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1 Introduction

Pour les études en informatiques, les mathématiques sont indispensables. Ce
cours s’attache a des notions nécessaires pour les informaticiens.

Vous aurez besoin de comprendre comment fonctionnent les algorithmes que
vous rencontrerez, prouver qu’ils se terminent et qu’ils font bien ce que vous
attendez d’eux. Pour certains algorithmes, c’est assez simple, mais cela peut
devenir compliqué et il est nécessaire d’étre a ’aise avec les bases de logique
mathématiques pour ce travail. C’est bien str également nécessaire pour con-
struire vos propres algorithmes. Les différents types de raisonnement sont cru-
ciaux.

Il est également important de comprendre et différencier les objets mathé-
matiques comme les ensembles, leurs éléments, les produits cartésiens, les suites
finies (listes) ou infinies, etc.

En informatique, il faut savoir évaluer le nombre d’opérations nécessaires a
I’exécution d’un algorithme. Cela demande de savoir manipuler des suites, des
sommes, des raisonnements par récurrence. Il est aussi important de pouvoir
interpréter le résultat : est-ce que le temps de calcul sera trop long ? Com-
ment situer l'efficacité de ’algorithme par rapport a un autre qui donnerait le
méme résultat ? C’est pourquoi il est nécessaire de pouvoir comparer certaines
fonctions entre elles.

Une partie du programme porte sur des notions déja vues en mathématiques
générales (cours suivi par chacun d’entre vous), et en mathématiques appro-
fondies (suivi par certains d’entre vous). L’expérience des année précédentes
montre que ces cours ne suffisent pas. C’est pourquoi nous y revenons dans ce
cours de "mathématiques pour l'informatique”, en insistant davantage sur les
exercices.

Au fur et & mesure du cours, le polycopié sera mis a votre disposition sur
moodle. Lors des séances du cours magistral, le polycopié sera utilisé comme
support. Il sera projeté, et complété par des explications orales et écrites au
tableau.

Il vous faudra toutefois prendre des notes. Il ne s’agira pas de recopier le
polycopié, mais d’ajouter les explications supplémentaires. Pour cela, je suggere
de noter sur votre cahier de cours chaque numéro et titre de paragraphe au fur
et a mesure du cours et d’y écrire ce qui est ajouté.

Par exemple, si des remarques sont ajoutées sur le théoreme ”truc”, vous
pouvez écrire :

”"Théoreme truc - 7 et ajouter les commentaires.
Ou bien, pour I’exercice "machin”, qui serait fait en cours, vous pouvez écrire

”Exercice machin” - 7 et ajouter les commentaires.

Ainsi, vous pourrez étudier le cours avec le polycopié et vos notes.

Pour raisonner bien, il est nécessaire de bien organiser ses idées. Pour cela,
il est utile de rédiger rigoureusement. Comme le raisonnement est I'un des



objectifs principaux de ce cours, la rédaction sera prise en compte lors des
évaluations.

Pour rédiger correctement lors des évaluations, il faut bien siir s’entrainer a
le faire auparavant. C’est-a-dire qu’il vous faudra faire un effort sur ce point
durant les séances de travaux dirigés et votre travail personnel.

2 Logique

Les themes suivants ont déja été vus dans le cours de mathématiques générales
au semestre 1.

e Tables de vérité

Quantificateurs
e Raisonnement par contraposée
e Raisonnement par ’absurde

e Raisonnements par récurrence

Dans ce paragraphe, on s’appuie sur ce qui a été vu dans ce cours pour divers
exercices sur les raisonnements.
On commence par quelques rappels.

2.1 Propositions logiques

Nous exprimons nos raisonnements et énoncons nos résultats, transmettons nos
connaissances a ’aide d’énoncés. Les propositions logiques sont les objets
mathématiques qui formalisent ces énoncés.

Définition 2.1.1 Une proposition logique (ou proposition est un énoncé
auquel on peut associer une valeur de vérité : soit vrai soit fauz.

Une proposition logique peut dépendre d’un paramétre (on parle alors de
proposition & paramétre). Dans ce cas, la valeur de vérité associée dépend de la
valeur du paramétre.

Exercice 2.1.2 Parmi les énoncés suivants, lesquels sont des propositions logiques ?

1. 4 plus 5 font 9.

o

1 est plus grand que 2.

8. Le présent énoncé est fauz.

4. La 300¢™€ décimal de 7 est un 7.
5

. La fonction sin : R — R est périodique.



6. x>0.

Remarques 2.1.3 1. L’énoncé "1 est plus grand que 2” peut sembler étrange,
mais c’est bien une proposition logique : c’est une proposition logique
fausse.

2. L’énoncé 7r > 07 est une proposition logique & paramétre. Sa valeur de
vérité dépendra de la valeur de x (dans cette proposition, on sous-entend
que © € R et donc peut étre comparé a 0).

2.2 Opérations logiques

On définit des opérations entre les propositions logiques (aussi appelées vari-
ables propositionnelles). Ces opérations sont appelées connecteurs logiques. Ils
permettent de créer d’autre propositions logiques (appelées formules proposi-
tionnelles).

Ces connecteurs sont les suivants.

1. La négation "non”, qui peut aussi étre notée —

2. La disjonction logique ”ou”, qui peut aussi étre notée V

3. La conjonction logique ”et”, qui peut aussi étre notée A

4. L’implication, notée —

5. L’équivalence, notée <=

Pour simplifier, nous noterons "non” (plutét que —), 7ou” (plutét que V),
"et” (plutét que A).

La valeur de vérité d’une proposition logique obtenue a ’aide de connecteurs
dépend des valeurs de vérité des propositions logiques en jeu. On peut décrire
ces valeurs de vérité a partir de la table de vérité de la proposition logique.

Exercice 2.2.1 Remplir les tables de vérité suivante sans regarder votre cours
de mathématiques générales.
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Exercice 2.2.2 Soient p la proposition 1 +1 = 3 et q la proposition ”10 est
un nombre entier”. Donner la valeur de vérité de chacune des propositions
sutvantes.

1. pouq
2. (non p) ou q
3. (non p) et q
4. petq

5. (non p) ou (non q)
6. p = q

7. (nonp) = ¢q

8. (non p) = (non q)

Remarques 2.2.3 1. Dans le langage courant, “ou” a en général un sens

exclusif (fromage “ou” dessert). En mathématiques, le “ou” est toujours
“inclusif” : si p et q sont toutes les deux vraies, p ou q est vraie.

2. Dire que "p = q est vrai” ne signifie pas que p est vraie mais seulement
que si ’hypothése p est vraie, alors la conclusion q [’est aussi.

3. Noter en particulier que, si p est fausse, p = q est vrai... C’est pour cela
que pour démontrer qu’une implication p = q est vraie, on fait Uhypothese
que p est vraie et on montre que q est alors vraie (puisque si p est fausse
il n’y a rien & démontrer).

4. Lorsqu’une implication p = q est vraie, on l'utilise ensuite dans des
raisonnements :

p est vraie et p = q est vraie donc q est vraie.

Attention: Un abus courant consiste a confondre une formule proposition-
nelle et sa valeur de vérité. Ainsi, dans un texte mathématique,

on écrira souvent ”p = ¢” pour dire que ”p = ¢ est vraie” ‘

Avec cet abus de notation la formule ”p = ¢” se dit aussi parfois “si p, alors

b

q”, ou bien ”p implique q”, ou bien “pour que p soit vraie, il faut que ¢ soit
vraie”, ou encore



e “une condition suffisante pour g est p”,
« ‘s . . ”
e “une condition nécessaire pour p est ¢”.

La formule ”p <= ¢” se dit parfois ”p est équivalente a ¢”, ou encore ”p si
et seulement si ¢”, ou encore ”p est une condition nécessaire et suffisante pour
b
q”, ou encore ”q est une condition nécessaire et suffisante pour p”.

Exemples 2.2.4 1. Soit ABC' un triangle. Quand on dit
ABC est rectangle en A <~ AB? + AC? = BC?
on sous-entend que cette proposition logique est vrate.
2. Soient D et D' deux droites de méme direction. Si on dit
(D=7D') ou (DND' =10)
on sous-entend que cette proposition logique est vraie.

Définition 2.2.5 On dit que deux formules propositionnelles F' et G sont équivalentes
si elles ont méme table de vérité. On peut le noter F = G.

Exercice 2.2.6 Montrer que la formule p = q peut s’exprimer a l'aide des
symboles de conjonction et de disjonction par l'une ou l'autre des phrases suiv-
antes:

e (non p) ouq
e non (p et (non q)).

Exercice 2.2.7 Compléter les exemples importants de formules équivalentes
ci-dessous. Ces résultats sont a connaitre.

non (p et q) est équivalent a ((non p)...(non q)).
e non (p ou q) est équivalent a ((non p)...(non q)).
o (p<q) est équivalent ¢ ((p=q)...(¢=D)).
e (p=q) est équivalent a ((non q)...(non p)) (contraposée)
e (p=q) est équivalent a ((non p)...q)
e p ou q est équivalent & ((non p)...q)
e non (p = q) est équivalent a (p...(non q))
Proposition 2.2.8 (associativité et distributivité des connecteurs logiques)
e pet(qetr) est équivalent a (p et q) et r.

e p ou (q our) est équivalent & (p ou q) ou .



e pet(qour)) est équivalent a (p et q) ou (p et r)
e p ou (q et r) est équivalent a (p ou q) et (p our)

Exercice 2.2.9 Démontrer la proposition précédente.

2

Exercice 2.2.10 Démontrer que le connecteur logique ” <= 7 est associatif.

On pourra pour cela utiliser une table de vérité.

p<=yqllg=r|p<=q = r|p<= (¢ =71

M| | | S S S S
M| | < S S e

B IS esest It IS s I

Exercice 2.2.11 Montrer que le connecteur logique ” =—> ” n’est pas associatif.

Exercice 2.2.12 Soient p, q et r trois propositions. Exprimer la négation des
propriétrés suivantes.

1.p = (¢ = r)
2. p = q = r
3. nonp = q
4. (petq) our
Exercice 2.2.13 Soit x un nombre réel.

1. Compléter le tableau des signes suivant.

T -0 -3 V3  +oo
T —/3
x+\/§

x? —3

2. Compléter

23>0 < (z---—V3)...(z...V3)

Remarque 2.2.14 On a défini plus haut I’équivalence des formes proposition-
nelles : deux formules propositionnelles F et G sont équivalentes si elles ont
méme table de vérité, ce qu’on a écrit F = G.

Cela sigifie aussi que F et G sont équivalentes si et seulement si

F est vraie <= G est vraie



Exercice 2.2.15 Soient F' et G deux formules propositionnelles. Parmi les
affirmations suivantes, indiquer lesquelles sont correctes.

1. Si F = G, alors lorsque F' est vraie, G est vraie et lorsque G est vraie, F
est vraie.

2. On suppose que si F' est vraie, G est vraie et lorsque G est vraie, F' est
vraie. Dans ce cas, F' = G.

3. On suppose que si F' est vraie, G est vraie et lorsque G est fausse, F' est
fausse. Dans ce cas, F = G.

4. On suppose que si F' est fausse, G est fausse et lorsque G est fausse, F
est fausse. Dans ce cas, FF = G.

2.3 Méthodes

Implication Pour démontrer qu’une implication
p = q
est vraie, il faut supposer que p est vraie, et a ’aide de cette hypothese, déduire

q par des opérations logiques.
Il faut rédiger comme suit.

Ecrire que l'on suppose I’hypothese p vraie.

suite d’arguments logiques qui permettent de conclure que ¢ est vraie.

Donc gq.

Exemple 2.3.1 Avant d’aborder l’exemple, on rappelle que si r est un réel
positif et x un réel,
2| <r << —r<z<r

On veut démontrer que si x est un réel tel que |v — 2| < 1 et |z| < 1, alors
r=1.
Ici, Uhypothese (qui dépend du réel x) est :

plx) : |[x—2|<1let|z|]<1

On écrit alors : soit x un réel. On suppose que |v — 2| < 1 et |z| < 1. On
traduit ensuite les hypotheése :

1. comme \x —2| <1, cest que —1 < x —2 < 1 et donc en ajoutant 2 dans
ces négalités 1 < x < 3.



