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1 Introduction

Pour les études en informatiques, les mathématiques sont indispensables. Ce
cours s’attache à des notions nécessaires pour les informaticiens.

Vous aurez besoin de comprendre comment fonctionnent les algorithmes que
vous rencontrerez, prouver qu’ils se terminent et qu’ils font bien ce que vous
attendez d’eux. Pour certains algorithmes, c’est assez simple, mais cela peut
devenir compliqué et il est nécessaire d’être à l’aise avec les bases de logique
mathématiques pour ce travail. C’est bien sûr également nécessaire pour con-
struire vos propres algorithmes. Les différents types de raisonnement sont cru-
ciaux.

Il est également important de comprendre et différencier les objets mathé-
matiques comme les ensembles, leurs éléments, les produits cartésiens, les suites
finies (listes) ou infinies, etc.

En informatique, il faut savoir évaluer le nombre d’opérations nécessaires à
l’exécution d’un algorithme. Cela demande de savoir manipuler des suites, des
sommes, des raisonnements par récurrence. Il est aussi important de pouvoir
interpréter le résultat : est-ce que le temps de calcul sera trop long ? Com-
ment situer l’efficacité de l’algorithme par rapport à un autre qui donnerait le
même résultat ? C’est pourquoi il est nécessaire de pouvoir comparer certaines
fonctions entre elles.

Une partie du programme porte sur des notions déjà vues en mathématiques
générales (cours suivi par chacun d’entre vous), et en mathématiques appro-
fondies (suivi par certains d’entre vous). L’expérience des année précédentes
montre que ces cours ne suffisent pas. C’est pourquoi nous y revenons dans ce
cours de ”mathématiques pour l’informatique”, en insistant davantage sur les
exercices.

Au fur et à mesure du cours, le polycopié sera mis à votre disposition sur
moodle. Lors des séances du cours magistral, le polycopié sera utilisé comme
support. Il sera projeté, et complété par des explications orales et écrites au
tableau.

Il vous faudra toutefois prendre des notes. Il ne s’agira pas de recopier le
polycopié, mais d’ajouter les explications supplémentaires. Pour cela, je suggère
de noter sur votre cahier de cours chaque numéro et titre de paragraphe au fur
et à mesure du cours et d’y écrire ce qui est ajouté.

Par exemple, si des remarques sont ajoutées sur le théorème ”truc”, vous
pouvez écrire :
”Théorème truc - ” et ajouter les commentaires.

Ou bien, pour l’exercice ”machin”, qui serait fait en cours, vous pouvez écrire
:
”Exercice machin” - ” et ajouter les commentaires.

Ainsi, vous pourrez étudier le cours avec le polycopié et vos notes.

Pour raisonner bien, il est nécessaire de bien organiser ses idées. Pour cela,
il est utile de rédiger rigoureusement. Comme le raisonnement est l’un des
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objectifs principaux de ce cours, la rédaction sera prise en compte lors des
évaluations.

Pour rédiger correctement lors des évaluations, il faut bien sûr s’entrâıner à
le faire auparavant. C’est-à-dire qu’il vous faudra faire un effort sur ce point
durant les séances de travaux dirigés et votre travail personnel.

2 Logique

Les thèmes suivants ont déjà été vus dans le cours de mathématiques générales
au semestre 1.

• Tables de vérité

• Quantificateurs

• Raisonnement par contraposée

• Raisonnement par l’absurde

• Raisonnements par récurrence

Dans ce paragraphe, on s’appuie sur ce qui a été vu dans ce cours pour divers
exercices sur les raisonnements.

On commence par quelques rappels.

2.1 Propositions logiques

Nous exprimons nos raisonnements et énonçons nos résultats, transmettons nos
connaissances à l’aide d’énoncés. Les propositions logiques sont les objets
mathématiques qui formalisent ces énoncés.

Définition 2.1.1 Une proposition logique (ou proposition est un énoncé
auquel on peut associer une valeur de vérité : soit vrai soit faux.

Une proposition logique peut dépendre d’un paramètre (on parle alors de
proposition à paramètre). Dans ce cas, la valeur de vérité associée dépend de la
valeur du paramètre.

Exercice 2.1.2 Parmi les énoncés suivants, lesquels sont des propositions logiques ?

1. 4 plus 5 font 9.

2. 1 est plus grand que 2.

3. Le présent énoncé est faux.

4. La 300ème décimal de π est un 7.

5. La fonction sin : R→ R est périodique.
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6. x ≥ 0.

Remarques 2.1.3 1. L’énoncé ”1 est plus grand que 2” peut sembler étrange,
mais c’est bien une proposition logique : c’est une proposition logique
fausse.

2. L’énoncé ”x ≥ 0” est une proposition logique à paramètre. Sa valeur de
vérité dépendra de la valeur de x (dans cette proposition, on sous-entend
que x ∈ R et donc peut être comparé à 0).

2.2 Opérations logiques

On définit des opérations entre les propositions logiques (aussi appelées vari-
ables propositionnelles). Ces opérations sont appelées connecteurs logiques. Ils
permettent de créer d’autre propositions logiques (appelées formules proposi-
tionnelles).

Ces connecteurs sont les suivants.

1. La négation ”non”, qui peut aussi être notée ¬

2. La disjonction logique ”ou”, qui peut aussi être notée ∨

3. La conjonction logique ”et”, qui peut aussi être notée ∧

4. L’implication, notée =⇒

5. L’équivalence, notée ⇐⇒

Pour simplifier, nous noterons ”non” (plutôt que ¬), ”ou” (plutôt que ∨),
”et” (plutôt que ∧).

La valeur de vérité d’une proposition logique obtenue à l’aide de connecteurs
dépend des valeurs de vérité des propositions logiques en jeu. On peut décrire
ces valeurs de vérité à partir de la table de vérité de la proposition logique.

Exercice 2.2.1 Remplir les tables de vérité suivante sans regarder votre cours
de mathématiques générales.

p non p
F
V

p q p ou q
F F
F V
V F
V V

p q p et q
F F
F V
V F
V V
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p q p⇒ q
F F
F V
V F
V V

p q p⇔ q
F F
F V
V F
V V

Exercice 2.2.2 Soient p la proposition 1 + 1 = 3 et q la proposition ”10 est
un nombre entier”. Donner la valeur de vérité de chacune des propositions
suivantes.

1. p ou q

2. (non p) ou q

3. (non p) et q

4. p et q

5. (non p) ou (non q)

6. p =⇒ q

7. (non p) =⇒ q

8. (non p) =⇒ (non q)

Remarques 2.2.3 1. Dans le langage courant, “ou” a en général un sens
exclusif (fromage “ou” dessert). En mathématiques, le “ou” est toujours
“inclusif” : si p et q sont toutes les deux vraies, p ou q est vraie.

2. Dire que ”p ⇒ q est vrai” ne signifie pas que p est vraie mais seulement
que si l’hypothèse p est vraie, alors la conclusion q l’est aussi.

3. Noter en particulier que, si p est fausse, p⇒ q est vrai... C’est pour cela
que pour démontrer qu’une implication p⇒ q est vraie, on fait l’hypothèse
que p est vraie et on montre que q est alors vraie (puisque si p est fausse
il n’y a rien à démontrer).

4. Lorsqu’une implication p ⇒ q est vraie, on l’utilise ensuite dans des
raisonnements :
p est vraie et p⇒ q est vraie donc q est vraie.

Attention: Un abus courant consiste à confondre une formule proposition-
nelle et sa valeur de vérité. Ainsi, dans un texte mathématique,

on écrira souvent ”p⇒ q” pour dire que ”p⇒ q est vraie” .

Avec cet abus de notation la formule ”p⇒ q” se dit aussi parfois “si p, alors
q”, ou bien ”p implique q”, ou bien “pour que p soit vraie, il faut que q soit
vraie”, ou encore
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• “une condition suffisante pour q est p”,

• “une condition nécessaire pour p est q”.

La formule ”p ⇐⇒ q” se dit parfois ”p est équivalente à q”, ou encore ”p si
et seulement si q”, ou encore ”p est une condition nécessaire et suffisante pour
q”, ou encore ”q est une condition nécessaire et suffisante pour p”.

Exemples 2.2.4 1. Soit ABC un triangle. Quand on dit

ABC est rectangle en A ⇐⇒ AB2 +AC2 = BC2

on sous-entend que cette proposition logique est vraie.

2. Soient D et D′ deux droites de même direction. Si on dit

(D = D′) ou (D ∩D′ = ∅)

on sous-entend que cette proposition logique est vraie.

Définition 2.2.5 On dit que deux formules propositionnelles F et G sont équivalentes
si elles ont même table de vérité. On peut le noter F ≡ G.

Exercice 2.2.6 Montrer que la formule p ⇒ q peut s’exprimer à l’aide des
symboles de conjonction et de disjonction par l’une ou l’autre des phrases suiv-
antes:

• (non p) ou q

• non (p et (non q)).

Exercice 2.2.7 Compléter les exemples importants de formules équivalentes
ci-dessous. Ces résultats sont à connâıtre.

• non (p et q) est équivalent à ((non p) . . . (non q)).

• non (p ou q) est équivalent à ((non p) . . . (non q)).

• (p⇔ q) est équivalent à ((p⇒ q) . . . (q ⇒ p)).

• (p⇒ q) est équivalent à ((non q) . . . (non p)) (contraposée)

• (p⇒ q) est équivalent à ((non p) . . . q)

• p ou q est équivalent à ((non p) . . . q)

• non (p⇒ q) est équivalent à (p . . . (non q))

Proposition 2.2.8 (associativité et distributivité des connecteurs logiques)

• p et (q et r) est équivalent à (p et q) et r.

• p ou (q ou r) est équivalent à (p ou q) ou r.
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• p et (q ou r)) est équivalent à (p et q) ou (p et r)

• p ou (q et r) est équivalent à (p ou q) et (p ou r)

Exercice 2.2.9 Démontrer la proposition précédente.

Exercice 2.2.10 Démontrer que le connecteur logique ” ⇐⇒ ” est associatif.
On pourra pour cela utiliser une table de vérité.

p q r p ⇐⇒ q q ⇐⇒ r (p ⇐⇒ q) ⇐⇒ r p ⇐⇒ (q ⇐⇒ r)
V V V
V V F
V F V
F V V
V F F
F V F
F F V
F F F

Exercice 2.2.11 Montrer que le connecteur logique ” =⇒ ” n’est pas associatif.

Exercice 2.2.12 Soient p, q et r trois propositions. Exprimer la négation des
propriétrés suivantes.

1. p =⇒ (q =⇒ r)

2. (p =⇒ q) =⇒ r

3. non p =⇒ q

4. (p et q) ou r

Exercice 2.2.13 Soit x un nombre réel.

1. Compléter le tableau des signes suivant.

x −∞ −
√

3
√

3 +∞
x−
√

3

x+
√

3
x2 − 3

2. Compléter
x2 − 3 ≥ 0 ⇐⇒ (x · · · −

√
3) . . . (x . . .

√
3)

Remarque 2.2.14 On a défini plus haut l’équivalence des formes proposition-
nelles : deux formules propositionnelles F et G sont équivalentes si elles ont
même table de vérité, ce qu’on a écrit F ≡ G.

Cela sigifie aussi que F et G sont équivalentes si et seulement si

F est vraie ⇐⇒ G est vraie
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Exercice 2.2.15 Soient F et G deux formules propositionnelles. Parmi les
affirmations suivantes, indiquer lesquelles sont correctes.

1. Si F ≡ G, alors lorsque F est vraie, G est vraie et lorsque G est vraie, F
est vraie.

2. On suppose que si F est vraie, G est vraie et lorsque G est vraie, F est
vraie. Dans ce cas, F ≡ G.

3. On suppose que si F est vraie, G est vraie et lorsque G est fausse, F est
fausse. Dans ce cas, F ≡ G.

4. On suppose que si F est fausse, G est fausse et lorsque G est fausse, F
est fausse. Dans ce cas, F ≡ G.

2.3 Méthodes

Implication Pour démontrer qu’une implication

p =⇒ q

est vraie, il faut supposer que p est vraie, et à l’aide de cette hypothèse, déduire
q par des opérations logiques.

Il faut rédiger comme suit.

Écrire que l’on suppose l’hypothèse p vraie.

...

suite d’arguments logiques qui permettent de conclure que q est vraie.

...

Donc q.

Exemple 2.3.1 Avant d’aborder l’exemple, on rappelle que si r est un réel
positif et x un réel,

|x| ≤ r ⇐⇒ −r ≤ x ≤ r

On veut démontrer que si x est un réel tel que |x − 2| ≤ 1 et |x| ≤ 1, alors
x = 1.

Ici, l’hypothèse (qui dépend du réel x) est :

p(x) : |x− 2| ≤ 1 et |x| ≤ 1

On écrit alors : soit x un réel. On suppose que |x − 2| ≤ 1 et |x| ≤ 1. On
traduit ensuite les hypothèse :

1. comme |x− 2| ≤ 1, c’est que −1 ≤ x− 2 ≤ 1 et donc en ajoutant 2 dans
ces inégalités 1 ≤ x ≤ 3.
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2. comme |x| ≤ 1, c’est que −1 ≤ x ≤ 1.

