
CENTRAL LIMIT THEOREM ON HYPERBOLIC
GROUPS

YVES BENOIST AND JEAN-FRANÇOIS QUINT

Abstract. We prove a central limit theorem for random walks
with finite variance on Gromov hyperbolic groups.

1. Introduction

1.1. Central limit theorem. Let (M,d) be a metric space and o be
a point in M . Let G := Isom(M) be the group of isometries of M
and set, for g in G, κ(g) := d(go, o). Let µ be a Borel probability
measure on G with a finite first moment :

∫
G
κ(g) dµ(g) < ∞. Let

g1, . . . , gn, . . . be independant random isometries of M chosen with law
µ. We want to understand the behavior of the sequence of random
variables κ(gn . . . g1). It is well-known that this sequence satisfy a law of
large number : there exists a constant λ called the escape rate of µ such
that, almost surely, lim

n→∞
1
n
κ(gn . . . g1) = λ. In this paper we will prove

that under suitable assumptions, this sequence satisfies a central limit
theorem as soon as µ has a finite second moment :

∫
G
κ(g)2 dµ(g) <∞.

These suitable assumptions are : the metric space (M,d) is proper,
quasiconvex, and Gromov hyperbolic (see Definition 2.1), and the law
µ is non-elementary and non-arithmetic (see Definition 3.1).

Theorem 1.1. Let (M,d) be a proper, quasiconvex, Gromov hyper-
bolic space, o ∈ M and µ a non-elementary and non-arithmetic Borel
probability measure on the group G ⊂ Isom(M) with finite second mo-
ment. Let λ be the escape rate of µ. Then the renormalized variables

1√
n
(κ(gn · · · g1)−nλ) converge in law to a non-degenerate gaussian law.

Important examples of such Gromov hyperbolic spaces M are
(i) Metric trees,
(ii) Gromov hyperbolic groups Γ endowed with the left-invariant dis-
tance associated to a generating set S of Γ.
(iii) Universal covers of compact Riemannian manifolds with negative
curvature.

If one replace the finite second moment assumption by a finite expo-
nential moment assumption, i.e.

∫
G
eα0 κ(g) dµ(g) <∞ for some α0 > 0,

1
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then the central limit theorem 1.1 is mainly due to Bjorklund in [5]
(extending earlier central limit theorem for free groups due to Sawyer-
Steger in [24] and Ledrappier in [22]).

Hence the key point of this paper is to get rid of this finite exponen-
tial moment assumption. For that we adapt the method we have intro-
duced in [2] for linear groups. This method does not rely on spectral
gap property of transfer operators, this is why it allows us to prove this
central limit theorem without any further assumptions on the bound-
aries of M or on the support of µ. Even for the free group, our central
limit theorem seems to be new when the law µ is only assumed to have
finite second moment.

1.2. Strategy. We want to prove the central limit theorem for the
random variables κ(gn · · · g1). Let X be the Busemann boundary of M
(see Section 2.3). Since this function κ on G is very much related to the
Busemann cocycle σ : G×X → R (see Sections 2.4 and 3.2), we are re-
duced to prove, for every x in X, a central limit theorem (Theorem 4.7)
for the random variables σ(gn · · · g1, x). Adding a suitable coboundary,
we will replace this cocycle σ by another cocycle σ0 for which the “ex-
pected increase” is constant i.e. such that

∫
G
σ0(g, x) dµ(g) = λ for

all x in X. This will allow us to use the classical central limit theo-
rem for martingales due to Brown in [7]. This cocycle σ0 will be given
by σ0(g, x) = σ(g, x) − ψ(x) + ψ(gx) for a bounded function ψ on X
(Proposition 4.6). As in [2], we give an explicit formula for this function
ψ in terms of a µ̌-stationary measure ν∗ on X, where µ̌ is the image of
µ by g 7→ g−1. This formula is

ψ(x) = −2
∫
G

(x|y)o dν∗(y),(1.1)

where (x|y)o is the Gromov product on X (see Section 2.3). The main
issue is to check that this integral is finite, i.e. that the stationary mea-
sure ν∗ is log-regular, when the second moment of µ is finite (Proposi-
tion 4.2). As in [2], the key point is to prove the complete convergence
of the sequence 1

n
κ(gn · · · g1) toward the escape rate λ (Proposition 4.1),

generalizing Hsu-Robbins theorem.
Compared to the linear case in [2], the new technical difficulties

which occur are due to the fact that the Busemann coboundary σ is
a cocycle on the Busemann boundary X, while the behavior of the
random walk is much easier to describe on the Gromov boundary ∂M
(see Proposition 3.1). This forces us to change frequently our point of
view, working sometimes with Buseman boundary and sometimes with
Gromov boundary.
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1.3. Plan. In Chapter 2, we recall without proof the basic definitions
and properties for Gromov hyperbolic spaces and their boundaries.

In Chapter 3, we recall with short proofs basic results for random
walks on Gromov hyperbolic groups.

In Chapter 4, we prove successively the complete convergence to-
wards the escape rate, the log-regularity of the stationary measure on
the Gromov boundary, the centerability of the Busemann cocycle on
the Busemann boundary, and the central limit theorem 4.7.

In Chapter 5, we prove an optimal version (Proposition 5.1 and Ex-
ample 5.4) of the log-regularity of the stationary measure on the Gro-
mov boundary when G acts cocompactly on M . This optimal version
is not needed for the proof of the central limit theorem but seems in-
teresting in its own.

We thank M. Bjorklund for interesting discussions on this topic.

2. Hyperbolic spaces and their boundaries

In this chapter, we recall without proof the basic defini-
tions and properties for Gromov hyperbolic spaces and
their boundaries (see [14], [13], [9], [25] or [18] for more
details).

2.1. Gromov hyperbolic spaces. Let (M,d) be a metric space, and
o be a point of M . The Gromov product is defined, for o, m1, m2 in
M , by

(m1|m2)o := 1
2
(d(o,m1) + d(o,m2)− d(m1,m2)).

