
CENTRAL LIMIT THEOREM FOR LINEAR GROUPS

YVES BENOIST AND JEAN-FRANÇOIS QUINT

Abstract. We prove a central limit theorem for random walks
with finite variance on linear groups.
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1. Introduction

1.1. Central limit theorem for linear groups. Let V = Rd, G =
GL(V ) and µ be a Borel probability measure on G. We fix a norm
‖.‖ on V . For n ≥ 1, we denote by µ∗n the nth-convolution power
µ∗ · · · ∗µ. We assume that the first moment

∫
G

logN(g) dµ(g) is finite,
where N(g) = max(‖g‖, ‖g−1‖). We denote by λ1 the first Lyapunov
exponent of µ, i.e.

(1.1) λ1 := lim
n→∞

1
n

∫
G

log ‖g‖ dµ∗n(g).

1
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Let g1, . . . , gn, . . . be random elements of G chosen independantly with
law µ. The Furstenberg law of large numbers describes the behavior of
the random variables log ‖gn · · · g1‖. It states that, almost surely,

(1.2) lim
n→∞

1
n

log ‖gn · · · g1‖ = λ1.

In this paper we will prove that, under suitable conditions, the variables
log ‖gn · · · g1‖ satisfy a central limit theorem (CLT) i.e. that the renor-

malized variables log ‖gn···g1‖−nλ1√
n

converge in law to a non degenerate

Gaussian variable.
Let Γµ be the semigroup spanned by the support of µ. We say that

Γµ acts strongly irreducibly on V if no proper finite union of vector
subspaces of V is Γµ-invariant.

Theorem 1.1. Let V = Rd, G = GL(V ) and µ be a Borel probability
measure on G such that Γµ has unbounded image in PGL(V ), Γµ acts
strongly irreducibly on V , and the second moment

∫
G

(logN(g))2 dµ(g)
is finite. Let λ1 be the first Lyapunov exponent of µ. Then there exists
Φ > 0 such that, for any bounded continuous function F on R, one has

(1.3) lim
n→∞

∫
G
F
(

log ‖g‖−nλ1√
n

)
dµ∗n(g) =

∫
R F (s) e

− s
2

2Φ√
2πΦ

ds.

Remarks 1.2. We will see that under the same assumptions the vari-
ables log ‖gn · · · g1‖ also satisfy a law of the iterated logarithm (LIL) i.e.

almost surely, the set of cluster points of the sequence log ‖gn···g1‖−nλ1√
2Φn log logn

is

equal to the interval [-1,1].
According to a result of Furstenberg, when moreover Γµ is included

in the group SL(V ), the first Lyapunov exponent is positive: λ1 > 0.
For every non-zero v in V and f in V ∗, the variables log ‖gn · · · g1v‖

and log |f(gn · · · g1v)| also satisfy the CLT and the LIL.
Such a central limit theorem is not always true when the action

of Γµ is only assumed to be irreducible: in this case the variables
log ‖gn···g1‖−nλ1√

n
still converge in law but the limit is not always a Gaussian

variable (see Example 4.15).
We will deduce easily a multidimensional version of this CLT (The-

orem 4.11) and interpret it as a CLT for real semisimple groups (The-
orem 4.16), generalizing Goldsheid and Guivarc’h CLT in [23]. Most
of our results are true over any local field K with no changes in the
proofs.

1.2. Previous results. Let us give a historical perspective about this
theorem. The existence of such a “non-commutative CLT” was first
guessed by Bellman in [3]. Such a theorem has first been proved
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by Furstenberg and Kesten in [21] for semigroups of positive matri-
ces under an L2+ε assumption for some ε > 0. It was then extended
by Lepage in [39] for more general semigroups when the law has a
finite exponential moment i.e. when there exists α > 0 such that∫
G
N(g)α dµ(g) <∞. Thanks to later works of Guivarc’h and Raugi in

[31] and Goldsheid and Margulis in [24] the assumptions in the Lepage
theorem were clarified: the sole remaining but still unwanted assump-
tion was that µ had a finite exponential moment.

Hence the purpose of our Theorem 1.1 is to replace this finite ex-
ponential moment assumption by a finite second moment assumption.
Such a finite second moment assumption is optimal.

Partial results have been obtained recently in this direction. Tu-
tubalin in [45] has proved Theorem 1.1 when the law µ is assumed to
have a density. Jan in his thesis (see [36]) has extended the Lepage
theorem under the assumption that all the p-moments of µ are finite.
Hennion in [34] has proved Theorem 1.1 in the case of semigroups of
positive matrices.

There exist a few books and surveys ([14], [20] or [10]) about this
theory of ”products of random matrices”. This theory has had recently
nice applications to the study of discrete subgroups of Lie groups (as in
[28], [15] or [6]). These applications motivated our interest in a better
understanding of this CLT.

1.3. Other Central Limit Theorems. The method we introduce
in this paper is very flexible since it does not rely on a spectral gap
property. In the forthcoming paper [9], we will adapt this method to
prove the CLT in other situations where the CLT is only known under
a finite exponential moment assumption:
- The CLT for free groups due to Sawyer-Steger in [41] and Ledrappier
in [38],
- The CLT for Gromov hyperbolic groups due to Bjorklund in [11].

1.4. Strategy. We explain now in few words the strategy of the proof
of our central limit theorem 1.1. We want to prove the central limit
theorem for the random variables κ(gn · · · g1) where the quantity

(1.4) κ(g) := log ‖g‖

controls the size of the element g in G. Let X := P(V ) be the projective
space of the vector space V := Rd. Since this function κ on G is closely
related to the “norm cocycle” σ : G×X → R given by

(1.5) σ(g, x) := log ‖gv‖‖v‖ ,
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for g in G and x = Rv in P(V ), we are reduced to prove, for every x in
X, a central limit theorem for the random variables σ(gn · · · g1, x).

We will follow Gordin’s method. This method has been introduced
in [25] and [26] and has been often used since then, see for instance
[37], [11]. See also [18] and [12, Appendix] for a survey of this method
and [12, Section 2.4] for the use of this method in order to prove a CLT
and an invariance principle in the context of products of independant
random matrices.

Following Gordin’s method means that, we will replace, adding a
suitable coboundary, this cocycle σ by another cocycle σ0 for which
the “expected increase” is constant i.e. such that∫

G

σ0(g, x) dµ(g) = λ1

for all x in X. This will allow us to use the classical central limit
theorem for martingales due to Brown in [17]. In order to find this
cocycle σ0, we have to find a continuous function ψ ∈ C0(X) which
satisfies the following cohomological equation

(1.6) ϕ = ψ − Pµψ + λ1 ,

where Pµψ is the averaged function

Pµψ : x 7→
∫
G
ψ(gx) dµ(g)

and where ϕ ∈ C0(X) is the expected increase of the cocycle σ

(1.7) ϕ : x 7→
∫
G
σ(g, x) dµ(g).

The classical strategy to solve this cohomological equation relies on
spectral properties of this operator Pµ. These spectral properties might
not be valid under a finite second moment assumption. This is where
our strategy differs from the classical strategy: we solve this cohomolog-
ical equation by giving an explicit formula for the solution ψ in terms of
the µ̌-stationary measure ν∗ on the dual projective space P(V ∗), where
µ̌ is the image of µ by g 7→ g−1. This formula is

(1.8) ψ(x) =
∫
P(V ∗)

log δ(x, y) dν∗(y),

where δ(x, y) = |f(v)|
‖f‖ ‖v‖ , for x = Rv in P(V ) and y = Rf in P(V ∗)

(Proposition 4.9).
The main issue is to check that this integral is finite, i.e. that the

stationary measure ν∗ is log-regular, when the second moment of µ is
finite (Proposition 4.5).

Let us recall the Hsu-Robbins theorem which seems at a first glance
unrelated. This theorem is a strengthening of the classical law of
large numbers for centered square-integrable independent identically
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distributed random real variables (ϕn)n≥1. This theorem tells us that
the averages 1

n
(ϕ1 + · · · + ϕn) converge completely to 0, i.e. that, for

all ε > 0, the following series converge :

(1.9)
∑

n≥1 P( 1
n
|ϕ1 + · · ·+ ϕn| > ε) <∞ .

The key point to prove the log-regularity of the stationary measure
ν∗ is to prove an analogue of the Hsu-Robbins theorem for martin-
gales under a suitable condition of domination by a square-integrable
function (Theorem 2.2) and to deduce from it another analogue of the
Hsu-Robbins theorem for the Furstenberg law of large numbers (Propo-
sition 4.1).

Another important ingredient in the proof of the log-regularity of ν∗

is the simplicity of the first Lyapounov exponent due to Guivarc’h in
[27] and [31].

1.5. Plan. In Chapter 2, we prove the complete convergence in the law
of large numbers for martingales with square-integrable increments and
we recall the central limit theorem for these martingales with square-
integrable increments.

In Chapter 3, we prove a large deviations estimate in the Breiman
law of large numbers for functions over a Markov-Feller chain, we de-
duce the complete convergence in the law of large numbers for square-
integrable cocycles over random walks and the central limit theorem
when the cocycle is centerable.

In Chapter 4, we prove successively the complete convergence in the
Furstenberg law of large numbers, the log-regularity of the correspond-
ing stationary measure on the projective space, the centerability of the
norm cocycle, and the central limit theorem 1.1. We end this chapter
by the multidimensional version of this central limit theorem.