On a donc obtenu : x ≥ 1 (par le 1) et x ≤ 1 (par le 2), donc x = 1.

Exercice 2.3.2 Montrer que si x est un réel tel que |x− 3| ≤ 2, alors x > 0.

Exercice 2.3.3 Dans le plan euclidien, on rappelle que si A et B sont deux
points distincts, la médiatrice d’un segment [A,B] est l’ensemble des points
équidistants de A et B (c’est en fait la droite orthogonale à (AB) qui passe par
le milieu de [A,B]).

Soit (A,B,C) un triangle non plat. Soit I un point des médiatrices de [A,B]
et de [A,C]. Montrer que I appartient à la médiatrice de [B,C].
Remarque. Cela montre que les médiatrices d’un triangle non plat sont con-
courantes.

Disjonction On appelle disjonction entre deux propositions p et q la proposition
p ou q. On rappelle que p ou q est équivalente à non p =⇒ q.

Pour démontrer p ou q, on démontre souvent (non p) =⇒ q.

Exercice 2.3.4 Soient a et b deux réels tels que a + b ≥ 1. En utilisant la

méthode indiquée ci-dessus, montrer que a ≥ 1

2
ou b ≥ 1

2
.

2.4 Quantificateurs

Les expressions ”pour tout” (ou ”quelque soit”) et ”il existe” sont omniprésents
dans les énoncés mathématiques.

En effet, on est amené à manipuler des propositions dépendant d’une variable
parcourant un ensemble (on rappelle ci-dessous la définition d’un ensemble).

Définition 2.4.1 Un ensemble E est une collection d’objets deux à deux dis-
tincts appelés éléments de E, donnés dans un ordre indifférent.

On note x ∈ E pour indiquer que x est un élément de l’ensemble E. C’est
dans ce contexte que l’on introduit les quantificateurs ” ∀ ” et ” ∃ ”.

Définition 2.4.2 1. Le symbole ∀ signifie ”quelque soit” (ou ”pour tout”).
On l’appelle le quantificateur universel.

2. Le symbole ∃ signifie ”il existe”. On l’appelle le quantificateur existentiel.

Soit p(x) une proposition qui dépend d’une variable x appartenant à un
ensemble E.

1. La proposition
∀x ∈ E, p(x)

est vraie si p(x) est vraie pour chaque élément x de E.
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2. La proposition
∃x ∈ E, p(x)

est vraie s’il existe au moins un élément x de E pour lequel p(x) est vraie.

Exercice 2.4.3 Soient f une fonction définie sur R à valeurs dans R et E
un sous-ensemble de R. Dans chacun des items suivants, indiquer si les deux
propositions ont la même signification ou non.

1. ”∀x ∈ R , f(x) = 0” et ”∀y ∈ R , f(y) = 0”.

2. ”∀x ∈ R , f(x) = 0” et ”∃x ∈ R , f(x) = 0”.

3. ”les éléments de E sont tous non nuls” et ”les élément de E sont non tous
nuls”.

Exercice 2.4.4 On considère la proposition suivante, où le quantificateur a été
effacé.

. . . x ∈ R , x2 − 3 ≥ 0

1. Compléter cet énoncé à l’aide d’un quantificateur pour obtenir une propo-
sition logique fausse.

2. Même question, mais pour obtenir une proposition logique vraie.

Exercice 2.4.5 Soit x un élément de Z. Compléter la proposition suivante afin
d’exprimer que x est impair.

. . . k ∈ Z , x = 2k + 1

Exercice 2.4.6 Soit x un entier. Montrer que x est pair ou x+ 1 est pair.

Exercice 2.4.7 Soit x un entier relatif.
Soit p(x) la proposition : ”x est impair”.
Soit q(x) la proposition : ”x2 − 1 est divisible par 8”.

1. Soit k un entier relatif.

(a) Montrer que k(k + 1) est divisible par 2.

(b) Montrer que (2k + 1)2 = 1 + 4k(k + 1) et que 4k(k + 1) est divisible
par 8.

2. En déduire que p(x) =⇒ q(x).

3. En utisant un quantificateur, compléter la phrase suivante pour exprimer
le résultat démontré.

. . . . . . . . . (x est impair ) =⇒ (8 divise x2 − 1)
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Remarques 2.4.8 1. Les variables sont muettes : ∀x, p(x) et ∀y, p(y)
désignent la même proposition.

2. La négation de (∀x ∈ E, p(x)) est (∃x ∈ E, non (p(x))).

3. La négation de (∃x ∈ E, p(x)) est (∀x ∈ E, non (p(x))).

4. Pour montrer que ”∃x ∈ E, p(x)” est vraie, il suffit de trouver un x par-
ticulier dans l’ensemble E pour lequel p(x) est vraie. Pour montrer que
“∀x ∈ E, p(x)” est vraie, un tel exemple ne suffit pas.

Montrer que “∀x ∈ E, p(x)” est faux revient à montrer que “∃x ∈ E,non p(x)”
est vraie, donc il suffit de trouver un contre-exemple, c’est-à-dire un x
pour lequel p(x) est faux.

5. En général, (∀x ∈ E,∃y ∈ E, p(x, y)) et (∃y ∈ E,∀x ∈ E, p(x, y)) sont
deux propositions différentes.

Exercice 2.4.9 Donner la valeur de vérité de chacune des propositions suivan-
tes.

1. (∀x ∈ Z,∃y ∈ Z, x+ y ≥ 0)

2. (∃y ∈ Z,∀x ∈ Z, x+ y ≥ 0)

Exercice 2.4.10 1. Soit f une fonction définie sur R et à valeurs dans R.
En utilisant des quantificateurs, exprimer la condition pour que f soit
paire.

2. De même, exprimer la condition pour que f soit impaire.

3. Soit f l’application de R dans R qui à x associe f(x) = x2+x−1. Calculer
f(1) et f(−1). La fonction f est-elle paire ? Est-elle impaire ?

2.5 Raisonnement par contraposée

Principe : Soient p et q deux propositions. Supposons que l’on veuille prouver
que la proposition p⇒ q est vraie. Le principe de contraposition assure qu’il
est équivalent de démontrer que la proposition (non q)⇒ (non p) est vraie.

La proposition (non q)⇒ (non p) est appelée la contraposée de p⇒ q.

Attention : Ne pas confondre la contraposée de p⇒ q, qui est non q ⇒ non p,
avec sa réciproque “q ⇒ p”. La contraposée est équivalente à la proposition
de départ, ce n’est pas le cas de la réciproque.

Exercice 2.5.1 Donner la contraposée de la phrase suivante. ”S’il pleut, le sol
est mouillé”.

Quelle est sa réciproque ?
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Exercice 2.5.2 Soit n un entier. Montrer que si n2 − 1 n’est pas divisible par
8, alors n est pair.
Indication. On pourra utiliser le résultat de l’exercice 2.4.7

Exercice 2.5.3 Soit n un nombre entier. On va montrer que si n2 est pair,
alors n est pair en utilisant la contraposée. Compléter le raisonnement suivant.
la contraposée de cette proposition est :

Si n est ... , alors n2 est ...

Démontrons cette proposition.
On suppose donc que n est impair. Alors

. . . k ∈ Z , n = 2k + 1

Donc
n2 =

Conclure.

2.6 Raisonnement par l’absurde

Le raisonnement par l’absurde est un principe de démonstration fondé sur le
principe logique du tiers exclu qui affirme que p ou non (p) est toujours vrai.

Principe de la démonstration par l’absurde : Supposons que l’on veuille
prouver que la proposition p est vraie. On suppose que non p est vraie (donc
que p est fausse), et l’on exhibe une contradiction, en utilisant notre système
d’axiomes et/ou les règles de déduction logique. On en conclut alors que
l’hypothèse faite sur p est fausse, donc que p est vraie.

Exemple : Montrons par l’absurde que x4+2x2+x−
√

2 n’admet pas de racine
entière.

On suppose que la propriété est fausse, c’est-à-dire que x4 + 2x2 + x −
√

2
admet (au moins une) racine entière. On note n0 une telle racine. On a donc
n40 + 2n20 + n0 −

√
2 = 0. Donc√

2 = n40 + 2n20 +n0. Mais n0 est entier, donc n30− 2n20 + 10n0 également. Donc√
2 est entier, ce qui est impossible.

Par conséquent x3 − 2x2 + 10x−
√

2 n’admet pas de racine entière.

Exercice 2.6.1 Montrer qu’il n’existe pas de couples d’entiers (a, b) tels que
6a+ 10b = 1.

Exercice 2.6.2 On reprend l’exercice 2.3.4 :

”soient a et b deux réels tels que a+ b ≥ 1, Montrer que a ≥ 1

2
ou b ≥ 1

2
”.

On a démontré ce résultat en utilisant le fait que p ou q est équivalent à
non p =⇒ q.

Démontrer ce même résultat par un raisonnement par l’absurde.
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Exercice 2.6.3 On rappelle que les nombres rationnels x sont les nombres

obtenus comme quotients de deux nombres entiers x =
a

b
et que les nombres

irrationnels sont les nombres qui ne sont pas rationnels.

1. Soit x =
15

18
. Simplifier l’écriture de x.

2. Montrer que la somme d’un nombre rationnel et d’un nombre irrationnel
est irrationnel.

La démonstration par l’absurde est très souvent utilisée pour montrer une
non-existence, ou l’unicité de quelque chose.

2.7 Raisonnement par récurrence

Le raisonnement par récurrence est un principe de démonstration qui s’applique
lorsque l’on veut démontrer qu’une certaine propriété P(n), dépendant d’un
entier naturel n, est vraie pour tout entier (exemple : ”montrer que pour tout
n ∈ N, le nombre 10n − 1 est un multiple de 9”).

L’ensemble N des entiers naturels possède la propriété remarquable appelé
le principe de récurrence. 1. Cette propriété est à la base du raisonnement par
récurrence, dont le principe est rappelé ci-dessous.

Soit n0 un entier, et P(n) une propriété de l’entier n, définie pour tout n ≥ n0.
On fait les hypothèses suivantes :

(R1) La propriété P(n0) est vraie.

(R2) Pour tout n ≥ n0, (P(n)⇒ P(n+ 1)) est vraie.

Alors, la propriété P(n) est vraie pour tout n ≥ n0.

Pour un raisonnement par récurrence, rédiger comme suit.

Initialisation. On vérifie que P(n0) est vraie.
Hérédité. Soit n un élément de N tel que n ≥ n0. On veut montrer que
(P(n)⇒ P(n+ 1)) est vraie. On suppose donc que P(n) est vraie.

...

suite de déductions logiques pour montrer que P(n+ 1) est vraie.

...

On déduit que P(n+ 1) est vraie.
On en déduit que pour tout entier n ≥ n0, P(n) est vraie.

1Cette propriété ”ne va pas de soi”, et elle est en fait l’un des axiomes utilisés pour la
construction de N. Cette construction axiomatique de N n’est pas au programme du cours.
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Exercice 2.7.1 Montrer que pour tout n ∈ N, le nombre 10n−1 est un multiple
de 9.

Exercice 2.7.2 Démontrer par récurrence que pour tout entier naturel non nul

n, la somme des n premiers entiers non nuls est égale à
n(n+ 1)

2
, c’est-à-dire

n∑
i=1

i =
n(n+ 1)

2

Exercice 2.7.3 Soit (un) est la suite définie par u0 = 0 et pour tout entier
naturel n, un+1 = un + 2n+ 2. Démontrer par récurrence que pour tout entier
naturel n, un = n(n+ 1).

2.8 Récurrence ”à deux étages”

Cherchons à résoudre l’exercice suivant.

Exercice 2.8.1 Soit (un) la suite définie par les données de u0 = 2, u1 = 3 et
pour tout entier n supérieur ou égal à 1

un+1 = 3un − 2un−1

Montrer que pour tout n ∈ N

un = 1 + 2n

Soit P(n) la propriété : un = 1 + 2n.
Initialisation. Vérifions que P(0) est vraie.

On calcule 1 + 20 = 2. Comme u0 = 2, on obtient bien : u0 = 1 + 20. Par
conséquent, P(0) est vraie.
Hérédité. Soit n un élément de N. On veut montrer que (P(n) ⇒ P(n + 1))
est vraie.

On suppose donc que P(n) est vraie. Donc un = 2n + 1. Alors :

un+1 = 3un − 2un−1

= 3(2n + 1)− 2un−1

Mais que faire de un−1 ? On a supposé que un = 2n + 1, mais rien sur un−1.
Par ailleurs, si n = 0, n− 1 = −1 et on n’a pas défini u−1.

On aurait pu aussi vérifier que P(1) est vraie, puis pour l’hérédité, écrire
Soit n un élément de N tel que n ≥ 1. Alors un−1 sera bien défini, mais dans
le calcul ci-dessus, nous aurons besoin de pouvoir remplacer un−1 par 2n−1 + 1.
Nous avons donc besoin de savoir que

P(n) est vraie et P(n− 1) est vraie
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Notre démonstration par récurrence a échoué car nous avons eu besoin
de la valeur de un−1 en plus de celle de un.

