Variable Metric Monotone Operator Splitting

Jalal Fadili

GREYC, CNRS-ENSICAEN-Université de Caen,

<u>http://www.greyc.ensicaen.fr/~jfadili</u> Joint work with Stephen Becker (LJLL UPMC)

Journées Bordelaises d'Analyse Mathématique des Images 2012

Motivations

Optimization problems in regularized inverse problems :

JBAMI'12-2

Motivations

Optimization problems in regularized inverse problems :

- Assumptions :
 - 𝔅 $f, g_i : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ are proper, lsc and convex, $f, g_i \in \Gamma_0(\mathbb{R}^N)$;
 - Domain qualification condition(s) ;
 - Set of minimizers $\mathcal{M}^* \neq \emptyset$.
 - Example : sparsity regularization, e.g. :

A variety of potential applications : signal and image processing, machine learning, classification, statistical estimation, etc..

Warm-up: the smooth case

$$\min_{x \in \mathbb{R}^N} f(x), \quad \nabla f \in C^0(\mathbb{R}^N) \cap \beta\text{-Lip}.$$

$$x^{(n+1)} = x^{(n)} - \gamma_n \nabla f(x^{(n)}), \quad 0 < \underline{\gamma} \le \gamma_n \le \overline{\gamma}$$

ldea of gradient descent : let $\gamma > 0$,

$$f(x^{(n)} + \gamma d) - f(x^{(n)}) = \gamma \left\langle \nabla f(x^{(n)}), d \right\rangle + o(\gamma \|d\|).$$

The decrease in the function when moving from $x^{(n)}$ is bounded as

$$0 < f(x^{(n)}) - f(x^{(n)} + \gamma d) \le \gamma \|\nabla f(x^{(n)})\| \|d\|$$

with equality in the upper bound if and only if $\nabla f(x^{(n)}) \propto -d$.

The direction of the steepest descent is $-\nabla f(x^{(n)})$, and the largest decrease is $-\|\nabla f(x^{(n)})\|^2$.

Convergence bound 1/n (on the objective) and $1/n^2$ for multi-step accelerations (weighted gradient memory).

Pros and cons of first-order methods

Strong points:

- Broad family of problems with a provably convergent algorithm.
- Rates (objective, iterates in some circumstances).
- Simplicity: at each step, a single evaluation of ∇f and a single (fixed or variable step size), or a small number of evaluations of f (line search).

Weak points:

- Its relatively low rate of convergence: even with multi-step acceleration (complexity bounds).
- Bad in applications with ill-conditioned problems and where highaccuracy solution is required.
- Can we hope for better ? Yes, variable metric.

Variable Metric methods: the gist

- The gradient and the Hessian of a nonlinear function f are specific representations of the first and second-order derivatives tied to the standard Euclidian inner product on \mathbb{R}^N .
- Let us change a new inner product and metric : $V \in \mathbb{R}^{N \times N}$ sdp matrix,

$$\langle x, y \rangle_V = \langle Vx, y \rangle = x^T V y, \quad ||x||_V = \langle Vx, x \rangle^{1/2}.$$

The gradient and Hessian now change to

 $f(x+h) = f(x) + \left\langle V^{-1} \nabla f(x), h \right\rangle_V + \frac{1}{4} \left\langle (V^{-1} \nabla^2 f(x) + \nabla^2 f(x) V^{-1})h, h \right\rangle + o(\|h\|_V^2).$

- In the classical Newton method : the descent direction is the gradient computed w.r.t. the scalar product defined by $V = \nabla^2 f(x)$ (the hessian is the unit matrix).
- Yet another look at gradient descent : it amounts to solving (up to renormalization)

$$\min_{d \in \mathbb{R}^N} \left\langle \nabla f(x), d \right\rangle + \frac{1}{2} \left\| d \right\|^2$$

- Why not something else than unit ball, e.g., an ellipsoid.
- Scaling by V induces a change of coordinate system (and metric), and if such a change adjusts to the geometry of the problem \Rightarrow better convergence (e.g. inverse of Hessian).
- With this standpoint :

$$d = \underset{d \in \mathbb{R}^N}{\operatorname{argmin}} \left\langle \nabla f(x), d \right\rangle + \frac{1}{2} \left\| d \right\|_V^2 = -V^{-1} \nabla f(x) \ . \tag{JBAMI'12-6}$$

Generic Variable Metric Scheme

Use a varying V_n to adjust it to the geometry along the trajectory. Denote $H_n = V_n^{-1}$.

Initialization : Choose an initial $x^{(0)} \in \text{dom}(f)$ and sdp matrix H_0 . Main iteration : Construct a sequence of iterates $(x^{(n)})_{n \in \mathbb{N}}$ as follows : repeat

Compute the H_n -anti-gradient descent direction :

$$d^{(n)} = -H_n \nabla f(x^{(n)}).$$

Use a fixed, variable or line search to get the descent step size γ_n . Update the iterate :

$$x^{(n+1)} = x^{(n)} + \gamma_n d^{(n)}$$

Update the sdp matrix $H_n \rightarrow H_{n+1}$. **until** *convergence* ; **Output :** $x^{(n)}$.