2. Limit theorems for martingales

We collect in this chapter the limit theorems for martin-
gales that we will need in Chapter 3.

2.1. Complete convergence for martingales.

In this section we prove the complete convergence in the
law of large numbers for martingales.

Let (Ω,B,P) be a probability space. We first recall that a sequence
Xn of random variables converges completely to X∞, if, for all ε > 0,∑

n≥1 P(|Xn − X∞| ≥ ε) < ∞. By Borel-Cantelli Lemma, complete
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convergence implies almost sure convergence. We recall now the fol-
lowing classical result due to Baum and Katz in [2].

Fact 2.1. Let p ≥ 1, let (ϕn)n≥1 be independant identically distributed
real random variables and Sn = ϕ1 + · · ·+ϕn. The following statements
are equivalent:
(i) E|ϕ1|p <∞ and E(ϕ1) = 0,
(ii)

∑
n≥1 n

p−2P(|Sn| ≥ nε) <∞ , for all ε > 0.

When p = 2 the implication (i) ⇒ (ii) is due to Hsu-Robbins [35]
and the converse is due to Erdös [19]. In this case, condition (ii) means
that the sequence 1

n
Sn converges completely towards 0.

When p = 1 this fact is due to Spitzer [42].

Our aim is to prove the following generalization of Baum-Katz the-
orem to martingales. Let B0 ⊂ · · · ⊂ Bn ⊂ · · · be sub-σ-algebras
of B. We recall that a martingale difference is a sequence (ϕn)n≥1 of
integrable random variables on Ω such that E(ϕn | Bn−1) = 0 for all
n ≥ 1.

Theorem 2.2. Let p > 1, let (ϕn)n≥1 be a martingale difference and
Sn := ϕ1 + · · · + ϕn the corresponding martingale. We assume that
there exists a positive function ϕ in Lp(Ω) such that, for n ≥ 1, t > 0,

(2.1) E(1{|ϕn|>t} | Bn−1) ≤ P({ϕ > t}) almost surely.

Then there exist constants Cn = Cn(p, ε, ϕ) such that, for n ≥ 1, ε > 0,

(2.2) P(|Sn| > nε) ≤ Cn and
∑
n≥1

np−2Cn <∞ .

The fact that the constants Cn are controled by the dominating
function ϕ will be important in our applications. A related theorem
was stated in [44] for p > 2. The extension to the case p = 2 is crucial
for our applications. We stated our result for p > 1 since the proof is
not very different when p = 2.

Proof. Our proof combines the original proof of Baum-Katz theorem
with Burkholder inequality. Since p > 1, we pick γ < 1 such that
γ > p+1

2p
. We set, for k ≤ n,

(2.3) ϕn,k := ϕk 1{|ϕk|≤nγ} and Tn :=
∑

1≤k≤n

ϕn,k .

In order to lighten the calculations we also set

(2.4) ϕn,k := ϕn,k − E(ϕn,k | Bk−1) and T n :=
∑

1≤k≤n

ϕn,k
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so that, for all n ≥ 1, the finite sequence (ϕn,k)1≤k≤n is also a difference
martingale. We can assume ε = 3. We will decompose the event
An := {|Sn| > 3n} into four pieces

(2.5) An ⊂ A1,n ∪ A2,n ∪ A3,n ∪ A4,n.

The events Ai,n are given by

A1,n := {there exists k ≤ n such that |ϕk| > n}
A2,n := {there exist k1 < k2 ≤ n such that |ϕk1| > nγ , |ϕk2| > nγ}
A3,n := {|Tn − T n| > n}
A4,n := {|T n| > n}

The inclusion (2.5) is satisfied since, when none of the four events Ai,n is
satisfied, one has |Sn| ≤ 3n. We will find, for each piece Ai,n, a constant
Ci,n = Ci,n(p, ε, ϕ) such that P(Ai,n) ≤ Ci,n and

∑
n≥1 n

p−2Ci,n <∞.

First piece. One computes, using the domination (2.1),

P(A1,n) ≤ C1,n := nP(ϕ > n)

and ∑
n≥1

np−2C1,n =
∑
n≥1

np−1P(ϕ > n) ≤ 1
p
E((ϕ+ 1)p)

which is finite since the dominating function ϕ is Lp-integrable.

Second piece. One computes, using the domination (2.1),

P(A2,n) ≤ C2,n := n2 P(ϕ > nγ)2

and, using Chebyshev’s inequality,∑
n≥1

np−2C2,n ≤
∑
n≥1

np−2γp(E(ϕp))2

which is finite since γ > p+1
2p

.

Third piece. One bounds, remembering that the variables ϕk are
martingale differences and using the domination (2.1),

|E(ϕn,k | Bk−1)| = |E(ϕk − ϕn,k | Bk−1)|
≤
∫∞
nγ

P(|ϕk| > t | Bk−1) dt + nγP(|ϕk| > nγ | Bk−1)

≤
∫∞
nγ

P(ϕ > t) dt + nγP(ϕ > nγ) = E(ϕ1{ϕ>nγ}) ,

and this right-hand side converges to 0 when n goes to infinity since
the dominating function ϕ is integrable. One deduces the bounds

1
n
|Tn − T n| ≤ E(ϕ1{ϕ>nγ}) ,
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with a right-hand side also converging to 0. Hence one can find an
integer n0 = n0(p, ε, ϕ) such that, for n ≥ n0, the event A3,n is empty.
We just set C3,n = 0 when n ≥ n0 and C3,n = 1 otherwise.

Fourth piece. We set Qn :=
∑

1≤k≤n ϕ
2
n,k , p0 := min(p, 2), and

M ≥ 1 to be the smallest integer such that M ≥ p
2(1−γ)

. According to

the Burkholder inequality (see [32]), since (ϕn,k)1≤k≤n is a martingale
difference, there exists a constant DM , which depends only on M , such
that

D−1
M E(Q

M

n ) ≤ E(T
2M

n ) ≤ DM E(Q
M

n ).

One computes then, using Chebyshev’s inequality,

(2.6) P(A4,n) ≤ n−2M E(T
2M

n ) ≤ DM n−2M E(Q
M

n ).

We expand now E(Q
M

n ) as a sum of terms of the form E(ϕ2q1
n,k1
· · ·ϕ2q`

n,k`
)

with 1 ≤ ` ≤ M , q1, . . . , q` ≥ 1, q1 + · · · + q` = M and 1 ≤ k1 < · · · <
k` ≤ n. Using the bounds, for 1 ≤ k ≤ n and q ≥ 1,

ϕ2q
n,k ≤ (2nγ)2q−p0|ϕn,k|p0 ,

and, using the domination (2.1), one bounds each term in the sum

E(ϕ2q1
n,k1
· · ·ϕ2q`

n,k`
) ≤ 4Mn2Mγ−`p0γ E(ϕp0)` .

For each value of ` ≤M , the number of such terms is bounded by M `n`.
Summing all these bounds, one gets, since γp0 > min(p+1

2
, p+1

p
) > 1,

E(Q
M

n ) ≤
∑

1≤`≤M

(4M)ME(ϕp0)` n2Mγ−`p0γ+`

≤ cp,ϕ n
2Mγ,

where cp,ϕ = 4MMM+1 max(1,E(ϕp0)M). Plugging this inside (2.6),
one gets

P(A4,n) ≤ C4,n := cp,ϕDM n
−2(1−γ)M ,

and ∑
n≥1

np−2C4,n = cp,ϕDM

∑
n≥1

np−2−2(1−γ)M ,

which is finite since M ≥ p
2(1−γ)

. �

Remark 2.3. As we have seen in this proof, the assumption (2.1) in
Theorem 2.2 implies that there exists a constant C := E|ϕ|p such that,
for all n ≥ 1

(2.7) E(|ϕn|p | Bn−1) ≤ C .
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However, the conclusion of Theorem 2.2 is no more true if we replace
assumption (2.1) by (2.7). Here is a counterexample. Choose ϕn to be
symmetric independant random variables such that, for 3i−1 < n ≤ 3i,
ϕn takes values in the set {−3i, 0, 3i} and P(ϕn = ±3i) = 3−pi. For
these variables, the conclusion of Theorem 2.2 does not hold. This is
essentially due to the fact that the series

∑
n≥1 n

p−2P(∃k ≤ n | |ϕk| ≥
n) diverge (the details are left to the reader since we will not use this
example).

When the martingale difference is uniformly bounded, one has a
much better large deviation estimate than (2.2) due to Azuma in [1].

Fact 2.4. (Azuma) Let (ϕn)n≥1 be a martingale difference and Sn :=
ϕ1 + · · · + ϕn the corresponding martingale. If |ϕn| ≤ a < ∞ for all
n ≥ 1, then one has for all n ≥ 1, ε > 0,

(2.8) P(Sn ≥ nε) ≤ e−
nε2

2a2 .

Proof. We recall Azuma’s proof since it is very short. Assume a = 1.
Using the convexity of the exponential function, one bounds, for all x

in [−1, 1], eεx ≤ cosh(ε) + x sinh(ε) ≤ e
ε2

2 + x sinh(ε). Hence, for all

k ≥ 1, one has E(eεϕk | Bk−1) ≤ e
ε2

2 , and, by Chebyshev’s inequality,

P(Sn ≥ nε) ≤ e−nε
2 E(eεSn) ≤ e−nε

2

(e
ε2

2 )n = e−
nε2

2 .