Recommençons.
Pour tout n ∈ Nr {0}, définissons la nouvelle proposition logique

Q(n) = (P(n− 1) et P(n))

Initialisation. Vérifions que Q(1) est vraie.

Q(1) = (P(0) et P(1))

On calcule 1 + 20 = 2. Comme u0 = 2, on obtient bien : u0 = 1 + 20. Par
conséquent, P(0) est vraie.

On calcule 1 + 21 = 3. Comme u1 = 3, on obtient bien : u1 = 1 + 21. Par
conséquent, P(1) est vraie.

On conclut que Q(1) est vraie.
Hérédité. Soit n un élément de N tel que n ≥ 1. On veut montrer que
(Q(n)⇒ Q(n+ 1)) est vraie.

On suppose donc que (Q(n) est vraie. Cela veut dire que P(n− 1) et P(n)
sont vraies, donc {

un−1 = 1 + 2n−1

un = 1 + 2n

On reprend le calcul ébauché plus haut.

un+1 = 3un − 2un−1

= 3(2n + 1)− 2(2n−1 + 1)

= 6 · 2n−1 − 2 · 2n−1 + 1

= (6− 2)2n−1 + 1

= 4 · 2n−1 + 1

= 2n+1 + 1

C’est donc que P(n + 1) est vraie. Comme P(n) est vraie, c’est que Q(n + 1)
est vraie. On a donc démontré que l’implication suivante est vraie.

(Q(n)⇒ Q(n+ 1))

Conclusion. Pour tout n ∈ N tel que n ≥ 1, Q(n) est vraie. On en déduit que
pour tout n ∈ N, P(n) est vraie. Ainsi, pour tout n ∈ N,

un = 1 + 2n

L’exemple précédent montre que parfois, il n’est pas possible de démontrer
P(n)⇒ P(n+ 1), mais par exemple

(P(n− 1) et P(n))⇒ P(n+ 1)

Alors dans l’initialisation, on doit vérifier que P(n0) et P(n0 + 1) sont vraies.
Ensuite, dans l’hérédité, il suffit de démontrer que pour tout entier n ≥ n0 + 1,

(P(n− 1) et P(n))⇒ P(n+ 1)
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2.9 Récurrence forte

Plus généralement, il arrive que pour déduire P(n + 1), on a besoin de savoir
que P(k) est vrai pour un certain nombre d’entiers k inférieurs à n, et que P(n)
ne suffit pas, ou même que P(n) et P(n− 1) ne suffisent pas.

Dans ce cas, on peut utiliser le principe de récurrence à la nouvelle proposi-
tion

Q(n) : ”∀k, 0 ≤ k ≤ n, P(n) est vraie”.

Exercice 2.9.1 Soit (un) la suite telle que : u0 = 1, u1 = 4, u2 = 4 et telle
que pour tout entier n ≥ 3, un = 2un−1 + un−2 − 2un−3.

On veut montrer que pour tout n ∈ N, un = 2n − (−1)n + 1.
Pour tout entier naturel n, on appelle P(n) la proposition ”un = 2n−(−1)n+

1” et Q(n) la proposition ”∀k ∈ [[0, n]], P(n) est vraie”.

1. Vérifier que si n ∈ [[0, 1, 2]], Q(n) est vraie.

2. Montrer que pour tout entier n tel que n ≥ 2, Q(n) =⇒ Q(n+ 1).

3. Conclure que pour tout n ∈ N, un = 2n − (−1)n + 1.

Exercice 2.9.2 Reprendre l’exercice 2.8.1 en le rédigeant comme l’exercice 2.9.1.

Remarque 2.9.3 Lorsqu’on cherche à évaluer le nombre d’opérations f(n)
que nécessite un algorithme appliqué à des données de taille n (complexité de
l’algorithme), il arrive souvent que l’on arrive à une équation qui lie f(n) et
f(n/a), où a est un réel strictement supérieur à 1. Par exemple, plus tard dans
le cours, un calcul de complexité nous mènera à évaluer une fonction f telle que
f(1) = 1 et telle que pour tout entier naturel n

f(n) ≤ 2 + f(E(n/2))

(où E(n/2) désigne la partie entière de n/2). Dans ce cas, il nous faudra ap-
pliquer une récurrence forte.

Exercice 2.9.4 Soit (un) la suite définie par les données de u0 = 1, u1 = 3 et
pour tout entier n supérieur ou égal à 1

un+1 = 2un − un−1

Calculer les premiers termes de cette suite, puis déterminer un en fonction de
n.

2.10 Propriétés de N
Pour terminer ce paragraphe, signalons des propriétés importantes de N, liées
au principe de récurrence.

On peut démontrer que le principe de récurrence est équivalente à la pro-
priété suivante.

Toute partie non vide de N admet un plus petit élément.
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Exercice 2.10.1 Soit A une partie non vide de N.

1. Exprimer à l’aide de quantificateurs le fait que A admet un plus petit
élément.

2. Soit P l’ensemble des éléments de N pairs. Quel est le plus petit élément
de P ?

Citons aussi le théorème admis suivant.

Théorème 2.10.2 Toute partie non vide et majorée de N admet un plus grand
élément.

Exercice 2.10.3 Soit A une partie non vide de N.

1. Exprimer à l’aide de quantificateurs le fait que A est majorée.

2. Exprimer à l’aide de quantificateurs le fait que A admet un plus grand
élément.

3. Donner un exemple d’un tel ensemble.

3 Sommes, suites remarquables

3.1 Manipulation des sommes

On utilise très souvent la notation
∑

. Rappelons le sens de cette notation.

Définition 3.1.1 Soit n0 un entier. Soit (un)n≥n0
une suite d’éléments d’un

ensemble E muni d’une opération +. Par exemple, E peut être égal à R. On

définit la suite

(
n∑

k=n0

uk

)
n≥n0−1

par récurrence de la manière suivante.

n0−1∑
k=n0

uk = 0 (c’est la somme vide)

n0∑
k=n0

uk = un0

et pour tout n ≥ n0 + 1,

n∑
k=n0

uk =

(
n−1∑
k=n0

uk

)
+ un

On peut aussi écrire in extenso

n∑
k=n0

uk = un0
+ un0+1 + · · ·+ un
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Nous avons déjà utilisé cette notion, mais il est utile d’insister sur ce thème.

Exercice 3.1.2 Soit n un élément de N. Que vaut

n∑
k=1

1 ?

Exercice 3.1.3 Pour tout n ∈ N, on définit

Sn = 02 + 12 + · · ·+ n2

1. Calculer S0, S1 et S2.

2. Exprimer Sn à l’aide du symbole
∑

.

3. Connaissez vous une expression simple donnant Sn en fonction de n ?

Proposition 3.1.4 Soient (un)n≥n0 et (vn)n≥n0 deux suites réelles. Soient α
et β deux réels. Alors pour tout entier n ≥ n0,

n∑
k=n0

(αun + βvn) = α

(
n∑

k=n0

un

)
+ β

(
n∑

k=n0

vn

)

Exercice 3.1.5 Démontrer ce résultat par récurrence.

Exercice 3.1.6 Pour tout n ∈ N, on définit

Sn = 0 · 1 + 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1)

1. Calculer S0, S1 et S2.

2. Exprimer Sn à l’aide du symbole
∑

.

3. En utilisant des expressions déjà calculées de

n∑
k=0

k et

n∑
k=0

k2, donner une

autre expression pour Sn.

Proposition 3.1.7 Soit (un)n∈N une suite. Pour tout n ∈ N et tout m ∈ N tel
que m ≤ n

n∑
k=0

uk =

m∑
k=0

uk +

n∑
k=m+1

uk

Exercice 3.1.8 Démontrer cette proposition (on pourra utiliser une récurrence
sur n).

Exercice 3.1.9 Soit (un)n∈N une suite à termes réels. Soit

Sn = (u1 − u0) + (u2 − u1) + · · ·+ (un+1 − un)

1. Exprimer S0, S1 et S2 en fonction des ui concernés.
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2. Exprimer Sn à l’aide du symbole
∑

.

3. Montrer par récurrence que Sn = un+1 − u0.

4. On veut retrouver ce résultat d’une autre manière. Montrer que

Sn =

n+1∑
k=1

uk −
n∑

k=0

uk

En déduire que Sn = un+1 − u0.

Exercice 3.1.10 Pour tout n ∈ N \ {0}, on définit

Sn =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)

1. Calculer S1 et S2.

2. Exprimer Sn à l’aide du symbole
∑

.

3. Soit k un entier naturel non nul. Exprimer
1

n
− 1

n+ 1
comme une fraction

(en mettant ces fractions sous le même dénominateur).

4. Montrer que pour tout n ∈ N \ {0},

Sn = 1− 1

n+ 1

3.2 Suites monotones

Définition 3.2.1 Soit u = (un)n≥n0
une suite réelle.

1. On dit que u est croissante si pour tout n ≥ n0, un+1 ≥ un.

2. On dit que u est décroissante si pour tout n ≥ n0, un+1 ≤ un.

3. On dit que u est constante si pour tout n ≥ n0, un+1 = un.

4. On dit que u est monotone si elle est croissante ou décroissante.

5. On dit que u est strictement croissante si pour tout n ≥ n0, un+1 > un.

6. On dit que u est strictement décroissante si pour tout n ≥ n0, un+1 < un.

Exercice 3.2.2 Dans chacun des exemples suivants, indiquer si la suite (un)n≥n0

est monotone, croissante, décroissante, constante.

1. n0 = 1 et ∀n ≥ 1, un =
1

n
.

2. n0 = 1, et ∀n ≥ 1, un =
(−1)n

n
.
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3. n0 = 0, et ∀n ≥ 0, un = 1.

4. n0 = 0, et ∀n ≥ 0, un = n2.

5. n0 = 0, u0 = 1, et ∀n ≥ 0, un+1 = un + n.

Exercice 3.2.3 Soit u = (un)n≥n0
une suite réelle. Soient les propositions

logiques suivantes.

A : u est croissante.

B : u est décroissante.

C : u est monotone.

D : u est constante.

E : u est strictement croissante.

F : u est strictement décroissante.

Indiquer le graphe des implications entre les six propositions.

Exercice 3.2.4 Soit u = (un)n≥0 une suite à termes réels positifs ou nuls.
Pour tout entier naturel n, on pose

Sn =

n∑
k=0

uk

La suite (Sn)n≥0 est-elle monotone ?

3.3 Suites arithmétiques

Définition 3.3.1 Soient p et r deux nombres réels. La suite arithmétique de
premier terme p et de raison r est la suite (uk) définie par récurrence.

u0 = p et pour tout n ≥ 0, un+1 = un + r

Exemples 3.3.2 1. Une suite arithmétique est constante si et seulement si
sa raison vaut 0.

2. Donner les 5 premiers termes de la suite arithmétique de premier terme
0 et de raison 1.

3. Donner les 5 premiers termes de la suite arithmétique de premier terme
3 et de raison 2.

Exercice 3.3.3 Soit (uk) la suite arithmétique de premier terme u0 = p et de
raison r. Soit n un élément de N.

1. Exprimer un en fonction de p, r et n.
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2. Soient m et n deux entiers naturels. Exprimer un en fonction de um, m
et n.

3. Si r = 0, que peut-on dire de la suite (un) ?

Exercice 3.3.4 Soit n un entier naturel non nul.

1. Rappeler la valeur de

n∑
i=0

i. Interpréter cette somme comme la somme des

premiers termes d’une suite arithmétique.

2. Soient p et r deux réels. Soit (uk) la suite arithmétique de premier terme

p et de raison r. Exprimer

n∑
i=0

ui en fonction de p, r et n.

3.4 Suites géométriques

Définition 3.4.1 Soient p et r deux nombres réels. La suite géométrique de
premier terme p et de raison r est la suite (uk) définie par récurrence.

u0 = p et pour tout n ≥ 0, un+1 = r × un
Exercice 3.4.2 Soit (uk) la suite géométrique de premier terme u0 = p et de
raison r. Soit n un élément de N.

1. Exprimer un en fonction de p, r et n.

2. Soient m et n deux entiers naturels. Exprimer un en fonction de um, m
et n.

3. Si r = 1, que peut-on dire de la suite (un) ?

Exercice 3.4.3 Soient r un nombre réel différent de 1 et n un entier naturel
non nul.

1. Montrer que

n−1∑
i=0

ri =
rn − 1

r − 1
. Interpréter cette somme comme la somme

des n premiers termes d’une suite géométrique.

2. Soit p un réel. Soit (un) la suite géométrique de premier terme p et de

raison r. Exprimer

n∑
i=1

ui en fonction de p, r et n.

3.5 Suites de Fibonacci

Soit la suite définie de la manière suivante.

F0 = 0, F1 = 1 et ∀n ≥ 2, Fn = Fn−2 + Fn−1

Cette suite s’appelle suite de Fibonacci. Elle doit son nom à Leonardo Fibonacci
(XII-ème siècle). Ce dernier avait proposé un problème sur la reproduction des
lapins.
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Exercice 3.5.1 Donner les 10 premiers termes de cette suite.

