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In these notes, we will study a basic question from the theory of random
walks on groups: given a random walk

e, g1, g2g1, . . . , gn · · · g1, . . .

on a group G, we will give a criterion for the trajectories to go to infinity with
linear speed (for a notion of speed which has to be defined). We will see that
this property is related to the notion of amenability of groups: this is a fun-
damental theorem which was proved by Kesten in the case of discrete groups
and extended to the case of continuous groups by Berg and Christensen. We
will give examples of this behaviour for random walks on SL2(R).

1 Locally compact groups and Haar measure

In order to define random walks on groups, I need to consider probability
measures on groups, which will be the distribution of the random walks.
When the group is discrete, there is no technical difficulty: a probability
measure is a function from the group to [0, 1], the sum of whose values is
one. But I also want to consider non discrete groups, such as vector spaces,
groups of matrices, groups of automorphisms of trees, etc. Hence, to deal
with these examples, I have first to define a proper notion of a continuous
group.

Definition 1.1. By a locally compact group, we mean a group G, equipped
with a locally compact topology such that the product map G×G→ G and
the inverse map G→ G are continuous.

We will mostly deal with locally compact groups that will be second
countable. More precisely, the understanding of the following examples will
be our main objective.

Example 1.2. Any group, equipped with the discrete topology, is a locally
compact group.

Example 1.3. The usual topology makes the additive groups Rd, d ≥ 1,
locally compact topological groups. The product of matrices on GLd(R)
and SLd(R) and the usual topology induce structures of locally compact
topological groups on them. In the same way, the orthogonal group O(d)
and the special orthogonal group SO(d) have natural topologies of compact
groups.
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Example 1.4. Let Γ = (V,E) be a locally finite graph. In other words, V
(vertices) is a set, E ⊂ V × V (edges) is a symmetric relation (that is, for
any (x, y) in E, one has (y, x) ∈ E) and, for any x in V , the set of y in V
such that (x, y) ∈ E is finite. For x in V and n in N, we let Bn(x) be the
ball of center x and radius n in V , that is, the set of y in V such that there
exists 0 ≤ p ≤ n and x = x0, . . . , xp = y in V with (xi−1, xi) ∈ E, 1 ≤ i ≤ p.

Let G be the group of automorphisms of Γ, that is, the group of permu-
tations g of V such that, for any (x, y) in E, (gx, gy) also belongs to E. For
any g in G, x in V and n in N, define U(g, x, n) as the set of h in G such
that gy = hy for any y in Bn(x) (in other words, h is locally equal to g). We
equip G with the topology generated by the subsets of the form U(g, x, n).
One easily checks that the group operations are continuous and that, due to
the fact that the graph is locally finite, the topology is locally compact. It
is second countable as soon as V is countable.

For a non empty finite subset W of V , let GW denote the set of g in G
such that gx = x, for any x in W . Then the subgroups GW are compact and
open in G and they form a basis of neighborhoods of the identity map.

Thus, the classical groups from geometry all are locally compact groups.
In the latter example, the topology is totally discontinuous. One can check
that a locally compact group is totally discontinuous if and only if the neutral
element e has a basis of neighborhoods consisting of compact open subgroups.

One main feature of locally compact groups is that they come with a
natural reference measure.

Theorem 1.5 (Haar). Let G be a locally compact group. Then there exists
a (non zero) Radon measure on G that is invariant under left translations of
G, that is such that, for any g in G, for any continuous compactly supported
function ϕ on G, the functions ϕ and x 7→ ϕ(gx) have the same integral.
This measure is unique up to multiplication by a positive real number.

By abuse of language (since the measure is not unique), one says that
such a measure is the Haar measure of G and one sets

∫
G
ϕ(x)dx for the

integral of a function ϕ with respect to Haar measure. Haar measure is finite
if and only if G is compact. We denote by Lp(G), 1 ≤ p ≤ ∞, the Lebesgue
spaces of Haar measure on G.

In general, in concrete examples, the Haar measure is defined in a concrete
way.

Example 1.6. On a discrete group, Haar measure is the counting measure.
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Example 1.7. On Rd, d ≥ 1, Haar measure is Lebesgue measure. On GLd(R),
it is equal to the restriction of Lebesgue measure of the vector space of square
d× d matrices, multiplied by the function x 7→ | detx|−d.
Example 1.8. Let G be a locally compact totally discontinous group (for
example, the group of automorphisms of a graph). Fix a compact open
subgroup H of G (which we will use for chosing the normalization of the
measure).

Let ϕ be a locally constant compactly supported function on G. Then,
there exists an open subgroup U of H, such that ϕ is right-U -invariant. We
set ∫

G

ϕ(x)dx =
1

[H : U ]

∑
y∈G/U

ϕ(y).

This formula makes sense since on the one hand, ϕ being right U -invariant,
it may be considered as a finitely supported function on the discrete space
G/U and, on the other hand, U being open in H which is compact, it has
finite index in H. One easily checks that the definition does not depend on
the choice of U .

Remark 1.9. In general, the Haar measure is not invariant under right trans-
lations of the groups. This is the case, for example if G is the group of

matrices of the form

(
1 b
0 a

)
, with a 6= 0 and b in R. One easily checks that

the measure |a|−1dadb is invariant under left translations, but not under right
translations.

2 Amenable groups

We shall now split the locally compact groups into two classes which have a
very different behaviour from the measure theoretic point of view.

Let G be a locally compact topological group and X be a locally compact
topological space. An action of G on X is said to be continuous if the action
map G × X → X is continuous when G × X is equipped with the product
topology.

Definition 2.1. We say that a locally compact topological group G is ame-
nable if, for every continuous action of G on a compact space X, there exists
a Borel probability measure ν on X that is G-invariant, that is such that,

4



for any continuous function ϕ on X, for any g in G,∫
X

ϕ(gx)dν(x) =

∫
X

ϕ(x)dν(x).

Example 2.2. The groups GLd(R) and SLd(R), d ≥ 2, are not amenable.
Indeed, they cannot preserve a Borel probability measure on the projective
space Pd−1R .

