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Abstract

Following recent work by Y. Meyer, decomposition models into a geometrical component and a textured
component have recently been proposed in image processing. In such approaches, negative Sobolev norms

have seemed to be useful to modelize oscillating patterns.

In this paper, we compare the properties of

various norms that are dual of Sobolev or Besov norms. We then propose a decomposition model which
splits an image into three components: a first one containing the structure of the image, a second one the
texture of the image, and a third one the noise. Our decomposition model relies on the use of three different
semi-norms: the total variation for the geometrical componant, a negative Sobolev norm for the texture,
and a negative Besov norm for the noise. We illustrate our study with numerical examples.
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1 Motivation

1.1 Decomposition models

Decomposing an image into meaningful components is
one of the major goals of image processing. A first
range of models are denoising models: in such mod-
els, the image is assumed to have been corrupted by a
noise, and what we want is to remove the noise. There
are mainly two kinds of approaches. A first one is
based on a process on the wavelet coefficients of the
image [10, 15, 9, 14, 13, 17]. A second one is based on
the resolution of the PDE associated to the minimiza-
tion of an energy involving some norm of the gradient
[19, 8, 17].

More recently, following [17], decomposition models
into a geometrical component and a textured compo-
nent have been proposed [21, 18, 4, 20]. The first three
models rely on the use of a negative Sobolev norm to
characterize textures. [20] uses appropriate dictionar-
ies to characterize textures, and at the end even gets
a decomposition of the image into three components:
a first one containing the geometrical information of
the image, a second one the texture, and a last one
the noise. In this paper, we would like to study more
deeply the characteristic of negative Sobolev norms,
and then propose a decomposition model which would
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split an image into three components: a first one con-
taining the structure of the image, a second one the
texture of the image, and a third one the noise.

1.2 Some functional spaces

Although we will work only in the discrete setting in
the rest of the paper, we first introduce various func-
tional spaces that have been considered in image pro-
cessing for describing piecewise smooth or oscillatory
components in images. Throughout this subsection,
we denote by 2 an open connected set of R? with Lip-
schitz boundary.

The use of different functional spaces is a common
tool in image processing, especially in minimization
processes (see [3, 17] and references). For instance, the
space BV of functions with bounded variation is often
used. It enjoys the nice feature of containing functions
with discontinuities along lines, that can represent the
edges in an image. We recall here its definition [2].

Definition 1.1. BV(Q) is the subspace of functions
u € L'(Q) such that the following quantity, called the



Total Variation of u, is finite:

Jw) = sup{ /Q w(z)div (£(x))dz such that

£ € Co(GR), €l <1} (1.1)

The total variation plays a key-role in the Rudin-
Osher-Fatemi (ROF) model [19]. Yves Meyer has re-
cently investigated this model in [17]. Unsatisfied with
the results, he has introduced a space G for oscillating
patterns. This space happens to be very close to the
dual space of BV. In such a space, oscillating patterns
have a small norm: this a usefull property to catch
them with an energy minimization process. We recall
here the definition of G:

Definition 1.2. ( is the Banach space composed of
the distributions f which can be written f = d,9; +
0292 = div (g) , with g; and g in L*(Q). On G, the
following norm is defined:

Iflle = inf {|lgllL=(@r2 / f=div(g)}

with [|g]|Le(o,r2) = esssup,cq v/ [g1]2 + |g2|2(x)

In fact, with these notations, G is exactly
W-120(Q), the dual space of Wy'(Q) [1]. And it is
shown in the discrete case in [4] that ||.||g is the polar
semi-norm of J(.) (see Proposition 2.1).

In [17], the author has proposed a new decompo-
sition algorithm: it splits an original image f into a
sum u + v of a bounded variation component and a
component containing the oscillating part of the image
by minimizing: J(u) + ||v||g. But, due to the G norm,
this decomposition is quite difficult to compute. Algo-
rithms have been proposed to solve Meyer’s problem or
close ones [21, 4, 5]. These works have confirmed that
G is a very good space to modelize oscillating patterns,
and especially textures.

In [18], the G norm is replaced by another negative
Sobolev norm. For the reader convenience, we recall
here the definition of a Sobolev space(see [1]):

(1.2)

Definition 1.3. If p € (1,+0oc), then W1P(Q) is the
space of functions in LP(f2), and such that their distri-
butional derivative also belongs to L?(Q). Wy (Q) is
the closure of C;; () in W'?(). Let ¢ = ;25 (so that
5+ 3 =1). We denote by W~"¢(Q) the dual space of

Wo™(Q).

Oscillating patterns have a small norm in a nega-
tive Sobolev space. And such a norm may be easier to
minimize than the G norm.

In [17], the author also suggests the use of another
dual space to model oscillating patterns: E = B>

—1,00"
This is the dual space of B} ;.

Definition 1.4. Bil is the usual homogeneous Besov
space (see [17]). Let ;; an orthonormal base com-
posed of smooth and compactly supported wavelets.
Bil is a subspace of L?(R?), and a function f belongs
to B, if and only if: > ez 2opeze e x]297% < 400,
where c; , are the wavelet coefficients of f.

Definition 1.5. The dual space of B}, is the Ba-

nach space E = 3301,00- It is characterized by the fact
that the wavelet coefficients of a generalized function
in E = B>, belong to I°°(Z x Z?).

In practice, we will use the Haar wavelet (resp.
the Daubechie wavelet with eight or ten vanishing mo-
ments) denoted by Haar (resp. Daub8 or Daubl0)
[16].

Remark We have the following result (stated in

[17]):

Bl,CBVCIL*CGCE=B% (1.3)

where BV is the homogeneous version of BV: BV =
BV/{u € BV | Vu = 0}. In fact, we will see that BV
is well adapted for the geometrical part of an image, G
for the texture part and F = Biol’oo for the noise.

