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Abstract. We construct an algorithm to split an image into a sum
u + v of a bounded variation component and a component containing
the textures and the noise. This decomposition is inspired from a recent
work of Y. Meyer. We find this decomposition by minimizing a convex
functional which depends on the two variables u and v, alternatively in
each variable. Each minimization is based on a projection algorithm to
minimize the total variation. We carry out the mathematical study of our
method. We present some numerical results. In particular, we show how
the u component can be used in nontextured SAR image restoration.
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restoration, SAR images, speckle.

1 Introduction

1.1 Preliminaries

Image restoration is one of the major goals of image processing. A classical
approach consists in considering that an image f can be decomposed into two
components u + v. The first component u is well-structured, and has a simple
geometric description: it models the homogeneous objects which are present in
the image. The second component v contains both textures and noise. An ideal
model would split an image into three components u + v + w, where v should
contain the textures of the original image, and w the noise.

In Section 1, we begin by recalling some models proposed in the literature.
Then our model is introduced in Section 2. We give a powerful algorithm to com-
pute the image decomposition we want to get. We carry out the mathematical
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study of our model in Section 3. We then show some experimental results. In
Section 4, we give an application to SAR images, the u component being a way
to carry out efficient restoration.

1.2 Related works

Rudin-Osher-Fatemi’s model: Images are often assumed to be in BV, the
space of functions with bounded variation (even if it is known that such an
assumption is too restrictive [1]). We recall here the definition of BV:

Definition 1. BV (£2) is the subspace of functions u € L'(£2) such that the
following quantity is finite:

J(u) = sup {/QU(a?)diV (&(2))dz/€ € Co (2 R2), €]l 1= (o) < 1} (1)

where C1(£2;R?) is the space of functions in C1(2;R?) with compact support in
2. BV () endowed with the norm ||ullpv = ||ul|zr + J(u) s a Banach space.
If uw € BV(£2), the distributional derivative Du is a bounded Radon measure
and (1) corresponds to the total variation |Du|(£2).

In [2], the authors decompose an image f into a component u belonging to
BV (#2) and a component v in L?({2). In this model v is supposed to be the
noise. In such an approach, they minimize (see [2]):

. 1 2
(u,u)eBV(n)1>I<1£2(n)/f:u+v (J(u) + ﬁ”v””(m) )

In practice, they try to compute a numerical solution of the Euler-Lagrange
equation associated to (2). The mathematical study of (2) has been done in [4].

Meyer’s model: In [3], Y. Meyer points out some limitations of the model
developed in [2]. He proposes a variant which he believes is more adapted:

inf
() BV (RA S (&2) ) o (J(u) + Allvlle) (3)

The Banach space G(R?) contains signals with large oscillations, and thus in
particular textures and noise. We give here the definition of G(R?).

Definition 2. G(R?) is the Banach space composed of the distributions f which
can be written

f =091+ 9yg2 = div (g) (4)
with g1 and go in L°°(R?). On G, the following norm is defined:

lvllg = inf {Ilgllemz) = ess sup lg(z)| /v =div(g), 9= (91,92),
T

g1 € L*(R?), g2 € L=(R*), |g9(2)| = V]| + |92|2(x)} (5)

In the space G, very oscillating functions have a small norm (see [3]) (and
large oscillations are linked with textures and noises).



Vese-Osher’s model: L. Vese and S. Osher have first proposed an approach
for the resolution of Meyer’s program. They have studied the problem (see [5]):

inf D 12
() BV(2)xG(2) (/' ul+ANf - w ”||2+M||v||G(ﬂ)> (6)

where 2 is a bounded open set. To compute their solution, they replace the term
lvlla2) by Vg3 + 931l (where v = div (g1,92)). It approximates (6) when p
goes to +00. For numerical reasons, the authors use the value p = 1 and they
claim they did not see any visual difference when they used larger values for
p. Then they formally derive the Euler-Lagrange equations. They report good
numerical results.

These two authors, together with A. Solé, have proposed another approach
to this problem in [6], where they propose a more direct algorithm in the case
A =400 and p = 2.

2  Our approach

In this section we introduce our model.It is inspired from the formulation of [5].
We first present it in the continuous setting. Then we propose a discretization,
and provide a mathematical study and an algorithm for the discretized model.