2. comme |x| <1, c’est que —1 < x < 1.
On a donc obtenu : > 1 (parle 1) et x <1 (parle2), doncx =1.
Exercice 2.3.2 Montrer que si x est un réel tel que |z — 3| < 2, alors x > 0.

Exercice 2.3.3 Dans le plan euclidien, on rappelle que si A et B sont deux
points distincts, la médiatrice d’un segment [A, B] est U'ensemble des points
équidistants de A et B (c’est en fait la droite orthogonale o (AB) qui passe par
le milieu de [A, B]).

Soit (A, B, C) un triangle non plat. Soit I un point des médiatrices de [A, B]
et de [A,C]. Montrer que I appartient a la médiatrice de [B,C].
Remarque. Cela montre que les médiatrices d’un triangle non plat sont con-
courantes.

Disjonction On appelle disjonction entre deux propositions p et g la proposition
p ou g. On rappelle que p ou ¢ est équivalente a non p = q.

Pour démontrer p ou ¢, on démontre souvent (non p) = q.

Exercice 2.3.4 Soient a et b deux réels tels que a + b > 1. En wutilisant la

méthode indiquée ci-dessus, montrer que a > 3 ou b > 3

2.4 Quantificateurs

Les expressions ”pour tout” (ou ”quelque soit”) et 7il existe” sont omniprésents
dans les énoncés mathématiques.

En effet, on est amené & manipuler des propositions dépendant d’une variable
parcourant un ensemble (on rappelle ci-dessous la définition d’un ensemble).

Définition 2.4.1 Un ensemble E est une collection d’objets deuzr a deux dis-
tincts appelés éléments de E, donnés dans un ordre indifférent.

On note = € E pour indiquer que = est un élément de I’ensemble E. C’est
dans ce contexte que 'on introduit les quantificateurs ” V7 et 7 3 7.

Définition 2.4.2 1. Le symbole ¥V signifie "quelque soit” (ou "pour tout”).
On Uappelle le quantificateur universel.

2. Le symbole 3 signifie ”il existe”. On l'appelle le quantificateur existentiel.

Soit p(z) une proposition qui dépend d’une variable x appartenant & un
ensemble F.

1. La proposition
Vx € E, p(x)

est vraie si p(z) est vraie pour chaque élément x de E.

10



2. La proposition
Jx e E, p(x)

est vraie s'il existe au moins un élément = de E pour lequel p(z) est vraie.

Exercice 2.4.3 Soient f une fonction définie sur R a valeurs dans R et E
un sous-ensemble de R. Dans chacun des items suivants, indiquer si les deux
propositions ont la méme signification ou non.

1. NxeR, f(x)=0"et VyeR, f(y)=0".
2. Nz eR, f(x)=0"et "z eR, f(z)=0".

3. 7les éléments de E sont tous non nuls” et "les élément de E sont non tous
nuls”.

Exercice 2.4.4 On considere la proposition suivante, ot le quantificateur a été
effacé.
.xeR, 22-3>0

1. Compléter cet énoncé a l'aide d’un quantificateur pour obtenir une propo-
sition logique fausse.

2. Méme question, mais pour obtenir une proposition logique vraie.

Exercice 2.4.5 Soit x un élément de Z. Compléter la proposition suivante afin
d’exprimer que x est impair.

keZ, x=2k+1
Exercice 2.4.6 Soit © un entier. Montrer que x est pair ou © + 1 est pair.

Exercice 2.4.7 Soit x un entier relatif.
Soit p(z) la proposition : "z est impair”.
Soit q(x) la proposition : "x* — 1 est divisible par 8”.

1. Soit k un entier relatif.

(a) Montrer que k(k + 1) est divisible par 2.

(b) Montrer que (2k +1)? = 1+ 4k(k + 1) et que 4k(k + 1) est divisible
par 8.

2. En déduire que p(z) = q(x).

3. En utisant un quantificateur, compléter la phrase suivante pour exprimer
le résultat démontré.

......... (z est impair ) = (8 divise x* — 1)

11



Remarques 2.4.8 1. Les variables sont muettes : Vx, p(z) et Yy, p(y)
désignent la méme proposition.

2. La négation de (Vx € E, p(x)) est (3xz € E, non (p(x))).
3. La négation de (Fx € E, p(x)) est (Vx € E, non (p(x))).

4. Pour montrer que "3z € E,p(x)” est vraie, il suffit de trouver un x par-
ticulier dans Uensemble E pour lequel p(x) est vraie. Pour montrer que
N e E,p(x)” est vraie, un tel exemple ne suffit pas.

Montrer que ~Vx € E,p(x)” est fauz revient a montrer que ‘Iz € E, non p(x)”
est vraie, donc il suffit de trouver un contre-exemple, c’est-a-dire un x
pour lequel p(x) est fauz.

5. En général, (Vx € E,Jy € E,p(z,y)) et 3y € E,Vx € E,p(x,y)) sont
deux propositions différentes.

Exercice 2.4.9 Donner la valeur de vérité de chacune des propositions suivan-
tes.

1. Ve e€eZ,3yeZ,z+y=>0)
2. QyeZNxeZ,x+y=>0)

Exercice 2.4.10 1. Soit f une fonction définie sur R et a valeurs dans R.
En utilisant des quantificateurs, exprimer la condition pour que f soit
paire.

2. De méme, exprimer la condition pour que f soit impaire.

3. Soit f lapplication de R dans R qui a x associe f(x) = 2*+x—1. Calculer
f(1) et f(=1). La fonction f est-elle paire ? Est-elle impaire ¢

2.5 Raisonnement par contraposée

Principe : Soient p et ¢ deux propositions. Supposons que 1’on veuille prouver
que la proposition p = q est vraie. Le principe de contraposition assure qu’il
est équivalent de démontrer que la proposition (non ¢) = (non p) est vraie.

La proposition (non ¢) = (non p) est appelée la contraposée de p = q.

Attention : Ne pas confondre la contraposée de p = ¢, qui est non ¢ = non p,
avec sa réciproque “q = p”. La contraposée est équivalente a la proposition
de départ, ce n’est pas le cas de la réciproque.

Exercice 2.5.1 Donner la contraposée de la phrase suivante. ”S’il pleut, le sol
est mouillé”.
Quelle est sa réciproque ?

12



Exercice 2.5.2 Soit n un entier. Montrer que si n®> — 1 n’est pas divisible par
8, alors n est pair.
Indication. On pourra utiliser le résultat de l'exercice[2.7.7]

Exercice 2.5.3 Soit n un nombre entier. On va montrer que si n® est pair,
alors n est pair en utilisant la contraposée. Compléter le raisonnement suivant.
la contraposée de cette proposition est :

Sin est ..., alors n® est ...

Démontrons cette proposition.
On suppose donc que n est impair. Alors

o k€Z , n=2k+1

Donc

Conclure.

2.6 Raisonnement par ’absurde

Le raisonnement par I’absurde est un principe de démonstration fondé sur le
principe logique du tiers exclu qui affirme que p ou non (p) est toujours vrai.

Principe de la démonstration par ’absurde : Supposons que 1’on veuille
prouver que la proposition p est vraie. On suppose que non p est vraie (donc
que p est fausse), et Pon exhibe une contradiction, en utilisant notre systéme
d’axiomes et/ou les régles de déduction logique. On en conclut alors que
I’hypothese faite sur p est fausse, donc que p est vraie.

Exemple : Montrons par 'absurde que z*+ 222+ 2 — /2 n’admet pas de racine
entiere.

On suppose que la propriété est fausse, c’est-a-dire que z* + 222 + z — /2
admet (au moins une) racine entiere. On note ng une telle racine. On a donc
ng + 2n3 4+ ng — V2 = 0. Donc
V2 = nd 4+ 2n2 +ng. Mais ng est entier, donc nd —2n2 4+ 10ny également. Donc
V/2 est entier, ce qui est impossible.

Par conséquent 23 — 222 + 10z — /2 n’admet pas de racine entiere.

Exercice 2.6.1 Montrer qu’il n'existe pas de couples d’entiers (a,b) tels que
6a + 100 = 1.
Exercice 2.6.2 On reprend l’exercice :

1
”soient a et b deux réels tels que a +b > 1, Montrer que a > = ou b > =",

On a démontré ce résultat en utilisant le fait que p ou q est équivalent a
nonp = q.
Démontrer ce méme résultat par un raisonnement par ’absurde.

13



Exercice 2.6.3 On rappelle que les nombres rationnels x sont les nombres
a
obtenus comme quotients de deur mombres entiers x = — et que les nombres

irrationnels sont les nombres qui ne sont pas rationnels.
1
1. Soit x = ITh Simplifier Uécriture de x.

2. Montrer que la somme d’un nombre rationnel et d’un nombre irrationnel
est irrationnel.

La démonstration par I’absurde est tres souvent utilisée pour montrer une
non-existence, ou I'unicité de quelque chose.

2.7 Raisonnement par récurrence

Le raisonnement par récurrence est un principe de démonstration qui s’applique
lorsque on veut démontrer qu’une certaine propriété P(n), dépendant d’un
entier naturel n, est vraie pour tout entier (exemple : ”montrer que pour tout
n € N, le nombre 10” — 1 est un multiple de 97).

L’ensemble N des entiers naturels possede la propriété remarquable appelé
le principe de récurrence. E Cette propriété est a la base du raisonnement par
récurrence, dont le principe est rappelé ci-dessous.

Soit ng un entier, et P(n) une propriété de ’entier n, définie pour tout n > nyg.
On fait les hypotheses suivantes :

(R1) La propriété P(ng) est vraie.

(R2) Pour tout n > ng, (P(n) = P(n+ 1)) est vraie.

Alors, la propriété P(n) est vraie pour tout n > ng.

Pour un raisonnement par récurrence, rédiger comme suit.

Initialisation. On vérifie que P(ng) est vraie.
Hérédité. Soit n un élément de N tel que n > ng. On veut montrer que
(P(n) = P(n+1)) est vraie. On suppose donc que P(n) est vraie.

suite de déductions logiques pour montrer que P(n + 1) est vraie.

On déduit que P(n + 1) est vraie.
On en déduit que pour tout entier n > ng, P(n) est vraie.

LCette propriété "ne va pas de soi”, et elle est en fait I'un des axiomes utilisés pour la
construction de N. Cette construction axiomatique de N n’est pas au programme du cours.
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Exercice 2.7.1 Montrer que pour tout n € N, le nombre 10" —1 est un multiple
de 9.

Exercice 2.7.2 Démontrer par récurrence que pour tout entier naturel non nul

nn+1)

n, la somme des n premiers entiers non nuls est égale a , c’est-a-dire

ii_ n(n+1)
i=1 o2

Exercice 2.7.3 Soit (u,) est la suite définie par ug = 0 et pour tout entier
naturel n, Up+1 = Un + 20 + 2. Démontrer par récurrence que pour tout entier
naturel n, u, = n(n +1).

2.8 Récurrence ”a deux étages”

Cherchons a résoudre ’exercice suivant.

Exercice 2.8.1 Soit (u,) la suite définie par les données de ug = 2, u; = 3 et
pour tout entier n supérieur ou égal a 1

Un+1 = 3up — 2,1
Montrer que pour tout n € N
Uy, =1+2"

Soit P(n) la propriété : u, =1+ 2"
Initialisation. Vérifions que P(0) est vraie.

On calcule 1 + 2° = 2. Comme ug = 2, on obtient bien : uy = 1 + 29, Par
conséquent, P(0) est vraie.
Hérédité. Soit n un élément de N. On veut montrer que (P(n) = P(n + 1))
est vraie.

On suppose donc que P(n) est vraie. Donc u,, = 2" + 1. Alors :

Un+1 = 3y — 2Up 1
= 3(2” + 1) - 2'U/nfl

Mais que faire de u,—1 7 On a supposé que u,, = 2" + 1, mais rien sur u,_1.
Par ailleurs, sin =0, n —1 = —1 et on n’a pas défini u_;.

On aurait pu aussi vérifier que P(1) est vraie, puis pour I’hérédité, écrire
Soit n un élément de N tel que n > 1. Alors u,_1 sera bien défini, mais dans
le calcul ci-dessus, nous aurons besoin de pouvoir remplacer u,,_; par 2"~ 1 4+ 1.
Nous avons donc besoin de savoir que

P(n) est vraie et P(n — 1) est vraie
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Notre démonstration par récurrence a échoué car nous avons eu besoin
de la valeur de u,_1 en plus de celle de u,,.

