Image decomposition Application to SAR images

Jean-François Aujol^{1,2} *, Gilles Aubert¹, Laure Blanc-Féraud², and Antonin Chambolle³

Laboratoire J.A.Dieudonné, UMR CNRS 6621 Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France {aujol,gaubert}@math.unice.fr

² ARIANA, projet commun INRIA/UNSA/CNRS

INRIA Sophia Antipolis, 2004, route des Lucioles, BP93, 06902, Sophia Antipolis Cedex, France {Jean-Francois.Aujol,Laure.Blanc_Feraud}@sophia.inria.fr

3 CEREMADE, CNRS UMR 7534

Université Paris IX - Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France antonin.chambolle@ceremade.dauphine.fr

Abstract. We construct an algorithm to split an image into a sum u+v of a bounded variation component and a component containing the textures and the noise. This decomposition is inspired from a recent work of Y. Meyer. We find this decomposition by minimizing a convex functional which depends on the two variables u and v, alternatively in each variable. Each minimization is based on a projection algorithm to minimize the total variation. We carry out the mathematical study of our method. We present some numerical results. In particular, we show how the u component can be used in nontextured SAR image restoration.

Key-words: Total variation minimization, BV, texture, classification, restoration, SAR images, speckle.

1 Introduction

1.1 Preliminaries

Image restoration is one of the major goals of image processing. A classical approach consists in considering that an image f can be decomposed into two components u+v. The first component u is well-structured, and has a simple geometric description: it models the homogeneous objects which are present in the image. The second component v contains both textures and noise. An ideal model would split an image into three components u+v+w, where v should contain the textures of the original image, and w the noise.

In Section 1, we begin by recalling some models proposed in the literature. Then our model is introduced in Section 2. We give a powerful algorithm to compute the image decomposition we want to get. We carry out the mathematical

^{*} partially supported by the GdR-PRC ISIS

study of our model in Section 3. We then show some experimental results. In Section 4, we give an application to SAR images, the u component being a way to carry out efficient restoration.

1.2 Related works

Rudin-Osher-Fatemi's model: Images are often assumed to be in BV, the space of functions with bounded variation (even if it is known that such an assumption is too restrictive [1]). We recall here the definition of BV:

Definition 1. $BV(\Omega)$ is the subspace of functions $u \in L^1(\Omega)$ such that the following quantity is finite:

$$J(u) = \sup \left\{ \int_{\Omega} u(x) \operatorname{div}\left(\xi(x)\right) dx / \xi \in C_c^1(\Omega; \mathbb{R}^2), \|\xi\|_{L^{\infty}(\Omega)} \le 1 \right\}$$
 (1)

where $C_c^1(\Omega; \mathbb{R}^2)$ is the space of functions in $C^1(\Omega; \mathbb{R}^2)$ with compact support in Ω . $BV(\Omega)$ endowed with the norm $||u||_{BV} = ||u||_{L^1} + J(u)$ is a Banach space.

If $u \in BV(\Omega)$, the distributional derivative Du is a bounded Radon measure and (1) corresponds to the total variation $|Du|(\Omega)$.

In [2], the authors decompose an image f into a component u belonging to $BV(\Omega)$ and a component v in $L^2(\Omega)$. In this model v is supposed to be the noise. In such an approach, they minimize (see [2]):

$$\inf_{(u,v)\in BV(\Omega)\times L^2(\Omega)/f=u+v} \left(J(u) + \frac{1}{2\lambda} ||v||_{L^2(\Omega)}^2\right)$$
 (2)

In practice, they try to compute a numerical solution of the Euler-Lagrange equation associated to (2). The mathematical study of (2) has been done in [4].

Meyer's model: In [3], Y. Meyer points out some limitations of the model developed in [2]. He proposes a variant which he believes is more adapted:

$$\inf_{(u,v)\in BV(\mathbb{R}^2)\times G(\mathbb{R}^2)/f=u+v} (J(u) + \lambda ||v||_G)$$
(3)

The Banach space $G(\mathbb{R}^2)$ contains signals with large oscillations, and thus in particular textures and noise. We give here the definition of $G(\mathbb{R}^2)$.

Definition 2. $G(\mathbb{R}^2)$ is the Banach space composed of the distributions f which can be written

$$f = \partial_x g_1 + \partial_y g_2 = \operatorname{div}(g) \tag{4}$$

with g_1 and g_2 in $L^{\infty}(\mathbb{R}^2)$. On G, the following norm is defined:

$$||v||_{G} = \inf \left\{ ||g||_{L^{\infty}(\mathbb{R}^{2})} = \underset{x \in \mathbb{R}^{2}}{\operatorname{ess \,sup}} |g(x)| / v = \operatorname{div}(g), \ g = (g_{1}, g_{2}), \right.$$

$$g_{1} \in L^{\infty}(\mathbb{R}^{2}), g_{2} \in L^{\infty}(\mathbb{R}^{2}), |g(x)| = \sqrt{|g_{1}|^{2} + |g_{2}|^{2}}(x) \right\}$$
(5)

In the space G, very oscillating functions have a small norm (see [3]) (and large oscillations are linked with textures and noises).

