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Abstract— Space agencies are rapidly building up massive model and propose a scheme to compare features extracted
image databases. A particularity of these databases is that they from images at different resolutions. Observe that several
are made of images with different but known resolutions. In \yorks have been performed to extract image features that are

this paper, we introduce a new scheme allowing to compare and . . - . .
index images with different resolutions. This scheme relies on invariant with respect to resolution changes [8], [9]. Agaiur

a simplified acquisition model of satellite images and uses con- PUrpose is quite different since we wish to be able to compare
tinuous wavelet decompositions. We establish a correspond_e_nceimages with different buknownresolution.

between scales which permits to compare wavelet decompositions  Many features have been proposed to index satellite images
of images having different resolutions. We validate the approach [10], [11], [12], [13], [14]. In this work, we only consider

through several matching and classification experiments, and we . . .

show that taking the acquisition process into account yields better m(_)no—spectral images and clas_S|caIIy choose to index them

results than just using scaling properties of wavelet features. ~ Using texture features. In particular, wavelet featureseha
been proved suitable for texture indexing or classification
[15], [16], [17], [18], [19], [20], [21], [22]. Wavelet featres

I. INTRODUCTION have already been used for indexing remote-sensing images

Over the last years, space agencies have built up mass 1d23]. The aim of the proposed approach is to investigate
image databases. For example, the CNES (the French spige Nterplay between resolution and wavelet features and
agency) gets each day several terabytes of data from Eﬁﬁpropose a scheme for the comparison of images with
satellites. These institutions need efficient tools to snded d/Merent resolutions. Preliminary results of the presemork
search their image databases. One particularity of gatell'6r€ Presented in [24]. _ _
image databases, compared to e.g. natural image dataisases,' "€ Plan of the paper is the following. In Section Il a
that they are constituted by images with different but knowﬂmp“f'ed model fo_r the acquisition of satellite images is
resolutiond depending on the satellite which acquires thenifitroduced. In Section lll, we recall how the marginals of
In contrast, the relationship between the size of objects af{avelet coeflicients can be used for the indexing of images. |
pixels is usually unknown for natural images. Moreovers th>€ction 1V, a method is given to compare features extracted

relationship depends on the position of objects in the same?t different resolutli)n_s. "? Sehct|okn dV' t_he depelpder_wce of
that the notion of resolution itself has little general miagrfor 'catUres upon resolution Is checked using satellite images

natural images. This obvious fact made it necessary to dgvel®M the CNES and the proposed scheme is validated through

scale invariant local features for many computer visiotkgas classification experiments. We then conclude in Section VI.
see e.g. [1]. For the indexing of texture, it makes sense to
assume a uniform resolution through the image. Since this [l. MODEL OF THE ACQUISITION PROCESS

resolution is usually unknown, many scale invariant indgxi o digital image f. at resolutionr is obtained from a
schemes have been developed, see e.g. [2], [3], [4], an®{5] Eontinuous functionf (representing the scene under study)
a review. Our purpose in this paper is quite different. Fo% .o gh an optical device and a digital captor. Neglecting
resolution of satellite images is usually a known parametier -ontrast changes and quantization, the effect of the ingagin
least if we neglect tilts of the optical device and if we assUnyeyice can be modeled as follows,

that the scene being captured is approximately flat. Thexefo

our goal is to be able to compare two images knowing their fr=1ls, (G * f) +n,

resolution difference. Second, a resolution change is mor%

. . 9 .
complicated than just a scale change, since it usually viegol where G is the convolution kernel3, C Z° the sampling

an optical device and an imaging captor. In a previous wor%Id at resolutionr, Ils, the Dirac comb onS, andn the

