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Indexing of satellite images with different
resolutions by wavelet features

Bin Luo, Jean-François Aujol, Yann Gousseau, Saı̈d Ladjal

Abstract— Space agencies are rapidly building up massive
image databases. A particularity of these databases is that they
are made of images with different but known resolutions. In
this paper, we introduce a new scheme allowing to compare and
index images with different resolutions. This scheme relies on
a simplified acquisition model of satellite images and uses con-
tinuous wavelet decompositions. We establish a correspondence
between scales which permits to compare wavelet decompositions
of images having different resolutions. We validate the approach
through several matching and classification experiments, and we
show that taking the acquisition process into account yields better
results than just using scaling properties of wavelet features.

I. INTRODUCTION

Over the last years, space agencies have built up massive
image databases. For example, the CNES (the French space
agency) gets each day several terabytes of data from its
satellites. These institutions need efficient tools to index and
search their image databases. One particularity of satellite
image databases, compared to e.g. natural image databases,is
that they are constituted by images with different but known
resolutions1 depending on the satellite which acquires them.
In contrast, the relationship between the size of objects and
pixels is usually unknown for natural images. Moreover, this
relationship depends on the position of objects in the scene, so
that the notion of resolution itself has little general meaning for
natural images. This obvious fact made it necessary to develop
scale invariant local features for many computer vision tasks,
see e.g. [1]. For the indexing of texture, it makes sense to
assume a uniform resolution through the image. Since this
resolution is usually unknown, many scale invariant indexing
schemes have been developed, see e.g. [2], [3], [4], and [5] for
a review. Our purpose in this paper is quite different. First, the
resolution of satellite images is usually a known parameter, at
least if we neglect tilts of the optical device and if we assume
that the scene being captured is approximately flat. Therefore,
our goal is to be able to compare two images knowing their
resolution difference. Second, a resolution change is more
complicated than just a scale change, since it usually involves
an optical device and an imaging captor. In a previous work,
[6], [7], this process was modeled as a convolution followedby
a sampling and its effect on the computation of a characteristic
scale was studied. In this paper, we make use of the same
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model and propose a scheme to compare features extracted
from images at different resolutions. Observe that several
works have been performed to extract image features that are
invariant with respect to resolution changes [8], [9]. Again, our
purpose is quite different since we wish to be able to compare
images with different butknownresolution.

Many features have been proposed to index satellite images
[10], [11], [12], [13], [14]. In this work, we only consider
mono-spectral images and classically choose to index them
using texture features. In particular, wavelet features have
been proved suitable for texture indexing or classification
[15], [16], [17], [18], [19], [20], [21], [22]. Wavelet features
have already been used for indexing remote-sensing images
in [23]. The aim of the proposed approach is to investigate
the interplay between resolution and wavelet features and
to propose a scheme for the comparison of images with
different resolutions. Preliminary results of the presentwork
were presented in [24].

The plan of the paper is the following. In Section II a
simplified model for the acquisition of satellite images is
introduced. In Section III, we recall how the marginals of
wavelet coefficients can be used for the indexing of images. In
Section IV, a method is given to compare features extracted
at different resolutions. In Section V, the dependence of
features upon resolution is checked using satellite images
from the CNES and the proposed scheme is validated through
classification experiments. We then conclude in Section VI.

II. M ODEL OF THE ACQUISITION PROCESS

A digital image fr at resolution r is obtained from a
continuous functionf (representing the scene under study)
through an optical device and a digital captor. Neglecting
contrast changes and quantization, the effect of the imaging
device can be modeled as follows,

fr = ΠSr
(G ∗ f) + n,

where G is the convolution kernel,Sr ⊂ Z
2 the sampling

grid at resolutionr, ΠSr
the Dirac comb onSr and n the

noise. In what follows, we will take interest in the effect
of the acquisition model on the wavelet coefficients offr.
Therefore, and assuming that we will neglect coefficients atthe
smallest scales, we will assume thatn = 0. Moreover, we will
assume thatSr = rZ

