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Optimization problems in regularized inverse problems :

min
x∈RN

f(x)����
Data fidelity

+ g1(x) + · · ·+ gK(x)� �� �
Regularization, constraints

Assumptions :
f, gi : RN → R ∪ {+∞} are proper, lsc and convex, f, gi ∈ Γ0(RN ) ;
Domain qualification condition(s) ;
Set of minimizersM� �= ∅.

Example : sparsity regularization, e.g. :

min
x∈RN

f(x)����
Data fidelity

+ g1(x) + · · ·+ gK(x)� �� �
e.g. �1, �p − �q norm on overlapping blocks, etc.

A variety of potential applications : signal and image processing, machine lear-
ning, classification, statistical estimation, etc..



JBAMIʼ12-

Warm-up: the smooth case
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min
x∈RN

f(x), ∇f ∈ C0(RN ) ∩ β-Lip.

x(n+1) = x(n) − γn∇f(x(n)), 0 < γ ≤ γn ≤ γ

Idea of gradient descent : let γ > 0,

f(x(n) + γd)− f(x(n)) = γ
�
∇f(x(n)), d

�
+ o(γ �d�).

The decrease in the function when moving from x(n) is bounded as

0 < f(x(n))− f(x(n) + γd) ≤ γ�∇f(x(n))� �d�

with equality in the upper bound if and only if∇f(x(n)) ∝ −d.
The direction of the steepest descent is −∇f(x(n)), and the largest decrease is
−

��∇f(x(n))
��2.

Convergence bound 1/n (on the objective) and 1/n2 for multi-step accelerations
(weighted gradient memory).
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Pros and cons of first-order methods
Strong points:

Broad family of problems with a provably convergent algorithm. 
Rates (objective, iterates in some circumstances). 
Simplicity: at each step, a single evaluation of ∇f and a single 
(fixed or variable step size), or a small number of evaluations of f 
(line search).

Weak points:
Its relatively low rate of convergence: even with multi-step 
acceleration (complexity bounds).
Bad in applications with ill-conditioned problems and where high-
accuracy solution is required.

Can we hope for better ? Yes, variable metric. 

5
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The gradient and the Hessian of a nonlinear function f are specific representations of the first and
second-order derivatives tied to the standard Euclidian inner product on RN .
Let us change a new inner product and metric : V ∈ RN×N sdp matrix,

�x, y�V = �V x, y� = xT V y, �x�V = �V x, x�1/2 .

The gradient and Hessian now change to

f(x + h) = f(x) +
�
V −1∇f(x), h

�
V

+ 1
4

�
(V −1∇2f(x) +∇2f(x)V −1)h, h

�
+ o(�h�2V ) .

In the classical Newton method : the descent direction is the gradient computed w.r.t. the scalar pro-
duct defined by V = ∇2f(x) (the hessian is the unit matrix).
Yet another look at gradient descent : it amounts to solving (up to renormalization)

min
d∈RN

�∇f(x), d�+
1
2
�d�2 .

Why not something else than unit ball, e.g., an ellipsoid.
Scaling by V induces a change of coordinate system (and metric), and if such a change adjusts to the
geometry of the problem⇒ better convergence (e.g. inverse of Hessian).
With this standpoint :

d = argmin
d∈RN

�∇f(x), d� +
1
2
�d�2

V = −V −1∇f(x) .
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Use a varying Vn to adjust it to the geometry along the trajectory.
Denote Hn = V

−1
n .

Initialization : Choose an initial x(0) ∈ dom(f) and sdp matrix H0.
Main iteration : Construct a sequence of iterates (x(n))n∈N as follows :
repeat

Compute the Hn-anti-gradient descent direction :

d
(n) = −Hn∇f(x(n)).

Use a fixed, variable or line search to get the descent step size γn.
Update the iterate :

x
(n+1) = x

(n) + γnd
(n)

.