[6], [7], this process was modeled as a convolution followgd n]?'tsr?' In Whatt fOIIOWZ’ Iwe V\tl;wll take |Inttezrestﬁl_n_ thte efffect
a sampling and its effect on the computation of a charaieris?’ "€ acquisition modet on the wavelet coetlicien S /o
erefore, and assuming that we will neglect coefficientbeat

scale was studied. In this paper, we make use of the sama X .
smallest scales, we will assume that 0. Moreover, we will
5 . .
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that G is an isotropic Gaussian kernel, thus neglecting the
specificity of the satellite optics, the real response ofcidystor
and motion blur. This is probably the strongest assumption
made in this paper. The motivation behind it is mainly the
tractability of forecoming computations, as will becomeatl
soon. Last, we assume that the standard deviation of thelkern
is proportional to the resolution. In the experimental igext ’ T Lo A A

we will check that these assumptions are not too restritijwe (a) Marseille (b) Histogram
considering real satellite images. To summarize, we assume

——a =261, =1.2626

5 10

the fOHOWing acquiSition model : Fig. 1. (a) Image of Marseille at resolutian707m (©CNES); (b) His-
togram (blue bars) of wavelet coefficients of image (a) ateséghorizontal)
fr =IL(f * kvp), (1) and the approximation by GGD (red curve).
where
k _ 1 _172 +y? 2 IV. WAVELET FEATURES AND RESOLUTION CHANGES
rp(xay) - 2 7'2 2 p 27"2 2 Y ( ) i .
mrep p A. Resolution Invariance
11, is the Dirac comb omZ?, that is, a) Notations:The discrete version of the Gaussian kernel
with standard deviation (¢ being given in pixels) is denoted
I, = Z O(ir,jr) by k. Let us define the discrete wavelet coefficients as (recall
L.j€EL that the wavelets we use are derivatives of the Gaussiaelkern
and the parametep is a characteristic of the acquisition Wa s = Dgkii fr = k7 A fr 4)

process, which characterizes the width of the convolution

kernel: the larger the value gf the more blurred the image.Whereq € {0,1,2,3}, A, stands for the difference between
adjacent pixels in the horizonta (= 0), vertical § = 1)

or diagonal § = 2,3) direction, * stands for the discrete
convolution operation.

Based on empirical observations, S. Mallat [27] proposed to ) Resolution invarianceRecall that the imagg. at res-
model the marginals of wavelet coefficients of natural insag@lution r is obtained agf,. = I, (k,, = f). From Equation (4),
by Generalized Gaussian Distributio®GD). That is, writing We therefore have
h(w) for the densi'Fy of '_[he distribution of coefficienis at Werd = FFALL (kvp * f) )
some scale and orientation, Y -

ke* 1L (r0q (Krp * f)),

I1l. WAVELET FEATURES FOR TEXTURE INDEXATION

Q

= Ke(wl/®)?
hw) = Ke : (3) whered, is the continuous directional derivative at orientation

It is shown in [15], [16], [17] that the parameters and ¢ This last approximation is detailed in the Appendix.
3 of GGD can be used as efficient features for texture Next, we assume that the inversion between the convolution
indexing and classification. It is possible to compute the&8d the sub-sampling is appropriate for non-aliased images

parameters from the estimation of the first and second ordsch ask:, * f when p is at least, sayl/2. The validity
moments offw| [27]: we denote them respectively by; = of this assumption on real images has been checked in [7].

[ |w|h(w)dw andmy = [ wh(w)dw. More preciselyn; = Assuming thatk; ~ k,; (see [7]), and that the continuous and
al'(2/B8)T(1/3)" andms = o?T'(3/8)T(1/3)~", wherel discrete convolutions are equivalent, we have
stands for the Gamma function. Wyt 2 T (Kt * Ky * Oy f). (6)

In this paper, for simplicity, we address the problem of _ ) ]
relating featuresn; andm. to resolution changes. AdaptingUSing the semi-group property of the Gaussian kernel, it can
the results ton and 3 is then straightforward and this canP® deduced that
be useful when using the Kullback-Leibler distance in a Wyt
classification task, see [16]. r Hr(kwﬁﬂﬁ *Oal). %