Recommencgons.
Pour tout n € N\ {0}, définissons la nouvelle proposition logique

Q(n) = (P(n—1) et P(n))
Initialisation. Vérifions que Q(1) est vraie.
Q1) = (P(0) et P(1))

On calcule 1 +2° = 2. Comme ug = 2, on obtient bien : ug = 1 +2°. Par
conséquent, P(0) est vraie.

On calcule 1 + 2! = 3. Comme u; = 3, on obtient bien : u; = 1+ 2!, Par
conséquent, P(1) est vraie.

On conclut que Q(1) est vraie.
Hérédité. Soit n un élément de N tel que n > 1. On veut montrer que

(Q(n) = Q(n + 1)) est vraie.
On suppose donc que (Q(n) est vraie. Cela veut dire que P(n — 1) et P(n)

sont vraies, donc
Up_q =1+2771
{ U, =1+ 2"
On reprend le calcul ébauché plus haut.
Up+1 = FUp — 2Up—1
=3(2"+1)—2(2" 1 4+ 1)
=6-2""1—2.2""1 1
=(6-2)2"""1+1
=4.2"1 41
=2"t 41

C’est donc que P(n + 1) est vraie. Comme P(n) est vraie, c’est que Q(n + 1)
est vraie. On a donc démontré que 'implication suivante est vraie.

(Qn) = Qn+1))

Conclusion. Pour tout n € N tel que n > 1, Q(n) est vraie. On en déduit que
pour tout n € N, P(n) est vraie. Ainsi, pour tout n € N,

U, = 1+2"

L’exemple précédent montre que parfois, il n’est pas possible de démontrer
P(n) = P(n+ 1), mais par exemple

(P(n—1) et P(n)) = P(n+1)

Alors dans Dinitialisation, on doit vérifier que P(ng) et P(ng + 1) sont vraies.

.....

(P(n—1) et P(n)) = P(n+1)
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2.9 Récurrence forte

Plus généralement, il arrive que pour déduire P(n + 1), on a besoin de savoir
que P(k) est vrai pour un certain nombre d’entiers k inférieurs a n, et que P(n)
ne suffit pas, ou méme que P(n) et P(n — 1) ne suffisent pas.

Dans ce cas, on peut utiliser le principe de récurrence a la nouvelle proposi-
tion

Q(n) : "Vk, 0 <k <n, P(n) est vraie”.

Exercice 2.9.1 Soit (uy,) la suite telle que : ug = 1, uy = 4, us = 4 et telle
que pour tout entier n > 3, U, = 2Up_1 + Up_2 — 2Up_3.

On veut montrer que pour tout n € N, u, = 2™ — (—=1)" + 1.

Pour tout entier naturel n, on appelle P(n) la proposition "u, = 2" —(—1)"+
17 et Q(n) la proposition Nk € [[0,n]], P(n) est vraie”.

1. Vérifier que sin € [[0,1,2]], Q(n) est vraie.
2. Montrer que pour tout entier n tel que n > 2, Q(n) = Q(n+1).
3. Conclure que pour tout n € N, u, = 2™ — (—=1)" + 1.
Exercice 2.9.2 Reprendre l’exercice[2.8.1] en le rédigeant comme ['exercice[2.9.1].

Remarque 2.9.3 Lorsqu’on cherche & évaluer le nombre d’opérations f(n)
que nécessite un algorithme appliqué o des données de taille n (complexité de
Ualgorithme), il arrive souvent que l'on arrive a une équation qui lie f(n) et
f(n/a), ot a est un réel strictement supérieur a 1. Par exemple, plus tard dans
le cours, un calcul de complexité nous ménera a évaluer une fonction f telle que
f(1) =1 et telle que pour tout entier naturel n

f(n) <2+ f(E(n/2))

(ot E(n/2) désigne la partie entiére de n/2). Dans ce cas, il nous faudra ap-
pliquer une récurrence forte.

Exercice 2.9.4 Soit (u,) la suite définie par les données de ug =1, u; = 3 et
pour tout entier n supérieur ou égal a 1

Upt1 = 2Up — Up—1

Calculer les premiers termes de cette suite, puis déterminer u, en fonction de
n.

2.10 Propriétés de N

Pour terminer ce paragraphe, signalons des propriétés importantes de N, liées
au principe de récurrence.

On peut démontrer que le principe de récurrence est équivalente a la pro-
priété suivante.

Toute partie non vide de N admet un plus petit élément.
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Exercice 2.10.1 Soit A une partie non vide de N.

1. Exprimer a laide de quantificateurs le fait que A admet un plus petit
élément.

2. Soit P l’ensemble des éléments de N pairs. Quel est le plus petit élément
de P ?

Citons aussi le théoreme admis suivant.

Théoréme 2.10.2 Toute partie non vide et majorée de N admet un plus grand
élément.

Exercice 2.10.3 Soit A une partie non vide de N.
1. Exprimer a laide de quantificateurs le fait que A est majorée.

2. Exprimer o Uaide de quantificateurs le fait que A admet un plus grand
élément.

3. Donner un exemple d’un tel ensemble.

3 Sommes, suites remarquables

3.1 Manipulation des sommes
On utilise trés souvent la notation . Rappelons le sens de cette notation.

Définition 3.1.1 Soit ng un entier. Soit (up)n>n, une suite d’éléments d’un
ensemble E muni d’une opération +. Par ezemple, FE peut étre égal a R. On

n
définit la suite (Z uk> par récurrence de la maniére suivante.
k=no n>no—1
no—1
Z ugp =0 (c’est la somme vide)
k=ng

no
E U = ’U,nn

k:’ﬂo

et pour tout n > ng + 1,

n n—1
dow=| D w | tun
k:’l’bo k}:’I’LQ

On peut aussi écrire in extenso

n
E :uk:un0+uno+1+"'+un

k:’ﬂo
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Nous avons déja utilisé cette notion, mais il est utile d’insister sur ce theme.
n
Exercice 3.1.2 Soit n un élément de N. Que vaut Z 17
k=1
Exercice 3.1.3 Pour tout n € N, on définit
Sp=0>+1%+-- +n?
1. Calculer Sy, S1 et Ss.
2. Exprimer S, a Uaide du symbole >_.
8. Connaissez vous une expression simple donnant S, en fonction den ?

Proposition 3.1.4 Soient (up)n>n, €t (Vn)n>n, deux suites réelles. Soient o
et B deux réels. Alors pour tout entier n > ng,

Z(aun"_ﬁvn) =« (Z un) + <Z vn)
k=ng k=ng k=ng

Exercice 3.1.5 Démontrer ce résultat par récurrence.
Exercice 3.1.6 Pour tout n € N, on définit
Sp=0:-1+1-24+2-3+3-44+---+nn+1)
1. Calculer Sy, Sy et Ss.

2. Exprimer S, a Uaide du symbole Y .

n n
3. En utilisant des expressions déja calculées de Z k et Z k2, donner une

. k=0 k=0
autre expression pour Sy,.

Proposition 3.1.7 Soit (u,)nen une suite. Pour tout n € N et tout m € N tel

que m <n
n m n

W= wt > w
0 k=0

k= k=m+1

Exercice 3.1.8 Démontrer cette proposition (on pourra utiliser une récurrence
surn).

Exercice 3.1.9 Soit (u,)nen une suite a termes réels. Soit
Sp = (u1 —ug) + (uz —ur) + -+ + (Ung1 — Un)

1. Exprimer Sy, S1 et Sy en fonction des u; concernés.
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2. Ezprimer S, a Uaide du symbole Y .
3. Montrer par récurrence que S, = Up41 — Ug-

4. On veut retrouver ce résultat d’une autre maniére. Montrer que

n+1 n
S-S Y
k=1 k=0
En déduire que S, = Up41 — Ug-
Exercice 3.1.10 Pour tout n € N\ {0}, on définit

S—i-i-i—‘ri—l— +#
1.2 2.3 3-4 n(n+1)

1. Calculer Sy et Ss.

2. Exprimer S, a Uaide du symbole ).

1
8. Soit k un entier naturel non nul. Exprimer — —

comme une fraction
n+1

(en mettant ces fractions sous le méme dénominateur).
4. Montrer que pour tout n € N\ {0},

1

S,=1-—
n+1

3.2 Suites monotones
Définition 3.2.1 Soit u = (up)n>n, une suite réelle.
1. On dit que u est croissante si pour tout n > ng, Up41 > Up.
On dit que u est décroissante si pour tout n > ng, Upt1 < Up.
On dit que u est constante si pour tout n > ng, Upt1 = U
On dit que u est monotone si elle est croissante ou décroissante.

On dit que u est strictement croissante si pour tout n > ng, Up41 > Up.

S

On dit que u est strictement décroissante si pour tout n > ng, Upy1 < Up.

Exercice 3.2.2 Dans chacun des exemples suivants, indiquer si la suite (Upn)n>n,
est monotone, croissante, décroissante, constante.

1
1.ng=1letVn>1, u, =

(-1

2.nyp=1,etVn>1, u, =
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3. nyp=0,etVn >0, u, =1.
4. ng=0, etVn >0, u, =n3.
5 ng=0,ug=1, et Vn >0, upt1 = up +n.

Exercice 3.2.3 Soit u = (up)n>n, une suite réelle. Soient les propositions
logiques suivantes.

A : u est croissante.
: u est décroissante.
: u est monotone.

: u est constante.

H T QO @

:u est strictement croissante.
F : u est strictement décroissante.

Indiquer le graphe des implications entre les six propositions.

Exercice 3.2.4 Soit u = (uy)n>0 une suite 4 termes réels positifs ou nuls.
Pour tout entier naturel n, on pose

n
k=0

La suite (Sp)n>0 est-elle monotone ?

3.3 Suites arithmétiques

Définition 3.3.1 Soient p et r deux nombres réels. La suite arithmétique de
premier terme p et de raison v est la suite (uy) définie par récurrence.

ug=p et pour toutn >0, Upt1 = Uy + 7

Exemples 3.3.2 1. Une suite arithmétique est constante si et seulement si
sa raison vaut 0.

2. Donner les 5 premiers termes de la suite arithmétique de premier terme
0 et de raison 1.

3. Donner les 5 premiers termes de la suite arithmétique de premier terme
3 et de raison 2.

Exercice 3.3.3 Soit (ug) la suite arithmétique de premier terme ug = p et de
raison r. Soit n un élément de N.

1. Exprimer u, en fonction de p, v et n.
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2. Soient m et n deux entiers naturels. Exprimer u, en fonction de u,,, m
et n.

3. Sir =0, que peut-on dire de la suite (u,) ?

Exercice 3.3.4 Soit n un entier naturel non nul.
n
1. Rappeler la valeur de Z i. Interpréter cette somme comme la somme des
i=0
premiers termes d’une suite arithmétique.

2. Soient p et r deux réels. Soit (uy) la suite arithmétique de premier terme
n

p et de raison r. Fxprimer Zui en fonction de p, r et n.
i=0
3.4 Suites géométriques

Définition 3.4.1 Soient p et r deux nombres réels. La suite géométrique de
premier terme p et de raison v est la suite (uy) définie par récurrence.

up =p et pour toutn >0, upy1 =7 X Uy,

Exercice 3.4.2 Soit (ux) la suite géométrique de premier terme ug = p et de
raison r. Soit n un élément de N.

1. Exprimer u, en fonction de p, v et n.

2. Soient m et n deux entiers naturels. Exprimer wu, en fonction de u,, m
et n.

3. Sir =1, que peut-on dire de la suite (u,) ?

Exercice 3.4.3 Soient r un nombre réel différent de 1 et n un entier naturel
non nul.

rn

n—1

1. Montrer que E rt =
i=0

des n premiers termes d’une suite géométrique.

-1
T Interpréter cette somme comme la somme
r—

2. Soit p un réel. Soit (u,) la suite géométrique de premier terme p et de
n

raison r. Ezprimer Zu, en fonction de p, v et n.
i=1
3.5 Suites de Fibonacci
Soit la suite définie de la manieére suivante.
Fo=0 Fi=1etVn>2 F,=F, o+ F,_1

Cette suite s’appelle suite de Fibonacci. Elle doit son nom a Leonardo Fibonacci
(XII-eme siecle). Ce dernier avait proposé un probléme sur la reproduction des
lapins.
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Exercice 3.5.1 Donner les 10 premiers termes de cette suite.