In the rest of the paper, we will then introduce the
discrete versions of the norms of these spaces

1.3 Overview of the paper

The aim of this work is to construct a model which
decompose an image into three components, a first one
containing the geometrical information, a second one
containing the texture, and a last one containing the
noise. To separate these components, we want to try to
find appropriate norms that are well adapted to mea-
sure the relative importance of each components. As
suggested in [17], we are going to use dual norms of the
standard Sobolev norms to characterize the oscillating
patterns.

In the first part of this paper, we introduce the
discrete framework in which we will place ourself,
and which is an appropriate one in image process-
ing. In a second part, we compute dual norms used in
[17, 21, 18, 4]. This will tells us which dual norms are
appropriate to capture oscillating patterns. Then, in
a third part, we introduce a mathematical framework
to minimize dual norms. This will precise the study of
the second part. In the fourth part, we propose a new
u+v model, which happens to be a powerful denoising
model. And in the last part, we finally construct our
u~+v+w model and show some numerical experiments.



2 Discretization

2.1 Notations

From now on, we consider the discrete case We take
here the same notations as in [7]. The image is a two
dimension vector of size N x N. We denote by X the
Euclidean space RV*Y and Y = X x X. The space
X will be endowed with the scalar product (u,v)x =

EISMSN ;i jv;; and the norm ||u||x = /(u,u)x. We
will also use the following norms (p > 1):

1/p

lullp={ D iyl (2.4)

1<4,j<N

(remark that ||u||x = ||ul|2)-

2.1.1 Total variation

To define a discrete total variation, we introduce a
discrete version of the gradient operator. If u € X,
the gradient Vu is a vector in Y given by: (Vu);; =
(Vu)} (Vu)f]) with

4,37

Uil — Ui ifi< N

(Vu)},j = { 0’“’] +J i N (2.5)
and

2 _ [ vign -y i <N
@z ={ N e
The discrete total variation of u is then defined by:
J)= Y [(Va)iyl (2.7)

1<4,j<N

2.1.2 Sobolev semi-norms
We also use the following norms (p > 1):
1/p

IVull, = D [Vu,l? (2.8)

1<4,j<N

(remark that ||Vully = [|Vullz and J(u) = ||Vull1).
We can now introduce the following semi-norm:

llullip = IVull, (2.9)

This is a norm on the space X =
{u €X,>0 Uiy = 0}. It can be seen as a discrete

version of a Sobolev norm.
We consider the polar semi-norm associated to (2.9)
(with 1/p+1/q=1):

lwll-1,p,= sup (v,u)x = sup (v,u)x (2.10)
llull1,q=1 | Vullg=1

This is the discrete norm we use for negative Sobolev
spaces.

2.1.3 G-norm

We also introduce a discrete version of the divergence
operator. We define it by analogy with the contin-
uous setting by div = —V* where V* is the ad-
joint of V: that is, for every p € Y and u € X,
(—divp,u)x = (p, Vu)y. It is easy to check that:

pi;—DPi1; if1<i<N

(div(p)iy; = p%,jl ifi=1  (2.11)
_pifl,j if i=N
pzz,j _pzz,jfl fl<j<N
+ o if j=1
—Pi i1 if j=N

From now on, we will use these discrete operators. We
are now in position to introduce the discrete version of
Meyer’s space G.

Definition 2.6.
G ={ve X [/3geY such that v =div(g)} (2.12)
and if v € G:

llle = inf{lglee / v =div(g), (2.13)
9= (9"9%) € Vilgiil = \/(o},)* + (62,)°}

where [|g]|oc = max;; |gi,j|-

Moreover, we will denote:

Bo =pBa ={ve G/ |vle<p} (214

We recall that the Legendre-Fenchel transform of
F is given by F*(v) = sup,(u,v)x — F(u) (see [11]).
The two following results are proved in [4].

Proposition 2.1. J(u) = sup,cp,(u,v)x , and
vl = SUPJ(u)gl(Uav X-

We see that J(.) (resp.||.||g) is the polar of ||.||g
(resp. J(.)).

Proposition 2.2. The space G identifies with the fol-
lowing subspace: Xo ={ve X / Z” vi; = 0}.



2.2 Total variation minimization as a
projection

Introduction: Since J defined by (1.1) is homoge-
neous of degree one (i.e. J(Au) = AJ(u) Yu and A > 0),
it is then standard (see [11]) that J* is the indicator
function of some closed convex set, which turns out to
be the set Bg defined by (2.14):

0 if v € Bg

400 otherwise (2.15)

7(0) = xpo ) = {

This can be checked out easily (see [7] for details).

In [7], the author proposes a nonlinear projection al-

gorithm to minimize the ROF model. The problem
is:

. 1 2
it (Fw+ 55l —ulk) (210
We have the following result, which comes from stan-
dard convex duality theory [11]:

Proposition 2.3.  ([7]): The solution of (2.16) is
given by: u= f — Pxp,(f). where P is the orthogonal
projector on ABg (defined by (2.14)).

We wuse the following algorithm to compute
Pyp, (f). It indeed amounts to finding:

min {|Adiv (p) = Ik :p / Ipigl <1Vij=1,...,N}

(2.17)
This problem can be solved by a fixed point method:
p® =0 and

et _ PR+ (VY ) /X))
T (VY () = T/

In [7] is given a sufficient condition ensuring the con-
vergence of the algorithm: it is shown that as long
as 7 < 1/8, then Adiv (p™) converges to Pyp, (f) as
n — +00.

(2.18)

3 Computing dual norms

Contrarily to the computation of the E norm which is
easily obtained once the wavelet decomposition of the
image has been performed, the other dual norms are
less easy to compute.