Exercice 3.5.2 Dans un enclos fermé, on dépose un couple de lapereaux nou-
veaux nés. On suppose qu’un couple de lapereaux ne procrée qu’à partir de deux
mois, et chaque début de mois, chaque paire de lapereaux en âge de procréer
engendre un nouveau couple de lapereaux. On suppose que dans la période con-
sidérée, les lapins ne meurent pas. Le nombre de couples de lapins au début du
mois n peut-il être décrit par la suite de Fibonacci ?

Les suites de Fibonacci interviennent dans beaucoup de domaines de la sci-
ence et de la nature : nombre de spirales de pommes de pin, de coeurs de
tournesol ou d’autres fleurs.

La spirale de Fibonacci est aussi présente dans maints endroits de la nature.

Ci-dessous : une spirale de Fibonacci.
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Exercice 3.5.3 Soit P (x) = x2− x− 1. Alors les deux racines de ce polynôme
sont

ϕ =
1 +
√

5

2
et ϕ′ =

1−
√

5

2

1. remarquer que
ϕ2 = ϕ+ 1 et ϕ

′2 = ϕ′ + 1

2. Montrer que pour tout n ∈ N,

Fn =
1√
5

(
ϕn − ϕ

′n
)

Remarque 3.5.4 Le nombre ϕ =
1 +
√

5

2
ci dessus est appelé nombre d’or. Il

intervient en architecture par exemple, ou en peinture, comme une proportion
idéale. Voir aussi l’exercice ci-dessous.

Exercice 3.5.5 Montrer que si le rapport d’une somme de deux longueurs sur
la plus grande de ces longueurs est égal au rapport de la plus grande de ces
longueurs sur la plus petite, alors ce rapport est égal au nombre d’or.

Remarque 3.5.6 Avec une construction assez proche de celle de la spirale de
Fibonacci, mais qui utilise des rectangles dont la proportion entre le grand et
le petit coté est égale au nombre d’or, on construit une autre spirale, appelée
sprirale d’or.

4 Théorie des ensembles

4.1 Ensembles : définition, appartenance et inclusion

On rappelle ci-dessous quelques définitions.
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Définition 4.1.1 • Un ensemble est une collection d’objets deux à deux
distincts, donnés dans un ordre indifférent. Chacun de ces objets est appelé
élément de l’ensemble. On note x ∈ E pour indiquer que x est un élément
de l’ensemble E.

• Si chaque élément d’un ensemble E est également élément de l’ensemble
F on dit que E est inclus dans F , ou que E est une partie ou un
sous-ensemble de F et on note E ⊂ F . On a donc :

E ⊂ F ⇔ (∀x ∈ E, x ∈ F ).

• Il existe par convention un ensemble ne contenant aucun élément, c’est
l’ensemble vide noté ∅.

Remarque 4.1.2 La notion d’inclusion correspond à la notion d’implication
en termes d’appartenance à un ensemble. En effet, E ⊂ F signifie ”x ∈ E =⇒
x ∈ F”.

Pour définir un ensemble, on peut donner la liste de ses éléments. On peut
aussi parfois le décrire, s’il s’agit d’un ensemble d’éléments qui vérifient certaines
propriétés.

Exemples 4.1.3 1. E = {1, 7,
√

3, π}.

2. F = {x ∈ N : ∃n ∈ N , x = 2n}. On peut aussi l’écrire : F = {2n :
n ∈ N}.

Méthode pour montrer qu’un ensemble est vide. Soit E un ensem-
ble. Pour montrer que E est égal à l’ensemble vide, on raisonne souvent par
l’absurde : on suppose qu’il existe un élément x dans E et on montre que c’est
absurde.

On suppose qu’il existe un élément x da ns E.

...

suite d’arguments logiques qui permettent darriver à une proposition logique
fausse.

...

C’est absurde. On en déduit qu’il n’existe pas d’éléments dans E, donc que
E = ∅.

Exercice 4.1.4 Soit E = {x ∈ R∗+, ∀y ∈ R∗+, x < y}. Montrer que E = ∅.

Méthode pour montrer une inclusion. Pour montrer une inclusion
E ⊂ F , on revient souvent à la définition : on montre ∀x ∈ E, x ∈ F .
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Il faut alors rédiger de la manière suivante.

Soit x un élément de E.

...

suite d’arguments logiques qui permettent de conclure que x ∈ F .

...

Donc x ∈ F .
On déduit que tout élément x de E appartient à F , donc que

E ⊂ F

Exercice 4.1.5 Dans R2, on note

A =

{
(x, y) ∈ R2, max(|x|, |y|) ≤ 1√

2

}
B =

{
(x, y) ∈ R2, max(|x|, |y|) ≤ 1

}
C =

{
(x, y) ∈ R2, x2 + y2 ≤ 1

}
D =

{
(x, y) ∈ R2, |x|+ |y| ≤ 1

}
1. Montrer que A ⊂ C. L’ensemble C est-il inclus dans A ?

2. Montrer que C ⊂ B. L’ensemble B est-il inclus dans C ?

3. Montrer que D ⊂ C. L’ensemble C est-il inclus dans D ?

4. Existe-t-il des relations d’inclusion entre A et D ?

5. Compléter le graphe des inclusions entre les quatre ensembles.

Méthodes pour montrer une égalité d’ensembles

Pour montrer que E = F , on montrera souvent que E ⊂ F et que F ⊂ E.
Cela revient donc à démontrer

(x ∈ E =⇒ x ∈ F ) et (x ∈ F =⇒ x ∈ E)

Exercice 4.1.6 Soit E = {x ∈ R+, ∀y ∈ R∗+, x < y}. Montrer que E = {0}.

Parfois, on peut montrer une égalité d’ensembles en utilisant des équivalences.

Pour montrer que E = F , on peut montrer

(x ∈ E) ⇐⇒ (x ∈ F )
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Remarque 4.1.7 Il ne faut pas confondre l’appartenance d’un élément à un
ensemble et l’inclusion d’un ensemble dans un autre. Soit A un ensemble, écrire
x ∈ A signifie que x est l’un des éléments de A. Si B est un autre ensemble,
écrire B ⊂ A signifie que tous les éléments de B sont aussi des éléments de A.

Exercice 4.1.8 Compléter les propositions ci-dessous par ∈ ou ⊂.

1. Z . . .Q

2. 2 . . .Z

3. {2, 5} . . .Z,

4. {2} . . .Z.

Définition 4.1.9 Soit E un ensemble. L’ensemble des parties de E est noté
P(E). Ainsi, pour tout ensemble A,

A ∈ P(E) ⇐⇒ A ⊂ E

Exercice 4.1.10 Écrire P(E) in extenso dans chacun des cas suivants.

1. E = {π}.

2. E = {1, 2, 3}.

3. E = ∅.

Exercice 4.1.11 Soient E un ensemble.

1. L’ensemble P(E) peut-il être vide ?

2. Soit x un élément de E. Cet élément x appartient-il à P(E) ?

4.2 Opérations sur les ensembles

Soient A et B deux ensembles.

A B
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Définition 4.2.1 La réunion de A et B notée A∪B est formée des éléments
qui appartiennent à A ou à B. On a donc

x ∈ A ∪B ⇔ (x ∈ A ou x ∈ B).

A ∪B

Définition 4.2.2 Soient A et B deux ensembles. L’intersection de A et B
notée A ∩B est formée des éléments qui appartiennent à A et à B. On a donc

x ∈ A ∩B ⇔ (x ∈ A et x ∈ B).

A ∩B

A B

Définition 4.2.3 Si A ∩B = ∅ on dit que A et B sont disjoints.

Exercice 4.2.4 Écrire plus simplement les ensembles suivants.

• A ∪ ∅ = . . .

• A ∩ ∅ = . . .

• A ∩A = . . .

• A ∪A = . . .
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Définition 4.2.5 Soit E un ensemble et A une partie de E. Le complémentaire
de A dans E noté {EA (ou parfois Ac) est l’ensemble des éléments de E qui
n’appartiennent pas à A. On a donc

{EA = {x ∈ E, x /∈ A}

Notation. Lorsqu’il n’y aura pas d’ambigüıté sur l’ensemble E dans lequel le
complémentaire est pris, on notera Ac plutôt que {EA.

A

E

Ac = {EA

Exercice 4.2.6 Soient E un ensemble et A une partie de E. On note Ac =
{EA. Écrire plus simplement les ensembles suivants.

Ac ∪A = . . .

Ac ∩A = . . .

Remarque 4.2.7 L’union, l’intersection et le complémentaire sont la traduc-
tion en terme d’appartenance à un ensemble des opérations logiques “et”, “ou”
et “non”.

Proposition 4.2.8 Si A,B,C sont des sous-ensembles de E, on a les égalités
suivantes.

1. Commutativité : A ∪B = B ∪A et A ∩B = B ∩A

2. Associativité : (A∪B)∪C = A∪(B∪C) et (A∩B)∩C = A∩(B∩C)

3. Distributivité 1 : A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

4. Distributivité 2 : A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

5. A ⊂ B ⇐⇒ Bc ⊂ Ac.

6. (Ac)c = A, (A ∩B)c = Ac ∪Bc, et (A ∪B)c = Ac ∩Bc.
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Preuve Ces propriétés se déduisent d’équivalences de propositions logiques
vues dans le chapitre 2.

Par exemple A∪B = B ∪A : dire que x ∈ A∪B signifie que x ∈ A ou
x ∈ B, ce qui est équivalent à x ∈ B ou x ∈ A, c’est-à-dire x ∈ B ∪A . Ainsi,
x ∈ A ∪B si et seulement si x ∈ B ∪A .

On en déduit que A ∪B = B ∪A .

Un autre exemple : la distributivité de ∪ sur ∩ (distributivité 1). On va
utiliser l’équivalence de propositions logiques suivante.

p ou (q et r) ≡ (p ou q) et (p ou r) (1)

Dire que x est un élément de A ∪ (B ∩ C) signifie que

x ∈ A ou x ∈ B ∩ C

c’est équivalent à
x ∈ A ou (x ∈ B et x ∈ C)

c’est-à-dire d’après (1)

(x ∈ A ou x ∈ B) et (x ∈ A ou x ∈ C)

ce qui veut dire que

x ∈ (A ∪B) et x ∈ (A ∪ C)

ce qui s’écrit aussi
x ∈ (A ∪B) ∩ (A ∪ C)

En conclusion, on a montré que

x ∈ A ou x ∈ B ∩ C si et seulement si x ∈ (A ∪B) ∩ (A ∪ C)

Cela montre que A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

En résumé, si p, q, r sont respectivement les propositions x ∈ A, x ∈ B et
x ∈ C, la propriéte 3 correspond à l’équivalence de propositions logiques (1),
c’est-à-dire p ou (q et r) ≡ (p ou q) et (p ou r). �

Exercice 4.2.9 Si p, q, r sont respectivement les propositions x ∈ A, x ∈ B et
x ∈ C, écrire la propriété 4 sous forme d’équivalence de propositions logiques.

Exercice 4.2.10 Démontrer les points 4 et 5 et 6 de cette proposition.

Exercice 4.2.11 En utilisant les points 3 et 6 de la proposition 4.2.8, montrer
le point 4 de cette proposition, c’est-à-dire

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Remarque 4.2.12 Par l’associativité de ∪ et de ∩, on peut noter sans am-
bigüıté sans parenthèses A ∪B ∪ C et A ∩B ∩ C.

Exercice 4.2.13 Soit n un entier naturel non nul et soient A1, . . . , An des

parties d’un ensemble E. On note

1⋃
i=1

Ai = A1 et pour tout k ∈ [[1, n− 1]]

k+1⋃
i=1

Ai =

(
k⋃

i=1

Ai

)
∪Ak+1

De même, on note

1⋂
i=1

Ai = A1 et pour tout k ∈ [[1, n− 1]]

k+1⋂
i=1

Ai =

(
k⋂

i=1

Ai

)
∩Ak+1

Soit x un élément de E.

1. Exprimer la condition pour que x appartienne à

n⋃
i=1

Ai à l’aide d’un quan-

tificateur.

2. Même question pour

n⋂
i=1

Ai.

On peut aussi écrire

n⋃
i=1

Ai = A1 ∩ · · · ∩An et

n⋂
i=1

Ai = A1 ∩ · · · ∩An

Définition 4.2.14 Plus généralement, soit I un ensemble non vide (pas nécessairement
fini). Soient Ai pour i ∈ I des ensembles. On définit⋃

i∈I
Ai = {x, ∃i ∈ I, x ∈ Ai}

et
⋂
i∈I

Ai = {x, ∀i ∈ I, x ∈ Ai}

Si I = ∅, la même définition donne
⋃
i∈∅

Ai = ∅.

On peut aussi parler de
⋂
i∈∅

Ai si le contexte concerne les parties d’un en-

semble E. Dans ce cas, on définit
⋂
i∈I

Ai = {x ∈ E, ∀i ∈ I, x ∈ Ai}, et alors⋂
i∈∅

Ai = E.

Pour définir les Ai comme ci-dessus, on écrit souvent : soit (Ai)i∈I une
famille d’ensembles.
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Exercice 4.2.15 Soient A et (Ai)i∈I des parties d’un ensemble E. Démontrer
les assertions suivantes. Pour chacune d’entre elles, indiquer si la réciproque
est vraie. Justifier la réponse.

1. Si ∀i ∈ I, A ⊂ Ai, alors A ⊂
⋂
i∈I

Ai.