Exercice 3.5.2 Dans un enclos fermé, on dépose un couple de lapereaux nou-
veaux nés. On suppose qu’un couple de lapereaux ne procrée qu’a partir de deux
mois, et chaque début de mois, chaque paire de lapereauzr en dge de procréer
engendre un nouveau couple de lapereauz. On suppose que dans la période con-
sidérée, les lapins ne meurent pas. Le nombre de couples de lapins au début du
mois n peut-il étre décrit par la suite de Fibonacci ?

Les suites de Fibonacci interviennent dans beaucoup de domaines de la sci-
ence et de la nature : nombre de spirales de pommes de pin, de coeurs de
tournesol ou d’autres fleurs.

Aster.

La spirale de Fibonacci est aussi présente dans maints endroits de la nature.

Ci-dessous : une spirale de Fibonacci.
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Exercice 3.5.3 Soit P(z) = 22 — 2 — 1. Alors les deuz racines de ce polynéme

sont
5 et o = 5

1. remarquer que ,
C=p+letp?=¢+1

2. Montrer que pour tout n € N,

ho L
5

1+5

2
intervient en architecture par exemple, ou en peinture, comme une proportion

idéale. Voir aussi ’exercice ci-dessous.

/N

sO”—sO")

Remarque 3.5.4 Le nombre ¢ = ci dessus est appelé nombre d’or. 11

Exercice 3.5.5 Montrer que si le rapport d’une somme de deuz longueurs sur
la plus grande de ces longueurs est égal au rapport de la plus grande de ces
longueurs sur la plus petite, alors ce rapport est égal au nombre d’or.

Remarque 3.5.6 Avec une construction assez proche de celle de la spirale de
Fibonacci, mais qui utilise des rectangles dont la proportion entre le grand et
le petit coté est égale au nombre d’or, on construit une autre spirale, appelée
sprirale d’or.

4 Théorie des ensembles

4.1 Ensembles : définition, appartenance et inclusion

On rappelle ci-dessous quelques définitions.
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Définition 4.1.1 e Un ensemble est une collection d’objets deur a deux
distincts, donnés dans un ordre indifférent. Chacun de ces objets est appelé
élément de l’ensemble. On note x € E pour indiquer que x est un élément
de l’ensemble E.

e Si chaque élément d’un ensemble E est également élément de l’ensemble
F on dit que E est inclus dans F', ou que E est une partie ou un
sous-ensemble de F et on note E C F. On a donc :

ECcFe (NMexeExeF).

e [l existe par convention un ensemble ne contenant aucun élément, c’est
l’ensemble vide noté ().

Remarque 4.1.2 La notion d’inclusion correspond a la notion d’tmplication
en termes d’appartenance a un ensemble. En effet, E C F signifie "t € E —
xe 7.

Pour définir un ensemble, on peut donner la liste de ses éléments. On peut
aussi parfois le décrire, s’il s’agit d’un ensemble d’éléments qui vérifient certaines
propriétés.

Exemples 4.1.3 1. E={1,7,V/3,7}.

22F={rxeN : IneN, x=2"}. On peut aussi ’écrire : F = {2"
n € N}.

Méthode pour montrer qu’un ensemble est vide. Soit F un ensem-
ble. Pour montrer que E est égal a I’ensemble vide, on raisonne souvent par
I’absurde : on suppose qu’il existe un élément z dans E et on montre que c’est
absurde.

On suppose qu’il existe un élément x da ns FE.

suite d’arguments logiques qui permettent darriver a une proposition logique
fausse.

C’est absurde. On en déduit qu’il n’existe pas d’éléments dans F, donc que
E=0.

Exercice 4.1.4 Soit E = {x € R, Yy € R, x <y}. Montrer que E = .

Méthode pour montrer une inclusion. Pour montrer une inclusion
FE C F, on revient souvent a la définition : on montre Vx € E,x € F.

25



Il faut alors rédiger de la maniere suivante.

Soit x un élément de E.

suite d’arguments logiques qui permettent de conclure que x € F.

Donc x € F.
On déduit que tout élément = de E appartient a F', donc que

ECF

Exercice 4.1.5 Dans R2, on note

A={ () € B2 max(el.bl) < 5

B = {(z,y) € R?, max(|z|,|y|) <1}

C={(z,y) eR? 2* +y* <1}

D= {(z,y) €R% |z| + |yl <1}
1. Montrer que A C C. L’ensemble C est-il inclus dans A ?
Montrer que C C B. L’ensemble B est-il inclus dans C ¢
Montrer que D C C. L’ensemble C est-il inclus dans D ?

Eziste-t-il des relations d’inclusion entre A et D ¢

Sro o

Compléter le graphe des inclusions entre les quatre ensembles.

Méthodes pour montrer une égalité d’ensembles

Pour montrer que £ = F', on montrera souvent que £ C F' et que F' C F.
Cela revient donc a démontrer

(rteFE = x€F) e¢ (r€F = x€E)

Exercice 4.1.6 Soit E = {x € Ry, Yy € R}, = <y}. Montrer que E = {0}.

Parfois, on peut montrer une égalité d’ensembles en utilisant des équivalences.

Pour montrer que ' = F, on peut montrer

(r€F) < (z€F)
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Remarque 4.1.7 Il ne faut pas confondre 'appartenance d’un élément d un
ensemble et Uinclusion d’un ensemble dans un autre. Soit A un ensemble, écrire
x € A signifie que x est l'un des éléments de A. Si B est un autre ensemble,
écrire B C A signifie que tous les éléments de B sont aussi des éléments de A.

Exercice 4.1.8 Compléter les propositions ci-dessous par € ou C.

1.7...Q
2.2...7

3. {2,5}...Z,
4. {2}...Z.

Définition 4.1.9 Soit E un ensemble. L’ensemble des parties de E est noté
P(E). Ainsi, pour tout ensemble A,

AeP(E) < ACE
Exercice 4.1.10 Ecrire P(E) in extenso dans chacun des cas suivants.
1. E={n}.
2. E=1{1,2,3}.
3. E=0.
Exercice 4.1.11 Soient E un ensemble.
1. L’ensemble P(E) peut-il étre vide ?

2. Soit x un élément de E. Cet élément x appartient-il 4 P(E) ¢

4.2 Opérations sur les ensembles

Soient A et B deux ensembles.
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Définition 4.2.1 La réunion de A et B notée AU B est formée des éléments
qui appartiennent a A ou a B. On a donc

r€AUB & (x € Aoux € B).

Définition 4.2.2 Soient A et B deuzr ensembles. L’intersection de A et B
notée AN B est formée des éléments qui appartiennent ¢ A et a B. On a donc

r€ANB & (re€AetxeB).

Définition 4.2.3 Si AN B = () on dit que A et B sont disjoints.

Exercice 4.2.4 Ecrire plus simplement les ensembles suivants.
e AUD=...
e ANP=...
e ANA=...
e AUA=...
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Définition 4.2.5 Soit E un ensemble et A une partie de E. Le complémentaire
de A dans E noté CpA (ou parfois A¢) est l'ensemble des éléments de E qui
n’appartiennent pas a A. On a donc

CkA={z€FE, z¢ A}

Notation. Lorsqu’il n’y aura pas d’ambiguité sur 'ensemble E dans lequel le
complémentaire est pris, on notera A°¢ plutét que CpA.

Exercice 4.2.6 Soient E un ensemble et A une partie de E. On note A°¢ =
CgA. Ecrire plus simplement les ensembles suivants.

AUA=...
A°NA=...

Remarque 4.2.7 L’union, l’intersection et le complémentaire sont la traduc-

144 ”

tion en terme d’appartenance a un ensemble des opérations logiques “et”, “ou
et “non”.

Proposition 4.2.8 Si A, B,C sont des sous-ensembles de E, on a les égalités
suivantes.

1. Commutativité : AUB=BUA e ANB=BNA

Associativité :  (AUB)UC = AU(BUC) et (ANB)NC = AN(BNC)
Distributivité 1 : AU(BNC)=(AUB)N(AUC)

Distributivité 2 : AN(BUC)=(ANB)U(ANC)

A C B <<= B°C A"

S & o

(A°) = A, (ANB)¢ = A°UB°®, et (AU B)® = A°N B°.
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Preuve Ces propriétés se déduisent d’équivalences de propositions logiques
vues dans le chapitre

Par exemple AUB=BUA : dire que x € AU B signifie que z € A ou
x € B, ce qui est équivalent & x € B ou x € A, c’est-a-dire x € BUA . Ainsi,
x € AU B si et seulement si x € BU A

On en déduit quer AUB=BUA

Un autre exemple : la distributivité de U sur N (distributivité 1). On va
utiliser I’équivalence de propositions logiques suivante.

pou(getr)=(pouq)et(pour) (1)
Dire que z est un élément de A U (B N C) signifie que
r€e€A ou zeBNC

c’est équivalent a
x€A ou (xeB e zx€()

c’est-a-dire d’apres
(reA ou z€B) et (x€A ou z€()
ce qui veut dire que
xe€(AUB) et ze(AUQ)

ce qui 8’écrit aussi

x€e(AUB)N(AUC)
En conclusion, on a montré que

x€A ou x€BNC sietseulementsi € (AUB)N(AUCQC)

Cela montre que AU (BNC)=(AUB)N(AUC).

En résumé, si p,q,r sont respectivement les propositions z € A, x € B et
x € C, la propriéte 3 correspond & ’équivalence de propositions logiques (1)),
c’est-a-dire p ou (g et ) = (pougq) et (pour). O

Exercice 4.2.9 Si p,q,r sont respectivement les propositions x € A, x € B et
x € C, écrire la propriété 4 sous forme d’équivalence de propositions logiques.

Exercice 4.2.10 Démontrer les points 4 et 5 et 6 de cette proposition.

Exercice 4.2.11 FEn utilisant les points 3 et 6 de la proposition|4.2.8, montrer
le point 4 de cette proposition, c’est-a-dire

AN(BUC)=(ANB)U(ANC)
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Remarque 4.2.12 Par l’associativité de U et de N, on peut noter sans am-
biguité sans parentheses AUBUC et ANBNC.

Exercice 4.2.13 Soit n un entier naturel non nul et soient Ai,..., A, des
1

parties d’un ensemble E. On note U A; = Ay et pour tout k € [[1,n — 1]]
i=1

k+1 k
U A = ( Ai) U Ak
i=1 i=1

1
De méme, on note ﬂ A; = Ay et pour tout k € [[1,n — 1]
i=1

kt1 k
m Ay = ( Ai) N Ag+1
i=1 i=1

Soit x un élément de E.
n

1. Exprimer la condition pour que x appartienne a U A; a laide d’un quan-
i=1
tificateur.

n
2. Méme question pour ﬂ A;.
i=1

On peut aussi écrire

i=1

i=1
Définition 4.2.14 Plus généralement, soit I un ensemble non vide (pas nécessairement
fini). Soient A; pour i € I des ensembles. On définit

UAi:{x, el e A}
iel
et ﬂAiz{x, Viel, e A}
iel
Si I =0, la méme définition donne U A; =10.
i€
On peut aussi parler de ﬂ A; si le contexte concerne les parties d’un en-
i€l
semble E. Dans ce cas, on définit mAi ={zeE, Viel, xeA;}, et alors

i€l
ﬂ&:E
€0
Pour définir les A; comme ci-dessus, on écrit souvent : soit (A;)icr une
famille d’ensembles.
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Exercice 4.2.15 Soient A et (A;)icr des parties d’un ensemble E. Démontrer
les assertions suivantes. Pour chacune d’entre elles, indiquer si la réciproque
est vraie. Justifier la réponse.

1. Siviel, ACA;, alors AC ﬂAi.
iel

2.8 Jiel, AC A;, alors AC UAi.
1€l

8. Siviel, A; C A, alors UA@ C A.
i€l

4. Sidiel, A; C A, alors ﬂAi C A.
el

Proposition 4.2.16 Soient A et (A;)ics des parties d’un ensemble E. Alors
il il il iel
Exercice 4.2.17 Démontrer cette proposition.

Exercice 4.2.18 Montrer les égalités suivantes.

