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ABSTRACT. Given a discrete cofinite group of isometries I' of a
locally finite tree X, we study certain I'-invariant quadratic forms
on distribution spaces on the boundary dX of X which are defined
by singular integrals. Their kernels are constructed from certain
cohomology classes of functions on the space of parametrized ge-
odesic lines of '\ X, equipped with the time shift dynamics. We
develop a structure theory for these quadratic forms when they are
non-negative.
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1. INTRODUCTION

1.1. Motivations. This article is the first of a series of papers which
aim at studying certain phenomena in the representation theory and
harmonic analysis on non-abelian countable groups. This study is mo-
tivated by questions from homogeneous dynamics and geometric prob-
ability theory. In homogeneous dynamics, one studies actions of sub-
groups of a Lie group G on the homogeneous spaces of GG. In geomet-
ric probability theory, one studies random walks on the homogeneous
spaces of GG defined by Borel probability measures on G.

In both fields, numerous striking equidistribution results were ob-
tained in the last decades. The question of the speed of those equidis-
tribution results is still open in many cases. Often, understanding this
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speed amounts to proving a spectral bound for a certain linear operator
acting on a Banach space.

Inspired in particular by the work of Bourgain [7] on absolute con-
tinuity of stationary measures, and by his own joint contribution with
Benoist to the subject [6], the author was lead to believe that it might
be possible to describe part of the spectral structure of operators P
defined as follows: let G be a semisimple Lie group and A be a finitely
generated (Zariski dense) subgroup of G. Choose an irreducible uni-
tary representation of G on a Hilbert space H and let p: A — U(H)
be its restriction to A. Let S be a finite set which generates A and P
be the self-adjoint operator of H defined by

2|S] Zp

We will not solve the question of describing the spectral invariants of P
in this article, but we will start to build a structure theory for certain
unitary representations of the abstract free group generated by .S which
share some analogy with p.

1.2. Special representation of SLy(R). To motivate the introduc-
tion of this theory, let us focus on the case where G = SLy(R). One
can define a unitary representation of GG in the following way. Let H
be the space of all distributions 7" in the Sobolev space H = H™2 (P)
such that (7,1) = 0, where 1 is the constant function with value 1.
The group G acts on H and Hj in a natural way. Let us construct an
invariant scalar product for this action. For ¢ # 1 in PL, and p in the
hyperbolic plane H, let (£|n), denote the Gromov product of £ and n
viewed from p. Equivalently, if £ = Rv and 7 = Rw for some non-zero
vectors v and w in R?, we set

1 [ A wl|
(Elm)p = —7log | T | »
b o]l llwll,

where |[|.||,, stands for the Euclidean norms associated to p on R* and
A?R?. Then the symmetric bilinear form defined formally by

@, (p,0) = (€lm)pdp(£)dd(n)

1 1
Pp XPg

is bounded on H™2(PL). It is positive definite and defines the usual

topology of H™z (PL). Now the restriction of ®,, to Hy does not depend
on p. This follows from the following additive property of the Gromov
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product

(11) (€l — €y = 5 0clp. ) + byp.a)) pra€H €49 e P,

where b : H x H x P, — R is the Busemann cocycle which can be
defined in this instance by

1 o]l
b —Z1 P
¢(p,q) 5 log <I|v||q :

for p,q in H and £ the vector line spanned by the non-zero vector v in
R2.

This representation is irreducible if one considers distributions with
coefficients in R; if one considers distributions with coefficients in C,
it is the sum of two irreducible components. In this case, these irre-
ducible components are discrete series representations of SLy(R) which
are complex conjugate to each other.

Moreover, the fact that the representation Hy appears in an exact
sequence

0—-Hy—>H—C—0,

where H is a non unitarizable bounded representation of SLy(R), de-
fines a natural non trivial 1-cohomology class of Hj.

Bargmann’s classification of irreducible unitary representations of
SLy(R) is given in [25]. One can check that they all can be constructed
from the representation in Hy by abstract algebraic operations, such as
taking tensor products (as in the work of Repka [30]) or exponentials
defined by the natural 1-cohomology class (this latter procedure is de-
scribed in Section 2.11 of the book of Bekka, de la Harpe and Valette
4))

To summarize, the additive property (1.1) allows to define an invari-
ant symmetric bilinear form on certain function spaces on the boundary
of H. This bilinear form is positive definite and most of the representa-
tion theory of SLy(R) can be recovered from the unitary representation
defined by this data. For this reason, and by analogy with the case of
automorphisms of trees explained below, let us call this unitary repre-
sentation the special representation of SLy(RR).