Example 2.3. Let r be a positive integer. We let G be a non-abelian free
group of rank r, that is G is spanned by a set S ⊂ G with r elements and
any g in G may be written in a unique way as a product hk11 · · ·hkss , with
s ≥ 0, h1, . . . , hs in S, k1, . . . , ks in Zr {0} and hi 6= hi+1 for 1 ≤ i ≤ s1. For
r = 1, we have G ' Z. We claim that G is non amenable as soon as r ≥ 2.
Indeed, since every group spanned by less that r elements is a homomorphic
image of G, it suffices to give a group spanned by 2 elements, an action of

which does not admit any invariant measure. We set g =

(
2 0
0 1

)
∈ GL2(R)

and h = ugu−1 where u =

(
1 1
1 −1

)
. One checks that no Borel probability

measure on P1
R is both g and h-invariant.

Here comes a first simple example of an amenable group:

Lemma 2.4. Abelian groups are amenable.

Proof. It is a classical fact that every homeomorphism of a compact space
preserves a Borel probability measure. In other words, Z is amenable. The
extension of this result to a general abelian group only relies on a formal
construction using Zorn’s Lemma.

More precisely, le G be an abelian locally compact topological group,
acting on a compact space X. Let S be the set of subgroups of G which
preserve a Borel probability measure on X. Equip S with the inclusion
order. We claim that S is inductive. Indeed, let T ⊂ S be a totally ordered
subset. Let L =

⋃
H∈T H, which is a subgroup of G and let us prove that L

belongs to S. Let P be the set of Borel probability measures on X and, for
every H in S, let PH ⊂ P be the non empty subset of H-invariant measures.
Equip P with the weak-∗ topology, which makes it a compact space. Then,
the sets PH , where H runs in T , form a totally ordered set of compact subsets
of P . By compactness, we get ⋂

H∈T

PH 6= ∅,
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hence L belongs to T . As L is a majorant of all elements of T , the order is
inductive as claimed.

By Zorn’s Lemma, S admits a maximal element H. Let us prove that
H = G, which finishes the proof. We pick g in G. We will use the classical
argument to construct a g-invariant measure in PH . Let ν be a H-invariant
Borel probability measure on X. Then, every limit point as n → ∞ of
1
n

∑n−1
k=0 g

k
∗ν is a g-invariant element. Since g commutes with H, such a limit

point is still H-invariant. Hence, as PH is weak-∗ compact, it contains a g-
invariant element. In other words, if H ′ denotes the subgroup of G spanned
by g and H, we have H ′ ∈ S. As H is maximal, we get H ′ = H, hence
g ∈ H, which should be proved.

Amenable groups can be characterized as groups which admit fixed points
in convex invariant subsets for certain actions on Banach spaces.

Given a locally compact group G and a Banach space E, by an isometric
continuous action of G on E, we mean a linear action of G by norm isometries
on E such that, for any v in E, the orbit map G→ E, g 7→ gv is continuous.

Example 2.5. The natural action of G by left translations on the spaces
Lp(G), 1 ≤ p < ∞, are isometric and continuous. The one on L∞(G) is not
as soon as G is not discrete (there exists bounded measurable functions which
are not continuous). If G acts continuously on a compact set X, then the
natural action of G on the Banach space C0(X) is an isometric continuous
action.

When G acts on E in a continuous isometric way, there is a natural
action of G on the topological dual space E∗ of E (which is isometric but
not necessarily continuous).

Lemma 2.6. Let G be a locally compact topological group. Then G is
amenable if and only if, for every isometric continuous action of G on a Ba-
nach space E, for every non-empty convex and weak-∗ compact G-invariant
subset Y ⊂ E∗, G admits a fixed point in Y .

Proof. Clearly, if the fixed point property holds, G is amenable, by the ex-
ample above. Conversely, let E and Y be as in the statement of the Lemma.
Since the action of G on E is continuous, one checks that the ation of G
on Y is weak-∗ continuous, that is, the action map G × Y → Y is contin-
uous when Y is equipped with the weak-∗ topology. As G is amenable,
G preserves a Borel probability measure ν on Y . Now, the linear form
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fν : v 7→
∫
Y
〈f, v〉dν(f) on E is continuous (note that, by Banach-Steinhaus

Theorem, K is bounded in E∗). Since ν is G-invariant, fν is G-invariant.
Since K is convex, it follows from the geometric form of Hahn-Banach The-
orem that fν belongs to K.

Let G be a locally compact group and H be a closed subgroup of G. We
shall always equip the space G/H with the quotient topology. We have

Lemma 2.7. Let G be a locally compact topological group and H be a closed
subgroup of G. The space G/H is Hausdorff and the projection map G →
G/H is open. In particular, G/H is a locally compact topological space.

Proof. Note first that the projection map π : G → G/H is open: indeed, if
U is an open subset of G, one has π−1π(U) = UH which is clearly open in
G. In particular, every x in G/H has a compact neighborhood, and it only
remains to prove that G/H is Hausdorff.

To do this, consider x1 6= x2 in G/H. Write x1 = g1H and x2 = g2H
with g1, g2 ∈ G, g−11 g2 /∈ H. Since H is closed, there exists a neighborhood
of e in G with Ug−11 g2 ∩H = ∅. Since H is a subgroup, we get

g2H ∩ g1U−1H = ∅.

Pick a neighborhood V of e with g−11 V g1 ⊂ U−1. We get

g2H ∩ V g1H = ∅.

Finally, pick a new neighborhood of e with W−1W ⊂ V . We get

Wg2H ∩Wg1H = ∅,

that is Wx1 ∩Wx2 = ∅ and we are done.

Note that, if G is a locally compact topological group and H ⊂ G is a
closed normal subgroup, then G/H, equipped with the natural group struc-
ture, is again a locally compact topological group.

Corollary 2.8. Let G be a locally compact topological group and H ⊂ G be
a closed normal subgroup. If H and G/H are amenable, so is G.
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Proof. LetG act continuously by isometries on a Banach space E and Y ⊂ E∗

be a convex weak-∗ compact G-invarant subset. Then H admits fixed points
in Y . Let Z ⊂ Y be the set of those fixed points. Then, as H is normal, Z
is G-invariant. Now, to conclude, we must see Z as an invariant subset in
the dual space of a Banach space equipped with an action of G/H. Let us
construt our candidate for being this Banach space (this is slightly formal).
We let EH ⊂ E be the closed subspace spanned by the vectors of the form
hv − v where v is in E and h is in H and we let F be the quotient Banach
space E/EH . One checks that the dual space of F may be identified with the
space of H-invariant elements in E∗. As G/H acts in a natural way on F ,
we can see Z as a convex and weak-∗ compact G/H-invariant subset in the
dual space of F . Hence G/H admits a fixed point in Z and we are done.