In order not to be restricted to dyadic resolution changebhe accuracy of this approximation will be computed in the
continuous wavelet transform [28] is used instead of theemoappendix.
classical discrete wavelet transform. Moreowee consider ~ Assume now that we have two imaggs and f,, of the
mother wavelets obtained as derivatives of a Gaussian kersame scene at resolutionsandr,. From (7), we deduce that
in horizontal, vertical and diagonal directions. This impat if we choose scales, andt; such that

assumption is motivated by the simplified model for resoluti P > o
changes presented in the previous section, as will be shown Tt pT =12 /15 +p7 (8)
by the computations of Section IV-A. then
Figure 1 shows a histogram of absolute values of wavelet
coefficients, illustrating the soundness of the use of GGDs t mi(q, 1, t1) /1 & ma(q,r2,t2)/r2 9)

model such distributions. ma(q,71,t1) /13 =~ ma(q, 72, t2) /12 (10)



with « For resolutionry, compute the scalg$ corresponding to

1 . .
mi(g,r,t) = —~ Z Wi, t; according to (see Equation (8))
' / 1 2 2
1 ti=\ 5t +p?) —p (13)
ma(q,r,t) = " E (wa,rel?s 3"

wheren,. is the size of the discrete imagé and the sum  ° Define Oy, 11 = O, «; at scales;.
is taken over the image domain (notice that, since we use &Y using such an algorithm, it is now possible to compare
continuous wavelet transformy has the same size ag). images taken at different resolutions and, for instancéraio
These equalities (Formula (9) and (10)) permit to Compagéassification methods on a set of images at only one resaluti
wavelet features fronf, and f. In what follows, we denote and to apply the recognition criteria to images at different
by Ot = {mi(q,r,t),ma(q,r t)} the wavelet features at resolutions.
scalet and directiong extracted fromf,.

c) Remark about the naive choige = 0.0: A naive V. EXPERIMENTS AND RESULTS
assumption could be made that for the same sggnéwe A. Image database

keep In the following sections, we experimentally validate the

rxt==C (11) proposed scheme for comparing wavelet features. These-expe

whereC' is a constant, the parameter set is also constant (a ¢ nts are carried on an image database provided by the CNES

the correct normalization). However, this assumption i n e French space agency). This database is made of various

g : . . %cenes (such as fields, forests and cities). Each scene émas be
sufficient because it approximates the resolution change

. on : . 2 agquwed as an aerial image at resolufic2bm. Then, for each
a simple zoom, which is not consistent with the acquisition : : ) .
. . . . . scene, the CNES has simulated images at various resolutions
process modeled in Section Il. We will see in Section V that . " ; : . .
. . . using realistic satellite modeling. The available redoha

such a naive choice leads to poor numerical results compare

with the use of Equation (8). In what follows, we will call 2N9€ ffom?/'gm t0.4m’ according to a geometric progression
. - . . with ratio 2*/°. In Figure 2 some examples of the images from
naive choice” the use op = 0 in Equation (8).

4 Tuni o T Equat g ds to k the database are shown. It is important at this point to note
) Tuning ofp: 10 use Equation (8), one needs 10 KNoWhat convolution kernels used by the CNES are not Gaussian.
the value ofp. This is a characteristic of the acquisition proce

i : owever, we will see that the approximate acquisition model
(see Equation (1)). This can therefore be tabulated once ' section 11 yields good numerical results. In what follows

each satellite. Observe that if one considers two imafjes we will use the acquisition model (1) with a valye— 1.3.

an_d_fm with diff_erent resoluti_ons, it is very likely that_ theyThis value has been chosen as the value yielding the best
originate from different satellites and that the corresing numerical results (among values ranging from 1 to 2 by steps

values ofp bgdﬁf:}rent. I? :.h's cgs;e,lw2r|t!tn.gi fct)r t.h(;t\;alue 0; of 0.1) and it also corresponds to a rough approximation of
p corresponding to resolution (z: = 1, 2) it is straightforwar the kernel used by the CNES.

to show that Equation (8) can be generalized to

rin /2 4 p? = 1oy /12 + pl. (12) B. Validity of the prediction scheme
_ _ ) o First, we check the validity of Formula (8), (9) and (10) by
This equality again ensures that approximations (9) andl (1fotting numerical values of features; andm. as a function
hold and permits the comparison of wavelet features ffom ¢ the resolution.

