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Motivations

® Optimization problems in regularized inverse problems :

min  f(z) +g(x)+--+gx(z)
rERYN N~ N— ——
Data fidelity Regularization, constraints

Inverse problem

Prior knowledge (regularization)

Forward model

Typical models
Smooth, piecewise-smooth, sparse, cartoon, etc..
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Motivations

® Optimization problems in regularized inverse problems :

min  f(z) +g1(z)+- -+ gk (2)
rERN N~ N— —
Data fidelity Regularization, constraints

» Assumptions :

® f g :RY — RU/{+oo} are proper, Isc and convex, f, g; € T'o(R");
$ Domain qualification condition(s) ;
® Set of minimizers M* # 0.

® Example : sparsity regularization, e.g. :

min  f(z) + g1(z) + -+ gr (x)
TERN N~ ~ ~~ ~
Data fidelity e.g. ¢1, £, — £, norm on overlapping blocks, etc.

® A variety of potential applications : signal and image processing, machine lear-
ning, classification, statistical estimation, etc..

L ]
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Warm-up: the smooth case
min f(z), Vf e C°(RY)N 3-Lip.

reRN

2 =2 — 3, V™), 0<y<m <7

® Idea of gradient descent : let v > 0,
f@™ +qd) = f@™) =5 (V(@™),d) + ol |d])
The decrease in the function when moving from z(™) is bounded as
0 < f(@'™) = f(@'™ +~d) <AV (™) |d]

with equality in the upper bound if and only if V f(2(™) o —d.
® The direction of the steepest descent is —V f(z(™)), and the largest decrease is

2
- [9sE)|*
® Convergence bound 1/n (on the objective) and 1/n? for multi-step accelerations
L (weighted gradient memory). _
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" Pros and cons of first-order methods

® Strong points:
® Broad family of problems with a provably convergent algorithm.
® Rates (objective, iterates in some circumstances).

® Simplicity: at each step, a single evaluation of Vf and a single
(fixed or variable step size), or a small number of evaluations of f

(line search).

® Weak points:

® Its relatively low rate of convergence: even with multi-step
acceleration (complexity bounds).

® Bad in applications with ill-conditioned problems and where high-
accuracy solution is required.

® Can we hope for better ? Yes, variable metric.

L ]
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Variable Metric methods: the gist

The gradient and the Hessian of a nonlinear function f are specific representations of the first and
second-order derivatives tied to the standard Euclidian inner product on RV
Let us change a new inner product and metric : V€ RV > sdp matrix,

(#,9)y = (Va,y) =" Vy, |l = (Va,2)"/?.
The gradient and Hessian now change to
flw+h) = f(z)+(VIVf(@),h), + 1 (VTIV2f(@) + V2 f()V R, B) +o||h]l3) -

In the classical Newton method : the descent direction is the gradient computed w.r.t. the scalar pro-
duct defined by V' = V2 f(x) (the hessian is the unit matrix).
Yet another look at gradient descent : it amounts to solving (up to renormalization)

L2
in (V cd) + = ||d||” .
min (Vf(z),d) + 5 ||d|
Why not something else than unit ball, e.g., an ellipsoid.

Scaling by V' induces a change of coordinate system (and metric), and if such a change adjusts to the
geometry of the problem = better convergence (e.g. inverse of Hessian).

With this standpoint :

1
d = argmin (Vf(x),d) + > [ld|[}, = V'V f(x) . _
dERN 2 JBAMI'12-6



Generic Variable Metric Scheme

Use a varying V,, to adjust it to the geometry along the trajectory.
Denote H,, = V1.

Initialization : Choose an initial (*) € dom(f) and sdp matrix Hy.
Main iteration : Construct a sequence of iterates (z(™)),,cn as follows :

repeat
® Compute the H, -anti-gradient descent direction :

d"™ = —H,Vf(z™).

® Use a fixed, variable or line search to get the descent step size ,,.
® Update the iterate :

® Update the sdp matrix H,, — H, 1.
until convergence ;

Output : (™).