1.3. Special representations of automorphisms of trees. We will
now recall an analogue construction for trees. Let X be a regular
tree with valence d > 3, that is, every vertex x in X has exactly d
neighbours. Later, X will be the tree associated to a free group. The
group G of automorphisms of X comes with a natural locally compact
topology. The study of the unitary irreducible representations of G
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was initiated by Cartier [11] and a full classification of them was given
by Olshanski [28]. This classification is described in detail in the book
of Figa-Talamanca and Nebbia [14], and it shares some deep analogy
with the representation theory of SLy(R).

In particular, let 9X be the boundary of X, 9>X be the set of pairs
of different points in X and w : X x9?X — Z be the Gromov product.
Then, there is a certain Hilbert space H* of distributions on 0.X whose
scalar product is formally defined as the symmetric bilinear form

(p,0) = we(€,m)dp(§)dO(n),
OX x0X

where z is a fixed vertex of X. Again, if we set Hf to be the space of
those T in H¥ with (T, 1) = 0, the restriction of this scalar product to
Hy does not depend on x, which is due to the relation

(1.2)

&) — (&) = 5 cle,y) + b)) wyEX E4nE0X,

where b : X x X x 0X — Z again is the Busemann cocycle. The
construction of the Hilbert spaces H* and H{ is recalled in Subsection
3.1.

1.4. Pull-back of the special representation. We will now show
how certain unitary representations p as in Section 1.1 can be defined
directly by looking at functions on a tree.

Let A and S be as in Subsection 1.1 and let I be the abstract free
group generated by S, so that A may be seen as the image of I' under
a homomorphism 6. The data of the system of generators determines
a transitive action of I' on a d-regular tree X, where d = 2|S|. Fix
x in X and equip the boundary 0X of X with the harmonic measure
v, associated to x. Boundary theory gives a ['-equivariant measurable
map ¢ : X — P, which is defined v,-almost everywhere. It follows
from the construction of this map by means of probability theory (see
[5, Sec. 9, 13]) that the v, ® v,-almost everywhere defined function

Q2 (&m) = (0E)le))p

is v, ® v,-integrable. Thus, it defines a symmetric bilinear form W,
on the space 9M>*(0X,v,) of Borel signed measures on 90X which are
absolutely continuous with respect to v, with a bounded Radon deriv-
ative. As the bilinear form ®, of Subsection 1.2 is non-negative, so is
U,. Now, from (1.1), one can get a relation of the form

(1.3)

Q.(&,m) —Qy(&n) = %(Bs(luy) + By(r,y)) w,ye X §#necdX,
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which implies again that the restriction of ¥, to the space M5°(0X, v,)
of signed measures p with p(1) = 0 is I-invariant. The completion of
this space with respect to this I'-invariant non-negative bilinear form
defines a representation of I' which is a subrepresentation of pof. Thus,
at least part of the representation p may be seen as being obtained from
the data of the function €2, and the additive relation (1.1).

1.5. Objectives of the article. Functions {2 which are I'-invariant
and satisfy a relation as (1.3) will be called additive kernels in this
article. They are rather common in negatively curved geometry (see
Ledrappier’s survey paper [26], whose results are adapted to our frame-
work in Section 2). What remains mysterious (at least for the author)
is the fact that, as in the above construction, the bilinear forms defined
by such functions may turn out to be non-negative (and hence to define
unitary representations of I).

In Subsection 1.4, the additive kernel €2 is only measurable.

In Subsection 1.3, the additive kernel w is smooth, that is, locally
constant on 9*X. One can show that the representation of I on Hy may
be embedded in a finite product of copies of the regular representation
of I'. In particular, if » = |S|, the spectrum of the operator P =

3 Y seg(s+s7) in Hy was computed by Kesten [23]: this is the interval

[—2v2r =1, =/2r — 1]

We plan to get a better understanding of the spectrum of the oper-
ator P in the measurable case by a careful study of the smooth case.

Therefore, the purpose of this first paper is to study the set of smooth
[-invariant additive kernels  : X x 9?X — R such that the associated
bilinear forms are non-negative (a first step being to give a precise def-
inition of this non-negativity phenomenon). We will give a description
of all such smooth additive kernels as the images under linear maps
of certain explicit cones in some finite-dimensional vector spaces. The
construction of these vector spaces and of these linear maps will occupy
most of the article. It turns out that these objects possess a rather rich
structure theory, which we will develop in the slightly more general
framework of discrete groups acting on trees with a finite quotient.

Our later objective is to use this structure theory in order to build
approximation schemes of measurable non-negative additive kernels by
smooth ones, along which schemes part of the spectral properties of
the operator P are preserved.

1.6. Related works. The group SLy(R) or the group of automor-
phisms of a regular tree are type I groups. In other words, the space
of all their irreducible unitary representations may be parametrized by
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a standard Borel space. Such a parametrization can not be obtained
for discrete groups with infinite conjugacy classes. These notions and
facts are explained in [3, Chap. 6, 7|. In other words, there is no
hope of getting a classification of the irreducible unitary representa-
tions of I'. Nevertheless one can try and describe special examples of
such representations.