1. U [-n,n] =R.

neN
11
2. N {—} = {0}.
nn
neN\{0}

Exercice 4.2.19 Soit E un ensemble. On considere deuz familles de parties
de E notées (A;)icr et (B;)icr- On suppose que pour tout it € I, A; UB; = E.

MO’mf? (&4 que

Définition 4.2.20 Soient A et B deuz parties d’un ensemble E. L’ensemble
A\ B est l'ensemble formé des éléments de A qui n’appartiennent pas ¢ B. On

a donc A\ B= AN (CgB). En particulier, E\ A=CgA, E\Q)=F
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Exercice 4.2.21 1. Montrer que A\ B= A\ (AN B).
2. Montrer que A\ B = A si et seulement si B\ A= B.

4.3 Produit cartésien

Définition 4.3.1 Soient E et F' deux ensembles. Le produit cartésien de F
et F' noté E x F est l’ensemble des couples (x,y) tels que x est élément de E et
y est élément de F.

Exercice 4.3.2 Soient A = {0,1} et B = {2,3,4}. Déterminer le produit
cartésien A x B.

Exercice 4.3.3 Soient A = [1,3] et B = [—1,0] deux intervalles de R. Représenter
graphiquement le produit cartésien A X B.

Exercice 4.3.4 Soit C = {(x,y) € R? : max(|z], |y|) < 1}. Faire une figure.
Existe-t-il deux sous-ensembles A et B de R tels queC=A X B ?

Exercice 4.3.5 Soit D = {(z,y) € R* : 2% +y?> < 1}. Faire une figure.
Existe-t-il deux sous-ensembles A et B de R tels que D = A X B ¢

Exercice 4.3.6 1. Dans R?, décrire l’ensemble D des solutions (x,y) de
Uéquation x 4+ y = 0 en remplissant les trous dans ’égalité suivante.

D={(...,...), ... €R}

2. Dans R3, décrire d’une facon similaire ’ensemble P des solutions (z,vy, 2)de
l’équation x +y = 0.

3. Dans 72, décrire l’ensemble Q des solutions (x,y) de x®> + y?> < 1 en
donnant la liste de ses éléments.

Exercice 4.3.7 Soient E, F, G, H quatre ensembles.
1. Montrer que (Ex F)N(Gx H)=(ENG) x (FNH).
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On note maintenant A= (Ex F)U(G x H) et B=(FEUG) x (FUH).

2. L’une des inclusion A C B ou B C A est toujours vraie. Déterminer
laquelle et en donner une preuve.

3. Donner un contre-exemple qui montre que l’autre inclusion n’est pas tou-
jours vraie.

Définition 4.3.8 Soit n un entier naturel.

1. Soient Eq, ..., E, des ensembles, le produit cartésien P = Fy X E5 X -+ - X
E, est Uensemble des n-uplets (x1,2a,...,x,) ol pour tout i € [1,n],
x; € E;. Cela inclut le cas particulier n =0 ou le produit est P = {()}.

2. Soit E un ensemble, on note E™ = E X --- X E le produit cartésien de n
copies de E. Pour n =0, on obtient EY = {()}.

4.4 Mots
Définition 4.4.1 Soit £ un ensemble.

1. Soit k un entier naturel. Un mot de E de longueur k est un k-uplet
d’éléments de E, c’est-a-dire un élément de la forme m = (x1,...,xp) €
Ek. 1l peut aussi s’écrire Ty . ..Tk.

L’ensemble des mots de E est noté E*.
Le mot vide () se note €. Il est de longueur nulle.

Si x est un mot, sa longueur est notée |x|.

AR NI

L’ensemble E est appelé alphabet. Ses éléments sont appélés symboles ou
lettres.

Exemple 4.4.2 Soit E = {a,b}. Alors a est un mot, b aussi. ab, aab, ababba
sont aussi des mots.

Remarque 4.4.3 Soient E un ensemble et € = () son mot vide. Il ne faut pas
confondre ¢ et {} = 0.

Exercice 4.4.4 Soient E un ensemble et € son mot vide. Soit A = {e}. A
est-il un élément de E* ? Est-ce un élément de P(E) ¢ Décrire P(A).

Définition 4.4.5 La concaténation de deux mots x et y est le mot xy obtenu
en mettant bout a bout x et y. Plus précisément, si x = x1,...xT est un mot de
longueur k et si y = y1 ...y, est un mot de longueur 1, le concaténé xy de x et
y est le mot x1,...xEy1 ...y de longueur k + 1.

Exemple 4.4.6 Soit E = {a,b}. Quel est le concaténé de ab et ba ? Quel est
le concaténé de € et de baba ?
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4.5 Autres exercices sur les ensembles

Exercice 4.5.1 Soient A, B et C trois ensembles tels que A C B et B C C.
Est-il toujours vrai que A C C' 2 Justifier.

Exercice 4.5.2 Soient A, B et C trois ensembles tels que AUB = BN C.

Montrer que
AcBccC

Exercice 4.5.3 Soient A et B deux parties d’un ensemble E. Répondre aux
questions suivantes, en justifiant bien sur la réponse.

1. A-t-on toujours P(ANB) =P(A)NP(B) ?
2. A-t-on toujours P(AUB) =P(A)UP(B) ¢

8. Si l'une des propositions logiques ci-dessus n’est pas toujours vraie, peut-
on y remplacer l’égalité par une inclusion pour obtenir une proposition qui
soit toujours vraie ?

Exercice 4.5.4 Soit E un ensemble. Si A et B sont deux sous-ensembles de
E, on définit la différence symétrique de A par B, notée AAB comme suit.

AAB={z € AUB, ¢ ANB}

1. Soit A un sous-ensemble de E. Donner une description simple des quatre
ensembles suivants : AAA, AND, AAE et AA(E\ A).

2. Montrer que pour tous les sous-ensembles A et B de F,

AAB = (AN(E\ B))U(BN(E\ A))

8. Montrer que pour tous sous-ensembles A et B de E,

(AAB=0) <= A=B

4. Montrer que pour tous les sous-ensembles A, B et C de E,

(AAB)NC = (ANC)A(BNC)

5 Applications

5.1 Premieres définitions

Soient E et F' des ensembles.

Définition 5.1.1 Une application f allant de E dans F' est une correspondance
qui associe  tout élément x € E un unique élément f(x) € F. On note

f: E — F
xe€E — f(x)eF.
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Exercice 5.1.2 Dans les exemples suivants, indiquer si [ est une application.

1. (définition d’une application par extension) Soient

A=1{0,1,2,3}, B=1{23,4,56}.

On définit f : A — B par

f0)=5,f(1)=2,f(2) =3, et f(3) =4
2. Avec les mémes A et B, on définit f: A — B parVa € A: f(a) = 2.

3. Avec les mémes A et B, on définit f : A — B par

f0)=2,f(1)=2,f(2) =3,f(3) ={3,4}
4. (définition d’une application en compréhension)
f :N—=N

définie par ¥n € N : f(n) = 2n.

f:NSN
définie par ¥n € N : f(n) =n—1.

Définition 5.1.3 Soient E et F' deux ensembles, et soit f une application de
E dans F. On appelle graphe de f le sous-ensemble G de E x F défini par

G=A{(z f(x), v € E}.
Notation. On écrit 3! pour ”il existe un unique”.

Proposition 5.1.4 Soient E et F deux ensembles et soit G un sous-ensemble
de E x F. Alors G est le graphe d’une application f si et seulement si

Vee E,yeF, (x,y) €G
Alors f(x) =y si et seulement si (x,y) € G.
Exercice 5.1.5 Décrire le graphe de chacune des applications de l’exercicel5.1.2.

Définition 5.1.6 Soit f : E — F une application.

o Six est un élément de E et si y = f(x), alors y est appelé 'image de x
(par f), et x est appelé antécédent de y (par f).

e F est 'ensemble de départ (de f), et F est I'ensemble d’arrivée (de f).

Exercice 5.1.7 Soit f une application de E dans F.
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1. Soit x un élément de E. Cet élément est-il nécessairement 'antécédent
d’un élément y de F ¢

2. Soit x un élément de E ety = f(x) € F. L’élément y peut-il avoir d’autres
antécédents que x ?

8. Soit y un élément de F. Cet élément y est-il nécessairement l'image d’un
élément © de E ?
5.2 Image directe, image réciproque
Soit f : E — F une application.

Définition 5.2.1 Pour toute partie A de E; A C E, on définit I'image (ou bien
Iimage directe) f(A) comme

f(A) ={f(a), ac A} ={y € F, Jac A,y = f(a)}.

Autrement dit, f(A) est une partie de F formée par les images f(a), ou a
parcourt A C E.
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Exemple 5.2.2 Soit f l’application de E dans F définie dans la figure suivante,
ou A = {a,b,c}. Déterminer f(A).

& ¥ x 1
er K2
Cr ¥ 3
A N2
2 x L
b X €

4 7

Définition 5.2.3 Pour toute partie B de F, B C F, 'image réciproque f"(B)
est définie par

"By ={a € E: f(a) € B}.

Remarque 5.2.4 La notation généralement utilisée pour fY*V est plutét f~1.
Mais cette notation f~' pour limage réciproque peut préter & confusion car
cette notation f~! est également utilisée pour désigner lapplication réciproque
de f (que nous reverrons un plus tard) dans le cas ou f est bijective.

C’est pourquoi nous utilisons dans ce cours cette notation f'™V.
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Exemple 5.2.5 Soit f lapplication de E dans F' définie dans la figure suivante,
ou B ={1,2,3}. Déterminer f""U(B).

a¥ x 1
@—x K2
(@S ¥ 2
dx o
2 x

x Lo

4 7

Exercice 5.2.6 Soit f : R — R une application donnée par f(x) = 2%. Déterminer
les ensembles suivants.

Lof{-1,1}), f({~2.2}).
2. (L2, F(-1,1]) F({1,3}), F({~1.3}).
3. f([1,4)), FU({1,9}), FU{2)).
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Exercice 5.2.7 On reprend les exemples et [5.2.5. On considére donc
Uapplication f de E dans F définie dans la figure ci-dessous, ot A = {a,b,c}

et B ={1,2,3}. Déterminer f'(f(A)) et f(f™(B)). Que constate-t-on ?

i x 1
b x2
Cx ¥ 3
i »
2 r Lo
a r €

gf

Exercice 5.2.8 Soit f une application de E dans F. Soit A une partie de
et B une partie de F'.

1. Montrer que A C fV(f(A)).

2. Montrer que f(f"(B)) C B.

5.3 Composition des applications

Soient f: E — F et g: F — G deux applications.
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Définition 5.3.1 L’application composée de g et f, notée go f, est une appli-
cation allant de E a G selon la formule

gof: E — G,
reE — (gof)(x)=yg(f(z)) €.

Proposition 5.3.2 Soient E, F, G, H quatre ensembles. Soit f (resp. g, h)
une application de E dans F (resp. F dans G, resp G dans H )

f+E—-F , g: F-G , h:G—-H |,
Alors (hog)o f=ho(gof).
Exercice 5.3.3 Démontrer cette proposition.

Si f et g sont des applications de E dans F, les applications go f et fog
sont définies. Ce sont aussi des applications de F dans F, mais il est en général
faux que go f = fog.

Exercice 5.3.4 Soient f:7Z — Z et g : Z — 7Z des applications données par
f(n)=n? gn)=n+1

Montrer que fog#go f.

5.4 Injections, surjections, bijections

Définition 5.4.1 Soient E et F' deuzr ensembles. Soit f une application de F
dans F'.

e On dit que f est injective si tout élément de F' a au plus un antécédent.
Autrement dit, f est injective si deur éléments distincts ne peuvent pas
avoir la méme image, c’est-a-dire si

Vo,y e B, x £y = f(z) # f(y)
Le plus souvent, on utilise la contraposée de cette proposition.
f est injective si
Ve,y € E, f(z)=fly) = v =y
e On dit que f est surjective si tout élément de F' a au moins un antécédent.

e On dit que [ est bijective si elle est injective et surjective, c’est-a-dire si
chaque élément de F a un antécedent unique dans E.
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Remarque 5.4.2 La caractérisation de l'injectivité la plus utilisée est la sec-
onde citée ci-dessus, c’est-a-dire :

f est injective si et seulement si

Ve,y e E, f(z)=fy) = x=y

Définition 5.4.3 Soit f une application bijective de E dans F. On définit son
application réciproque f~! de la maniére suivante.