Vese-Osher's model: L. Vese and S. Osher have first proposed an approach for the resolution of Meyer's program. They have studied the problem (see [5]):

$$\inf_{(u,v)\in BV(\Omega)\times G(\Omega)} \left(\int |Du| + \lambda ||f - u - v||_2^2 + \mu ||v||_{G(\Omega)} \right)$$
 (6)

where Ω is a bounded open set. To compute their solution, they replace the term $\|v\|_{G(\Omega)}$ by $\|\sqrt{g_1^2+g_2^2}\|_p$ (where $v=\operatorname{div}(g_1,g_2)$). It approximates (6) when p goes to $+\infty$. For numerical reasons, the authors use the value p=1 and they claim they did not see any visual difference when they used larger values for p. Then they formally derive the Euler-Lagrange equations. They report good numerical results.

These two authors, together with A. Solé, have proposed another approach to this problem in [6], where they propose a more direct algorithm in the case $\lambda = +\infty$ and p = 2.

2 Our approach

In this section we introduce our model. It is inspired from the formulation of [5]. We first present it in the continuous setting. Then we propose a discretization, and provide a mathematical study and an algorithm for the discretized model.

2.1 Presentation

We propose to solve the problem:

$$\inf_{(u,v)\in BV(\Omega)\times G_{\mu}(\Omega)} \left(J(u) + \frac{1}{2\lambda} \|f - u - v\|_{L^{2}(\Omega)}^{2} \right)$$
 (7)

where

$$G_{\mu}(\Omega) = \{ v \in G(\Omega) / \|v\|_G \le \mu \}$$
(8)

We recall that $\|v\|_G$ is defined by (5). The parameter μ plays the same role as the one in problem (6). The larger μ is, the more v contains information, and therefore the more u is averaged. The smaller λ is, the smaller the L^2 norm of the residual f - u - v is. We will render more precisely the link of our model with Meyer's one later. Let us introduce the following functional defined on $BV(\Omega) \times G(\Omega)$:

$$F(u,v) = \begin{cases} J(u) + \frac{1}{2\lambda} \|f - u - v\|_{L^{2}(\Omega)}^{2} & \text{if } v \in G_{\mu}(\Omega) \\ +\infty & \text{if } v \in G(\Omega) \backslash G_{\mu}(\Omega) \end{cases}$$
(9)

F(u,v) is finite if and only if (u,v) belongs to $BV(\Omega) \times G_{\mu}(\Omega)$. Problem (7) can thus be written:

$$\inf_{(u,v)\in BV(\Omega)\times G(\Omega)} F(u,v) \tag{10}$$

2.2 Discretization

We study (10) in the discrete case. We take here the same notations as in [7]. The image is a two dimensional array of size $N \times N$. We denote by X the Euclidean space $\mathbb{R}^{N \times N}$, and $Y = X \times X$. The space X will be endowed with the scalar product $(u, v)_X = \sum_{1 \le i, j \le N} u_{i,j} v_{i,j}$ and the norm $||u||_X = \sqrt{(u, u)_X}$. In Y, we use the Euclidean scalar product $(p, q)_Y = \sum_{1 \le i, j \le N} p_{i,j}^1 q_{i,j}^1 + p_{i,j}^2 q_{i,j}^2$ with $p = (p^1, p^2)$ and $q = (q^1, q^2)$ in Y. To define a discrete total variation, we introduce a discrete version of the gradient operator. If $u \in X$, the gradient ∇u is a vector in Y given by: $(\nabla u)_{i,j} = ((\nabla u)_{i,j}^1, (\nabla u)_{i,j}^2)$. with

is a vector in
$$Y$$
 given by: $(\nabla u)_{i,j} = ((\nabla u)_{i,j}^1, (\nabla u)_{i,j}^2)$. with $(\nabla u)_{i,j}^1 = \begin{cases} u_{i+1,j} - u_{i,j} & \text{if } i < N \\ 0 & \text{if } i = N \end{cases}$ and $(\nabla u)_{i,j}^2 = \begin{cases} u_{i,j+1} - u_{i,j} & \text{if } j < N \\ 0 & \text{if } j = N \end{cases}$

The discrete total variation of u is then defined by:

$$J(u) = \sum_{1 \le i, j \le N} |(\nabla u)_{i,j}| \tag{11}$$

We also introduce a discrete version of the divergence operator. We define it by analogy with the continuous setting by $\operatorname{div} = -\nabla^*$ where ∇^* is the adjoint of ∇ : that is, for every $p \in Y$ and $u \in X$, $(-\operatorname{div} p, u)_X = (p, \nabla u)_Y$. It is easy to check that:

$$(\operatorname{div}(p))_{i,j} = \begin{cases} p_{i,j}^1 - p_{i-1,j}^1 & \text{if } 1 < i < N \\ p_{i,j}^1 & \text{if } i = 1 \\ -p_{i-1,j}^1 & \text{if } i = N \end{cases} + \begin{cases} p_{i,j}^2 - p_{i,j-1}^2 & \text{if } 1 < j < N \\ p_{i,j}^2 & \text{if } j = 1 \\ -p_{i,j-1}^2 & \text{if } j = N \end{cases}$$
(12)

We are now in position to introduce the discrete version of the space G.