Corollary 2.9. Let G be a solvable locally compact topological group. Then
G is amenable.

Proof. We prove this by induction on the length of the derived series of G.
If it has length 1, then G is abelian, and we already know the result in this
case. If it has length r ≥ 2, we let H be the closure of the last non zero term
in this series. Then H, being the closure of an abelian normal subgroup, is
itself an abelian normal subgroup. As G/H is solvable with derived series of
length ≤ r − 1, G/H is amenable. As H is abelian, it is amenable and the
result follows.

Remark 2.10. We shall see in Corollary 3.4 below that, if G is amenable,
every closed subgroup of G is amenable. Hence, if G contains a closed non-
abelian free group, then G is non-amenable. It was proved by Tits that any
subgroup of GLd(C), d ≥ 1, either contains a non-abelian free subgroup or a
finite index solvable group, so that for discrete groups that are isomorphic to
subgroups of GLd(C), amenability amounts to having a finite index solvable
group (this is sometimes called virtual solvability). This is untrue in general.

Remark 2.11. We just proved that solvable groups are amenable. In general,
the fact that a group is amenable depends on the topology. For example,
SO(3) is amenable for its usual compact topology, but, since it contains a
non-abelian free group, it is not amenable for the discrete topology.
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3 Invariant means

Before starting doing probability theory, we shall need another equivalent
definition of amenability. Let (X,µ) be a measure space. We say that a
continuous linear functional on L∞(X,µ) is a mean if it is nonnegative (that
is, it takes nonnegative values on nonnegative functions) and m(1) = 1. It is
a kind of analogue of a measure.

Proposition 3.1. Let G be a locally compact group. Then G is amenable if
and only if L∞(G) admits a left invariant mean.

Let us first prove this result in cas G is a discrete group.

Proof of Proposition 3.1 when G is discrete. Assume G is amenable. Then
the fact that G admits an invariant mean follows from Lemma 2.6 since,
on one hand, the action of G on `∞(G) is isometric (and continuous as G
is discrete) and, on the other hand, the set of means is easily seen to be a
convex compact set for the weak-∗ topology in the dual space of `∞(G).

Conversely assume G admits an invariant mean m. Let X be a compact
G-space. Fix x in X and, for any ϕ in C0(X), let Tϕ be the function g 7→
ϕ(gx) on G. One easily checks that T is a bounded G-equivariant operator
C0(X)→ `∞(G). Then, the linear functional T ∗m is bounded on C0(X) and
T ∗m(1) = 1. Hence, by Riesz’s Theorem, T ∗m defines a probability measure
µ on X. Since m is G-invariant, so is µ.

Remark 3.2. This proof is not constructive and in general, when a group
is amenable but not compact, there is no way of constructing an invariant
mean. However, we will now see how to use the existence of this object
concretely.

Now, to extend this proof to the general case, we will replace the space
L∞(G) with a smaller subspace on which the natural left action of G is
continuous.

We say that a continuous functions ϕ on G is left uniformly continuous
if, for any ε > 0, there exists a neighborhood U of e in G such that, for any
g in G and u in U ,

|ϕ(ug)− ϕ(g)| ≤ ε.

Compactly supported functions are left uniformly continuous.
Let BLUC(G) ⊂ L∞(G) be the space of bounded left uniformly continu-

ous functions on G. Then BLUC(G) is closed for the uniform topology and
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invariant by the left action of G. The restriction of this action to BLUC(G) is
continuous. Again, we say that a continuous linear functional on BLUC(G)
is a mean if it is nonnegative and m(1) = 1.

Lemma 3.3. Let G be a locally compact topological group. Then L∞(G)
admits left-invariant means if and only if BLUC(G) admits left-invariant
means.

Proof. If L∞(G) admits an invariant mean, its restriction to BLUC(G) is an
invariant mean.

Conversely, assume BLUC(G) admits a left-invariant mean. We want to
extend m as an invariant mean on L∞(G): there is a natural way of doing
this. Fix ψ in L∞(G). For any continuous compactly supported function ϕ
on G, we let the convolution product ϕ ∗ ψ be the function

g 7→
∫
G

ϕ(h)ψ(h−1g)dh.

It is left uniformly continuous and bounded. Set 〈fψ, ϕ〉 = m(ϕ ∗ ψ). If ψ is
in BLUC(G), one has, for any ϕ,

〈fψ, ϕ〉 = m(ψ)

∫
G

ϕ(g)dg.

In general, the linear functional fψ is left G-invariant. Hence, by uniqueness
of the Haar measure, there exists a unique scalar m(ψ) such that, for any ϕ,
one has again

〈fψ, ϕ〉 = m(ψ)

∫
G

ϕ(g)dg.

One easily checks that m is an invariant mean on L∞(G).

We can now give the full

Proof of Proposition 3.1. Assume G is amenable. As in the discrete case,
since the action of G on BLUC(G) is continuous, we prove that BLUC(G)
admits a left-invariant mean. By Lemma 3.3, L∞(G) admits a left-invariant
mean.

The proof of the converse statement that was given in the discrete case
holds in general.
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We now can show that amenability of a group implies amenability of its
closed subgroups.

Corollary 3.4. Let G be a locally compact group and H be a closed subgroup
of G. Then H is amenable if and only if L∞(G) admits a left H invariant
mean. In particular, if G is amenable, H is amenable.

To prove this corollary, we will use functions on H to build functions on
G. This relies on a process of taking sections of the quotient G→ G/H. To
build these sections, we will use

Lemma 3.5. Let G be a locally compact group, H be a closed subgroup of
G and U be a neighborhood of e in G. Then there exists a subset T ⊂ G/H
such that G/H =

⋃
t∈T Ut and, for every compact subset of G/H, the set

K ∩ T is finite.

Note that this Lemma is empty in case G is discrete.

Proof. We can assume that U is open.
Assume first that G is a countable union of compact subsets, so that

G/H also is. We write G/H =
⋃
n∈NKn, where K0 = ∅ and, for any n, Kn

is compact and Kn ⊂ Kn+1. Now, we chose a neighborhood V of e with
V −1V ⊂ U .