Generic Variable Metric Scheme

- Enjoys global and local convergence guarantees.
- Quadratic or superlinear convergence rates in some situations.
- Solution Examples of metrics (remember $H_n = V_n^{-1}$) :
 - Newton : $H_n = \left(\nabla^2 f(x^{(n)}) \right)^{-1}$.
 - Quasi-Newton : recursive refinement of V_n to approximate the hessian satisfying the secant condition

$$H_n(\nabla f(x^{(n)}) - \nabla f(x^{(n-1)})) = x^{(n)} - x^{(n-1)}$$

- Barzilai-Borwein : $H_n = \tau_n I$.
- Broyden family (BFGS, DFP) : rank-2 update $H_{n+1} = H_n + \sum_{i=1}^2 u_i^{(n)} u_i^{(n)T}$.
- SR1 : symmetric rank-1 update $H_{n+1} = H_n + u^{(n)} u^{(n)^T}$.
- Limited memory variants : e.g. LMSRr, L-BFGS, CG.

Variable metric for the non-smooth case

$$\min_{x \in \mathbb{R}^N} f(x), \quad f \in \Gamma_0(\mathbb{R}^N)$$

Semi-smooth (quasi)-Newton methods :

- Does not exploit the structure of the problem.
- Construct a simple slanting function is challenging in high dimension.
- Active sets :
 - Identify activity via a subproblem.
 - Solution Very simple f.

Variable metric proximal point algorithm :

 $x^{(n+1)} = (1 - \lambda_n) x^{(n)} + \lambda_n (I + \gamma_n V_n^{-1} \partial f)^{-1} (x^{(n)}), \lambda_n \in]0, 1], \gamma_n > 0.$

But what if f is not simple, e.g. constrained problem, $\min f + \sum_i g_i$.

Variable metric splitting

$\min_{x \in \mathbb{R}^N} f(x) + \sum_i g_i(x)$

Assumptions :

- \checkmark $f \in C^1(\mathbb{R}^N)$ with β -Lipschitz gradient, all g_i 's are simple;
- Domain qualification condition(s) ;
- Set of minimizers $\mathcal{M}^{\star} \neq \emptyset$ (e.g. coercivity).
- Requirements :
 - Exploit the (composite) additive structure of the objective.
 - Solution: Exploit the properties of the individual functions : g_i simple (closed-form proximity operator) and f smooth.
 - Deal with large scale data.
 - Avoid nested algorithms.

Variable metric forward-backward splitting

$\min_{x \in \mathbb{R}^N} f(x) + g(x)$

Forward-Backward splitting (non-relaxed) :

$$x^{(n+1)} = (I + \gamma_n \partial g)^{-1} \left(x^{(n)} - \gamma_n \nabla f(x^{(n)}) \right) , \gamma_n \in]0, 2/\beta[.$$

Variable metric Forward-Backward splitting (non-relaxed) :

$$x^{(n+1)} = (I + V_n^{-1} \partial g)^{-1} \left(x^{(n)} - V_n^{-1} \nabla f(x^{(n)}) \right) .$$

More generally, find the zeros of :

$$0 \in Ax + Bx$$

 $I A, B : \mathcal{H} \to 2^{\mathcal{H}} \text{ are maximal monotone operators ; }$

• A single-valued with
$$\beta A \in \mathcal{A}(\frac{1}{2})$$
, B simple;

Variable metric splitting

Main questions and challenges

- Convergence guarantees.
- Convergence Rates.
- Construct attractive metrics :
 - Somputational load and storage of V_n^{-1} .
 - Solution Easy implementation of the implicit step : $(I + V_n^{-1}\partial g)^{-1}$.
 - In general, $(I+V_n^{-1}\partial g)^{-1}$ as difficult to compute as solving the original problem.
 - Fast algorithms for large scale problems.
 - Maintain convergence guarantees.

Variable metric splitting

Forward-Backward [Chen and Rockafellar 97, Tseng and Yun 09, Lolito et al. 09, Combettes and Vu 12]:

- arbitrary exogenous metrics;
- optimization and monotone inclusions;
- finite-dimensional or infinite dimensional settings;
- convergence ;
- no fast algorithm (implicit step).
- Forward-Backward with specific (simple) metrics or problems [e.g. Bonnetini et al. 09, Salzo and Villa 11, Schmidt et al. 11, Lee et al. 12]:
 - most of them finite-dimensional optimization setting ;
 - some of them only special problems (e.g. box or linear constraints);
 - some lack convergence guarantees ;
 - solve a subproblem (implicit step).
 - Forward-Backward with pre-conditioning [e.g. Elad 06, Wright et al. 09, Vonesch et al. 09, Goldstein and Setzer 11]:
 - finite-dimensional optimization setting ;
 - some of them only special problems (e.g. specific operators);
 - some lack convergence guarantees.