2.1 Presentation

We propose to solve the problem:

J(w)+ = |If —u — v]2aq) (7)
(w3 )

inf
(u,v)EBV(2)xG,(£2)

where

Gu(2) ={v e G(2)/|lvllg < u} (8)

We recall that ||v||g is defined by (5). The parameter u plays the same role
as the one in problem (6). The larger p is, the more v contains information, and
therefore the more u is averaged. The smaller ) is, the smaller the L2 norm of
the residual f — u — v is. We will render more precisely the link of our model
with Meyer’s one later. Let us introduce the following functional defined on
BV () x G(2):

_ [ I) + 55llf —u—olFaq) ifv e Gu(R2)
F(u,v) = {-I—oo if v € G(2)\Gu(2) ©)
F(u,v) is finite if and only if (u,v) belongs to BV (£2) x G,(f2). Problem (7) can
thus be written:

inf F(u,v) (10)
(u,w)EBV(2)xG(£2)



2.2 Discretization

We study (10) in the discrete case. We take here the same notations as in [7].
The image is a two dimensional array of size N x N. We denote by X the
Euclidean space RV*Y  and Y = X x X. The space X will be endowed with
the scalar product (u,v)x = 321 <; j<n %i,jVi,; and the norm [jul|x = v/(u, u)x.
In Y, we use the Euclidean scalar product (p,¢)y = >_,; <y Piidi; + 0i 45,
with p = (p',p?) and q = (¢',4¢?) in Y. To define a discrete total variation, we
introduce a discrete version of the gradient operator. If u € X, the gradient Vu
is a vector in Y given by: (Vu):; = (Vu)};, (Vu)? ;). with

Uit1,5 — Ui, ifi< N Wi, j+1 — Usg,j5 lf] <N

1 _ 2 _
(Vu)ii = (o it = v 204 (Vui; =1 ifj=N
The discrete total variation of u is then defined by:

Jw)y=" > |(Vu)i,l (11)

1<ij<N

We also introduce a discrete version of the divergence operator. We define it
by analogy with the continuous setting by div = —V* where V* is the adjoint
of V: that is, for every p € Y and u € X, (—divp,u)x = (p, Vu)y. It is easy to
check that:

pij—pig; f1<i<N pi;—pi;q f1<j<N
(div (p))i; = q Pi,; if i=1 +4 77 if j=1 (12)
_pzl'—l,j if i=N _pzz,j—l if j=N

We are now in position to introduce the discrete version of the space G.
Definition 3.
Gi={veX [/3g€eY such that v =div(g)} (13)
and if v € G4:
lvllga = inf{llgllc / v = div(g),
9=(9"9%) € Vilgil = \/(gt,)* + (62,)°} (14)

where ||glloc = max,; [gi;|.
Moreover, we will denote:

G ={ve G/ |vllg: < u} (15)
We notice that
J(u) = sup (v,u)x (16)
vEG‘f
and
lvllga = sup  (u,v)x (17)

uweX,J(u)<1



Proposition 1. The space G? identifies with the following subspace:

Xo={veX /) v;=0} (18)

7

Proof: Choose v € G?. There exists g € Y such that: v = div (g). But > ;(divg)i; =
(-V*g,1)y = (9,V1)x =0i.e. v € Xy. Hence G¢ C X,.

Conversely, let v € Xj. Since the kernel of V is the constant images, i.e. the
vectors z € X such that x; ; = x5 for all 4, 5,4, ', it is clear that a discrete
Poincaré inequality holds: ||z — = > %ijllx < ¢||[Vzlly. Hence one shows
easily that the problem min,ex A(z), with A(z) = ||[Vz||3 + 2(z,v)x, has a
solution. This solution satisfies A’(z) = 0, that is, —2div (Vz) + 2v = 0. Hence
v =div(Vz) € G%, and we conclude that X, C G¢.

The discretized functional associated to (9), defined on X x X, is given by:

I+ xlf —u—v]kifve G
Flu,v) = {+oo if v e X\GY (19)
The problem we want to solve is:
inf  F(u, 20
('u.,'u)lélXXX (u U) ( )
2.3 Total variation minimization as a projection
Introduction: We recall that the Legendre-Fenchel transform of J is:
J*(v) = sup ((u,v)x — J(u)) (21)

Since here J defined by (1) is homogeneous of degree one (i.e. J(Au) =
AJ(u) Vu and A > 0), it is then standard (see [8]) that J* is the indicator
function of some closed convex set, which turns out to be the set G¢ defined
by (15):

0 ifveGY

+00 otherwise (22)

7(0) = xoy(0) = {

This can be checked out easily (see [7] for details). In [7], A. Chambolle
proposes a nonlinear projection algorithm to minimize the total variation. The
problem is:

. 1 2
it (7@ + 5517 - ulk) (23)
The following result is shown:

Proposition 2. The solution of (23) is given by:
u=f—Pga(f) (24)

where P is the orthogonal projector on G4 (defined by (15)).