We claim that, for any compact subset K of G, there can not exist an
infinite sequence (tk) of elements of K such that, for any k 6= `, one has
V tk ∩ V tl = ∅. Indeed, if this would be the case, then (tk) would admit a
cluster point t. Then, if W is a neighborhood of e in G with WW−1 ⊂ V , for
large k 6= l, we would have tk, tl ∈ Wt, hence in particular, tl ∈ WW−1tk ⊂
V tk.

Now, for any n, define recursively a finite subset Tn of G/H as follows.
For n = 0, we set T0 = ∅. If T0, . . . , Tn−1 have already been chosed, we
consider the compact set

Ln = Kn r (UT0 ∪ · · · ∪ UTn−1)

and we we chose a finite maximal subset Tn of Ln such that, for any t 6= t′ in
Tn, one has V t ∩ V t′ = ∅. The existence of such a finite subset follows from
the remark above. By maximality, we have Ln ⊂ V −1V Tn ⊂ UTn.

We set T =
⋃
n Tn. By construction, we have G/H ⊂ UT and, for any

t 6= t′ in T , V t∩V t′ = ∅, so that, still by the remark above, for any compact
subset K of G, K ∩ T is finite.
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Now, in the general case, let L be the (open) subgroup of G spanned
by a compact neighborhood of e, so that L is a countable union of compact
sets and L is open in G. We pick a subset S ⊂ G/H so that G/H = LS
and, for any s 6= s′ in S, Ls ∩ Ls′ = ∅. For any s in S, we let Ms denote
its stabilizer in L, so that Ls may be identified with L/Ms. We chose a
subset Ts ⊂ L/Ms which satisfies the conclusion of the Lemma. Then, the
set T = {ts|s ∈ S, t ∈ Ts} works for G/H.

Now, we can build a nice function on G.

Lemma 3.6. Let G be a locally compact topological goup and H be a closed
subgroup of G. Then there exists a bounded continuous function θ : G →
[0,∞) such that

(i) for any compact subset K of G, the restriction of θ to KH has
compact support.

(ii) for any g in G, one has
∫
G
θ(gh)dh = 1.

If G is discrete, the choice of θ amounts to the choice of a system of
representatives for the quotient map G→ G/H.

Proof. Let U be a relatively compact neighborhood of e in G and T ⊂ G/H
be as in Lemma 3.5. For any t in T , chose gt in G with gtH = t. We pick a
nonnegative continuous compactly supported function ϕ on G which is equal
to 1 on U . For any g in G, we set

ψ(g) =
∑
t∈T

ϕ(gg−1t )

(the nonzero terms in the sum being only in finite number). Finally, we set,
for any g,

θ(g) =
1∫

H
ψ(gh)dh

ψ(g).

One easily checks that θ satisfies the conclusions of the Lemma.

Proof of Corollary 3.4. If H is amenable, L∞(G) admits a left H invariant
mean: this is proved exactly as in Proposition 3.1 above.

Conversely, assume L∞(G) admits a left H invariant mean m. Fix θ as
in Lemma 3.6. For g in G, set ψ(g) = θ(g−1) and, for any ϕ in L∞(H),

ϕ ∗ ψ(g) =

∫
H

ϕ(h)ψ(h−1g)dh.
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Then ϕ ∗ ψ ∈ L∞(G). One easily checks that ϕ 7→ m(ϕ ∗ ψ) is a H-invariant
mean on L∞(H).

4 Almost invariant vectors

In this section, we will prove a property of isometric continuous group ac-
tions on Banach spaces that will be useful later when we will prove Kesten’s
theorem that establishes a link between amenability and spectral radius of
some convolution operators. It is the way we will use the abstract invariant
means that appear in Proposition 3.1.

Proposition 4.1. Let G be a locally compact topological group and E be a
Banach space, equipped with a continuous isometric action of G. Assume that
the topological bidual space E∗∗ of E admits a nonzero G-invariant element.
Then, for every compact subset K of G, for every ε > 0, there exists a unit
vector v in E such that ‖gv − v‖ ≤ ε for any g in K.

One sometimes says that E admits almost invariant vectors.
Let E and G be as above. If ϕ is a continuous compactly supported

function on G and v is in E, we let ϕ ∗ v denote the vector
∫
G
ϕ(g)gvdg

(which is well defined as the integral of a continuous compactly supported
function with values in E). We have ‖ϕ ∗ v‖ ≤ ‖ϕ‖1‖v‖.

We start with a weaker version of Proposition 4.1.

Lemma 4.2. Let G be a locally compact topological group and E be a Ba-
nach space, equipped with a continuous isometric action of G. Assume that
the topological bidual space E∗∗ of E admits a nonzero G-invariant element.
Then, for any continuous compactly supported functions ϕ1, . . . , ϕr with Haar
integral 1 on G, for every ε > 0, there exists a unit vector v in E such that
‖ϕi ∗ v − v‖ ≤ ε for any 1 ≤ i ≤ r.

Note that if G is discrete, Proposition 4.1 directly follows.

Proof. We fix a G-invariant element v in E∗∗ with norm 1 and a basis U of
convex neighborhoods of v for the weak topology of E∗∗, seen as the dual
space of E∗. As the unit ball of E is dense in the one of E∗∗ for this topology,
for any U in U , U contains an element vU of E with norm ≤ 1. As gv = v
for any g in G, we have ϕi ∗ v = v for 1 ≤ i ≤ r, hence ϕi ∗ vU − vU −−−−→

U→{v}
0

weakly in E. Let us prove that we can replace this weak limit by a strong
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one : this is a variation on the fact that convex norm closed subset of E are
weakly closed.

We equip the space Er with the product topology of the norm topology,
so that the associated weak topology is the product of the weak topology
of E. In particular, for any U in U , let MU ⊂ Er be the set of families
(ϕi∗vU ′−vU ′)1≤i≤r, where U ′ runs among the elements of U that are contained
in U . Then, the weak closure of MU in Er contains 0. Therefore, the strong
closure of the convex hull of MU in EG contains 0. By definition of the
topology of EG, and since U is convex, this means that there exists w in U
such that ‖ϕi ∗ w − w‖ ≤ ε for 1 ≤ i ≤ r.

