributions f which can be
written

[ = 0191 + 029, = div (g) (1.4)



with g; and g, in L>®(R?). On G, the following norm is defined:

lvlle = inf {I|gl|LooaR2) = esssup |g(z)| /v =div(g), g = (91,92),

g € L=(R), g, € 1=(R), g(x)| = Vo + 92 (2)} (15)

The justification of the introduction of the space G to model patterns with strong oscillations
comes from the next result (see [8]):

Lemma 1.1. let f,, , n > 1 a sequence of functions in L*(D) with the three following properties
(D is a disc centered at 0 with radius R):

1. There exists a compact set K such that the supports of the f,, n > 1 are embedded in K.
2. There exists ¢ > 2 and C > 0 such that || fo||Lor2) < C
3. The sequence f,, converges to 0 in the distributional sense.

Then || f.||c converges to 0 when n tends towards infinity.

A function belonging to G may have large oscillations and nevertheless have a small norm.

1.2.3 Vese-Osher’s model:

L. Vese and S. Osher have first proposed an approach for the resolution of Meyer’s program.
They have studied the problem (see [12]) (f € L?(Q)):

nt o ([ 1901215 == vl + ol (1.6

(u,v)eBV (Q)xG(2)
where  is a bounded open set. To compute their solution, they replace the term |v||q)
by |/ g% + g3]l, (where v = div (g1, g2)), which approximates the L>-norm when p goes to
+00. For numerical reasons, the authors use the value p = 1, and they claim they did not
see any visual difference when they used larger values for p. Then they formally derive the
Euler-Lagrange equations. They report good numerical results.

These two authors, together with A. Solé, have proposed another approach to this problem
in [9], where they propose a more direct algorithm in the case A = +o00 and p = 2.

2 Our approach

In this section we introduce our model. We first formulate it in the continuous-setting. Then we
propose a discretization, and provide a mathematical study and an algorithm for the discretized
model.

2.1 Presentation

We propose to solve the following variant of Osher and Vese’s functional [12]:

1
int Syl —u—olf] 2.
(u,v)eB‘}I(lQ)xGM(Q) (J(u) + 2\ If = UHLQ(Q)) (2.7)



where

Gu(Q) = {v e GQ)/|[vlle < p} (2.8)

We remind that ||v||¢ is defined by (1.5) (where we replace R* by ). The parameter p
plays the same role as the one in problem (1.6). We will precise the link of our model with
Meyer’s one later (we will get it by letting A — 0). Let us introduce the following functional
defined on BV (Q2) x G(2):

J() + 551l —u—vliaq ifveGLQ)

Faulu,v) = { oo if v € GIO\G,(Q) (2.9)

F) ,(u,v) is finite if and only if (u,v) belongs to BV (€2) x G,(€2). Problem (2.7) can thus be
written:

i " 2.10
(u,v)eB%/I%Q)XG(Q) /\M(Ua U) ( )

2.2 Discretization

We are now going to study (2.10) in the discrete case. We take here the same notations as
in [3]. The image is a two dimension vector of size N x N. We denote by X the Euclidean
space RV*Y 'and Y = X x X. The space X will be endowed with the scalar product (u,v)x =
> i<ijon Wigvij and the norm [lulx = +/(u,u)x. To define a discrete total variation, we
introduce a discrete version of the gradient operator. If u € X, the gradient Vu is a vector in
Y given by: (Vu);; = ((Vu);;, (Vu)?;). with

4,57
(Vu)l, =4 itd =t 2t and (Vu)?, =
The discrete total variation of u is then defined by:

0 ifi=N
Jaw) = > [(Vu),l (2.11)

1<ij<N

Ui j+1 — Ui lfj <N
0 ifj =N

We also introduce a discrete version of the divergence operator. We define it by analogy
with the continuous setting by div = —V* where V* is the adjoint of V: that is, for every
peY and u € X, (—divp,u)x = (p, Vu)y. It is easy to check that:

pi;— P, f1<i<N pi; =P fl1<j<N
(div (p))ij = { Piy if i=1 +14 P if j=1 (2.12)
Pl if i=N —p? if j=N

From now on, we will use these discrete operators.
We are now in position to introduce the discrete version of the space G.

Definition 2.3.
G*={ve X /3g €Y such that v = div (g)} (2.13)

and if v € G<:
lollgs = inf {llgllse / v = div (g),
9= (9",9%) € Vilgil = 1/ (9},)2 + (62,2} (2.14)




where ||g|| = max; ; |gi ;-
Moreover, we will denote:

Gl ={veG/ |vlg: < n} (2.15)
||.||ge is closely linked with J,, as stated by the following proposition.

Proposition 2.1.