Outline

- Convex analysis with variable metric.
- Convergence.
- LMSRr proximal splitting scheme.
- Applications.
- Extensions and conclusion.

Outline

Convex analysis with variable metric.

- Convergence.
- LMSRr proximal splitting scheme.
- Applications.
- Extensions and conclusion.

Proximity operator

Definition Let $\mathcal{H} = (\mathbb{R}^N, \langle \cdot, \cdot \rangle)$ equipped with the usual Euclidean scalar product $\langle x, y \rangle$ and associated norm $||x|| = \sqrt{\langle x, x \rangle}$. For $V \in \mathbb{R}^{N \times N}$ sdp, let $\mathcal{H}_V = (\mathbb{R}^N, \langle \cdot, \cdot \rangle_V)$ with the scalar product $\langle x, y \rangle_V = \langle x, Vy \rangle$ and norm $||x||_V$ corresponding to the metric induced by V.

Definition (Proximity operator in \mathcal{H} [J.-J. Moreau 1962]) Let $g \in \Gamma_0(\mathcal{H})$. Then, for every $x \in \mathcal{H}$, the function $z \mapsto \frac{1}{2} ||x - z||^2 + g(z)$ achieves its infimum at a unique point denoted by $\operatorname{prox}_g x$. The single-valued operator $(I + \partial g)^{-1} = \operatorname{prox}_g : \mathcal{H} \to \mathcal{H}$ thus defined is the proximity operator of g.

Definition (Proximity operator \mathcal{H}_V) We define $\operatorname{prox}_g^V(x) = (I_{\mathcal{H}_V} + V^{-1} \partial g)^{-1}(x) = \operatorname{argmin} \frac{1}{2} \|x - z\|_V^2 + g(z)$ the proximity operator of g w.r.t. the norm endowing \mathcal{H}_V .

Computing $prox_q^V$ is difficult in general even if $prox_q$ is available.

NSC of a minimum

 $\min_{x \in \mathbb{R}^N} f(x) + g(x)$

Theorem Let $f \in \Gamma_0(\mathcal{H}) \cap C^1(\mathbb{R}^N)$ and $g \in \Gamma_0(\mathcal{H})$ as defined before, and $V \succeq aI_{\mathcal{H}}$, a > 0. Then, for $\gamma > 0$, the following are equivalent :

(i)
$$x^* \in \mathcal{M}^*$$
.
(ii) $x^* = \operatorname{prox}_{\gamma g}^V \circ \left(I_{\mathcal{H}} - \gamma V^{-1} \nabla f \right) (x^*)$.
(iii) $x^* = \left(\frac{V + \gamma \partial g}{a} \right)^{-1} \circ \left(\frac{V - \gamma \nabla f}{a} \right) (x^*)$.

NSC of a minimum

 $\min_{x \in \mathbb{R}^N} f(x) + g(x)$

Theorem Let $f \in \Gamma_0(\mathcal{H}) \cap C^1(\mathbb{R}^N)$ and $g \in \Gamma_0(\mathcal{H})$ as defined before, and $V \succeq aI_{\mathcal{H}}$, a > 0. Then, for $\gamma > 0$, the following are equivalent :

(i)
$$x^* \in \mathcal{M}^*$$
.
(ii) $x^* = \operatorname{prox}_{\gamma g}^V \circ \left(I_{\mathcal{H}} - \gamma V^{-1} \nabla f \right) (x^*)$.
(iii) $x^* = \left(\frac{V + \gamma \partial g}{a} \right)^{-1} \circ \left(\frac{V - \gamma \nabla f}{a} \right) (x^*)$.

FB stems from a fixed point equation.

JBAMI'12-17

Proximal calculus in \mathcal{H}_V

Lemma (Moreau identity in \mathcal{H}_V) Let $g \in \Gamma_0(\mathcal{H})$, then for any $x \in \mathcal{H}$

$$\operatorname{prox}_{\rho g^*}^{V}(x) + \rho V^{-1} \circ \operatorname{prox}_{g/\rho}^{V^{-1}} \circ V(x/\rho) = x, \forall \ 0 < \rho < +\infty$$

Corollary

$$\operatorname{prox}_{g}^{V}(x) = x - V^{-1} \circ \operatorname{prox}_{g^{*}}^{V^{-1}} \circ V(x)$$

If $\operatorname{prox}_{g}^{V}$ is easy to compute, then so is $\operatorname{prox}_{g^{*}}^{V^{-1}}$. (hint : Moreau identity and Sherman-Morrison inversion lemma.)