As far as the author knows, the study of unitary representations of
discrete groups acting on negatively curved spaces can be traced back
to the work of of Figa-Talamanca and Picardello [15] who proved that
the restriction to a free group of a spherical irreducible representa-
tion of the group of automorphisms of its tree stays irreducible. For
Lie groups, Cowling and Steger [13] determined under which condition
the restriction to a lattice of a unitary irreducible representation of a
semisimple Lie group remains irreducible.

The construction, from the geometry of its tree, of unitary represen-
tations of a free group that are not necessarily representations of the
full group of automorphisms was initiated by Kuhn and Steger [24].
This work was recently pursued by lozzi, Kuhn and Steger [21].

A main development of the field was the proof of the irreducibility of
the quasi-regular representation associated with the Patterson-Sullivan
measure of the fundamental group of a compact negatively curved man-
ifold by Bader and Muchnik [1]. This result was extended to groups of
isometries of CAT(—1)-spaces by Boyer [8] and then to a wider class
of quasi-regular representations associated to Gibbs measures by Boyer
and Garncarek [9]. In this latter work, there appears a strong relation
between the unitary representation theory of the fundamental group
and the thermodynamic formalism of the geodesic flow. This connec-
tion also exists in the present paper.

We notice that the representations that are studied by these authors
may be seen as analogues or deformations of the principal series rep-
resentations of SLy(R) or of the group of isometries of a regular tree.
In particular, the Hilbert spaces on which they are defined are easily
constructed: they are the L? spaces associated with a certain quasi-
invariant measure on the boundary of the group. Our point of view is
different in as much as the representations that we build are analogues
of the special representations mentioned in Subsections 1.2 and 1.3. In
particular, the definition of the associated Hilbert spaces is more intri-
cate. One could say that we study the additive representation theory
of I, whereas the above mentioned authors study the multiplicative
representation theory of I'. Both theories are related through the ex-
ponentiation process associated to a certain 1-cohomology class in the
additive representations (see again [4, Sec. 2.11]). The precise study



ADDITIVE REPRESENTATIONS 9

of this relation will also be the subject of a later work, as will be the
use of this exponentiation process to build generalized complementary
series.

1.7. Structure of the paper. We now give a sketch of the contents
of the different parts of the paper.

Section 2 introduces precisely the language of trees X equipped with
a cofinite action of a group I' and the one of smooth additive ker-
nels, that are locally constant I'-invariant functions (2 satisfying (1.2).
This is mostly a translation of the material in [26] from the language
of Hadamard manifolds. We show in particular how smooth additive
kernels are defined by (cohomology classes of) I'-invariant symmetric
functions w on a space X = {(z,y) € X x X|d(z,y) = k} for some
k> 1.

Section 3 introduces the space H* of distributions on the boundary
0X which we mentioned in Subsection 1.3 and which is the analogue
of the Sobolev space H_%(Pﬁg) from Subsection 1.2. In case the tree is
regular, the space Hy of distributions in H“ which kill the constant
functions is the skew-symmetric special representation of the group
of automorphisms of X which is studied in [14]. We prove that the
bilinear form ®,, defined formally by the additive kernel associated to
the function w is bounded on H¥. Its restriction to H§ is ['-invariant.
In the sequel of the article, we will give an alternate construction of
this bilinear form.

In Section 4, we study bilinear forms on the space

D(0X) = D(OX)/R

which is the quotient of the space D(0.X) of locally constant functions
on 0X by the line of constant functions. We show how these bilinear
forms may be defined in terms of certain functions called quadratic type
functions on X, = {(z,y) € X x X|z # y}. We introduce quadratic
fields, which are one of the main objects of study of this article. More
precisely, for any integer £ > 2, there is a notion of a k-quadratic field.
When £ is even, k = 2/, a quadratic field p is the data, for any x in
X, of a symmetric bilinear form p, on the space of functions on the
sphere S*(x) with radius ¢ and center z, with 1 in the null space of
Dz, and with a compatibility relation between p, and p, for x ~ v.
When the associated bilinear forms are positive definite (modulo the
constant functions), a k-quadratic field is called a k-Euclidean field.
From a k-Euclidean field, one can build a (k + 1)-Euclidean field by a
process called orthogonal extension, and, by induction, one eventually
gets a symmetric bilinear form on D(0X). The set of all I-invariant
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k-Euclidean fields is denoted by Py. It is an open subset of the finite-
dimensional vector space of I'-invariant k-quadratic fields.