We assume that the metric space M is Gromov hyperbolic i.e. there
exists a constant δ > 0 such that, for every o, m1, m2, m3 in M , one
has

(2.1) (m1|m3)o ≥ min((m1|m2)o, (m2|m3)o)− δ.

Definition 2.1. The metric space M is said to be proper if the bounded
closed subsets are compact. It is said to be quasi-convex, if there exists
C > 1 such that every two points m, m′ in M can be joined by a
C-geodesic, i.e. there exists a sequence m1 = m,m2, . . . ,mn = m′ of
points in M , such that for 1 ≤ i ≤ j ≤ n, one has

j − i− C ≤ d(mi,mj) ≤ j − i+ C.

For instance, when M is geodesic i.e. when any two points of M are
joined by a geodesic arc, then M is quasiconvex.
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2.2. Gromov boundary. Let (M,d) be a proper quasiconvex Gromov
hyperbolic space. The Gromov boundary ∂M is the set of equivalence
classes ξ = [mn] of sequences (mn) of points in M going to infinity such
that (mn|mp)o −−−−→

n,p→∞
∞, where two sequences (mn) and (m′n) are said

to be equivalent if (mn|m′p)o −−−−→
n,p→∞

∞. Since M is Gromov hyperbolic,

this is an equivalence relation. Note that, since M is proper and qua-
siconvex, for every equivalence class ξ, we can choose a representative
(mn) which is a C-geodesic.

We extend the Gromov product to the Gromov boundary: for ξ, ξ′

in ∂M and m in M , we set

(m|ξ)o = (ξ|m)o = inf lim inf
n→∞

(m|mn)o and(2.2)

(ξ|ξ′)o = inf lim inf
n→∞

(mn|m′n)o ∈ [0,∞],(2.3)

where the infimum is over all the sequences mn and m′n such that
ξ = [mn] and ξ′ = [m′n].

We endow the union M∗ := M ∪ ∂M with the following topology. A
basis of neighborhoods of a point m in M is given by the balls

B(m, r) =: {m′ ∈M | d(m,m′) ≤ r} for r > 0.

A basis of neighborhoods of a point ξ in ∂M is given by the sets

V(ξ, R) := {ξ′ ∈M∗ | (ξ|ξ′)o ≥ R} for R > 0.

Since M is proper and quasiconvex, this topological space M∗ is com-
pact and metrizable. It is called the Gromov compactification of M .

For any ξ1, ξ2, ξ3 in M∗, one still has

(2.4) (ξ1|ξ3)o ≥ min((ξ1|ξ2)o, (ξ2|ξ3)o)− δ.
The Gromov product might not be continuous on M∗ but we still have
the following rough-continuity property: for any converging sequences
ξn → ξ and ξ′n → ξ′ in M∗, one has the inequalities in [0,∞]

(ξ|ξ′)o ≤ lim inf
n→∞

(ξn|ξ′n)o ≤ lim sup
n→∞

(ξn|ξ′n)o ≤ (ξ|ξ′)o + 2δ.(2.5)

2.3. Busemann boundary. Let (M,d) be a proper quasiconvex Gro-
mov hyperbolic space. We recall that the Busemann compactification
M of M is the set of equivalence classes x of sequences of points (mn)
in M such that, for every m in M , the limit

hx(m) := lim
n→∞

d(m,mn)− d(o,mn)(2.6)

exists, where two sequences (mn) and (m′n) are said to be equivalent if
they define the same limit function on M . This function hx is called
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the Busemann function at x. Identifying each element x in M with the
corresponding Busemann function, we endow M with the topology of
uniform convergence on compact sets. Since M is proper and since all
these Busemann functions are 1-Lipschitzian and vanishes at the point
o, this topological space M is compact and metrizable. Moreover, since
M is quasiconvex, the space M contains M as an open subset. The
space X := M rM is the Busemann boundary of M .

We also extend the Gromov product to the Busemann boundary: for
x, x′ in X and m in M , we set

(2.7) (m|x)o = (x|m)o = 1
2
(d(m, o)− hx(m)) and

(2.8) (x|x′)o := − min
m∈M

1
2
(hx(m) + hx′(m)).

We denote by π : M → M∗;x 7→ πx the natural projection between
Busemann and Gromov compactifications. This is the unique continu-
ous map such that πm = m for all m in M . This map is surjective.

The relationship between the Gromov product on the Busemann
compactification M and on the Gromov compactification M∗ is given
by the following inequality : There exists a constant C0 > 0, such that
for any x, y in M ,

(πx|πy)o − C0 ≤ (x|y)o ≤ (πx|πy)o + C0.(2.9)

In particular, two points x and y in X have same image πx = πy in ∂M
if and only if (x|y)o =∞.

The Busemann functions allow us to control the distance function
thanks to the following inequality: for any x, y in M with πx 6= πy,
there exists a constant Cx,y > 0 such that, for all m in M ,

max(hx(m), hy(m) ≥ d(o,m)− Cx,y(2.10)

2.4. Isometries of hyperbolic spaces. Let G := Isom(M) be the
group of isometries of M . We denote by σ : G×X → R the Busemann
cocycle, it is the continuous cocycle given, for g in G and x in X, by

σ(g, x) := hx(g
−1o).(2.11)

For g in G, we define the length

κ(g) := d(go, o)(2.12)

and define the stable length of g by

`(g) := lim
n→∞

1
n
κ(gn).(2.13)

The group G acts continuously on both compactifications M and M∗

and the projection π : M →M∗ is G-equivariant.
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We collect a few useful properties of these functions: We first express
that σ is a cocycle. We give then relations between the length κ(g) with
the cocycle and the Gromov product, these relations will be useful to
prove the log-regularity of the stationary measure ν∂M . The last equal-
ity is the key formula which will allow us to solve the cohomological
equation 4.13.