Ja(u) = sup (u,v)x (2.16)
vEGY
and
[vllga = sup (u,v)x (2.17)
Ja(u)<1

We already know (2.16). To prove (2.17), we need the following lemma (which is stated in

[8])-
Lemma 2.2. Let u € X and v € G%. Then:

(u,0)x < Ja(u)[v]lgs (2.18)
Proof: Let g € Y such that v = div (g).

(u,0)x = (u,div(g))x = =(Vu, 9)y < Ja(u)][v]|ge (2.19)

And we deduce (2.18) from it.

We also need the next result:

v 2
Lemma 2.3. The functions u — %“)2 and v — % are dual in the sense of the Legendre-
Fenchel duality.

Proof: We recall here (see |5, 10, 6]) the definition of the Legendre-Fenchel transform of H:

H*(v) = sup ((u,v)x — H(u)) (2.20)

ueX

2
We want to show that u +— %U)Q and v — % are dual with respect to this definition. Let

us denote by ¢ the function ¢(t) = % It is well known that ¢* = ¢.

(%) () = sup((u,v)x = 6([v]r))

= sup sup ((u,v)x — &(||v]ge))

20 [jofl ga=t

= sup sup ((u,tv)x — o(t[v]lgae))
£20 [lo] ga=1

= sup sup(t(u,v)x — ¢(t))

lollga=1 >0



And since ¢ is even we get:

(%) (u) = sup ¢*((U,v)x)=%( sup (%U)X) (2.21)

lvll ga=1 lvll ca=1
But sup”v”Gdzl(u, V)x = supH,U”Gdgl(u, v)x, and we conclude with (2.16).

Proof of Proposition 2.1: We want to prove (2.17). Lemma 2.2 gives an inequality. Let
us show the reverse inequality. We denote by OH the subdifferential of H (see [10, 6]), and we
recall that

w € 0H(u) <= H(v) > H(u) + (w,v —u)x , for all v in X (2.22)
Let v € G% We recall that (see [5]), if H is convex: H(u) + H*(v) = (u,v)x if and only
if u € OH*(v). We apply this result with H*(v) = (Jdg)2) (v). Since (#) is convex
continuous, we know that 0H*(v) is not empty. Let v € 0H*(v). From Lemma 2.3, we get:

Jaw)? vl .
Jalw” | lad (u,v)x, Le:

(Ja(w) = |[ollga)” = 2 ((u,0)x = Ja(w)||v]|a) (2.23)

>0

Hence (u,v)x > Jy(u)||v||ge. And this conclude the proof thanks to Lemma 2.2.

[ |
Proposition 2.2. The space G¢ identifies with the following subspace:
Xo={veX /> v;=0} (2.24)
i,

Proof: We split our proof into two steps.

Step 1:

Let us assume that v € G? Therefore, there exists ¢ € Y such that: v = div(g). But
>ii(divg)i; = (=V*g, 1)y = (9,V1)x = 0 ie. v € Xo. Hence G C X,

Step 2:

Conversely, let v € Xj. Since the kernel of V is the constant images, i.e. the vectors x € X
such that z;; = z,; for all 4, 4,7, 5, it is clear that a discrete Poincaré inequality holds:
|z — §z 224 Tijllx < ¢l|Vally. Hence one shows easily that the problem min,ex A(z), with
A(z) = ||Vx|]* 4+ 2(z, v), has a solution. This solution satisfies A’(z) = 0, that is, —2div (Vz) +
2v = 0. Hence v = div (Vz) € G%, and we conclude that X, C G

[
The discretized functional associated to (2.9), defined on X x X, is given by:
_ Ja(w) + g llf mu =]k ifoe G
Pyl v) = { +00 if v e X\GY (2.25)
The problem we want to solve is:
inf  F) ,(u,v) (2.26)

(u,v)eX XX



2.3 Total variation minimization as a projection

Introduction: Since J; defined by (1.1) is homogeneous of degree one (i.e. Jy(Au) = A\Jy(u)
Vu and A > 0), it is then standard (see [5]) that J} (see (2.20)) is the indicator function of some
closed convex set, which turns out to be the set G¢ defined by (2.15):

0 if v e GY

+o00 otherwise (2.27)

J30) = xot(0) = {

This can be checked out easily (see [3] for details). In [3]|, A. Chambolle proposes a nonlinear
projection algorithm to minimize the ROF model. The problem is:

int (ata) + 531~ ) (2.28)
The following result is shown:
Proposition 2.3. The solution of (2.28) is given by:
u=f— Poy(f) (2.29)

where P is the orthogonal projector on G$ (defined by (2.15)).