Proximal calculus in \mathcal{H}_V

Lemma (Moreau identity in \mathcal{H}_V) Let $g \in \Gamma_0(\mathcal{H})$, then for any $x \in \mathcal{H}$

$$\operatorname{prox}_{\rho g^*}^V(x) + \rho V^{-1} \circ \operatorname{prox}_{g/\rho}^{V^{-1}} \circ V(x/\rho) = x, \forall \ 0 < \rho < +\infty \ .$$

Corollary

$$\operatorname{prox}_{g}^{V}(x) = x - V^{-1} \circ \operatorname{prox}_{g^{*}}^{V^{-1}} \circ V(x)$$

Conclusion

If $\operatorname{prox}_{g}^{V}$ is easy to compute, then so is $\operatorname{prox}_{g^{*}}^{V^{-1}}$. (hint : Moreau identity and Sherman-Morrison inversion lemma.)

Continuity properties of operators

Lemma (Proximity operator) Let V be sdp with $bI \succeq V \succeq aI$, $b \ge a > 0$, and $g \in \Gamma_0(\mathcal{H})$. Then

(i) $\operatorname{prox}_{\gamma q}^{V}$ is firmly non-expansive on \mathcal{H}_{V} , hence non-expansive, $\gamma > 0$.

(ii) $\left(\frac{V+\gamma\partial g}{a}\right)^{-1}$ is firmly non-expansive on \mathcal{H} , hence non-expansive, $\gamma > 0$. (iii) For W sdp,

 $\left\| \operatorname{prox}_{\gamma g}^{W}(x) - \operatorname{prox}_{\gamma g}^{V}(y) \right\| \le b/a \left(\|W - V\| \|x\| + \|x - y\| \right) + b/a \left\| \operatorname{prox}_{\gamma g}^{V}(0) \right\|$.

Continuity properties of operators

Lemma (Proximity operator) Let V be sdp with $bI \succeq V \succeq aI$, $b \ge a > 0$, and $g \in \Gamma_0(\mathcal{H})$. Then

(i) $\operatorname{prox}_{\gamma q}^{V}$ is firmly non-expansive on \mathcal{H}_{V} , hence non-expansive, $\gamma > 0$.

(ii) $\left(\frac{V+\gamma\partial g}{a}\right)^{-1}$ is firmly non-expansive on \mathcal{H} , hence non-expansive, $\gamma > 0$. (iii) For W sdp,

 $\left\| \operatorname{prox}_{\gamma g}^{W}(x) - \operatorname{prox}_{\gamma g}^{V}(y) \right\| \le b/a \left(\left\| W - V \right\| \|x\| + \|x - y\| \right) + b/a \left\| \operatorname{prox}_{\gamma g}^{V}(0) \right\|$.

Continuity properties of operators

Lemma (Proximity operator) Let V be sdp with $bI \succeq V \succeq aI$, $b \ge a > 0$, and $g \in \Gamma_0(\mathcal{H})$. Then

(i) $\operatorname{prox}_{\gamma q}^{V}$ is firmly non-expansive on \mathcal{H}_{V} , hence non-expansive, $\gamma > 0$.

(ii) $\left(\frac{V+\gamma\partial g}{a}\right)^{-1}$ is firmly non-expansive on \mathcal{H} , hence non-expansive, $\gamma > 0$. (iii) For W sdp,

 $\left\| \operatorname{prox}_{\gamma g}^{W}(x) - \operatorname{prox}_{\gamma g}^{V}(y) \right\| \le b/a \left(\left\| W - V \right\| \|x\| + \|x - y\| \right) + b/a \left\| \operatorname{prox}_{\gamma g}^{V}(0) \right\|$.

Lemma (Gradient operator) Let V be sdp with $bI \succeq V \succeq aI$, $b \ge a > 0$, and $f \in \Gamma_0(\mathcal{H}) \cap C^1(\mathcal{H})$ with $\nabla f \in \beta$ -Lip (\mathcal{H}) . Then $(I_{\mathcal{H}} - \gamma V^{-1} \nabla f)$ is a $\gamma \beta/(2a)$ -averaged operator on \mathcal{H}_V , hence nonexpansive, $\forall \gamma \in]0, 2a/\beta[$.

Outline

Convex analysis with variable metric.

Convergence.

- LMSRr proximal splitting scheme.
- Applications.
- Extensions and conclusion.

Variable Metric Forward-Backward

- Global convergence :
 - Assumptions on the metric and step size.
 - Rates (linear) with extra assumptions on the functions, e.g. strong convexity.

Local convergence :

- Assumptions on initialization.
- Local assumptions on the smooth part.
- Fast rates (quadratic or linear) for well-behaved metrics with extra smoothness assumptions.
- Even in the smooth case, it is very difficult to prove something good about local convergence of a quasi-Newton method.

Variable Metric Forward-Backward

Theorem (Global linear convergence) Assume that either f or g is strongly, and that the variable metric forward-backward is run through a sequence of sdp matrices $V_n \rightarrow V$, and a step size $\gamma \in]0, \overline{\gamma}_V[$ with an appropriate $\overline{\gamma}_V$. Then the variable metric forward-backward converges to the (unique) minimizer x^* linearly.