Pour tout y € F. Comme [ est bijective, il existe un unique élément x € E
tel que f(x) =1y. Alors on note f~1(y) = x.

Remarque 5.4.4 Soit f une application de E dans F bijective. Alors f~1 est
lunique application de F' dans E qui vérifie

flof=1Idg et fof™'=Idp

Exercice 5.4.5 Ecrire les définitions de surjectivité et de bijectivité a l'aide de
quantificateurs.

Pour la bijectivité, on pourra utiliser le symbole 3! qui signifie ”il existe un
unique”.
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Exercice 5.4.6 Parmi les applications définies par les figures ci-dessous, in-
diquer celles qui sont injectives, celles qui sont surjectives et celles qui sont

bijectives.

ax x1 ax x1
b-x x2 x x2
C
* 3 I35 3
dx . e o
A
" 5 B *$
&1\ x & %X 'Y
gr X2
x&
@ X1
! x 1 N
&
¥ - b v2
Cx
X3 <X ¥}
dx
ex =G 1% < &
X9 <
tx . .

Exercice 5.4.7 Parmi les applications suivantes, indiquer celles qui sont in-
jectives, celles qui sont surjectives et celles qui sont bijectives.

1. fi
2. f2
3. f3
4 Ja

: R — R telle que pour tout x € R, fi(x) = a*.
: R — RT telle que pour tout v € R, fo(x) = 22.

: R — R telle que pour tout x € R, f3(x) = a°.

2

2

3

: N — N telle que pour tout n € N, fq(n) =n+ 1.
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5. fs + Z — 7 telle que pour tout n € Z, fs(n) =n+ 1.

Exercice 5.4.8 Soit f une application de E dans F. Soit A une partie de E
et B une partie de F'.

1. Si f est injective, montrer que A = fIV(f(A)).
2. Si f est surjective, montrer que f(f”w(B)) = B.
Exercice 5.4.9 Soit f une application de E dans F'.

1. Montrer que f est injective si et seulement si pour toute partie A de F,

A= fIV(f(A)).

2. Montrer que f est surjective si et seulement si pour toute partie B de E,

F(f7™(B)) = B.

Exercice 5.4.10 Pour tout x de R, on note E(x) sa partie entiére. Ainsi, E(x)
est le plus grand entier inférieur ou égal a x. C’est donc l'unique entier tel que

Ez)<z< E(z)+1

Soit a application de Z dans Z qui a n associe 2n, et soit b ['application de Z
dans Z qui a n associe E (g)

1. Montrer que bo a = idyz.
2. Montrer que a est injective et mon surjective.

8. Montrer que b est surjective et non injective.

Exercice 5.4.11 Soient E et F deux ensembles. Soit [ une application de E
dans F'.

1. Montrer que s’il existe une application g de F' dans E telle que go f = idg,
alors f est injective. Donner un exemple ou f vérifie cette propriété et ou
f est non surjective.

2. Montrer que s’il existe une application h de F' dans E telle que foh = idp,
alors [ est surjective. Donner un exemple ou [ vérifie cette propriété et
ot f est non injective.

3. On suppose qu’il existe des applications g et h de F dans E telles que
gof=1Idg et foh =1dr. Déduire des questions précédentes que f est
bijective. Montrer que g = h.
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5.5 Opérations sur les applications

Soient F et F' deux ensembles. On suppose que F est muni d’une opération.
Alors cette opération permet de définir une opération sur ’ensemble des appli-
cations de F dans F'.

On se contente ici de 'exemple ou F' = R. L’ensemble R des nombres réels
est muni des opérations + et * (mais on note souvent ab au lieu de a*b). Soient
f et g deux applications de F dans R. Alors on peut définir les applications

f+get fxg (quon peut noter fg).

f+g: E—-R fg : E—-R
= (f+9)(z) = f(z)+g(z) = (f9)(z) = f(z)g(x)

Les fonctions caractéristiques d’ensembles sont des exemples intéressants
d’applications & valeurs dans {0,1} C R.

Définition 5.5.1 Soit E un ensemble. Pour toute partie A de E, on définit
Uapplication xa : E — {0,1} telle que

lsizeA

Exercice 5.5.2 Soit E un ensemble, et soient A, B deux parties de E.
1. Montrer que XAnB = XAXB-

2. Montrer que XAuB = XA + XB — XAXB-

5.6 Applications et familles

Définir un n uplet (z1,...,x,) d’éléments d’un ensemble F revient & définir une
application
[Ln]] = E
L= T

De méme, si I est un ensemble quelconque, définir une famille z; d’éléments
d’un ensemble E revient a définir une application

I—-F
i*—)l’i

Par exemple, nous avons considéré plus haut une famille d’ensemble (A;);c;.
Cela revient a considérer un ensemble £ d’ensembles et une application

I1—=¢&
i'—>Ai
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5.7 Bases du dénombrement

Intuitivement, le cardinal d’un ensemble fini est le nombre de ses éléments.

Si 'on compte les éléments d’un ensemble fini ', on établit une bijection
entre cet ensemble et un ensemble [[1,n]]. Alors cet entier n est unique et c’est
le cardinal de E.

L’unicité de n n’est pas tres difficile & démontrer, mais pas si évidente qu’il
n’y parait. Nous allons en omettre la preuve dans ce cours, ainsi que celle de
quelques autres résultats.

Définition 5.7.1 On dit qu’un ensemble E est fini s’il est vide ou s’il existe un
entier n et une bijection de E dans [[1,n]]. L’entier n est unique. Il est appelé
le cardinal de l’ensemble E. On le note n = Card(E). Le cardinal de () est
Card(0) = 0.

On dit qu’un ensemble E est infini s’il n’est pas fini.

Théoréme 5.7.2 Soient E et F deuz ensembles finis de cardinauz respectifs p
et q.

1. p < q si et seulement s’il existe une injection de E dans F.
2. p > q si et seulement s’il existe une surjection de E sur F'.
8. p=q si et seulement s’il existe une bijection de E sur F'.

4. Sip=gq, et si f est une application de E dans F', les propriétés suivantes
sont équivalentes.
(i) [ est injective
(i1) [ est surjective
(iii) f est bijective.
5. En particulier, si E est un ensemble fini et si f est une application de E
dans E, les propriétés suivantes sont équivalentes.
(i) [ est injective
(ii) [ est surjective
(1ii) f est bijective.
Exemples 5.7.3 Ces résultats ne concernent que les ensembles finis, comme
le montrent les exemples suivants.

1. Soit f Uapplication de N dans N qui a n associe f(n) =n+ 1. Alors f
est injective non surjective.

2. Soit f Uapplication de N dans N qui & n associe f(n) = F (g) (ot pour

tout réel x, E(x) désigne la partie entiére de x). Alors f est une applica-
tion surjective non injective.
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Corollaire 5.7.4 Si E est un ensemble fini et si F' C E, alors I est fini et
Card(F) < Card(E). De plus, Card(E) = Card(F) si et seulement si F = E.

Proposition 5.7.5 Les parties finies de N sont les parties majorées de N.
Théoréme 5.7.6 Si E et F sont deux ensembles finis, alors E U F est fini et
Card(EUF) = Card(E) + Card(F) — Card(ENF) (2)

Exercice 5.7.7 1. On suppose dans cette question que E et F' sont disjoints.
Que devient la formule (@ ? Soient m et n les cardinauzx respectifs de E
et F. Il existe donc une bijection f de E dans [[1,m]] et g de F dans
[[1,n]]. Construire une bijection h de EUF dans [[1, m+n]] et en déduire
le résultat dans ce cas.

2. Montrer que Card(E\ F) = Card(E) — Card(ENF)
3. En déduire la démonstration du théoréme dans le cas général.

Exercice 5.7.8 Soient E1,...,E,, n ensembles finis deuxr a deuz disjoints.

Montrer que
Card (U E,) = Z Card(E;)
i=1

i=1
Définition 5.7.9 Soit E un ensemble. Soient Eq,...,FE, des parties de E.
On dit que {E1,...,E,} est un partage de E si les conditions suivantes sont
vérifiées.
(i) La réunion de ces ensembles est égale o E.
(it) Sii# j, alors E; N E; = .

De plus, {En,...,E,} est une partition de E si c¢’est un partage et si de plus,
la condition suivante est vérifiée.

(iii) Aucun des ensembles E; n’est vide.

Ainsi, si E est un ensemble fini et si {F1,..., E,} est un partage (ou une
partition) de E, alors

Card(E) = Zn: Card(E;)

Exercice 5.7.10 1. Soit E un ensemble fini. Montrer que

Card(F) = Z 1

zeFE

2. Soit A une partie de E. Soit xa la fonction caractéristique de A (donc
x4 est lapplication de E dans A qui a x associe 1 six € A et 0 sinon).
Montrer que

Card(4) = > ya(z)

zeER
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Théoréme 5.7.11 Si E et F sont des ensembles finis, alors E X F est fini et
Card(E x F) = Card(E) - Card(F).

Exercice 5.7.12 Dans cet exercice, on souhaite démontrer le théoréme précédent.

1. Montrer que

ExF=J{a} xF)

zeEE

et que les ensembles qui interviennent dans cette réunion sont deuz a deux
disjoints.

2. En déduire le résultat.

Corollaire 5.7.13 Soient E1, ..., Ey k ensembles finis.
k
Card(Ey x -+ x Ey,) = | [ Card(E;)
i=1

Exercice 5.7.14 Démontrer ce résultat par récurrence.

Exercice 5.7.15 Soient E et F deux ensembles finis de cardinauz respectifs
n et p. On note A(E,F) Uensemble des applications de E dans F. On va
démontrer que Card (A(E,F)) =p".

1. On écrit E = {x1,...,z,}. Montrer que l'application ¢ suivante est bi-

jective
v A(E,F) > F'"=Fx---xF

2. Montrer que Card (A(E,F)) = p™ (on pourra utiliser le corollaire .

5.8 Coefficients binomiaux
Rappelons d’abord la définition de la fonction ”factoriel”.

Définition 5.8.1 Soit n un entier naturel. On appelle "n factoriel” et note n!
lentier défini par récurrence de la maniére suivante.

1. 0l=1

2.sin>1,nl=n-(n—-1)L
Ainsi, sin>0,n! =[[_,i=1x2x---xmn, et 0! =1.
Exemples 5.8.2 1! =1, 21 =2 et 3! = 6.

Remarque 5.8.3 On peut montrer que si E et F sont des ensembles a n
éléments, le nombre de bijections de E dans F' est égal a n!. En particulier, n!
est €gal au nombre d’ordres possibles pour n objets.
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Définition 5.8.4 Soient n et k deux éléments de N tels que k <n. Une com-
binaison de k éléments parmi n est une partie a k éléments d’'un ensemble

n
de cardinal n. Le nombre de combinaisons de k éléments parmi n est noté <k>

ou Ck.

Par exemple si on a 50 personnes, il y a <i)8> échantillons possibles de 10

personnes.
32
Si on dispose d’un jeu de 32 cartes, il y a ( 3 ) mains possibles différentes de 8

cartes.

Proposition 5.8.5

1. Pour toutn € N on a (n) = <n) =1.
0 n

2. Pour toutn € N et tout k € N tel que 0 < k <mn, on a: (n>< " >

k n—=k
) n n—1 n—1
3.S20<k<n,0na.<k)(k_1)+( i )

La propriété|5.8.58|est a la base du "triangle de Pascal” dont les premieres lignes
sont représentées sur la figure

Exercice 5.8.6 On veut démontrer le point[3 de la proposition [5.8.5, ¢’est-a-
dire que pour tous entiers n et k tels que 0 < k <n, on a :

n\ (n-— 1 n n—1
k) \k-1 k
Soit n un entier tel que n > 2, et soit E un ensemble a n éléments. Pour tout

entier | <n, on note P(E); l'ensemble des parties de E de cardinal [.

1. Soient x un élément de E et soit k un entier tel que 0 < k < n. Montrer
que

P(E), ={AU{z}, AcP(E\{z}),_ } UP(E\{z}),

(pour toute partie A de E, on pourra distinguer les cas ot x € A et ot

(-G ()

2. En déduire que
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Figure 1: Triangle de Pascal

Corollaire 5.8.7 5i 0 < k < n sont deux entiers naturels, on a :

(+) = mmy

Preuve. Récurrence sur n, en utilisant la proposition [5.8.5][3]

Proposition 5.8.8 (Formule du binéme) Soient x et y deux réels (ou deux
complezxes) et n un entier naturel. On a

. n n o
(x+y)" = E (k>xky k.
k=0

Corollaire 5.8.9 Si E est un ensemble fini de cardinal n, le nombre de parties
de E est égal a 2™.