Update the sdp matrix Hn → Hn+1.
until convergence ;
Output : x(n).
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Enjoys global and local convergence guarantees.
Quadratic or superlinear convergence rates in some situations.
Examples of metrics (remember Hn = V

−1
n ) :

Newton : Hn =
�
∇2

f(x(n))
�−1.

Quasi-Newton : recursive refinement of Vn to approximate the hessian satis-
fying the secant condition

Hn(∇f(x(n))−∇f(x(n−1))) = x
(n) − x

(n−1)
.

Barzilai-Borwein : Hn = τnI .
Broyden family (BFGS, DFP) : rank-2 updateHn+1 = Hn+

�2
i=1 u

(n)
i u

(n)
i

T
.

SR1 : symmetric rank-1 update Hn+1 = Hn + u
(n)

u
(n)T .

Limited memory variants : e.g. LMSRr, L-BFGS, CG.
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Variable metric for the non-smooth case
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min
x∈RN

f(x), f ∈ Γ0(RN )

Semi-smooth (quasi)-Newton methods :
Does not exploit the structure of the problem.
Construct a simple slanting function is challenging in high dimension.

Active sets :
Identify activity via a subproblem.
Very simple f .

Variable metric proximal point algorithm :

x(n+1) = (1− λn)x(n) + λn(I + γnV −1
n ∂f)−1(x(n)) , λn ∈]0, 1], γn > 0 .

But what if f is not simple, e.g. constrained problem, min f +
�

i gi.
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min
x∈RN

f(x) +
�

i

gi(x)

Assumptions :
f, gi : RN → R ∪ {+∞}, f, gi ∈ Γ0(RN ) ;
f ∈ C1(RN ) with β-Lipschitz gradient, all gi’s are simple ;
Domain qualification condition(s) ;
Set of minimizersM� �= ∅ (e.g. coercivity).

Requirements :
Exploit the (composite) additive structure of the objective.
Exploit the properties of the individual functions : gi simple (closed-form proxi-
mity operator) and f smooth.
Deal with large scale data.
Avoid nested algorithms.
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min
x∈RN

f(x) + g(x)

Forward-Backward splitting (non-relaxed) :

x(n+1) = (I + γn∂g)−1
�
x(n) − γn∇f(x(n))

�
, γn ∈]0, 2/β[ .

Variable metric Forward-Backward splitting (non-relaxed) :

x(n+1) = (I + V −1
n ∂g)−1

�
x(n) − V −1

n ∇f(x(n))
�

.

More generally, find the zeros of :

0 ∈ Ax + Bx

A, B : H→ 2H are maximal monotone operators ;
A single-valued with βA ∈ A(1

2 ), B simple ;
zer(A + B) �= ∅.
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Variable metric splitting
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Main questions and challenges
Convergence guarantees.
Convergence Rates.
Construct attractive metrics :

Computational load and storage of V −1
n .

Easy implementation of the implicit step : (I + V −1
n ∂g)−1.

In general, (I +V −1
n ∂g)−1 as difficult to compute as solving

the original problem.
Fast algorithms for large scale problems.
Maintain convergence guarantees.
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Forward-Backward [Chen and Rockafellar 97, Tseng and Yun 09, Lolito et al. 09, Combettes
and Vu 12] :

arbitrary exogenous metrics ;
optimization and monotone inclusions ;
finite-dimensional or infinite dimensional settings ;
convergence ;
no fast algorithm (implicit step).

Forward-Backward with specific (simple) metrics or problems [e.g. Bonnetini et al. 09, Salzo
and Villa 11, Schmidt et al. 11, Lee et al. 12] :

most of them finite-dimensional optimization setting ;
some of them only special problems (e.g. box or linear constraints) ;
some lack convergence guarantees ;
solve a subproblem (implicit step).