3.1

We use the projection algorithm (2.18).

Let f be an image with zero mean. We remark that
if A >0, then: f = Pyp,(f) if and only if ||f|l¢ < A.
Thus one just need to compute the norm of f—Pyp, (f)
to know if A is larger (if the norm is zero) or smaller
(if the norm is positive) than || f||¢. Thus we can find
[|flle by dichotomy. Nevertheless, in our numerical
tests, we have found that this method does not give a
precise approximation of the G-norm of an image.

Computing G norm

3.2 Application to a decomposition al-
gorithm

3.2.1 Introduction

In [17], Meyer has introduced a new model to split a
given image f into a sum u + v of a bounded varia-
tion component and a component containing the os-
cillating part of the image. This model has been first
successfully implemented by Vese and Osher [21]. A
different approach has been proposed in [4, 5]. We will
focus on this one, where the decomposition is computed
by minimizing a convex functional which depends on
the two variables u and v, alternatively in each vari-
able. Each minimization is based on the projection
algorithm (2.18).

The problem to solve is the following (f being the
degraded image):

1
il (04 5l —u-olk) 19
where uBg = {v € G/||v||l¢ < p} , and ||v||¢ is defined
by (1.2), and J(u) by (1.1).

The algorithm to solve this problem used in [4, 5]
needs thus the two parameters A and p. The param-
eter A controls the L2-norm of the residual f —u — v.
The smaller A is, the smaller the L? norm of the resid-
ual f —u — v is. The larger p is, the more v contains
information, and therefore the more v is averaged. In
fact, the choice of A is easy. One just needs to set it
very small. For instance, in all the examples presented
hereafter, we have chosen A = 0.1, and found out a
maximum norm for f —u — v of about 0.5 (for values
ranging from 0 to 255). But the y parameter is much
harder to tune. It controls the G norm of the oscillat-
ing component v. Some examples of the value of such
a norm are displayed in Subsection 3.5.

3.2.2 Choice of the y parameter

Assume the image u has been degraded by a gaussian
noise of variance o2. We would like to remove that
noise: hence we want the v component to be a white
noise of variance o2.

In the ROF method [19], it is suggested to minimize
the total variation with the constraint that the residual
has exactly a variance of 0. If we want to do the same
for the algorithm of [4], we have to know the G norm of
a Gaussian norm of known standard deviation. Thanks
to the homogeneity of the norm, ||n||g/c should be
roughly constant (at least when the number of points
is large enough, given the size of the image), however,
the strong nonlinearity of the G norm does not allow
us to check rigorously this fact (in other words, that
this "constant" is quite insensitive to the particular re-
alization of the Gaussian noise we consider).



Original image
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Noisy image f (o0 = 35)
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u [4])
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Figure 1: Denoising

We have computed the G norm of white gaus-
sian noise images (of variance 02) with the algorithm
explained in subsection 3.1. For instance, we have
checked that the G norm of a white gaussian noise with
variance o = 1 is very close to 1.6 for an image of size
128*128. Knowing this, we can then compute the G
norm of any white gaussian noise n of size 128*128,

3.3 Computing |.||-1, norms
(p € (1, +00))

Let p € (1,+00). Let f be a function with zero mean
(i-e. 221« j<n fij =0). We want to compute || f[|-1,p
(see (2.10)). Let us set ¢ = ;E5 (so that %+ % =1).

Let us recall that ||u|l1,; = ||Vu|lq (see (2.9)) and:
1fll-1p = (fru)x = (fiux  (3.21)

sup
ull1,4=1

sup
IVullg=1

We look at the following minimization problem:
min (F(u) — (f,4)x) (3.22)

where F(u) %EISLJSN |Vu; ;|7 = %”VUHZ' By
analogy with the continuous setting, we define a dis-
crete Laplacian operator by setting Au = div (Vu).

Proposition 3.4. If 1 is the minimizer of (3.22), then
we have for 1 <i,j < N:

(div (IVai,"*Vaiy), ; = fis (3.23)

Moreover, we also have:

£, = IVEll = Y Vil = qF(@) (3.24)

1<4,j<N

provided we kow its variance o2:

Inllg ~ 1.60 (3.20)

This gives the value of the y parameter for the al-
gorithm of [4]. Figure 1 shows how this choice of the
parameter p performs on a particular case.

In particular, when p = 2, we get: Aw = f , and

171112 = I Widlly = /S <o jew [ Va2

Proof. (3.23) is the Euler-Lagrange equation of (3.22),
and its computation is standard once one has remarked
that (F'(u),h)x = |Vu|?"2(Vu, Vh)x

We concentrate now on (3.24). It is well known that

the Legendre-Fenchel transform of L[| f||f , is $1If[1”,,
[11]. We therefore deduce that
1. , ~ ~
—5||f||_1,p = min (F(u) = (f,u)x) = F(a) - (f,4)x
(3.25)

The solution @ of (3.22)
%Elgi,jSN [Vii; ;|7 = %HV?]HZ )

satisfies F'(1)
and by Euler’s iden-

tity we have (F'(a),4)x = qF(a). We thus de-
duce that: (f,4)x = qF(a). From (3.25), we get:
~LIfIPy, = (1 = Q) F (@) = —1F(a).

|



Table 1: A striking example (see Figure 2)

| Images | 7v [ L [ |llcs2 | G ] E (Daubl0) |
textured image 1 000 000 | 9 500 | 33 000 360 749
geometric image 64 600 9 500 | 300 000 | 2000 355
Gaussian noise (¢ = 85) | 2 100 000 | 9 500 9 100 120 287

textured image

geometric image

Figure 2: A striking example

3.4 Algorithm to compute ||f||_;,

From Propositions 3.4, we see that a way to compute
[|fll=1,p is by minimizing (3.22) and by using the for-
mula (3.24). When p = 2, then it is immediate to com-

pute ||fll-1,2 = V/(—f, A7l f)x by using the discrete

Fourier transform (see the end of subsection 3.6).