�

2.2. Central limit theorem for martingales.

In this section, we briefly recall the martingale central
limit theorem, which is due to Brown.

Let (Ω,B,P) be a probability space, (pn)n≥1 be a sequence of positive
integers and, for n ≥ 1, let

Bn,0 ⊂ · · · ⊂ Bn,pn
be sub-σ-algebras of B.

Let E be a finite dimensional normed real vector space. We want to
define the gaussian laws NΦ on E. Such a law is completely determined
by its covariance 2-tensor Φ. If we fix a euclidean structure on E this
covariance 2-tensor is nothing but the covariance matrix of NΦ. Here
are the precise definitions.

We denote by S2E the space of symmetric 2-tensors of E. Equiva-
lently, S2E is the space of quadratic forms on the dual space E∗. The
linear span of a symmetric 2-tensor Φ is the smallest vector subspace
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EΦ ⊂ E such that Φ belongs to S2EΦ. A 2-tensor Ψ ∈ S2E is non-
negative (which we write Ψ ≥ 0) if it is non-negative as a quadratic
form on the dual space E∗. For every v in E we set v2 := v⊗ v ∈ S2E,
and we denote by

BΦ := {v ∈ EΦ | Φ−v2 is non-negative}

the unit ball of Φ. For any non-negative symmetric 2-tensor Φ ∈ S2E,
we let NΦ be the centered gaussian law on E with covariance 2-tensor
Φ, i.e. such that,

Φ =
∫
E
v2 dNΦ(v).

For instance, NΦ is a Dirac mass at 0 if and only if Φ = 0 if and only
if EΦ = {0}.

The following theorem is due to Brown in [17] (see also [32]).

Fact 2.5. (Brown Martingale central limit theorem) For 1 ≤ k ≤ pn,
let ϕn,k : Ω→ E be square-integrable random variables such that

(2.9) E(ϕn,k | Bn,k−1) = 0.

We assume that the S2E-valued random variables

(2.10) Wn :=
∑

1≤k≤pn

E(ϕ2
n,k | Bn,k−1) converge to Φ in probability,

and that, for all ε > 0,

(2.11) Wε,n :=
∑

1≤k≤pn

E(ϕ2
n,k1{‖ϕn,k‖≥ε} | Bn,k−1) −−−→

n→∞
0 in probability.

Then the sequence Sn :=
∑

1≤k≤pn ϕn,k converges in law toward NΦ.

Under the same assumptions, the sequence Sn also satisfies a law
of the iterated logarithm, i.e. almost surely, the set of cluster points
of the sequence Sn√

2Φn log logn
is equal to the unit ball BΦ (indeed the

sequence Sn satisfies an invariance principle see [32, Chap. 4]).
The assumption (2.11) is called Lindeberg’s condition.
We recall that a sequence Xn of random variables converges to X∞

in probability, if, for all ε > 0, P(|Xn −X∞| ≥ ε) −−−→
n→∞

0.

3. Limit theorems for cocycles

In this chapter we state various limit theorems for cocy-
cles and we explain how to deduce them from the limit
theorems for martingales that we discussed in Chapter 2.
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3.1. Complete convergence for functions.

In this section, we prove a large deviations estimate in
the law of large numbers for functions over Markov-Feller
chains.

Let X be a compact metrizable space and C0(X) be the Banach space
of continuous functions on X. Let P : C0(X) → C0(X) be a Markov-
Feller operator i.e. a bounded operator such that ‖P‖ ≤ 1, P1 = 1
and such that Pf ≥ 0 for all functions f ≥ 0. Such a Markov-Feller
operator can be seen alternatively as a weak-∗ continuous map x 7→ Px
from X to the set of probability measures on X, where Px is defined
by Px(f) = (Pf)(x) for all f in C0(X). We denote by X the compact
set X = XN of infinite sequences x = (x0, x1, x2, . . .). For x in X, we
denote by Px the Markov probability measure on X i.e. the law of the
trajectories of the Markov chain starting from x associated to P .

Given a continuous function ϕ on X, we define its upper average by

`+
ϕ = supν

∫
G
ϕ(x) dν(x)

and lower average by

`−ϕ := infν
∫
G
ϕ(x) dν(x)

where the supremum and the infimum are taken over all the P -invariant
probability measures ν on X. We say ϕ has unique average if `+

ϕ = `−ϕ .
According to the Breiman law of large numbers in [16] (see also [10]),

for such a ϕ, for any x in X, for Px-almost every x in X, the sequence
1
n

∑n
k=1 ϕ(xk) converges to `+

ϕ = `−ϕ . The following proposition is a large
deviations estimate for the Breiman law of large numbers.

Proposition 3.1. Let X be a compact metrizable space, and P be a
Markov-Feller operator on X. Let ϕ be a continuous function on X
with upper average `+

ϕ and lower average `−ϕ . Then, for all ε > 0, there
exist constants A > 0, α > 0 such that

(3.1) Px
(
{x ∈ X | 1

n

∑n
k=1 ϕ(xk) 6∈ [`−ϕ−ε, `+

ϕ +ε]}
)
≤ Ae−αn,

for all n ≥ 1 and all x in X.

Note that `−ϕ = `+
ϕ as soon as P is uniquely ergodic, i.e. as soon as

there exists only one P -invariant Borel probability measure ν on X.

Proof. We assume ‖ϕ‖∞ = 1
2
. We introduce, for 1 ≤ ` ≤ n, the

bounded functions Ψn and Ψ`,n on X given, for x in X, by

Ψn(x) = ϕ(xn) and Ψ`,n(x) = (P `ϕ)(xn−`).

so that, for x in X,

Ψ`,n = Ex(Ψn | Xn−`) Px-a.s.,
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where Xn is the σ-algebra on X spanned by the functions x 7→ xk with
k ≤ n. On one hand, one has the uniform convergence

(3.2) max(`+
ϕ ,

1
m

∑m
j=1 P

jϕ) −−−→
m→∞

`+
ϕ

in C0(X). Hence we can fix m such that, for all x ∈ X,
1
m

∑m
j=1 P

jϕ(x) ≤ `+
ϕ + ε

4
.

Then, for all n ≥ 1 and x ∈ X, one has
1
nm

∑m+n
k=m+1

∑m
j=1 Ψj,k+j(x) ≤ `+

ϕ + ε
4
.

In particular, if n ≥ n0 := 4m
ε

, one also has

(3.3) 1
nm

∑m+n
k=m+1

∑m
j=1 Ψj,k(x) ≤ `+

ϕ + ε
2
.

On the other hand, for all 1 ≤ j ≤ m, x ∈ X, by Azuma’s bound
(2.8) and the equalities, for k ≥ j, Ex(Ψj−1,k − Ψj,k | Xk−j) = 0, one
has

Px({x ∈ X | | 1n
∑m+n

k=m+1(Ψj−1,k(x)−Ψj,k(x))| ≥ ε
4m
}) ≤ e−

nε2

32m2 .

Adding these bounds, one gets, for all 1 ≤ j ≤ m, x ∈ X,

Px({x ∈ X | | 1n
∑m+n

k=m+1(Ψk(x)−Ψj,k(x))| ≥ ε
4
}) ≤ me−

nε2

32m2 ,

and hence

Px({x ∈ X | | 1n
∑m+n

k=m+1(Ψk(x)− 1
m

∑m
j=1 Ψj,k(x))| ≥ ε

4
}) ≤ m2 e−

nε2

32m2 .

Combining this formula with (3.3), one gets the desired bound,

Px({x ∈ X | 1
n

∑n
k=1 Ψk(x) ≥ `+

ϕ + ε}) ≤ m2 e−
nε2

32m2 ,

for all n ≥ n0 and x ∈ X. �

3.2. Complete convergence for cocycles.

In this section, we prove the complete convergence in the
law of large numbers for cocycles over G-spaces.

Let G be a second countable locally compact group acting continu-
ously on a compact second countable topological space X. Let µ be a
Borel probability measure on G.

We denote by (B,B, β) the associated one-sided Bernoulli space i.e.
B = GN∗ is the set of sequences b = (b1, . . . , bn, . . .) with bn in G, B
is the product σ-algebra of the Borel σ-algebras of G, and β is the
product measure µ⊗N

∗
. For n ≥ 1, we denote by Bn the σ-algebra

spanned by the n first coordinates b1, . . . , bn.
We will apply the results of Section 3.1 to the averaging operator i.e.

the Markov-Feller operator P = Pµ : C0(X)→ C0(X) whose transition
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probabilities are given by Px = µ ∗ δx for all x in X. For every x in X,
the Markov measure Px is the image of β by the map

B → X ; b 7→ (x, b1x, b2b1x, b3b2b1x, . . .).

We denote by µ∗n the nth-convolution power µ ∗ · · · ∗ µ.
Let E be a finite dimensional normed real vector space and σ a

continuous function σ : G × X → E. This function σ is said to be a
cocycle if one has

(3.4) σ(gg′, x) = σ(g, g′x) + σ(g′, x) for any g, g′ ∈ G, x ∈ X.

We introduce the sup-norm function σsup. It is given, for g in G, by

(3.5) σsup(g) = supx∈X ‖σ(g, x)‖ .

We assume that this function σsup is integrable

(3.6)
∫
G
σsup(g) dµ(g) <∞ .