L ]
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Generic Variable Metric Scheme

Enjoys global and local convergence guarantees.

Quadratic or superlinear convergence rates in some situations.

Examples of metrics (remember H,, = V1) :

® Newton : H, = (sz(x(”)))_l.

®» Quasi-Newton : recursive refinement of V,, to approximate the hessian satis-
fying the secant condition

Hy(Vf(2™) = V@) =zt —a2tn 1

s Barzilai-Borwein : H,, = 7,,1.

= Broyden family (BFGS, DFP) : rank-2 update H, 1 = H,+> 2, u!u
s SR1 :symmetric rank-1 update H,,+1 = H,, + u(”)u(”)T.

s Limited memory variants : e.g. LMSRr, L-BFGS, CG.

T

]
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fVariable metric for the non-smooth case

min f(z), f€To(RY)

xRN

®» Semi-smooth (quasi)-Newton methods :

$ Does not exploit the structure of the problem.

$ Construct a simple slanting function is challenging in high dimension.
® Active sets :

$ |dentify activity via a subproblem.

$ Very simple f.
® Variable metric proximal point algorithm :

2T = (1= A\)2™ + N (T + 3.V 00 (™), N, €]0,1], 79, > 0.

® Butwhatif f is not simple, e.g. constrained problem, min f + » . g;.

L ]
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Variable metric splitting
min f(z) + ) _ gi()

® Assumptions :
® fg RV SRU{+x}, f, g € To(RY);
® fc CHRY) with 3-Lipschitz gradient, all g;’s are simple ;
®» Domain qualification condition(s) ;
® Set of minimizers M* # () (e.g. coercivity).
® Requirements :
® Exploit the (composite) additive structure of the objective.
® Exploit the properties of the individual functions : g; simple (closed-form proxi-

mity operator) and f smooth.

® Deal with large scale data.
$» Avoid nested algorithms.

L ]
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Variable metric forward-backward splitting E

min f(z) + g()

xRN

® Forward-Backward splitting (non-relaxed) :
2D = (1 +7,09) 7" (2™ =7,V F ™)) 7 €10,2/8].
® Variable metric Forward-Backward splitting (non-relaxed) :
T = (I + V. 19g)~! (CE(n) — Vn_1Vf(:c(n))> .
® More generally, find the zeros of :
0 € Ax + Bx

® A B:H — 2™ are maximal monotone operators ;
® A single-valued with A € A(%), B simple;
. ® zer(A+ B) # 0. |

JBAMP’12-11



Variable metric splitting

Main questions and challenges

® Convergence guarantees.
® Convergence Rates.
® Construct attractive metrics :
® Computational load and storage of V1.
® Easy implementation of the implicit step : (I + V. 19g) 1.
= Ingeneral, (I+V,10g)~! as difficult to compute as solving
the original problem.
$ Fast algorithms for large scale problems.
$» Maintain convergence guarantees.

L ]
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B Variable metric splitting

®» Forward-Backward

arbitrary exogenous metrics ;

optimization and monotone inclusions ;
finite-dimensional or infinite dimensional settings ;
convergence ;

eeoeeobob

no fast algorithm (implicit step).
® Forward-Backward with specific (simple) metrics or problems

most of them finite-dimensional optimization setting ;
some of them only special problems (e.g. box or linear constraints) ;
some lack convergence guarantees ;

eebeb0

solve a subproblem (implicit step).
® Forward-Backward with pre-conditioning

® finite-dimensional optimization setting ;
$ some of them only special problems (e.g. specific operators) ;

L.O some lack convergence guarantees. ]
JBAMI'12-13



Outline

® Convex analysis with variable metric.
® Convergence.
® LMSR17 proximal splitting scheme.

® Applications.
® Extensions and conclusion.