2. Si ∃i ∈ I, A ⊂ Ai, alors A ⊂
⋃
i∈I

Ai.

3. Si ∀i ∈ I, Ai ⊂ A, alors
⋃
i∈I

Ai ⊂ A.

4. Si ∃i ∈ I, Ai ⊂ A, alors
⋂
i∈I

Ai ⊂ A.

Proposition 4.2.16 Soient A et (Ai)i∈I des parties d’un ensemble E. Alors(⋃
i∈I

Ai

)
∩B =

⋃
i∈I

(Ai ∩B) et

(⋂
i∈I

Ai

)
∪B =

⋂
i∈I

(Ai ∪B)

Exercice 4.2.17 Démontrer cette proposition.

Exercice 4.2.18 Montrer les égalités suivantes.

1.
⋃
n∈N

[−n, n] = R.

2.
⋂

n∈N\{0}

[
− 1

n
,

1

n

]
= {0}.

Exercice 4.2.19 Soit E un ensemble. On considère deux familles de parties
de E notées (Ai)i∈I et (Bi)i∈I . On suppose que pour tout i ∈ I, Ai ∪ Bi = E.
Montrer que

E =

(⋃
i∈I

Ai

)
∪

(⋂
i∈I

Bi

)

Définition 4.2.20 Soient A et B deux parties d’un ensemble E. L’ensemble
A \B est l’ensemble formé des éléments de A qui n’appartiennent pas à B. On
a donc A \B = A ∩ ({EB). En particulier, E \A = {EA, E \ ∅ = E
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A \B

B

Exercice 4.2.21 1. Montrer que A \B = A \ (A ∩B).

2. Montrer que A \B = A si et seulement si B \A = B.

4.3 Produit cartésien

Définition 4.3.1 Soient E et F deux ensembles. Le produit cartésien de E
et F noté E×F est l’ensemble des couples (x, y) tels que x est élément de E et
y est élément de F .

Exercice 4.3.2 Soient A = {0, 1} et B = {2, 3, 4}. Déterminer le produit
cartésien A×B.

Exercice 4.3.3 Soient A = [1, 3] et B = [−1, 0] deux intervalles de R. Représenter
graphiquement le produit cartésien A×B.

Exercice 4.3.4 Soit C = {(x, y) ∈ R2 : max(|x|, |y|) ≤ 1}. Faire une figure.
Existe-t-il deux sous-ensembles A et B de R tels que C = A×B ?

Exercice 4.3.5 Soit D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Faire une figure.
Existe-t-il deux sous-ensembles A et B de R tels que D = A×B ?

Exercice 4.3.6 1. Dans R2, décrire l’ensemble D des solutions (x, y) de
l’équation x+ y = 0 en remplissant les trous dans l’égalité suivante.

D = {( . . . , . . . ) , . . . ∈ R}

2. Dans R3, décrire d’une façon similaire l’ensemble P des solutions (x, y, z)de
l’équation x+ y = 0.

3. Dans Z2, décrire l’ensemble Q des solutions (x, y) de x2 + y2 ≤ 1 en
donnant la liste de ses éléments.

Exercice 4.3.7 Soient E, F , G, H quatre ensembles.

1. Montrer que (E × F ) ∩ (G×H) = (E ∩G)× (F ∩H).
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On note maintenant A = (E × F ) ∪ (G×H) et B = (E ∪G)× (F ∪H).

2. L’une des inclusion A ⊂ B ou B ⊂ A est toujours vraie. Déterminer
laquelle et en donner une preuve.

3. Donner un contre-exemple qui montre que l’autre inclusion n’est pas tou-
jours vraie.

Définition 4.3.8 Soit n un entier naturel.

1. Soient E1, . . . , En des ensembles, le produit cartésien P = E1×E2×· · ·×
En est l’ensemble des n-uplets (x1, x2, . . . , xn) où pour tout i ∈ [[1, n]],
xi ∈ Ei. Cela inclut le cas particulier n = 0 où le produit est P = {()}.

2. Soit E un ensemble, on note En = E × · · · × E le produit cartésien de n
copies de E. Pour n = 0, on obtient E0 = {()}.

4.4 Mots

Définition 4.4.1 Soit E un ensemble.

1. Soit k un entier naturel. Un mot de E de longueur k est un k-uplet
d’éléments de E, c’est-à-dire un élément de la forme m = (x1, . . . , xk) ∈
Ek. Il peut aussi s’écrire x1 . . . xk.

2. L’ensemble des mots de E est noté E∗.

3. Le mot vide () se note ε. Il est de longueur nulle.

4. Si x est un mot, sa longueur est notée |x|.

5. L’ensemble E est appelé alphabet. Ses éléments sont appélés symboles ou
lettres.

Exemple 4.4.2 Soit E = {a, b}. Alors a est un mot, b aussi. ab, aab, ababba
sont aussi des mots.

Remarque 4.4.3 Soient E un ensemble et ε = () son mot vide. Il ne faut pas
confondre ε et {} = ∅.

Exercice 4.4.4 Soient E un ensemble et ε son mot vide. Soit A = {ε}. A
est-il un élément de E∗ ? Est-ce un élément de P(E) ? Décrire P(A).

Définition 4.4.5 La concaténation de deux mots x et y est le mot xy obtenu
en mettant bout à bout x et y. Plus précisément, si x = x1, . . . xk est un mot de
longueur k et si y = y1 . . . yl est un mot de longueur l, le concaténé xy de x et
y est le mot x1, . . . xky1 . . . yl de longueur k + l.

Exemple 4.4.6 Soit E = {a, b}. Quel est le concaténé de ab et ba ? Quel est
le concaténé de ε et de baba ?
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4.5 Autres exercices sur les ensembles

Exercice 4.5.1 Soient A, B et C trois ensembles tels que A ⊂ B et B ⊂ C.
Est-il toujours vrai que A ⊂ C ? Justifier.

Exercice 4.5.2 Soient A, B et C trois ensembles tels que A ∪ B = B ∩ C.
Montrer que

A ⊂ B ⊂ C

Exercice 4.5.3 Soient A et B deux parties d’un ensemble E. Répondre aux
questions suivantes, en justifiant bien sûr la réponse.

1. A-t-on toujours P(A ∩B) = P(A) ∩ P(B) ?

2. A-t-on toujours P(A ∪B) = P(A) ∪ P(B) ?

3. Si l’une des propositions logiques ci-dessus n’est pas toujours vraie, peut-
on y remplacer l’égalité par une inclusion pour obtenir une proposition qui
soit toujours vraie ?

Exercice 4.5.4 Soit E un ensemble. Si A et B sont deux sous-ensembles de
E, on définit la différence symétrique de A par B, notée A∆B comme suit.

A∆B = {x ∈ A ∪B, x 6∈ A ∩B}

1. Soit A un sous-ensemble de E. Donner une description simple des quatre
ensembles suivants : A∆A, A∆∅, A∆E et A∆(E \A).

2. Montrer que pour tous les sous-ensembles A et B de E,

A∆B = (A ∩ (E \B)) ∪ (B ∩ (E \A))

3. Montrer que pour tous sous-ensembles A et B de E,

(A∆B = ∅) ⇐⇒ A = B

4. Montrer que pour tous les sous-ensembles A, B et C de E,

(A∆B) ∩ C = (A ∩ C)∆(B ∩ C)

5 Applications

5.1 Premières définitions

Soient E et F des ensembles.

Définition 5.1.1 Une application f allant de E dans F est une correspondance
qui associe à tout élément x ∈ E un unique élément f(x) ∈ F . On note

f : E → F

x ∈ E 7→ f(x) ∈ F.
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Exercice 5.1.2 Dans les exemples suivants, indiquer si f est une application.

1. (définition d’une application par extension) Soient

A = {0, 1, 2, 3}, B = {2, 3, 4, 5, 6}.

On définit f : A→ B par

f(0) = 5, f(1) = 2, f(2) = 3, et f(3) = 4

2. Avec les mêmes A et B, on définit f : A→ B par ∀a ∈ A : f(a) = 2.

3. Avec les mêmes A et B, on définit f : A→ B par

f(0) = 2, f(1) = 2, f(2) = 3, f(3) = {3, 4}

4. (définition d’une application en compréhension)

f : N→ N

définie par ∀n ∈ N : f(n) = 2n.

5.
f : N→ N

définie par ∀n ∈ N : f(n) = n− 1.

Définition 5.1.3 Soient E et F deux ensembles, et soit f une application de
E dans F . On appelle graphe de f le sous-ensemble G de E × F défini par
G = {(x, f(x)), x ∈ E}.

Notation. On écrit ∃! pour ”il existe un unique”.

Proposition 5.1.4 Soient E et F deux ensembles et soit G un sous-ensemble
de E × F . Alors G est le graphe d’une application f si et seulement si

∀x ∈ E,∃!y ∈ F, (x, y) ∈ G

Alors f(x) = y si et seulement si (x, y) ∈ G.

Exercice 5.1.5 Décrire le graphe de chacune des applications de l’exercice 5.1.2.

Définition 5.1.6 Soit f : E → F une application.

• Si x est un élément de E et si y = f(x), alors y est appelé l’image de x
(par f), et x est appelé antécédent de y (par f).

• E est l’ensemble de départ (de f), et F est l’ensemble d’arrivée (de f).

Exercice 5.1.7 Soit f une application de E dans F .
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1. Soit x un élément de E. Cet élément est-il nécessairement l’antécédent
d’un élément y de F ?

2. Soit x un élément de E et y = f(x) ∈ F . L’élément y peut-il avoir d’autres
antécédents que x ?

3. Soit y un élément de F . Cet élément y est-il nécessairement l’image d’un
élément x de E ?

5.2 Image directe, image réciproque

Soit f : E → F une application.

Définition 5.2.1 Pour toute partie A de E,A ⊂ E, on définit l’image (ou bien
l’image directe) f(A) comme

f(A) = {f(a), a ∈ A} = {y ∈ F, ∃a ∈ A, y = f(a)}.

Autrement dit, f(A) est une partie de F formée par les images f(a), où a
parcourt A ⊂ E.
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Exemple 5.2.2 Soit f l’application de E dans F définie dans la figure suivante,
où A = {a, b, c}. Déterminer f(A).

Définition 5.2.3 Pour toute partie B de F,B ⊂ F , l’image réciproque f inv(B)
est définie par

f inv(B) = {a ∈ E : f(a) ∈ B}.

Remarque 5.2.4 La notation généralement utilisée pour f inv est plutôt f−1.
Mais cette notation f−1 pour l’image réciproque peut prêter à confusion car
cette notation f−1 est également utilisée pour désigner l’application réciproque
de f (que nous reverrons un plus tard) dans le cas où f est bijective.

C’est pourquoi nous utilisons dans ce cours cette notation f inv.
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Exemple 5.2.5 Soit f l’application de E dans F définie dans la figure suivante,

où B = {1, 2, 3}. Déterminer f inv(B).

Exercice 5.2.6 Soit f : R→ R une application donnée par f(x) = x2. Déterminer
les ensembles suivants.

1. f({−1, 1}), f({−2, 2}).

2. f([1, 2]), f([−1, 1]) f({1, 3}), f({−1, 3}).

3. f inv([1, 4]), f inv({1, 9}), f inv({2}).
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Exercice 5.2.7 On reprend les exemples 5.2.2 et 5.2.5. On considère donc
l’application f de E dans F définie dans la figure ci-dessous, où A = {a, b, c}
et B = {1, 2, 3}. Déterminer f inv(f(A)) et f(f inv(B)). Que constate-t-on ?

Exercice 5.2.8 Soit f une application de E dans F . Soit A une partie de E
et B une partie de F .

1. Montrer que A ⊂ f inv(f(A)).

2. Montrer que f(f inv(B)) ⊂ B.

5.3 Composition des applications

Soient f : E → F et g : F → G deux applications.
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Définition 5.3.1 L’application composée de g et f , notée g ◦ f , est une appli-
cation allant de E à G selon la formule

g ◦ f : E → G,

x ∈ E 7→ (g ◦ f)(x) = g(f(x)) ∈ G.

Proposition 5.3.2 Soient E, F , G, H quatre ensembles. Soit f (resp. g, h)
une application de E dans F (resp. F dans G, resp G dans H)

f : E → F , g : F → G , h : G→ H ,

Alors (h ◦ g) ◦ f = h ◦ (g ◦ f).

Exercice 5.3.3 Démontrer cette proposition.

Si f et g sont des applications de E dans E, les applications g ◦ f et f ◦ g
sont définies. Ce sont aussi des applications de E dans E, mais il est en général
faux que g ◦ f = f ◦ g.

Exercice 5.3.4 Soient f : Z→ Z et g : Z→ Z des applications données par

f(n) = n2, g(n) = n+ 1

Montrer que f ◦ g 6= g ◦ f .

5.4 Injections, surjections, bijections

Définition 5.4.1 Soient E et F deux ensembles. Soit f une application de E
dans F .