Theorem (Local linear convergence) Assume that $f \in \Gamma_0(\mathbb{R}^N) \cap C^2(\mathbb{R}^N)$ with its Hessian being positive definite at x^* . Assume that the variable metric forwardbackward is run with sdp matrices $V_n \succeq aI_{\mathcal{H}}, a > 0$, such that $\sup_n ||V_n - \nabla^2 f(x^{(n)})|| \le a\rho < 1$ or a fortiori $\sup_n ||V_n - \nabla^2 f(x^*)|| \le \rho a, \rho < 1$. If the method is started sufficiently close to x^* , then it converges to x^* linearly. **Theorem** Assume that $f \in \Gamma_0(\mathbb{R}^N) \cap C^2(\mathbb{R}^N)$ with its Hessian being Lipschitz continuous.

- (i) Local convergence : If the Hessian is positive definite at x^* , then the Newton forward-backward, started sufficiently close to x^* , converges to x^* quadratically.
- (ii) Global convergence : If f is strongly convex, the Newton forward-backward with an appropriate step size or line search converges to (the unique) x^* linearly.

Quasi-Newton Forward-Backward

Theorem Assume that $f \in \Gamma_0(\mathbb{R}^N) \cap C^2(\mathbb{R}^N)$ with its Hessian being positive definite at x^* and Lipschitz continuous. If the matrices V_n converge superlinearly to $\nabla^2 f(x^*)$, then the quasi-Newton forward-backward, started sufficiently close to x^* , converges to x^* superlinearly.

Under appropriate assumptions, SR1 satisfies the above requirements [Conn et al. 91, Byrd et al. 96].

Outline

Convex analysis with variable metric.

Convergence.

- LMSRr proximal splitting scheme.
- Applications.
- Extensions and conclusion.

LMSR-rFB

Zero-memory SRr update $H_n = D_n + \sum_{i=1}^r u_i^{(n)} {u_i^{(n)}}^T, D_n \text{ diagonal}$

Require: $x_0 \in \text{dom}(f+g)$, Lipschitz constant estimate β of ∇f , stopping criterion ϵ

for n = 1, 2, 3, ... do $s^{(n)} \leftarrow x^{(n)} - x^{(n-1)}$ $y^{(n)} \leftarrow \nabla f(x^{(n)}) - \nabla f(x^{(n-1)})$ Compute $H_n = D_n + \sum_{i=1}^r u_i^{(n)} u_i^{(n)^T}$ (see shortly), and set $V_n = H_n^{-1}$. Compute the rank-*r* proximity operator (see shortly)

$$\hat{x}^{(n+1)} \leftarrow \operatorname{prox}_{g}^{V_{n}}(x^{(n)} - H_{n}\nabla f(x^{(n)}))$$

 $p^{(n)} \leftarrow \hat{x}^{(n+1)} - x^{(n)}$ and terminate if $\|p^{(n)}\| < \epsilon$

Line search along the ray $x^{(n)} + \theta p^{(n)}$ to determine $x^{(n+1)}$, or choose $\theta = 1$. end for

Theorem Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + \sum_{i=1}^r u_i u_i^T$, where $D \succ 0$ is diagonal. Then, (i)

$$\operatorname{prox}_{g}^{V}(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2}(x - D^{-1}U\alpha) ,$$

where $U = (u_1, \cdots, u_r)$ and $\alpha \in \mathbb{R}^r$ is the unique root of

$$p(\alpha) = U^T \left(x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2} (x - D^{-1} U \alpha) \right) + B \alpha ,$$

where $B = U^T Q^+ U$ is sdp.

(ii) $p : \mathbb{R}^r \to \mathbb{R}^r$ is a Lipschitz continuous mapping.

$$g(\alpha) = U^T (Q^+ + D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2})U.$$

Theorem Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + \sum_{i=1}^r u_i u_i^T$, where $D \succ 0$ is diagonal. Then, (i)

$$\operatorname{prox}_{g}^{V}(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2}(x - D^{-1}U\alpha) ,$$

where $U = (u_1, \cdots, u_r)$ and $\alpha \in \mathbb{R}^r$ is the unique root of

$$p(\alpha) = U^T \left(x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2} (x - D^{-1} U \alpha) \right) + B \alpha ,$$

where $B = U^T Q^+ U$ is sdp.