3.5 Numerical results

In Figure 2, the three images have the same L% norm.
Table 1 presents the values of differents norms. It

3.6 |.|l-12 norm of a white gaussian

noise

We consider an image n = (n; ;) of size N x N. To
simplify, we use periodic conditions in this subsection
(but only in this subsection). We therefore not use
(2.5), (2.6) and (2.11), but a discrete gradient and a

clearly illustrates the superiority of the G norm over
the L? norm to capture oscillating patterns in mini-
mization processes (the G norm is much smaller for
the texture image and the noise image than the geo-
metric image), as claimed in [17]. It also illustrates
why the use of the E norm is well adapted to separate
the noise (the noisy image has the smallest E norm).

As can be seen on Table 2, there appears a very
strong correlation between the L? norm and the ||.||—1,2
norm of the image of a white gaussian noise. This will
be confirmed by the results of the next subsection.

discrete divergence with periodic conditions. We as-
sume that n is an image of a white gaussian noise; i.e.
for all (¢, ), n;; follows a gaussian law whose proba-
bility density function reads: p(z) = ﬁ exp (57”22)

where ¢? is the variance of the noise. We recall that

if Z has a probability density function pz, than we

Table 2: Images of size 128*128 (see Figures 3, 4, 5)

| Images | TV | L2 T G [ 1l-12 | E (Daubl0) |
paraml 1 000 000 | 9 500 360 33 000 730
param?2 800 000 9 500 300 26 000 690
param3 980 000 9 450 320 30 000 890
param4 | 1 100 000 | 9 450 290 22 000 630
circles 18 000 3 000 | 2000 18 000 280
G20 570 000 2 500 31 2 300 73
G30 850 000 3 900 50.5 3 700 110
G50 1 400 000 | 6 300 84 6 100 180
G85 2 100 000 9 500 120 9 100 290




Figure 3: Textured images

circles

Figure 4: BV image

G50

Figure 5: Gaussian noise images



denote its expectancy by E(Z) = [ zpz(z) dz.
Proposition 3.5.
E(Inll? 1 2) = C-E(Inll%) (3.26)

where C' is a constant which depends only on the size
of the image.

This proposition gives a simple test to check if an
image can be a white gaussian noise or not. This re-
sult can also be useful when tuning the parameters of
a denoising algorithm using the ||.|| 1,2 norm.

Proof. We split the proof into two steps:
Step 1: We begin by computing E(||n||>, ,). We con-
sider the functional:

i%f F(u) (3.27)
where F(u) = £||Vul|} — (n,u)x . F is convex and lsc
(lower semi continuous). Hence (see [12] for instance)

there exists @ solving problem (3.27). As in Subsec-
tion 3.3, we get:

(Vi, Vh)y = (n,h)x Vh with zero mean.  (3.28)

We denote by § the image such that do0 = 1, and
0;,; = 0 otherwise. We denote by W the solution
of the problem: inf, [, (3|Vu|? —6u) , and thus we
have (VW,Vh)y = (6,h)x for all h with zero mean.
We introduce a discrete convolution: f * g(z,y) =
> i fij9z—iy—j- 1t is easy to check that dx f = fxd =
f for all f (in fact, W is the Green function associated
to problem (3.27)).

Let us now consider u = n x W3 ie. u = Zi,j Ui,

with u; ;(z,y) = n;jWs_iy—j. wu is the solution of
problem(3.27). If h has zero mean, then (Vu, Vh)y =
(nx VW,Vh)y = (VW,n x Vh)y = (§,n * h)x =
(n % 0,h)x = (n,h)x (we have used the fact that
(nxa,b)x = (a,n *b)x where n;; = —n; ;). From
Proposition 3.4 , we know that [|n||_1,2 = ||[Vu|l2. We
notice that Vu = n x VIW. Hence:
i Vuil? = (nx VIW,n« VW)y = (n,nx W)y =
Ek,l ngg nox W(k,1) , e E” |Vu,~,j|2 =
D et 20 i Wit = 204 5 oy Wi i Wi
And thus:

E (Z |Vu,-,j|2>
2

As the n;; are independant, we have E (n;;ng;) =
E(n;;)E(nk;) whenever (i,j) # (k,1). Moreover,
E(n; ;) =0, and E(n} ;) = 0.

i,3,k,1

Z Wi—ii—; E (

VAL

E (Z Wk—z’,l—j”i,j”k,l)

M4, Mk,1)

Hence: E (Ei’j |Vu,-,j|2) =03, Wi—ij—j- Wethus
get:

E Z |Vu,-7j|2 = N20'2W070 (329)

]
We can also observe that: Y, |[VW;;[> =
(VW,VW)y = (6,W)x = Wyo. So we can rewrite

(3.29): E(||Vull?) = N?0?||VW|3 (and from Propo-
sition 3.4 we know that [|Vully = ||[n]|-1,2).

Step 2: We now want to compute E(||n|%). We
have: |[|n|l% Yi(nig)?.  Hence E(|n[%) =
Zi,jE((ni,j)z). And we get: E(||n]|%) = NZo2.
We then get the result of Proposition 3.5 with C' =
VWIS = Wo,0 = [I8]|24 -

Remark: Computation of the constant C of
Proposition 3.5 Let us denote by mgs the mean of
4, and by 0 = § — ms. From (3.28), we get that:

AW = —4. So formally, we can write W = —A~1(4).