Definition 3.

$$G^{d} = \{ v \in X \mid \exists g \in Y \text{ such that } v = \operatorname{div}(g) \}$$
 (13)

and if $v \in G^d$:

$$||v||_{G^d} = \inf \{ ||g||_{\infty} / v = \operatorname{div}(g),$$

$$g = (g^1, g^2) \in Y, |g_{i,j}| = \sqrt{(g_{i,j}^1)^2 + (g_{i,j}^2)^2} \}$$
(14)

where $||g||_{\infty} = \max_{i,j} |g_{i,j}|$.

Moreover, we will denote:

$$G_{\mu}^{d} = \left\{ v \in G^{d} / \|v\|_{G^{d}} \le \mu \right\} \tag{15}$$

We notice that

$$J(u) = \sup_{v \in G_1^d} (v, u)_X \tag{16}$$

and

$$||v||_{G^d} = \sup_{u \in X, J(u) \le 1} (u, v)_X \tag{17}$$

Proposition 1. The space G^d identifies with the following subspace:

$$X_0 = \{ v \in X / \sum_{i,j} v_{i,j} = 0 \}$$
 (18)

Proof: Choose $v \in G^d$. There exists $g \in Y$ such that: $v = \operatorname{div}(g)$. But $\sum_{i,j} (\operatorname{div} g)_{i,j} = (-\nabla^* g, 1)_Y = (g, \nabla 1)_X = 0$ i.e. $v \in X_0$. Hence $G^d \subset X_0$.

Conversely, let $v \in X_0$. Since the kernel of ∇ is the constant images, i.e. the vectors $x \in X$ such that $x_{i,j} = x_{i',j'}$ for all i,j,i',j', it is clear that a discrete Poincaré inequality holds: $\|x - \frac{1}{N^2} \sum_{i,j} x_{i,j} \|_X \le c \|\nabla x\|_Y$. Hence one shows easily that the problem $\min_{x \in X} A(x)$, with $A(x) = \|\nabla x\|_Y^2 + 2(x,v)_X$, has a solution. This solution satisfies A'(x) = 0, that is, $-2 \text{div}(\nabla x) + 2v = 0$. Hence $v = \text{div}(\nabla x) \in G^d$, and we conclude that $X_0 \subset G^d$.

The discretized functional associated to (9), defined on $X \times X$, is given by:

$$F(u,v) = \begin{cases} J(u) + \frac{1}{2\lambda} \|f - u - v\|_X^2 & \text{if } v \in G_\mu^d \\ +\infty & \text{if } v \in X \backslash G_\mu^d \end{cases}$$
 (19)

The problem we want to solve is:

$$\inf_{(u,v)\in X\times X} F(u,v) \tag{20}$$

2.3 Total variation minimization as a projection

Introduction: We recall that the Legendre-Fenchel transform of J is:

$$J^*(v) = \sup_{u} ((u, v)_X - J(u))$$
 (21)

Since here J defined by (1) is homogeneous of degree one (i.e. $J(\lambda u) = \lambda J(u) \, \forall u$ and $\lambda > 0$), it is then standard (see [8]) that J^* is the indicator function of some closed convex set, which turns out to be the set G_1^d defined by (15):

$$J^*(v) = \chi_{G_1^d}(v) = \begin{cases} 0 & \text{if } v \in G_1^d \\ +\infty & \text{otherwise} \end{cases}$$
 (22)

This can be checked out easily (see [7] for details). In [7], A. Chambolle proposes a nonlinear projection algorithm to minimize the total variation. The problem is:

$$\inf_{u \in X} \left(J(u) + \frac{1}{2\lambda} \|f - u\|_X^2 \right) \tag{23}$$

The following result is shown:

Proposition 2. The solution of (23) is given by:

$$u = f - P_{G_{\bullet}^d}(f) \tag{24}$$

where P is the orthogonal projector on G^d_{λ} (defined by (15)).

Algorithm: [7] gives an algorithm to compute $P_{G^d_{\lambda}}(f)$. It indeed amounts to finding:

$$\min \left\{ \|\lambda \operatorname{div}(p) - f\|_X^2 / p \in Y, |p_{i,j}| \le 1 \ \forall i, j = 1, \dots, N \right\}$$
 (25)

This problem can be solved by a fixed point method:

$$p^0 = 0 (26)$$

and

$$p_{i,j}^{n+1} = \frac{p_{i,j}^n + \tau(\nabla(\text{div}(p^n) - f/\lambda))_{i,j}}{1 + \tau|(\nabla(\text{div}(p^n) - f/\lambda))_{i,j}|}$$
(27)

In [7] is given a sufficient condition ensuring the convergence of the algorithm: **Theorem 1 (Thm 1 [7]).** Assume that the parameter τ in (27) verifies $\tau \leq 1/8$. Then $\lambda {\rm div}\,(p^n)$ converges to $P_{G^d}(f)$ as $n \to +\infty$.