(ii) $p : \mathbb{R}^r \to \mathbb{R}^r$ is a Lipschitz continuous mapping.

$$g(\alpha) = U^T (Q^+ + D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2})U$$

Theorem Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + \sum_{i=1}^r u_i u_i^T$, where $D \succ 0$ is diagonal. Then, (i)

$$\operatorname{prox}_{g}^{V}(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2}(x - D^{-1}U\alpha) ,$$

where $U = (u_1, \cdots, u_r)$ and $\alpha \in \mathbb{R}^r$ is the unique root of

$$p(\alpha) = U^T \left(x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2} (x - D^{-1} U \alpha) \right) + B \alpha ,$$

Much lowerdimensional problem

(ii) $p : \mathbb{R}^r \to \mathbb{R}^r$ is a Lipschitz continuous mapping.

where $B = U^T Q^+ U$ is sdp.

$$g(\alpha) = U^T (Q^+ + D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2})U$$

Theorem Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + \sum_{i=1}^r u_i u_i^T$, where $D \succ 0$ is diagonal. Then, (i)

$$\operatorname{prox}_{g}^{V}(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2}(x - D^{-1}U\alpha) ,$$

where $U = (u_1, \cdots, u_r)$ and $\alpha \in \mathbb{R}^r$ is the unique root of

$$p(\alpha) = U^T \left(x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2} (x - D^{-1} U \alpha) \right) + B \alpha ,$$

Much lowerdimensional problem

(ii) $p : \mathbb{R}^r \to \mathbb{R}^r$ is a Lipschitz continuous mapping.

where $B = U^T Q^+ U$ is sdp.

$$g(\alpha) = U^T (Q^+ + D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2})U.$$
Semi-smooth Newton (Superlinear)

Corollary Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + uu^T$, where $D \succ 0$ is diagonal. Then, *(i)*

$$\operatorname{prox}_{g}^{V}(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} (D^{1/2}x - v) ,$$

where $v = \alpha D^{-1/2} u$ and α is the unique root of

$$p(\alpha) = \left\langle u, x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2} (x - \alpha D^{-1} u) \right\rangle + \alpha$$

(ii) p : ℝ → ℝ is a Lipschitz continuous and strictly increasing function on ℝ.
(iii) If prox_{goD^{-1/2}} is Newton differentiable with generalized derivative G, then so is the mapping h with a generalized derivative g

$$g(\alpha) = 1 + \left\langle u, D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2}u \right\rangle.$$

Corollary Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + uu^T$, where $D \succ 0$ is diagonal. Then, (i)

$$\operatorname{prox}_{g}^{V}(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} (D^{1/2}x - v) ,$$

where $v = \alpha D^{-1/2} u$ and α is the unique root of

$$p(\alpha) = \left\langle u, x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2} (x - \alpha D^{-1} u) \right\rangle + \alpha$$

(ii) p : ℝ → ℝ is a Lipschitz continuous and strictly increasing function on ℝ.
 (iii) If prox_{goD^{-1/2}} is Newton differentiable with generalized derivative G, then so is the mapping h with a generalized derivative g

$$g(\alpha) = 1 + \left\langle u, D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2}u \right\rangle.$$

JBAMI'12-28

Corollary Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + uu^T$, where $D \succ 0$ is diagonal. Then, (i) $\operatorname{prox}_g^V(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}}(D^{1/2}x - v)$, where $v = \alpha D^{-1/2}u$ and α is the unique root of 1D problem $p(\alpha) = \left\langle u, x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2}(x - \alpha D^{-1}u) \right\rangle + \alpha$.

(ii) p : ℝ → ℝ is a Lipschitz continuous and strictly increasing function on ℝ.
(iii) If prox_{g∘D^{-1/2}} is Newton differentiable with generalized derivative G, then so is the mapping h with a generalized derivative g

$$g(\alpha) = 1 + \left\langle u, D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2}u \right\rangle.$$

JBAMI'12-28

Corollary Let $g \in \Gamma_0(\mathcal{H})$ and $V = D + uu^T$, where $D \succ 0$ is diagonal. Then, (i) $\operatorname{prox}_g^V(x) = D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}}(D^{1/2}x - v)$, where $v = \alpha D^{-1/2}u$ and α is the unique root of 1D problem $p(\alpha) = \left\langle u, x - D^{-1/2} \circ \operatorname{prox}_{g \circ D^{-1/2}} \circ D^{1/2}(x - \alpha D^{-1}u) \right\rangle + \alpha$.

(ii) p : ℝ → ℝ is a Lipschitz continuous and strictly increasing function on ℝ.
(iii) If prox_{goD^{-1/2}} is Newton differentiable with generalized derivative G, then so is the mapping h with a generalized derivative g

$$g(\alpha) = 1 + \left\langle u, D^{-1/2} \circ G(D^{1/2}x - \alpha D^{-1/2}u) \circ D^{-1/2}u \right\rangle.$$
Semi-smooth Newton (Superlinear) or exact

Corollary Assume that $g \in \Gamma_0(\mathcal{H})$ is separable, i.e. $g(x) = \sum_{i=1}^N g_i(x_i)$, and $V = D + uu^T$, where $D = \text{diag}(d_i) \succ 0$. Then,

$$\operatorname{prox}_{f}^{V}(x) = \left(\operatorname{prox}_{g_{i}/d_{i}}(x_{i} - v_{i}/d_{i})\right)_{i},$$

where $v = \alpha u$ and α is the unique root of

$$h(\alpha) = \left\langle u, x - \left(\operatorname{prox}_{g_i/d_i} (x_i - \alpha u_i/d_i) \right)_i \right\rangle + \alpha ,$$

which is a Lipschitz continuous and strictly increasing function on \mathbb{R} .