We have shown that C = [|§]|2, , = [|[VW|3. We thus
have C = (VA1(§),VA'(4)y = (=6,A ().
There remains to compute A~!(§). This can easily be
done with the Discrete Fourier Transform (DFT). We
recall that the DFT of a given discrete image (f(m,n))
0<m<N-1land 0 < n < N —1)is given by
0<p<N-1and0<g<N-1):

F(f)(p,q) = F(p,q) =

oo f(m,n)emin/Npme

(3.30)
—j(2n/N)qn

N—-1
Em:ﬂ

and the inverse transform is:

1 N—-1N-—
_ - Z Z p q e] 27r/N)pmej(27r/N)qn
T N2
p=0 ¢q=0

_

(3.31)

Moreover, we also have || F(f)||% = N?||fll% and
(F(f), F(9)x = N*(f,9)x-

Let us remark that F(6)(p,q) = 1 Vp, and that
F(0)(p,q) =0 if p=¢q =0 and 1 otherwise.

We have Af(m,n) = f(m+1,n) + f(m —1,n) +
flm,n+1)+ f(m,n —1) —4f(m,n). Standard com-
putations lead to:

F(Af)(pqa) =
2 (cos (3p) + cos (3Fq) — 2) F(f)(p,q)

We deduce that, if f has zero mean, then for (p,q) #
(0,0)

(3.32)

FAf)pa) =
p)+cos(2F q)_Q)f(f)(pa q)

(3.33)

2(cos(



Table 3: Values of v/C = ||6]| 12 = ||[VW||x

Tmage size | 162 | 327 [ 642 | 1287 | 2562

512Z | 10242 | 20482 | 40962 | 81922 | 163842

VC 0.69 | 0.77 | 0.84 | 0.91 | 0.97

1.01 1.07 1.12 1.17 1.22 1.26

Table 4: Numerical computations with 1000 images of white gaussian noise n with standard deviation equal to

1 (for the X norm and the ||.||-1,2 norm)
Tmage size 167 | 327 | 647 | 1287 [ 256° | 5127
E([[n][x) 16.0 | 32.0 | 64.0 | 128 | 256 | 512
VVar(nllx) | 0.71 [ 0.69 [ 0.72 [ 0.73 | 0.73 | 0.70
E([[n]=1,2) 112 | 247 | 54 | 116 | 247 | 523
VVar(|n]|—1,2) | 097 | 1.8 | 3.3 6.0 12 22
ol 1070 [ 0.77 [ 0.84 | 0.91 [ 0.96 | 1.02
Hence F(A~16)(0,0) = 0 and if (p,q) # (0,0): the experimental mean and and also the experimental
1 standard deviation. The values of % of Ta-
1z _ -1,
F(A™0)(pq) = 2 (cos (2Zp) + cos (%£q) - 2) ble 4 fit the values of v/C of Table 3, as expected from
(3.34) Proposition 3.5. But the experimental standard devi-
so that ations of these norms do not have the same behaviour:

C=—(6,A")x =
1 1
N L (p.0)#00) 203 cor(Fn)reos(Ta))  O3D)

We have computed this way the constant C' for dif-
ferent image sizes (see Table 3).

Table 4 confirms the results of Table 3. To fill in Ta-
ble 4, for each size (from 16*16 to 512*512), we have
simulated 1000 images of white Gaussian noise with
standard deviation ¢ equal to 1.0 (to normalize our ex-
periment). Then we have computed the X norm and
the ||.]|=1,2 norm of each image. We have computed

3.7 An algorithm to solve the Osher-
Solé-Vese model

We come back here to the model proposed by Osher-
Solé-Vese in [18]. We recall that the considered prob-
lem is:

inf (J(u) + %Ilf - u||21,2) (3.36)

The following result holds:

the standard deviation of the X remains almost con-
stant, whereas the standard deviation of the |.||_12
norm seems to be an increasing function of the size of
the image. Nevertheless, the standard deviation of the
[|]l=1,2 norm seems to increase slower then its mean,
and as soon as the size of the image is large enough,
the standard deviation remains small with repect to
the mean (which can therefore be considered as a quite
good estimate of the ||.||—1,2 norm).

Table 5 shows the results we get for the same ex-
periment with the TV and the E norm (we recall that

J(f) = fllrv).

Proposition 3.6. If 1 is a solution of problem (3.36),
then o = A1 (”;)\f) s a solution of the dual problem:

e (A : *
it (FIV0l —~ (Fox + @) @30
Proof. There are many ways to show this (see [11]).

For instance, one may reproduce the proof of Propo-
sition 2.3 given in [7]. Thanks to Proposition 3.4, we

Table 5: Numerical computations with 1000 images of white gaussian noise n with standard deviation equal to

1 (for the TV norm and the E norm)

Tmage size | 162 | 322 | 642 1282 2562 5122
E(J(n)) 392 | 1670 | 6 920 | 28 100 | 113 000 | 455 000
VVar(J(n)) | 20 43 90 180 360 690
E([n][z) 2.81 | 359 | 3.63 | 3.98 4.30 4.59
VVar(|nl[z) | 040 | 034 | 032 | 0.32 0.28 0.26




Proposition 4.7.

Original image f

u [4] (A = 0.5)

uosv (A =1000)

v [4] (u = 140)

I

vosv

il

Figure 6: Decomposition (the parameters are tuned so that both vosy and the v component got with the

algorithm of [4] have the same L? norm)

have || f—ul® ; 5 = (= f+u, A~ (f—u))x. If uis a min-
imiser of (3.36), then: 0 € —A~! (%) +0J(u), i.e.
AL (%) € 0J(u). Hence u € 8J* (A‘l (“;—f)),
ie: 0e 3% — L4197 (Afl (%)) We then set
v=A"1 (%), and we get: 0 € —Av—{+ $0J* (v).
v is thus a solution of problem (3.37).