Recall a Borel probability measure ν on X is said to be µ-stationary
if µ ∗ ν = ν, that is, if it is Pµ-invariant. When E = R, we define the
upper average of σ by

σ+
µ = supν

∫
G×X σ(g, x) dµ(g)dν(x),

and the lower average

σ−µ = infν
∫
G×X σ(g, x) dµ(g)dν(x),

where the supremum and the infimum are taken over all the µ-stationary
probability measures ν on X. We say that σ has unique average if
the averages do not depend on the choice of the µ-stationary proba-
bility measure ν i.e. if σ+

µ = σ−µ . In this case, these functions sat-
isfy also a law of large numbers, i.e. under assumption (3.6) if σ has
unique average, for any x in X, for β-almost every b in B, the sequence∑n

k=1
σ(bk,bk−1···b1x)

n
converges to σµ (see [10, Chap. 2]).

The following proposition 3.2 is an analog of Baum-Katz theorem for
these functions. For p = 2, it says that, when σsup is square integrable,
this sequence converges completely.

Proposition 3.2. Let G be a locally compact group, X a compact
metrizable G-space, µ a Borel probability measure on G and p > 1. Let
σ : G×X → R be a continuous function such that σsup is Lp-integrable.
Let σ+

µ and σ−µ be its upper and lower average. Then, for any ε > 0,
there exist constants Dn such that,∑

n≥1 n
p−2Dn <∞ ,
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and, for n ≥ 1, x ∈ X,

β({b ∈ B |
∑n

k=1
σ(bk,bk−1···b1x)

n
6∈ [σ−µ − ε, σ+

µ + ε]}) ≤ Dn

In particular, when σ is a cocycle, one has, for n ≥ 1, x ∈ X,

(3.7) µ∗n({g ∈ G | σ(g,x)
n
6∈ [σ−µ − ε, σ+

µ + ε]}) ≤ Dn .

The fact that the constants Dn do not depend on x will be important
for our applications.

Proof. According to Proposition 3.1, the conclusion of Proposition 3.2
is true when the function σ does not depend on the variable g. Hence
it is enough to prove Proposition 3.2 for the continuous function σ′ on
G×X given, for g in G and x in X, by

σ′(g, x) = σ(g, x)−
∫
G
σ(g, x) dµ(g).

By construction, the sequence of functions ϕn on B given, for b in B,
by

ϕn(b) = σ′(bn, bn−1 · · · b1x)

is a martingale difference. Hence our claim follows from Theorem 2.2
since the functions ϕn satisfy the domination (2.1): for n ≥ 1, t > 0,

E(1{|ϕn|>t} | Bn−1) ≤ µ({g ∈ G | σsup(g) +M > t}) .
where M is the constant M :=

∫
G
σsup(g) dµ(g). �

3.3. Central limit theorem for centerable cocycles.

In this section we explain how to deduce the central limit
theorem for centerable cocycles from the central limit
theorem for martingales.

Let σ : G × X → E be a continuous cocycle. When the function
σsup is µ-integrable, one defines the drift or expected increase of σ: it is
the continuous function X → E;x 7→

∫
G
σ(g, x) dµ(g). One says that

σ has constant drift if the drift is a constant function:

(3.8)
∫
G
σ(g, x) dµ(g) = σµ.

One says that σ is centered if the drift is a null function.
A continuous cocycle σ : G×X → E is said to be centerable if it is

the sum

(3.9) σ(g, x) = σ0(g, x) + ψ(x)− ψ(gx)

of a cocycle σ0(g, x) with constant drift σµ and of a coboundary ψ(x)−
ψ(gx) given by a continuous function ψ ∈ C0(X). A centerable cocycle
always has a unique average: for any µ-stationary probability ν on X,
one has ∫

G×X σ(g, x) dµ(g) dν(x) = σµ.
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Here is a trick to reduce the study of a cocycle with constant drift
σµ to one which is centered. Replace G by G′ := G × Z where Z acts
trivially on X, replace µ by µ′ := µ ⊗ δ1, so that any µ-stationary
probability measure on X is also µ′-stationary, and replace σ by the
cocycle

(3.10) σ′ : G′ ×X → E given by σ′((g, n), x) = σ(g, x)− nσµ.
A centerable cocycle σ is said to have unique covariance Φµ if

(3.11)
Φµ :=

∫
G×X(σ0(g, x) − σµ)2 dµ(g) dν(x) does not depend

on the choice of the µ-stationary probability measure ν,

where σ0 is as in (3.9). This covariance 2-tensor Φµ ∈ S2E is non-
negative.

Remark 3.3. This assumption does not depend on the choice of σ0.
More precisely, if σ0 and σ1 are cohomologous centered cocycles, for
any µ-stationary Borel probability measure ν on X, one has

(3.12)
∫
G×X σ0(g, x)2 dµ(g) dν(x) =

∫
G×X σ1(g, x)2 dµ(g) dν(x).

Indeed, since σ0 and σ1 are centered and cohomologous, we may write,
for any g, x, σ1(g, x) = σ0(g, x) +ψ(x)−ψ(gx) where ψ is a continuous
function on X and Pµψ = ψ. Now, the difference between the two sides
of (3.12) reads as

(3.13) 2
∫
G×X σ0(g, x)ψ(gx) dµ(g) dν(x).

By ergodic decomposition, to prove this is 0, one can assume ν is µ-
ergodic. In this case, since Pµψ = ψ, ψ is constant ν-almost everywhere
and (3.13) is proportional to

∫
G×X σ0(g, x) dµ(g) dν(x), which is 0 by

assumption.

Theorem 3.4. (Central limit theorem for centerable cocycles) Let G
be a locally compact group, X a compact metrizable G-space, E a
finite dimensional real vector space, and µ a Borel probability mea-
sure on G. Let σ : G × X → E be a continuous cocycle such that∫
G
σsup(g)2 dµ(g) < ∞. Assume that σ is centerable with average σµ

and has a unique covariance Φµ i.e. σ satisfies (3.9) and (3.11). Let
Nµ be the Gaussian law on E whose covariance 2-tensor is Φµ.

Then, for any bounded continuous function ψ on E, uniformly for x
in X, one has

(3.14)
∫
G
ψ
(
σ(g,x)−nσµ√

n

)
dµ∗n(g) −−−→

n→∞

∫
E
ψ(v) dNµ(v) .

Note that Hypothesis (3.11) is automatically satisfied when there
exists a unique µ-stationary Borel probability measure ν on X.
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Remarks 3.5. When E = Rd, the covariance 2-tensor Φµ is nothing but
the covariance matrix of the random variable σ0 on (G×X,µ⊗ ν).

The conclusion in Theorem 3.4 is not correct if one does not assume
the cocycle σ to be centerable.

Proof. We will deduce Theorem 3.4 from the central limit theorem 2.5
for martingales.

As in the previous sections, let (B,B, β) be the Bernoulli space with
alphabet (G, µ). We want to prove that, for any sequence xn on X, the
laws of the random variables Sn on B given, for b in B, by

Sn(b) := 1√
n
(σ(bn · · · b1, xn)− nσµ)

converge to Nµ.
Since the cocycle σ is centerable, one can write σ as the sum of

two cocycles σ = σ0 + σ1 where σ0 has constant drift and where σ1

is a coboundary. In particular the cocycle σ1 is uniformly bounded
and does not play any role in the limit (3.14). Hence we can assume
σ = σ0. Using the trick (3.10), we can assume that σµ = 0 i.e. that σ
is a centered cocycle.

We want to apply the martingale central limit theorem 2.5 to the
sub-σ-algebras Bn,k = Bk spanned by b1, . . . , bk and to the triangular
array of random variables ϕn,k on B given by, for b in B,

ϕn,k(b) = 1√
n
σ(bk, bk−1 · · · b1xn), for 1 ≤ k ≤ n .

Since, by the cocycle property (3.4), one has

Sn =
∑

1≤k≤n ϕn,k ,

we just have to check that the three assumptions of Theorem 2.5 are
satisfied with Φ = Φµ. We keep the notations Wn and Wε,n of this
theorem.

First, since the function σsup is square integrable, the functions ϕn,k
belong to L2(B, β), and, by Equation (3.8), the assumption (2.9) is
satified: for β-almost all b in B,

E(ϕn,k | Bk−1) =

∫
G

σ(g, bk−1 · · · b1xn) dµ(g) = 0 .

Second, we introduce the continuous function on X,

x 7→M(x) =

∫
G

σ(g, x)2 dµ(g) .

and we compute, for β-almost all b in B,

Wn(b) = 1
n

∑
1≤k≤nM(bk−1...b1xn).
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According to Proposition 3.1, since σ has a unique covariance Φµ, the
sequence Wn converges to Φµ in probability, i.e. the assumption (2.10)
is satisfied.

Third, we introduce, for λ > 0, the continuous function on X

x 7→Mλ(x) =

∫
G

σ(g, x)21{‖σ(g,x)‖≥λ} dµ(g) .

and the integral

Iλ :=

∫
G

σ2
sup(g)1{σsup(g)≥λ} dµ(g) ,

we notice that

Mλ(x) ≤ Iλ −−−→
λ→∞

0 ,

and we compute, for ε > 0 and β-almost all b in B,

Wε,n(b) = 1
n

∑
1≤k≤nMε

√
n(bk−1...b1xn) ≤ Iε√n −−−→

n→∞
0 .