Algorithm: 3] gives an algorithm to compute Pga(f). It indeed amounts to finding:

min {[[Adiv (p) — f|% :p / |pij| <1Vi,j=1,...,N} (2.30)
This problem can be solved by a fixed point method:
=0 (2.31)

nd
) it — piy + 7(V(div (p") — f/A))ij
WO 7 |(V(div () — F/N))ig]

In [3] is given a sufficient condition ensuring the convergence of the algorithm:

(2.32)

Theorem 2.1. Assume that the parameter T in (2.32) verifies T < 1/8. Then Adiv (p")
converges to Ppa(f) as n — +oo.

2.4 Application to problem (2.26)

Since J; is the indicator function of G (see (2.16,2.27)), we can rewrite (2.25) as

F(u,v) = %Hf_u—l}H%(—FJd(U)—FJ; (%) (2.33)

With this formulation, we see the symmetric roles played by u and v. And the problem we

want to solve is:
inf  F(u,v) (2.34)

(u,v)eX xX

To solve (2.34), we consider the two following problems:



e v being fixed, we search for u as a solution of:
: 1 2
int (Jatw) + 351~ u = o) 23)

e u being fixed, we search for v as a solution of:

inf —u— |3 2.36
inf 1 —u vl (2.36)

o

From Proposition 2.3, we know that the solution of (2.35) is given by:
= f—v— Pg(f —v). And the solution of (2.36) is simply given by: 0 = Pga (f — u).

2.5 Algorithm

1. Initialization:

uy =1vg =0 (2.37)
2. Iterations:
Vns1 = Py (f — un) (2.38)
Upy1 = [ — Ung1 — Pai(f — Upy1) (2.39)
3. Stopping test: we stop if
max(|Unt1 — Unl, [Uns1 — vnl|) <€ (2.40)

3 Mathematical results

In this section we carry out the mathematical study of the algorithm (2.37)—(2.40). We first
show its convergence when \ is fixed. We then precise the link of the limit of our model (when
A goes to 0) with Meyer’s one.

3.1 Existence and uniqueness of a solution for (2.26)

Lemma 3.4. There exists a unique couple (u,v0) € X X GZ minimizing Fy, on X x X.
Proof: We split the proof into two steps.

Step 1: Existence

1. We first remark that the set X x G is convex, and then that F) , is convex on X x G¢.
We thus deduce that F) , is convex on X x X.

2. It is immediate to see that F), is continuous on X x G¢. We then deduce that F), is
lower semi-continuous on X x X.



3. Let (u,v) € X x G%. We have |[v||ga < . Moreover, since X is of finite dimension, there
exists g € X such that v = div (¢) and ||g||r=~ = ||v||ge < p. We deduce from (2.12) that
(N? is the size of the image):

lvllx =< 4uN* (3.41)

We recall that X x X is endowed with the Euclidean norm.
[(w, V)l xxx = 4/ llullk + lloll% (3.42)

Thus, if ||(u,v)||xxx — +00, then we get from (3.41) that ||u||x — +oco. We therefore
deduce, since f is fixed, and since (3.41) holds, that ||f —u — v[|% — +oo. And since
Fyu(u,v) > 55 ||f —u— 0|3, we get F),(u,v) — +o00. Hence we deduce that F), is
coercive on X X GZ' We therefore conclude that F) , is coercive on X x X.

We deduce the existence of a minimizer (4, 0).

Step 2: Uniqueness

To get the uniqueness, we first remark that F , is strictly convex on X x Gfb, as the sum of
a convex function and of a strictly convex function, except in the direction (u, —u) . Hence it
suffices to check that if (@, ) is a minimizer of F) , then for ¢t # 0, (¢ + ¢4, — ta) is not a
minimizer of Fy,. The result is obvious if o — ta € X\GY. Let us show that if o —ti € G
then the result is still true. Indeed, if o — ta € G, we have:

Fyu(t+tu, 0 —ta) = Fy,(a,0) + (|1 +t] = 1)Ja(a) (3.43)
By contradiction, let us assume that there exists ¢ # {—2,0} such that ¢ — 4 € G and
By (04 ta, o — ta) < F (4, 0) (3.44)

As (4, ) minimizes F) ,, (3.44) is an equality. From (3.43), we deduce that (|1+#|—1)J(@) = 0.
And as t # {—2,0}, we get that J;(2) = 0. There exists therefore v € R such that for all (4, 5),
'LALZ'J =7.

1. If y =0, then @ = 0. Thus (4 + ta, 0 — ta) = (@, D).

)
2. If v # 0, then ¥ — {0 cannot belong to G since its mean is not 0 (see Proposition 2.2).
This contradicts our assumption.

There remains to check what happens in the case when ¢ = —2. In this case, by convexity, we
get that if £ € (—2,0), then o — ta € G¢ and
Fypu(t+tu, v —ta) < F),(a,0) (3.45)

Thus we get (3.44), and we can conclude.