Forward-Backward with pre-conditioning [e.g. Elad 06, Wright et al. 09, Vonesch et al. 09,
Goldstein and Setzer 11] :

finite-dimensional optimization setting ;
some of them only special problems (e.g. specific operators) ;
some lack convergence guarantees.
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Outline
Convex analysis with variable metric.
Convergence.
LMSRr proximal splitting scheme.

Applications.
Extensions and conclusion.
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Definition Let H = (RN , �·, ·�) equipped with the usual Euclidean scalar product
�x, y� and associated norm �x� =

�
�x, x�. For V ∈ RN×N sdp, letHV = (RN , �·, ·�V )

with the scalar product �x, y�V = �x, V y� and norm �x�V corresponding to the metric
induced by V .

Definition (Proximity operator in H [J.-J. Moreau 1962]) Let g ∈ Γ0(H). Then,
for every x ∈ H, the function z �→ 1

2 �x− z�2 + g(z) achieves its infimum at a unique
point denoted by proxg x. The single-valued operator (I + ∂g)−1 = proxg : H→ H

thus defined is the proximity operator of g.

Definition (Proximity operator HV ) We define proxV
g (x) = (IHV +V −1∂g)−1(x) =

argmin
z∈RN

1
2 �x− z�2V + g(z) the proximity operator of g w.r.t. the norm endowing HV .

Computing proxV
g is difficult in general even if proxg is available.
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NSC of a minimum
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min
x∈RN

f(x) + g(x)

Theorem Let f ∈ Γ0(H) ∩ C1(RN ) and g ∈ Γ0(H) as defined before, and V �
aIH, a > 0. Then, for γ > 0, the following are equivalent :

(i) x� ∈M�.

(ii) x� = proxV
γg ◦

�
IH − γV −1∇f

�
(x�) .

(iii) x� =
�

V +γ∂g
a

�−1
◦

�
V−γ∇f

a

�
(x�).
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FB stems from a fixed point equation.

min
x∈RN

f(x) + g(x)

Theorem Let f ∈ Γ0(H) ∩ C1(RN ) and g ∈ Γ0(H) as defined before, and V �
aIH, a > 0. Then, for γ > 0, the following are equivalent :

(i) x� ∈M�.

(ii) x� = proxV
γg ◦

�
IH − γV −1∇f

�
(x�) .

(iii) x� =
�

V +γ∂g
a

�−1
◦

�
V−γ∇f

a

�
(x�).
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Proximal calculus in
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HV
Lemma (Moreau identity in HV ) Let g ∈ Γ0(H), then for any x ∈ H

proxV
ρg∗(x) + ρV −1 ◦ proxV −1

g/ρ ◦V (x/ρ) = x, ∀ 0 < ρ < +∞ .

Corollary

proxV
g (x) = x− V −1 ◦ proxV −1

g∗ ◦V (x) .

If proxV
g is easy to compute, then so is proxV −1

g∗ .
(hint : Moreau identity and Sherman-Morrison inversion lemma.)
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Conclusion

HV
Lemma (Moreau identity in HV ) Let g ∈ Γ0(H), then for any x ∈ H

proxV
ρg∗(x) + ρV −1 ◦ proxV −1

g/ρ ◦V (x/ρ) = x, ∀ 0 < ρ < +∞ .

Corollary

proxV
g (x) = x− V −1 ◦ proxV −1

g∗ ◦V (x) .

If proxV
g is easy to compute, then so is proxV −1

g∗ .
(hint : Moreau identity and Sherman-Morrison inversion lemma.)
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Lemma (Proximity operator) Let V be sdp with bI � V � aI , b ≥ a > 0, and
g ∈ Γ0(H). Then

(i) proxV
γg is firmly non-expansive on HV , hence non-expansive, γ > 0.

(ii)
�

V +γ∂g
a

�−1
is firmly non-expansive on H, hence non-expansive, γ > 0.