In particular the sequence Wε,n converges to 0 in probability, i.e. Lin-
deberg’s condition (2.11) is satisfied.

Hence, by Fact 2.5, the laws of Sn converge to Nµ. �

4. Limit theorems for linear groups

In this chapter, we prove the central limit theorem for
linear groups (Theorem 1.1). Our main task will be to
prove that the norm cocycle (1.5) is centerable

4.1. Complete convergence for linear groups.

In this section we prove the complete convergence in the
Furstenberg law of large numbers.

Let K be a local field. The reader who is not familiar with local fields
may assume K = R. In general, a local field is a non-discrete locally
compact field. It is a classical fact that such a field is a finite extension
of either
(i) the field R of real numbers (in this case, one has K = R or C), or
(ii) the field Qp of p-adic numbers, for some prime number p, or
(iii) the field Fp((t)) of Laurent series with coefficients in the finite field
Fp of cardinality p, for some prime number p.

Let V be a finite dimensional K-vector space. We fix a basis e1, . . . , ed
of V and the following norm on V . For v =

∑
viei ∈ V we set ‖v‖ =

(
∑
|vi|2)

1
2 when K = R or C, and ‖v‖ = max(|vi|) in the other cases.

We denote by e∗1, . . . , e
∗
d the dual basis of V ∗ and we use the same

symbol ‖.‖ for the norms induced on the dual space V ∗, on the space
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End(V ) of endomorphisms of V , or on the exterior product ∧2V , etc...
We equip the projective space P (V ) with the distance d given, by

d(x, x′) = ‖v∧v′‖
‖v‖ ‖v′‖ for x = Kv, x′ = Kv′ in P(V ).

For g in GL(V ), we write N(g) := max(‖g‖, ‖g−1‖).

Let µ be a Borel probability measure on G := GL(V ) with finite
first moment:

∫
G

logN(g) dµ(g) < ∞. We denote by Γµ the subsemi-
group of G spanned by the support of µ, and by λ1 the first Lyapunov
exponent of µ,

(4.1) λ1 := lim
n→∞

1
n

∫
G

log ‖g‖ dµ∗n(g).

Let b1, . . . , bn, . . . be random elements of G chosen independantly
with law µ. The Furstenberg law of large numbers describes the be-
havior of the random variables log ‖bn · · · b1‖. It is a direct consequence
of the Kingman subadditive ergodic theorem (see for example [43]). It
states that, for µ⊗N

∗
-almost any sequence (b1, . . . , bn, . . .) in G, one has

(4.2) lim
n→∞

1
n

log ‖bn · · · b1‖ = λ1.

The following Proposition 4.1 is an analogue of the Baum-Katz the-
orem for the Furstenberg law of large numbers. For p = 2, it says that,
when the second moment of µ is finite, this sequence (4.2) converges
completely.

Proposition 4.1. Let p > 1 and V = Kd. Let µ be a Borel prob-
ability measure on the group G := GL(V ), such that the pth-moment∫
G

(logN(g))p dµ(g) is finite. Then, for every ε > 0, there exist con-
stants Cn = Cn(p, ε, µ) such that

∑
n≥1 n

p−2Cn <∞ and

(4.3) µ∗n({g ∈ G such that | log ‖g‖ − nλ1| ≥ εn}) ≤ Cn.

Moreover, if Γµ acts irreducibly on V , for any v in V r {0}, one has

(4.4) µ∗n({g ∈ G such that | log ‖gv‖‖v‖ − nλ1| ≥ εn}) ≤ Cn,

Proof. We first prove the claim (4.3). We fix ε > 0. We will apply
Proposition 3.2 to the group G = GL(V ) acting on the projective
space X = P(V ) and to the norm cocycle

σ : G×X → R ; (g,Kv) 7→ log ‖gv‖‖v‖

for which the function σsup is Lp-integrable. According to Furstenberg-
Kifer and Hennion theorem in [22, Th. 3.9 & 3.10] and [33, Th. 1&
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Cor. 2] (see also [10, Ch. 3]), the Lyapunov exponent λ1 is the upper
average of σ i.e.

λ1 = supν
∫
G×X σ(g, x) dµ(g) dν(x),

and there exists a unique Γµ-invariant vector subspace V ′ ⊂ V such
that, on one hand, the first Lyapunov exponent λ′1 of the image µ′ of µ
in GL(V ′) is strictly smaller than λ1, and, on the other hand, the image
µ′′ of µ in GL(V ′′) with V ′′ = V/V ′ has exponent λ1 and the cocycle

σ′′ : GL(V ′′)× P(V ′′)→ R ; (g,Kv) 7→ log ‖gv‖‖v‖ has unique average λ1.

Since λ1 is the upper average of σ, by Proposition 3.2, there exist
constants Cn = Cn(p, ε, µ) such that

∑
n≥1 n

p−2Cn < ∞ and, for all v
in V r {0} and n ≥ 1,

(4.5) µ∗n({g ∈ G | log ‖gv‖‖v‖ − nλ1 ≥ εn}) ≤ Cn.

Since λ1 is the unique average of σ′′, using again Proposition 3.2, one
can choose Cn such that, for all v′′ in V ′′ r {0} and n ≥ 1,

(4.6) µ∗n({g ∈ G | log ‖gv
′′‖

‖v′′‖ − nλ1 6∈ [−εn, εn]}) ≤ Cn,

where, as usual, the norm in the quotient space V ′′ is defined by the
equality ‖v′′‖ = inf{‖v‖ | v ∈ v′′+V ′}.

The claim (4.3), with a different constant Cn, follows from a com-
bination of the claim (4.5) applied to a basis v1, . . . , vd of V and from
the claim (4.6) applied to a non-zero vector v′′ in V ′′. One just has to
notice that there exists a positive constant M such that one has

log ‖gv
′′‖

‖v′′‖ ≤ log ‖g‖ ≤ max
1≤i≤d

log ‖gvi‖‖vi‖ +M ,

for all g in GL(V ) preserving V ′.
The claim (4.4) follows from (4.6), since, when the action of Γµ on

V is irreducible, one has V ′′ = V . �

We denote by λ2 the second Lyapounov exponent of µ, i.e.

(4.7) λ2 := lim
n→∞

1
n

∫
G

log ‖∧
2g‖
‖g‖ dµ∗n(g).

Corollary 4.2. Assume the same assumptions as in Proposition 4.1.
For every ε > 0, there exist constants Cn such that

∑
n≥1 n

p−2Cn <∞
and

(4.8) µ∗n({g ∈ G such that | log ‖ ∧2 g‖ − n(λ1+λ2)| ≥ εn}) ≤ Cn.

Proof. Our statement (4.8) is nothing but (4.3) applied to ∧2V . �
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Remarks 4.3. An endomorphism g of V is said to be proximal if it ad-
mits an eigenvalue λ which has multiplicity one and if all other eigen-
values of g have modulus < |λ|. The action of Γµ on V is said to be
proximal if Γµ contains a proximal endomorphism. The action of Γµ on
V is said to be strongly irreducible if no proper finite union of vector
subspaces of V is Γµ-invariant.

According to a result of Furstenberg (see for example [14]), when
Γµ is unbounded, included in SL(V ) and strongly irreducible in V , the
first Lyapounov exponent is positive: λ1 > 0.

According to a result of Guivarc’h in [27], when the action of Γµ
is proximal and strongly irreducible, the first Lyapounov exponent is
simple i.e. one has λ1 > λ2. We will use this fact in the next section.

4.2. Log-regularity in projective space.

In this section, we prove the log-regularity of the Fursten-
berg measure for proximal stronly irreducible represen-
tations when the second moment of µ is finite.

For any y = Kf in P(V ∗), we set y⊥ ⊂ P(V ) for the orthogonal
projective hyperplane: y⊥ = P(Kerf). For x = Kv in P(V ) and y = Kf
in P(V ∗), we set

δ(x, y) = |f(v)|
‖f‖‖v‖ .

This quantity is also equal to the distance δ(x, y) = d(x, y⊥) in P(V )
and to the distance d(y, x⊥) in P(V ∗).

Remark 4.4. Let µ be a Borel probability measure on GL(V ) such that
Γµ is proximal and strongly irreducible on V . Then, due to a result of
Furstenberg, µ admits a unique µ-stationary Borel probability measure
ν on P(V ). For β-almost any b in B, the sequence of Borel probability
measures (b1 · · · bn)∗ν converges to a Dirac measure (see [14, III.4] in
the real case and [10, Chap. 3] in the general case).

Proposition 4.5. Let p > 1 and V = Kd. Let µ be a Borel probability
measure on G = GL(V ) whose pth-moment is finite. Assume that
Γµ is proximal and strongly irreducible on V . Let ν be the unique µ-
stationary Borel probability measure on X = P(V ). Then, for all y in
P(V ∗),

(4.9)
∫
X
| log δ(x, y)|p−1 dν(x) is finite,

and is a continuous function of y.

Remarks 4.6. By a theorem of Guivarc’h in [28], when µ is assumed to
have an exponential moment, the stationary measure ν is much more
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regular: its Hausdorff dimension is finite, i.e. there exists t > 0 such
that

(4.10) supy∈P(V ∗)

∫
X
δ(x, y)−t dν(x) <∞.

The following proof of Proposition 4.5 is similar to our proof in [10]
of Guivarc’h theorem, which is inspired by [15].

