
Practice 2:
Image processing with variational approaches

Jean-François Aujol & Nicolas Papadakis

IMB, Université Bordeaux
351 Cours de la libération, 33405 Talence Cedex, FRANCE

Email : jean-francois.aujol@math.u-bordeaux.fr

1 Denoising with variational approaches
Before coming to variational models, we first recall some properties of convex functionals.

1.1 Minimization of convex and differentiable functionals

In this practice, we consider u ∈ X, where X is the euclidean space Rm×n. A function J : X →
R is said convex iff:

∀(u, v) ∈ X ×X, and ∀t ∈ [0; 1], J(tu+ (1− t)v) ≤ tJ(u) + (1− t)J(v).

The function is strictly convex if the above inequality is strict ∀u 6= v and t ∈]0; 1[. Classical
1D examples (i.e. m = n = 1) of convex and strictly convex functions are given below.

J(u) = |u| is convex J(u) = ||u||2 is strictly convex J(u) = max(||u||2, 0.1) is convex

Assuming that J is proper, lower semi-continuous and coercive (see Lecture for definitions
and details), then a convex function admits at least one global minimizer. If the function is
not strictly convex, the minimizers are not necessarily unique (the values of the functions at
the minimizers are in red in the previous Figures).

mailto:jean-francois.aujol@math.u-bordeaux.fr

From now, we will only consider differentiable functions J so that ∇J(u) ∈ X exists for all
u ∈ X and it is the only vector of X that checks:

J(v) ≥ J(u) + 〈∇J(u), v − u〉, ∀v ∈ X.

Notice that ∇ here represents the derivative of the function J with respect to u:
∇J(u) = ∂uJ(u), and not the spatial gradient as before. The vector ∇J(u) then defines
the tangent of J at point u, as illustrated below:

J(u) = ||u||2, the red vectors represent (with a rescaling) ∇J(u) = 2u at points u = 0.5 and
u = −0.3.

In this differentiable and convex context, we can observe that u is a minimizer of J iff
∇J(u) = 0. The gradient ∇J thus allows to characterize minimizers of J , but it also permits
to get closer to one minimizer from a current point u, by going in the opposite direction from
∇J(u) and thus decrease the function J . Hence, with an adequate time step τ > 0 and with an
additional condition on ∇J (discussed in the remark page 13), the well-known gradient descent
algorithm:

uk+1 = uk − τ∇J(uk),

converges to a global minimizer of J for any u0 ∈ X.

1.2 Previous PDEs as gradient descent of convex functionals

We recall the PDES: 
∂u(t,x)
∂t

= ∆u(t, x) for t ≥ 0 and x ∈ Ω
u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω,

(1.1)

where ∆ is the Laplacian operator, f is the initial temporal condition and ∂u
∂N

= 0 are Neumann
boundary conditions.

and its discrete version: {
uk+1
i,j = uk + δt(∆u

k)ij

u0
ij = fij,

(1.2)


∂u(t,x)
∂t

= div
(
g
(
||∇u(t, x)||

)
∇u(t, x)

)
for t ≥ 0 and x ∈ Ω

u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω,

(1.3)

where g is a decreasing function from R+ to R+.

2

In the following we will consider

g(ξ) =
1√

(ξ/α)2 + 1
. (1.4)

From now on, we will consider the discrete framework so that the following
sums on Ω corresponds to a discretization of the continuous integrals on Ω in the
Lecture. Let us now consider the convex function JH(u) = 1

2

∑
x∈Ω ||∇u(x)||2 = 1

2
||∇u||2Y .

From calculus of variations, one obtains ∇JH(u) = −div (∇u) = −∆u ∈ X.
We can then apply the gradient descent algorithm in order to compute a minimizer of this

convex function. Initializing u0 = f , it reads:

uk+1 = uk + τ∆uk,

which exactly corresponds to the previous discretization of the Heat equation (1.2).
In the same vein, we can show that the Perona-Malik PDE1 defined in (1.3) corresponds to a

gradient descent algorithm applied to the convex functional JPM(u) =
∑

x∈Ω

√
||∇u(x)||2 + 1,

since:

∇JPM(u) = −div

(
∇u√

||∇u||2 + 1

)
.

1 Check the convexity and the computation of the gradients of the above functions JH and
JPM .

1where g(t) of (1.4) is parameterized with α = 1.

3

Interpretations From the gradient descent point of view, we see that with an infinite time
t, the previous PDEs (1.1) and (1.3) will respectively converge to a global minimizer of the
functions JH and JPM .