(iii) For W sdp,
��proxW

γg(x) − proxV
γg(y)

�� ≤ b/a (�W − V � �x� + �x− y�)+b/a
��proxV

γg(0)
�� .
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Lemma (Proximity operator) Let V be sdp with bI � V � aI , b ≥ a > 0, and
g ∈ Γ0(H). Then

(i) proxV
γg is firmly non-expansive on HV , hence non-expansive, γ > 0.

(ii)
�

V +γ∂g
a

�−1
is firmly non-expansive on H, hence non-expansive, γ > 0.

(iii) For W sdp,
��proxW

γg(x) − proxV
γg(y)

�� ≤ b/a (�W − V � �x� + �x− y�)+b/a
��proxV

γg(0)
�� .

Lemma (Gradient operator) Let V be sdp with bI � V � aI , b ≥ a > 0, and
f ∈ Γ0(H) ∩ C1(H) with ∇f ∈ β-Lip(H). Then (IH − γV −1∇f) is a γβ/(2a)-
averaged operator on HV , hence nonexpansive, ∀γ ∈]0, 2a/β[.
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Outline
Convex analysis with variable metric.
Convergence.
LMSRr proximal splitting scheme.

Applications.
Extensions and conclusion.
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Global convergence :
Assumptions on the metric and step size.
Rates (linear) with extra assumptions on the functions, e.g. strong convexity.

Local convergence :
Assumptions on initialization.
Local assumptions on the smooth part.
Fast rates (quadratic or linear) for well-behaved metrics with extra smooth-
ness assumptions.

Even in the smooth case, it is very difficult to prove something good about local
convergence of a quasi-Newton method.
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Theorem (Global linear convergence) Assume that either f or g is strongly, and
that the variable metric forward-backward is run through a sequence of sdp matrices
Vn → V , and a step size γ ∈]0, γV [ with an appropriate γV . Then the variable metric
forward-backward converges to the (unique) minimizer x� linearly.

Theorem (Local linear convergence) Assume that f ∈ Γ0(RN ) ∩ C2(RN ) with
its Hessian being positive definite at x�. Assume that the variable metric forward-
backward is run with sdp matrices Vn � aIH, a > 0, such that supn

��Vn −∇2f(x(n))
�� ≤

aρ < 1 or a fortiori supn

��Vn −∇2f(x�)
�� ≤ ρa, ρ < 1. If the method is started suffi-

ciently close to x�, then it converges to x� linearly.
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Newton Forward-Backward
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Theorem Assume that f ∈ Γ0(RN ) ∩ C2(RN ) with its Hessian being Lipschitz
continuous.

(i) Local convergence : If the Hessian is positive definite at x�, then the Newton
forward-backward, started sufficiently close to x�, converges to x� quadratically.

(ii) Global convergence : If f is strongly convex, the Newton forward-backward with
an appropriate step size or line search converges to (the unique) x� linearly.
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Under appropriate assumptions, SR1 satisfies the above requirements [Conn et
al. 91, Byrd et al. 96].

Theorem Assume that f ∈ Γ0(RN ) ∩ C2(RN ) with its Hessian being positive de-
finite at x� and Lipschitz continuous. If the matrices Vn converge superlinearly to
∇2f(x�), then the quasi-Newton forward-backward, started sufficiently close to x�,
converges to x� superlinearly.
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Require: x0 ∈ dom(f + g), Lipschitz constant estimate β of∇f , stopping criterion �

for n = 1, 2, 3, . . . do
s
(n) ← x

(n) − x
(n−1)

y
(n) ← ∇f(x(n))−∇f(x(n−1))

Compute Hn = Dn +
�r

i=1 u
(n)
i u

(n)
i

T
(see shortly), and set Vn = H

−1
n .