• On dit que f est injective si tout élément de F a au plus un antécédent.
Autrement dit, f est injective si deux éléments distincts ne peuvent pas
avoir la même image, c’est-à-dire si

∀x, y ∈ E, x 6= y =⇒ f(x) 6= f(y)

Le plus souvent, on utilise la contraposée de cette proposition.

f est injective si

∀x, y ∈ E, f(x) = f(y) =⇒ x = y

• On dit que f est surjective si tout élément de F a au moins un antécédent.

• On dit que f est bijective si elle est injective et surjective, c’est-à-dire si
chaque élément de F a un antécedent unique dans E.
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Remarque 5.4.2 La caractérisation de l’injectivité la plus utilisée est la sec-
onde citée ci-dessus, c’est-à-dire :

f est injective si et seulement si

∀x, y ∈ E, f(x) = f(y) =⇒ x = y

Définition 5.4.3 Soit f une application bijective de E dans F . On définit son
application réciproque f−1 de la manière suivante.

Pour tout y ∈ F . Comme f est bijective, il existe un unique élément x ∈ E
tel que f(x) = y. Alors on note f−1(y) = x.

Remarque 5.4.4 Soit f une application de E dans F bijective. Alors f−1 est
l’unique application de F dans E qui vérifie

f−1 ◦ f = IdE et f ◦ f−1 = IdF

Exercice 5.4.5 Écrire les définitions de surjectivité et de bijectivité à l’aide de
quantificateurs.

Pour la bijectivité, on pourra utiliser le symbole ∃! qui signifie ”il existe un
unique”.
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Exercice 5.4.6 Parmi les applications définies par les figures ci-dessous, in-
diquer celles qui sont injectives, celles qui sont surjectives et celles qui sont
bijectives.

Exercice 5.4.7 Parmi les applications suivantes, indiquer celles qui sont in-
jectives, celles qui sont surjectives et celles qui sont bijectives.

1. f1 : R→ R telle que pour tout x ∈ R, f1(x) = x2.

2. f2 : R→ R+ telle que pour tout x ∈ R, f2(x) = x2.

3. f3 : R→ R telle que pour tout x ∈ R, f3(x) = x3.

4. f4 : N→ N telle que pour tout n ∈ N, f4(n) = n+ 1.
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5. f5 : Z→ Z telle que pour tout n ∈ Z, f5(n) = n+ 1.

Exercice 5.4.8 Soit f une application de E dans F . Soit A une partie de E
et B une partie de F .

1. Si f est injective, montrer que A = f inv(f(A)).

2. Si f est surjective, montrer que f(f inv(B)) = B.

Exercice 5.4.9 Soit f une application de E dans F .

1. Montrer que f est injective si et seulement si pour toute partie A de E,

A = f inv(f(A)).

2. Montrer que f est surjective si et seulement si pour toute partie B de E,

f(f inv(B)) = B.

Exercice 5.4.10 Pour tout x de R, on note E(x) sa partie entière. Ainsi, E(x)
est le plus grand entier inférieur ou égal à x. C’est donc l’unique entier tel que

E(x) ≤ x < E(x) + 1

Soit a l’application de Z dans Z qui à n associe 2n, et soit b l’application de Z
dans Z qui à n associe E

(n
2

)
.

1. Montrer que b ◦ a = idZ.

2. Montrer que a est injective et non surjective.

3. Montrer que b est surjective et non injective.

Exercice 5.4.11 Soient E et F deux ensembles. Soit f une application de E
dans F .

1. Montrer que s’il existe une application g de F dans E telle que g◦f = idE,
alors f est injective. Donner un exemple où f vérifie cette propriété et où
f est non surjective.

2. Montrer que s’il existe une application h de F dans E telle que f ◦h = idF ,
alors f est surjective. Donner un exemple où f vérifie cette propriété et
où f est non injective.

3. On suppose qu’il existe des applications g et h de F dans E telles que
g ◦ f = IdE et f ◦ h = IdF . Déduire des questions précédentes que f est
bijective. Montrer que g = h.
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5.5 Opérations sur les applications

Soient E et F deux ensembles. On suppose que F est muni d’une opération.
Alors cette opération permet de définir une opération sur l’ensemble des appli-
cations de E dans F .

On se contente ici de l’exemple où F = R. L’ensemble R des nombres réels
est muni des opérations + et ∗ (mais on note souvent ab au lieu de a∗ b). Soient
f et g deux applications de E dans R. Alors on peut définir les applications
f + g et f ∗ g (qu’on peut noter fg).

f + g : E → R
x 7→ (f + g)(x) = f(x) + g(x)

fg : E → R
x 7→ (fg)(x) = f(x)g(x)

Les fonctions caractéristiques d’ensembles sont des exemples intéressants
d’applications à valeurs dans {0, 1} ⊂ R.

Définition 5.5.1 Soit E un ensemble. Pour toute partie A de E, on définit
l’application χA : E → {0, 1} telle que

∀x ∈ E, χA(x) =

{
1 si x ∈ A
0 si x 6∈ A

Exercice 5.5.2 Soit E un ensemble, et soient A,B deux parties de E.

1. Montrer que χA∩B = χAχB.

2. Montrer que χA∪B = χA + χB − χAχB.

5.6 Applications et familles

Définir un n uplet (x1, . . . , xn) d’éléments d’un ensemble E revient à définir une
application

[[1, n]]→ E

i 7→ xi

De même, si I est un ensemble quelconque, définir une famille xi d’éléments
d’un ensemble E revient à définir une application

I → E

i 7→ xi

Par exemple, nous avons considéré plus haut une famille d’ensemble (Ai)i∈I .
Cela revient à considérer un ensemble E d’ensembles et une application

I → E
i 7→ Ai
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5.7 Bases du dénombrement

Intuitivement, le cardinal d’un ensemble fini est le nombre de ses éléments.
Si l’on compte les éléments d’un ensemble fini E, on établit une bijection

entre cet ensemble et un ensemble [[1, n]]. Alors cet entier n est unique et c’est
le cardinal de E.

L’unicité de n n’est pas très difficile à démontrer, mais pas si évidente qu’il
n’y parâıt. Nous allons en omettre la preuve dans ce cours, ainsi que celle de
quelques autres résultats.

Définition 5.7.1 On dit qu’un ensemble E est fini s’il est vide ou s’il existe un
entier n et une bijection de E dans [[1, n]]. L’entier n est unique. Il est appelé
le cardinal de l’ensemble E. On le note n = Card(E). Le cardinal de ∅ est
Card(∅) = 0.

On dit qu’un ensemble E est infini s’il n’est pas fini.

Théorème 5.7.2 Soient E et F deux ensembles finis de cardinaux respectifs p
et q.

1. p ≤ q si et seulement s’il existe une injection de E dans F .

2. p ≥ q si et seulement s’il existe une surjection de E sur F .

3. p = q si et seulement s’il existe une bijection de E sur F .

4. Si p = q, et si f est une application de E dans F , les propriétés suivantes
sont équivalentes.

(i) f est injective

(ii) f est surjective

(iii) f est bijective.

5. En particulier, si E est un ensemble fini et si f est une application de E
dans E, les propriétés suivantes sont équivalentes.

(i) f est injective

(ii) f est surjective

(iii) f est bijective.

Exemples 5.7.3 Ces résultats ne concernent que les ensembles finis, comme
le montrent les exemples suivants.

1. Soit f l’application de N dans N qui à n associe f(n) = n + 1. Alors f
est injective non surjective.

2. Soit f l’application de N dans N qui à n associe f(n) = E
(n

2

)
(où pour

tout réel x, E(x) désigne la partie entière de x). Alors f est une applica-
tion surjective non injective.
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Corollaire 5.7.4 Si E est un ensemble fini et si F ⊂ E, alors F est fini et
Card(F ) ≤ Card(E). De plus, Card(E) = Card(F ) si et seulement si F = E.

Proposition 5.7.5 Les parties finies de N sont les parties majorées de N.

Théorème 5.7.6 Si E et F sont deux ensembles finis, alors E ∪ F est fini et

Card(E ∪ F ) = Card(E) + Card(F )− Card(E ∩ F ) (2)

Exercice 5.7.7 1. On suppose dans cette question que E et F sont disjoints.
Que devient la formule (2) ? Soient m et n les cardinaux respectifs de E
et F . Il existe donc une bijection f de E dans [[1,m]] et g de F dans
[[1, n]]. Construire une bijection h de E∪F dans [[1,m+n]] et en déduire
le résultat dans ce cas.

2. Montrer que Card(E \ F ) = Card(E)− Card(E ∩ F )

3. En déduire la démonstration du théorème dans le cas général.

Exercice 5.7.8 Soient E1, . . . , En, n ensembles finis deux à deux disjoints.
Montrer que

Card

(
n⋃

i=1

Ei

)
=

n∑
i=1

Card(Ei)

Définition 5.7.9 Soit E un ensemble. Soient E1, . . . , En des parties de E.
On dit que {E1, . . . , En} est un partage de E si les conditions suivantes sont
vérifiées.

(i) La réunion de ces ensembles est égale à E.

(ii) Si i 6= j, alors Ei ∩ Ej = ∅.

De plus, {E1, . . . , En} est une partition de E si c’est un partage et si de plus,
la condition suivante est vérifiée.

(iii) Aucun des ensembles Ei n’est vide.

Ainsi, si E est un ensemble fini et si {E1, . . . , En} est un partage (ou une
partition) de E, alors

Card(E) =

n∑
i=1

Card(Ei)

Exercice 5.7.10 1. Soit E un ensemble fini. Montrer que

Card(E) =
∑
x∈E

1

2. Soit A une partie de E. Soit χA la fonction caractéristique de A (donc
χA est l’application de E dans A qui à x associe 1 si x ∈ A et 0 sinon).
Montrer que

Card(A) =
∑
x∈E

χA(x)
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Théorème 5.7.11 Si E et F sont des ensembles finis, alors E × F est fini et
Card(E × F ) = Card(E) · Card(F ).

Exercice 5.7.12 Dans cet exercice, on souhaite démontrer le théorème précédent.

1. Montrer que

E × F =
⋃
x∈E

({x} × F )

et que les ensembles qui interviennent dans cette réunion sont deux à deux
disjoints.

2. En déduire le résultat.

Corollaire 5.7.13 Soient E1, . . . , Ek k ensembles finis.

Card(E1 × · · · × Ek) =

k∏
i=1

Card(Ei)

Exercice 5.7.14 Démontrer ce résultat par récurrence.

Exercice 5.7.15 Soient E et F deux ensembles finis de cardinaux respectifs
n et p. On note A(E,F ) l’ensemble des applications de E dans F . On va
démontrer que Card (A(E,F )) = pn.

1. On écrit E = {x1, . . . , xn}. Montrer que l’application ϕ suivante est bi-
jective

ϕ : A(E,F )→ Fn = F × · · · × F
f 7→ (f(x1), . . . , f(xn))

2. Montrer que Card (A(E,F )) = pn (on pourra utiliser le corollaire 5.7.13).

5.8 Coefficients binomiaux

Rappelons d’abord la définition de la fonction ”factoriel”.

Définition 5.8.1 Soit n un entier naturel. On appelle ”n factoriel” et note n!
l’entier défini par récurrence de la manière suivante.

1. 0! = 1

2. si n ≥ 1, n! = n · (n− 1)!.

Ainsi, si n > 0, n! =
∏n

i=1 i = 1× 2× · · · × n, et 0! = 1.

Exemples 5.8.2 1! = 1, 2! = 2 et 3! = 6.

Remarque 5.8.3 On peut montrer que si E et F sont des ensembles à n
éléments, le nombre de bijections de E dans F est égal à n!. En particulier, n!
est égal au nombre d’ordres possibles pour n objets.
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Définition 5.8.4 Soient n et k deux éléments de N tels que k ≤ n. Une com-
binaison de k éléments parmi n est une partie à k éléments d’un ensemble

de cardinal n. Le nombre de combinaisons de k éléments parmi n est noté

(
n

k

)
ou Ck

n.

Par exemple si on a 50 personnes, il y a

(
50

10

)
échantillons possibles de 10

personnes.

Si on dispose d’un jeu de 32 cartes, il y a

(
32

8

)
mains possibles différentes de 8

cartes.

Proposition 5.8.5

1. Pour tout n ∈ N on a

(
n

0

)
=

(
n

n

)
= 1.

2. Pour tout n ∈ N et tout k ∈ N tel que 0 ≤ k ≤ n, on a:

(
n

k

)
=

(
n

n− k

)
.

3. Si 0 < k < n, on a :

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

La propriété 5.8.53 est à la base du ”triangle de Pascal” dont les premières lignes
sont représentées sur la figure 1

Exercice 5.8.6 On veut démontrer le point 3 de la proposition 5.8.5, c’est-à-
dire que pour tous entiers n et k tels que 0 < k < n, on a :(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Soit n un entier tel que n ≥ 2, et soit E un ensemble à n éléments. Pour tout
entier l ≤ n, on note P(E)l l’ensemble des parties de E de cardinal l.

1. Soient x un élément de E et soit k un entier tel que 0 < k < n. Montrer
que

P(E)k =
{
A ∪ {x}, A ∈ P (E \ {x})k−1

}
∪ P (E \ {x})k

(pour toute partie A de E, on pourra distinguer les cas où x ∈ A et où
x 6∈ A).