]
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Outline
® Convex analysis with variable metric.
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Proximity operator

Definition Let H = (RY,{-,-)) equipped with the usual Euclidean scalar product
(z,y) and associated norm ||z|| = \/(z, z). ForV € RY*N sap, letHy = (RN, {-,-)y,)

with the scalar product (z,y),, = (z, Vy) and norm ||z||,, corresponding to the metric
induced by V.

Definition (Proximity operator in H ) Let g € T'o(H). Then,
for every x € H, the function z — = ||z — 2| + g(z) achieves its infimum at a unique

point denoted by prox, x. The single-valued operator (I + dg)~' = prox, : H — H
thus defined is the proximity operator of g.

Definition (Proximity operator /) We define prox; (z) = (I3, +V ~'0g) " (x)

argmin = ||z — zH%/ + g(z) the proximity operator of g w.r.t. the norm endowing Hy, .
z€RN

Computing prox_g is difficult in general even if prox,, is available.

L ]
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NSC of a minimum

min f(z)+ g(z)

Theorem Let f € To(H) N CY(RY) and g € T'4(H) as defined before, and V =
aly, a > 0. Then, for v > 0, the following are equivalent :

(i) x> € M*.
(i) =~ = prox‘v/g 0 (IH — WV_1Vf) (™) .
(III) = (V—I—Jag)_l o (V—;/Vf) (ZIZ*)

L ]
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NSC of a minimum

min f(z)+ g(z)

Theorem Let f € To(H) N CY(RY) and g € T'4(H) as defined before, and V =
aly, a > 0. Then, for v > 0, the following are equivalent :

(i) x> € M*.
(i) =~ = prox‘v/g 0 (IH — WV_1Vf) (™) .
(III) = (V—I—Jag)_l o (V—;fo) (CIZ*)

® FB stems from a fixed point equation.

L ]
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Proximal calculus in Hy/
Lemma (Moreau identity in /) Letg € I'o('H), then for any x € 'H

proxgg* () + pV to proxg/;l oV(x/p) =2x,V0 < p<+00.
Corollary
proxg (r)=2—-V to prox;{k_1 oV (x) .
® |If prox, is easy to compute, then so is proxg;_l.

(hint : Moreau identity and Sherman-Morrison inversion lemma.)

]
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Proximal calculus in Hy/
Lemma (Moreau identity in /) Letg € I'o('H), then for any x € 'H

proxgg* () + pV to prOX;//;l oV(x/p) =2x,V0 < p<+00.
Corollary
proxg (r)=2—-V to prox;{k_1 oV (x) .
Conclusion
® |If prox, is easy to compute, then so is proxg;_l.

(hint : Moreau identity and Sherman-Morrison inversion lemma.)

]
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Continuity properties of operators

Lemma (Proximity operator) Let V' be sdp withbl =~ V > al,b > a > 0, and
g < FO(H) Then

(i) prox,‘y/g is firmly non-expansive on 'Hy,, hence non-expansive, v > 0.

—1
(ii) (Vtyag ) is firmly non-expansive on ‘H, hence non-expansive, v > 0.

(ili) For W sdp,

|prox”’ (z) — prox) (y)|| <b/a (W — V|| ||z + ||z — y|)+b/a|[prox},(0)| -

L ]
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Continuity properties of operators
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Continuity properties of operators

Lemma (Proximity operator) Let V' be sdp withbl =~ V > al,b > a > 0, and
g < FO(H) Then

(i) prox,‘y/g is firmly non-expansive on 'Hy,, hence non-expansive, v > 0.

—1
(ii) (Vtyag ) is firmly non-expansive on ‘H, hence non-expansive, v > 0.

(ili) For W sdp,

|prox”’ (z) — prox’,(y)|| <b/a (W = V|| ||z + ||z — y|)+b/a|[prox},(0)| -

Lemma (Gradient operator) Let V' be sdp with bl > V > al, b > a > 0, and
f € To(H)NCY(H) with Vf € B-Lip(H). Then (I, — vV ~'Vf) is a v3/(2a)-
averaged operator on 'Hy,, hence nonexpansive, ¥V~ €0, 2a/0|.