Corollary Assume that $g \in \Gamma_0(\mathcal{H})$ is separable, i.e. $g(x) = \sum_{i=1}^N g_i(x_i)$, and $V = D + uu^T$, where $D = \text{diag}(d_i) \succ 0$. Then, Separable

$$\operatorname{prox}_{f}^{V}(x) = \left(\operatorname{prox}_{g_{i}/d_{i}}(x_{i} - v_{i}/d_{i}) \right)_{i},$$

where $v = \alpha u$ and α is the unique root of

$$h(\alpha) = \left\langle u, x - \left(\operatorname{prox}_{g_i/d_i} (x_i - \alpha u_i/d_i) \right)_i \right\rangle + \alpha ,$$

which is a Lipschitz continuous and strictly increasing function on \mathbb{R} .

Corollary Assume that $g \in \Gamma_0(\mathcal{H})$ is separable, i.e. $g(x) = \sum_{i=1}^N g_i(x_i)$, and $V = D + uu^T$, where $D = \operatorname{diag}(d_i) \succ 0$. Then, Separable

$$\operatorname{prox}_{f}^{V}(x) = \left(\operatorname{prox}_{g_{i}/d_{i}}(x_{i} - v_{i}/d_{i}) \right)_{i},$$

where $v = \alpha u$ and α is the unique root of $h(\alpha) = \left\langle u, x - \left(\operatorname{prox}_{g_i/d_i}(x_i - \alpha u_i/d_i) \right)_i \right\rangle + \alpha ,$ 1D problem

which is a Lipschitz continuous and strictly increasing function on \mathbb{R} .

Corollary Assume that $g \in \Gamma_0(\mathcal{H})$ is separable, i.e. $g(x) = \sum_{i=1}^N g_i(x_i)$, and $V = D + uu^T$, where $D = \text{diag}(d_i) \succ 0$. Then, Separable

$$\operatorname{prox}_{f}^{V}(x) = \left(\operatorname{prox}_{g_{i}/d_{i}}(x_{i} - v_{i}/d_{i}) \right)_{i},$$

where $v = \alpha u$ and α is the unique root of $h(\alpha) = \left\langle u, x - \left(\operatorname{prox}_{g_i/d_i}(x_i - \alpha u_i/d_i) \right)_i \right\rangle + \alpha ,$ 1D problem

which is a Lipschitz continuous and strictly increasing function on \mathbb{R} .

Proposition Assume that for $1 \le i \le N$, $prox_{g_i}$ is piecewise affine on \mathbb{R} with $k_i \ge 1$ segments , i.e.

$$\operatorname{prox}_{g_i}(x_i) = a_j x_i + b_j, \quad t_j \le x_i \le t_{j+1}, j \in \{1, \dots, k_i\}.$$

Let $k = \sum_{i=1}^{N} k_i$. Then $\operatorname{prox}_g^V(x)$ can be obtained exactly by sorting at most the kreal values $\left(\frac{d_i}{u_i}(x_i - t_j)\right)_{i \in \{1, \dots, N\}, j \in \{1, \dots, k_i\}}$ which costs $O(k \log k)$.

Corollary Assume that $g \in \Gamma_0(\mathcal{H})$ is separable, i.e. $g(x) = \sum_{i=1}^N g_i(x_i)$, and $V = D + uu^T$, where $D = \operatorname{diag}(d_i) \succ 0$. Then, Separable

$$\operatorname{prox}_{f}^{V}(x) = \left(\operatorname{prox}_{g_{i}/d_{i}}(x_{i} - v_{i}/d_{i}) \right)_{i},$$

where $v = \alpha u$ and α is the unique root of $h(\alpha) = \left\langle u, x - \left(\operatorname{prox}_{g_i/d_i}(x_i - \alpha u_i/d_i) \right)_i \right\rangle + \alpha ,$ 1D problem

which is a Lipschitz continuous and strictly increasing function on \mathbb{R} .

Proposition Assume that for $1 \le i \le N$, $prox_{g_i}$ is piecewise affine on \mathbb{R} with $k_i \ge 1$ segments , i.e.

$$\operatorname{prox}_{g_i}(x_i) = a_j x_i + b_j, \quad t_j \le x_i \le t_{j+1}, j \in \{1, \dots, k_i\}.$$

Let $k = \sum_{i=1}^{N} k_i$. Then $\operatorname{prox}_g^V(x)$ can be obtained exactly by sorting at most the kreal values $\left(\frac{d_i}{u_i}(x_i - t_j)\right)_{i \in \{1, \dots, N\}, j \in \{1, \dots, k_i\}}$ which costs $O(k \log k)$.