and f,,. In what follows, for the sake of simplicity, we will " Figures 3 (d)-(f) (resp. (g)-(i)) graphs ofi (g, rt)/r

assume thap, = p, and therefore use Equation (8). (resp.ma(q,r,t)/r?) as functions of- are presented whert
is kept constant (that is when using the naive normalization
B. Wavelet features and resolution of Equation (11)) and whem/t? +p? (with p = 1.30)

. . ) . ) ) is kept constant (see Equation (8)). The resolutioranges
As explained in the introduction, the aim of this paper ifom 0.50m to 4m. For the image at resolution.50m (the

to propose a way to compare the features originating froﬁ?ghest available resolution); and m. are computed at
two images with different and known resolutions. One waycgle 16 in the horizontal direction. It may be seen that
to achieve this is to modify the features (i.e. the first a”@sing Equation (11) (that is forgetting the convolutionpste
second order moments, andm) extracted at resolution; i the model of resolution change) does not yield a constant
to compare them with the features extracted at resolution parameter set, especially when the resolution changegs.lar
Assume that we havg;,, the image at resolutiom of a given | contrast, using Equation (8) yields fairly constant esiu
scene, and that we want to predict its features at resolution Next, we compare values af,; and ms, computed on
From Equations (7)—(10), we deduce the following schemegn jmage with resolutior.175m to values ofm; and mo
« Compute the wavelet coefficients f@iy, at scaleg;, i = computed on a image of the same scene with resolution
1,2,3,...,N; and then predicted for a resolution 75m. We perform this
« Estimate the parametef3, ,, ;, from the wavelet coef- comparison for various scales. Figures 4 (a)-(c) (resp(f{yl)
ficients at scales; for resolutionr; ; show the values ofn; (respectivelyms) at various scales
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Fig. 3.  (a)-(c) Three images(@©CNES); (d)-(f) graphs ofmi(q,r,t)/r
(with ¢ = 0) as a function ofr; (g)-(i) graphs ofma(q,r,t)/r? (with ¢ =

0) as a function ofr. On all these graphs, solid lines correspond to the
case wherery/t2 + p? is kept constant (witlp = 1.3), and dashed lines
correspond to the case the case wherés kept constant. One observes that
using Equation (8) yields fairly constant values, wheresingiEquation (11)

(@) n (s) ® does not.

Fig. 2. Image samples from the database provided by the CNE%d)a
Images at resolutiof.5m; (e)-(h) Images at resolutioh.0m; (i)-(I) Images

at resolution2.0m; (m)-(p) Images at resolutiof.175m; (g)-(t) Images at
resolution4.0m; From left to right, classes of the images are: field, cityesbr
and sea.

(scale is on the horizontal axis) in solid blue line for three -
different scenes. On the same figune, (resp.ms) predicted
. . . HE
from a resolution oflm for a resolution of3.175m according .
to the scheme presented in Section IV-B are displayed by
solid red line. The two solid lines almost perfectly coiresid I T R
In dashed line, are plotted the values f, (respectively (@) (b)
msy) predicted from a resolution ofm for a resolution of o e
3.175m by the same scheme of Section IV-B, except that )\ ! ‘
Equation (13) is replaced by = r1t;/r2. This corresponds
to what we called the naive choice, neglecting convolutions-.
in the resolution change. It can be seen that in this case, tt : =
guessed values ofi; andms are less accurate, especially for == L R L R
small scales. These experiments validate the scheme @wpos (d) (e) 0]
!n Section IV-B and SuggeStS th_at It is n_ecessary to tak?g. 4. Values ofm; ((a)-(c)) and ofmg ((d)-(f)) for various scales (scale
into account the convolution step in resolution changeseto borresponds to the horizontal axis). In solid red line aspldiyed the values
able to compare features Computed on images with differéﬁtﬂputed directly on images with resolutidrn 75m (the ground truth in this
- . - - experiment). In solid blue line, are displayed the values éosputed on the
resolution. The next section .Invesugates.how_the ac_cumcyimages with resolutioim and then predicted using the scheme presented in
the proposed scheme permits the classification of imagessaétion Iv-B. Both solid lines almost perfectly coincidepsling the accuracy
different resolutions. of the scheme. Dash lines show the results obtained by usmgdheme
proposed in Section IV-B but replacing Equation (13) with= rit;/r2
(the naive normalization). Observed and predicted valuesalcorrespond
anymore in this case.

