
Practice 4
Non smooth optimization and application to

image processing

Jean-François Aujol & Nicolas Papadakis

IMB, Université Bordeaux
351 Cours de la libération, 33405 Talence Cedex, FRANCE

Email : jean-francois.aujol@math.u-bordeaux.fr

1 Convex optimization

1.1 Proximal operators and other definitions

We remind some mathematical concepts coming from convex analysis. X
and Y are two finite-dimensional real vector spaces embedded with an in-
ner product 〈., .〉 and the associated norm ‖.‖ =

√
〈., .〉. We introduce a

continuous linear operator K : X → Y with respect to the induced norm

‖K‖ = max {‖Kx‖ | x ∈ X and ‖x‖ ≤ 1} . (1)

Let F : X → [0,+∞) and G : X → [0,+∞) be two proper, convex, lower
semi-continuous (l.s.c.) functions.

We define the Legendre-Fenchel conjugate of F by F ∗(y) = maxx∈X (〈x, y〉 − F (x)).
We recall that the subdifferential of F , denoted by ∂F , is defined by

∂F (x) = {p ∈ X such that F (y) ≥ F (x) + 〈p, y − x〉 ∀y} . (2)

The proximity operator is defined by:

y = (I + h∂F)−1(x) = proxF
h (x) = arg min

u

{
‖u− x‖2

2h
+ F (u)

}
(3)

mailto:jean-francois.aujol@math.u-bordeaux.fr

Notice computing the proximal operator is itself a minimization problem.
As we will see later, the proximal operator is sometimes straightforward to
compute but may in other cases require the use of an iterative algorithm.

We can define the Legendre Fenchel transform of F :

F ∗(v) = sup
u

(〈u, v〉 − F (u)) (4)

The Moreau identity reads:

x = proxF
h (x) + hproxF ∗

1/h(x/h) (5)

1.2 Primal algorithms: forward-backward splitting and
projected gradient

1.2.1 Forward-backward splitting and an accelerated version (FISTA)

The Forward-Backward algorithm was designed to solve the unconstrained
minimization problem:

min
x∈X

F (x) +G(x) (6)

where F is a convex C1,1 function, with ∇F L-Lipschitz, and G a simple
convex l.s.c. function (simple means that the proximity operator of G is easy
to compute).

The Forward-Backward algorithm reads:

Algorithm 1 Forward-Backward algorithm

• Initialization: choose x0 ∈ X.

• Iterations (k ≥ 0): update xk as follows:

xk+1 = (I + h∂G)−1(xk − h∇F (xk)). (7)

This algorithm is known to converge provided h ≤ 1/L. In terms of
objective functions, the convergence rate is of order 1/k.

It has been shown by Nesterov, and by Beck and Teboulle, that it could
be modified so that a convergence rate of order 1/k2 is obtained. The follow-
ing algorithm, proposed by Beck and Teboulle and called FISTA, converges
provided h ≤ 1/L:

2

Algorithm 2 FISTA

• Initialization: choose x0 ∈ X; set y1 = x0, t1 = 1.

• Iterations (k ≥ 1): update xk, tk+1, yk+1 as follows:
xk = (I + h∂G)−1(yk − h∇F (yk))

tk+1 =
1+
√

1+4t2k
2

yk+1 = xk + tk−1
tk+1

(xk − xk−1)
(8)

Notice that both algorithms require the computation of the proximal
operator (I+h∂G)−1, which may itself be computed via a Forward-Backward
algorithm or FISTA.

1.2.2 Projected gradient algorithm

A particular case of Problem (6) is the constrained minimization of a differ-
entiable function F , i.e. when G is the indicator function of a closed convex
non-empty set C:

G(x) = χC(x) =

{
0 if x ∈ C,
+∞ otherwise. (9)

The projected gradient algorithm is exactly Algorithm 1 replacing G by χC .
Indeed, one easily checks that (I + h∂G)−1 = PC , the orthogonal projection
onto C. In this case, Algorithm (2) is an accelerated projected gradient
method that converges provided h ≤ 1/L.

Algorithm 3 Accelerated Projection algorithm

• Initialization: choose x0 ∈ X; set y1 = x0, t1 = 1.

• Iterations (k ≥ 1): update xk, tk+1, yk+1 as follows:
xk = PC(yk − h∇F (yk))

tk+1 =
1+
√

1+4t2k
2

yk+1 = xk + tk−1
tk+1

(xk − xk−1)
(10)

3

1.3 A primal-dual algorithm: Chambolle Pock Algo-
rithm

The saddle-point problem

min
x∈X

max
y∈Y

(〈Kx, y〉+G(x)− F ∗(y)) (11)

is a primal-dual formulation of the nonlinear primal problem minx∈X (F (Kx) +G(x))
or its dual maxy∈Y (−G∗(−K∗y) + F ∗(y)).

Algorithm 4 Chambolle-Pock algorithm

• Initialization: choose τ, σ > 0, (x0, y0) ∈ X × Y , and set x̄0 = x0.