2.4 Application to problem (20)

Since J^* is the indicator function of G_1^d (see (16,22)), we can rewrite (19) as

$$F(u,v) = \frac{1}{2\lambda} \|f - u - v\|_X^2 + J(u) + J^* \left(\frac{v}{\mu}\right)$$
 (28)

With this formulation, we see the symmetric roles played by u and v. And the problem we want to solve is:

$$\inf_{(u,v)\in X\times X} F(u,v) \tag{29}$$

To solve (29), we consider the two following problems:

• v being fixed, we search for u as a solution of:

$$\inf_{u \in X} \left(J(u) + \frac{1}{2\lambda} \|f - u - v\|_X^2 \right) \tag{30}$$

• u being fixed, we search for v as a solution of:

$$\inf_{v \in G_a^d} \|f - u - v\|_X^2 \tag{31}$$

From Proposition 2, we know that the solution of (30) is given by: $\hat{u} = f - v - P_{G^d_{\mu}}(f - v)$. And the solution of (31) is simply given by: $\hat{v} = P_{G^d_{\mu}}(f - u)$.

2.5 Algorithm

1. Initialization:

$$u_0 = v_0 = 0 (32)$$

2. Iterations:

$$v_{n+1} = P_{G_a^d}(f - u_n) (33)$$

$$u_{n+1} = f - v_{n+1} - P_{G^d}(f - v_{n+1})$$
(34)

3. Stopping test: we stop if

$$\max(|u_{n+1} - u_n|, |v_{n+1} - v_n|) \le \epsilon \tag{35}$$

3 Mathematical results

In this section we carry out the mathematical study of the algorithm (32)–(35). We first show its convergence when λ is fixed. We then state more precisely the link of the limit of our model (when λ goes to 0) with Meyer's one.

3.1 Existence and uniqueness of a solution for (20)

Lemma 1. There exists a unique couple $(\hat{u}, \hat{v}) \in X \times G^d_{\mu}$ minimizing F on $X \times X$.

Proof: We split the proof into two steps.

Step 1: Existence

- 1. We first remark that the set $X \times G^d_\mu$ is convex, and then that F is convex on $X \times G^d_\mu$. We thus deduce that F is convex on $X \times X$.
- 2. It is immediate to see that F is continuous on $X \times G^d_\mu$. We then deduce that F is lower semi-continuous on $X \times X$.
- 3. Let $(u,v) \in X \times G^d_{\mu}$. We have $\|v\|_{G^d} \leq \mu$. Moreover, since X is of finite dimension, there exists $g \in X$ such that $v = \operatorname{div}(g)$ and $\|g\|_{L^{\infty}} = \|v\|_{G^d} \leq \mu$. We deduce from (12) that $(N^2$ is the size of the image):

$$||v||_X = \le 4\mu N^2 \tag{36}$$

We recall that $X \times X$ is endowed with the Euclidean norm.

$$\|(u,v)\|_{X\times X} = \sqrt{\|u\|_X^2 + \|v\|_X^2}$$
(37)

Thus, if $\|(u,v)\|_{X\times X}\to +\infty$, then we get from (36) that $\|u\|_X\to +\infty$. We therefore deduce, since f is fixed, and since (36) holds, that $\|f-u-v\|_X^2\to +\infty$. And since $F(u,v)\geq \frac{1}{2\lambda}\|f-u-v\|_2^2$, we get $F(u,v)\to +\infty$. Hence we deduce that F is coercive on $X\times G_\mu^d$. We therefore conclude that F is coercive on $X\times X$.

We deduce the existence of a minimizer (\hat{u}, \hat{v}) .

Step 2: Uniqueness

To get the uniqueness, we first remark that F is strictly convex on $X \times G^d_\mu$, as the sum of a convex function and of a strictly convex function, except in the direction (u,-u). Hence it suffices to check that if $(\hat u,\hat v)$ is a minimizer of F then for $t \neq 0$, $(\hat u + t\hat u,\hat v - t\hat u)$ is not a minimizer of F. The result is obvious if $\hat v - t\hat u \in X \setminus G^d_\mu$. Let us show that if $\hat v - t\hat u \in G^d_\mu$ then the result is still true. Indeed, if $\hat v - t\hat u \in G^d_\mu$, we have:

$$F(\hat{u} + t\hat{u}, \hat{v} - t\hat{u}) = F(\hat{u}, \hat{v}) + (|1 + t| - 1)J(\hat{u})$$
(38)

By contradiction, let us assume that there exists $\hat{t} \neq \{-2,0\}$ such that $\hat{v} - \hat{t}\hat{u} \in$ G^d_μ and

$$F(\hat{u} + \hat{t}\hat{u}, \hat{v} - \hat{t}\hat{u}) \le F(\hat{u}, \hat{v}) \tag{39}$$

As (\hat{u}, \hat{v}) minimizes F, (39) is an equality. From (38), we deduce that $(|1 + \hat{t}| 1)J(\hat{u})=0$. And as $\hat{t}\neq\{-2,0\}$, we get that $J(\hat{u})=0$. There exists therefore $\gamma \in \mathbb{R}$ such that for all (i, j), $\hat{u}_{i, j} = \gamma$.

- 1. If $\gamma=0$, then $\hat{u}=0$. Thus $(\hat{u}+\hat{t}\hat{u},\hat{v}-\hat{t}\hat{u})=(\hat{u},\hat{v})$. 2. If $\gamma\neq0$, then $\hat{v}-\hat{t}\hat{u}$ cannot belong to G_{μ}^{d} since its mean is not 0 (see Proposition 1). This contradicts our assumption.