In Section 5, we define a dual notion to the one of a k-quadratic
field, namely the one of a k-dual kernel. The finite-dimensional vector
space of all I'-invariant k-dual kernels is denoted by Ky and there is
a natural linear embedding K — Kpi1 which is also called orthog-
onal extension. FEuclidean fields may be embedded into dual kernels
and orthogonal extension of Euclidean fields is the same as orthogo-
nal extension of the associated dual kernels. Still, the definition of
dual kernels and their orthogonal extensions is rather intricate, and we
hope our choice of order for the exposition will help the reader to get a
better understanding of the objects. We define a closed convex cone of
k-dual kernels in K which are called non-negative k-dual kernels. A
Euclidean field, when viewed as a dual kernel, is non-negative. To each
such non-negative k-dual kernel, we can associate a I'-invariant space
of distributions equipped with a I'-invariant non-negative symmetric
bilinear form. Our goal now will be to show that these bilinear forms
may be defined by means of an additive kernel.

The purpose of the technical Section 6 is to define this additive ker-
nel. More precisely, we build there a linear map Wy, : K — W, from
the space of I'-invariant k-dual kernels towards the space of cohomol-
ogy classes of I'-invariant symmetric functions on Xj. This map W, is
called the weight map.

In Section 7, we draw the connection between the language of ad-
ditive kernels and the one of dual kernels. Indeed, we prove that the
Hilbert space associated to a non-negative dual kernel always contains
the above constructed space H§ (up to a quotient) and that the bilin-
ear form induced by the dual kernel on Hy is of the form &,,, where
w is a function defined from the dual kernel through the weight map.
Conversely to every function w such that ®,, is non-negative on Hy,
we can associate a non-negative dual kernel which is called the image
kernel of w. In the rest of the paper, we will study the set of all image
dual kernels.

As a preliminary, in Section 8, we prove that the weight map is
surjective and we describe its null space'. This leads to the introduction
of a new family of objects which are called k-pseudokernels, where
k > 1 is an integer. The vector space of all I'-invariant k-pseudokernels

IThere is a problem with terminology here. In linear algebra, the kernel of a
linear map is the space where it cancels. In functional analysis, the kernel of a
bilinear form on a space of functions is a function with two variables. To avoid
confusions, we will only use the word kernel with the latter meaning and speak of
the null space of a linear map.
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is denoted by L;. When k£ > 2, there is a natural embedding of £;_;
into the space K of I'-invariant k-dual kernels whose range is exactly
the null space of the weight map.

In Section 9, we give a geometric description of the set of image
k-dual kernels as a subset of the finite-dimensional space Kj.

In the rest of the paper, we will study the image dual kernels coming
from bilinear forms ®,, which are not only non-negative but coercive,
that is, which define the topology of Hg. These kernels are actu-
ally associated to certain Euclidean fields which are called admissible
Euclidean fields. In Section 10, we give a criterion for a FKuclidean
field to be admissible. This criterion involves a natural linear operator
associated to a k-Euclidean field and acting on the space of (k — 1)-
pseudokernels, which we call the transfer operator by analogy with the
theory of hyperbolic dynamical systems.

In Section 11, we build a natural Riemannian structure on the space
P24 of all admissible I-invariant k-Euclidean fields. It is an analogue
of the Riemannian structure on the space of all scalar products of a
finite-dimensional vector space (see [20]). The orthogonal extension
map injects P24 smoothly into P,‘jil and the Riemannian structure of
Ppd is the pull-back of the one of P34, .

The building of these Euclidean norms on spaces of Euclidean fields
is a first step towards building approximation schemes of non smooth
additive kernels by smooth ones.

1.8. Miscellaneous notation. When speaking of a function, we shall
always mean a function with values in R. All vector spaces considered
in this paper and in particular all Hilbert spaces will be defined over
R.

If V is a vector space, we shall denote its algebraic dual space by V*.
If W is another vector space and 0 : V — W is a linear map, we write
0* : W* — V* for the adjoint linear map. If V' (resp. W) is equipped
with a scalar product p (resp. q), we write 877 : W — V for the adjoint
linear map of T" with respect to these Euclidean structures. When the
choices of p and ¢ are clear from the context, we simply write 67 for
04, The null space of @ is denoted by ker 6.

The space of all symmetric bilinear forms on V' is denoted by Q(V).
The space of non-negative (resp. positive definite) forms is denoted
by Q. (V) (resp. Q4+ (V)). If ¢ is a symmetric bilinear form on W,
then 6*¢ stands for the pull-back of ¢ under 6, that is, the bilinear form
(v,w) = q(Tv,Tw) on V. Thus, * and 6* are both pull-back maps,
but they don’t act on the same spaces. Unfortunately, at some point,
we will need to write (6*)*.
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If U is a totally discontinuous locally compact topological space, we
say that a function ¢ on U is smooth if it is locally constant. The space
of all compactly supported smooth functions on U will be denoted by
D(U). A distribution on U is a linear functional on this space. The
space of all distributions on U is therefore the algebraic dual space of
D(U). We denote it by D*(U). This notion of a distribution and its use
in the representation theory of groups acting on totally discontinuous
spaces can be traced back to [10].