3.2 Convergence of the algorithm

We show here that our algorithm gives asymptotically the solution of the discrete problem
associated to (2.34).

Proposition 3.4. The sequence F) ,(u,, v,) built in Section 2.5 converges to the minimum of
Fy, on X x X.



Proof: We first remark that, as we solve successive minimization problems, we have:

F)\,M(um Un) > FA,M(”M Un+1) > Fk,u(unJrla UnJrl) (3'46)

In particular, the sequence F) ,(un,v,) is nonincreasing. As it is bounded from below by 0,
it thus converges in R. We denote by m its limit. We want to show that

= inf F A4
m (u,v)ngxX (V) (3.47)

Without any restriction, we can assume that, Vn, (u,,v,) € X X Gﬁ. As F) , is coercive
and as the sequence F) ,(uy,v,) converges, we deduce that the sequence (uy,,v,) is bounded in
X x GZ. We can thus extract a subsequence (uy, , v,,) which converges to (u,0) as ny — 400,
with (i,0) € X x Gi. Moreover, we have, for all n; € N and all v in X:

FA,#(UJ”M U”k+1> < FA,#(unm U) (348)
and for all n, € N and all v in X:
Fxu(tny, vny) < Fipu(u, vny) (3.49)

Let us denote by ¢ a cluster point of (v,,11). Considering (3.46), we get (since F), is
continuous on X x G):

m = FA,,u(a7 @) = F)\’“(’LAL, 17) (350)
By passing to the limit in (2.38), we get: 0 = Pga(f — @). But from (3.50), we know that:
|f —a—2| =|f—u—0|. By uniqueness of the projection, we conclude that o = 0. Hence

Un,+1 — 0. By passing to the limit in (3.48) (F), is continuous on X x G), we therefore have
for all v:
Fy,(4,0) < Fy,(a,v) (3.51)

And by passing to the limit in (3.49), for all u:
FA,M(ﬂ’f)) S FA#(U,QA}) (352)

(3.51) and (3.52) can respectively be rewritten:

ve
Faulit, 8) = inf Fy,(u,0) (3.54)
ue

But, from the definition of F) ,(u,v) (see (2.33)), (3.54) is equivalent to (see [5]):

0€—f+u+0+ AdJy(0) (3.55)
and (3.53) to:
0€ —f+a+o+M\T; (%) (3.56)
The subdifferential of F) , at (4,0) is given by:
1 [ —f+a+0+NJy(0)
o (a,0)=— S 5 .

10



And thus, according to (3.55) and (3.56), we have:

( 8 ) € OF) (1, 0) (3.58)

which is equivalent to: Fj,(4,0) = inf(,ex2 Fou(u,v) = m. Hence the whole sequence
F u(uy, v,) converges towards m the unique minimum of F) , on X x GZ. We deduce that the
sequence (un,v,) converges to (u,?), the minimizer of F) ,, when n tends to +oc.

3.3 Link with Meyer’s model

We examine here the link between the discrete model (2.34) and Meyer’s problem. We first
recall the discrete version of Meyer’s problem:

inf H,(u, 3.99
(u,v)eXi%d/f:quv (u U) ( )

with
H,(u,v) = (Jg(u) + ajv||ga) (3.60)

The following result is straightforward:

Lemma 3.5. There exists a solution (1,0) € X x G of problem (3.59).

Proof: (3.59) is equivalent to inf, cqa Ho(f —v, v). It is immediate to verify that H, is convex,
coercive and continuous on G. Hence there exists © € G? such that

H,(f —0,0) = inf H,(f —v,v) (3.61)

vEGY

Let us denote @ = f — 0. Then (u,?) is a solution of (3.59).

|
Remark: We do not know if a uniqueness result holds for problem (3.59).
We then recall problem (2.34):
(w)lg)f(xx Fy u(u,v) (3.62)
with
1 9 L[V
Fyu(u,v) = —||f —u—o|* + Ja(uw) + J; | — (3.63)
2\ 1
Let us consider the problem
inf Ja(u) + T (= (3.64)
in u — .
(u,0)EX XX/ f=u+v d d )

One easily shows the next result:

Lemma 3.6. There exists (4,0) € X x X solution of (3.64).

11



Proof: (3.64) is equivalent to

inf Jy(f —v) + J; (%) (3.65)

veX

It is immediate to see that the function to minimize in (3.65) is convex, coercive and lower
semi-continuous on X. Hence there exists v € X such that

(% (Y

=0+ (2) = g gt =0+ 5 () (3.66)
Denoting by @ = f — ©. Then (@, ?) is a solution of (3.64).
|

Proposition 3.5. Let us fir « > 0 in problem (3.59). Let (1, 0) a solution of problem (8.59).
We fix u = ||0||ga n(3.64). Then:

o (u,0) is also a solution of problem (3.64).

e Conversely, any solution (u,0) of (3.64) (with p = ||v||ga) is a solution of (3.59).