2, that is a regular and square sampling
grid with stepr. We thus neglect the satellite vibrations and
scan acquisition. Last and more importantly, according to [25],
[26], the response of an ideal optic aperture can be accurately
approximated by a Gaussian kernel. We will therefore assume
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that G is an isotropic Gaussian kernel, thus neglecting the
specificity of the satellite optics, the real response of thecaptor
and motion blur. This is probably the strongest assumption
made in this paper. The motivation behind it is mainly the
tractability of forecoming computations, as will become clear
soon. Last, we assume that the standard deviation of the kernel
is proportional to the resolution. In the experimental section,
we will check that these assumptions are not too restrictiveby
considering real satellite images. To summarize, we assume
the following acquisition model :

fr = Πr(f ∗ krp), (1)

where

krp(x, y) =
1

2πr2p2
exp

(

−x2 + y2

2r2p2

)

, (2)

Πr is the Dirac comb onrZ
2, that is,

Πr =
∑

i,j∈Z

δ(ir,jr),

and the parameterp is a characteristic of the acquisition
process, which characterizes the width of the convolution
kernel: the larger the value ofp, the more blurred the image.

III. WAVELET FEATURES FOR TEXTURE INDEXATION

Based on empirical observations, S. Mallat [27] proposed to
model the marginals of wavelet coefficients of natural images
by Generalized Gaussian Distributions (GGD). That is, writing
h(w) for the density of the distribution of coefficientsw at
some scale and orientation,

h(w) = Ke−(|w|/α)β

. (3)

It is shown in [15], [16], [17] that the parametersα and
β of GGD can be used as efficient features for texture
indexing and classification. It is possible to compute these
parameters from the estimation of the first and second order
moments of|w| [27]: we denote them respectively bym1 =
∫

|w|h(w)dw andm2 =
∫

w2h(w)dw. More precisely,m1 =
αΓ(2/β)Γ(1/β)−1 and m2 = α2Γ(3/β)Γ(1/β)−1, whereΓ
stands for the Gamma function.

In this paper, for simplicity, we address the problem of
relating featuresm1 andm2 to resolution changes. Adapting
the results toα and β is then straightforward and this can
be useful when using the Kullback-Leibler distance in a
classification task, see [16].

In order not to be restricted to dyadic resolution changes,
continuous wavelet transform [28] is used instead of the more
classical discrete wavelet transform. Moreover,we consider
mother wavelets obtained as derivatives of a Gaussian kernel
in horizontal, vertical and diagonal directions. This important
assumption is motivated by the simplified model for resolution
changes presented in the previous section, as will be shown
by the computations of Section IV-A.

Figure 1 shows a histogram of absolute values of wavelet
coefficients, illustrating the soundness of the use of GGDs to
model such distributions.
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Fig. 1. (a) Image of Marseille at resolution0.707m ( c©CNES); (b) His-
togram (blue bars) of wavelet coefficients of image (a) at scale 5 (horizontal)
and the approximation by GGD (red curve).

IV. WAVELET FEATURES AND RESOLUTION CHANGES

A. Resolution Invariance

a) Notations:The discrete version of the Gaussian kernel
with standard deviationt (t being given in pixels) is denoted
by k̃t. Let us define the discrete wavelet coefficients as (recall
that the wavelets we use are derivatives of the Gaussian kernel)

wq,r,t = ∆qk̃t∗̃fr = k̃t∗̃∆qfr (4)

whereq ∈ {0, 1, 2, 3}, ∆q stands for the difference between
adjacent pixels in the horizontal (q = 0), vertical (q = 1)
or diagonal (q = 2, 3) direction, ∗̃ stands for the discrete
convolution operation.

b) Resolution invariance:Recall that the imagefr at res-
olution r is obtained asfr = Πr(krp ∗ f). From Equation (4),
we therefore have

wq,r,t = k̃t∗̃∆qΠr(krp ∗ f) (5)

≈ k̃t∗̃Πr(r∂q(krp ∗ f)),

where∂q is the continuous directional derivative at orientation
q. This last approximation is detailed in the Appendix.