Note that the integral (4.9) may be infinite when the action of Γµ
is assumed to be “irreducible” instead of “strongly irreducible” (see
Example 4.15).

Let K be the group of isometries of (V, ‖.‖) and A+ be the semigroup

A+ := {diag(a1, . . . , ad) | |a1| ≥ · · · ≥ |ad|}.
For every element g in GL(V ), we choose a decomposition

g = kgag`g with kg, `g in K and ag in A+.

We denote by xMg ∈ P(V ) the density point of g and by ymg ∈ P(V ∗)
the density point of tg, that is

xMg := Kkge1 and ymg := K t`ge
∗
1.

We denote by γ1(g) the first gap of g, that is, γ1(g) := ‖∧2g‖
‖g‖2 .

Lemma 4.7. For every g in GL(V ), x = Kv in P(V ) and y = Kf in
P(V ∗), one has

(i) δ(x, ymg ) ≤ ‖gv‖
‖g‖‖v‖ ≤ δ(x, ymg ) + γ1(g)

(ii) δ(xMg , y) ≤ ‖tgf‖
‖g‖‖f‖ ≤ δ(xMg , y) + γ1(g)

(iii) d(gx, xMg ) δ(x, ymg ) ≤ γ1(g).

Proof. For all these inequalities, we can assume that g belongs to A+,
i.e. g = diag(a1, . . . , ad) with |a1| ≥ · · · ≥ |ad|. We write v = v1 + v2

with v1 in Ke1 and v2 in the Kernel of e∗1. One has then

‖g‖ = |a1| , γ1(g) = |a2|
|a1| , and δ(x, ymg ) = ‖v1‖

‖v‖ .

(i) follows from ‖g‖ ‖v1‖ ≤ ‖gv‖ ≤ ‖g‖ ‖v1‖+ |a2| ‖v2‖.
(ii) follows from (i) by replacing V with V ∗ and g with tg.

(iii) follows from d(gx, xMg ) δ(x, ymg ) = ‖gv2‖
‖gv‖

‖v1‖
‖v‖ ≤

|a2|
|a1| . �

Lemma 4.8. Under the same assumptions as Proposition 4.5, there
exist constants c > 0, and Cn > 0 with

∑
n≥1 n

p−2Cn < ∞, and such
that, for n ≥ 1, x in P(V ) and y in P(V ∗), one has

(4.11) µ∗n({g ∈ G | d(gx, xMg ) ≥ e−cn}) ≤ Cn,

(4.12) µ∗n({g ∈ G | δ(xMg , y) ≤ e−cn}) ≤ Cn,
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(4.13) µ∗n({g ∈ G | δ(gx, y) ≤ e−cn}) ≤ Cn.

Proof. We set c = 1
2
(λ1−λ2) where λ1 and λ2 are the first two Lyapunov

exponents of µ (see Section 4.1). According to Guivarc’h theorem in
[27], since the action of Γµ is proximal and strongly irreducible, one has
λ1 > λ2. According to Proposition 4.1 and its Corollary 4.2, there exist
constants Cn such that

∑
n≥1 n

p−2Cn < ∞ and such that, for n ≥ 1,
x = Kv in P(V ) and y = Kf in P(V ∗) with ‖v‖ = ‖ϕ‖ = 1, there exist
subsets Gn,x,y ⊂ G with µ∗n(Gn,x,y) ≥ 1−Cn, such that, for g in Gn,x,y,
the four quantities∣∣∣λ1 − log ‖g‖

n

∣∣∣ , ∣∣∣λ1 − log ‖gv‖
n

∣∣∣ , ∣∣∣λ1 − log ‖tgϕ‖
n

∣∣∣ , ∣∣∣λ1−λ2− log γ1(g)
n

∣∣∣
are bounded by ε (λ1−λ2) with ε = 1

8
. We will choose n0 large enough,

and prove the bounds (4.11), (4.12) and (4.13) only for n ≥ n0. We
have to check that, for n ≥ n0 and g in Gn,x,y, one has

d(gx, xMg ) ≤ e−cn , δ(xMg , y) ≥ e−cn and δ(gx, y) ≥ e−cn.

We first notice that, according to Lemma 4.7.i, one has

δ(x, ymg ) ≥ e−2ε (λ1−λ2)n − e−(1−ε)(λ1−λ2)n

hence, since n0 is arbitrarily large,

(4.14) δ(x, ymg ) ≥ e−3ε(λ1−λ2)n

But then, using Lemma 4.7.iii one gets, for n0 large enough,

(4.15) d(gx, xMg ) ≤ e−(1−ε)(λ1−λ2)ne3ε (λ1−λ2)n = e−(1−4ε)(λ1−λ2)n.

This proves (4.11).
Applying the same argument as above to tg acting on P(V ∗), the

inequality (4.14) becomes

(4.16) δ(xMg , y) ≥ e−3ε (λ1−λ2)n.

This proves (4.12).
Hence, combining (4.16) with (4.15), one gets, for n0 large enough,

δ(gx, y) ≥ δ(xMg , y)− d(gx, xMg )

≥ e−3ε(λ1−λ2)n − e−(1−4ε)(λ1−λ2)n ≥ e−4ε (λ1−λ2)n.

This proves (4.13). �

Proof of Proposition 4.5. We choose c, Cn as in Lemma 4.8. We first
check that, for n ≥ 1 and y in P(V ∗), one has

(4.17) ν({x ∈ X | δ(x, y) ≤ e−cn}) ≤ Cn.
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Indeed, since ν = µ∗n ∗ ν, one computes using (4.13)

ν({x∈X | δ(x, y)≤e−cn}) =
∫
X
µ∗n({g∈G | δ(gx, y)≤e−cn}) dν(x)

≤
∫
X
Cn dν(x) = Cn,

Then cutting the integral (4.10) along the subsets An−1,y rAn,y where

An,y := {x ∈ X | δ(x, y) ≤ e−cn}
one gets the upperbound∫

X
| log δ(x, y)|p−1 dν(x) ≤

∑
n≥1 c

p−1np−1(ν(An−1,y)− ν(An,y))

≤ cp−1 + cp−1
∑

n≥1((n+1)p−1 − np−1)Cn

≤ cp−1 + (p−1) 2pcp−1
∑

n≥1 n
p−2Cn.

which is finite. This proves (4.9).
It remains to check the continuity of the function on P(V ∗)

ψ∗ : y 7→
∫
X
| log δ(x, y)|p−1 dν(x).

The fact that the above constants Cn do not depend on y tells us that
this function ψ∗ is a uniform limit of continuous functions ψ∗n given by

ψ∗n : y 7→
∫
X

min(| log δ(x, y)|, cn)p−1 dν(x).

Hence the function ψ∗ is continuous. �

4.3. Solving the cohomological equation.

In this section, we prove that the norm cocycle is center-
able.

We recall that the norm cocycle σ on X = P(V ) is the cocycle

σ : GL(V )× P(V )→ R ; (g,Kv) 7→ log ‖gv‖‖v‖ .

Proposition 4.9. Let µ be a Borel probability measure on G = GL(Kd)
whose second moment is finite. Assume that Γµ is proximal and strongly
irreducible on V := Kd. Then the norm cocycle σ on P(V ) is centerable
i.e. satisfies (3.9).

Proof. Let

(4.18) ϕ : x 7→
∫
G
σ(g, x) dµ(g)

be the expected increase of the cocycle σ. We want to find a continuous
function ψ on X such that

(4.19) ϕ = ψ − Pµψ + λ1,

where Pµψ(x) =
∫
G
ψ(gx) dµ(g), for all x in X, and where λ1 is the

first exponent of µ on V .
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Let µ̌ be the image of µ by g 7→ g−1. We will also denote by σ the
norm cocycle on P(V ∗) i.e. the cocycle

σ : GL(V )× P(V ∗)→ R ; (g,Kf) 7→ log ‖f◦g
−1‖

‖f‖ .

Since the representation of Γµ̌ in V ∗ is also proximal and strongly
irreducible, there exists a unique µ̌-stationary probability measure ν∗

on the dual projective space P(V ∗).
Since the second moment of µ is finite, according to Proposition 4.5,

this measure ν∗ is log-regular. Hence the following formula defines a
continuous function ψ on X,

(4.20) ψ(x) =
∫
G

log δ(x, y) dν∗(y),

where δ(x, y) = |f(v)|
‖f‖ ‖v‖ , for x = Rv in P(V ) and y = Rf in P(V ∗),

We check the equality,

(4.21) σ(g, x) = log δ(x, g−1y)− log δ(gx, y) + σ(g−1, y)

by computing each side,

log ‖gv‖‖v‖ = log |f(gv)|
‖f◦g‖ ‖v‖ − log |f(gv)|

‖f‖ ‖gv‖ + log ‖f◦g‖‖f‖ .

Integrating Equation (4.21) on G×P(V ∗) for the measure dµ(g) dν∗(y)
and using the µ̌-stationarity of ν∗, one gets (4.19) since λ1 is also the
first exponent of µ̌ in V ∗. �

4.4. Central limit theorem for linear groups.

The tools we have developped so far allow us to prove
not only our central limit theorem 1.1 but also a multi-
dimensional version of this theorem.