To conclude, it remains to prove that we can ensure that the norm of w is
not close to 0. Indeed, since v has norm 1, there exists f in E∗ with ‖f‖ ≤ 1
such that 〈f, v〉 ≥ 2

3
. By definition of U , we can ensure that 〈f, u〉 ≥ 1

3
for

any u in U , hence ‖u‖ ≥ 1
3
. We get ‖w‖ ≥ 1

3
and we are done.

For ϕ a continuous compactly supported function on G and g in G, we
let gϕ denote the function h 7→ ϕ(g−1h). Note that, for any v in E, we have
g(ϕ ∗ v) = (gϕ) ∗ v.

We now use the Lemma to establish the

Proof of Proposition 4.1. If G is discrete, we are done, since we can then
apply Lemma 4.2 to the continuous characteristic functions of the elements
of the finite set K.

In general, we need to deal with vectors v for which we control the mod-
ulus of continuity of the map g 7→ gv. More precisely, we fix a nonnegative
continuous function ϕ with compact support on G such that

∫
G
ϕ(g)dg = 1.

Then there exists a neighborhood U of e in G such that ‖uϕ − ϕ‖1 ≤ ε for
any u in U . We fix g1, . . . , gr in K with K ⊂ g1U ∪ · · · grU . By Lemma
4.1, there exists a unit vector v in E such that ‖ϕ ∗ v − v‖ ≤ ε and also
‖giϕ ∗ v − v‖ ≤ ε for 1 ≤ i ≤ r. We set w = ϕ ∗ v. On one hand, we have
‖w‖ ≥ 1− ε which is ≥ 1

2
if ε ≤ 1

2
. On the other hand, if g is in K and i is

such that g ∈ giU , we have

‖gw − w‖ ≤ ‖gϕ ∗ v − giϕ ∗ v‖+ ‖giϕ ∗ v − v‖+ ‖v − ϕ ∗ v‖
≤ ‖gϕ− giϕ‖1 + 2ε ≤ 3ε

and we are done.
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5 Random walks and amenable groups

Let G be a locally compact topological group. Given Borel probability mea-
sures µ1 and µ2 on G, their convolution product µ1 ∗µ2 is the image measure
of µ1 ⊗ µ2 under the product map G×G→ G.

Example 5.1. If G = R and µ1 (resp. µ2) is of the form ϕ1(x)dx (resp.
ϕ2(x)dx) for some Lebesgue measurable functions ϕ1 and ϕ2, then µ1 ∗ µ2 is
the measure (ϕ1 ∗ ϕ2)(x)dx where ϕ1 ∗ ϕ2 is the usual convolution product
of ϕ1 and ϕ2.

Given a Borel probability measure µ on X, we define the associated (left)
random walk on G as the Markov chain on G whose transition probabilities
are the measures µ∗δx, x in G. In other words, given a sequence g1, . . . , gn, . . .
of independent random elements of G with law µ, the trajectories of the
random walk are of the form x, g1x, . . . , gn · · · g1x, . . ..

The associated Markov operator Pµ is defined by

Pµϕ(x) =

∫
G

ϕ(gx)dµ(g),

where ϕ is a continuous compactly supported function on G and x is in G.
Recall that Lp(G), 1 ≤ p ≤ ∞, denote the Lebesgue spaces of Haar

measure on G (and not of µ). Then Pµ extends as a contraction (that is, a
bounded operator with norm ≤ 1) in any of these spaces.

Theorem 5.2 (Kesten). Let G be a locally compact topological group and µ
be a Borel probability measure on G.

If G is amenable, then Pµ has spectral radius 1 in L2(G).
Conversely, if the support of µ spans G and Pµ has spectral radius 1 in

L2(G), then G is amenable.

Remark 5.3. In other words, when the support of µ spans G, the fact that
the spectral radius is < 1 or not does not depend on µ.

Remark 5.4. By reasoning as in the proof of Corollary 3.4, one could easily
prove that the spectral radius of Pµ in L2(G) is < 1 as soon as the closed
subgroup spanned by the support of µ is not amenable.

To prove that the property in the Theorem implies that the group is
amenable, we will use it to build an invariant mean. This will be done by
applying the following Lemma, which is a kind of converse to Proposition
4.1.
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Lemma 5.5. Let G be a locally compact topological group. Assume that
there exists a nonnegative sequence (θn) in L1(G) such that, for any n,∫
G
θn(h)dh = 1 and ‖gθn − θn‖1 −−−→

n→∞
0 for g in a dense subset of G. Then

G is amenable.

Proof. Let, as in Section 3, BLUC(G) be the space of bounded left uniformly
continuous functions on G, eauipped with the supremum norm and the nat-
ural left G-action, which is isometric and continuous. For any n, we let mn

be the linear functional ϕ 7→
∫
G
θn(g)ϕ(g)dg on BLUC(G), which is bounded

with norm 1. By Banach-Alaoglu Theorem, the sequence (mn) admits a limit
point m in the topological dual space of BLUC(G) for the weak-∗ topology.
Since for any n, θn is nonnegative and

∫
G
θn(h)dh = 1, m is nonnegative and

〈m, 1〉 = 1. Since ‖gθn − θn‖1 −−−→
n→∞

0 for g in a dense subset of G, we have

gm = m for g in the same dense subset, hence, since the action of G on
BLUC(G) is continuous, the same holds for any g in G (which would not be
necessarily the case if we would work in L∞(G) instead of BLUC(G)).

In other words, BLUC(G) admits a left-invariant mean. By Lemma 3.3,
so does L∞(G) and we are done by Proposition 3.1.