Proof: We split the proof into two steps.

Step 1:

We first want to show that (4, 0) is a solution of (3.64) (with p = ||0]|qa). As (@, 0) is a solution
of (3.59) (the existence of (u,v) is given by Lemma 3.5) and as ||0]|qs = 1, then @ is solution of

inf Ja(u) + ap (3.67)

1
ueX/u=f-v,|vllga=p

i.e. 4 is solution of
inf Ja(u 3.68
weX fu=f—v, vl ga=t () (3.68)
Since the set {u € X/u = f — v, ||v||ga = p} is contained in
{ue X/u=f—uv,||v]gs < pn}, we have:

“EX/“:fiilfv”””cd:u Jalu) 2 ueX/uzfiflf,nuHGdgu Ja(u) (3.69)
By contradiction, let us assume that
ueX/u:fiElillvllcﬁu Jalw) > uGX/u:fiElE,HvHGdS# Ja(u) (3.70)
Thus, there exists v € X such that ||v/||qe < p and
Ja(f —v') < inf Ja(w) (3.71)

ueX /u=f—v,||vllga=p

Denoting by ' = f — ', we have: Jy(u') + a|v'||qa < Jy(v') + ap. But since (4, v) is a solution
of (3.59):
Ja(@) + af|0]|ga < Ja(u) + a[v']|ga < Ja(u) + ap (3.72)

12



Hence (we recall that ||0]|ge = p), we get from (3.72) that Jy(a) < Jy(u'). This contradicts
(3.71). We conclude that (3.70) cannot hold. Hence:

inf Ja(u) = inf Ja(u) (3.73)

ueX/u=f-v,l|v|lga=n ueX/u=f-v,|v||ca<p
From (3.68), we see that @ is a solution of infuex/u=f ool a<n Ja(u), i.e. @ is a solution of

inf  Ja(u) + J; G) (3.74)

ueX/u=f—v

Hence (1, 0) is also a solution of (3.64).

Step 2:

Let us now consider (u,?) a solution of (3.64) (the existence of (@, ?) is given by Lemma 3.6).
We can repeat the computations we made in Step 1. We get that @ is a solution of:

inf Ja(u) + ap (3.75)

wEX u=f—v,|lv|| ca=p

We therefore have: Jy() + ap = Jq(@) + a||0]|ga. But as (@, 0) is a solution of (3.64), we have
17||ga < p. Hence Jy(u) + of|9]|ge < Ja() + ef|9]|ge. And since (u,0) is a solution of (3.59),
we get that:

Ja(u) + a||9||ga = Ja(@) + ]| 0] ga (3.76)

We thus conclude that (@, ) is a solution of (3.59).
|

In fact, we can say more about the link between Meyer’s problem (3.59) and our limit
problem (3.64). « being fixed, let us denote by

Zo = {vq4, V4 is a solution of the problem inf,cqa Ho(f — v,v) (see (3.59)) } (3.77)

Se = {||vallge, va is a solution of the problem inf,cqa Hy(f — v,v) (see(3.59)) }  (3.78)

We know that Z, and S, are not empty thanks to Lemma 3.5. We consider the two multi-
applications:

Y: R, — P(GY)
o 4y,
and
T: Ry —P[Ry)
oa— S,

where P(G?) (resp. P(R,)) stands for the set of subsets of G (resp. R,).

We want to show a kind of reciprocal result to Proposition 3.5, i.e. that, for a certain range
of 1, there exists a such that p € T'(«).

The following result holds:
Proposition 3.6.

1. T s a nonincreasing multi-application.
2. Y(0)={f—f} and T(0) = || f — fllga (where f stands for the mean value of f over Q).

3. If a goes to +oo, then Y (vy) (resp. T(vy)) goes to {0} (resp. {0}) (with respect to the
Hausdorff metric).
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Proof: We successively show the three points of the proposition. If we pick v, in Z,, we
denote by uy, = f — v,.

1. Let ay > ay > 0. Let us pick v,, in Z,, and v,, in Z,,. Let us denote by uy, = f — va,
and uy, = f — U4,. Then, as v,, in Z,,, we have in particular:

Ja(ta,) + allva, lga < Ja(ua,) + al[va, [|ga (3.79)
And as v,, in Z,,, we also have:
Ja(tay) + azlva, lge < Ja(ua,) + asollva, || ge (3.80)

Adding the two last inequalities, we get:

1 [|Vay gt + @2[vas et < nl[vas[lge + allva, [l (3.81)
And then
(@2 —a1)  ([[vasllgs = [[Vay lga) <0 (3.82)
———

>0 by hypothesis

Hence ||[va,||ge < ||va, |qe, which proves the first point of the proposition.