L ]
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Outline

K
® Convergence.

9

9
9
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" Variable Metric Forward-Backward

® Global convergence :
® Assumptions on the metric and step size.
$ Rates (linear) with extra assumptions on the functions, e.g. strong convexity.
® Local convergence :
$ Assumptions on initialization.
® |ocal assumptions on the smooth part.
$ Fast rates (quadratic or linear) for well-behaved metrics with extra smooth-
ness assumptions.
® Even in the smooth case, it is very difficult to prove something good about local
convergence of a quasi-Newton method.

L ]
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" Variable Metric Forward-Backward

Theorem (Global linear convergence) Assume that either f or g is strongly, and
that the variable metric forward-backward is run through a sequence of sdp matrices

V., — V, and a step size v €]0,7,,| with an appropriate 7,. Then the variable metric
forward-backward converges to the (unique) minimizer x* linearly.

Theorem (Local linear convergence) Assume that f € T'o(RY) N C*(RY) with
its Hessian being positive definite at x*. Assume that the variable metric forwarad-
backward is run with sdp matrices V,, = aly, a > 0, such thatsup,, ||V, — V2 f(z("))|| <

ap < 1 or a fortiori sup,, ||V, — V2 f(z*)|| < pa, p < 1. If the method is started suffi-
ciently close to x>, then it converges to x* linearly.

L ]
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Newton Forward-Backward

Theorem Assume that f € To(RY) N C?(RYN) with its Hessian being Lipschitz
continuous.

(i) Local convergence : If the Hessian is positive definite at x*, then the Newton
forward-backward, started sufficiently close to x*, converges to x* quadratically.

(ii) Global convergence : If f is strongly convex, the Newton forward-backward with
an appropriate step size or line search converges to (the unique) x> linearly.

]
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Quasi-Newton Forward-Backward

Theorem Assume that f € T'o(RY) N C?(RY) with its Hessian being positive de-
finite at x™ and Lipschitz continuous. If the matrices V,, converge superlinearly to

V2 f(x*), then the quasi-Newton forward-backward, started sufficiently close to x*,
converges to x* superlinearly.

® Under appropriate assumptions, SR1 satisfies the above requirements

]
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Outline

9

i
® LMSRr proximal splitting scheme.

9
9
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- LMSR-r FB |

Zero-memory SRr update
T
H, =D, + 22:1 u,gn)u(.n)

1

, D,, diagonal

Require: =y € dom(f + g), Lipschitz constant estimate 5 of V f, stopping criterion ¢

forn=1,2,3,... do
S(n) «— gj(n) — aj(n_l)

y" = V(@) = Vf"mY)
Compute H, = D, +> ., ul™y
Compute the rank-r proximity operator (see shortly)

()"

(see shortly), and set V,, = H *.

gntl) proxg” (™ — H,V f(z™))

p(™) — g+ _ 2(n) and terminate if ||p(™ ]| < €
Line search along the ray (™ + 0p(™) to determine z("*1), or choose 6 = 1.
end for

L ]
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B LMSR-r proximity operator

Theorem Letg € I'o(H) andV = D+5> .., u;u;, where D = 0 is diagonal. Then,
(i)

proxg(a:) = D12, ProX,,p-1/2 oDY?(z — D7 UQ) ,

where U = (u1,--- ,u,) and a € R" is the unique root of
pla) =U" (x — D712, ProX,,p—1/2 oD% (z — D_lUcv)> + Ba,

where B =U'QTU is sdp.
(i) p : R" — R" is a Lipschitz continuous mapping.
(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is

the mapping h with a generalized derivative g : R" — R"™*"

g(a) =UT QT +D 20 G(DY?z —aD Y2u) o D"VHU .