Next, we assume that the inversion between the convolution
and the sub-sampling is appropriate for non-aliased images
such askrp ∗ f when p is at least, say,1/2. The validity
of this assumption on real images has been checked in [7].
Assuming that̃kt ≈ krt (see [7]), and that the continuous and
discrete convolutions are equivalent, we have

wq,r,t ≈ rΠr(krt ∗ krp ∗ ∂qf). (6)

Using the semi-group property of the Gaussian kernel, it can
be deduced that

wq,r,t

r
≈ Πr(kr

√
t2+p2

∗ ∂qf). (7)

The accuracy of this approximation will be computed in the
appendix.

Assume now that we have two imagesfr1
and fr2

of the
same scene at resolutionsr1 andr2. From (7), we deduce that
if we choose scalest1 and t2 such that

r1

√

t21 + p2 = r2

√

t22 + p2, (8)

then

m1(q, r1, t1)/r1 ≈ m1(q, r2, t2)/r2 (9)

m2(q, r1, t1)/r2
1 ≈ m2(q, r2, t2)/r2

2 (10)
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with

m1(q, r, t) =
1

nr

∑

|wq,r,t|,

m2(q, r, t) =
1

nr

∑

|wq,r,t|2,

where nr is the size of the discrete imagefr and the sum
is taken over the image domain (notice that, since we use a
continuous wavelet transform,w has the same size asfr).
These equalities (Formula (9) and (10)) permit to compare
wavelet features fromf1 andf2. In what follows, we denote
by Θq,r,t = {m1(q, r, t),m2(q, r, t)} the wavelet features at
scalet and directionq extracted fromfr.

c) Remark about the naive choicep = 0.0: A naive
assumption could be made that for the same scenef , if we
keep

r × t = C (11)

whereC is a constant, the parameter set is also constant (after
the correct normalization). However, this assumption is not
sufficient because it approximates the resolution change by
a simple zoom, which is not consistent with the acquisition
process modeled in Section II. We will see in Section V that
such a naive choice leads to poor numerical results compared
with the use of Equation (8). In what follows, we will call
”naive choice” the use ofp = 0 in Equation (8).

d) Tuning ofp: To use Equation (8), one needs to know
the value ofp. This is a characteristic of the acquisition process
(see Equation (1)). This can therefore be tabulated once for
each satellite. Observe that if one considers two imagesfr1

and fr2
with different resolutions, it is very likely that they

originate from different satellites and that the corresponding
values ofp be different. In this case, writingpi for the value of
p corresponding to resolutionri (i = 1, 2) it is straightforward
to show that Equation (8) can be generalized to

r1

√

t21 + p2
1 = r2

√

t22 + p2
2. (12)

This equality again ensures that approximations (9) and (10)
hold and permits the comparison of wavelet features fromfr1

and fr2
. In what follows, for the sake of simplicity, we will

assume thatp1 = p2 and therefore use Equation (8).

B. Wavelet features and resolution

As explained in the introduction, the aim of this paper is
to propose a way to compare the features originating from
two images with different and known resolutions. One way
to achieve this is to modify the features (i.e. the first and
second order momentsm1 andm2) extracted at resolutionr1

to compare them with the features extracted at resolutionr2.
Assume that we havefr1

the image at resolutionr1 of a given
scene, and that we want to predict its features at resolutionr2.
From Equations (7)–(10), we deduce the following scheme:

• Compute the wavelet coefficients forfr1
at scalesti, i =

1, 2, 3, . . . , N ;
• Estimate the parametersΘq,r1,ti

from the wavelet coef-
ficients at scalesti for resolutionr1 ;

• For resolutionr2, compute the scalest′i corresponding to
ti according to (see Equation (8))

t′i =

√

r2
1

r2
2

(t2i + p2) − p2 (13)

• Define Θ̃q,r2,t′i
= Θq,r1,ti

at scalest′i.

By using such an algorithm, it is now possible to compare
images taken at different resolutions and, for instance, totrain
classification methods on a set of images at only one resolution
and to apply the recognition criteria to images at different
resolutions.