2. En déduire que (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 1: Triangle de Pascal

Corollaire 5.8.7 Si 0 ≤ k ≤ n sont deux entiers naturels, on a :(
n

k

)
=

n!

k!(n− k)!
.

Preuve. Récurrence sur n, en utilisant la proposition 5.8.5 3.

Proposition 5.8.8 (Formule du binôme) Soient x et y deux réels (ou deux
complexes) et n un entier naturel. On a

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k .

Corollaire 5.8.9 Si E est un ensemble fini de cardinal n, le nombre de parties
de E est égal à 2n.

Exercice 5.8.10 1. Développer l’expression f(x) = (x+ 1)n.

2. En déduire que
n∑

k=0

(
n

k

)
= 2n.

3. En déduire que Card(P(E)) = 2n.

Exercice 5.8.11 Soit E un ensemble fini de cardinal n. On note E = {x1, . . . , xn}.

1. Soit l’application f de P(E) dans {0, 1}n qui à toute partie A de E associe
f(A) = (a1, . . . , an) ∈ {0, 1}n tel que pour tout i ∈ [[1, n]], ai = 1 si xi ∈ A
et ai = 0 si xi 6∈ A.
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2. Montrer que f est bijective, et retrouver le cardinal de P(E).

Exercice 5.8.12 Soit E un ensemble fini de cardinal n.
Nous avons déjà vu Si A est une partie de E, nous allons utiliser la fonction

caractéristique χA déjà vue au chapitre 5, paragraphe 5.5. Pour rappel, χA est
l’application de E dans {0, 1} qui à x associe 1 si x ∈ A et 0 sinon.

1. Soit A(E, {0, 1}) l’ensemble des applications de E dans {0, 1}. Montrer
que l’application suivante est bijective.

ϕ : P(E)→ A(E, {0, 1})
A 7→ χA

2. En déduire une autre façon de calculer Card(P(E)) (en utilisant l’exercice
5.7.15).

6 Relations binaires sur un ensemble

6.1 Généralités

Soit E un ensemble. Une relation binaire sur E est une façon de lier certains
éléments de E entre eux. Par exemple, la relation usuelle ≤ sur les nombres
entiers permet de comparer les éléments de Z entre eux.

Définition 6.1.1 Une relation binaire R de E est définie par une partie G de
E × E. Si (x, y) ∈ G, on dit que x est en relation avec y (par R) et on écrit
xRy.

Exemple 6.1.2 Soient E = {a, b, c, d, e} et soit

G = {(a, a), (b, e), (e, b), (c, d), (d, b)} ⊂ E × E

On définit la relation R sur E par

∀x, y ∈ E, xRy ⇐⇒ (x, y) ∈ G

Dans ce cas simple, on peut faire la liste des relations entre éléments. aRa,
bRe, eRb, cRd, dRb.

Certaines relations binaires satisfont des propriétés particulières.

Définition 6.1.3 Soit R une relation binaire sur un ensemble E.

• On dit que R est réflexive si

∀x ∈ E, xRx

• On dit que R est symétrique si

∀x, y ∈ E, xRy =⇒ yRx
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• On dit que R est antisymétrique si

∀x, y ∈ E, (xRy et yRx) =⇒ x = y

• On dit que R est transitive si

∀x, y, z ∈ E, (xRy et yRz) =⇒ xRz

Définition 6.1.4 Une relation binaire R sur un ensemble E est une relation
d’équivalence si elle est réflexive, symétrique et transitive.

Les relations d’équivalence sont très importantes en mathématiques. Nous
nous intéresserons plutôt à d’autres relations binaires : les relations d’ordre. Le
paragraphe suivant est consacré à ces relations d’ordre.

6.2 Relations d’ordre

Définition 6.2.1 1. Une relation binaire � sur un ensemble E est une re-
lation d’ordre si elle est réflexive, antisymétrique et transitive.

2. un ensemble muni d’une relation d’ordre est appelé ensemble ordonné.

3. Une relation d’ordre � sur E est appelée relation d’ordre total si pour
tout (x, y) ∈ E × E, x � y ou y � x.

4. une relation d’ordre partiel est une relation d’ordre qui n’est pas une
relation d’ordre total.

Exemple 6.2.2 La relation d’ordre usuelle sur Z est une relation d’ordre total.

Remarque 6.2.3 Pour illustrer l’intérêt des relations d’ordre, citons l’exemple
suivant.

Soit E un ensemble fini totalement ordonné, écrit sous forme de liste. Si l’on
veut déterminer si un élément se trouve dans cet ensemble, on peut comparer
cet élément avec chacun des éléments de l’ensemble, en parcourant la liste du
début jusqu’à trouver l’élément, ou jusqu’à la fin s’il n’y est pas.

Si la liste donne les éléments de E dans l’ordre croissant (ou décroissant),
alors il existe des algorithmes plus rapides.

Exercice 6.2.4 1. Soit E un ensemble. Montrer que la relation d’inclusion
est une relation d’ordre sur l’ensemble P(E) des parties de E.

2. Montrer que si Card(E) ≥ 2, alors c’est une relation d’ordre partiel.

Exercice 6.2.5 Montrer que la relation de divisibilité est une relation d’ordre
sur N. Est-ce un ordre total ou partiel ?
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6.3 Éléments remarquables dans un ensemble ordonné

Soit E un ensemble muni d’une relation d’ordre ≤. Il s’agit ici de rappeler le
vocabulaire lié à la position d’un élément par rapport à un ensemble : plus
grand, plus petit élément, élément maximal, minimal, majorant, minorant.

Définition 6.3.1 1. Un élément m de E est dit plus petit élément de E
si

∀x ∈ E, m ≤ x

2. Un élément M de E est dit plus grand élément de E si

∀x ∈ E, x ≤M

Un plus petit (resp. plus grand élément) n’existe pas toujours. Mais s’il
existe, il est unique.

Proposition 6.3.2 1. Si m est plus petit élément de E, alors il est le seul
plus petit élément de E. Il est aussi appelé minimum de E et noté min(E).

2. Si M est plus grand élément de E, alors il est le seul plus grand élément
de E. Il est aussi appelé maximum de E et noté max(E).

Exercice 6.3.3 Justifier cette proposition.

Exercice 6.3.4 Soit E un ensemble. On considère l’ensemble P(E) muni de la
relation d’inclusion. P(E) a-t-il un plus petit élément ? Un plus grand élément ?

Exercice 6.3.5 Soit N, muni de la relation d’ordre de divisibilité : x|y s’il
existe z ∈ N tel que xz = y.

1. Montrer que N a un plus petit et un plus grand élément.

2. Montrer que N\{0} a un plus petit élément mais pas de plus grand élément.

3. Montrer que N \ {0, 1} n’a ni plus petit, ni plus grand élément.

On a vu que N, muni de la relation d’ordre ≤ possède la propriété suivante.

Toute partie non vide de N admet un plus petit élément.

On dit que N est bien ordonnée, ou que ≤ est un bon ordre sur N. C’est la
définition suivante.

Définition 6.3.6 Soit E un ensemble muni d’une relation d’ordre �. On dit
que E est bien ordonné si toute partie non vide de E admet un plus petit élément.
Dans ce cas, on dit aussi que � est un bon ordre sur E.

Exemples 6.3.7 1. Pour l’ordre ≤ usuel, ni Z, ni Q ni R ne sont bien
ordonnés.
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2. La relation de divisibilité n’est pas un bon ordre pour N.

Remarque 6.3.8 Cette notion d’ensemble bien ordonné est importante car ce
sont les ensembles qui vérifient le principe de récurrence. Comme dans ce cours,
nous ne faisons que des récurrences sur N muni de sa relation d’ordre naturelle,
nous ne développerons pas cette notion d’ensemble bien ordonné plus avant.

Définition 6.3.9 Soit E un ensemble muni d’un ordre ≤ et soit A une partie
de E.

• On dit qu’un élément M de E est un majorant de A si pour tout x
dans A, x ≤ M . On dit que A est majorée si elle admet au moins un
majorant.

• On dit qu’un élément m de E est un minorant de A si pour tout x dans
A, m ≤ x. On dit que A est minorée si elle admet au moins un minorant.

6.4 Ordre lexicographique sur un produit cartésien

Soit E un ensemble muni d’une relation d’ordre total �. Soient a et b deux
éléments de E. On dit que a ≺ b si a 6= b et a � b. On considère En = E×· · ·×E
le produit cartésien de n copies de E.

On définit l’ordre lexicographique �lex sur En de la manière suivante.
Soient x = (x1, . . . , xn) et y = (y1, . . . , yn) deux éléments distincts de En.

Alors l’ensemble {i ∈ [[1, n]] : xi 6= yi} est non vide. Soit m = min{i : xi 6=
yi}. C’est le plus petit indice i tel que xi 6= yi. On dit que x ≺lex y si xm ≺ ym.

Soient maintenant x = (x1, . . . , xn) et y = (y1, . . . , yn) deux éléments quel-
conques de En. On dit que x �lex y si (x = y ou x ≺lex y).

Proposition 6.4.1 La relation �lex est une relation d’ordre total sur En.

Exercice 6.4.2 Nous allons démontrer la proposition précédente.

1. Montrer que la relation �lex est réflexive.

2. Nous voulons montrer que �lex est antisymétrique. Soient donc x et y
deux éléments de E tels que x �lex y et y �lex x. Montrer que x = y (on
pourra utiliser un raisonnement par l’absurde).

3. Nous voulons montrer que �lex est transitive. Soient donc x y et z trois
éléments de E tels que x �lex y et y �lex z.

a) Vérifier que si x = y ou y = z, alors x �lex z.

b) On suppose maintenant que x 6= y et y 6= z. On pose

x = (x1, . . . , xn) , y = (y1, . . . , yn) , z = (z1, . . . , zn)

Soient m1 = min{i, xi 6= yi} et m2 = min{i, yi 6= zi}.
c) Montrer que pour tout i < min(m1,m2), xi = zi.
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d) Montrer que x �lex z (on distinguera les cas m1 = m2 et m1 6= m2).

4. Les questions précédentes montrent que �lex est une relation d’ordre sur
E. Montrer que c’est un ordre total.

Exercice 6.4.3 Soit E un ensemble muni d’une relation d’ordre total �. Pour
tout entier naturel non nul n, on considère l’ordre lexicographique �n sur En.

Soit n un entier naturel supérieur ou égal à 2. Soient x = (x1, . . . , xn) et
y = (y1, . . . , yn) deux éléments de En.

1. Montrer que si (x1, . . . , xn−1) �n−1 (y1, . . . , yn−1) et xn � yn, alors x �n

y.

2. La réciproque est-elle vraie ?

Remarque 6.4.4 On peut montrer que si � est un bon ordre sur E, alors �lex
est un bon ordre sur En.

6.5 Ordre lexicographique sur les mots

Soit E un ensemble muni d’une relation ordre total. Soient x = x1, . . . xk et
y = y1 . . . yl deux mots de E∗ (l’ensemble des mots dont E est l’alphabet). Donc
ici, la longueur de x est k et celle de y est l. Soit m le plus petit des entiers k et
l. On définit l’ordre lexicographique comme celui utilisé dans un dictionnaire.
On dit que x ≺dico y si

(x1, . . . , xm) ≺lex (y1, . . . , ym) pour l’ordre lexicographique ≺lex sur Em

ou

(x1, . . . , xm) = (y1, . . . , ym) et k < l

On dit que x �dico y si (x = y ou x ≺dico y).
Remarquons que pour tout mot x non vide de E∗, ε ≺ x.

Proposition 6.5.1 La relation �dico ainsi définie est une relation d’ordre to-
tal.

Exercice 6.5.2 Soit E = {a, b} muni de la relation ≤ telle que a < b. Soit �
l’ordre lexicographique sur E obtenu à partir de ≤. Classer les mots suivants
dans l’ordre croissant. aaa, ba, abba, baba.

Exercice 6.5.3 Soit E = {a, b, . . . , z} l’alphabet latin, muni de la relation ≤
telle que a < b < · · · < z. Soit � l’ordre lexicographique sur E obtenu à
partir de ≤. Classer les mots suivants dans l’ordre croissant. ”pierre”, ”part”,
”partition”, ”rage”.

Remarque 6.5.4 Soit N muni de sa relation d’ordre usuelle ≤. Cette relation
d’ordre induit une relation d’ordre ≤dico sur l’ensemble des mots dont N est
l’alphabet. Soit (un)n≥1 la suite définie par u1 = (1) et pour tout n ≥ 1, un+1 =
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0un le concaténé de (0) et de un. Alors u1 = (1), u2 = (0, 1), u3 = (0, 0, 1),
u4 = (0, 0, 0, 1), etc. Alors la suite un est une suite strictement décroissante.
Ainsi, l’ensemble {un, n ∈ N \ {0}} n’a pas de plus petit élément. Donc ≤dico
n’est pas un bon ordre sur l’ensemble des mots dont l’alphabet est N.

6.6 Ordre lexicographique sur les mots tenant compte de
la longueur

Soit E un ensemble muni d’une relation d’ordre total �.
On définit un autre ordre lexicographique �lex∗ sur E∗ de la manière suiv-

ante
Soient x = (x1, . . . , xm) et (y1, . . . , yn) deux éléments distincts de E∗, de

longueurs respectives m et n. On dit que x ≺lex∗ y si m < n ou si m = n et
x ≺lex y pour l’ordre lexicographique dans En.