5 8 g8 5 @ 2

C. Classification

a) Classified databaseWe have manually built a clas-
sified database based on the sequences of images provided



TABLE | TABLE I

CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRCTED IN 4 CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRCTED IN 4
DIRECTIONS AT 21 SCALES(t = {2“6\1‘ =0,1,...,20}). THE LEARNING SET IS DIRECTIONS AT3 SCALES(t = 1,2, 4). THE LEARNING SET IS MADE OF IMAGES AT
MADE OF IMAGES AT RESOLUTION4m. RESOLUTION4m.
Resolution | error (p = 1.3) | error p = 0) Resolution | error (p = 1.3) | error (p = 0)

0.5m 0.00% 21.86% 0.5m 0.55% 26.50%

Im 0.00% 19.95% Im 0.00% 24.59%

2m 0.00% 10.66% 2m 0.00% 12.84%

3.175m 0.00% 1.91% 3.175m 0.27% 4.92%

TABLE Il

by the CNES. This database contaift® scenes observed on
Urban areas (Marsei”e and TOUlouse), rural areas (RQUjaFDjRAMETER FOR CALCULATING COOCCURRENCE MATRICES VARIES ACCORDING TO
forests (Didrai) and the sea. For each scene, theré aié

ferent images corresponding to 5 different resolutidnsr4,
1m, 2m, 3.175m and4m). The scenes are manually divided

LASSIFICATION RESULTS OBTAINED WITHHARALICK FEATURES. THE DISTANCE

THE RESOLUTION OF IMAGE THE LEARNING SET IS MADE OF IMAGES AT
RESOLUTION4m.

into 4 sets: city (99 scenes), fields14 scenes), forest§ Resolution | distance| error
scenes) and sed(( scenes). 0.5m 24 31.9%
. ) . . . . im 12 22.4%

b) Experiment: The first experiment carried out on this >m 5 13.6%
database is classification. Images at the resolutiofnofare 3.175m Z 10.1%

used as a learning set for training the classifier. The aim is

to find the classes of the images at resolutions other than

4m. Wavelet featuresnf; andms) are at first extracted from

all the _imag_es t_)y applyirjg Gaussiar_1 derivativ_es at diffEreQnd it can be observed that the errors remain similar.

scales in4 directions (horizontal, vertical and diagonal). The

features extracted from the images at a resolutiofrofover e) Comparison with other featuredn order to further

21 scales { = {2/6,i = 0,1,...,20}) are used to train investigate the effect of resolution changes on classidicat

the classifier. Therefore the dimension of the feature spdésks, we perform an experiment using Haralick features.

is 2 x 4 x 21 = 168. The features extracted from the otheHaralick [29] has proposed features based on the statistics

resolutions are predicted at a resolution4ef by using the Cco-occurrence matrices of images. These features aregtove

scheme presented in Section IV-B. For comparison, we set g very efficient for indexing textures. Co-occurrence et

valuep respectively equal td.3 (using the acquisition model) are defined as the empirical joint distribution of the gray

and 0.0 (the naive approach). We then classify the images lues of pixels in some directioi and at some distance

resolutions other thadm with the predicted features. d. The considered directions are horizontal, vertical and tw
The classifier we used is simply the nearest neighb@iagonal directions. The distance between the pixel pairs c

classification algorithm. For a given image A, the classifidte considered as a scale parameter. For images at different

search for its nearest neighbor B in the training set anctafféesolutions, it is therefore natural to compute co-occwee

to A the class of B. As a distance between features, we ud@trices with different distances. In our experiment, we se