V. EXPERIMENTS AND RESULTS

A. Image database

In the following sections, we experimentally validate the
proposed scheme for comparing wavelet features. These exper-
iments are carried on an image database provided by the CNES
(the French space agency). This database is made of various
scenes (such as fields, forests and cities). Each scene has been
acquired as an aerial image at resolution0.25m. Then, for each
scene, the CNES has simulated images at various resolutions,
using realistic satellite modeling. The available resolutions
range from0.5m to 4m, according to a geometric progression
with ratio 21/6. In Figure 2 some examples of the images from
the database are shown. It is important at this point to note
that convolution kernels used by the CNES are not Gaussian.
However, we will see that the approximate acquisition model
of Section II yields good numerical results. In what follows,
we will use the acquisition model (1) with a valuep = 1.3.
This value has been chosen as the value yielding the best
numerical results (among values ranging from 1 to 2 by steps
of 0.1) and it also corresponds to a rough approximation of
the kernel used by the CNES.

B. Validity of the prediction scheme

First, we check the validity of Formula (8), (9) and (10) by
plotting numerical values of featuresm1 andm2 as a function
of the resolution.

In Figures 3 (d)-(f) (resp. (g)-(i)) graphs ofm1(q, r, t)/r
(resp.m2(q, r, t)/r2) as functions ofr are presented whenrt
is kept constant (that is when using the naive normalization
of Equation (11)) and whenr

√

t2 + p2 (with p = 1.30)
is kept constant (see Equation (8)). The resolutionr ranges
from 0.50m to 4m. For the image at resolution0.50m (the
highest available resolution),m1 and m2 are computed at
scale 16 in the horizontal direction. It may be seen that
using Equation (11) (that is forgetting the convolution step
in the model of resolution change) does not yield a constant
parameter set, especially when the resolution change is large.
In contrast, using Equation (8) yields fairly constant values.

Next, we compare values ofm1 and m2 computed on
an image with resolution3.175m to values ofm1 and m2

computed on a image of the same scene with resolution1m
and then predicted for a resolution of3.175m. We perform this
comparison for various scales. Figures 4 (a)-(c) (resp. (d)-(f))
show the values ofm1 (respectivelym2) at various scales
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 2. Image samples from the database provided by the CNES: (a)-(d)
Images at resolution0.5m; (e)-(h) Images at resolution1.0m; (i)-(l) Images
at resolution2.0m; (m)-(p) Images at resolution3.175m; (q)-(t) Images at
resolution4.0m; From left to right, classes of the images are: field, city, forest
and sea.

(scale is on the horizontal axis) in solid blue line for three
different scenes. On the same figure,m1 (resp.m2) predicted
from a resolution of1m for a resolution of3.175m according
to the scheme presented in Section IV-B are displayed by a
solid red line. The two solid lines almost perfectly coincide.
In dashed line, are plotted the values ofm1 (respectively
m2) predicted from a resolution of1m for a resolution of
3.175m by the same scheme of Section IV-B, except that
Equation (13) is replaced byt′i = r1ti/r2. This corresponds
to what we called the naive choice, neglecting convolutions
in the resolution change. It can be seen that in this case, the
guessed values ofm1 andm2 are less accurate, especially for
small scales. These experiments validate the scheme proposed
in Section IV-B and suggests that it is necessary to take
into account the convolution step in resolution changes to be
able to compare features computed on images with different
resolution. The next section investigates how the accuracyof
the proposed scheme permits the classification of images at
different resolutions.

C. Classification

a) Classified database:We have manually built a clas-
sified database based on the sequences of images provided

(a) (b) (c)
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Fig. 3. (a)-(c) Three images (c©CNES); (d)-(f) graphs ofm1(q, r, t)/r
(with q = 0) as a function ofr; (g)-(i) graphs ofm2(q, r, t)/r2 (with q =
0) as a function ofr. On all these graphs, solid lines correspond to the
case wherer

p

t2 + p2 is kept constant (withp = 1.3), and dashed lines
correspond to the case the case wherert is kept constant. One observes that
using Equation (8) yields fairly constant values, whereas using Equation (11)
does not.
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Fig. 4. Values ofm1 ((a)-(c)) and ofm2 ((d)-(f)) for various scales (scale
corresponds to the horizontal axis). In solid red line are displayed the values
computed directly on images with resolution3.175m (the ground truth in this
experiment). In solid blue line, are displayed the values first computed on the
images with resolution1m and then predicted using the scheme presented in
Section IV-B. Both solid lines almost perfectly coincide, showing the accuracy
of the scheme. Dash lines show the results obtained by using the scheme
proposed in Section IV-B but replacing Equation (13) witht′

i
= r1ti/r2

(the naive normalization). Observed and predicted values donot correspond
anymore in this case.
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TABLE I

CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRACTED IN 4

DIRECTIONS AT21 SCALES (t = {2i/6|i = 0, 1, . . . , 20}). THE LEARNING SET IS

MADE OF IMAGES AT RESOLUTION4m.

Resolution error (p = 1.3) error (p = 0)
0.5m 0.00% 21.86%
1m 0.00% 19.95%
2m 0.00% 10.66%

3.175m 0.00% 1.91%

by the CNES. This database contains366 scenes observed on
urban areas (Marseille and Toulouse), rural areas (Roujan),
forests (Didrai) and the sea. For each scene, there are5 dif-
ferent images corresponding to 5 different resolutions (0.5m,
1m, 2m, 3.175m and4m). The scenes are manually divided
into 4 sets: city (199 scenes), fields (134 scenes), forests (23
scenes) and sea (10 scenes).

b) Experiment:The first experiment carried out on this
database is classification. Images at the resolution of4m are
used as a learning set for training the classifier. The aim is
to find the classes of the images at resolutions other than
4m. Wavelet features (m1 andm2) are at first extracted from
all the images by applying Gaussian derivatives at different
scales in4 directions (horizontal, vertical and diagonal). The
features extracted from the images at a resolution of4m over
21 scales (t = {2i/6, i = 0, 1, . . . , 20}) are used to train
the classifier. Therefore the dimension of the feature space
is 2 × 4 × 21 = 168. The features extracted from the other
resolutions are predicted at a resolution of4m by using the
scheme presented in Section IV-B. For comparison, we set the
valuep respectively equal to1.3 (using the acquisition model)
and0.0 (the naive approach). We then classify the images at
resolutions other than4m with the predicted features.

The classifier we used is simply the nearest neighbor
classification algorithm. For a given image A, the classifier
search for its nearest neighbor B in the training set and affect
to A the class of B. As a distance between features, we use
the Euclidean distance, after normalizing each coordinateby
its variance.

c) Results:The classification results are shown in Tab. I.
It can be observed that with the naive approach, the classifica-
tion errors increase rapidly when the resolution gets away from
4m. This shows numerically that the naive approach (p = 0) is
not a good choice for classification purpose. On the contrary,
when the acquisition model is taken into consideration (i.e.
p = 1.3), there is no error. This is due to the fact that the
prediction scheme is very accurate, as we have shown in
Section V-B. Errors are small enough not to switch from one
class to another when changing the resolution.

d) Influence of the number of features:The classification
results presented in Table I are obtained from features in a
space with relatively large dimension (168 values for each
image). We therefore study the effect of a dimension reduction.
In Table II are shown the classification results obtained when
performing the same experiment as in Table I, using the
wavelet features (m1 andm2) at only 3 scales (t = 1, 2, 4). In
this case the dimension of the feature space is2× 4× 3 = 24

TABLE II

CLASSIFICATION RESULTS OBTAINED WITH WAVELET FEATURES EXTRACTED IN 4

DIRECTIONS AT3 SCALES (t = 1, 2, 4). THE LEARNING SET IS MADE OF IMAGES AT

RESOLUTION4m.

Resolution error (p = 1.3) error (p = 0)
0.5m 0.55% 26.50%
1m 0.00% 24.59%
2m 0.00% 12.84%

3.175m 0.27% 4.92%

TABLE III

CLASSIFICATION RESULTS OBTAINED WITHHARALICK FEATURES. THE DISTANCE

PARAMETER FOR CALCULATING CO-OCCURRENCE MATRICES VARIES ACCORDING TO

THE RESOLUTION OF IMAGE. THE LEARNING SET IS MADE OF IMAGES AT

RESOLUTION4m.