L ]

JBAMP’'12-27



B LMSR-r proximity operator

Theorem Letg € I'o(H) andV = D+5> .., u;u;, where D = 0 is diagonal. Then,
, Much simpler
() ~

proxg(a:) = D 125 ProX,,p-1/2 oDY?(z — D7 UQ) ,

where U = (u1,--- ,u,) and a € R" is the unique root of
pla) =U" (x — D712, ProX,,p—1/2 oD% (z — D_lUcv)> + Ba,

where B =U'QTU is sdp.
(i) p : R" — R" is a Lipschitz continuous mapping.
(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is

the mapping h with a generalized derivative g : R" — R"™*"

g(a) =UT QT +D 20 G(DY?z —aD Y2u) o D"VHU .
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B LMSR-r proximity operator

Theorem Letg € I'o(H) andV = D+5> .., u;u;, where D = 0 is diagonal. Then,
, Much simpler
() ~

proxg(a:) = D 125 ProX,,p-1/2 oDY?(z — D7 UQ) ,

where U = (u1,--- ,u,) and a € R" is the unique root of

pla) =U" (:13 — D120 ProX,,p—1/2 oD% (z — D_onz)> + Ba,

where B = U QU is sdp. \ Much lower-

dimensional problem
(i) p : R" — R" is a Lipschitz continuous mapping.

(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g : R" — R"™*"

g(a) =UT QT +D 20 G(DY?z —aD Y2u) o D"VHU .
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B LMSR-r proximity operator

Theorem Letg € I'o(H) andV = D+5> .., u;u;, where D = 0 is diagonal. Then,
, Much simpler
() ~

proxg(aj) = D 125 ProX,,p-1/2 oDY?(z — D7 UQ) ,

where U = (u1,--- ,u,) and a € R" is the unique root of

pla) =U" (:13 — D120 ProX,,p—1/2 oD% (z — D_onz)> + Ba,

where B = U QU is sdp. \ Much lower-

dimensional problem
(i) p : R" — R" is a Lipschitz continuous mapping.
(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g : R" — R"™*"

g(a) =UT QY + D Y20 G(DY2z —aD ?u) o DY2)U .

\ Semi-smooth Newton

(Superlinear) N
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B LMSR-1 proximity operator

Corollary Letg € I'o(H) andV = D + uul, where D = 0 is diagonal. Then,
(i)

proxg(a:) = D12, ProX, o p-1/2 (D25 — ),

1/2

where v = oD~/ “u and « is the unique root of

pla) = <u, v — D720 ProXgop-1/2 oD?(x — ozD_lu)> + .

(i) p: R — R is a Lipschitz continuous and strictly increasing function on RR.

(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

gla) =1+ <u, D~ Y20 G(DY2?z — aDY?u) o D_1/2u> .

L ]

JBAMI’'12-28



B LMSR-1 proximity operator

Corollary Letg € I'o(H) andV = D + uul, where D = 0 is diagonal. Then,
Much simpler
() /

proxg(a:) =D 120 proxgoD_l/g(Dl/zm —v),

1/2

where v = oD~/ “u and « is the unique root of

pla) = <u, v — D720 ProXgop-1/2 oD?(x — ozD_lu)> + .

(i) p: R — R is a Lipschitz continuous and strictly increasing function on RR.

(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

gla) =1+ <u, D~ Y20 G(DY2?z — aDY?u) o D_1/2u> .
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B LMSR-1 proximity operator

Corollary Letg € I'o(H) andV = D + uul, where D = 0 is diagonal. Then,
Much simpler
() /

proxg(a:) =D 120 proxgoD_l/g(Dl/zm —v),

1/2

where v = aD™"/“u and « is the unique root of 1D problem

ool

pla) = <u, v — D720 ProXgop-1/2 oD/?(z — ch_lu)> +a.

(i) p: R — R is a Lipschitz continuous and strictly increasing function on RR.

(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

gla) =1+ <u, D~ Y20 G(DY2?z — aDY?u) o D_1/2u> .
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B LMSR-1 proximity operator

Corollary Letg € I'o(H) andV = D + uul, where D = 0 is diagonal. Then,
Much simpler
() /

proxg(a:) =D 120 proxgoD_l/g(Dl/zm —v),

1/2

where v = aD™"/“u and « is the unique root of 1D problem

ool —

pla) = <u, v — D720 ProXgop-1/2 oD/?(z — ch_lu)> +a.