For i = 1, . . . ,m, let Ki be a local field and Vi be a finite dimensional
normed Ki-vector space, and let µ be a Borel probability measure on
the locally compact group G := GL(V1) × · · · × GL(Vm). We assume
that Γµ acts strongly irreducibly in each Vi. We consider the compact
space X = P(V1)× · · · × P(Vm).

We denote by σ : G × X → Rm the multinorm cocycle, that is,
the continuous cocycle given, for g = (g1, . . . , gm) in G and x =
(K1v1, . . . ,Kmvm) in X, by

σ(g, x) := (log ‖g1v1‖
‖v1‖ , . . . , log ‖gmvm‖‖vm‖ ).

We introduce also the function κ : G→ Rm given, for g in G, by

κ(g) := (log ‖g1‖, . . . , log ‖gm‖)
and the function ` : G→ Rm given by

`(g) := lim
n→∞

1
n
κ(gn),
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so that, the ith coefficient of `(g) is the logarithm of the spectral radius
of gi. For g in G, we set N(g) =

∑m
i=1 N(gi).

Remark 4.10. Let µ be a Borel probability measure on the group
GL(V1) × . . . × GL(Vm) such that, for any 1 ≤ i ≤ m, Γµ is proximal
and strongly irreducible in Vi. By Remark 4.4, µ admits a unique µ-
stationary Borel probability measure νi on P(Vi) and, for β-almost any
b in B, (b1 · · · bn)∗νi converges towards a Dirac mass δξi(b) as n → ∞.
One easily shows that this implies that the image ν of β by the map

B → X ; b 7→ (ξ1(b), . . . , ξm(b))

is the unique µ-stationary Borel probability measure on X (see for
example [10, Chap. 1]).

Here is the mutidimensional version of Theorem 1.1.

Theorem 4.11. Let µ be a Borel probability measure on the group
G := GL(V1)× . . .×GL(Vm) such that Γµ acts strongly irreducibly on
each Vi, and such that

∫
G

(logN(g))2 dµ(g) <∞.
a) There exist an element λ in Rm, and a gaussian law Nµ on Rm such
that, for any bounded continuous function F on Rm, one has

(4.22)
∫
G
F
(
σ(g,x)−nλ√

n

)
dµ∗n(g) −−−→

n→∞

∫
Rm F (t) dNµ(t) ,

uniformly for x in X, and

(4.23)
∫
G
F
(
κ(g)−nλ√

n

)
dµ∗n(g) −−−→

n→∞

∫
Rm F (t) dNµ(t) .

b) When the local fields Ki are equal to R and when µ is supported by
SL(V1)×. . .×SL(Vm), the support of this Gaussian law Nµ is the vector
subspace Eµ of Rm spanned by `(Gµ) where Gµ is the Zariski closure
of Γµ.
c) When m = 1, K1 = R, and Γµ has unbounded image in PGL(V1),
the gaussian law Nµ is non-degenerate.

Remark 4.12. Point b) gives a very practical way to determine the
support of the limit gaussian law Nµ. We recall that the Zariski closure
Gµ of Γµ in G is the smallest subset of G containing Γµ which is defined
by polynomial equations. We recall also that the Zariski closure of a
subsemigroup of G is always a group.

Proof. a) We first notice that Equations (4.22) and (4.23) are equivalent
since, for all ε > 0, there exists c > 0 such that, for all non-zero vector
vi in Vi, all n ≥ 1,

µ∗n({g ∈ G | c ‖gi‖ ≤ ‖givi‖/‖vi‖ ≤ ‖gi‖}) ≥ 1− ε.
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(see for instance [8, Lemma 3.2]).
First, assume that, for 1 ≤ i ≤ m, Γµ is proximal in Vi. In this

case, by Proposition 4.9, in each Vi, the norm cocycle is centerable.
Hence our cocycle σ is also centerable. Besides, since by Remark 4.10
µ admits a unique stationary probability measure on X, σ has a unique
covariance. Equation (4.22) then directly follows from the central limit
theorem 3.4.

In general, by Lemma 4.13 below, for any 1 ≤ i ≤ m, there exists
a positive integer ri, a number Ci ≥ 1 and a finite-dimensional Ki-
vector space Wi equipped with a strongly irreducible and proximal
representation of Γµ such that, for any g in Γµ, one has

C−1
i ‖gi‖

ri
Vi
≤ ‖gi‖Wi

≤ ‖gi‖riVi .
Thus, a) follows from the proximal case applied to the representations
W1, . . . ,Wm.
b) We assume now that all the local fields Ki are equal to R and that

det(gi) = 1 for all g in Γµ. We want to describe the support of the
limit gaussian law Nµ. Again, by Lemma 4.13, we can assume that all
Vi’s are proximal.

According to [4, §4.6], the set κ(Γµ) remains at bounded distance
from the vector space spanned by `(Γµ). Hence the support of Nµ is
included in Eµ.

Conversely, since σ is centerable, by (3.11), the covariance 2-tensor
of Nµ is given by the formula, for all n ≥ 1,

(4.24) Φµ = 1
n

∫
G×X(σ(g, x)− ψ(x) + ψ(gx)− nλ)2 dµ∗n(g) dν(x)

where ψ is the continuous function in Equation (3.9) and ν is the uniqe
µ-stationary probability measure on X. Let EΦµ ⊂ Rm be the linear
span of Φµ. For all g in the support of µ∗n and all x in the support of
ν, the element

(4.25) σ(g, x)− ψ(x) + ψ(gx)− nλ belongs to EΦµ .

In particular, let g be an element of Γµ which acts in each Vi as a
proximal endomorphism and let

x+ = (x+
1 , . . . , x

+
m)

where, for any i, x+
i is the attractive fixed point of g in P(Vi). Since

x+
i is an eigenline for gi whose eigenvalue has modulus equal to the

spectral radius of gi, we have

σ(g, x+) = `(g).

Since Γµ is strongly irreducible in each Vi, for any x = (x1, . . . , xm) in
X, there exists h in Γµ with gnhx −−−→

n→∞
x+. In particular, the support
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of ν contains x+, so that, applying (4.25) to the point x+, we get

(4.26) `(g) ∈ Zλ+ EΦµ .

Now, since the actions on Vi are strongly irreducible, proximal and
volume preserving, the Zariski closure Gµ is semisimple. Hence, by [5],
there exists a subset Γ1 of Γµ such that, for any i, the elements of Γ1

act as proximal endomorphisms in Vi and that the closed subgroup of
Rm spanned by the set `(Γ1) in Rm is equal to the vector space Eµ
spanned by `(Gµ). Hence, by (4.26) this space Eµ has to be included
in EΦµ and we are done.
c) The main difference with point b) is that the Zariski closure Gµ

may not be semisimple. The same argument as in b) tells us that
`([Gµ, Gµ]) is included in EΦµ and, since the image of Γµ in PGL(V1) is
unbounded, the group [Gµ, Gµ] is also unbounded and one must have
EΦµ = R. �

To deduce the general case in Theorem 4.11.a) from the one where all
the Vi are Γµ-proximal, we used the following purely algebraic lemma.

Lemma 4.13. Let K be a local field, V be a finite-dimensional normed
K-vector space and Γ be a strongly irreducible sub-semigroup of GL(V ).
Let r ≥ 1 be the proximal dimension of Γ in V , that is, the least rank
of a non-zero element π of the closure

KΓ := {π ∈ End(V ) | π = lim
n→∞

λngn with λn ∈ K , gn ∈ Γ}

and let W ⊂ ∧rV be the subspace spanned by the lines ∧rπ(V ), where
π is a rank r element of KΓ. Then,
a) W admits a largest proper Γ-invariant subspace U .
b) The action of Γ in the quotient W ′ := W/U is proximal and strongly
irreducible.
c) Moreover, there exists C ≥ 1 such that, for any g in Γ, one has

(4.27) C−1‖g‖r ≤ ‖ ∧r g‖W ′ ≤ ‖g‖r.

Remark 4.14. In case K has characteristic 0, the action of Γ in ∧rV is
semisimple and W ′ = W .

Proof of Lemma 4.13. a) We will prove thatW contains a largest proper
Γ-invariant subspace and that this space is equal to

U := ∩πKerW (Λrπ), where π runs among all rank r elements of KΓ.

This space U is clearly Γ-invariant. We have to check that the only Γ-
invariant subspace U1 of W which is not included in U is U1 = W . Let
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π be a rank r element of KΓ such that U1 is not included in Ker(∧rπ).
The endomorphism ∧rπ is proximal and one has

∧rπ(U1) ⊂ U1 .

As ∧rπ has rank one, one has

Im(∧rπ) ⊂ U1 .

Let π′ be any rank r element of KΓ. Since Γ is irreducible in V , there
exists f in Γ such that π′fπ 6= 0. As π′fπ also belongs to KΓ, we get
rk(π′fπ) = r and, since ∧r(π′f) preserves U1, one has

Im(∧rπ′) = Im(∧r(π′fπ)) ⊂ U1 .

Since this holds for any π′, by definition of W , we get U1 = W , which
should be proved.
b) The above argument proves also that, for any rank r element π of

KΓ, one has

(4.28) Im(Λrπ) = Λrπ(W ) and Im(Λrπ) 6⊂ U .

In particular, the action of Γ in the quotient space W ′ := W/U is
proximal.