Resolution distance error
0.5m 24 31.9%
1m 12 22.4%
2m 6 13.6%

3.175m 4 10.1%

and it can be observed that the errors remain similar.

e) Comparison with other features:In order to further
investigate the effect of resolution changes on classification
tasks, we perform an experiment using Haralick features.
Haralick [29] has proposed features based on the statisticsof
co-occurrence matrices of images. These features are proved to
be very efficient for indexing textures. Co-occurrence matrices
are defined as the empirical joint distribution of the gray
values of pixels in some directionθ and at some distance
d. The considered directions are horizontal, vertical and two
diagonal directions. The distance between the pixel pairs can
be considered as a scale parameter. For images at different
resolutions, it is therefore natural to compute co-occurrence
matrices with different distances. In our experiment, we set
d = 3, 4, 6, 12, 24 respectively for images at resolutions4m,
3.175m, 2m, 1m and0.5m. These values ensure thatd×r is a
constant. The Haralick features are composed of13 statistical
values calculated from each matrix and the mean and standard
deviation values through the four directions. Therefore the
total feature dimension is(4 + 2) × 13 = 78.

Figure III shows the classification results obtained with
Haralick features. Our purpose here is not to compare directly
these results with the results obtained in the previous section.
Indeed, results obtained with wavelet features are better,but
we did not take full advantages of co-occurrence matrices since
only one scale is used for each image. The interesting point
is to notice how fast the classification results decrease with
the change of resolution, therefore showing the inability of
Haralick features to handle such changes. Observe that the
approach taken here is similar to the naive choice of previous
sections (approximating a resolution change through a zoom).
Due to the non-linear nature of co-occurrence matrices, the
approach proposed in the case of wavelet features is not
adaptable to Haralick features.
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TABLE IV

M ISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRACTED AT 21

SCALES WITH 4 ORIENTATIONS.

resolution 0.5 1.0 2.0 3.175
p=1.3 4.1 0.27 0 1.64
p=0 81.97 79.51 65.57 34.97

TABLE V

M ISMATCHING PERCENTAGES WHEN USING WAVELET FEATURES EXTRACTED AT 3

SCALES WITH 4 ORIENTATIONS

resolution 0.5 1.0 2.0 3.175
p=1.3 11.2 4.64 1.09 9.29
p=0 95.90 96.45 92.62 62.02

D. Image Matching

In this subsection, we carry out a more difficult experiment
than in the previous subsections. For each image at a resolution
of 4m, we want to find the exact same scene from the images
at other resolutions with the help of wavelet features. The
features are extracted and predicted as presented in Section IV-
B. For an image at a resolution different from4m, we search
its nearest neighbor in the feature space among the set of
images at4m. If the two images represent the same scene,
it is a correct match, otherwise it is an error. This is the
same classification task as before, except that we consider each
scene to be a class in itself.

In Table IV are displayed the matching results when using
features over21 scales (ti = 2i/6, i = 0, 1, . . . , 20) and 4
orientations. In Figure V are displayed the matching results
when using only3 scales (ti = 2i, i = 0, 1, 2).

It can be observed that

• The errors increase considerably when compared to the
classification results of the previous subsection, especially
when p = 0.0. This is due to the fact that in the image
database, there are many scenes of the same class which
are very similar one to another. Therefore the points
representing these images in the feature space are close
one to another. As a consequence, a small error in the
prediction causes an error in the image matching, in
contrast with the classification case of Section V-C.

• The small errors in the casep = 1.3 confirm the accuracy
of the scheme.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a scheme for comparing
wavelet features from images taken at different resolutions.

The acquisition of images is modeled by a convolution
followed by a sampling. The scheme to compare wavelet
features is based on this model and the semi-group property
of the Gaussian kernel. We first checked experimentally the
validity of this scheme and showed that the numerical accuracy
is significantly improved compared to a naive approach where
resolution change is simply modeled by a zoom. This approach
is then applied for the classification of satellite images at
several resolutions simulated by the CNES. Our approach

improves significantly the accuracy of the classification. This
fact is confirmed trough an image matching experiment.