Exercice 5.8.10 1. Développer l'expression f(x) = (x + 1)™.
‘1 - no(n
2. En déduire que = 2",
k=0 \F
3. En déduire que Card(P(E)) = 2™.
Exercice 5.8.11 Soit E un ensemble fini de cardinaln. Onnote E = {x1,...,x,}.

1. Soit Uapplication f de P(E) dans {0,1}" qui a toute partie A de E associe
f(A) = (a1,...,a,) € {0,1}™ tel que pour touti € [[1,n]], a; =1 six; € A
eta; =0 six; & A.
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2. Montrer que f est bijective, et retrouver le cardinal de P(E).

Exercice 5.8.12 Soit E un ensemble fini de cardinal n.

Nous avons déja vu Si A est une partie de E, nous allons utiliser la fonction
caractéristique x4 déja vue au chapitre[5, paragraphe[5.5 Pour rappel, x4 est
Uapplication de E dans {0,1} qui ¢ x associe 1 six € A et 0 sinon.

1. Soit A(E,{0,1}) Uensemble des applications de E dans {0,1}. Montrer
que Uapplication suivante est bijective.

v : P(E)— A(E,{0,1})
A xa

2. En déduire une autre fagon de calculer Card(P(E)) (en utilisant l’exercice

F719).

6 Relations binaires sur un ensemble

6.1 Généralités

Soit E' un ensemble. Une relation binaire sur E est une fagon de lier certains
éléments de F entre eux. Par exemple, la relation usuelle < sur les nombres
entiers permet de comparer les éléments de Z entre eux.

Définition 6.1.1 Une relation binaire R de E est définie par une partie G de
E x E. Si(z,y) € G, on dit que x est en relation avec y (par R) et on écrit
TRy.

Exemple 6.1.2 Soient E = {a,b,c,d, e} et soit
G ={(a,a),(b,e),(e,b),(c,d),(d,b)} CExE
On définit la relation R sur E par
Vr,y € E, TRy < (x,y) €3G

Dans ce cas simple, on peut faire la liste des relations entre éléments. aRa,
bRe, eRb, ¢cRd, dRb.

Certaines relations binaires satisfont des propriétés particuliéres.

Définition 6.1.3 Soit R une relation binaire sur un ensemble E.

e On dit que R est réflexive si

Ve € E, 2Rz

e On dit que R est symétrique si

Vr,y € E, 2Ry = yRzx
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e On dit que R est antisymétrique si

Ve,y € B, (zRy et yRx) = x =y

e On dit que R est transitive si

Va,y,z € E, (xRy et yRz) = xRz

Définition 6.1.4 Une relation binaire R sur un ensemble E est une relation
d’équivalence si elle est réflexive, symétrique et transitive.

Les relations d’équivalence sont tres importantes en mathématiques. Nous
nous intéresserons plutot a d’autres relations binaires : les relations d’ordre. Le
paragraphe suivant est consacré a ces relations d’ordre.

6.2 Relations d’ordre

Définition 6.2.1 1. Une relation binaire < sur un ensemble E est une re-
lation d’ordre si elle est réflexive, antisymétrique et transitive.

2. un ensemble muni d’une relation d’ordre est appelé ensemble ordonné.

3. Une relation d’ordre = sur E est appelée relation d’ordre total si pour
tout (x,y) E EXE, x Sy ouy X T.

4. une relation d’ordre partiel est une relation d’ordre qui n’est pas une
relation d’ordre total.

Exemple 6.2.2 La relation d’ordre usuelle sur Z est une relation d’ordre total.

Remarque 6.2.3 Pour illustrer l'intérét des relations d’ordre, citons l’exemple
sutvant.

Soit E un ensemble fini totalement ordonné, écrit sous forme de liste. Si l’on
veut déterminer si un élément se trouve dans cet ensemble, on peut comparer
cet élément avec chacun des éléments de l’ensemble, en parcourant la liste du
début jusqu’a trouver l’élément, ou jusqu’a la fin s’il n’y est pas.

Si la liste donne les éléments de E dans ’ordre croissant (ou décroissant),
alors il existe des algorithmes plus rapides.

Exercice 6.2.4 1. Soit E un ensemble. Montrer que la relation d’inclusion
est une relation d’ordre sur l’ensemble P(E) des parties de E.

2. Montrer que si Card(E) > 2, alors c’est une relation d’ordre partiel.

Exercice 6.2.5 Montrer que la relation de divisibilité est une relation d’ordre
sur N. Est-ce un ordre total ou partiel ?
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6.3 Eléments remarquables dans un ensemble ordonné

Soit E un ensemble muni d’une relation d’ordre <. Il s’agit ici de rappeler le
vocabulaire lié a la position d’un élément par rapport a un ensemble : plus
grand, plus petit élément, élément maximal, minimal, majorant, minorant.

Définition 6.3.1 1. Un élément m de E est dit plus petit élément de F
St
Vee B, m<zx

2. Un élément M de E est dit plus grand élément de F si
Vre E, e <M

Un plus petit (resp. plus grand élément) n’existe pas toujours. Mais s’il
existe, il est unique.

Proposition 6.3.2 1. Sim est plus petit élément de E, alors il est le seul
plus petit élément de E. Il est aussi appelé minimum de E et noté min(E).

2. Si M est plus grand élément de E, alors il est le seul plus grand élément
de E. Il est aussi appelé mazimum de E et noté max(FE).

Exercice 6.3.3 Justifier cette proposition.

Exercice 6.3.4 Soit E un ensemble. On considére l’ensemble P(E) muni de la
relation d’inclusion. P(E) a-t-il un plus petit élément ¢ Un plus grand élément ?

Exercice 6.3.5 Soit N, muni de la relation d’ordre de divisibilité : x|y s’
existe z € N tel que xz = y.

1. Montrer que N a un plus petit et un plus grand élément.
2. Montrer que N\{0} a un plus petit élément mais pas de plus grand élément.

3. Montrer que N\ {0,1} n’a ni plus petit, ni plus grand élément.

On a vu que N, muni de la relation d’ordre < possede la propriété suivante.

Toute partie non vide de N admet un plus petit élément.

On dit que N est bien ordonnée, ou que < est un bon ordre sur N. C’est la
définition suivante.

Définition 6.3.6 Soit E un ensemble muni d’une relation d’ordre <. On dit
que E est bien ordonné si toute partie non vide de E admet un plus petit élément.
Dans ce cas, on dit aussi que = est un bon ordre sur E.

Exemples 6.3.7 1. Pour lUordre < wusuel, ni Z, ni Q ni R ne sont bien
ordonnés.
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2. La relation de divisibilité n’est pas un bon ordre pour N.

Remarque 6.3.8 Cette notion d’ensemble bien ordonné est importante car ce
sont les ensembles qui vérifient le principe de récurrence. Comme dans ce cours,
nous ne faisons que des récurrences sur N muni de sa relation d’ordre naturelle,
nous ne développerons pas cette notion d’ensemble bien ordonné plus avant.

Définition 6.3.9 Soit E un ensemble muni d’un ordre < et soit A une partie
de E.

e On dit qu'un élément M de E est un majorant de A si pour tout x
dans A, x < M. On dit que A est majorée si elle admet au moins un
magorant.

e On dit qu’un élément m de E est un minorant de A si pour tout x dans
A, m <z. On dit que A est minorée si elle admet au moins un minorant.

6.4 Ordre lexicographique sur un produit cartésien

Soit F un ensemble muni d’une relation d’ordre total <. Soient a et b deux
éléments de E. On dit quea < bsia # bet a < b. On considere B = Ex---xFE
le produit cartésien de n copies de E.

On définit I'ordre lexicographique <}, sur E™ de la maniére suivante.

Soient x = (21,...,2n) €t y = (y1,-..,Yn) deux éléments distincts de E™.
Alors lensemble {i € [[1,n]] : z; # y;} est non vide. Soit m = min{i : z; #
yi}. Cest le plus petit indice i tel que z; # y;. On dit que & <joy ¥ 81 T < Y-

Soient maintenant x = (z1,...,2,) et ¥y = (y1,...,yn) deux éléments quel-
conques de E”. On dit que & <jo ¥ si (2 =y ou = <oy ¥).

Proposition 6.4.1 La relation Xlex €5t une relation d’ordre total sur E™.

Exercice 6.4.2 Nous allons démontrer la proposition précédente.
1. Montrer que la relation =X,,. est réflezive.

2. Nous voulons montrer que =,, est antisymétrique. Soient donc x ety
deux éléments de E tels que x 2,y et y 2o ©. Montrer que x =y (on
pourra utiliser un raisonnement par l’absurde).

3. Nous voulons montrer que Sleg €5t transitive. Soient donc x y et z trois
éléments de E tels que x Slex Y €LY Dep #-

a) Vérifier que six =y ou y = z, alors v =X, 2.
b) On suppose maintenant que x # y et y # z. On pose
x= (1, Tn), Y= (WY1,--->Yn) , 2=(21,---,2n)

Soient my = min{i, x; # y;} et mg = min{i, y; # 2z;}.

¢) Montrer que pour tout i < min(my,ms), x; = 2;.
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d) Montrer que x Slex ? (on distinguera les cas my = mqy et my # ms).

4. Les questions précédentes montrent que =<j,,. est une relation d’ordre sur
E. Montrer que c’est un ordre total.

Exercice 6.4.3 Soit E un ensemble muni d’une relation d’ordre total <. Pour
tout entier naturel non nul n, on considére ’ordre lexicographique <, sur E™.

Soit n un entier naturel supérieur ou égal a 2. Soient x = (x1,...,2,) et
y = (y1,---,Yn) deuz éléments de E™.

1. Montrer que si (X1,...,Zn-1) Sn-1 Y1, -, Yn—1) €t Ty, = Yn, alors x =<,
.

2. La réciproque est-elle vraie ?

Remarque 6.4.4 On peut montrer que si X est un bon ordre sur E, alors <,
est un bon ordre sur E™.

6.5 Ordre lexicographique sur les mots

Soit E un ensemble muni d’une relation ordre total. Soient z = x1,...xy et
Yy =11 ...y deux mots de E* (I’ensemble des mots dont F est I’alphabet). Donc
ici, la longueur de x est k et celle de y est [. Soit m le plus petit des entiers k et
[. On définit 'ordre lexicographique comme celui utilisé dans un dictionnaire.
On dit que = <gjco ¥ Si

(%1, Tm) <Jex (Y1, -+, Ym) Pour ordre lexicographique —<j,, sur E™

ou

(1, Zm) = (Y1,-.-,Ym) et k <1

On dit que = < jico ¥ 8 (T =y ou & <30 ¥)-
Remarquons que pour tout mot « non vide de E*, ¢ < z.

Proposition 6.5.1 La relation = g, .., ainsi définie est une relation d’ordre to-
tal.

Exercice 6.5.2 Soit E = {a,b} muni de la relation < telle que a < b. Soit <
Uordre lexicographique sur E obtenu a partir de <. Classer les mots suivants
dans lordre croissant. aaa, ba, abba, baba.

Exercice 6.5.3 Soit E = {a,b,...,z} Ualphabet latin, muni de la relation <
telle que a < b < -+ < z. Soit =X lordre lexicographique sur E obtenu a
partir de <. Classer les mots suivants dans l’ordre croissant. “pierre”, "part”,
"partition”, "rage”.

Remarque 6.5.4 Soit N muni de sa relation d’ordre usuelle <. Cette relation
d’ordre induit une relation d’ordre <dico SUT l’ensemble des mots dont N est
Ualphabet. Soit (uy)n>1 la suite définie par uy = (1) et pour tout n > 1, upq1 =
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Ouy, le concaténé de (0) et de u,. Alors uy = (1), us = (0,1), uz = (0,0,1),
ug = (0,0,0,1), etc. Alors la suite u,, est une suite strictement décroissante.
Ainsi, l'ensemble {un, n € N\ {0}} n’a pas de plus petit élément. Donc < g;.,
n’est pas un bon ordre sur ’ensemble des mots dont l’alphabet est N.