Lemma 2.1. Let (M,d) be a proper quasiconvex Gromov hyperbolic
space. For any isometries g, g′ of M and any x, y in the Busemann
boundary X, one has the equalities

σ(gg′, x) = σ(g, g′x) + σ(g′, x),(2.14)

σ(g−1, x) = −σ(g, g−1x),(2.15)

κ(g)− σ(g, x) = 2 (g−1o|x)o,(2.16)

κ(g) + σ(g, x) = 2 (go|gx)o,(2.17)

σ(g, x) = −2 (x|g−1y)o + 2 (gx|y)o + σ(g−1, y)(2.18)

Proof. Those equalities are straightforward applications of the defini-
tions. �

The following lemma describes the dynamics of G on the Gromov
boundary. It is a key ingredient in the proof of Proposition 3.1.

Lemma 2.2. Let (M,d) be a proper quasiconvex Gromov hyperbolic
space. Let ν be an atom-free Borel probability measure on the Gromov
boundary ∂M , and gn be a sequence of isometries of M such that the
limit measure ν ′ := lim

n→∞
(gn)∗ν exists.

If the sequence gn is unbounded then ν ′ is a Dirac mass.
Conversely, if ν ′ = δξ then one has lim

n→∞
gno = ξ.

Proof. If the sequence gn is unbounded, we may after extraction, as-
sume that the following limits ξ+ = lim

n→∞
gno and ξ− = lim

n→∞
g−1
n o exist

in M∗ and belong to ∂M . We first check that,
for any η 6= ξ− in ∂M , the sequence gnη converges to ξ+.

Indeed, the sequence (η|g−1
n o)o is bounded and hence the sequence

d(o, g−1
n o)−(η|o)g−1

n o is also bounded, and one has lim
n→∞

(gnη|gno)o =∞.

This proves that the sequence gnη converges to ξ+. But then, since
ν({ξ−}) = 0, the probability measure ν ′ has to be a Dirac mass at ξ+.

Conversely, for the same reasons, if ν ′ is a Dirac mass at a point ξ,
this point has to be equal to any cluster point of the sequence gno. �
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2.5. Hyperbolic group. Let G be a locally compact group which is
generated by a compact neighborhood V of e. We may assume that
V = V −1. We introduce the left-invariant distance dV on G given,
for g, h in G, by dV (g, h) := inf{n ≥ 0 | g−1h ∈ V n}. The topology
defined by this distance is the discrete topology.

A locally compact group G is said to be hyperbolic if it is generated
by a compact neighborhood V of e and such that the distance dV is
hyperbolic. Note that this property does not depend on the choice of
V .

According to [8, Cor 2.6] a locally compact group G is hyperbolic if
and only if G has a continuous proper cocompact isometric action on
a proper geodesic hyperbolic space (M,d).

3. Random walk on hyperbolic spaces

In this chapter we recall basic results for random walks on
Gromov hyperbolic groups (see [20], [5], or [16] for more
details; a comparison with the linear case as in [23],[12],
[15], [6], [11], [3] might also be useful)

3.1. Stationary measure on Gromov boundary. Let (M,d) be
a proper quasiconvex Gromov hyperbolic space and o ∈ M . Let µ
be a Borel probability measure on the group G = Isom(M) and Gµ

be the smallest closed subgroup of G such that µ(Gµ) = 1. Let
g1, . . . , gn, . . . be independant random elements of G chosen with law µ.
We want to understand the behavior of the random variables gn . . . g1o
and g1 . . . gno. We denote by µ∗n the nth-convolution power µ ∗ · · · ∗ µ.

Definition 3.1. We say that µ is non-elementary if the group Gµ is
unbounded and if Gµ does not have any finite orbit in the Gromov
boundary ∂M .

We say that µ is non-arithmetic if there exists n ≥ 1 and g, g′ in
the support of µ∗n such that `(g) 6= `(g′).

We denote by (B,B, β, S) the associated one-sided Bernoulli system
i.e. B = GN∗ is the set of sequences b = (b1, b2, . . .) with bn in G, B is
the product σ-algebra, β is the product measure µ⊗N∗ , and S : B → B
is the shift given by Sb = (b2, b3, . . .). For n ≥ 1, we denote by Bn the
σ-algebra spanned by the first n coordinates b1, . . . , bn.

A Borel probability measure ν on X or on ∂M is said to be µ-
stationary if µ ∗ ν = ν.

Proposition 3.1. Let (M,d) be a proper quasiconvex Gromov hyper-
bolic space and o ∈ M . Let µ be a non-elementary Borel probability
measure on the group G = Isom(M).
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a) For β-almost any b in B, one has lim
n→∞

κ(b1..bn)= lim
n→∞

κ(bn..b1) =∞.

b) For β-almost any b in B, the limit ξb := lim
n→∞

b1..bno exists in ∂M ,

and one has the equality ξb = b1ξSb.
c) There exists a unique µ-stationary Borel probability measure on the
Gromov boundary ∂M which is ν∂M :=

∫
B
δξb dβ(b).

Proof. Let ν be a µ-stationary probability measure on ∂M . Since Gµ

does not have any finite orbit in ∂M , this measure ν is atom-free. By
the martingale theorem, for β-almost all b in B, the limit probabil-
ity measure νb := lim

n→∞
(b1..bn)∗ν exists. Since Gµ is unbounded, for

β-almost all b the sequence b1..bn is unbounded. Hence by Lemma
2.2, the measure νb is a Dirac mass at a point ξb ∈ ∂M and one has
lim
n→∞

b1..bno = ξb. Since ν =
∫
B
δξb dβ(b), the µ-stationary probability

measure ν is unique. �

3.2. Random walk on Busemann boundary. The following propo-
sition compares the behavior of the random variables κ(bn..b1) and
σ(bn..b1, x).

Proposition 3.2. Let (M,d) be a proper quasiconvex Gromov hyper-
bolic space and o ∈ M . Let µ be a non-elementary Borel probability
measure on the group G = Isom(M).
a) For all ε > 0 there exists T > 0 such that, for all x in X,

β({b ∈ B | sup
n≥1

(κ(bn..b1)−σ(bn..b1, x)) ≤ T}) ≥ 1− ε,(3.1)

and hence, for all n ≥ 1,

µ∗n({g ∈ G | (κ(g)− σ(g, x)) ≤ T}) ≥ 1− ε.(3.2)

b) For all x in X, for β-almost all b in B, one has lim
n→∞

σ(bn..b1, x) =∞.