Algorithm: [7] gives an algorithm to compute Pga (f)- It indeed amounts to
finding:

min {||Adiv (p) = flI% /p€Y , |piyl <1Vi,j=1,...,N} (25)
This problem can be solved by a fixed point method:
P’ =0 (26)

and )
et _ Pha + (VY (") — F/A),
W T4 |(V(div (p7) = f/A))is]
In [7] is given a sufficient condition ensuring the convergence of the algorithm:

Theorem 1 (Thm 1 [7]). Assume that the parameter T in (27) verifies T <
1/8. Then Adiv (p™) converges to Pga(f) asn — +00.

(27)

2.4 Application to problem (20)

Since J* is the indicator function of G¢ (see (16,22)), we can rewrite (19) as

1 )
Flu,o) = g5llf —u =l + 5w + 7 (2) (28)
With this formulation, we see the symmetric roles played by v and v. And the
problem we want to solve is:

inf F 29
(u,'u)lélXXX (U7v) ( )

To solve (29), we consider the two following problems:

e v being fixed, we search for u as a solution of:

. 1 2
inf (7@ + 517 - u = ol (30)
e 1 being fixed, we search for v as a solution of:
inf ||f—u—0|3 31
nt 1 —u=lk (31)

“
From Proposition 2, we know that the solution of (30) is given by:
@ = f—v—Pga(f—v). And the solution of (31) is simply given by: & = Pga (f—u).

2.5 Algorithm

1. Initialization:

ug =vg =0 (32)

2. Tterations:
Unt+1 = PGg (f — un) (33)
Uny1l = f — Vng1 — PG§ (f = vny1) (34)

3. Stopping test: we stop if

max(|tn 1 = tnls [vs1 — vn]) < € (35)



3 Mathematical results

In this section we carry out the mathematical study of the algorithm (32)—(35).
We first show its convergence when ) is fixed. We then state more precisely the
link of the limit of our model (when A goes to 0) with Meyer’s one.

3.1 Existence and uniqueness of a solution for (20)

Lemma 1. There exists a unique couple (4,9) € X x GZ minimizing F on
X xX.

Proof: We split the proof into two steps.
Step 1: Existence

1. We first remark that the set X x Gz is convex, and then that F' is convex
on X x G;ir We thus deduce that F' is convex on X x X.

2. It is immediate to see that F' is continuous on X X Gi. We then deduce that
F' is lower semi-continuous on X x X.

3. Let (u,v) € X x Gﬁ. We have ||v]|ge < . Moreover, since X is of finite
dimension, there exists g € X such that v = div (g) and ||g||z= = ||v||ga < p-
We deduce from (12) that (N2 is the size of the image):

vl x =< 4uN® (36)

We recall that X x X is endowed with the Euclidean norm.

1w, v)llxxx =/ llull3 + llvll% (37)

Thus, if ||(u,v)||xxx — +00, then we get from (36) that ||ul]|x — +o00. We
therefore deduce, since f is fixed, and since (36) holds, that || f —u —v|% —
+00. And since F(u,v) > &||f —u — v||3, we get F(u,v) — +oo. Hence
we deduce that F' is coercive on X X GZ. We therefore conclude that F' is
coercive on X x X.

We deduce the existence of a minimizer (@, 7).

Step 2: Uniqueness

To get the uniqueness, we first remark that F' is strictly convex on X x Gf“ as
the sum of a convex function and of a strictly convex function, except in the
direction (u,—wu) . Hence it suffices to check that if (@,9) is a minimizer of F'
then for t # 0, (4 + ¢G4, d — td) is not a minimizer of F. The result is obvious
if # — ti € X\GZ. Let us show that if & — ¢4 € G then the result is still true.

Indeed, if & — ti € G, we have:

F(ii + 0,0 — ta) = F(,9) + (|1 + t| — 1)J(a) (38)



By contradiction, let us assume that there exists £ # {—2,0} such that © — 4 €
G4 and
F(i + ta, v — t0) < F(@,) (39)
(

As (i@, %) minimizes F, (39) is an equality. From (38), we deduce that (|1 + | —
1)J(@) = 0. And as £ # {—2,0}, we get that J(@) = 0. There exists therefore
v € R such that for all (¢,7), @;; =1.