6.6 Ordre lexicographique sur les mots tenant compte de
la longueur

Soit E un ensemble muni d’une relation d’ordre total <.

On définit un autre ordre lexicographique =<, sur E* de la maniere suiv-
ante

Soient = (x1,...,Zm) €t (y1,...,yn) deux éléments distincts de E*, de
longueurs respectives m et n. On dit que = <]y, ¥ sim < nousim=n et
T <]ex ¥ Pour lordre lexicographique dans E™.

On dit que & Xjoy, ¥ 8i (T =y ou = <)oy ¥)-

Proposition 6.6.1 L’ordre <., ainsi défini est une relation d’ordre total sur
E*.

Exercice 6.6.2 Reprendre les ezercices et avec la relation d’ordre

jleac* :

Remarque 6.6.3 On peut montrer que si < est un bon ordre sur E, alors =,
est un bon ordre sur E*.

7 Arithmétique

7.1 Structure de Z
L’ensemble Z des entiers relatifs est muni d’une addition + et d’une multiplica-
tion -.

L’addition + vérifie les propriétés suivantes.

1. L’addition est une loi de composition interne :

Y(a,b) €Z* a+beZ
2. L’addition est associative :
Y(a,b,c) € Z3, (a+b)+c=a+ (b+c)
3. 0 est un élément neutre pour ’addition :

VaeZ, a+0=04+a=a

4. Tout élément de Z admet un opposé pour I'addition :

Va€eZ, a+(—a)=(—a)+a=0
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On résume les propriétés 1 a 4 en disant que Z est un groupe pour ’addition.

L’addition a encore une propriété importante.

5. I'addition est commutative :

Y(a,b) €Z* a+b=b+a

On dit que Z est un groupe commutatif (ou abélien) pour I’addition.

La multiplication - vérifie les propriétés suivantes.
1. La multiplication est une loi de composition interne :
Y(a,b) €Z* a-beZ
2. La multiplication est associative :
Y(a,b,c) €Z3, (a-b)-c=a-(b-c)
3. 1 est un élément neutre pour la multiplication :
YVaoe€Z,a-1=1-a=a
4. La multiplication est distributive sur 'addition :
V(a,b,c) €73 a-(b+c)=a-b+a-c

A noter l'ordre des opérations : a-b+a-c=(a-b)+ (a-c) (en I'absence
de parentheses, les multiplications se font avant les additions).

On dit que Z muni de I'addition et de lamultiplication est un anneau. ‘

Notation. Pour la multiplication, on omet souvent le - : on note souvent ab
pour a - b.

7.2 Division euclidienne

Théoréme 7.2.1 Pour tout couple d’entiers naturels (a,b), ot b # 0, il existe
un unique couple (q,r) d’entiers naturels tels que

a=bg+r
0<r<b

Les entiers q et r sont respectivement le quotient et le reste de la division eucli-
dienne de a par b.

o7



Preuve.
Montrons d’abord V'existence de (g,r). Soit

E={peN,bp<a}

Comme 0 € E, cet ensemble est une partie non vide. Pour tout élément p de
E, p <bp < a, donc E est majoré par a. Donc F est une partie non vide et
majorée de N. Il admet donc un plus grand élément qu’on notre q. On pose
alors r = a — bq, qui est positif ou nul puisque ¢ € E et donc bg < a.

Montrons que r < b. Supposons par l'absurde que » > b. Alors r — b > 0,
donc a —bg—b >0, donc a — (¢ + 1)b > 0, ce qui signifie que a > (¢ + 1)b, donc
(g+ 1)g € E, ce qui contredit le fait que b est le plus grand élément de E.

Reste & montrer I'unicité. Soient ¢’ et v’ deux entiers naturels tels que

a=0bqg +1r
0<r <b

Montrons que ¢ = ¢’ et r = v’. De ’égalité a = bg’ +r', on tire b’ = a —71' < a,
donc ¢’ € E. Comme ¢ = max(F), on en déduit que ¢’ < q.

Montrons que ¢’ = ¢. Supposons par absurde que ¢ # ¢'. Alors ¢’ < g,
donc ¢’ < g — 1 puisque ce sont des entiers. On aurait alors

=a—-by >a—bg+b=r+b>0b

ce qui est contraire & ’hypothese. On en déduit que ¢ = ¢’ et donc r =¢'. O

7.3 Représentation des entiers en binaire

Proposition 7.3.1 Soit n un entier naturel non nul. Alors on peut écrire n de
facon unique sous la forme
S
n= Z ni2i
i=0

ou r est un entier naturel, o pour tout i € [[0,s]], n; € {0,1} et ot ngs = 1.
On écrira [ng,...,ns| sous forme de liste lécriture binaire de n (on peut
aussi le noter My, —1 ... Mgy ). L’écriture binaire de 0 est [0].

Exercice 7.3.2 Quelle est I’écriture binaire de 21 2
Exercice 7.3.3 Montrer la proposition précédente par récurrence sur n.

Proposition 7.3.4 La taille t(n) de n est le nombre de chiffres dans Uécriture
binaire de n : t(0) =1 et sin # 0,
t(n) = [logyn] +1
Exercice 7.3.5 Montrons la proposition précédente.
t—1

Sit(n) =t, alors on peut écrire n sous la forme n = E n;2" oung_1 = 1.
i=0
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1. Montrer que
27t <p <ot -1

2. En déduire que t = |logyn| + 1.

8 Encore d’autres exercices

8.1 Ensembles

Exercice 8.1.1 Soient A, B et C trois ensembles. Montrer que

(AUBCAUC et ANBCANC) = BcCC

Exercice 8.1.2 Soient A, B et C trois ensembles. Montrer que
(CcAetCCB) = CCANB

Exercice 8.1.3 Soient A et B deux ensembles. Montrer que P(ANB) = P(A)N
P(B).

8.2 Applications

Exercice 8.2.1 Soient f et g les applications de R dans R telles que
Vr€R, f(z) =3x+1etg(r)=2"—1

A-t-on fog=go f ¢

Exercice 8.2.2 Soit f lapplication de [0, +oo[ dans [1,+o00[ telle que pour tout
x dans [1,+oo[, f(x) = 2% + 1. Lapplication f est-elle bijective ?

Exercice 8.2.3 Les applications suivantes sont-elles injectives, surjectives, bi-
jectives 2 Donner 'application inverse des applications bijectives.

1. f: N=N, f(z) =z + 1.
2.9:2—7,g9(x)=x+1.
3. h:R? = R2 h(z,y) = (v +y,x—1y).

4ok R\ {1} >R, k(m):ii—i.

Exercice 8.2.4 Soient A, B et C trois ensembles. Soient f une application de
A dans B et g une application de B dans A.

1. Montrer que si f et g sont injectives, alors g o f est injective.

2. Montrer que si f et g sont surjectives, alors g o f est surjective.
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8.3 Relations binaires

Exercice 8.3.1 Soit E¥ l’ensemble des applications de R dans R.

1. Si f et g sont deux éléments de E, on dit que fRg si f(0) < g(0). La
relation R est-elle réflexive ? Symétrique ? Antisymétrique ¢ Transitive ¢

2. Méme question avec la relation S définie par :

VfeE, VgeE, fSg < VxR, f(x) <g(x)

Exercice 8.3.2 1. Soient A et B deux éléments de E = P(Z) \ {0}, on dit
que A <X B si
Vace A, Ybe B, a<B

Cette relation =< est-elle réflexive ? Symétrique ? Antisymétrique ? Tran-
sitive ¢

2. Méme question si on redéfinit = de la maniére suivante.

A=<B <= (A=B)ouVac A, Y¥be B, a<B
3. Que se passe-t-il si E =P(Z) ?

8.4 Sommes et suites

Exercice 8.4.1 Soient (un)nen €t (Un)nen telles que pour tout n € N, u,, < vy,.
Montrer que pour tout N € N,

Exercice 8.4.2 1. Que vaut la somme des 10 premiers termes de la suite
arithmétique de premier terme /4 et de raison 8 ?

2. Que vaut la somme des 10 premiers termes de la suite géomélrique de
premier terme 4 et de raison 3 ?

Exercice 8.4.3 Soit la suite (u,) définie par ug =0, up =1 et
Vn > 2, U, = 44Uy, — Up_1

1. Montrer que pour tout n,

2. Soit N un entier naturel. Calculer Zivzl Uy, -

Revoyons lexercice suivant (déja traité).

60



Exercice 8.4.4 Pour tout n € N\ {0}, on définit

1.2 2.3 3-4 n(n+1)

1. Calculer Sy et Ss.

2. Ezprimer S, a Uaide du symbole Y .

. . ) 1 )
8. Soit k un entier naturel non nul. Fxprimer —— comme une fraction
n o n

+1
(en mettant ces fractions sous le méme dénominateur).

4. Montrer que pour tout n € N\ {0},

Exercice 8.4.5 1. Soit n un entier naturel. Simplifier l’expression

(n+1)! —n!

n
2. Soit n un entier naturel. Exprimer Z k- k! sans signe > (ni points de
k=0
suspension,).

Exercice 8.4.6 1. Mettre au méme dénominateur l’expression suivante.

1 2 1

n—l_n+n+1

2. Ezprimer la somme suivante sans signe » ..

8.5 Représentations en binaire ou en d’autres bases

Exercice 8.5.1 Soit b un entier supérieur strictement a 1. Soit n un entier
naturel non nul. On dit que ny_1 ...n1ng est la représentation en base b de n si

(i) Vi € [[0,t —1]], n: € [[0,b—1]]
(ii) ne_1 #0

t—1
(iii) n =" nb'
i=0
On admet que tout entier admet une représentation en base b unique.

61



3.

Si b = 2, la représentation en base b d’un entier est sa représentation
binaire. Donner la représentation binaire de 30.

Prenons b = 4. Soit n Uentier dont la représentation en base 4 est 123.
Quel est cet entier (en base 10) ¢

Soit n l'entier dont la représentation en base 10 est 54. Ecrire n en base

4.

Exercice 8.5.2 1. Soit rig(n) = ni_1...ng la représentation en base 10 de

n. C’est-a-dire, pour tout i € [[0,t — 1]], n; € [[0,9]], ni—1 #0 et

t—1
n= Z n;10°
i=0

L’entier t est donc la taille de cette représentation.

Montrer que
10t <n<10t -1

En déduire que
10071 <n < 10

. En déduire que t = [log;o(n)] +1 (o0 |x| désigne la partie entiére d’un

réel x).

Exercice 8.5.3 Soit f l’application de N dans N qui a n associe L%J (ot |x])

désigne la partie entiére de x). Soit n un entier naturel non nul. Soit b(n) =
ng_1...ng Uécriture binaire de n.

1.

™o e

Ecrire n en fonction des n; en utilisant le signe Y ..
Rappeler la valeur de t en fonction de n.
Ecrire f(n) en binaire (en fonction des n;).

On pose fO = idy et pour tout entier n supérieur ou égal a 1, f* =
f" Yo f. Montrer que f'=1(n) =1 et donc que ft(n) = 0.

Exercice 8.5.4 Soiten E un ensemble et < une relation d’ordre total sur E.
On considére la fonction suivante qui prend en entrées une liste croissante |
d’éléments de E et un élément x de E.

Cherche(l,x) :

Si l =], sortir Non
n = taille(l)
|7

L2

Si l[m] = x, sortir Oui
Sinon :
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Sillm] >z : 1 =[l[i] pour i € [[m+ 1,n —1]]
Sillm] <z : 1l =[l[i] pour i € [[0,m — 1]]

Sortir Cherche(l, z

1.

Appliquer cette fonction a1 =10,2,3,5] et x =4, puis a 1 = [0,2,3,5] et
T = 3.

Que fait cette fonction ?

Soit n un entier naturel. On note C(n) le nombre mazximal de comparai-
sons que la fonction Cherche effectue pour une liste de taille n. Montrer
que

cm <2+ ((2)

. Soit t la taille de Décriture de n en binaire. Déduire de la question

précédente et de Uezercice [8.5.3 que C(n) < 2t.
En déduire que C(n) < 2(|logy(n)| +1).

Voyez-vous un algorithme simple pour faire la méme chose que Cherche,
mais qui fonctionnerait aussi si la suite | n’est pas croissante ? Quel est
l’intérét de Cherche par rapport a cet algorithme ?
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