If pisin D(U) and T is in D*(U), we write (T, ) for the evaluation
of T on . We write ¢T" for the distribution ¢ — (T, p1).

If U is compact, we set D(U) = D(U)/R to be the quotient of the
space of smooth functions by the line of constant functions. Its dual
space can be identified with the space of distributions which kill the
function 1. It is denoted by D(U).

If V is another totally discontinuous locally compact topological
space, for ¢ in D(U) and ¢ in D(V), we write ¢ ® ¢ for the func-
tion (u,v) — p(u)(v) on U x V', which belongs to D(U x V). This
identifies D(U x V') with the algebraic tensor product D(U) @ D(V).
In particular, if p is a distribution in D*(U) and 6 is a distribution in
D*(V), we define a distribution p ® 6 in D*(U x V') by setting

(@0, 00¢) = (p,)(0,¥), ¢eDU), ¢eDV).
The characteristic function of a subset V' in a set U is denoted by
1Y or more simply by 1y when there is no ambiguity.
Let ' be a group acting on a set X and S C X be a system of
representatives of the elements of I'\X. If ¢ is a I-invariant function
on X which is summable on S, we write > x ¢(x) for 3 o p(z).

2. TREE LATTICES AND ADDITIVE KERNELS

2.1. Trees. In all the article, the letter X will stand for a locally finite
tree. We start by giving a precise definition of the version of this notion
that we will use.

We let X be countable set equipped with a symmetric relation ~
such that for any z in X, the set of neighbours of x, that is, the set
Sl(z) of y in X with z ~ y, is finite (X is locally finite) and does
not contain x. We let d(x) denote its number of elements. To avoid
technicalities, we assume that d(z) > 3 for any z in X.

We assume that (X,~) is connected, that is, for every z,y in X
there exists a sequence zp = z,21,...,2, = y of elements of X such
that z,_1 ~ 2z, for 1 <h <mnand 2z, 1 # zp41 for 1 <h <n—1. Such
a sequence will be called a geodesic path from x to y. The integer n is
called the length of the path.
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We assume that (X, ~) is simply connected, that is, for every z,y
in X there exists a unique geodesic path zy = z,21,...,2, = y from
x to y. The set {z9,...,2,} is called the geodesic segment between x
and y and is denoted by [zy]. The length of this path is called the
distance between = and y and denoted by d(x,y). For any n > 0, we
write S™(x) for the sphere with radius n and center z for this distance.

A sequence (z)p>0 of elements of X is called a geodesic ray if, for
all H > 0, the sequence (xp)o<n<pm is a geodesic path. The element x
is called the origin of the geodesic ray.

Two geodesic rays (z5)r>0 and (ys)n>o are said to be equivalent if
there exists a relative integer k € Z with z,., = y, for any large
enough h. This is an equivalence relation among geodesic rays and the
set of equivalence classes is called the boundary of X and is denoted
by 0X. For any z in X and £ in 0X, there exists a unique geodesic
ray (zp)n>0 with origin = in the equivalence class defined by £. Note
that the parametrization of the set {x,|h > 0} which makes it into a
geodesic ray is unique. By abuse of notations, we shall identify the
geodesic ray (xp)n>o and the set {z;|h > 0} and denote both of them
by [z€). The elements ¢ is called the endpoint of the ray [z€).

Fix x in X. The set of geodesic rays with origin x embeds naturally
as a subset of the product set [],-,S"(x), which is closed for the
product topology of the discrete topologies on the spheres. We equip
this set with the induced topology which is compact. The image of this
topology on 90X does not depend on x. We shall henceforward equip
0X with this topology. It is compact and totally discontinuous.

Let 92X denote the set of pairs of different points in 0.X.

A sequence (1) ez of elements of X is called a parametrized geodesic
line if, for all H > 0, the sequence (x)n<m is a geodesic path. Let .7
be the set of all parametrized geodesic lines of X.

Let s = (zp)nez be in .. The point z; is called the base point of s
and denoted by 7(s). The sequence (xp11)nez (resp. (z_p)nez) is again
a parametrized geodesic line. It is denoted by T's (resp. ts). The maps
T:Y — % and v : ¥ — & are called the time shift and the time
reversal.

If s = (zp)pez is in .7, the endpoints & and n of the geodesic rays
(x_p)n>0 and (xp)p>o are different. They are respectively called the
origin and endpoint of s and denoted by s_ and s.

Conversely, given £ # n in 02X, there exists a parametrized geodesic
line (zp,)pez with origin ¢ and endpoint . The set {z,|h € Z} only
depends on ¢ and 7 and is denoted by (£n). It is called the geodesic
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line between £ and 7. The parametrizations of this geodesic line are
unique up to time shift and time reversal.