There remains to check what happens in the case when $\hat{t} = -2$. In this case, we have: $F(-\hat{u},\hat{v}+2\hat{u}) \leq F(\hat{u},\hat{v})$, i.e. $(-\hat{u},\hat{v}+2\hat{u})$ is also a minimizer of F. As we assume $\hat{v}+2\hat{u}\in G^d_\mu$, and as F convex (and as G^d_μ convex), we get:

$$F(0, \hat{u} + \hat{v}) \le \frac{1}{2} F(\hat{u}, \hat{v}) + \frac{1}{2} F(-\hat{u}, \hat{v} + 2\hat{u})$$
(40)

And we deduce that $(0, \hat{u} + \hat{v})$ is also a minimizer of F. But $F(0, \hat{u} + \hat{v}) = F(\hat{u}, \hat{v})$, i.e. $\frac{1}{2\lambda} \|f - \hat{u} - \hat{v}\|_X^2 = J(\hat{u}) + \frac{1}{2\lambda} \|f - \hat{u} - \hat{v}\|_X^2$. We thus get that $J(\hat{u}) = 0$, and we conclude as before. Hence there exists a unique couple $(\hat{u}, \hat{v}) \in X \times G_u^d$ minimizing F on $X \times X$.

Convergence of the algorithm

We show here that our algorithm gives asymptotically the solution of the discrete problem associated to (29).

Proposition 3. The sequence $F(u_n, v_n)$ built in Section 2.5 converges to the minimum of F on $X \times X$.

Proof: We first remark that, as we solve successive minimization problems, we have:

$$F(u_n, v_n) \ge F(u_n, v_{n+1}) \ge F(u_{n+1}, v_{n+1}) \tag{41}$$

In particular, the sequence $F(u_n, v_n)$ is nonincreasing. As it is bounded from below by 0, it thus converges in \mathbb{R} . We denote by m its limit. We want to show that

$$m = \inf_{(u,v) \in X \times X} F(u,v)$$
(42)

Without any restriction, we can assume that, $\forall n, (u_n, v_n) \in X \times G_u^d$. As F is coercive and as the sequence $F(u_n, v_n)$ converges, we deduce that the sequence (u_n, v_n) is bounded in $X \times G^d_\mu$. We can thus extract a subsequence (u_{n_k}, v_{n_k}) which converges to (\hat{u}, \hat{v}) as $n_k \to +\infty$, with $(\hat{u}, \hat{v}) \in X \times G^d_{\mu}$. Moreover, we have, for all $n_k \in \mathbb{N}$ and all v in X:

$$F(u_{n_k}, v_{n_k+1}) \le F(u_{n_k}, v) \tag{43}$$

and for all $n_k \in \mathbb{N}$ and all u in X:

$$F(u_{n_k}, v_{n_k}) \le F(u, v_{n_k}) \tag{44}$$

Let us denote by \bar{v} a cluster point of (v_{n_k+1}) . Considering (41), we get (since F is continuous on $X \times G_{\mu}^d$):

$$m = F(\hat{u}, \hat{v}) = F(\hat{u}, \bar{v}) \tag{45}$$

By passing to the limit in (33), we get: $\bar{v} = P_{G_{\mu}^d}(f - \hat{u})$. But from (45), we know that: $\|f - \hat{u} - \hat{v}\| = \|f - \hat{u} - \bar{v}\|$. By uniqueness of the projection, we conclude that $\bar{v} = \hat{v}$. Hence $v_{n_k+1} \to \hat{v}$. By passing to the limit in (43) (F is continuous on $X \times G_{\mu}^d$), we therefore have for all v:

$$F(\hat{u}, \hat{v}) \le F(\hat{u}, v) \tag{46}$$

And by passing to the limit in (44), for all u:

$$F(\hat{u}, \hat{v}) \le F(u, \hat{v}) \tag{47}$$

(46) and (47) can respectively be rewritten:

$$F(\hat{u}, \hat{v}) = \inf_{v \in X} F(\hat{u}, v) \tag{48}$$

$$F(\hat{u}, \hat{v}) = \inf_{u \in X} F(u, \hat{v}) \tag{49}$$

But, from the definition of F(u, v) (see (28)), (49) is equivalent to (see [8]):

$$0 \in -f + \hat{u} + \hat{v} + \lambda \partial J(\hat{u}) \tag{50}$$

and (48) to:

$$0 \in -f + \hat{u} + \hat{v} + \lambda \partial J^* \left(\frac{\hat{v}}{\mu}\right) \tag{51}$$

The subdifferential ∂F of F at (\hat{u}, \hat{v}) is given by:

$$\partial F(\hat{u}, \hat{v}) = \frac{1}{\lambda} \begin{pmatrix} -f + \hat{u} + \hat{v} + \lambda \partial J(\hat{u}) \\ -f + \hat{u} + \hat{v} + \lambda \partial J^* \left(\frac{\hat{v}}{\mu}\right) \end{pmatrix}$$
(52)

And thus, according to (50) and (51), we have:

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \partial F(\hat{u}, \hat{v}) \tag{53}$$

which is equivalent to: $F(\hat{u}, \hat{v}) = \inf_{(u,v) \in X^2} F(u,v) = m$. Hence the whole sequence $F(u_n, v_n)$ converges towards m, the unique minimum of F on $X \times G^d_\mu$. We deduce that the sequence (u_n, v_n) converges to (\hat{u}, \hat{v}) , the minimizer of F, when n tends to $+\infty$.