Proof. a) According to Formulas (2.9) and (2.16), it is equivalent to
prove the following assertion :

For all ε > 0 there exists T > 0 such that, for all ξ in ∂M ,

β({b ∈ B | sup
n≥1

(b−1
1 ..b−1

n o|ξ)o ≤ T}) ≥ 1− ε,(3.3)

According to Proposition 3.1, for β-almost any b in B, the following
limit

(3.4) ξb− := lim
n→∞

b−1
1 ..b−1

n o

exists in ∂M .
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On the one hand, since µ is non-elementary, the µ̌-stationary proba-
bility measure ν∗∂M =

∫
B
δξb− dβ(b) is atom free. Hence, for any ε > 0,

there exists R > 0 such that, for all ξ in ∂M , one has

(3.5) β({b ∈ B | (ξb− |ξ)o ≤ R}) ≥ 1− ε
2
.

On the other hand, using (3.4), (2.4), and (2.5), for all R > 0, for
β-almost any b in B, there exist TR,b > 0 such that, for all ξ in ∂M
with (ξb−|ξ)o ≤ R, one has

(3.6) sup
n≥1

(b−1
1 ..b−1

n o|ξ)o ≤ TR,b.

We choose then a constant T > 0 such that

(3.7) β({b ∈ B | TR,b ≤ T}) ≥ 1− ε
2
.

Then the wanted Equation (3.3) follows from (3.5), (3.6) and (3.7). �

3.3. Escape rate of the random walk. We assume in this section
that the first moment of µ is finite

∫
G
κ(g) dµ(g) <∞. In this case, by

subadditivity, the limit

λ := lim
n→∞

1
n

∫
G
κ(g) dµ∗n(g)

exists and is called the exponent or the escape rate of µ.
There might be more than one stationary measure on the Busemann

boundary X, but the following Proposition 3.3.c tells us that the Buse-
mann cocycle σ on X has unique average λ.

Proposition 3.3. Let (M,d) be a proper quasiconvex Gromov hyper-
bolic space and o ∈ M . Let µ be a non-elementary Borel probability
measure on the group G = Isom(M) such that

∫
G
κ(g) dµ(g) <∞, and

λ be the escape rate of µ.
a) For β-almost all b in B, one has λ = lim

n→∞
1
n
κ(bn . . . b1).

b) For x in X and β-almost all b in B, one has λ = lim
n→∞

1
n
σ(bn . . . b1, x).

c) For all µ-stationary Borel probability measure ν on X, one has
λ =

∫
G×X σ(g, x) dµ(g) dν(x).

d) The escape rate is positive λ > 0.

Proof. a) This follows from Kingman’s subadditive ergodic theorem.
b) This follows from a) and Proposition 3.2.a.
c) This follows from b) and Birkhoff ergodic theorem.
d) This follows from b), Proposition 3.2.b and [6, Lemma II.2.2]. �
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4. Central limit theorem

We begin now the proof of the central limit theorem 1.1.
As in the linear case in [2], the key steps will be a regular-
ity property for the µ-stationary measure on the Gromov
boundary.

4.1. Complete convergence toward the escape rate. As in [2],
we will need the following Proposition 4.1 which is an analog of Hsu-
Robbins-Baum-Katz theorem in [19] and [1] for the convergence toward
the escape rate in Proposition 3.3. When p = 2, it tells us that this
convergence is complete.

Proposition 4.1. Let p > 1. Let (M,d) be a proper quasiconvex Gro-
mov hyperbolic space and o ∈M . Let µ be a non-elementary Borel prob-
ability measure on G such that

∫
G
κ(g)p dµ(g) <∞, and λ be the escape

rate of µ. Then, for every ε > 0, there exist constants Cn = Cn(p, ε, µ)
such that

∑
n≥1 n

p−2Cn <∞ and, for any x in X,

µ∗n({g ∈ G such that |σ(g, x)− nλ| ≥ εn}) ≤ Cn, and(4.1)

µ∗n({g ∈ G such that |κ(g)− nλ| ≥ εn}) ≤ Cn.(4.2)

Proof. a) Since the Busemann cocycle σ has unique average λ, this
follows from [2, Prop. 3.2].
b) Formula (2.10) tells us that, for all x, y in X with πx 6= πy, there

exists C > 0 such that, for all g in G,

(4.3) κ(g)− C ≤ max(σ(g, x), σ(g, y)) ≤ κ(g).

Hence, point b) with another constant Cn, follows from point a). �

4.2. Log-regularity of the stationary measure. The next propo-
sition with p = 2 will be used to solve the cohomological equation
(4.13).

Proposition 4.2. Let p > 1. Let (M,d) be a proper quasiconvex Gro-
mov hyperbolic space and o ∈ M . Let µ be a non-elementary Borel
probability measure on G such that

∫
G
κ(g)p dµ(g) < ∞. Let ν be a

µ-stationary Borel probability measure on the Busemann boundary X.
Then, one has

(4.4) sup
y∈X

∫
X

(x|y)p−1
o dν(x) <∞.
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Remark 4.3. Because of Formula (2.9), one can reformulate Equation
(4.4) as,

(4.5) sup
η∈∂M

∫
∂M

(ξ|η)p−1
o dν∂M(ξ) <∞,

where ν∂M is the unique µ-stationary Borel probability measure on he
Gromov boundary ∂M .

Remark 4.4. When µ is assumed to have an exponential moment, one
can prove that the stationary measure ν is much more regular: its
Hausdorff dimension is finite, i.e. there exists t > 0 such that

(4.6) supy∈P(V ∗)

∫
X
e−t(x|y)o dν(x) <∞.