1. If y = 0, then @ = 0. Thus (@ + t4, o — ta) = (@,9).
2. If v # 0, then ¥ — ¢4 cannot belong to Gﬁ since its mean is not 0 (see
Proposition 1). This contradicts our assumption.

There remains to check what happens in the case when ¢ = —2. In this case, we
have: F(—,9 + 24) < F(4,9), i.e. (—u,? + 24) is also a minimizer of F'. As we
assume © + 20 € G, and as F convex (and as G convex), we get:

1 1
F,u+19) < §F(a, 0) + 5F(—ﬁ, 0+ 24) (40)
And we deduce that (0,4 +9) is also a minimizer of F. But F(0, 4+%) = F(d, )
e sx|lf —a—d|% = J(@) + 55| f — @ — 9]|%. We thus get that J(a) =0, a
we conclude as before. Hence there exists a unique couple (4,7) € X X G
minimizing F on X x X.

m

3.2 Convergence of the algorithm

We show here that our algorithm gives asymptotically the solution of the discrete
problem associated to (29).

Proposition 3. The sequence F(un,vy) built in Section 2.5 converges to the
minimum of F on X x X.

Proof: We first remark that, as we solve successive minimization problems, we
have:
F(una 1)n) > F(una Un+1) > F(un+17vn+1) (41)

In particular, the sequence F(uy,, v, ) is nonincreasing. As it is bounded from
below by 0, it thus converges in R. We denote by m its limit. We want to show
that

m= inf F(u,v 42
(u,w)EX XX ( ’ ) ( )

Without any restriction, we can assume that, Vn, (u,,v,) € X x G;du As Fis
coercive and as the sequence F'(u,,v,) converges, we deduce that the sequence
(Un,vn) is bounded in X X Gz. We can thus extract a subsequence (un, ,Vn, )
which converges to (4,9) as np — +oo, with (4,9) € X x Gﬁ. Moreover, we
have, for all n;, € N and all v in X:

F(unk7vnk+1) < F(unkvv) (43)



and for all n;, € N and all v in X:
F(tn,,vn,) < F(u,vn,) (44)

Let us denote by @ a cluster point of (v, +1). Considering (41), we get (since
F is continuous on X x G4):

m = F(a,) = F(a,7) (45)

By passing to the limit in (33), we get: v = PG;’,;(f —4). But from (45), we
know that: ||f — 4 — 9|| = ||f — @ — v||. By uniqueness of the projection, we
conclude that v = 9. Hence v,,+1 — ¥. By passing to the limit in (43) (F is
continuous on X x Gﬁ), we therefore have for all v:

F(a,0) < F(iv) (46)
And by passing to the limit in (44), for all u:
F(i,9) < Flu,) (47)

(46) and (47) can respectively be rewritten:

F(@,9) = inf F(@,) (48)
F(i,5) = inf F(u,9) (49)

But, from the definition of F'(u,v) (see (28)), (49) is equivalent to (see [8]):
Oe—f+a+v+XdJ(a) (50)

and (48) to:
06—f+11+13+)\8J*<%) (51)

The subdifferential OF of F at (@, d) is given by:

OF (3. 1 (—f+a+0+20J(d) 5
@O =3\ —fra+o+r00 (2) (52)
And thus, according to (50) and (51), we have:
0 PN
(0> € OF (4,9) (53)

which is equivalent to: F(@,9) = inf(,,)ex2 F(u,v) = m. Hence the whole
sequence F'(u,,v,) converges towards m, the unique minimum of F on X x Gﬁ.
We deduce that the sequence (un,v,) converges to (i, ?), the minimizer of F,
when n tends to +o00.



3.3 Link with Meyer’s model

We examine here the link between the discrete model (29) and Meyer’s problem.
We first recall the discrete version of Meyer’s problem:

inf H,(u,v 54
(u,v)EXXG?/ f=utv ( ) ( )

with
He(u,v) = (J(u) + alv]lga) (55)

The following result is straightforward:
Lemma 2. There exists a solution (4i,9) € X x G¢ of problem (54).