The map . — X x 92X, s — (7(s),s_, s1) is injective and its range
is a closed subset of X x 92X (where X is equipped with the discrete
topology). We equip . with the topology induced by this injection.
This makes .¥ a locally compact totally discontinuous space and the
maps T and ¢ homeomorphisms of ..

An automorphism of X is a map g : X — X such that, for any =,y in
X, one has gx ~ gy if and only if x ~ y. A group I' of automorphisms
of X is said to be discrete if it acts properly on X. It is said to be
cofinite if the quotient I"\ X is finite. A cofinite lattice of X is a discrete
cofinite group of automorphisms of X. In the sequel we fix a cofinite
lattice I'.

Below are two examples of such a tree lattice that the reader may
keep in mind along the article.

Example 2.1. Let A be a finite set with at least three elements and set
d = |A| to be the cardinality of A. We assume that X is d-regular (that
is, d(x) = d for every x in X). We fix a map w : X; — A from the set
X1 ={(z,y) € X?|x ~ y} of edges of X towards A which is symmetric
(that is, w(z,y) = w(y,z) for x ~ y in X) and such that, for every z in
X, the map y — w(zx,y) is a bijection from the set S'(x) of neighbours
of x onto A. We then let I" be the group of automorphisms of X which
preserve the map w. Then I' is a cofinite lattice, which as an abstract
group is the free product of d copies of Z/27Z.

Example 2.2. Let A be a finite set with at least two elements. Set

= 2|A| and let X be a d-regular tree. We now fix a map w : X; —
Ax{—1,1} which is skew-symmetric (in the sense that, for every x ~ y
in X, if w(z,y) = (a,€), then w(y,z) = (a, —€)) and again such that,
for every x in X, the map y — w(z,y) is a bijection from the set S*(z)
of neighbours of x onto A x {—1,1}. We then let I" be the group of
automorphisms of X which preserve the map w. Then I' is a cofinite
lattice, which as an abstract group is the free product of d copies of Z:
this is the classical construction of the tree of a free group.

More generally, trees appear naturallly as universal covers of finite
graphs and tree lattices as their fundamental groups. We refer the
reader to [2] for more on tree lattices.

2.2. Dynamical properties. The action of I' on . is proper and the
space I'\.# is compact. Since the action of I' on . commutes with
the maps 1" and ¢, the latter induce homeomorphisms of the compact
space I'\.. By abuse of notation, we still denote these maps by T
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and ¢. The map T may be seen as an analogue of the geodesic flow for
the quotient of X by I'. In this Subsection, we prove that this geodesic
flow is topologically transitive. This property will be used in the sequel
to prove uniqueness of the solutions of certain functional equations.

Proposition 2.3. The map T admits dense orbits on I'\.. Equiva-
lently, the group T' admits dense orbits on 0*X.

This rather standard result will follow from classical arguments of hy-
perbolic dynamical systems and hyperbolic geometry as in [12]. These
arguments will not be used elsewhere in the paper. Most of the steps
of the proof could be deduced from general properties of hyperbolic
groups as in [16]. As these properties are much easier to prove in our
particular case, we include a sketch of their proofs here.

We start with an easy consequence of the fact that I'\ X is finite.

Lemma 2.4. Let x,y,z be in X with x ~ y. Then there exists g in I’
with x ¢ [y(gz)].

Proof. Indeed, the set {t € X|z ¢ [yt]} is unbounded whereas, as I'\ X
is finite, one has supsex d(t, gz) < oc. O
gel

An automorphism g of X will be called hyperbolic if there exists a
geodesic line (&) such that ¢g(én) = (£n) and the restriction of g to
(&m) is a non-trivial translation. More precisely, there exists k # 0 such
that, if (x)nez is a parametrization of (£n) with origin £ and endpoint
71, one has gr, = xpix, h € Z. Up to reversing the roles of ¢ and 7,
one can assume k > 0. In that case, for every ¢ # £ in 90X, one has
g"C — In particular, the fixed points £ and 7 of g and the positive

integer k are uniquely determined by g. They are respectively called
the repulsive fixed point, the attractive fixed point and the translation
length of g. The geodesic line (£n) is called the axis of g.

Let us give an easy criterion for an automorphism to be hyperbolic.
This is a version of the closing Lemma from hyperbolic dynamics (see

[19]).

Lemma 2.5. Let x be in X and g be an automorphism of X. Assume
gx # x. Let y be the neighbour of x on [x(gx)]. Then, if gy does not
belong to the segment [x(gx)], g is hyperbolic with translation length
k = d(x,gx) and x belongs to the axis of g.