3.3 Link with Meyer's model

We examine here the link between the discrete model (29) and Meyer's problem. We first recall the discrete version of Meyer's problem:

$$\inf_{(u,v)\in X\times G^d/f=u+v} H_{\alpha}(u,v) \tag{54}$$

with

$$H_{\alpha}(u,v) = (J(u) + \alpha ||v||_{G^d})$$
(55)

The following result is straightforward:

Lemma 2. There exists a solution $(\hat{u}, \hat{v}) \in X \times G^d$ of problem (54).

Remark: We do not know if a uniqueness result holds for problem (54). We then recall problem (29):

$$\inf_{(u,v)\in X\times X} F_{\lambda,\mu}(u,v) \tag{56}$$

with

$$F_{\lambda,\mu}(u,v) = \frac{1}{2\lambda} \|f - u - v\|^2 + J(u) + J^* \left(\frac{v}{\mu}\right)$$
 (57)

Let us consider the problem

$$\inf_{(u,v)\in X\times X/f=u+v} J(u) + J^*\left(\frac{v}{\mu}\right) \tag{58}$$

One easily shows the next result:

Lemma 3. There exists a solution $(\bar{u}, \bar{v}) \in X \times X$ of problem (58).

Proposition 4. Let us fix $\alpha > 0$ in problem (54). Let (\hat{u}, \hat{v}) a solution of problem (54). We fix $\mu = \|\hat{v}\|_{G^d}$ in (58). Then:

- (\hat{u}, \hat{v}) is also a solution of problem (58).
- Conversely, any solution (\bar{u}, \bar{v}) of (58) (with $\mu = ||\hat{v}||_{G^d}$) is a solution of (54).

Proof: We split the proof into two steps.

Step 1:

We first want to show that (\hat{u}, \hat{v}) is a solution of (58) (with $\mu = \|\hat{v}\|_{G^d}$). As (\hat{u}, \hat{v}) is a solution of (54) (the existence of (\hat{u}, \hat{v}) is given by Lemma 2) and as $\|\hat{v}\|_{G^d} = \mu$, then \hat{u} is solution of

$$\inf_{u \in X/u = f - v, ||v||_{G^d} = \mu} J(u) + \alpha \mu \tag{59}$$

i.e. \hat{u} is solution of

$$\inf_{u \in X/u = f - v, ||v||_{G^d} = \mu} J(u) \tag{60}$$

Since the set $\{u \in X/u = f - v, \|v\|_{G^d} = \mu\}$ is contained in $\{u \in X/u = f - v, \|v\|_{G^d} \le \mu\}$, we have:

$$\inf_{u \in X/u = f - v, \|v\|_{G^d} = \mu} J(u) \ge \inf_{u \in X/u = f - v, \|v\|_{G^d} \le \mu} J(u)$$
(61)

By contradiction, let us assume that

$$\inf_{u \in X/u = f - v, \|v\|_{G^d} = \mu} J(u) > \inf_{u \in X/u = f - v, \|v\|_{G^d} \le \mu} J(u)$$
 (62)

Thus, there exists $v' \in X$ such that $\|v'\|_{G^d} < \mu$ and

$$J(f - v') < \inf_{u \in X/u = f - v, \|v\|_{G^d} = \mu} J(u)$$
(63)

Denoting by u' = f - v', we have: $J(u') + \alpha ||v'||_{G^d} < J(u') + \alpha \mu$. But since (\hat{u}, \hat{v}) is a solution of (54):

$$J(\hat{u}) + \alpha \|\hat{v}\|_{G^d} \le J(u') + \alpha \|v'\|_{G^d} < J(u') + \alpha \mu \tag{64}$$

Hence (we recall that $\|\hat{v}\|_{G^d} = \mu$), we get from (64) that $J(\hat{u}) < J(u')$. This contradicts (63). We conclude that (62) cannot hold. Hence:

$$\inf_{u \in X/u = f - v, ||v||_{G^d} = \mu} J(u) = \inf_{u \in X/u = f - v, ||v||_{G^d} \le \mu} J(u)$$
 (65)

From (60), we see that \hat{u} is solution of $\inf_{u \in X/u = f - v, ||v||_{G^d} \le \mu} J(u)$, i.e. \hat{u} is solution of

$$\inf_{u \in X/u = f - v} J(u) + J^* \left(\frac{v}{\mu}\right) \tag{66}$$

Hence (\hat{u}, \hat{v}) is also a solution of (58).