Remark: We do not know if a uniqueness result holds for problem (54).
We then recall problem (29):

inf F 56
('u.,v)lélXxX )\’IL(U’/U> ( )
with
B (u v)—i||f—u—v||2+J(u)+J* v (57)
eV EI = 9N I
Let us consider the problem
. v
inf J(u) + J* (—) (58)
(u,v)EX XX/ f=u+v 12

One eagsily shows the next result:

Lemma 3. There exists a solution (@,7) € X x X of problem (58).

Proposition 4. Let us fix a > 0 in problem (54). Let (4,9) a solution of prob-
lem (54). We fiz p = ||0||ga in (58). Then:

o (1i,D) is also a solution of problem (58).
o Conversely, any solution (@,0) of (58) (with p = ||0]|ge) is a solution of

(54)-

Proof: We split the proof into two steps.

Step 1:

We first want to show that (&,?) is a solution of (58) (with u = ||0||ga). As
(i, ) is a solution of (54) (the existence of (4, ¥) is given by Lemma 2) and as
||9]|ga = w, then 4 is solution of

inf J(u +au 59
uEX/u:f—vvl‘U”Gd:# ( ) ( )

i.e. 4 is solution of

(u) (60)

inf
ueX/u:ffva”'U”Gd =K



Since the set {u € X/u = f — v, ||v||ge = p} is contained in
{u e X/u=f—wv,|v|gs < p}, we have:

inf u) > inf ) (61)
wEX/u=f—v,||vllga=p weX/u=f—v,|v|lga<p
By contradiction, let us assume that
inf u) > inf (u) (62)
uex/u:ffvv”vllcri:/-" ueX/u:ffvv”UHGd <m
Thus, there exists v' € X such that ||v'||ge < p and
J(f =)< (u) (63)

inf
ueX/u:ffvv”,U”Gd =K

Denoting by v’ = f —v’, we have: J(u') + a||v'||ga < J(u') + ap. But since (i, D)
is a solution of (54):

J(@) + afldllge < J(u') + allv'llga < T(u') + ap (64)

Hence (we recall that ||§||ga = u), we get from (64) that J(d) < J(u'). This
contradicts (63). We conclude that (62) cannot hold. Hence:

J(u) (65)

inf inf
weX/u=f—v,||v||ga=p weX/u=f—uv,|v|lga<p

From (60), we see that 4 is solution of infuex/u=s—v,lv]l ga<p J(u), i.e. 4 is
solution of
v
inf  J(u)+ J* (—) 66
vext, (u) m (66)
Hence (u,7) is also a solution of (58).
Step 2:
Let us now consider (i,7) a solution of (58) (the existence of (@, ?) is given by
Lemma 3). We can repeat the computations we made in Step 1. We get that @
is a solution of:
inf J(u) + 67
uEX/u:ffv,Hv”Gd:p, ( ) H ( )
We therefore have: J(u) + ap = J(&) + a||9||ga. But as (@,?) is a solution of
(58), we have ||7]|ge < p. Hence J(@) + a||?]|ga < J(@) + «||9||ga. And since
(i, ) is a solution of (54), we get that:

J(@) + afpllge = J(@) + |3l a (68)
We thus conclude that (@,v) is a solution of (54).
|

In particular, we have thus shown that, when u is correctly tuned, a solution
of the limit problem (58) is in fact a solution of Meyer’s problem (54).



3.4 Role of A

We show here that problem (58) is obtained by passing to the limit )\ goes to
0% in (56).

Proposition 5. Let us fit « > 0 in (54). Let us assume that problem (54) has
a unique solution (ii,0). Set p = ||9||gs in (56) and (58). Let us denote (ux,vy)
the solution of problem (56). Then (ux,vy) converges to (ug,v9) € X x X as A
goes to 0. Moreover, (ug,vo) = (i, 0) is the solution of problem (58).

Remark: In the case when the solution of problem (54) is not unique, the result
of Proposition 5 does not hold. We can just show that any cluster point of
(ux, , v, ) is a solution of problem (58) and thus of (54)

Proof of Proposition 5: The existence of (4, ?) is given by Lemma 3. The exis-
tence and uniqueness of (uy,v)) is given by Lemma 1.

Since (ux, vy ) is the solution of problem (56), we have vy € Gf“ ie. ||lvallge <
1. As we saw in the proof of Lemma 1, this inequality implies:

[oallx < 4pN? (69)
Since (uy,v)) is the solution of problem (56), we have:
Fyu(ux,vz) < Fyu(f,0) (70)

which means
Fy p(ux,vn) < J(f) (71)

And the left hand-side of (71) is given by:

1 1
Frsunon) = ) grllf—un=onlBer 7 () = ) 51— -l

(72)
Hence J(uy) + 55|l f — ux — all% < J(f), and

I1f = ux = val” < 20J(f) (73)

As ||lva]lx is bounded (from (69)), we conclude that if A € [0;1], uy is bounded
by a constant C' > 0 which does not depend on A.