Algorithm Thanks to Proposition 3.6, we have 4 =
[ + AA%. Hence, to compute 4, we just need to com-
pute ¥ solution of problem (3.37). As J* is given by
(2.15), 0 is the solution of the following problem:

min {%HVdiv (p)||3 + (V£,p)y : p such that

Ipij| <1Vi,j=1,...,N} (3.38)

4 Minimization of dual norms

4.1 Some convex analysis

Let F be a proper lower semi-
continuous convez function. Then the two following
statements are equivalent:

1. @ is a solution of

min (F(u) ollf - u||’;}) (4.40)

By using the same arguments as in [7], one sees that
this problem can be numerically solved by a fixed point
method: p° =0, and

w1 _ Piy = T(V(Adly (") + f/N))i;
Pid = T 7V (adv () + /0)ay]

(3.39)

And as in [7], we show that if 7 is small enough,
[+ AAdivp™ — 4 as n — oo.

Numerical results Figure 7 is to be compared with
Figure 1. We can see that as a denoising algorithm, the
OSV model seems to outperforms both the ROF model
and the algorithm of [4]. Figure 6 shows a comparison
between the OSV model and the algorithm of [4]. As a
decomposition algorithm (that is as an algorithm which
splits a given image into a geometrical component and
an oscillatory component), the algorithm of [4] seems
to outperform the OSV model.

2. W= f—14 is a solution of

min (/) + g57 - ullk) @)

Moreover, if F' is 1 homogeneous (this is the case when
F is a semi norm), then F* is the indicator function
of a closed convex set K.



Noisy image f (o = 35)

Restored image (A = 70.0)

Noise

Figure 7: Denoising stripes with the Osher-Sole-Vese model

Examples
1. If F(u) = J(u) (defined by (1.1)), then
F*(w) = X{o / Iolle <1y (w)-
2. If F(u) = ||u|lg (defined by (1.2)), then
F*(w) = X{v / Jw)<13(w)-
3. If F(u) = ||u||-1,p, then

F*(w) = X{v / Vo <1} (W) (4.42)

4. If F(u) = ||u||B% . then
F(w) = Xqo / ol pos, _ <13(®).

Proof. (of Proposition 4.7). This is a standard dual-
ity result for variational problems [11]. 4 is a solution
of (4.40) if and only if 0 € (1/X)(@ — f) + OF (a), i.e if
and only if (1/A)(f — @) € OF(a), which is equivalent
tod € 9F* (552),ie0 € f—a— f+0F (L52),
which precisely means that w = f — @ is a solution of
(4.41).

4.2 Application to u + v models

Let us now consider a functional of the form:
1
min (F(u) +oyllf —u— o|% + L(v)) (4.43)

where F' and L are two convex functions. A natu-
ral algorithm to minimize such a functional consists in
minimizing succesively with respect to each variable,
that is to solve sucessively the two following problems:

min (F(u) + %llf —u— v||§() (4.44)

1
min (illf —u—vl% + L(v)) (4.45)
Let us assume that F(u) = J(u) defined by (1.1).
We will consider several possibilities for the function
L:

L(v) = pllv]|-1,p (4.46)
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Comments: Using Proposition 4.7, one sees that o is
a solution of problem (4.45) if and only if & = f—u—17
is a solution of the problem:

min (L*(w) + %Hf —u- w||§() (4.47)

e If p = 2 in (4.46), then using (4.42) we see
that the minimization of (4.45) amounts to a
Tikhonov regularization with H' penalization
(and one knows that such a regularization is not
a good choice in image processing since it does
not preserve edges).

e If p = 1 in (4.46), then using (4.42) we see that
the minimization of (4.45) amounts to a Lipschitz
regularization of the gradient: this is not a good
choice in image processing either.

e More generally, if p € [1, +00), we see that such a
minimization smoothes too much the geometrical
part of the image.

Conclusion If one wants to minimize a functional
like (4.43) to capture oscillating patterns, then such
considerations are in favor of the use of the G norm, as
advocated in [17]. Even if such a norm is much more
complicated to compute (especially comparing with the
||]|=1,2 norm), it seems worth to use it.

5 A new u+ v algorithm

5.1 Principle

In [17], the author proposes to minimize the following
functional:

Jinf () +Bllole) (5.48)



Due to the E = 3301,00 norm, this problem cannot be
solved directly. We propose instead to minimize the

following functional:

. * 1 2
it (9004 B/ + 5l - u )
(5.49)
where B(v) = |[[v|lz; and therefore B*(w/d) =

X{|lw||z<s}- Furthermore, let us denote by

6Bg = Bp) = {w / [Jwl|z < 6} (5.50)

When X goes to 0, one can show that solving prob-
lem (5.49) gives a solution for (5.48) (using the same
arguments as in [4]). To minimize (5.49), we consider
the two following problems:

e v being fixed, we search for u as a solution of:

inf (J(u) b ollf —u- vn%() (5.51)

e 1 being fixed, we search for v as a solution of:

inf [|f—u—ol% (5.52)

vEIBE

From Proposition 2.3, we know that the solution of
(5.51) is given by:
@ =f—v—Pyp,(f —v). And the solution of (5.52) is
given by: 0 = Psp, (f — u).

To compute this last projection, we consider the
dual problem of (5.52):

(1 )
it (17— u-wlk+ ol ) 69

The solution of this problem & is obtained by a wavelet
soft-thresholding algorithm with threshold & (see [9]).
We write w = WST(f — u,6). And from proposi-
tion 4.7, we see that 0 = f —u — w.