We denote as C the set of uniform images (i.e. constant) u ∈ X (i.e. so that u ∈ C iff
∇u(x) = 0, ∀x ∈ Ω). It is clear that JH(u) = 0 if u ∈ C and JH(u) > 0 if u /∈ C. The same
observation can be made for JPM . Hence C is the set of global minimizers of functions JH and
JPM . This confirms that the PDEs will converge to constant images2.

The difference between both PDEs concerns the paths uk between u0 = f and u∞ =
constant. The isotropic Heat equation corresponds to a quadratic function JH , whereas the
anisotropic Perona-Malik model relies on a differentiable approximation of the piecewise-linear
and non differentiable Total Variation regularization

∑
x∈Ω

√
||∇u(x)||2. These functions are

displayed below:

JH(u) JPM(u)

From now on, in the Figures, the x-axis is a 1D representation of X = Rm×n. The set C
of global minimizers is in purple: JH(u) = JPM(u) for all u ∈ C. The vectors ∇JH(u) and
∇JPM(u) are displayed in red for a same u.

From the shape of these functions, we understand that for an initialization f far from C and
the same time steps, the gradient descent on the quadratic JH will involve gradients ∇JH(u)
with higher norms than ∇JPM(u) and it will reach faster the neighborhood of C than the
gradient descent on JPM . This explains why the Heat equation gives very smooth images (close
to C) with few iterations.

Remark on the convergence of gradient descent If ∇J is Lipschitz continuous with
constant L (i.e. ||∇J(u) − ∇J(v)|| ≤ L||u − v||, for all u, v ∈ X), then the gradient descent
converges for all τ < 2/L. For the Heat equation, ∇JH = −∆ is Lispchitz continuous. With
the discretization of the Laplacian considered page 5, the constant L of ∆ is 8, so that we can
take τ < 1/8. On the other hand, it is worth noting that ∇JPM is not Lispchitz continuous so
that the Perona-Malik PDE may diverge if not optimizing the time step at each iteration with
line search methods.

Enhancing PDEs methods A previously underlined drawback of the presented PDEs is
that the original data f is only used as an initialization and forgotten along the process. We
now see how defining a convex function that will take into account this information so that its
minimizers will have a stronger link with f .

2With the Neumann condition, the PDEs will converge to the constant image where the constant is the mean
value of f . It corresponds to a homogeneous diffusion on the whole domain Ω of the initial temperature f .

4

1.3 Variational model with data fidelity term

As previously noticed, the functions JH and JPM have a smoothing effect. A simple idea to
counter balance this regularization behavior is to consider an additional data fidelity term:

JD(u) =
1

2

∑
x∈Ω

||u(x)− f(x)||2 =
1

2
||u− f ||2X

This function is strictly convex and its obvious minimizer is obtained for u = f . This model
assume that the data is a degradation of the perfect unknown image u∗ with a Gaussian noise ω,
i.e. f = u∗+ω. Notice that minimizing the ||.||2X norm corresponds, in the Bayesian framework,
to the minimization of the likelihood of the image u with respect to the data noisy f .

We can now consider the following kind of models:

Jλ(u) = λJD(u) + JR(u), (1.5)
where λ ≥ 0 is a parameter weighting the influence of the regularization with respect to the
data and JR is a regularization function that can be taken as JH(u) = 1

2

∑
x∈Ω ||∇u(x)||2 or

JPM(u) =
∑

x∈Ω

√
||∇u(x)||2 + 1.

It is worth noting that the function Jλ in (1.5) is strictly convex for λ > 0. We call uλ
a minimizer of (1.5) for a given λ. For λ = 0, we recover the previously studied models and
uλ is not unique (any u ∈ C is a minimizer). For λ → 0+, the minimum is achieved for the
constant image with the same mean as f . For λ→∞, the data term is prominent so we have
limλ→∞ uλ = f . The interesting values are thus in between. We next illustrate the influence of
this parameter on the minimizer uλ.

JR(u) JD(u)

The set C of global minimizers of JR is in purple. The minimizer of JD (= f) is in red.

Jλ(u), λ = 0.1 Jλ(u), λ = 2 Jλ(u), λ = 10

Illustration of Jλ and its minimizer uλ (black points) for different values of λ.

Hence, we clearly observe that the minimizer of Jλ will be a compromise between the data
f and an uniform image in C. Tuning the parameter λ adequately is in practice more simple
than setting a number of iteration in PDEs approaches. The parameter can for instance been
set with respect to the expected noise level of the image.