the Euclidean distance, after normalizing each coordibgte d = 3.4,6,12,24 respectively for images at resolutions:,
its variance. 3.175m, 2m, 1m and0.5m. These values ensure that r is a

c) Results:The classification results are shown in Tab. £onstant. The Haralick features are composeti3ostatistical
It can be observed that with the naive approach, the claasifi¥alues calculated from each matrix and the mean and standard

tion errors increase rapidly when the resolution gets aw@y f deviation values through the four directions. Therefore th
4m. This shows numerically that the naive approgeh=(0) is total feature dimension il + 2) x 13 = 78.
not a good choice for classification purpose. On the contrary Figure Il shows the classification results obtained with
when the acquisition model is taken into consideration (i.Blaralick features. Our purpose here is not to compare djrect
p = 1.3), there is no error. This is due to the fact that théhese results with the results obtained in the previousasect
prediction scheme is very accurate, as we have shown limleed, results obtained with wavelet features are bedtar,
Section V-B. Errors are small enough not to switch from onge did not take full advantages of co-occurrence matrigesesi
class to another when changing the resolution. only one scale is used for each image. The interesting point
d) Influence of the number of featureBhe classification is to notice how fast the classification results decreash wit
results presented in Table | are obtained from features inthee change of resolution, therefore showing the inability o
space with relatively large dimension6@ values for each Haralick features to handle such changes. Observe that the
image). We therefore study the effect of a dimension reduacti approach taken here is similar to the naive choice of previou
In Table Il are shown the classification results obtainedrwhsections (approximating a resolution change through a Yoom
performing the same experiment as in Table I, using tH2ue to the non-linear nature of co-occurrence matrices, the
wavelet featuresr; andms) at only 3 scalest(=1,2,4). In approach proposed in the case of wavelet features is not
this case the dimension of the feature spacgist x 3 =24 adaptable to Haralick features.



TABLE IV

improves significantly the accuracy of the classificatiohisT
MISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRATED AT 21

fact is confirmed trough an image matching experiment.
The method presented in Section IV-B to compare wavelet
resollution 0.5 10 20 [3175 features between images with different resolution is qgeéte-
pp:(f 81-;7 709-_2571 65?57 314_6;7 eral. We applied it to image classification, but other tasksd
benefit from this approach. For instance, the scale invegian
of wavelet transformations has been applied to the fusion of

SCALES WITH4 ORIENTATIONS.

TABLE V aerial images having different resolutions [30][31][3Rlone
MISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRATED AT 3 Of these WOFkS takes |nt0 account the |nﬂuence Of the OptICS
SCALES WITH4 ORIENTATIONS and captors on the change of resolution. We believe that the
resolution T 05 10 50 13175 approach p_resente_d in Section IV could improve the pretisio
p=1.3 11.2 | 464 | 1.09 | 9.29 of such fusions of images.
p=0 95.90 | 96.45 | 92.62 | 62.02 Acknowledgements:We thank Mihai Datcu, Alain Giros and

Henri Mditre for their advices and comments.

D. Image Matching
. . o ] APPENDIX
In this subsection, we carry out a more difficult experiment

than in the previous subsections. For each image at a r&solut In this appendix, we detail the approximation made in Equa-
of 4m, we want to find the exact same scene from the imaggsn (5) and compute the error functions of the approximmtio
at other resolutions with the help of wavelet features. Thaade in Equation (6).

features are extracted and predicted as presented in 88¢ti0  Recall that w,.; are the wavelet (Gaussian derivative)
B. For an image at a resolution different frotm, we search coefficients extracted fronf,. at scalet and in directiong,

its nearest neighbor in the feature space among the setwdfere f, is the digital image at resolution obtained from

images atm. If the two images represent the same scenge continuous sceng. For clarity, we only consider theD
it is a correct match, otherwise it is an error. This is thgase. Recall Formula (5):