Lemma 4.5. Under the same assumptions as Proposition 4.2, there
exist constants a > 0 and Cn > 0 with

∑
n≥1 n

p−2Cn < ∞, and such
that, for n ≥ 1, x, y in X, one has

(4.7) µ∗n({g ∈ G | (go|gx)o ≤ an}) ≤ Cn,

(4.8) µ∗n({g ∈ G | (go|y)o ≥ an}) ≤ Cn,

(4.9) µ∗n({g ∈ G | (gx|y)o ≥ an}) ≤ Cn.

Proof. According to Proposition 3.3, the escape rate λ of µ is positive.
We set a = λ

2
. According to Proposition 4.1, there exist constants Cn

such that
∑

n≥1 n
p−2Cn <∞ and such that, for n ≥ 1, x, y in X, there

exist subsets Gn,x,y ⊂ G with µ∗n(Gn,x,y) ≥ 1 − Cn such that, for g in
Gn,x,y, the three quantities

|κ(g)− λn| , |σ(g, x)− λn| , |σ(g−1, y)− λn|
are bounded by λn

4
. We will choose n0 large enough, and prove the

bounds (4.7), (4.8) and (4.9) only for n ≥ n0. We only have to check
that for n ≥ n0 and g in Gn,x,y, one has

(go|gx)o ≥ an , (go|y)o ≤ an and (gx|y)o ≤ an.

We first notice that, according to Equation (2.17), one has

(go|gx)o = 1
2
(κ(g) + σ(g, x)) ≥ 3λn

4
.

This proves (4.7).
Using Equation (2.16), one has

(go|y)o = 1
2
(κ(g)− σ(g−1, y)) ≤ λn

4
.

This proves (4.8).
Hence, combining these two equations with the bound

(go|y)o ≥ min((go|gx)o, (gx|y)o)− δ,
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one gets, for n ≥ n0 := 4δ
λ

,

(gx|y)o ≤ (go|y)o + δ ≤ λn
2
.

This proves (4.9). �

Proof of Proposition 4.2. We choose a, Cn as in Lemma 4.5. We first
check that, for n ≥ 1 and y in X, one has

(4.10) ν({x ∈ X | (x|y)o ≥ an}) ≤ Cn.

Indeed, since ν = µ∗n ∗ ν, one computes using (4.9)

ν({x∈X | (x|y)o≥an}) =
∫
X
µ∗n({g∈G | (gx|y)o≥an}) dν(x)

≤
∫
X
Cn dν(x) = Cn,

Then cutting the integral (4.6) along the subsets An−1,y r An,y where

An,y := {x ∈ X | (x|y)o ≥ an}

one gets the upperbound∫
X

(x|y)p−1
o dν(x) ≤

∑
n≥1 a

p−1np−1(ν(An−1,y)− ν(An,y))

≤ ap−1 + ap−1
∑

n≥1((n+1)p−1 − np−1)Cn

≤ ap−1 + (p−1) 2pap−1
∑

n≥1 n
p−2Cn.

which is finite. This proves (4.4). �

4.3. Solving the cohomological equation.

Proposition 4.6. Let (M,d) be a proper, quasiconvex, Gromov hyper-
bolic space, o a point of M and µ a non-elementary Borel probability
measure on G with a finite second moment. Then the Busemann cocy-
cle σ on X is centerable i.e. there exists a bounded function ψ on X
such that the cocycle σ0 given, for (g, x) in G×X, by

(4.11) σ0(g, x) = σ(g, x)− ψ(x) + ψ(gx)

satisfies, for all x in X,

(4.12)
∫
G
σ0(g, x) dµ(g) = λ.

Proof. We define the function ψ on X by the formula, for x on X,

ψ(x) = −2
∫
X

(x|y)o dν∗(y),

where ν∗ is a µ̌-stationary probability measure on X. According to
Equality (2.18), for all g in G, x, y in X, one has

σ(g, x) = −2(x|g−1y)o + 2(gx|y)o + σ(g−1, y).
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Integrating this equality on G × X for the measure dµ(g) dν∗(y) and
using the µ̌-stationarity of ν∗, one gets the equality, for all x in X,

(4.13)
∫
G
σ(g, x) dµ(g) = ψ(x)−

∫
G
ψ(gx) dµ(g) + λ.

Hence the cocycle σ0 : (g, x) 7→ σ(g, x)−ψ(x)+ψ(gx) satisfies Equation
(4.12). �

4.4. Central limit theorem. We restate more precisely our central
limit theorem.

Theorem 4.7. Let (M,d) be a proper, quasiconvex, Gromov hyper-
bolic space, o a point of M and µ a non-elementary Borel probability
measure on the group G := Isom(M) with a finite second moment∫
G
κ(g)2 dµ(g) <∞. Let λ be the escape rate of µ.

a) Then there exists a gaussian law Nµ on R such that, for every com-
pactly supported continuous function F on R, one has

(4.14)
∫
G
F
(
σ(g,x)−nλ√

n

)
dµ∗n(g) −−−→

n→∞

∫
R F (t) dNµ(t) ,

uniformly for x in X, and

(4.15)
∫
G
F
(
κ(g)−nλ√

n

)
dµ∗n(g) −−−→

n→∞

∫
R F (t) dNµ(t) .

b) When µ is non-arithmetic, this gaussian law Nµ is non-degenerate.

As we already pointed out, the novelty here is in the fact that we do
not assume a finite exponential moment for µ (see [5]). Even when G
is the free group on two generators and d the distance on M = G given
by the length function, Theorem 4.7 was not known in this generality
(see [24] and [22]).

We will use the following central limit theorem for martingale which
is due to Brown in [7] (see also [17]).

Fact 4.8. Let (Ω,B,P) be a probability space, B0 ⊂ · · · ⊂ Bn be sub-σ-
algebras of B. For 1 ≤ k ≤ n, let ϕn,k : Ω → R be Bk-measurable and
square-integrable random variables such that

E(ϕn,k | Bk−1) = 0.(4.16)

Let NΦ be a centered gaussian law on R with variance Φ ≥ 0. We
assume that the random variables

Wn :=
∑

1≤k≤n

E(ϕ2
n,k | Bk−1) converge to Φ in probability,(4.17)
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and that, for all ε > 0,

Wε,n :=
∑

1≤k≤n

E(ϕ2
n,k1{|ϕn,k|≥ε} | Bk−1) −−−→

n→∞
0 in probability.(4.18)

Then the sequence Sn :=
∑

1≤k≤n ϕn,k converges in law toward NΦ.