The method presented in Section IV-B to compare wavelet
features between images with different resolution is quitegen-
eral. We applied it to image classification, but other tasks could
benefit from this approach. For instance, the scale invariance
of wavelet transformations has been applied to the fusion of
aerial images having different resolutions [30][31][32].None
of these works takes into account the influence of the optics
and captors on the change of resolution. We believe that the
approach presented in Section IV could improve the precision
of such fusions of images.
Acknowledgements:We thank Mihai Datcu, Alain Giros and
Henri Mâıtre for their advices and comments.

APPENDIX

In this appendix, we detail the approximation made in Equa-
tion (5) and compute the error functions of the approximation
made in Equation (6).

Recall that wq,r,t are the wavelet (Gaussian derivative)
coefficients extracted fromfr at scalet and in directionq,
where fr is the digital image at resolutionr obtained from
the continuous scenef . For clarity, we only consider the1D
case. Recall Formula (5):

wq,r,t = ∆qk̃t∗̃Πr(krp ∗ f)

= k̃t∗̃∆qΠr(krp ∗ f).

In the 1D case, we have

wr,t = k̃t∗̃∆xΠr(krp ∗ f).

Writing g(x) = (krp ∗ f)(x), we have

wr,t(x) = k̃t∗̃∆xΠr(g(x))

= k̃t∗̃(Πr(g(x + r) − g(x))),

and sinceg ∈ C1, we have

g(x + r) = g(x) + rg′(x) + o(r).

Therefore

wr,t ≈ k̃t∗̃Πr(g(x) + rg′(x) − g(x))

= k̃t∗̃Πr(rg
′(x))

≈ rk̃t∗̃Πr(krp ∗ f ′(x)).

This is the approximation made in Equation (5). Next, we
compute the error energy of the approximation made in
Equation (6). For simplicity, we consider the resolutionr = 1.
We want to show that the energy of the error is small.

E =
∑

|∆xk̃t ∗ Π1(g) − Π1(kt ∗ g′)|2

=

∫

|FT
{

∆xk̃t ∗ Π1(g) − Π1(kt ∗ g′)
}

|2dω
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Fig. 5. Error function (E) and power spectrum of wavelet coefficientswr,t

in the frequency domain.

whereFT (f) is the Fourier transform off . With the approx-
imation kt ≈ Πr(krt), we have

E ≈
∫

|FT {∆xΠ1(kt ∗ g) − Π1(kt ∗ g′)} |2dω

=

∫

|FT{Π1(kt ∗ g(x + 1) − kt ∗ g(x)) − Π1(kt ∗ g′)}|2dω

=

∫

|FT {Π1(kt ∗ g(x + 1) − kt ∗ g(x) − kt ∗ g′)} |2dω

We suppose that the image is not aliased, (i.e.kt ∗ g is band
limited), therefore

E ≈ 2

∫ π

0

|FT {kt ∗ g(x + 1) − kt ∗ g(x) − kt ∗ g′} |2dω

= 2

∫ π

0

|ejω − 1 − jω|2|FT{kt ∗ g}|2dω

= 2

∫ π

0

(

2(1 − cos ω − w sinω) + ω2
)

|FT{kt ∗ g}|2dω

≈ 2

∫ π

0

(

2(−ω2

2
+

ω4

8
) + ω2

)

|FT{kt ∗ g}|2dω

≈
∫ π

0

ω4

2
|FT{kt ∗ kp ∗ f}|2dω

=

∫ π

0

ω4

2
|FT{k√

p2+t2
}|2|FT{f}|2dω.

Recall thatt ≥ 1 and p = 1.3 in all our numerical experi-
ments. Since the power spectrum of the imagef is generally
decreasing, andω

4

2 is increasing, the worst case (which yields
the largest error) is therefore|FT{f}|2 = 1 for all ω, where
we have

E ≈
∫ π

0

ω4

2
|FT{k√12+1.32}|2dω

and
E

∑ |wr,t|2
≈ 0.035.

Figure 5 shows a plot ofE and the power spectrum of wavelet
coefficientswr,t in the frequency domain for the case where
|FT{f}|2 = 1. In the worst case, the approximation made in
Equation (6) yields an energy error of3.5% when compared
to the energy of the original wavelet coefficients.
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