(i) p: R — R is a Lipschitz continuous and strictly increasing function on RR.

(i) If prox,,p-1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

gl )—1+<u D=2 6 Q(DY2x — aD~Y2y) 0 D™ 1/2u>.

\ Semi-smooth Newton

(Superlinear)
or exact

L ]
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'LMSR-1 proximity operator: separable case

Corollary Assume that g € I'4('H) is separable, i.e. g(x) = Zfi L gi(zi), and V =
D +wu!', where D = diag(d;) = 0. Then,

prox}/(a:) = (proxgi/di (s — Uz’/di)) )

1

where v = au and « is the unique root of

hia) = <u, Tr — (proxgi/di (x; — aui/di)) > + a,

1

which is a Lipschitz continuous and strictly increasing function on RR.

L ]
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LMSR-1 proximity operator: separable case
Corollary Assume that g € I'4('H) is separable, i.e. g(x) = Zfi L gi(;), and V' =
D + UUT, where D = dlag(d@) — (. Then, / Separable

1%

prox; (r) = (proxgi/di (s — Uz’/di)) )

1

where v = au and « is the unique root of

hia) = <u, Tr — (proxgi/di (x; — aui/di)) > + a,

1

which is a Lipschitz continuous and strictly increasing function on RR.
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'LMSR-1 proximity operator: separable case

Corollary Assume that g € I'4('H) is separable, i.e. g(x) = Zf; L gi(;), and V' =
D +wu!', where D = diag(d;) = 0. Then, / Separable
1%

prox; (r) = (proxgi/di (s — Uz’/di)) )

1

where v = au and « is the unique root of 1D problem

L —

hia) = <u, T — (meg@-/di (x; — aui/di)) > + a,

1

which is a Lipschitz continuous and strictly increasing function on RR.
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'LMSR-1 proximity operator: separable case

Corollary Assume that g € I'g('H) is separable, i.e. g(x) = Zf; L gi(;), and V' =
D +wu!', where D = diag(d;) = 0. Then, / Separable

prox}/(a:) = (proxgi/di (s — Uz'/di)) )

1

where v = au and « is the unique root of 1D problem

L —

hia) = <u, T — (proxgi/di (x; — aui/di)) > + a,

1

which is a Lipschitz continuous and strictly increasing function on RR.

Proposition Assume thatforl < i < NN, prox,, is piecewise affine on R with k; > 1
segments , I.e.

prox,, (ZEZ) = a;T; + bj, ti <x; <tjy1,) € {1, Ce kz} :

Let k = Zi]\; . ki. Then pI‘OX;/(:E) can be obtained exactly by sorting at most the k

real values (Z— (x; — tj)) which costs O(k log k). B

ZE{].,,N},]E{].,,kz} JBAMI’'12-29
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L —

hia) = <u, T — (proxgi/di (x; — aui/di)) > + a,

1

which is a Lipschitz continuous and strictly increasing function on RR.

Proposition Assume thatforl < i < NN, prox,, is piecewise affine on R with k; > 1
segments , I.e.

prox,, (ZEZ) = a;T; + bj, ti <x; <tjy1,) € {1, Ce kz} :

Let k = Zi]\; . ki. Then pI‘OX;/(:E) can be obtained exactly by sorting at most the k

real values (Z— (x; — tj)) which costs O(klog k). B

ZE{].,,N},]E{].,,kz} JBAMI’'12-29
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Function g Algorithm

¢1-norm Separable : exact in O(N log N)

Hinge Separable : exact in O(N log N)

{o-ball Separable : exact in O(N log N)

Box constraint Separable : exact in O(N log N)

Positivity constraint  Separable : exact in O(N log V)

Linear constraint Nonseparable : exact in O(N log N)