2. Let us now prove the second point of the proposition.

We have (see (3.60)) Ho(f —v,v) = J(f —v) > 0 for all v € G¢. Choosing vy = f — f
(vg € G? since vy = 0), we get Ho(f — vo,v0) = J(f —vo) = J(f) = 0. Hence 0 =
min,cqe Ho(f — v,v). We deduce that vy € Zy. Moreover, J(u) = 0 if and only if v = w.
Let v; be a solution of min,cqa Ho(f — v,v). We thus have f —v; = f —v;. And as
U1 € Gd, we also have U] = 0. Then f—’Ul = f—Ul = fT—T)l = f, i.e. V1 = Ug. We
conclude that {vg} = Zy. This shows the second point of the proposition.

3. Let us now prove the third point of the proposition. Let us pick v, in Z,, and let us
denote by u, = f — v,. By definition of Z,, we have for all (u,v) € X x G such that
f=u+wv:

Ja(ug) + a||vallge < Ja(u) + af|v||ga (3.83)

We choose u = f, and v = 0. We get:

Ja(ta) + alvalge < Ja(f) (3.84)

e First case: if f is constant (i.e f = f), then Jy(f) = 0. Hence (3.84) implies that
Ja(te) = ||vallga = 0. We conclude that v, = 0, and u, = f = f.

e Second case: if now f is not constant (i.e f # f), then Jy(f) > 0. Hence (3.84)
implies that ||v,|/ge < JdT(f) Thus Y (a) — {0} as a goes to +oo (with respect to
the Hausdorff metric).
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Remark: In fact, we have shown that T : R, — [0, | f — f|lga]. In particular, T has uniformly
bounded values:

L T(0)={f-f}
2. If & > 0, then if v, € T'(a), we have

lvallge < If = Fllga (3.85)

Proposition 3.7. T is u.s.c. (upper semi continuous) (i.e. T has a closed graph and convex
compact values).

Proof: We split the proof into two steps:
Stepl:

Let us set @ € R,. By definition of S,, one easily checks that 7'(a) is convex and closed in
R. Moreover we have shown that 7'(«) is uniformly bounded (see (3.85)). Therefore, T'(«) is
compact in R.
Step 2:

Let us now consider a sequence (a,, v,, ) Where a,, € R, and v,, € Z,,. Assume that there
exists (g, vp) in Ry x G¢ such that (a,,va, ) — (ap,vp) as n goes to +00. As v,, in Z,, , we
have for all (u,v) € X x G¢ such that f = u + v:

Jd(f - Uan) + an”/l)an Gd S Jd(u) + OéOHUHGd (386)

By passing to the limit as n goes to +o00, we get:
Ja(f = vo) + aollvollga < Ja(u) + aolv]|a (3.87)

Hence vy belongs to Z,,, and therefore ||vg||g, is in S,,. This shows that 7" has a closed graph.

Corollary 3.1. For all i in (0,||f — fllqe), there exists a in R such that there exists (u,v)
in X x G% with ||v||qe = p and solving Meyer’s problem (3.59).

Proof: This a consequence of Proposition 3.6, Proposition 3.7 and the next theorem (applied
to the multi-application 7, = T' — 1) which we state without proof.

Theorem 3.2. Let us consider a multi-application L:

@ = [Lyin(@), Lax(a)]

Let us assume that L is such that:
1. L is u.s.c (upper semi-continuous).
2. There exists a € R (resp. b € R) such that Lyi,(a) <0 (resp. L. (b) >0).

Then there exists ¢ € [a,b] such that 0 € L(c).

15



Remark: This corollary completes the result of Proposition 3.5. It completely closes the link
between Meyer’s problem (3.59) and our limit problem (3.64).

3.4 Role of A
We show here that problem (3.64) is obtained by passing to the limit A\ — 0T in (3.62).

Proposition 3.8. Let us fit « > 0 in (3.59). Let us assume that problem (3.59) has a
unique solution (4,0). Set p = ||0||ge in (3.62) and (3.64). Let us denote (uy,vy) the solution
of problem (3.62). Then (uy,vy) converges to (ug,v9) € X X X as A goes to 0. Moreover,
(ug,v0) = (4, 0) is the solution of problem (3.64).

Remark: In the case when the solution of problem (3.59) is not unique, the result of Propo-
sition 3.8 does not hold. We can just show that any cluster point of (uy,,v,,) is a solution of
problem (3.64) and thus of (3.59).