5.1.1 Algorithm

1. Initialization:

ug =vg =0 (5.54)

2. Iterations:

Vnt1 = Pspy (f —un) = f —un —WST(f —ug,9)

(5.55)
Unt1 = f = Uny1 = Papo (f —vny1)  (5.56)

3. Stopping test: we stop if
max(|upt1 — Unl, [Vnt1 — vnl) <€ (5.57)

5.2 Mathematical analysis

We follow here [4]. The proofs of the results stated in
this subsection are the same as in [4]. The first point
we state is the convergence of the proposed algorithm.

Proposition 5.8. The sequence (un,v,) built in
(5.54)—(5.57) converges to (ug,ve) € X x X the unique
solution of problem (5.49).

To see the link between (5.48) and (5.49), we intro-
duce the following problem:

Jinf (T(w) + B*(v/9))

(5.58)
The next result states the link between (5.48) and
(5.58)

Proposition 5.9. Let us fiz 3 > 0 in problem (5.48).
Let (1,0) a solution of problem (5.48). We fixd = ||0||e
in (5.58). Then:

e (41,0) is also a solution of problem (5.58).

o Conversely, any solution (4,0) of (5.58) (with
0 = ||0||r) is a solution of (5.48).

To close the link between (5.48) and (5.49), we have
to check what happens when A\ goes to 0 in problem
(5.49).

Proposition 5.10. Let us fix § > 0 in (5.48). Set
6 = ||o|lg in (5.49) and (5.58). Let us denote by
(ux, ,vn,) the solution of problem (5.49) (with A = X\, ).
Then, when X\, goes to 0, any cluster point of (uy, ,vx, )
is a solution of problem (5.58).

5.3 Numerical results and comments

Choice of the parameters The parameter A con-
trols the L2 norm of the residual f —u—wv. The smaller
it is, the smaller the norm of the residual becomes. In
practice, we just need to set A small (in our experi-
ments, we have used A < 1: the L* norm of the resid-
ual is then smaller than 1.5 (and the gray values of our
images go from 0 to 255)).

The parameter ¢ represents the F norm of the v
component. Having a closer look at the algorithm, we
see that § is the threshold which is used in the wavelet
thresholding. In the case of denoising, we can then
use the classical threshold o/2log(N?2) where N? is
the size of the image [10, 14, 17]. We therefore choose
0 = o4/2log(N?). In fact, to get better results, we
have introduced a weighting parameter 7, and we set
d = noy/2log(N?). In practice,  is equal to 1 or
slightly smaller.

12



Noisy image f (o = 35)

Restored image (A = 0.5)

Noise

Figure 8: Denoising stripes (algorithm (5.54)—(5.57))

Comments This new algorithm appears to be a very
good denoising algorithm for textured images. Indeed,
it simultaneously minimizes the total variation of the
restored image and a Besov norm (which amounts to a
wavelet shrinkage). It benefits from the advantages of
both methods. One sees on Figure 9 that the restored
image has been more regularized with this new model
than with the classical wavelet thresholding. Figure 8
is to be compared with Figure 1 and Figure 7. In this
case, our new denoising algorithm clearly outperforms
the ROF model [19] or the algorithm of [4]. And it also
appears slightly better than the OSV model [18]. The
result of Figure 8 is particularly impressive because the
pattern and stripes are along the central directions of
the main wavelet directions (see also Figures 9, 10 and
12 for comparison).

And on Figure 10, one sees that the small stucture
of textures are better preserved than with the algo-

6 u+ v+ w model

6.1 Presentation

We propose to minimize the following functional:

inf  F(u,v, 6.59
(u,v,ltrul)eX3 (u v UJ) ( )

where
F(u,v,w) = (6.60)

J)+ T (2) + B (%) + Hllf —u—v-wlk

Proposition 6.11. (6.59) admits a solution (4,0, w).
Moreover, 4 and 0 + W are unique.

Proof. We split the proof into two steps:
Step 1: Existence

It is standard to check that F' is convex and coer-
cive on X x X x X. Hence we deduce the existence of
a minimizer (4, 0,w) (see [6] for further details)
Step 2: Uniqueness of 4 and 0 + w:
To get this result, we first remark that F is strictly
convex on X X uBg X dBEg, as the sum of a convex
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rithm of [4]. This is why this model is particularly well
suited to denoise textured images.

In [14, 13], the author also proposes to simulta-
neously combine the advantage of the total variation
minimization and wavelet thresholding. He introduces
a general framework which contains both these two ap-
proaches. Moreover, he can deal with other dictionar-
ies than wavelet bases. But the numerical approach is
completely different. He solves a penalization problem
which is more complicated.

Therefore, to construct a model which would de-
compose an image into three components, a first one
containing the geometrical information of the image,
a second one containing the texture, and a last one
containing the noise, it is then natural to consider the
three following norms: the total variation, the G norm,
and the E norm.

function and of a strictly convex function, except in
the direction (u,v,—u —v) . Hence it suffices to check
that if (4,9,@) is a minimizer of F then for ¢ # 0,
(G+th, 04+t0,w—t(4+0)) is not a minimizer of F. And
since F is convex, we can assume [t| < 1. The result is
obvious if ¥ + t0 € X\uBg or @ — t(4 + 0) € X\0Bg.
Let us show that if 0+t0 € pBg and Ww—t(4+0) € 6B,
then the result is still true. Indeed, we have in this case
(since [t| < 1):

~

F(4+ ta,0 + t0,w — t(G+ 0)) = F(4,0,0) + tJ(4)

(6.61)
By contradiction, let us assume that there exists ¢ # 0
such that @ — #(i + ) € dBg.

F(0+ ta, + to,0 — t(a +0)) < F(4,0,%) (6.62)
As (4,0, w) minimizes F, (6.62) is an equality. From
(6.61), we deduce that J(@) = 0 (since # # 0). There
exists therefore v € R such that for all (¢, j), 4;; = .