/1 -ball Nonseparable : SSN and ProxX,,p-1/2 is
O(Nlog N)

{ 5o-norm Nonseparable : Moreau-identity

Canonical simplex ~ Nonseparable : SSN and prox ,p-1/2 is
O(N log N)

max function Nonseparable : Moreau-identity

pla) =a(l+ Y u}/d)+ Y ¢

na<lz;

na<lz;

15

10

-10

-15

LMSR-1 separable case: Examples

g(x) = A ||5’3H1

++ 4+ O

z = sort(d;x; /u;
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LMSR-1 metric update

(s (™)

Tn o {Barzilai-Borwein step length}
D, — 1m0, 0 <y <1 {Diagonal part}
u(™ — (s(M) — Dny(”))/\/<s(”) — Dy y(n), {Rank-1 part vector}
return H, = D, + u™y™* {V,, = H! by Sherman-Morrison lemma}

H,, satisfies the quasi-Newton secant condition :

Hoy™ — s

]
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Outline

9

9
9

® Applications.
X

]
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Does the rank-1 term matter ?

min f(z) + g(z)

Both f and g quadratic. f (explicit) g (implicit). N = 1000.
10 . . 5

—+ BFGS, oo memory, exact linesearch
-©- SR1, oo memory, exact linesearch

—¥ Barzilai-Borwein

10 F —« SR1, 0 memory, no linesearch, v = 0.9

M

0 50 100 150 200 250 300 J
iteration JBAMI'12-33
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Comparisons
® First-order methods :
SpaRSA with BB
FISTA
® ”1.5"-order methods. Most use active-set strategy :
L-BFGS-B

ASA "Active Set Algorithm”

CGIST "CG + IST”

FPC-AS "FPC + Active Set”

PSSas "Projected Scaled Sub-gradient + Active Set”
OWL "Orthant-wise Learning”

L ]
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Test 1: Lasso

. 2
min 5 ||y — Az||” + ||z,

reRN

A € RIB00%3000 4. .0 A0, 1).

objective value error

-©-0-mem SR1
- FISTA w/ BB
—+—=SPG/SpaRSA
- -BFGS-B
-B- ASA

PSSas

OWL

CGIST
-4-FPC-AS

30

40 50 60
time in seconds

90 100 110

fastest

L-BFGS-B
0-mem SR1
PSSas
FISTA

slowest

ASA
CGIST
OWL
SpaRSA
FPC-AS

]

JBAMI’12-35



Test 2: Lasso

. 2
min 3 [ly = Az + A,
A 3D discrete differential operator, N = 2197.

objective value error

-e-' O-mem SR1
—FISTAW/BB |
—+—=SPG/SpaRSA
—#--BFGS-B
A -B- ASA
- _ PSSas fastest FPC-AS
A : PSSas
<FPC-AS | 0-mem SR1
OWL
A . FISTA
CGIST
| SpaRSA
1 L-BFGS-B
4 _ slowest ASA

1

1.5

time in seconds

2.5

]
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Extensions and conclusion.

]
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Extensions

Variable metric GFB splitting to solve

min f(z) + gi o Li() .

Vf € B-Lip(H), and Vi, g; simple and L; bounded linear operator on .
Monotone inclusions :
0€ A(x) + B(x)

A and B maximal monotone, A merely Lipschitz (or skewed monotone). This
would cover primal-dual splitting.

Completely non-smooth case : pre-conditioning.

Inexact versions : robustness to errors.

Other quasi-Newton metrics with favorable structure.

]
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Take away messages

Variable metric proximal splitting.

A new accelerated quasi-Newton forward-backward
algorithm.

Convergence guarantees and rates (special instances).
An efficient LMSR1 metric construction.

A new result on the calculation of proximity operators in
this metric.

A Fast solver for large-scale problems.
Convergence guarantees for LMSRy.

Many extensions.

]
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Papers and code available
http://www.greyc.ensicaen.fr/~jfadili

Thanks
Any questions ?

]
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