Proof of Theorem 5.2. Assume that G is amenable. By Proposition 3.1, it
admits an invariant mean. Hence, by Proposition 4.1, for any compact subset
K of G, for any ε > 0, there exists ϕ in L1(G) such that ‖ϕ‖1 = 1 and
‖gϕ − ϕ‖1 ≤ ε for any g in K. We claim that the same holds in L2(G).
Indeed, after replacing ϕ by |ϕ|, we can assume ϕ is nonnegative. Now, if
ψ =
√
ϕ, then ψ belongs to L2(G) and, as the square root function is 1

2
-Hölder

continuous, for any g in K,

‖gψ − ψ‖22 ≤ ‖gϕ− ϕ‖1 ≤ ε

and we are done.
Now, we claim that, for any ε > 0, there exists a unit function ϕ in L2(G)

such that ‖Pµϕ − ϕ‖2 ≤ ε, which implies that 1 is a spectral value of Pµ.
Indeed, fix a compact subset of G with µ(K) ≥ 1 − ε. There exists a unit
function ϕ in L2(G) such that ‖gϕ− ϕ‖2 ≤ ε for any g in K. We have

Pµϕ =

∫
K

g−1ϕdµ(g) +

∫
GrK

g−1ϕdµ(g),

hence ‖Pµϕ− ϕ‖2 ≤ 3ε, which should be proved.
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Conversely, assume that the support of µ spansG and that Pµ has spectral
radius 1. Then Pµ has a spectral value λ of modulus 1. This means that
Pµ−λ is not injective or that is has non dense image or that it has non closed
image.

If Pµ − λ is not injective, we let ϕ be unit element in L2(G) such that
Pµϕ = λϕ. Then, we have

λ = 〈Pµϕ, ϕ〉 =

∫
G

〈ϕ, gϕ〉dµ(g).

For any g in G, gϕ has norm 1 and |〈ϕ, gϕ〉| ≤ 1. Since λ has modulus one,
we get 〈ϕ, gϕ〉 = λ for µ-almost any g in G, that is, gϕ = λϕ. By replacing
ϕ with |ϕ|, we can assume λ = 1. Then, since gϕ = ϕ for µ-almost any g
in G and the support of µ spans G, L2(G) contains a G-invariant non zero
vector. One easily checks that this implies that G is compact.

If Pµ − λ has non dense image, then its adjoint operator is non injective.
But the adjoint operator P ∗µ of Pµ is given by P ∗µ = Pµ∨ , where µ∨ is the
image of µ under the inverse map. Hence, if Pµ − λ has non dense image,
Pµ∨ − λ is not injective and the group G is compact as above.

It remains to deal with the main case, that is the one where Pµ − λ has
non closed image, which means that there exists a sequence (ϕn) of unit
elements in L2(G) such that ‖Pµϕn − λϕn‖2 −−−→

n→∞
0. This is a refinment of

the previous argument, but instead of constructing an invariant function, we
will construct an invariant mean by a limit process, which is somehow the
converse of Proposition 4.1. Again, we have, for any n,

〈Pµϕn, ϕn〉 =

∫
G

〈ϕn, gϕn〉dµ(g),

hence ∫
G

〈ϕn, gϕn〉dµ(g) −−−→
n→∞

λ

and in particular ∫
G

Re(〈λϕn, gϕn〉)dµ(g) −−−→
n→∞

1.

Set, for g in G and n in N,

ψn(g) = ‖gϕn − λϕn‖22 = 2− 2 Re(〈λϕn, gϕn〉) ≥ 0.

17



We have
∫
G
ψndµ −−−→

n→∞
0 and therefore, ψn −−−→

n→∞
0 in L1(G, µ) (be careful,

this is the L1 space of the measure µ, not of the Haar measure). Now after
extracting a subsequence, we can assume that, for µ-almost any g in G,
ψn(g) −−−→

n→∞
0, that is

‖gϕn − λϕn‖22 −−−→
n→∞

0.

We will use this property to construct an invariant mean on G. We must
first bring everything back to L1(G). To do this, we note that, if α and β are
in L2(G), we have

||α|2 − |β|2| ≤ ||α| − |β|| × ||α|+ |β|| ≤ |α− β| × ||α|+ |β||,

hence

‖|α|2 − |β|2‖1 ≤ ‖α− β‖2 × ‖|α|+ |β|‖2 ≤ ‖α− β‖2(‖α‖2 + ‖β‖2).

Thus, if we set θn = |ϕn|2, we get, for µ-almost any g in G,

‖gθn − θn‖1 −−−→
n→∞

0.

Besides, for any n,
∫
G
θn(h)dh = 1. By Lemma 5.5, G is amenable.

6 Growth of groups

We now aim at deducing from Theorem 5.2 properties on the speed of escape
of the trajectories of random walks. To do this, we need to define a natural
notion of distance in such a group. This will be done in groups where we can
write every element as a product of elements from a given compact subset.

Definition 6.1. Let G be a locally compact topological group. We say that
G is compactly generated if there exists a compact subset of G which spans
G as a group.

Example 6.2. A discrete group is compactly generated if and only if it is
finitely generated. The groups Zd and GLd(Z), d ≥ 1, are finitely gener-
ated. The fundamental group of a compact connected manifold is finitely
generated.

If s ≥ 2 is an integer, the subring Z[s−1] spanned by s in Q is not finitely
generated as an abelian group.
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Example 6.3. A connected locally compact topological group is always com-
pactly generated: indeed, as it is connected, it is generated by any open set.
Hence, the groups Rd or GLd(R), d ≥ 1, are compactly generated (note that
GLd(R) is not connected, but it has two connected components).

Example 6.4. Say a connected locally finite tree is regular if each of its vertices
has the same number of neighboors. Then the group of automorphisms of a
connected locally finite regular tree is compactly generated.

Assume that G is compactly generated and fix a compact symmetric
subset K of G which spans G, so that G =

⋃
n∈NK

n. For g in G, we
define jK(g) as the minimal n with g ∈ Kn. For any g, h in G, we have
jK(gh) ≤ jK(g) + jK(h), so that the function (g, h) 7→ jK(g−1h) is a distance
on G. Note that this distance induces the discrete topology on G! It will be
interesting in as much as it gives informations on the large scale geometry of
G.

First, the function jK is roughly independent of the choice of K.

Lemma 6.5. Let G be a locally compact group and K and L be compact
symmetric subsets of G which span G. Then there exists a > 1 with jL ≤ ajK.

Proof. By definition, we have G =
⋃
n∈NK

n. We claim that every g in
G lies in the interior of Kn for some n. Indeed, by Baire’s Lemma, there
exists n such that Kn has non empty interior. In other words, there exists
a neighborhood V of e in G and h in G such that V h ⊂ Kn. Let g be in G
and p be such h−1g ∈ Kp. We have

V g = V h(h−1g) ⊂ Kn+p

and we are done.
In particular, since L is compact, there exists m such that L ⊂

⋃
n≤mK

n.
We get jL ≤ mjK , which should be proved.