Compute the rank-r proximity operator (see shortly)

x̂
(n+1) ← proxVn

g (x(n) −Hn∇f(x(n)))

p
(n) ← x̂

(n+1) − x
(n) and terminate if �p(n)� < �

Line search along the ray x
(n) + θp(n) to determine x

(n+1), or choose θ = 1.
end for

Zero-memory SRr update
Hn = Dn +

�r
i=1 u

(n)
i u

(n)
i

T
, Dn diagonal
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Theorem Let g ∈ Γ0(H) and V = D+
�r

i=1 uiuT
i , where D � 0 is diagonal. Then,

(i)
proxV

g (x) = D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x−D−1Uα) ,

where U = (u1, · · · , ur) and α ∈ Rr is the unique root of

p(α) = UT
�
x−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x−D−1Uα)

�
+ Bα ,

where B = UT Q+U is sdp.

(ii) p : Rr → Rr is a Lipschitz continuous mapping.

(iii) If proxg◦D−1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g : Rr → Rr×r

g(α) = UT (Q+ + D−1/2 ◦G(D1/2x− αD−1/2u) ◦D−1/2)U .
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Much simpler
Theorem Let g ∈ Γ0(H) and V = D+

�r
i=1 uiuT

i , where D � 0 is diagonal. Then,

(i)
proxV
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�
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Much lower-
dimensional problem

Theorem Let g ∈ Γ0(H) and V = D+
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Much simpler

Much lower-
dimensional problem

Semi-smooth Newton
(Superlinear)

Theorem Let g ∈ Γ0(H) and V = D+
�r

i=1 uiuT
i , where D � 0 is diagonal. Then,

(i)
proxV

g (x) = D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x−D−1Uα) ,

where U = (u1, · · · , ur) and α ∈ Rr is the unique root of
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�
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�
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LMSR-1 proximity operator
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Corollary Let g ∈ Γ0(H) and V = D + uuT , where D � 0 is diagonal. Then,

(i)
proxV

g (x) = D−1/2 ◦ proxg◦D−1/2(D1/2x− v) ,

where v = αD−1/2u and α is the unique root of

p(α) =
�
u, x−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x− αD−1u)

�
+ α .

(ii) p : R → R is a Lipschitz continuous and strictly increasing function on R.

(iii) If proxg◦D−1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

g(α) = 1 +
�
u, D−1/2 ◦G(D1/2x− αD−1/2u) ◦D−1/2u

�
.
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�
+ α .

(ii) p : R → R is a Lipschitz continuous and strictly increasing function on R.

(iii) If proxg◦D−1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

g(α) = 1 +
�
u, D−1/2 ◦G(D1/2x− αD−1/2u) ◦D−1/2u

�
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Much simpler

1D problem

Corollary Let g ∈ Γ0(H) and V = D + uuT , where D � 0 is diagonal. Then,

(i)
proxV

g (x) = D−1/2 ◦ proxg◦D−1/2(D1/2x− v) ,

where v = αD−1/2u and α is the unique root of

p(α) =
�
u, x−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x− αD−1u)

�
+ α .

(ii) p : R → R is a Lipschitz continuous and strictly increasing function on R.

(iii) If proxg◦D−1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

g(α) = 1 +
�
u, D−1/2 ◦G(D1/2x− αD−1/2u) ◦D−1/2u

�
.



JBAMIʼ12-

LMSR-1 proximity operator

28

Much simpler

1D problem

Semi-smooth Newton
(Superlinear)

or exact

Corollary Let g ∈ Γ0(H) and V = D + uuT , where D � 0 is diagonal. Then,

(i)
proxV

g (x) = D−1/2 ◦ proxg◦D−1/2(D1/2x− v) ,

where v = αD−1/2u and α is the unique root of

p(α) =
�
u, x−D−1/2 ◦ proxg◦D−1/2 ◦D1/2(x− αD−1u)

�
+ α .

(ii) p : R → R is a Lipschitz continuous and strictly increasing function on R.