1. If v = 0, then @ = 0. Thus (& + td, % + 6, —
i +9)) = (a,0 + 0,0 — 0).
2. If ¥ # 0, then @ — #(4 + ©) cannot belong to
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0BEg since its mean is not 0. This contradicts our
assumption.

To solve (6.59), we consider the three following
problems:

e v and w being fixed, we search for u as a solution
of:

inf (J(u) b ollf —u-v- w||§) (6.63)

e y and w being fixed, we search for v as a solution
of:

inf [|f—u—v—wlk (6.64)

veEuBg

e u and v being fixed, we search for w as a solution
of:

inf ||f—u—v—w|% (6.65)

wEIBE

From Proposition 2.3, we know that the solution of
(6.63) is given by:
4@ =f—v—w— Pyp,(f —v—w). The solution of
(6.64) is simply given by: ¥ = P,p,(f — v — w). And
remembering Section 5, the solution of (6.65) is given
by: W = Psp,(f—u—v) = f—u—v—WST(f—u—v,d),
where WST(f —u — v,0) stands for the wavelet soft-
thresholding of f — u — v with threshold §.

6.2 Algorithm

1. Initialization:

Ug = Vg = wWo = 0 (6.66)
2. Iterations:
Wn41 Pspg (f — Up — 'Un) (6'67)
= f—up—v, —WST(f —up —vy,9)
Un+1 = L'uBg (f = un — wnq1) (6.68)

Unt1 = f—Unt1 —Wnt1 — PaBg (f —Vng1 —Wno1)
(6.69)

3. Stopping test: we stop if

max([tunt1 — Unl, [Vni1 — Vnl, [Wni1 — wy]) <€
(6.70)

Proposition 6.12. The sequence (uy,vn,wy) is such
that u, converges to 4 € X, and if (0,w) is a clus-
ter point of (vn,wy,) then (4,0,%) is a minimizer of
(6.59).

Proof. We first remark that, as we solve successive
minimization problems, we have:

F(un,vn,wn) > F(un,vn,wn+1)
F(un,vn+1,wn+1)

F(uni1,Vn41,Wne1) (6.71)

vV v

In particular, the sequence F'(uy, vy, w,) is nonin-
creasing. As it is bounded from below by 0, it thus
converges in R. We denote by m its limit. We want to
show that

inf

F(u,v, w)
(u,v,w)EX XX XX

m = (6.72)

Without any restriction, we can assume that, Vn,
(Un, vn,wn) € X X pBg X 6Bg. As F is coercive
and as the sequence F(un,vn,w,) converges, we de-
duce that the sequence (un,vn,wp) is bounded in
X X pBg x dBg. We can thus extract a subse-
quence (up, , Un,,Wn, ) which converges to (4,0,w) as
ny — +o0, with (4,9,w) € X X uBg X § Bg. Moreover,
we have, for all ny € N and all w in X:

F(un,, Vng s Wnpt1) < Fun,,Vn,,w) (6.73)
We also have, for all ny, € N and all v in X:
Fun,,Vnp+1;Wnit1) < Fun,,v,wn, 41) (6.74)
and for all ny € N and all v in X:
F(un,,Vn,,Wn,,) < F(u,vn,,Wn,) (6.75)

Let us denote by @ a cluster point of (wp,41)-
Considering (6.71), we get (since F' is continuous on
X x p,BG X (SBE)

m = F(4,0,w) = F(4,0,d) (6.76)

By passing to the limit in (6.67), we get: W =
Psp,.(f — 4 — 0). But from (6.76), we know that:
|f —4—0—w| =|f—1—9—w|. By uniqueness
of the projection, we conclude that @w = w. Hence
Wnp+1 — W.

Let us denote by ¥ a cluster point of (vn,4+1). In
the same way as above, we can show that ¥ = ¢. Hence
Unp+1 — 0.

By passing to the limit in (6.73) (F is continuous
on X x uBg X dBg), we therefore have for all w:

F(a,d,%) < F(ii, 9, w) (6.77)

By passing to the limit in (6.74) (F is continuous on
X X uBg x dBg), we therefore have for all v:

F(a,6,%) < F(ii,v,0) (6.78)
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And by passing to the limit in (6.75), for all u:
F(i,0,w) < F(u,?,w) (6.79)

(6.77), (6.78) and (6.79) can respectively be rewrit-
ten:

F(i,8,%) = inf F(d,5,w) (6.80)
w

F(a,0,) = inf F(i,v,) (6.81)

F(it,0,) = inf F(u,9,1) (6.82)
u

But, from the definition of F(u,v,w), (6.80) is
equivalent to (see [11]):

0Oe—-f+a+0+w+A0B* (%) (6.83)

and (6.81) to
0€—f+11+@+u7+)\6J*(%> (6.84)

and (6.82) to
0O —f+a4+0+w+ A0J (1) (6.85)

The subdifferential of F' at (4,9, w) is given by:

—fH+a+0+w+NJ(Q)

—f A+ D+ B+ NDT* (ﬁ)

—f+a+b+®d+AB* (L)
(6.86)

And thus, according to (6.85), (6.84) and (6.83), we
have:

0
0 | € 0F(a,0,w) (6.87)
0
which is  equivalent to: F(a,0,w) =
inf (y y,wyexs F(u,v,w) = m. Hence the whole se-

quence F(uy,v,,w,) converges towards m the mini-
mum of F on X X uBg X d Bg. From Proposition 6.11,
we deduce that the sequence (u,) converges to @& and
that (v, + wy) converges to ¥ + @ when n tends to
+00.
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Figure 12: Barbara image (A = 1.0, g = 30, n = 0.6, Daubg)
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