Proof of Proposition 3.8: The existence of (4, ) is given by Lemma 3.6. The existence
and uniqueness of (uy,v,) is given by Lemma 3.4.

Since (uy,vy) is the solution of problem (3.62), we have vy, € G
saw in the proof of Lemma 3.4, this inequality implies:

d

W ie [[ullge < p. As we

loallx < 4pN? (3.88)

Since (uy,vy) is the solution of problem (3.62), we have:

Fyu(ux, va) < Fiu(f,0) (3.89)
which means
F)\#(u,\,m) S Jd(f) (390)
And the left hand-side of (3.90) is given by:
1 2 « [ Ux 1 2
Exp(un,va) = Ja(ua) + =< 1f —ua —oallx +J5 | = ) = Ja(ua) + < If —un —oallx  (3.91)
2\ 1 2\
Hence Jy(uy) + %Hf —uy — ul[% < Ja(f), and
1f = ux —oal|* < 2\Ja(f) (3.92)

As ||vy]|x is bounded (from (3.88)), we conclude that if A € [0;1], u, is bounded by a constant
C' > 0 which does not depend on \.

Consider a sequence () which goes to 0 as n — 4o00. Then, up to an extraction (since
(uy,,vy,) is bounded in X x X), there exists (ug,v9) € X x X such that (u,,,v,,) converges
to (ug,vo). By passing to the limit in (3.92), we get: ||f — ug — vol|x = 0, i.e. f = ug + vp.

To conclude the proof of the proposition, there remains to show that (ug,vy) is a solution
of problem (3.64). We first notice that as VA > 0, and since ||v,||ge < i, we get: ||vo]lga < p.
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Figure 1: Original synthetic image

Let (u,v) € X x X such that f = u + v. We have:

Jalw) + T (2) + 3 I —u—vlp?

=0

= Ja(un,) +Jg (UAT") + o If —wn, —on P

Ux
Jun—i—J*( ")
a(un,) + J3 i)

N

v

—>Jd(u0)+J; (%’)

Hence (ug,vp) is a solution of problem (3.64). And as we have assumed that problem (3.64)
has a unique solution, we deduce that (ug,vy) = (4, 0), i.e. (ug,vp) is the solution of problem
(3.64).

4. A comparison

4.1 Introduction

In this section, we intend to compare Rudin-Osher-Fatemi (ROF) problem (1.2) with Meyer’s
one (1.3). We put some noise (a gaussian noise of variance ¢*) on an image provided by the
GdR-PRC ISIS (http://www-isis.enst.fr/) (see Figure 1), and we perform both a total variation
algorithm and our algorithm (2.37)-(2.40). We have chosen to use Chambolle’s algorithm to
minimize the total variation (see Subsection 2.3).

We display the results on Figure 2. The “difference image” is obtained from the v components
of both algorithms. We denote by v42p5c the v component given by our algorithm, and vrop
the one given by the total variation minimization algorithm. The value of a pixel in position
(i,7) is 255.0 (i.e. white) if vz (i, j) > vror(i, §), 127.0 (ie. gray) if vape(i, j) = vror(i, §),
and 0.0 (i.e. black) if va2pc(i,5) < vror(3,J)-
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Noisy image (o = 50)

“Difference image”

u (A?BC’s algorithm) (A = 0.1 , u = 70)

Figure 2: Comparison for o = 50 (SNR=8.36)




4.2 Commentaries

We compare the v component given by our algorithm with the one given by the ROF model.
Their mean values are both very close to zero. For instance, in the case of Figure 2 (o = 50),
va2pc and vror have almost the same mean value: —0.7. In the case of the ROF problem, the
parameter \ corresponds to the one in (1.2), and in the case of Meyer’s problem, the parameters
A and p correspond to the ones in (2.7). For a given noisy image, we tune these parameters so
that ||vazpcl|r2 = |[vror||L2: the v components both contain the same quantity of information.
We want to compare the information they contain.

One sees on the “difference image” that va2pc(i,j) > vror(i,j) in the darkest regions of
the original image (figure 1), and that va2pc(i,j) < vror(i,7) in the lightest regions. This
means that the v component in the ROF model depends more on the mean gray level value of
the original image than in the case of Meyer’s one. For instance, let us have a look at the dark
circle on top left of Figure 1. In the case of Figure 2 (¢ = 50), the mean value of the pixels
corresponding to this circle is —1.0 in v 2pc and —4.2 in vgror. Both components v tend to
have a negative mean because in Figure 1 the circle is a dark component.

In homogeneous regions (such as the dark circle we considered just before), we would expect
the v component of both models to have a zero mean (the mean of the white gaussian noise we
add to the original image). According to the remarks we made before, Meyer’s model appears
to loose less information than the ROF model. This confirms the assertions by Y. Meyer in [8].
The decomposition he proposes seems to be more adapted to image restoration. Nevertheless,
the difference between both methods appears not to be visually very important.