The behaviour of jK can be read in certain isometric actions of G.
Let (X, d) be a metric space. We say that X is proper if the bounded

subsets of X are relatively compact. We say that it is geodesic if, for any x, y
in X with d(x, y) = δ, there exists an isometry γ : [0, δ]→ X with γ(0) = x
and γ(δ) = y (by γ being an isometry, we mean that d(γ(t), γ(u)) = u − t
for any 0 ≤ t ≤ u ≤ δ).

Now, if G acts continuously on a locally compact topological space X,
we say that the action is proper if, for any compact subset L of X, the set
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{g ∈ G|gL∩L 6= ∅} is compact. We say that the action is cocompact if there
exists a compact subset L of X with GL = X.

Lemma 6.6. Let G be a locally compact topological group and (X, d) be a
proper geodesic metric space, equipped with a continuous isometric G-action.
Assume that the action is proper and cocompact. Then G is compactly gen-
erated. If K is a compact symmetric subset of G which spans G, for every x
in G, there exists a > 1 and b > 0 such that, for any g in G, one has

1

a
jK(g)− b ≤ d(x, gx) ≤ ajK(g) + b. (6.1)

One says that the metric spaces (G, jK) and (X, d) are quasi-isometric.

Remark 6.7. The assumption that the metric space is geodesic is important.
For example, if G = Z, K = {−1, 1} and X = R, equipped with the action
of Z by translations, but with the distance (t, u) 7→

√
|u− t|, the result is

false.

Example 6.8. Let G be a group and K be a compact subgroup of G. Then
the action of G on G/K is proper.

Assume G = SL2(R) and K is SO(2). The action of G by homographies
on the upper half-plane H = {z ∈ C| Im z > 0} identifies H and G/K. This
action preserves a Riemannian complete metric. Hence the associated dis-
tance is proper. It can also be shown to be geodesic. The Lemma implies
that, if K is a symmetric compact subset of G which spans G, the func-
tion jK is comparable with the function g 7→ log ‖g‖, where ‖.‖ stands for
the operator norm for the action on R2, equipped with the standard scalar
product.

Assume now X is a homogeneous locally finite tree, G is its group of
automorphisms and K is the stabilizer of a point x (in particular, K is open
in G). The set G/K identifies with the set of vertices of X. The action
of G on X preserves the natural tree metric which is proper and geodesic.
From the fact that the action of G on the set of vertices is proper, one easily
deduces that the action on X is proper.

Proof of Lemma 6.6. By Lemma 6.5, if (6.1) holds for a given compact gen-
erating set in G, it holds for any.

Let g be in G and set y = gx and n = [d(x, y)]. As X is geodesic, there
exists a sequence x = x0, . . . , xn+1 = y of elements of X with d(xi−1, xi) ≤ 1,
1 ≤ i ≤ n+ 1. Let L be a compact subset of X containing x with X = GL.
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Set h0 = e, hn+1 = g and, for any 1 ≤ i ≤ n, write xi = hiyi with yi in L
and hi in G. For 1 ≤ i ≤ n + 1, set gi = h−1i−1hi. By construction, one has
g = g1 · · · gn+1. Now, for 1 ≤ i ≤ n + 1, one has d(hi−1yi−1, hi−1giyi) ≤ 1,
hence gi belongs to the set

K = {h ∈ G|∃y, z ∈ L d(hy, z) ≤ 1},

which is compact since the action is proper and X is a proper metric space.
Therefore K spans G and, for any g in G, jK(g) ≤ d(x, gx) + 1.

Conversely, let g be in G and g1, . . . , gn be in K with g1 · · · gn = g. We
have

d(x, gx) ≤ d(x, g1x)+d(g1x, g1g2x)+· · ·+d(g1 · · · gn−1x, gx) = nmax
h∈K

d(x, hx).

Thus, we get d(x, gx) ≤ cjK(g) with c = maxh∈K d(x, hx). The Lemma
follows.

7 Speed of escape

Let still G be a locally compact topological group which is spanned by a
compact symmetric subset K. We can dominate the growth of the Haar
measures of the balls of jK .

Proposition 7.1. Let G be a locally compact group, with Haar measure λ,
and K be a compact symmetric subset of G with nonempty interior. Then
the sequence (λ(Kn)

1
n ) converges.

In other words, the growth of the balls of the metric jK is at most expo-
nential.

In case the group is discrete, the proof is straightforward, since λ may
be chosed to be the counting measure and the sequence (λ(Kn)) is then
subbaditive. In general, the same kind of phenomenon appears due to the
following

Lemma 7.2. Let G be a locally compact group, with Haar measure λ, and
A,B,C be compact subsets of G. We have

λ(AB)λ(C) ≤ λ(AC)λ(C−1B).
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Proof. The proof relies on the interpretation of the number λ(AC)λ(C−1B)
as the integral of a convolution product. More precisely, let ϕ = 1AC ∗1C−1B

be the convolution product of the characteristic functions of AC and C−1B,
that is, for any g in G,

ϕ(g) =

∫
G

1AC(h) ∗ 1C−1B(h−1g)dh.

By Fubini Theorem, on one hand, we have∫
G

ϕ(g)dg = λ(AC)λ(C−1B). (7.1)

On the other hand, we claim that, for g in AB, we have

ϕ(g) ≥ λ(C). (7.2)

This and (7.1) finish the proof.
Let us hence prove (7.2). For g in AB, write g = ab with a in A and b in

B. We have

ϕ(g) =

∫
G

1AC(h)∗1C−1B(h−1g)dh =

∫
G

1AC(ah)∗1C−1B(h−1a−1g)dh ≥ λ(C),

the inequality being obtained by taking h ∈ C in the integral. The Lemma
follows.

Proof of Proposition 7.1. For n,m in N, apply Lemma 7.2 with A = Kn,
B = Km and C = C−1 = K. We get

λ(Kn+m) ≤ λ(K)−1λ(Kn+1)λ(Km+1).

By extending the usual proof for subadditive sequences, it is not difficult to
show that this implies the result.

Now, Theorem 5.2 and Proposition 7.1 together imply that trajectories
of random walks in non amenable groups escape quickly to infinity:

Corollary 7.3. Let G be a compactly generated locally compact group and µ
be a Borel probability measure on G. Assume that the subgroup of G spanned
by the support of µ is not amenable. Let K be a compact symmetric subset
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of G which spans G. Then, there exists α, ε > 0 such that, if g1, . . . , gn, . . .
is a sequence of independent random elements of G with law µ,

P(jK(gn · · · g1) ≤ εn)� e−αn.