Proof of Theorem 4.7. a) According to Proposition 3.2, if the limit
(4.14) exists for a point x in X, then the sequence (4.15) converges
toward the same limit and the limits (4.14) exist for all x in X, are all
equal, and the convergence (4.14) is uniform for x in X.

Since the cocycle σ is centerable, one can write σ as the sum of two
cocycles σ = σ0 + σ1 where σ0 is given by (4.11) and where σ1 is a
coboundary which is uniformly bounded by the constant 2‖ψ‖∞. In
particular the cocycle σ1 does not play any role in the limit (4.14).
Hence we can replace σ by σ0 in the limit (4.14).

As in the previous sections, let (B,B, β) be the associated Bernoulli
space. We want to find x in X such that the laws of the random
variables Sn on B given, for b in B, by

Sn(b) := 1√
n
(σ0(bn · · · b1, x)− nλ)

converge to some gaussian law Nµ.
We want to apply the martingale central limit theorem 4.8 to the

sub-σ-algebras Bk spanned by b1, . . . , bk and to the triangular array of
random variables ϕn,k on B given by, for b in B,

ϕn,k(b) = 1√
n
(σ0(bk, bk−1 · · · b1x)− λ) , for 1 ≤ k ≤ n .

Since, by the cocycle property , one has Sn =
∑

1≤k≤n ϕn,k , we just
have to check that the three assumptions of Fact 4.8 are satisfied with
some constant Φ = Φµ ≥ 0. We keep the notations Wn and Wε,n of
Fact 4.8.

First, since the function κ is square integrable, the functions ϕn,k
belong to L2(B, β), and, by Equation (4.12), the assumption (4.16) is
satified: for β-almost all b in B,

E(ϕn,k | Bk−1) =

∫
G

(σ0(g, bk−1 · · · b1x)− λ) dµ(g) = 0 .

Second, we introduce the continuous function on X,

x 7→M(x) =

∫
G

(σ0(g, x)− λ)2 dµ(g) .

and we compute, for β-almost all b in B,

Wn(b) = 1
n

∑
1≤k≤nM(bk−1...b1x).
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We fix a µ-ergodic µ-stationary Borel probability measure ν on X.
According to Birkhoff ergodic theorem, for ν-almost all x in X, the
sequence Wn converges to

(4.19) Φµ :=

∫
X

M(y) dν(y)

in L1(B, β). We choose such a point x in X. In particular, the assump-
tion (4.17) is satisfied.

Third, we introduce, for T > 0, the continuous function on X

x 7→MT (x) =

∫
G

(σ0(g, x)− λ)21{|σ0(g,x)−λ|≥T} dµ(g) .

and the integral

IT :=

∫
G

κ0(g)21{κ0(g)≥T} dµ(g) ,

where κ0(g) := κ(g) + λ+ 2‖ψ‖∞, so that

MT (x) ≤ IT −−−→
T→∞

0 ,

and we compute, for ε > 0 and β-almost all b in B,

Wε,n(b) = 1
n

∑
1≤k≤nMε

√
n(bk−1...b1x) ≤ Iε√n −−−→

n→∞
0 .

In particular the sequence Wε,n converges to 0 in probability, i.e. the
Lindeberg’s condition (4.18) is satisfied. Hence, by Fact 4.8, the laws
of Sn converge to the gaussian law Nµ with variance Φµ.
b) It remains to check that, when µ is non-arithmetic, the gaussian

law Nµ is not a Dirac mass. The variance Φµ of this gaussian law is
given by the formulas, for all n ≥ 1,

Φµ = 1
n

∫
G×X(σ0(g, x)− nλ)2 dµ∗n(g) dν(x).

In particular since σ1 is bounded by 2 ‖ψ‖∞, and since σ is continuous,
one gets, for all g in the support of µ∗n and all x in the support of ν,

(4.20) |σ(g, x)− nλ| ≤ 2‖ψ‖∞.

Using then Equation (4.3), one finds a constant C > 0 such that, for
all n ≥ 1 and all g in the support of µ∗n,

(4.21) |κ(g)− nλ| ≤ C,

and hence, using Equation (2.13), one also has

(4.22) `(g) = nλ,

which contradicts the non-arithmeticity of µ. �
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Remark 4.9. It follows from this proof that the variance Φµ given
by Formula (4.19) does not depend on the choice of the µ-stationary
measure ν on the Busemann boundary X.

5. Log-regularity of the stationary measure

In this section we give an alternate proof for the logp-
regularity of the µ-stationary measure on the Gromov
boundary.

5.1. Optimal log-regularity. This alternate proof assumes that the
group G of isometry of M acts cocompactly on M , but it only assumes
the finiteness of the pth-moment of the measure µ on G (instead of
the (p+1)th-moment in Proposition 4.2). Here is the precise alternate
statement.

Proposition 5.1. Let p > 0. Let (M,d) be a proper quasiconvex Gro-
mov hyperbolic space and o ∈ M . Assume that the group G of isome-
tries of M acts cocompactly on M . Let µ be a non-elementary Borel
probability measure on G such that

∫
G
κ(g)p dµ(g) < ∞. Let ν be the

µ-stationary Borel probability measure on the Gromov boundary ∂M .
Then, one has

(5.1) sup
η∈∂M

∫
∂M

(ξ|η)po dν(ξ) <∞.

This alternate proof does not rely on martingales. It is a combina-
tion of three steps. The first step (Lemma 5.2) uses harmonic analy-
sis on L2(G) via the spectral gap characterization of non-amenability.
The second step (Lemma 5.3) relies on the geometric properties of hy-
perbolic spaces: all their geodesic triangles are δ-thin. The last step
(Section 5.4) uses the interpretation of the stationary measure as the
image of the Bernoulli measure by the boundary map. Here are the
details.