Step 2:

Let us now consider (\bar{u}, \bar{v}) a solution of (58) (the existence of (\bar{u}, \bar{v}) is given by Lemma 3). We can repeat the computations we made in Step 1. We get that \bar{u} is a solution of:

$$\inf_{u \in X/u = f - v, ||v||_{G^d} = \mu} J(u) + \alpha \mu \tag{67}$$

We therefore have: $J(\bar{u}) + \alpha \mu = J(\hat{u}) + \alpha \|\hat{v}\|_{G^d}$. But as (\bar{u}, \bar{v}) is a solution of (58), we have $\|\bar{v}\|_{G^d} \leq \mu$. Hence $J(\bar{u}) + \alpha \|\bar{v}\|_{G^d} \leq J(\hat{u}) + \alpha \|\hat{v}\|_{G^d}$. And since (\hat{u}, \hat{v}) is a solution of (54), we get that:

$$J(\bar{u}) + \alpha \|\bar{v}\|_{G^d} = J(\hat{u}) + \alpha \|\hat{v}\|_{G^d}$$
(68)

We thus conclude that (\bar{u}, \bar{v}) is a solution of (54).

In particular, we have thus shown that, when μ is correctly tuned, a solution of the limit problem (58) is in fact a solution of Meyer's problem (54).

3.4 Role of λ

We show here that problem (58) is obtained by passing to the limit λ goes to 0^+ in (56).

Proposition 5. Let us fix $\alpha > 0$ in (54). Let us assume that problem (54) has a unique solution (\hat{u}, \hat{v}) . Set $\mu = ||\hat{v}||_{G^d}$ in (56) and (58). Let us denote $(u_{\lambda}, v_{\lambda})$ the solution of problem (56). Then $(u_{\lambda}, v_{\lambda})$ converges to $(u_0, v_0) \in X \times X$ as λ goes to 0. Moreover, $(u_0, v_0) = (\hat{u}, \hat{v})$ is the solution of problem (58).

Remark: In the case when the solution of problem (54) is not unique, the result of Proposition 5 does not hold. We can just show that any cluster point of $(u_{\lambda_n}, v_{\lambda_n})$ is a solution of problem (58) and thus of (54)

Proof of Proposition 5: The existence of (\hat{u}, \hat{v}) is given by Lemma 3. The existence and uniqueness of $(u_{\lambda}, v_{\lambda})$ is given by Lemma 1.

Since $(u_{\lambda}, v_{\lambda})$ is the solution of problem (56), we have $v_{\lambda} \in G_{\mu}^{d}$, i.e. $||v_{\lambda}||_{G^{d}} \le \mu$. As we saw in the proof of Lemma 1, this inequality implies:

$$||v_{\lambda}||_X \le 4\mu N^2 \tag{69}$$

Since $(u_{\lambda}, v_{\lambda})$ is the solution of problem (56), we have:

$$F_{\lambda,\mu}(u_{\lambda}, v_{\lambda}) \le F_{\lambda,\mu}(f, 0) \tag{70}$$

which means

$$F_{\lambda,\mu}(u_{\lambda}, v_{\lambda}) \le J(f) \tag{71}$$

And the left hand-side of (71) is given by:

$$F_{\lambda,\mu}(u_{\lambda}, v_{\lambda}) = J(u_{\lambda}) + \frac{1}{2\lambda} \|f - u_{\lambda} - v_{\lambda}\|_{X}^{2} + J^{*}\left(\frac{v_{\lambda}}{\mu}\right) = J(u_{\lambda}) + \frac{1}{2\lambda} \|f - u_{\lambda} - v_{\lambda}\|_{X}^{2}$$
(72)

Hence $J(u_{\lambda}) + \frac{1}{2\lambda} ||f - u_{\lambda} - v_{\lambda}||_X^2 \leq J(f)$, and

$$||f - u_{\lambda} - v_{\lambda}||^2 \le 2\lambda J(f) \tag{73}$$

As $||v_{\lambda}||_X$ is bounded (from (69)), we conclude that if $\lambda \in [0; 1]$, u_{λ} is bounded by a constant C > 0 which does not depend on λ .

Consider a sequence (λ_n) which goes to 0^+ as $n \to +\infty$. Then, up to an extraction (since $(u_{\lambda_n}, v_{\lambda_n})$ is bounded in $X \times X$), there exists $(u_0, v_0) \in X \times X$ such that $(u_{\lambda_n}, v_{\lambda_n})$ converges to (u_0, v_0) . By passing to the limit in (73), we get: $||f - u_0 - v_0||_X = 0$, i.e. $f = u_0 + v_0$.

To conclude the proof of the proposition, there remains to show that (u_0, v_0) is a solution of problem (58). We first notice that as $\lambda > 0$, and since $||v_{\lambda}||_{G^d} \leq \mu$,

we get: $||v_0||_{G^d} \le \mu$. Let $(u, v) \in X \times X$ such that f = u + v. We have:

$$J(u) + J^* \left(\frac{v}{\mu}\right) + \frac{1}{2\lambda} \underbrace{\|f - u - v\|^2}_{=0}$$

$$\geq J(u_{\lambda_n}) + J^* \left(\frac{v_{\lambda_n}}{\mu}\right) + \frac{1}{2\lambda_n} \|f - u_{\lambda_n} - v_{\lambda_n}\|^2$$

$$\geq \underbrace{J(u_{\lambda_n}) + J^* \left(\frac{v_{\lambda_n}}{\mu}\right)}_{\to J(u_0) + J^* \left(\frac{v_0}{\mu}\right)}$$

Hence (u_0, v_0) is a solution of problem (58). And as we have assumed that problem (58) has a unique solution, we deduce that $(u_0, v_0) = (\hat{u}, \hat{v})$, i.e. (u_0, v_0) is the solution of problem (58).