In particular, almost surely, for large n,

jK(gn · · · g1) ≥ εn.

Remark 7.4. Set-theoretically, the conclusion can be rewritten as

µ∗n(K [εn])� e−αn.

Remark 7.5. Let µ be a Borel probability measure on R with finite first
moment and assume that µ has positive drift, that is

∫
R xdµ(x) > 0. Then by

the usual law of large numbers, there exists ε > 0 such that, if x1, . . . , xn, . . .
is a sequence of independent random variables with law µ, we have, almost
surely, for large n,

xn + · · ·+ x1 ≥ εn.

Besides, if µ admits exponential moments, by the large deviations principle,
we can assume that

P(xn + · · ·+ x1 ≤ εn)� e−αn

for some α > 0.
The content of Corollary 7.3 is that, when the ambient group is not

amenable, analogue properties hold for any probability measure, with no
moment assumption.

Proof of Corollary 7.3. We can assume that K has nonempty interior. Now,
let L be any compact subset of G. For any g, x in G, we have

1L(g)1K(x) ≤ 1LK(gx)1K(x).

By integrating, we get, in L2(G), for any n,

µ∗n(L)λ(K) ≤
∫
G

(∫
G

1LK(gx)dµ∗n(g)

)
1K(x)dx = 〈P n

µ 1LK ,1K〉
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(where λ denotes Haar measure of G and 〈., .〉 scalar product in L2(G)). Fix
ε > 0 to be determined later and set L = K [εn]. Theorem 5.2 and Remark
5.4 and the assumptions imply that there exists α > 0 with

〈P n
µ 1K[εn]+1 ,1K〉 � e−αn‖1K[εn]+1‖2‖1K‖2.

Proposition 7.1 implies that, by chosing ε small enough, we can assume that
the right hand-side is � e

α
2
n. We then get

µ∗n(K [εn])� e−
α
2
n

and the first part of the Corollary is proved. The second follows, by Borel-
Cantelli Lemma.

8 Subgroups of SL2(R)
From the discussion in Example 6.8, it follows that Corollary 7.3 may be
translated in terms of the norm metric for random walks on SL2(R). To make
this translation complete, we shall describe precisely the closed amenable
subgroups of SL2(R).

Set G = SL2(R), K = SO(2) and

A+ =

{(
s 0
0 s−1

)∣∣∣∣ s ∈ R, s ≥ 1

}
.

To be able to describe amenable subgroups of G, we will need to describe
the way a sequence can go to ∞ in G. This will use

Lemma 8.1 (Cartan decomposition). One has G = KA+K.

Proof. Let g be in G. Set s = tgg to be the product of the transpose of the
matrix of g with g. Then s is symmetric and positive and may hence be writ-
ten as r2, where r is also symmetric and positive. We have t(gr−1)(gr−1) = e,
hence k = gr−1 belongs to K. The result follows by diagonalizing r in some
direct orthonormal basis.

Let P1
R be the projective line, that is, the set of vector lines of R2 equipped

with the natural topology as a quotient of R2 r {0}. This is a compact set.
Lemma 8.1 implies that a continuous Borel probability measure on P1

R has a
compact stabilizer in G.
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Lemma 8.2. Let ν be a Borel probability measure on P1
R. Assume the stabi-

lizer of ν in G is unbounded. Then ν is supported on at most two elements
of P1

R.

Proof. For s ≥ 1, set as =

(
s 0
0 s−1

)
. Note that, if x = R(1, 0) and y =

R(0, 1) in P1
R, for any z in P1

Rr{y}, one has asz −−−→
s→∞

x and this convergence

is uniform on compact subsets of P1
R r {y}.

Let now (gn) be an unbounded sequence of elements of G that preserve
ν. Thanks to Lemma 8.1, write, for any n, gn = knasnln, with kn, ln ∈ K
and sn ≥ 1. After extracting, we can assume sn −−−→

n→∞
∞ and there exists

k, l in K with kn −−−→
n→∞

k and ln −−−→
n→∞

l. We get gnz −−−→
n→∞

kx, uniformly

for z in a compact subset of P1
R r {l−1y}. Since gn preserves ν, this gives

ν({kx, l−1y}) = 1.

Let us define the subgroups of G which are not too small.

Definition 8.3. We say that a subgroup of G is non-elementary if it is
unbounded and does not fix a line in R2, nor the union of two lines.

Remark 8.4. A subgroup of G is non-elementary if and only if it is neither
contained up to conjugacy in SO(2) nor in{(

a b
0 a−1

)∣∣∣∣ a, b ∈ R, a 6= 0

}
nor in {(

a 0
0 a−1

)∣∣∣∣ a ∈ R, a 6= 0

}
∪
{(

0 a
−a−1 0

)∣∣∣∣ a ∈ R, a 6= 0

}
.

Example 8.5. Let s, t > 1 and θ ∈]0, π
2
[ be given. Set rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

The subgroup spanned by the matrices as and rθatr
−1
θ is non-elementary.

We get

Proposition 8.6. Let H be closed subgroup of G. Then H is non-amenable
if and only if it is non-elementary.
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Proof. Assume H is amenable and unbounded. Then, it fixes a Borel proba-
bility measure ν on P1

R. Thus, by Lemma 8.2, the support of ν is a singleton
or a pair in P1

R. In any case, since this support is H-invariant, H is elemen-
tary.

Conversely, by Remark 8.4, if H is elementary, it is solvable, hence
amenable.

From Example 6.8 and Corollary 7.3, we now have

Theorem 8.7. Let µ be a Borel probability measure on G = SL2(R) such
that the closed subgroup of G spanned by the support of µ is non-elementary.
Then, there exists α, ε > 0 such that, if g1, . . . , gn, . . . is a sequence of inde-
pendent random elements of G with law µ,

P(‖gn · · · g1‖ ≤ eεn)� e−αn.

In particular, almost surely, for large n,

‖gn · · · g1‖ ≥ eεn.

Example 8.8. Keep the notations of Example 8.5. Then the Theorem applies
to the probability measure µ = 1

2
(δas + δrθatr−1

θ
).
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