(iii) If proxg◦D−1/2 is Newton differentiable with generalized derivative G, then so is
the mapping h with a generalized derivative g

g(α) = 1 +
�
u, D−1/2 ◦G(D1/2x− αD−1/2u) ◦D−1/2u

�
.
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Corollary Assume that g ∈ Γ0(H) is separable, i.e. g(x) =
�N

i=1 gi(xi), and V =
D + uuT , where D = diag(di) � 0. Then,

proxV
f (x) =

�
proxgi/di

(xi − vi/di)
�

i
,

where v = αu and α is the unique root of

h(α) =
�
u, x−

�
proxgi/di

(xi − αui/di)
�

i

�
+ α ,

which is a Lipschitz continuous and strictly increasing function on R.
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Separable
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i
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�
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�
proxgi/di
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�

i

�
+ α ,

which is a Lipschitz continuous and strictly increasing function on R.
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Separable

1D problem
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Separable

1D problem

Proposition Assume that for 1 ≤ i ≤ N , proxgi
is piecewise affine on R with ki ≥ 1

segments , i.e.

proxgi
(xi) = ajxi + bj , tj ≤ xi ≤ tj+1, j ∈ {1, . . . , ki} .

Let k =
�N

i=1 ki. Then proxV
g (x) can be obtained exactly by sorting at most the k

real values
�

di
ui

(xi − tj)
�

i∈{1,...,N},j∈{1,...,ki}
which costs O(k log k).

Corollary Assume that g ∈ Γ0(H) is separable, i.e. g(x) =
�N

i=1 gi(xi), and V =
D + uuT , where D = diag(di) � 0. Then,

proxV
f (x) =

�
proxgi/di

(xi − vi/di)
�

i
,

where v = αu and α is the unique root of

h(α) =
�
u, x−

�
proxgi/di

(xi − αui/di)
�

i

�
+ α ,

which is a Lipschitz continuous and strictly increasing function on R.



JBAMIʼ12-

LMSR-1 proximity operator: separable case

29

Separable

1D problem

Proposition Assume that for 1 ≤ i ≤ N , proxgi
is piecewise affine on R with ki ≥ 1
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g (x) can be obtained exactly by sorting at most the k

real values
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di
ui
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which costs O(k log k).

Corollary Assume that g ∈ Γ0(H) is separable, i.e. g(x) =
�N

i=1 gi(xi), and V =
D + uuT , where D = diag(di) � 0. Then,

proxV
f (x) =

�
proxgi/di

(xi − vi/di)
�

i
,

where v = αu and α is the unique root of

h(α) =
�
u, x−

�
proxgi/di

(xi − αui/di)
�

i

�
+ α ,

which is a Lipschitz continuous and strictly increasing function on R.
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LMSR-1 separable case: Examples
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Function g Algorithm
�1-norm Separable : exact in O(N log N)
Hinge Separable : exact in O(N log N)
�∞-ball Separable : exact in O(N log N)
Box constraint Separable : exact in O(N log N)
Positivity constraint Separable : exact in O(N log N)
Linear constraint Nonseparable : exact in O(N log N)
�1-ball Nonseparable : SSN and proxg◦D−1/2 is

O(N log N)
�∞-norm Nonseparable : Moreau-identity
Canonical simplex Nonseparable : SSN and proxg◦D−1/2 is

O(N log N)
max function Nonseparable : Moreau-identity 6 4 2 0 2 4 6

15

10

5

0

5

10
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p( )
Root
x*d/u  /|u|
x*d/u + /|u|
Breakpoints

g(x) = λ �x�1

p(
α
)

=
α
(1

+
�

i:
α
≤

z
i

u
2 i
/d

i)
+

�

i:
α
≤

z
i

c i

z = sort(dixi/ui ± λ/|ui|)

p(α)

z

Root
z−
z+

α
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LMSR-1 metric update
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Hn satisfies the quasi-Newton secant condition :

Hny
(n) = s

(n)
.

y
(n) = ∇f(x(n))−∇f(x(n−1)), s

(n) = x
(n) − x

(n−1).