4 SAR images restoration

4.1 Introduction

Synthetic Aperture Radar (SAR) images are strongly corrupted by a noise called speckle. A radar sends a coherent wave which is reflected on the ground, and then registered by the radar sensor [9]. When one cares with the reflection of a coherent wave on a coarse surface, then one can see that the observed image is degraded by a noise of large amplitude. This gives a speckled aspect to the image. That is why such a noise is called speckle.

Link with our approach: Contrary to the usual modeling in SAR, the noise in our model is considered to be additive: the image f is decomposed into a component u belonging to BV, and a component v in G. But it is to be noticed that our model is completely different from the classical additive models: in these, v is often considered to be a Gaussian white noise, and therefore has a constant variance all over the image. Here, v belongs to G, a space in which signals can have large oscillations but small norm. Moreover the variance of the oscillations of v may not be uniform on the whole image. Note that by considering u as the restored image (without speckle) we assume that there is no texture in the SAR image.

4.2 Results on synthetic images

Restoration: Figure 1 shows why for a SAR image the decomposition proposed by Meyer is very interesting. Indeed, one checks that the v component contains the speckle, and the u component can be regarded as a restoration of the original image (if it does not contain textures). It is difficult to make comparisons with other methods [10], since the main criterion remains the visual interpretation.

Nevertheless, the results we achieve appear promising in comparison with existing methods. And above all, our approach being a variational one, computation time are very short. With a processor of 800 MHz and 128 kByte of RAM, it takes less than one minute to deal with an image of size 256*256.

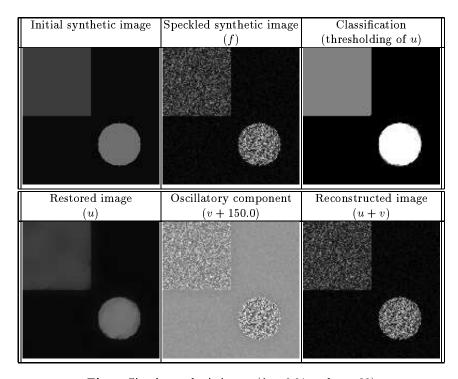


Fig. 1. Simple synthetic image ($\lambda = 0.01$ and $\mu = 80$)

4.3 Results on real images

We use SAR images of Bourges' area provided by the CNES. The reference image (also furnished by the CNES) has been obtained by amplitude summation. Image 2 shows the effect of parameter μ on the restoration process. The larger μ is, the more v contains information, and therefore the more u is averaged. According to the value of μ , we can thus get a more or less restored image, and also more or less of a smoother image.

5 Conclusion

In this article, we present a new algorithm to decompose a given image f into a component u belonging to BV and a component v containing the noise and



Fig. 2. Image of Bourges' area

the textures of the initial image. Our algorithm performs Meyer's program [3] when μ is suitably tuned. Moreover, we carry out the mathematical study of our model. We also show how the u component can be used for SAR image restoration. Further details about this work as well as comparisons with the standard BV filtering and with the Vese-Osher model [5] can be found in [11].

Acknowledgement: The authors would like to thank the French Space Agency CNES (Centre National d'Etudes Spatiales) and the French research center CES-BIO (Centre d'Etudes Spatiales de la Biosphère) for providing real SAR data extracted from the CD-ROM Filtrage d'images SAR (1999). Part of this work has been funded by GdR-PrC ISIS through the young researcher program.

References

- [1] L. Alvarez, Y. Gousseau, J.M. Morel: Scales in Natural Images and a Consequence on their Bounded Variation Norm. Scale-Space '99, Lectures Notes in Computer Science, 1682, (1999).
- [2] L. Rudin, S. Osher, E. Fatemi: Nonlinear total variation based noise removal algorithms. Physica D, 60, 259-268, (1992)
- [3] Yves Meyer: Oscillating patterns in image processing and in some nonlinear evolution equations. The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, (March 2001)
- [4] A. Chambolle, P.L. Lions: Image recovery via total variation minimization and related problems. Numerische Mathematik, 76, (3), 167–188, (1997)
- [5] Luminita A. Vese, Stanley J. Osher: Modeling textures with total variation minimization and oscillating patterns in image processing. UCLA C.A.M. Report 02-19 (May 2002)
- [6] S.J. Osher, A. Sole, L.A. Vese: Image decomposition and restoration using total variation minimization and the H⁻¹ norm. UCLA C.A.M. Report 02-57 (October 2002)
- [7] A. Chambolle: An algorithm for total variation minimization and applications. To appear in JMIV (2003).
- [8] I. Ekeland, R. Temam: Analyse convexe et problèmes variationnels. Dunod, Grundlehren der mathematischen Wissenschaften, second edition, 224, (1983)
- [9] Henderson Lewis: Principle and applications of imaging radar. J.Wiley and Sons, Manual of Remote Sensing, third edition, 2 (1998)
- [10] G. Franceschetti , R. Lanari: Synthetic aperture radar processing CRC press, Electronic engineering systems series, (1999)
- [11] J.F. Aujol , G. Aubert , L. Blanc-Féraud, A. Chambolle: Decomposing an image: Application to textured images and SAR images. Preprint (submitted)