5.2. Spectral gap. In order to prove Proposition 5.1, we may assume
that e belongs to the support of µ. Indeed, ν is also µ′-stationary with
µ′ := 1

2
(µ+ δe).

We first notice that since µ is a non-elementary probability measure
on G, the group Gµ is non-amenable. Indeed, if Gµ were amenable,
there would exist a Gµ-invariant probability measure on the Gromov
boundary ∂M . By proposition 3.1, this would imply that the unique
µ-stationary measure ν on ∂M is Gµ-invariant and hence a Dirac mass.
This would contradict the fact that Gµ does not have fixed points on
∂M .
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Hence we can apply the following lemma to our mesure µ.

Lemma 5.2. Let (M,d) be a proper metric space. Assume that the
group G of isometries of M acts cocompactly on M . Let µ be a non-
elementary Borel probability measure on G whose support contains e
and such that Gµ is non-amenable. Let R > 0. Then, there exist
A0 > 0, a0 < 1 such that, for all m, m′ in M , for all n ≥ 1, one has

(5.2) µ∗n({g ∈ G | d(gm,m′) ≤ R}) ≤ A0 a
n
0 .

For this lemma to be true, the cocompactness of the action of G
is crucial, since one can always replace (M,d) by a space countaining
isometric copies of all the homothetic metric spaces (M, 1

k
d) for k ≥ 1.

Proof. Let o be point of M . Since G acts cocompactly in M , any point
of M is at bounded distance of the G-orbit Go. Hence we can assume
that the points m and m′ are on this G-orbit Go. We write m = ho
and m′ = h′o with h, h′ in G.

Let µG be a left-invariant measure on G and λG be the left regular
representation of G in L2(G) and λG(µ) be the contraction of L2(G)
given by, for any ϕ in L2(G) and g in G,

λG(µ)(ϕ) =
∫
G
ϕ(g−1.) dµ(g).

According to the spectral gap theorem due to Kesten, Derrienic-Gui-
varch, and Berg-Christensen (see [4, Thm 4] and also [21], [10]), since
Gµ is non-amenable, the operator λG(µ) has a spectral gap, i.e. there
exists C0 > 0 and a0 < 1 such that, for all n ≥ 1, ‖λG(µ)n‖ ≤ C0a

n
0 .

Let

BR := {g ∈ G | d(go, o) ≤ R}.

We want to bound µ∗n(h′BRh
−1). We compute, for all n ≥ 1, using the

inclusion BRBR ⊂ B2R, Cauchy-Schwartz inequality, and the spectral
gap,

µG(h′BRh
−1) µ∗n(h′BRh

−1) ≤ 〈λG(µ)n(1hB2Rh−1),1h′BRh−1〉L2(G)

≤ C0a
n
0 µG(hB2Rh

−1)
1
2µG(h′BRh

−1)
1
2

Hence, using the left invariance and the right semiinvariance of the
Haar measure µG one deduces

µ∗n(h′BRh
−1) ≤ C0a

n
0 µG(B2R)

1
2µG(BR)−

1
2

This proves the bound (5.2). �
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5.3. Thin triangles.

Lemma 5.3. Let p > 0. Let (M,d) be a proper quasiconvex Gromov
hyperbolic space and o ∈ M . Assume that the group G of isometries
of M acts cocompactly on M . Let µ be a non-elementary Borel proba-
bility measure on G such that

∫
G
κ(g)p dµ(g) < ∞ and whose support

contains e. Then there exists A > 0, a < 1 such that, for all ξ, η in
∂M , for all n ≥ 1, one has

(5.3) µ∗n({g ∈ G | (gξ|η)o ≥ κ(g)}) ≤ Aan.

Moreover, when p ≥ 1, one also has,

(5.4)
∫
G
κ(g)p−11{(gξ|η)0≥κ(g)} dµ∗n(g) ≤ Aan.

We first recall the properties of the triangles in M that we will use.
Since the metric space (M,d) is proper, quasiconvex and hyperbolic,
there exist constants C > 1 and δ > 0 with the following properties :
Every triple x1, x2, x3 of points in M∗ are the vertices of a C-geodesic
triangle, i.e. a triangle whose sides are C-geodesics. Moreover every
C-geodesic triangle is δ-thin, i.e. one can cut each of the three sides
[xi, xj] in two C-geodesic pieces, say [xi, xj] = [xi,mi,j]∪ [mi,j, xj], such
that the Hausdorff distance of the two geodesic pieces [xi,mi,j] and
[xi,mi,k] starting from the same vertex xi is bounded by δ.

Proof of Lemma 5.3. We will apply this property to the triple (o, go, gξ)
and to the triple (o, go, η).

Let (mi)i≥1 be a C-geodesic between the points o and ξ. This means
that m1 = o, that lim

i→∞
mi = ξ, and that, for all i < j,

j − i− C ≤ d(mi,mj) ≤ j − i+ C .

Similarly, let (m′j)j≥1 be a C-geodesic from o to η and let (m′′k)k≥1 be
a C-geodesic from o to gξ.
a) We introduce the set

Sξ,η := {g ∈ G | (gξ|η)o ≥ κ(g)} .
We denote R = 2δ + 6C and choose c > 1 with c2a0 < 1 where a0 is
the constant given by Lemma 5.2. Let n ≥ 1. We will first prove that
this set is included in the following union

(5.5) Sξ,η ⊂ S0
ξ,η ∪ S1

ξ,η , where

S0
ξ,η := {g ∈ G | κ(g) ≥ cn} ,
S1
ξ,η := {g ∈ G | ∃ i, j ≤ cn with d(gmi,m

′
j) ≤ R} .

Let g be an element of Sξ,η r S0
ξ,η. We choose a C-geodesic between o

and go. Applying first the above property to the C-geodesic triangle
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with vertices (o, go, gξ), since d(o, go) = κ(g), one can find a point gmi

and a point m′′k such that

i ≤ κ(g) , k ≤ κ(g) and d(gmi,m
′′
k) ≤ δ + 3C.