5

Variational models in image processing In image processing applications (denoising,
segmentation, optical flow estimation...), it is classical to design algorithms based on the mini-
mization of a function. The important point is therefore to ensure that the minimizers of the
proposed function have good properties with respect to the tackled application. Here these
properties are the following: the denoised image u should be smooth and close to f .

1.3.1 Minimization of Jλ

We now consider the gradient descent algorithm to solve problem (1.5):

uk+1 = uk − τ(λ∇JD(uk) +∇JR(uk)).

We can first observe that ∇JD(u) = (u−f) ∈ X. Next, we detail the algorithm for different
regularizers JR.

2 Check the strict convexity and the computation of the gradient of the function JD.

Tikhonov regularization The so-called Tikhonov regularization is JR(u) = JH(u) = ||∇u||2X .
This function enforces the image to be smooth. The corresponding the gradient descent algo-
rithm reads:

uk+1 = uk + τ(λ(f − uk) + ∆uk), (1.6)

where the time step can be taken as τ = 1/(λ+ 4).

Smoothed Total Variation regularization The so-called smoothed Total Variation regu-
larization is JR(u) = J εTV (u) :=

∑
x∈Ω

√
||∇u(x)||2 + ε. This function enforces the image to be

piecewise constant. The gradient descent algorithm is in this case:

uk+1 = uk + τ

(
λ(f − uk) + div

(
∇uk√

||∇uk||2 + ε

))
, (1.7)

where the time step τ must be taken small enough to avoid numerical instabilities (see Remark
page 13). With the previous notations, we have JPM = J1

TV . Taking ε = 1 gives a good
approximation of the Total Variation regularization if the gray values of f are within the range
[0; 255].

PDE point of view It is interesting to interpret the algorithms (1.6) and (1.7) as PDEs.
For the Tikhonov regularization, one recovers:

∂u(t,x)
∂t

= λ(f(x)− u(t, x)) + ∆u(t, x) for t ≥ 0 and x ∈ Ω
u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω.
(1.8)

With respect to the Heat equation and the Perona-Malink one, the additional term λ(f(x) −
u(t, x)) now enforces, the solution u(t, x) to go into the direction of f(x), with an influence
given by λ.

6

1.4 Back to work

We can now solve the problem (1.5) for the different regularizers.

3 Write a function Denoise_Tikhonov that

– takes as argument the noisy image f , a time step τ (that can be automatically set
to 1/(λ+ 4)), a number of iterations K and a parameter λ

– realizes the gradient descent algorithm (1.6) for iterations k = 1 · · ·K
– returns uK .

4 Write a function Denoise_TV that

– takes as argument the noisy image f , a time step τ , a number of iterations K and
parameters λ and ε

– realizes the gradient descent algorithm (1.7) for iterations k = 1 · · ·K
– returns uK .

5 Write a script that test these functions on a noisy image f for different parameters λ.

What is the influence of λ ?

How does λopt evolves with respect to the amount of noise ?

Remark: The parameterK is a maximum number of iteration. The algorithm can be stopped
if a convergence criteria is met. A standard criteria is to measure the normalized root-mean-
square error (RMSE) between successive iterations: ||uk+1 − uk||/||uk|| and stop the algorithm
when it is small enough (for instance < 10−5 for Tikhonov and < 10−4 for smoothed Total Vari-
ation). Also notice that since the Tikhonov regularization is quadratic and the Total Variation
one in piecewise linear, good values of λ are not in the same range for the 2 regularizations.
An example of the obtained results is given below.

1.5 Solving Tikhonov regularization with Fourrier Transform

The Tikhonov regularization corresponds to solve the problem:

min
u
Jλ(u) = λJD(u) + JH(u) =

λ

2
||u− f ||2X +

1

2
||∇u||2Y . (1.9)

The minimizer u of this convex function is then characterized by ∇Jλ(u) = 0. Computing
the Euler-Lagrange equation of (1.9), it gives as optimality condition:

λ(u− f)−∆u = 0. (1.10)

As for the Heat equation, whose solution u(t, x) can be explicitly obtained through a con-
volution with an adequate kernel depending on t, the solution of the Tikhonov regularization
problem can be explicitly computed (i.e. without minimizing Jλ iteratively).

The solution can indeed be exhibited by considering Discrete Fourier Transform (DFT) of
the optimality condition (1.10).