Consider a sequence (),) which goes to 0% as m — +o00. Then, up to an
extraction (since (uy,, vy, ) is bounded in X x X), there exists (ug,vo) € X x X
such that (ux,,vy,) converges to (ug,vo). By passing to the limit in (73), we
get: ||f —uo —vol|lx =0, i.e. f=ug+ vo-

To conclude the proof of the proposition, there remains to show that (ug,vp)
is a solution of problem (58). We first notice that as A > 0, and since ||v)||ge < u,



we get: ||vol|lge < p- Let (u,v) € X x X such that f = u + v. We have:

m

@)+ T (2) + & If —u—vl?
=0

> Jun,) + 7 (22) + s f = ur, — o, I

i
> J(ux, )+ J* (”L)
N u o

—)J(uo)-{—.]*(%))

Hence (ug,v0) is a solution of problem (58). And as we have assumed that
problem (58) has a unique solution, we deduce that (ug,vo) = (4, 0), i.e. (uo,vo)
is the solution of problem (58).

4 SAR images restoration

4.1 Introduction

Synthetic Aperture Radar (SAR) images are strongly corrupted by a noise called
speckle. A radar sends a coherent wave which is reflected on the ground, and
then registered by the radar sensor [9]. When one cares with the reflection of
a coherent wave on a coarse surface, then one can see that the observed image
is degraded by a noise of large amplitude. This gives a speckled aspect to the
image. That is why such a noise is called speckle.

Link with our approach: Contrary to the usual modeling in SAR, the noise in our
model is considered to be additive: the image f is decomposed into a component
4 belonging to BV, and a component v in G. But it is to be noticed that our
model is completely different from the classical additive models: in these, v is
often considered to be a Gaussian white noise, and therefore has a constant
variance all over the image. Here, v belongs to G, a space in which signals can
have large oscillations but small norm. Moreover the variance of the oscillations
of v may not be uniform on the whole image. Note that by considering u as the
restored image (without speckle) we assume that there is no texture in the SAR
image.

4.2 Results on synthetic images

Restoration: Figure 1 shows why for a SAR image the decomposition proposed
by Meyer is very interesting. Indeed, one checks that the v component contains
the speckle, and the u component can be regarded as a restoration of the original
image (if it does not contain textures). It is difficult to make comparisons with
other methods [10], since the main criterion remains the visual interpretation.



Nevertheless, the results we achieve appear promising in comparison with exist-
ing methods. And above all, our approach being a variational one, computation
time are very short. With a processor of 800 MHz and 128 kByte of RAM, it
takes less than one minute to deal with an image of size 256*256.

Initial synthetic image |Speckled synthetic image Classification
(f) (thresholding of u)

Restored image Oscillatory component Reconstructed image

() __ +150.0) ___(ut)

Fig. 1. Simple synthetic image (A = 0.01 and p = 80)

4.3 Results on real images

We use SAR images of Bourges’ area provided by the CNES. The reference image
(also furnished by the CNES) has been obtained by amplitude summation. Image
2 shows the effect of parameter p on the restoration process. The larger u is, the
more v contains information, and therefore the more u is averaged. According
to the value of p, we can thus get a more or less restored image, and also more
or less of a smoother image.

5 Conclusion

In this article, we present a new algorithm to decompose a given image f into
a component u belonging to BV and a component v containing the noise and



Reference image Reconstruction (u + v)

| Image of Bourges’ area (f)

Restoration (u) Restoration (u) Restoration (u)

(A=10.1 and p = 10) (A =10.01 and p = 40) (A =10.01 and p = 80)

Oscillatory component Oscillatory component Oscillatory component

(v + 150.0) (v + 150.0) (v + 150.0)

Fig. 2. Image of Bourges’ area




the textures of the initial image. Our algorithm performs Meyer’s program [3]
when g is suitably tuned. Moreover, we carry out the mathematical study of
our model. We also show how the u component can be used for SAR image
restoration. Further details about this work as well as comparisons with the
standard BV filtering and with the Vese-Osher model [5] can be found in [11].
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