ANNEE UNIVERSITAIRE 2014/2015

Examen première session

uníversité BORDEAUX

Master 1 Code UE : MSIN820, MSMA820

Epreuve : Algèbre et calcul formel

 $Date: 22/04/2015 \qquad \quad Heure: 8h00 \qquad \quad Dur\acute{e}: 3h$

Corrigé

Collège Sciences et technologies

Exercice 1

- 1. $Q(x) = \sum_{i=0}^{m-1} x^k$.
- 2. Supposons que 2^n-1 est premier. Écrivons n=km où $m\geq 2$ et montrons que k=1. Cela montrera le résultat

$$2^{n} - 1 = (2^{k})^{m} - 1 = (2^{k} - 1) \sum_{i=0}^{m-1} 2^{ki}$$

Comme $2^n - 1$ est premier, et comme $m \ge 2$, c'est que $2^k - 1 = 1$, donc k = 1.

3. a) D'après le relations entre racines et coefficients d'un polynôme, $\alpha + \beta = 4$, $\alpha\beta = 1$. On pouvait retrouver facilement ces relations en écrivant

$$x^{2} - 4x + 1 = (x - \alpha)(x - \beta) = x^{2} - (\alpha + \beta)x + \alpha\beta.$$

b) Pour i = 0: $\alpha^{2^0} + \beta^{2^0} = \alpha + \beta = 4$. C'est bien l'image de L_1 dans \mathbb{F}_p . On suppose que $\alpha^{2^{i-1}} + \beta^{2^{i-1}} = L_i \mod p$. Alors

$$(L_{i+1} \mod p) = (\alpha^{2^{i-1}} + \beta^{2^{i-1}})^2 - 2$$
$$= \alpha^{2^i} + \beta^{2^i} + 2(\alpha\beta)^{2^{i-1}} - 2$$
$$= \alpha^{2^i} + \beta^{2^i}$$

puisque $\alpha\beta = 1$.

- c) Comme $L_{n-1} \equiv 0 \mod p$, la question précédente montre que $\alpha^{2^{n-2}} + \beta^{2^{n-2}} = 0$, donc $\alpha^{2^{n-2}} = -\beta^{2^{n-2}}$. En multipliant les deux membres de cette égalité par $\alpha^{2^{n-2}}$, on obtient $\alpha^{2^{n-1}} = -1$. On en déduit que l'ordre de α est égal à 2^n (puisque $\alpha^{2^n} = 1$ et $\alpha^{2^{n-1}} \neq 1$).
- d) Supposons par l'absurde que M_n n'est pas premier. Comme p est le plus petit diviseur premier de M_n , alors $M_n \geq p^2$. D'autre part, α est un élément d'ordre 2^n de $(\mathbb{F}_{p^2})^*$, donc $2^n \leq p^2 1$, ce qui prouve que $M_n \leq p^2 2$, ce qui est absurde.
- 4. [Application sur machine] Voir le fichier Exam.sage.

Exercice 2

- **1. a)** Il suffit de calculer $pgcd(P, x^p x)$.
- b) $P = x^{10} x + 1 \in \mathbb{F}_{11}$. $\operatorname{pgcd}(P, x^{11} x) = x + 9 = x 2$ (le calcul est fait dans $\mathbb{F}_{11}[x]$). Ainsi, P s'écrit P = (x 2)Q(x) où Q n'a pas de facteurs de degrés 1, donc pas de racines dans \mathbb{F}_{11} . 2 est donc la seule racine de P dans \mathbb{F}_{11} .
- **2.** Comme p divise p^k , si $P(r) \equiv 0 \mod p^n$, alors $P(r) \equiv 0 \mod p$.
- **3.** On utilise la formule du binome.

$$(x+tp^k)^i = \sum_{j=0}^i {i \choose j} x^{i-j} (tp^k)^j \equiv x^i + itp^k x^{i-1} \mod p^{2k}$$

puisque si $j \geq 2$, l'entier p^{kj} est divisible par p^{2k} . On pose $P(x) = \sum_{i=0}^{d} a_i x^i$. Alors

$$P(x + tp^k) = \sum_{i=0}^d a_i (x + tp^k)^i \equiv \sum_{i=0}^d a_i x^i + \sum_{i=1}^d i a_i tp^k x^{i-1} \mod p^{2k}$$
$$\equiv P(x) + tp^k P'(x) \mod p^{2k}$$

4.

$$\frac{P(r_k)}{p^k} + t_k P'(r_k) \equiv 0 \mod p^k \Leftrightarrow t_k \equiv -\frac{P(r_k)}{p^k} P'(r_k)^{-1} \mod p^k$$

Ici, $P'(r_k)$ est bien inversible modulo p^k car $P'(r_k) \equiv P'(r) \mod p$, donc $P'(r_k)$ est premier à p, donc il est premier à p^k .