We recall that the DFT of a m× n discrete image f(k, l) (0 ≤ k ≤ m− 1 et 0 ≤ l ≤ n− 1)
is given, for 0 ≤ p ≤ m− 1 and 0 ≤ q ≤ n− 1, by:

7

T
ik
ho

no
v

λ = 1 λ = 0.1 λ = 0.01

sm
oo

th
ed

To
ta
l

V
ar
ia
ti
on

λ = 0.1 λ = 0.01 λ = 0.001

Denoising results for different values of λ. First line: Minimizer uλ of Jλ with Tikhonov
regularization. Second line: Minimizer uλ with smoothed Total Variation regularization.

F(f)(p, q) = F (p, q) =
m−1∑
i=0

n−1∑
j=0

f(k, l)e−j(2π/m)pke−j(2π/n)ql (1.11)

and the inverse transform is:

f(k, l) =
1

mn

m−1∑
p=0

n−1∑
q=0

F (p, q)ej(2π/m)pkej(2π/n)ql (1.12)

One can show that, for the centered discretization of the Laplacian operator and periodic
conditions, we have

F(∆f)(p, q) = −4F(f)(p, q)
(

sin2
(πp
m

)
+ sin2

(πq
n

))
(1.13)

from which we can deduce that the minimizer u of (1.9) checks:

F(u)(p, q) =
λF(f)(p, q)

λ+ 4
(
sin2

(
πp
m

)
+ sin2

(
πq
n

)) (1.14)

7 Implement relation (1.14) and find the minimizer using functions fft2 and ifft2. Compare
the solution with the one obtained with the Denoise_Tikhonov function for the same λ.
Comments ?

7’ Bonus question: Show relations (1.13) and (1.14). Recall: 2 sin2(a) = 1− cos(2a).

8

Remark: The above DFT method assumes periodic conditions, while Neumann conditions
were previously considered. As a consequence, differences between both approaches should be
mainly visible on the image boundaries.

2 Extensions to deconvolution and inpainting
We now extend the previous variational model to a more general one dealing with other ap-
plications than denoising. To that end, instead of the data function JD, we define a new data
function JA that will be minimized jointly with the two studied regularization functions. This
data function reads:

JA(u) =
1

2

∑
x∈Ω

||(Au)(x)− f(x)||2 =
1

2
||Au− f ||2X , (2.15)

where A is a linear operator from X to X that can be represented as mn×mn matrix in the
discrete setting. This data function can model different interesting applications:

• Deconvolution: We assume that the available image f is obtained as G ∗ u∗+ ω, where
u∗ is the unknown ground truth image to recover, G(x) is a known 2D convolution filter
and ω is an additional Gaussian noise. In this case, the data function ||G∗u−f ||2X tries to
estimate an image u which convolution with the kernel G is close to the one of u∗. With
adequate change of indexes, the discrete convolution of u with a kernel K can be seen as
a matrix vector multiplication, by considering the mn×mn matrix Gkl = G(xl − xk).

u∗ G ∗ u∗ f = G ∗ u∗ + ω

Example of data f in case of deconvolution.

• Inpainting: We assume that the available image f is a partial observation of a pertur-
bation of the ground truth image u∗ to recover. More precisely, we only have access to
observations of some pixels x that belong to a known region M ⊂ Ω. In this case, the
data term can be taken as

∑
x∈M ||u(x) − f(x)||2. It corresponds to the framework of

(2.15) by introducing the mn×mn matrix M(k, l) = 1 if k = l and pixel xk ∈ M and 0
otherwise.

Remark: Notice that JA is strictly convex only if A is a positive definite matrix and thus an
invertible matrix. In this case, one can equivalently consider as data term ||u−A−1f ||2X which
enters in the framework of previous section. Hence, the interesting case to look at is when A
has zero eigenvalues, for instance when A is positive semi-definite.

9

u∗ M f = u∗|M

Example of data f in case of inpainting.2.1 Gradient of JA
The gradient of function (2.15) reads ∇JA(u) = AT (A(u− f). In the aforementioned applica-
tions one has:

• Deconvolution: With an isotropic kernel G, the gradient of JG(u) = 1
2
||G ∗ u− f ||2X is

∇JG(u) = G ∗ (G ∗ u− f). (2.16)

• Inpainting: The gradient of JM(u) = 1
2

∑
x∈M ||u(x)− f(x)||2 is

∇JM(u)(x) =

{
u(x)− f(x) if x ∈M
0 otherwise.