τn ←
�s(n),y(n)�
�y(n)�2 {Barzilai-Borwein step length}

Dn ← γτnIH, 0 < γ < 1 {Diagonal part}
u

(n) ← (s(n) −Dny
(n))/

��
s(n) −Dny(n), y(n)

�
. {Rank-1 part vector}

return Hn = Dn + u
(n)

u
(n)T {Vn = H

−1
n by Sherman-Morrison lemma}
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Outline
Convex analysis with variable metric.
Convergence.
LMSRr proximal splitting scheme.

Applications.
Extensions and conclusion.
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Does the rank-1 term matter ?
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min
x∈RN

f(x) + g(x)

Both f and g quadratic. f (explicit) g (implicit). N = 1000.
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BFGS, Inf memory, exact linesearch
SR1, Inf memory, exact linesearch
diagonal, no linesearch
SR1, 0 memory, no linesearch, H0=0.90*tBB*I

BFGS,∞ memory, exact linesearch
SR1,∞ memory, exact linesearch
Barzilai-Borwein
SR1, 0 memory, no linesearch, γ = 0.9
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Comparisons

34

First-order methods :
SpaRSA with BB [Wright et al. 2009].
FISTA [Nesterov 1983, Beck and Teboulle 2009].

”1.5”-order methods. Most use active-set strategy :
L-BFGS-B [Byrd et al. 1995].
ASA ”Active Set Algorithm” [Hager and Zhang 2006].
CGIST ”CG + IST” [Goldstein and Setzer 2011].
FPC-AS ”FPC + Active Set” [Wen et al. 2010].
PSSas ”Projected Scaled Sub-gradient + Active Set” [Schmidt et al. 2007].
OWL ”Orthant-wise Learning” [Andrew and Gao 2007].
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Test 1: Lasso
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0−mem SR1
FISTA w/ BB
SPG/SpaRSA
L−BFGS−B
ASA
PSSas
OWL
CGIST
FPC−AS

A ∈ R1500×3000, Aij ∼iid N (0, 1).

min
x∈RN

1
2 �y −Ax�2 + λ �x�1

fastest L-BFGS-B
0-mem SR1
PSSas
FISTA
ASA
CGIST
OWL
SpaRSA

slowest FPC-AS
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0−mem SR1
FISTA w/ BB
SPG/SpaRSA
L−BFGS−B
ASA
PSSas
OWL
CGIST
FPC−AS

min
x∈RN

1
2 �y −Ax�2 + λ �x�1

A 3D discrete differential operator, N = 2197.

fastest FPC-AS
PSSas
0-mem SR1
OWL
FISTA
CGIST
SpaRSA
L-BFGS-B

slowest ASA
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Outline
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Convergence.
LMSRr proximal splitting scheme.
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Extensions
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Variable metric GFB splitting [Raguet-F.-Peyré 2011] to solve

min
x∈H

f(x) + gi ◦ Li(x) .

∇f ∈ β-Lip(H), and ∀i, gi simple and Li bounded linear operator on H.
Monotone inclusions :

0 ∈ A(x) + B(x)

A and B maximal monotone, A merely Lipschitz (or skewed monotone). This
would cover primal-dual splitting.
Completely non-smooth case : pre-conditioning.
Inexact versions : robustness to errors.
Other quasi-Newton metrics with favorable structure.
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Take away messages
Variable metric proximal splitting.
A new accelerated quasi-Newton forward-backward 
algorithm.
Convergence guarantees and rates (special instances).
An efficient LMSR1 metric construction.
A new result on the calculation of proximity operators in 
this metric. 
A Fast solver for large-scale problems.
Convergence guarantees for LMSRr.

Many extensions.
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Papers and code available
http://www.greyc.ensicaen.fr/~jfadili

Thanks
Any questions ?

http://www.greyc.ensicaen.fr/~jfadili
http://www.greyc.ensicaen.fr/~jfadili