Applying now the above property to the C-geodesic triangle with ver-
tices (o, go, η), since k ≤ κ(g) and (gξ|η)o ≥ κ(g), one can find a point
m′j such that

j ≤ κ(g) and d(m′j,m
′′
k) ≤ δ + 3C.

In particular, one has d(gmi,m
′
j) ≤ R and the element g belongs to

S1
ξ,η. This proves the inclusion (5.5).
We want to bound µ∗n(Sξ,η). On the one hand, using Chebyshev’s

inequality, and the finiteness of the pth-moment, one computes,

µ∗n(S0
ξ,η) ≤ c−np

∫
G
κ(g)p dµ∗n(g) ≤ np+1c−np

∫
G
κ(g)p dµ(g) .

One the other hand, using the bound (5.2) for at most c2n couples of
points, one gets

µ∗n(S1
ξ,η) ≤ A0c

2nan0

This proves the bound (5.3) as soon as the constant a < 1 is chosen
larger than c−p and a0c

2.
b) The proof is very similar to point a). We assume now that p > 1

and choose c > 1 such that cp+1a0 < 1. We want to bound∫
Sξ,η

κ(g)p−1 dµ∗n(g) .

As above, one has the bound∫
S0
ξ,η
κ(g)p−1 dµ∗n(g) ≤ c−n

∫
G
κ(g)p dµ∗n(g)

≤ npc−n
∫
G
κ(g)p dµ(g) ,

and the bound∫
S1
ξ,η
κ(g)p−1 dµ∗n(g) ≤ c(p−1)n µ∗n(S1

ξ,η) ≤ A0 c
(p+1)n an0 .

This proves the bound (5.4) as soon as the constant a < 1 is chosen
larger than c−1 and a0c

p+1. �

5.4. Boundary map. We can now conclude the proof.

Proof of Proposition 5.1. We assume first that p ≤ 1. As in the pre-
vious sections, we let (B,B, β, S) be the associated Bernoulli system,
and we denote by b 7→ ξb the boundary map introduced in Proposition
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3.1. For b = (b1, b2, . . .) in B and n ≥ 0, we set κn(b) = κ(b1 · · · bn).
We want to bound, uniformly for η in ∂M , the integral

Ip,η :=
∫
∂M

(ξ|η)po dν(ξ) .

We compute

Ip,η =
∫
B

(ξb|η)po dβ(b)

=
∫∞

0
β({b | (ξb|η)po ≥ t}) dt

=
∑

n≥0

∫∞
0
β({b | κn(b)p ≤ t < κn+1(b)p , (ξb|η)po ≥ t}) dt

≤
∑

n≥0

∫
B

max(κn+1(b)p − κn(b)p, 0)1{(ξb|η)o≥κn(b)} dβ(b) .

Since p ≤ 1, for every t > s > 0, one has the bound

tp − sp ≤ (t− s)p .(5.6)

Hence, writing g = b1 · · · bn and b′ = Snb so that b′1 = bn+1, one pursues
the computation,

Ip,η ≤
∑

n≥0

∫
B
κ(b′1)pµ∗n({g ∈ G | (gξb′ |η)o ≥ κ(g)}) dβ(b′) .(5.7)

Hence, using the bound (5.3), one gets

Ip,η ≤
∑

n≥0Aa
n
∫
B
κ(b′1)p dβ(b′) .

This gives the final bound

Ip,η ≤ A
1−a

∫
G
κ(g)p dµ(g) .

When p > 1, the same computation works except that we have to
replace the bound (5.6), by the following bound, for every t > s > 0,

tp − sp ≤ 2p(t− s)p + 2psp−1(t− s) .

Hence an extra term occur in the right hand side, of (5.7) which is,∑
n≥0

∫
B

2pκ(b′1)
∫
G
κ(g)p−11{g∈G|(gξb′ |η)o≥κ(g)} dµ∗n(g) dβ(b′) .

And we bound this extra term thanks to the bound (5.4). All this gives
the final inequality

Ip,η ≤ 2pA
1−a

∫
G

(κ(g)p + κ(g)) dµ(g) ,

and ends the proof of Proposition 5.1. �
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5.5. Free semigroup.

In this section we describe an example pointing out the
optimality of Proposition 5.1.

We choose the group G to be the free group on two generators u,
v. This group acts isometrically cocompactly on the corresponding
Cayley graph (M,d) which is a regular tree of valence 4. We denote
by o = e its base point. The boundary ∂M is the space of infinite
words ξ = (ξ1, ξ2, . . .) in the letters u, v, u−1, v−1 which are reduced,
i.e. ξi+1 6= ξ−1

i for all i ≥ 1.
We choose the probability measure µ on G to be

µ = 1
2
(δv +

∑
n≥1 pnδun)

with
∑

n≥1 pn = 1. The support of the unique µ-stationary probability
measure ν on ∂M is included in the subset of infinite words ξ in the
letters u and v.

We choose the point η on the boundary to be

η = (u, u, u, . . .),

so that, for all ξ = (ξ1, ξ2, . . .) in ∂M , the Gromov product is given by

(ξ|η)o = inf{i ≥ 0 | ξi+1 6= u}.

Let p > 0. We want to estimate the integral

Ip,η :=
∫
∂M

(ξ|η)po dν(ξ)

Example 5.4. In this case, one has the equivalence∑
n≥1 pnn

p <∞ ⇐⇒ Ip,η <∞ .(5.8)

This means that, in this case, the converse of Proposition 5.1 is true.

Proof. Indeed, in this case the Bernoulli space is the space B of se-
quences b = (b1, b2, . . .) with bi = v or un endowed with the Bernoulli
measure β = µ⊗N∗ , and the image ξb of b by the boundary map is the
concatenation of the letters u, v occuring in b.

We denote by B1 the set of element of B whose first letter is a power
of u and whose second letter is v. Hence we have the following lower
bound

Ip,η =
∫
B

(ξb|η)po dβ(b)

≥
∫
B1

(ξb|η)po dβ(b) = 1
4

∑
n≥1 pnn

p,

which proves the converse implication in the claim (5.8). �
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