On dit que x �lex∗ y si (x = y ou x ≺lex y).

Proposition 6.6.1 L’ordre �lex∗ ainsi défini est une relation d’ordre total sur
E∗.

Exercice 6.6.2 Reprendre les exercices 6.5.2 et 6.5.3 avec la relation d’ordre
�lex∗.

Remarque 6.6.3 On peut montrer que si � est un bon ordre sur E, alors �lex∗
est un bon ordre sur E∗.

7 Arithmétique

7.1 Structure de Z
L’ensemble Z des entiers relatifs est muni d’une addition + et d’une multiplica-
tion ·.

L’addition + vérifie les propriétés suivantes.

1. L’addition est une loi de composition interne :

∀(a, b) ∈ Z2, a+ b ∈ Z

2. L’addition est associative :

∀(a, b, c) ∈ Z3, (a+ b) + c = a+ (b+ c)

3. 0 est un élément neutre pour l’addition :

∀a ∈ Z, a+ 0 = 0 + a = a

4. Tout élément de Z admet un opposé pour l’addition :

∀a ∈ Z, a+ (−a) = (−a) + a = 0
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On résume les propriétés 1 à 4 en disant que Z est un groupe pour l’addition.

L’addition a encore une propriété importante.

5. l’addition est commutative :

∀(a, b) ∈ Z2, a+ b = b+ a

On dit que Z est un groupe commutatif (ou abélien) pour l’addition.

La multiplication · vérifie les propriétés suivantes.

1. La multiplication est une loi de composition interne :

∀(a, b) ∈ Z2, a · b ∈ Z

2. La multiplication est associative :

∀(a, b, c) ∈ Z3, (a · b) · c = a · (b · c)

3. 1 est un élément neutre pour la multiplication :

∀a ∈ Z, a · 1 = 1 · a = a

4. La multiplication est distributive sur l’addition :

∀(a, b, c) ∈ Z3, a · (b+ c) = a · b+ a · c

À noter l’ordre des opérations : a · b+ a · c = (a · b) + (a · c) (en l’absence
de parenthèses, les multiplications se font avant les additions).

On dit que Z muni de l’addition et de lamultiplication est un anneau.

Notation. Pour la multiplication, on omet souvent le · : on note souvent ab
pour a · b.

7.2 Division euclidienne

Théorème 7.2.1 Pour tout couple d’entiers naturels (a, b), où b 6= 0, il existe
un unique couple (q, r) d’entiers naturels tels que{

a = bq + r

0 ≤ r < b

Les entiers q et r sont respectivement le quotient et le reste de la division eucli-
dienne de a par b.
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Preuve.
Montrons d’abord l’existence de (q, r). Soit

E = {p ∈ N, bp ≤ a}

Comme 0 ∈ E, cet ensemble est une partie non vide. Pour tout élément p de
E, p ≤ bp ≤ a, donc E est majoré par a. Donc E est une partie non vide et
majorée de N. Il admet donc un plus grand élément qu’on notre q. On pose
alors r = a− bq, qui est positif ou nul puisque q ∈ E et donc bq ≤ a.

Montrons que r < b. Supposons par l’absurde que r ≥ b. Alors r − b ≥ 0,
donc a− bq− b ≥ 0, donc a− (q+ 1)b ≥ 0, ce qui signifie que a ≥ (q+ 1)b, donc
(q + 1)q ∈ E, ce qui contredit le fait que b est le plus grand élément de E.

Reste à montrer l’unicité. Soient q′ et r′ deux entiers naturels tels que{
a = bq′ + r′

0 ≤ r′ < b

Montrons que q = q′ et r = r′. De l’égalité a = bq′+ r′, on tire bq′ = a− r′ ≤ a,
donc q′ ∈ E. Comme q = max(E), on en déduit que q′ ≤ q.

Montrons que q′ = q. Supposons par l’absurde que q 6= q′. Alors q′ < q,
donc q′ ≤ q − 1 puisque ce sont des entiers. On aurait alors

r′ = a− bq′ ≥ a− bq + b = r + b ≥ b

ce qui est contraire à l’hypothèse. On en déduit que q = q′ et donc r = r′. �

7.3 Représentation des entiers en binaire

Proposition 7.3.1 Soit n un entier naturel non nul. Alors on peut écrire n de
façon unique sous la forme

n =

s∑
i=0

ni2
i

où r est un entier naturel, où pour tout i ∈ [[0, s]], ni ∈ {0, 1} et où ns = 1.
On écrira [n0, . . . , ns] sous forme de liste l’écriture binaire de n (on peut

aussi le noter nrnr−1 . . . n02). L’écriture binaire de 0 est [0].

Exercice 7.3.2 Quelle est l’écriture binaire de 21 ?

Exercice 7.3.3 Montrer la proposition précédente par récurrence sur n.

Proposition 7.3.4 La taille t(n) de n est le nombre de chiffres dans l’écriture
binaire de n : t(0) = 1 et si n 6= 0,

t(n) = blog2 nc+ 1

Exercice 7.3.5 Montrons la proposition précédente.

Si t(n) = t, alors on peut écrire n sous la forme n =

t−1∑
i=0

ni2
i où nt−1 = 1.
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1. Montrer que
2t−1 ≤ n ≤ 2t − 1

2. En déduire que t = blog2 nc+ 1.

8 Encore d’autres exercices

8.1 Ensembles

Exercice 8.1.1 Soient A, B et C trois ensembles. Montrer que

(A ∪B ⊂ A ∪ C et A ∩B ⊂ A ∩ C) =⇒ B ⊂ C

Exercice 8.1.2 Soient A, B et C trois ensembles. Montrer que

(C ⊂ A et C ⊂ B) =⇒ C ⊂ A ∩B

Exercice 8.1.3 Soient A et B deux ensembles. Montrer que P(A∩B) = P(A)∩
P(B).

8.2 Applications

Exercice 8.2.1 Soient f et g les applications de R dans R telles que

∀x ∈ R, f(x) = 3x+ 1 et g(x) = x2 − 1

A-t-on f ◦ g = g ◦ f ?

Exercice 8.2.2 Soit f l’application de [0,+∞[ dans [1,+∞[ telle que pour tout
x dans [1,+∞[, f(x) = x2 + 1. L’application f est-elle bijective ?

Exercice 8.2.3 Les applications suivantes sont-elles injectives, surjectives, bi-
jectives ? Donner l’application inverse des applications bijectives.

1. f : N→ N, f(x) = x+ 1.

2. g : Z→ Z, g(x) = x+ 1.

3. h : R2 → R2, h(x, y) = (x+ y, x− y).

4. k : R \ {1} → R, k(x) =
x+ 1

x− 1
.

Exercice 8.2.4 Soient A, B et C trois ensembles. Soient f une application de
A dans B et g une application de B dans A.

1. Montrer que si f et g sont injectives, alors g ◦ f est injective.

2. Montrer que si f et g sont surjectives, alors g ◦ f est surjective.
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8.3 Relations binaires

Exercice 8.3.1 Soit E l’ensemble des applications de R dans R.

1. Si f et g sont deux éléments de E, on dit que fRg si f(0) ≤ g(0). La
relation R est-elle réflexive ? Symétrique ? Antisymétrique ? Transitive ?

2. Même question avec la relation S définie par :

∀f ∈ E, ∀g ∈ E, fSg ⇐⇒ ∀x ∈ R, f(x) ≤ g(x)

Exercice 8.3.2 1. Soient A et B deux éléments de E = P(Z) \ {∅}, on dit
que A � B si

∀a ∈ A, ∀b ∈ B, a ≤ B

Cette relation � est-elle réflexive ? Symétrique ? Antisymétrique ? Tran-
sitive ?

2. Même question si on redéfinit � de la manière suivante.

A � B ⇐⇒ (A = B) ou ∀a ∈ A, ∀b ∈ B, a ≤ B

3. Que se passe-t-il si E = P(Z) ?

8.4 Sommes et suites

Exercice 8.4.1 Soient (un)n∈N et (vn)n∈N telles que pour tout n ∈ N, un ≤ vn.
Montrer que pour tout N ∈ N,

N∑
i=0

un ≤
N∑
i=0

vn

Exercice 8.4.2 1. Que vaut la somme des 10 premiers termes de la suite
arithmétique de premier terme 4 et de raison 3 ?

2. Que vaut la somme des 10 premiers termes de la suite géométrique de
premier terme 4 et de raison 3 ?

Exercice 8.4.3 Soit la suite (un) définie par u0 = 0, u1 = 1 et

∀n ≥ 2, un = 4un − un−1

1. Montrer que pour tout n,

un =
3n − 1

2

2. Soit N un entier naturel. Calculer
∑N

n=1 un.

Revoyons l’exercice suivant (déjà traité).
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Exercice 8.4.4 Pour tout n ∈ N \ {0}, on définit

Sn =
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n(n+ 1)

1. Calculer S1 et S2.

2. Exprimer Sn à l’aide du symbole
∑

.

3. Soit k un entier naturel non nul. Exprimer
1

n
− 1

n+ 1
comme une fraction

(en mettant ces fractions sous le même dénominateur).

4. Montrer que pour tout n ∈ N \ {0},

Sn = 1− 1

n+ 1

Exercice 8.4.5 1. Soit n un entier naturel. Simplifier l’expression

(n+ 1)!− n!

2. Soit n un entier naturel. Exprimer

n∑
k=0

k · k! sans signe
∑

(ni points de

suspension).

Exercice 8.4.6 1. Mettre au même dénominateur l’expression suivante.

1

n− 1
− 2

n
+

1

n+ 1

2. Exprimer la somme suivante sans signe
∑

.

N∑
n=2

1

n3 − n

8.5 Représentations en binaire ou en d’autres bases

Exercice 8.5.1 Soit b un entier supérieur strictement à 1. Soit n un entier
naturel non nul. On dit que nt−1 . . . n1n0 est la représentation en base b de n si

(i) ∀i ∈ [[0, t− 1]], ni ∈ [[0, b− 1]]

(ii) nt−1 6= 0

(iii) n =

t−1∑
i=0

nib
i

On admet que tout entier admet une représentation en base b unique.
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1. Si b = 2, la représentation en base b d’un entier est sa représentation
binaire. Donner la représentation binaire de 30.

2. Prenons b = 4. Soit n l’entier dont la représentation en base 4 est 123.
Quel est cet entier (en base 10) ?

3. Soit n l’entier dont la représentation en base 10 est 54. Écrire n en base
4.

Exercice 8.5.2 1. Soit r10(n) = nt−1...n0 la représentation en base 10 de
n. C’est-à-dire, pour tout i ∈ [[0, t− 1]], ni ∈ [[0, 9]], nt−1 6= 0 et

n =

t−1∑
i=0

ni10i

L’entier t est donc la taille de cette représentation.

2. Montrer que
10t−1 ≤ n ≤ 10t − 1

3. En déduire que
10t−1 ≤ n < 10t

4. En déduire que t = blog10(n)c + 1 (où bxc désigne la partie entière d’un
réel x).

Exercice 8.5.3 Soit f l’application de N dans N qui à n associe
⌊n

2

⌋
(où bxc)

désigne la partie entière de x). Soit n un entier naturel non nul. Soit b(n) =
nt−1 . . . n0 l’écriture binaire de n.

1. Écrire n en fonction des ni en utilisant le signe
∑

.

2. Rappeler la valeur de t en fonction de n.

3. Écrire f(n) en binaire (en fonction des ni).

4. On pose f0 = idN et pour tout entier n supérieur ou égal à 1, fn =
fn−1 ◦ f . Montrer que f t−1(n) = 1 et donc que f t(n) = 0.

Exercice 8.5.4 Soiten E un ensemble et ≤ une relation d’ordre total sur E.
On considère la fonction suivante qui prend en entrées une liste croissante l
d’éléments de E et un élément x de E.

Cherche(l, x) :
Si l = [], sortir Non

n = taille(l)

m =
⌊n

2

⌋
Si l[m] = x, sortir Oui

Sinon :
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Si l[m] > x : l = [l[i] pour i ∈ [[m+ 1, n− 1]]
Si l[m] < x : l = [l[i] pour i ∈ [[0,m− 1]]

Sortir Cherche(l, x)

1. Appliquer cette fonction à l = [0, 2, 3, 5] et x = 4, puis à l = [0, 2, 3, 5] et
x = 3.

2. Que fait cette fonction ?

3. Soit n un entier naturel. On note C(n) le nombre maximal de comparai-
sons que la fonction Cherche effectue pour une liste de taille n. Montrer
que

C(n) ≤ 2 + C
(⌊n

2

⌋)
4. Soit t la taille de l’écriture de n en binaire. Déduire de la question

précédente et de l’exercice 8.5.3 que C(n) ≤ 2t.

5. En déduire que C(n) ≤ 2(blog2(n)c+ 1).

6. Voyez-vous un algorithme simple pour faire la même chose que Cherche,
mais qui fonctionnerait aussi si la suite l n’est pas croissante ? Quel est
l’intérêt de Cherche par rapport à cet algorithme ?
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