Let us prove now that the action of Γ in W ′ is strongly irreducible.
Let U1, . . . , Ur be subspaces of W , all of them containing U , such that Γ
preserves U1∪· · ·∪Ur. Since W ′ is Γ-irreducible, the spaces U1, . . . , Ur
span W . Let ∆ ⊂ Γ be the sub-semigroup

∆ := {g ∈ Γ | gUi = Ui for all 1 ≤ i ≤ r}.
There exists a finite subset F ⊂ Γ such that

Γ = ∆F = F∆.

In particular, since Γ is strongly irreducible in V , so is ∆. Besides,
∆ also has proximal dimension r and, since KΓ = K∆F , W is also
spanned by the lines Im(Λrπ) for rank r elements π of K∆. By applying
the first part of the proof to ∆, since the ∆-invariant subspaces Ui span
W , one of them is equal to W . Therefore, W ′ is strongly irreducible.
c) We want to prove the bounds (4.27). First, for g in GL(V ), one has

‖ ∧r g‖ ≤ ‖g‖r. As for g in Γ, we have (∧rg)W = W and (∧rg)U = U ,
we get

‖ ∧r g‖W ′ ≤ ‖g‖r .
Assume now there exists a sequence (gn) in Γ with

‖gn‖−r‖ ∧r gn‖W ′ → 0

and let us reach a contradiction. If K is R, set λn = ‖gn‖−1. In general,
pick λn in K such that supn | log(|λn|‖gn‖)| < ∞. After extracting a
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subsequence, we may assume λngn → π, where π is a non-zero element
of KΓ. In particular, π has rank ≥ r and we have λrn ∧r gn → ∧rπ.
Thus, since ‖λrn ∧r gn‖W ′ → 0, we get ‖ ∧r π‖W ′ = 0, that is,

∧rπ(W ) ⊂ U.

We argue now as in a). Let π′ be a rank r element of KΓ. Since Γ is
irreducible in V , there exists f in Γ such that π′fπ 6= 0. Since π′fπ
has rank at least r, it has rank exactly r and, since ∧r(π′f) preserves
U , one has

Im(∧rπ′) = Im(∧r(π′fπ)) ⊂ U.

Since this holds for any π′, by definition of W , we get U = W . Con-
tradiction. �

Example 4.15. There exists a finitely supported probability measure
µ on SL(Rd) such that Γµ is unbounded and acts irreducibly on Rd,
and such that, if we denote by λ1 its Lyapunov first exponent, the ran-

dom variables log ‖gn···g1‖−nλ1√
n

converge in law to a variable which is not

Gaussian.

Note that, according to Theorem 1.1, the action of Γµ on Rd can
not be strongly irreducible. In our example, the limit law is the law of
a random variable sup(α1(Z), . . . , αm(Z)) where Z is a D-dimensional
Gaussian vector and αi are linear forms on RD. One can prove that
this is a general phenomenon.

Proof of example 4.15. Set d = 2 and σ :=
(

0 −1
1 0

)
. We just choose gi =

σεi
(
exi 0
0 e−xi

)
where εi, xi are independant random variables, εi takes

equiprobable values in {0, 1} and xi are symmetric and real-valued
with the same law ν 6= δ0. One can write gn · · · g1 = σηn

(
eSn 0

0 e−Sn

)
with ηn = ε1 + · · ·+ εn and

Sn = x1 + (−1)ε1x2 + · · ·+ (−1)ε1+···+εn−1xn .

By the classical CLT, the sequence Sn√
n

converges in law to a non-

degenerate Gaussian law. Hence the sequence 1√
n

log ‖gn · · · g1‖ = |Sn|√
n

converges in law to a non-Gaussian law. �

4.5. Central limit theorem for semisimple groups.

In this section, we prove the central limit theorem for
random walks on semisimple Lie groups for a law µ whose
second moment is finite and such that Γµ is Zariski dense.
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This central limit theorem 4.16 will only be an intrinsic reformulation
of Theorem 4.11. Its main interest is that it describes more clearly the
support of the limit gaussian law.

We first recall the standard notations for semisimple real Lie groups.
Let G be a semisimple connected linear real Lie group, g its Lie algebra,
K a maximal compact subgroup of G, k its Lie algebra, a a Cartan
subspace of g orthogonal to k for the Killing form, and A the subgroup
of G, A := ea. Let a+ be a closed Weyl chamber in a, a++ the interior
of a+, A+ = ea

+

. Let N be the corresponding maximal nilpotent
connected subgroup

N := {n ∈ G | ∀H ∈ a++ , lim
t→∞

e−tHnetH = 1}.

Let P be the corresponding minimal parabolic subgroup of G, i.e. P
is the normalizer of N . Let X = G/P be the flag variety of G.

Using the Iwasawa decomposition G = KAN one defines the Iwa-
sawa cocycle σ : G × X → a: for g in G and x in X, σ(g, x) is the
unique element of a such that

gk ∈ Keσ(g,x)N , for x = kP with k in K.

Using the Cartan decomposition G = KA+K, one defines the Cartan
projection κ : G → a+: for g in G, κ(g) is the unique element of a+

such that

g ∈ Keκ(g)K.

We also define the Jordan projection ` : G→ a by

`(g) := lim
n→∞

1
n
κ(gn).

Example Before stating the main theorem, let us describe briefly these
notions for G = SL(d,R). We endow Rd with the standard Euclidean
inner product. In this case, one has:
- G = {g ∈ End(Rd) | det(g) = 1}, g = {H ∈ End(Rd) | tr(H) = 0},
- K = SO(d,R) = {g ∈ G | tgg = e}, k = {H ∈ g | tH +H = 0},
- a = {H=diag(H1, . . . , Hd)∈g}, a+ = {H ∈ a / H1 ≥ · · · ≥ Hd},
- A = {a=diag(a1, . . . , ad)∈G | ai > 0}, A+ = {a∈A |a1≥· · ·≥ad},
- N is the group of upper triangular matrices with 1’s on the diagonal,
- P is the group of all upper triangular matrices in G,
- X is the set of flags x = (Vi)0≤i≤d of Rd, i.e. of increasing sequences
of vector subspaces Vi with dimVi = i.
- The ith coordinate σi(g, x) of the Iwasawa cocycle σ(g, x) is the log-
arithm of the norm of the transformation induced by g between the
Euclidean lines Vi/Vi−1 7→ gVi/gVi−1.
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- The coordinates κi(g) of the Cartan projection κ(g) are the loga-

rithms of the eigenvalues of (tgg)
1
2 in decreasing order.

- The coordinates `i(g) of the Jordan projection `(g) are the logarithms
of the moduli of the eigenvalues of g in decreasing order.

Theorem 4.16. Let µ be a probability measure on the semisimple con-
nected linear real Lie group G. Assume that Γµ is Zariski dense in G,
and that the second moment

∫
G
‖κ(g)‖2 dµ(g) is finite. Then,

a) The Iwasawa cocycle is centerable.
b) There exist λ in a++ and a non-degenerate gaussian law Nµ on a
such that, for any bounded continuous function F on a, one has

(4.29)
∫
G
F
(
σ(g,x)−nλ√

n

)
dµ∗n(g) −−−→

n→∞

∫
a F (t) dNµ(t) ,

uniformly for x in X, and

(4.30)
∫
G
F
(
κ(g)−nλ√

n

)
dµ∗n(g) −−−→

n→∞

∫
a F (t) dNµ(t) .

We recall that this theorem is due to Goldsheid and Guivarc’h in
[23] and to Guivarc’h in [30] when µ has a finite exponential moment.

We recall also that the assumption “Γµ is Zariski dense in G” means
that, “every polynomial function on G which is identically zero on Γµ
is identically zero on G”.

Proof. a) We use the same method as in [4]. There exists a basis
χ1, . . . , χm of a∗ and finitely many irreducible proximal representations
(V1, ρ1), . . . , (Vm, ρm) of G endowed with K-invariant norms such that,
for all g in G, and x = hP in X,

χi(κ(g)) = log ‖ρi(g)‖ and χi(σ(g, x)) = log ‖ρi(g)vi‖‖vi‖ ,

where Rvi is the hPh−1-invariant line in Vi. It follows then from The-
orem 4.9 that, for all i ≤ m, the cocycle χi ◦σ is centerable. Hence the
Iwasawa cocycle σ is also centerable.

b) Using the same argument as in a), the convergences to a normal
law Nµ in (4.29) and (4.30) follow from Theorem 4.11. This theorem
4.11 tells us also that the support of Nµ is the vector subspace of a
spanned by the set `(G). Since it contains a+ = `(A+), this vector
subspace is equal to a. �
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Springer LN 928 (1982) 258-303.
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un corps local, Transform. Groups 7 (2002) 247-266.

[41] S. Sawyer, T. Steger, The rate of escape for anisotropic random walks in a
tree, Probab. Theory Relat. Fields 76 (1987) 207-230.

[42] F. Spitzer, A combinatorial lemma and its application to probability theory.
Trans. Amer. Math. Soc. 82 (1956), 323-339.

[43] M. Steele Kingman’s subadditive ergodic theorem Ann. Inst. H. Poincaré
Probab. Statist. 25 (1989), no. 1, 93-98.

[44] G. Stoica, Baum-Katz-Nagaev type results for martingales, J. Math. Anal.
Appl. 336 (2007) 1489-1492.

[45] V. Tutubalin, A central limit theorem for products of random matrices, Sym-
posia Mathematica 21 (1977) 101-116
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