(2.17)

Considering the mask function M(x) = 1 if x ∈ M and 0 otherwise, we also have:
∇JM(u) = (u− f)M .

8 Check the computation of ∇JA(u).

Compute GT and MT .

2.2 Variational models and minimization

We can now use the new data functions together with the regularization ones, in order to
formalize and solve the deconvolution and inpainting problems.

• Deconvolution: The function to minimize reads:

λ

2
||G ∗ u− f ||2X +

∑
x∈Ω

√
||∇u(x)||2 + ε2.

Minimizing this function corresponds to find a piecewise constant image u whose convolu-
tion with G is close to f . As the data f is assumed to be blurred, considering a Tikhonov
regularization is in this case not very smart, since it would not produce a sharp enough
image. The gradient descent algorithm applied to this problem gives:

uk+1 = uk + τ

(
λG ∗ (f −G ∗ uk) + div

(
∇uk√

||∇uk||2 + ε2

))
, (2.18)

10

• Inpainting: The function to minimize reads:

λ

2

∑
x∈M

||u(x)− f(x)||2 +
∑
x∈Ω

√
||∇u(x)||2 + ε2.

The idea is to diffuse the known information into the region M to the masked regions
Ω\M with the regularization function. We thus obtain:

uk+1 = uk + τ

(
λ(f − uk)M + div

(
∇uk√

||∇uk||2 + ε2

))
, (2.19)

The Tikhonov regularization is of interest in this application, namely in almost uniform
image regions (sky, water...), as it will realize an isotropic diffusion of the known infor-
mation. The corresponding gradient descent algorithm is:

uk+1 = uk + τ
(
λ(f − uk)M + ∆uk

)
. (2.20)

9 Write a function Deconvolution_TV that

– takes as argument an image f , a kernel G, a time step τ , a parameter ε, a number
of iterations K and a parameter λ and returns uK (see Page 7 for image convolution
in Matlab)

– realizes the gradient descent algorithm (2.18) for iterations k = 1 · · ·K

10 Write a function Inpainting_TV that

– takes as argument an image f , a mask image M , a time step τ , a parameter ε, a
number of iterations K and parameter λ and returns uK

– realizes the gradient descent algorithm (2.19) f for iterations k = 1 · · ·K

11 Implement the function Inpainting_Tichonov that

– takes as argument an image f , a mask imageM , a time step τ , a number of iterations
K and parameter λ and returns uK

– realizes the gradient descent algorithm (2.20) f for iterations k = 1 · · ·K

12 Write a script that test, for different parameters λ, these functions on images f obtained
as follows

– Deconvolution: convolve the image of your choice with a Kernel G (for instance
G= fspecial('gaussian',[7 7],5);) and add noise. Give the same G to your function
Deconvolution_TV

– Inpainting: Take a large value for K and use the images and masks available here:
Image 1 , Mask 1 , Image 2 , Mask 2 , Image 3 , Mask 3 .

13 Comments ? What are the properties of each models ? What are the properties of the
parameters ?

11

http://www.math.u-bordeaux.fr/~jaujol/code/Im1.png
http://www.math.u-bordeaux.fr/~jaujol/code/Im1_mask.png
http://www.math.u-bordeaux.fr/~jaujol/code/Im2.png
http://www.math.u-bordeaux.fr/~jaujol/code/Im2_mask.png
http://www.math.u-bordeaux.fr/~jaujol/code/Im3.png
http://www.math.u-bordeaux.fr/~jaujol/code/Im3_mask.png

f
u ??

First column: Deconvolution with smoothed Total Variation. Second column: Inpainting with
smoothed total variation. Third column: Inpainting with Tikhonov. Last column: Inpainting

14 Write functions Denoise_g1 and Denoise_g2 in the same way as function Denoise_TV,
but where the function φ of the lecture is replaced by φ1(ξ) = ξ2

1+ξ2
. or φ2(ξ) = log (1 + ξ2).

Notice that in the rest of the practical session we have used φ(ξ) =
√
|ξ|2 + 1.

Write the optimality condition in each case.

Compare the results of Denoise_g1, Denoise_g2, and Denoise_TV. Comments ?

12

	Denoising with variational approaches
	Minimization of convex and differentiable functionals
	Previous PDEs as gradient descent of convex functionals
	Variational model with data fidelity term
	Minimization of J

	Back to work
	Solving Tikhonov regularization with Fourrier Transform

	Extensions to deconvolution and inpainting
	Gradient of JA
	Variational models and minimization