Proof. Let xg = x,21 = y,...,xx = gx be the parametrization of
the segment [z(gz)]. For any h in Z ~\ [0,k], if h = tk+m, ( € Z,
0<m<k—1, weset 2, = g*r,,. Then one easily checks that (z},)xez
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o gr

FIGURE 1. Proof of Lemma 2.6

is a parametrized geodesic line and that gx;, = xpk, h € Z. Thus, g is
hyperbolic and we are done. U

From this, we deduce that I' contains hyperbolic elements.

Lemma 2.6. The group I' contains hyperbolic elements. More pre-
cisely, the set of attractive fixed points of hyperbolic elements of T' is
dense in 0X.

Proof. Fix x # y in X and let us build a hyperbolic element ~ of T’
whose attractive fixed point £ is such that y € [x€).

By Lemma 2.4, we can find an element g in I with [zy] C [z(gz)].
We let z be the neighbour of z on [z(gz)]. Then, if gz does not belong
to [x(gx)], by Lemma 2.5, g is hyperbolic and z belongs to the axis of
g. In particular, as [xy] C [z(gz)], we can set v = g.

If not, again by Lemma 2.4, we can find h in I" with hz # x and
[z(gz)] N [x(hx)] = {x}. We let t be the neighbour of x on [z(hx)].

Assume ht ¢ [x(hz)]. Then, still by by Lemma 2.5, h is hyperbolic
and its attractive fixed point n satisfies [xn) N [z(gx)] = {z}. As ¢ is
the neighbour of x on [zn), gt is the neighbour of gz on [(gx)(gn)).
Since t # z and gz is the neighbour of gx on [z(gx)], we have [zy] C
[z(gz)] C [z(gn)) and we can set v = ghg™'.

Finally, if At belongs to [z(hz)], we claim that gh™' is hyperbolic.
Indeed, by construction the geodesic segment [(hx)(gz)] is equal to the
union [z(gx)] U [x(hz)]. Now, the neighbour of hz on this segment
is ht and the one of gx is gz. Since by assumption, z # ¢, we have
gt = (gh™')ht # gz, hence gt does not belong to [(hz)(gz)]. Thus,
again by Lemma 2.5, gh™! is hyperbolic and its attractive fixed point ¢
satisfies [ry] C [(hx)(gx)] C [(hz)(), so that we can set v = gh™!. [
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We recall the definition of the Busemann cocycle: this is a a first
example of a smooth boundary cocycle, a notion which will play a key
role in this article.

Let  and y be in X and £ be in 9X. The set [x£) N [y&) is a geodesic
ray. The number d(zx, z) — d(y, z) does not depend on z when z varies
in [2€) N [y€). We denote it by be(z,y). The map b: 0X x X x X — R
is smooth and is invariant under all automorphisms of X. It satisfies
the cocycle relation:

be(z, z) = be(x,y) + be(y, 2), xy,2z€X, £€iX.

For £ in 0X, we let I'¢ be the stabilizer of { in I'. Fix z in X. By
the cocycle property, the map g +— be(z, gx) is a homomorphism from
I's to Z which does not depend on z. We denote this homomorphism
by xe.

Set Us = 0X N {{}. We fix x in X. We define a ultrametric distance
on Uy by setting, for n # ¢ in Ug, D5(n,¢) = €*®2) where z in X
is such that (£n) N (£¢) = (£z]. This is a proper distance, meaning
that the associated balls are compact. It defines the locally compact
topology of Uy, viewed as a subset of 0.X.

For z,y in X, one has D = e*(=% DS and for g in T¢ and 7,( in
U, one has DS (gn, g¢) = eX¢@WDS(n, ¢). Thus, a fixed point argument
gives:

Lemma 2.7. Let & be in 0X and g be in ' with x¢(g) < 0. Then g is
hyperbolic and its repulsive fixed point is &.

Let I'? be the kernel of x¢ in I'e.

Lemma 2.8. Let & be in 0X. The action of the group Fg on the locally
compact space U = 0X \ {{} is proper.

Proof. We need to prove that for any compact subset K of Ug, the set
of g in I'} with gK N K # ) is finite.

For z in X, define K¢, as the set of those 7 in U, such that x belongs
to (n). These sets are the balls of the above introduced distances on
Ue. In particular K¢, is a compact subset of U; and every compact
subset of Ug is contained in K¢, for some x. Thus, to check that the
action is proper, we can assume that K above is of the form Kg,.

Now, for & # y in X with be(z,y) = 0, we have K¢ N Ke, = 0.
Therefore, we get

{9 € T¢lgKew N Kew # 0} = {g € T¢|ga =z},
and the latter is finite by assumption. 0
The group I's can not be too large:
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Lemma 2.9. Let  be in 0X. If xe # 0 on L', then I'¢ fizes a point in
Ue. In particular, we always have I'e # T

Proof. Assume x¢ = 0. Then, for every z in X, we have
I'ex C {y € X|be(z,y) = 0},

hence I's # I' by Lemma 2.4.