• Iterations (k ≥ 0): update xk, yk, x̄k as follows:
yk+1 = (I + σ∂F ∗)−1(yk + σKx̄k)
xk+1 = (I + τ∂G)−1(xk − τK∗yk+1)
x̄k+1 = 2xk+1 − xk.

(12)

The convergence of this algorithm is proved:

Theorem 1 Assume Problem (11) has a saddle point. Choose τ and σ such
that τσ‖K‖2 < 1, and let (xn, x̄n, yn) be defined by (12). Then there exists a
saddle point (x∗, y∗) such that xn → x∗ and yn → y∗.

Notice that Algorithm (11) can be used even when both F and G are not
smooth.

2 Applications

2.1 Computation of some proximal operators

In the following, you will need to be able to use the proximal operator of
some convex functions. We recall that the proximal operator is defined by:

y = (I + h∂F)−1(x) = proxF
h (x) = arg min

u

{
‖u− x‖2

2h
+ F (u)

}
4

Compute the following proximal operators:

1.
F (u) =

1

2
‖u‖22

Show that
proxF

h (x) =
x

1 + h

2.
F (u) =

1

2
‖u− f‖22

Show that
proxF

h (x) =
x+ hf

1 + h

3.
F (u) =

1

2
‖Ku− f‖22

Show that
proxF

h (x) = (Id+ hK∗K)−1(x+ hK∗f)

4.
F (u) = ‖u‖1

Show that
proxF

h (u) = ST (u, h)

with ST (u, h) the Soft-Thresholding of u with parameter h, i.e. ST (u, h) =
u−h if u > h, ST (u, h) = u+h if u < −h, and ST (u, h) = 0 if |u| ≤ h.

5.
F (u) = ‖∇u‖1

Show that y = proxF
h (x) if and only if y = x− h div(z) with z solution

of
min
‖z‖∞≤1

‖div(z) + x/h‖22

This last problem can easily be solved by a projection algorithm.
Hint: H(z) = ‖div(z) + x/h‖22. Then ∇H(z) = −2∇(div(z) + x/h).
And if C = {z , ‖z‖∞ ≤ 1}, then the proximal operator of χC is the
orthogonal projection onto C.

6. Write matlab functions to compute proximal operators 1, 2, 4, and 5.

5

2.2 Image restoration (gaussian noise)

We use the model:

inf
u
λ‖f − u‖22 + ‖∇u‖1 (13)

Using the Forward-Backward algorithm (FB), write an algorithm com-
puting the solution of this problem.

Run the algorithm on different type of images, with different level of noise
(zero mean gaussian noise with standard deviation σ).

Comments ?
Try the convergence sped-up (FISTA). Plot the value of the functional

with respect to the number of iterations. Comments ?

2.3 Image restoration (salt and peper noise)

We use the model:

inf
u
λ‖f − u‖11 + ‖∇u‖1 (14)

Using the primal dual algorithm by Chambolle-Pock, write an algorithm
to compute the solution of the above problem.

Salt and peper noise means that some pixels of the image are arbitrary
set to 0 or 255.

Run the algorithm on different type of images, with different level of noise.
Comments ?
Compare with the TV − L2 model.

2.4 Image deconvolution (gaussian noise)

We use the model:

inf
u
λ‖f −Ku‖22 + ‖∇u‖1 (15)

where K is a convolution operator (K will be a gaussian convolution
operator).

Using the Forward-Backward algorithm (FB), write an algorithm com-
puting the solution of this problem.

6

Run the algorithm on different type of images, with different level of noise
(zero mean gaussian noise with standard deviation σ).

Comments ?
Try the convergence sped-up (FISTA). Plot the value of the functional

with respect to the number of iterations. Comments ?

2.5 Image deconvolution (salt and peper noise)

We use the model:

inf
u
λ‖f −Ku‖1 + ‖∇u‖1 (16)

where K is a convolution operator (K will be a gaussian convolution opera-
tor).

Using the primal dual algorithm by Chambolle-Pock, write an algorithm
to compute the solution of the above problem (hint: you may use the FFT
to compute proximal operator 3).

Run the algorithm on different type of images, with different level of noise.
Comments ?
Compare with the previous model.

2.6 Image inpainting

We want to compare the models:

inf
u
λ‖f −Ku‖22 + ‖∇u‖1 (17)

inf
u
λ‖f −Ku‖1 + ‖∇u‖1 (18)

where K is a masking operator.
Compare the two methods on the images of practice 2. Comments ?

7

	Convex optimization
	Proximal operators and other definitions
	Primal algorithms: forward-backward splitting and projected gradient
	Forward-backward splitting and an accelerated version (FISTA)
	Projected gradient algorithm

	A primal-dual algorithm: Chambolle Pock Algorithm

	Applications
	Computation of some proximal operators
	Image restoration (gaussian noise)
	Image restoration (salt and peper noise)
	Image deconvolution (gaussian noise)
	Image deconvolution (salt and peper noise)
	Image inpainting