4.3 Barbara image

We have also performed our algorithm on the Barbara image.

On Figures 4 and 5, one sees that v425¢ corresponds more to the texture part of the Barabara
image than vgor. One can also see that Barbara’s face appears much more in vgop than in
vazpc. This confirms the analysis of Y. Meyer [8]. Moreover, the leg of the table appears much
more in vror than in v42p¢, and this is not a textured component of the Barbara image.

For all this reasons, our model (inspired by Meyer’s model) gives a better decomposition of
an image into a BV component and an oscillatory component than the ROF model.

5 SAR images restoration

5.1 Introduction

Synthetic Aperture Radar (SAR) images are strongly corrupted by a noise called speckle. A
radar sends a coherent wave which is reflected on the ground, and then registered by the radar
sensor [7]. When one cares with the reflection of a coherent wave on a coarse surface, then
one can see that the observed image is degraded by a noise of large amplitude. This gives a
speckled aspect to the image. That is why such a noise is called speckle.

Link with our approach: Contrary to the usual modelization in SAR, the noise in our
model is considered to be additive: the image f is decomposed into a component u belonging
to BV, and a component v in G. But it is to be noticed that our model is completely different
from the classical additive models: in these ones, v is often considered to be a Gaussian white
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TR

Reconstruction (u +v) (A = 1.0, = 100)

Figure 3: Barbara image

20




BV component u

Figure 4: Decomposition with our model for A = 1.0 and = 100.
|lvazpe|| 2 here is equivalent to ||vgor|| 2 in Figure 5.
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BV component u

A

Figure 5: Decomposition with the ROF model for A\ = 43.
|lvror||z2 here is equivalent to ||vazpc||r2 in Figure 4.
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noise, and therefore has a constant variance all over the image. Here, v belongs to GG, a space
in which signals can have large oscillations but small norm. Moreover the variance of the
oscillations of v may not be uniform on the whole image. Remark that by considering u as the
restored image (without speckle) we assume that there is no texture in the SAR image.

5.2 Results on a synthetic image

Figure 6 show why for a SAR image the decomposition proposed by Meyer is very interesting.
Indeed, one checks that the v component contains the speckle, and the u component can
be regarded as a restoration of the original image (if it does not contain textures). It is
difficult to make comparisons with other methods, since the main criterion remains the visual
interpretation. Nevertheless, the results we get appear good with respect to existing methods.
And above all, our approach being a variational one, computation time are very short. With
a processor at 800 MHz and 128 kilo of RAM, it takes less than one minute to deal with an
image of size 256*256.

5.3 Results on a real image

We use a SAR image of Bourges’ area provided by the CNES (French Space Agency:
http://www.cnes.fr/index_ v3.htm). The reference image (also furnished by the CNES) has
been obtained by amplitude summation. Figures 7 and 8 show the effect of parameter ;2 on the
restoration process. The larger p is, the more v contains information, and therefore the more
u is averaged. According to the value of u, we can thus get a more or less restored image, and
also more or less smooth.

6 Conclusion

In this article, we present a new algorithm to decompose a given image f into a component u
belonging to BV and a component v containing the noise and the textures of the initial image.
Our algorithm performs Meyer’s program [8]. We use the space G and its norm, and not an
approximation as done in [12, 9]. Moreover, we carry out the mathematical study of our model.
We present some numerical results to show the relevance of our algorithm. We also show how
the u component can be used for SAR images restoration. More experimental results can be
found in [2]: in particular, we show how the v component can be used in textured images
classification.

Acknowledgement: The authors would like to thank the French Space Agency CNES (Cen-
tre National d’Etudes Spatiales) and the French research center CESBIO (Centre d’Etudes
Spatiales de la Biosphére) for providing real SAR data extracted from the CD-ROM Filtrage
d’images SAR (1999). The authors would also like to thank the anonymous reviewer for having
suggested the result of Corollary 3.1. Part of this work has been funded by GdR-PrC ISIS
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23



Initial synthetic image

Speckled synthetic image

Restored image (u)

| Reconstructed image (u+v) Classification (thresholding)

Figure 6: Simple synthetic image (A = 0.01 and p = 80)
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Reference image

Restoration (u) Oscillatory component
(A =0.1 and p = 40) (v + 150.0)

Figure 7: Image of Bourges’ area (1)
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Restoration (u)
(A=0.1 and p = 30)

Restoration (u)
(A=0.1 and p = 50)

Oscillatory component
(v + 150.0)

Oscillatory component
(v + 150.0)

Figure 8: Image of Bourges’ area (2)
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