same classification task as before, except that we consadér e

scene to be a class in itself. Wyt = AgktFIL(kpp * f)
In Table IV are displayed the matching results when usin 7~
P ayed e e cing g = FFAIL (ke f).
features overl scales {; = 2*/°, ¢ = 0,1,...,20) and 4

orientations. In Figure V are d_isplayed the matching resulf, the 1D case, we have
when using only3 scales §; = 2*, i = 0, 1, 2).
It can be observed that Wry = kF AL (kyp  f).
« The errors increase considerably when compared to the
classification results of the previous subsection, esfygciawriting g(z) = (k, * f)(z), we have
whenp = 0.0. This is due to the fact that in the image
database, there are many scenes of the same class which wyp(z) = ki*ALIL(g(x))
are very similar one to another. Therefore the points _ /;/‘ti(ﬂr(g(er?") — g(2))),
representing these images in the feature space are close
one to another. As a consequence, a small error in thgq sincey € C!, we have
prediction causes an error in the image matching, in

contrast with the classification case of Section V-C. gz + 1) =g(x) +rd (z) + o(r).
o The small errors in the cage= 1.3 confirm the accuracy
Of the SCheme. Therefore
VI. CONCLUSIONS AND PERSPECTIVES wey A kL (g(z) + 79’ (2) — 9(2))

~ ’

In this paper, we have proposed a scheme for comparing = kil (rg'(2))
wavelet features from images taken at different resolstion ~ kL (k¢ ['(2)).

The acquisition of images is modeled by a convolution o ] )
followed by a sampling. The scheme to compare wavel&his is the approximation made in Equation (5). Next, we
features is based on this model and the semi-group propef@mpute the error energy of the approximation made in
of the Gaussian kernel. We first checked experimentally t&gluation (6). For simplicity, we consider the resolutios- 1.
validity of this scheme and showed that the numerical acyura/Veé want to show that the energy of the error is small.
is significantly improved compared to a naive approach where -
resolution change is simply modeled by a zoom. This approach B = Y Ak # Ti(g) — Ty (ky + ¢)|?
is then applied for the classification of satellite images at - A~ 2
several resolutions simulated by the CNES. Our approach = /'FT{AIkt * 10 (g) — (ke x g >}| duw
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Fig. 5. Error function £) and power spectrum of wavelet coefficients, ;
in the frequency domain.

where FT(f) is the Fourier transform of. With the approx-

imation k; ~ II,.(k,+), we have

E

Q

/ |FT {A Iy (kg % g) — Ty (ke % ¢')} [Pdw

[10
_ / \FT{IT (ks # g(z + 1) — ko # g(x)) — T (ks % ¢)} P

(1]

(2]

(3]
(4]

(5]
(6]

[7]

(8]
&l
]

— / |FT {1y (ks * g+ 1) — kg % g(x) — ke % g')} |2dw [11]

We suppose that the image is not aliased, ¢ex g is band
limited), therefore

E

%

2/ |FT {ks*g(z+1) — ks x g(x) — Ky *g'}|2dw
0

- 2/ le?¥ — 1 — jw2|FT{k; * g}|>dw
0
= 2

T 2 4
(2(—”2 T %) + w2> \ET{k;  g}|2dw

%

2

S— >

%

ww4 9
; ?|FT{kt*kp*f}| dw

™ w4
_ /0?|FT{k\/W}|2\FT{f}|2dw.

Recall thatt > 1 andp = 1.3 in all our numerical experi-
ments. Since th(i power spectrum of the imggs generally

(2(1 = cosw — wsinw) + w?) [FT{k; * g}|*dw

(12]

(13]

(14]

(18]

(16]

(17]

(18]

decreasing, ané- is increasing, the worst case (which yields

the largest error) is therefoldT'{ f}|*> = 1 for all w, where
we have

T w4

and
E

ST~ 0085

(29]

[20]

(21]

(22]

Figure 5 shows a plot o and the power spectrum of wavelet
coefficientsw, ; in the frequency domain for the case where
|FT{f}|? = 1. In the worst case, the approximation made i3l

Equation (6) yields an energy error 8%5% when compared

to the energy of the original wavelet coefficients.
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