LMSR-1 separable case: Examples

Function g	Algorithm	
ℓ_1 -norm	Separable : exact in $O(N \log N)$	
Hinge	Separable : exact in $O(N \log N)$	
ℓ_∞ -ball	Separable : exact in $O(N \log N)$	
Box constraint	Separable : exact in $O(N \log N)$	
Positivity constraint	Separable : exact in $O(N \log N)$	
Linear constraint	Nonseparable : exact in $O(N \log N)$	
ℓ_1 -ball	Nonseparable : SSN and $prox_{g \circ D^{-1/2}}$ is	
	$O(N \log N)$	
ℓ_∞ -norm	Nonseparable : Moreau-identity	
Canonical simplex	Nonseparable : SSN and $prox_{g \circ D^{-1/2}}$ is	
	$O(N \log N)$	
\max function	Nonseparable : Moreau-identity	

$$g(x) = \lambda \|x\|_1$$

JBAMI'12-30

LMSR-1 metric update

$$\begin{split} y^{(n)} &= \nabla f(x^{(n)}) - \nabla f(x^{(n-1)}), \quad s^{(n)} = x^{(n)} - x^{(n-1)}. \\ \tau_n &\leftarrow \frac{\left\langle s^{(n)}, y^{(n)} \right\rangle}{\left\| y^{(n)} \right\|^2} & \left\{ \text{Barzilai-Borwein step length} \right\} \\ D_n &\leftarrow \gamma \tau_n \mathbf{I}_{\mathcal{H}}, 0 < \gamma < 1 & \left\{ \text{Diagonal part} \right\} \\ u^{(n)} &\leftarrow (s^{(n)} - D_n y^{(n)}) / \sqrt{\left\langle s^{(n)} - D_n y^{(n)}, y^{(n)} \right\rangle}. & \left\{ \text{Rank-1 part vector} \right\} \\ \mathbf{return} \ H_n = D_n + u^{(n)} u^{(n)^T} & \left\{ V_n = H_n^{-1} \text{ by Sherman-Morrison lemma} \right\} \end{split}$$

$$H_n$$
 satisfies the quasi-Newton secant condition :
$$H_n y^{(n)} = s^{(n)} \; . \label{eq:hamilton}$$

Outline

- Convex analysis with variable metric.
- Convergence.
- LMSRr proximal splitting scheme.

Applications.

Extensions and conclusion.

Does the rank-1 term matter ?

Both f and g quadratic. f (explicit) g (implicit). N = 1000.

JBAMI'12-33

Comparisons

9	First-order methods SpaRSA with BB	[Wright et al. 2009].	
	FISTA	[Nesterov 1983, Beck and Teboull	e 2009].
٩	"1.5"-order methods. Most use active-set strategy :		
	L-BFGS-B		[Byrd et al. 1995].
	ASA "Active Set Al	gorithm"	[Hager and Zhang 2006].
	CGIST "CG + IST"		[Goldstein and Setzer 2011].
	FPC-AS "FPC + Ac	ctive Set"	[Wen et al. 2010].
	PSSas "Projected	Scaled Sub-gradient + Active Set"	[Schmidt et al. 2007].
	OWL "Orthant-wise	e Learning"	[Andrew and Gao 2007].

Test 2: Lasso

 $\min_{x \in \mathbb{R}^N} \frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1$ A 3D discrete differential operator, N = 2197.

Outline

- Convex analysis with variable metric.
- Convergence.
- LMSRr proximal splitting scheme.
- Applications.
- Extensions and conclusion.

Extensions

Variable metric GFB splitting [Raguet-F.-Peyré 2011] to solve

$$\min_{x \in \mathcal{H}} f(x) + g_i \circ L_i(x) \; .$$

 $\nabla f \in \beta$ -Lip(\mathcal{H}), and $\forall i, g_i$ simple and L_i bounded linear operator on \mathcal{H} . Monotone inclusions :

 $0 \in A(x) + B(x)$

A and B maximal monotone, A merely Lipschitz (or skewed monotone). This would cover primal-dual splitting.

- Completely non-smooth case : pre-conditioning.
- Inexact versions : robustness to errors.
- Other quasi-Newton metrics with favorable structure.

Take away messages

- Variable metric proximal splitting.
- A new accelerated quasi-Newton forward-backward algorithm.
- Convergence guarantees and rates (special instances).
- An efficient LMSR1 metric construction.
- A new result on the calculation of proximity operators in this metric.
- A Fast solver for large-scale problems.
- Convergence guarantees for LMSRr.
- Many extensions.

Papers and code available http://www.greyc.ensicaen.fr/~jfadili

Thanks Any questions ?

JBAMI'12-40