5. Comme $k \ge 1$, il est clair que $r_{2k} = r_k + t_k p^k \equiv r \mod p$.

$$P(r_{2k}) = P(r_k + t_k p^k) \equiv P(r_k) + t_k p^k P'(r_k) \mod p^{2k}$$

d'après la question 3. Donc

$$P(r_{2k}) \equiv p^k \left(\frac{P(r_k)}{p^k} + t_k P'(r_k) \right) \mod p^{2k}$$
$$\equiv 0 \mod p^{2k}$$

puisque d'après la question 4,

$$\frac{P(r_k)}{p^k} + t_k P'(r_k) \equiv 0 \mod p^k.$$

- **6.** Soit $P = x^3 + x + 1$. On calcule P(0) = 1, $P(1) = 3 \equiv 0 \mod 3$ et P(-1) = -1. Donc l'unique racine de P vu comme polynôme sur $\mathbb{Z}/3\mathbb{Z}$ est 1. Relevons cette racine en une racine modulo 81. On pose $r = r_1 = 1$. $P' = 3x^2 + 1$, donc $P'(r_1) \equiv 1 \mod 3$. On calcule $t_1 = -\frac{P(r_1)}{3}P'(r_1)^{-1} \mod 3 = -1$. Ainsi, $r_2 = r_1 + 3t_1 = -2 \mod 9$. On vérifie que $P(-2) = -9 \equiv 0 \mod 9$. Maintenant, $P'(-2) \equiv 4 \mod 9$. Son inverse modulo 9 est -2. Ainsi, $t_2 = -\frac{P(r_2)}{9}P'(r_2)^{-1} \mod 9 = -2$. On conclut: $r_4 = -2 2.9 = -20 \equiv 61 \mod 81$. L'unique racine de P modulo 81 est donc 61.
- 7. Voir le fichier Exam.sage
- 8. On trouve.

Exercice 3

1. Soit $P \in I \cap J$. Alors clairement, $P \in K[X_1, \ldots, X_n]$. De plus, $P = TP + (1 - T)P \in \mathcal{R}(I, J)$. Réciproquement, soit $P \in \mathcal{R}(I, J) \cap K[X_1, \ldots, X_n]$. Alors il existe g_1, \ldots, g_r dans I, h_1, \ldots, h_s dans J et $\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_s$ dans $K[X_1, \ldots, X_n, T]$ tels que

$$P = T \sum_{i=1}^{r} g_{i} \alpha_{i} + (1 - T) \sum_{i=1}^{s} h_{i} \beta_{i}.$$

Comme P ne dépend pas de T, on obtient $P(X_1, \ldots, X_n, T) = P(X_1, \ldots, X_n, 0) = P(X_1, \ldots, X_n, 1)$, ce qui donne immédiatement

$$P = \sum_{i=1}^{r} g_i \alpha_i(X_1, \dots, X_n, 0) = \sum_{i=1}^{s} h_i \beta_i(X_1, \dots, X_n, 1) \in I \cap J$$

2. Comme les g_i et les h_j sont respectivement des éléments de I et J, il est clair que

$$\{Tg_1, \dots, Tg_r\} \cup \{(1-T)h_1, \dots, (1-T)h_s\} \subset \mathcal{R}(I, J)$$

et donc l'idéal engendré par cet ensemble est inclus dans $\mathcal{R}(I,J)$. Réciproquement, tout élément Tg où $g \in I$ s'écrit $Tg = \sum_{i=1}^r a_i Tg_i$, où les a_i appartiennent à $K(X_1,\ldots,X_n,T)$. De même, tout élément (1-T)h où $h \in J$ s'écrit $(1-T)h = \sum_{i=1}^r b_i(1-T)h_i$, où les b_i appartiennent à $K(X_1,\ldots,X_n,T)$. Ainsi, tout élément de $TI \cup (1-T)J$ appartient à l'idéal $\langle \{Tg_1,\ldots,Tg_r\} \cup \{(1-T)h_1,\ldots,(1-T)h_s\} \rangle$, donc $\mathcal{R}(I,J) \subset \langle \{Tg_1,\ldots,Tg_r\} \cup \{(1-T)h_1,\ldots,(1-T)h_s\} \rangle$.

3. Pour calculer une base de Gröbner de $I \cap J$, on calcule une base de Gröbner G de $\mathcal{R}(I,J)$ pour l'ordre lexicographique \prec tel que $T \succ X_1 \succ \cdots \succ X_n$. Alors, comme $I \cap J = \mathcal{R}(I,J) \cap K[X_1,\ldots,X_n]$, on sait que $G \cap K[X_1,\ldots,X_n]$ est une base de Gröbner de $I \cap J$.