Assume x¢ # 0, that is, x¢(I'¢) is a non trivial subgroup of Z. Let
g be in I'¢ such that x¢(g) < 0 and x¢(I'¢) = x¢(9)Z. By Lemma 2.7,
the automorphism ¢ is hyperbolic with repulsive fixed point &. Let
n € Ue be its attractive fixed point. We claim that 7 is fixed by I'c.
Indeed, as by Lemma 2.8, the action of I’ 2 on Uy is proper, there exists
a neighborhood V' of 7 in Ug such that V- NT¢n = {n}. As 5 is the
attractive fixed point of g, for every ¢ in Ug, there exists n > 0 with
g"¢ € V. Since I'{ is normal in I'¢ and gn = 7, we have gI'¢n = I'¢n.
Thus, we get T'¢n = {n}. By assumption, we have I'c = ¢TI and
therefore 7 is a fixed point of I'¢. In particular, for = in (£n), we have
Iex C (&), hence again I'e # I' by Lemma 2.4. O

The action of I' on dX is minimal.
Lemma 2.10. Let & be in 0X. Then I'§ is dense in 0X.

Proof. Let g be a hyperbolic element of I" with attractive fixed point ¢
and repulsive fixed point n. If £ # n, we have ¢"¢( —— (. If £ =1, by
n—oo

Lemma 2.9, we have I'c # I', that is, we can find h in I' with h§ # &.
Then, g"hé —— (. In both cases, ¢ belongs to the closure of I'€,
n—oo

hence I'¢ is dense by Lemma 2.6. U

We can now finish the proof of Proposition 2.3. This relies on the
classical shadowing argument from hyperbolic dynamics (see [19]).

Proof of Proposition 2.3. First, the two statements in the Proposition
are equivalent. Indeed, for s in .#, saying that the image of s in I'\.7
has dense orbit under 7' is saying that s has dense orbit under the
(I' x Z)-action on .# defined by

(v,n)-s=~(T"s)=T"(ys), v€l, neZ, sec.

Now, the surjective map . — 9°X, s — (s_, s, ) identifies 92X with
the quotient of .# by the T%-action, so that saying that s has dense
(T x Z)-orbit in . is saying that (s_, s, ) has dense T-orbit in 9*X.
We will now show that the action of I' on 9?X admits dense orbits.
As 92X is a locally compact topological space with a countable basis,
it suffices to prove that, for every non empty open subsets U and V of
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F1GURE 2. Proof of Proposition 2.3

02X, there exists v in T with vU NV # () (existence of a dense set of
points with dense orbits then follows from a Baire category argument).

Now, one can assume that U (resp. V) is of the form U~ x U™ (resp.
V= x VT) where U7, UT, V= and V' are non empty open subsets of
OX and U NUT =V~ NVT = (. We fix a hyperbolic element ¢ in
I' (which exists by Lemma 2.6). Let g~ be the repulsive fixed point of
g and ¢g" be its attractive fixed point. By Lemma 2.10, there exists
in I with y¢g™ € V*. Thus, up to replacing V by its image by v~ !, we
can assume that ¢* belongs to V*. In the same way, we can assume
that g~ belongs to U~. Now, we fix £ in U and n in V~. We can
find an integer n > 0 such that one has ¢"¢ € V' and ¢"n € U~. In
particular, we have (¢7"n,§) € U~ x Ut whereas (n,¢"¢) e V- x VT,
hence ¢g"U NV # () and the result follows. O

2.3. Boundary cocycles. We now introduce smooth boundary cocy-
cles: they are generalizations of the Busemann cocycle. Recall that,
given a locally compact topological space U, we let D(U) denote the
space of smooth functions with compact support on U. We will freely
identify functions in D(I'\.#) with I'-invariant smooth functions on .7

Two smooth functions f and g in D(I'\.¥) are said to be cohomologu-
ous if there exists some smooth function h such that f —g =hoT — h.
Note that in particular, f is cohomologuous with foT. By Proposition
2.3, the smooth function h such that f —g = hoT — h is unique up to
the addition of a constant. A smooth function f is said to be even if f
is cohomologuous to f o .
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By a smooth boundary cocycle, we shall mean a set-theoretic cocycle
X x X — D(0X). More precisely, such a cocycle B is a map 0X X
X xX =R, (& x,y) — Be(x,y) such that, for any £ in 0X and z,y, 2
in X,

Bf(ﬂf, Z) = Bg(l',y) + Bf(ya Z)

The group of automorphisms of X acts in a natural way on the space
of smooth boundary cocycles and in the sequel, we shall only consider
[-invariant smooth boundary cocyles, that is, we require that for any
vin T, £ in 0X and z,y in X,

Boe(yz,vy) = Be(w,y).

Two I'-invariant smooth boundary cocycles B and C' are said to be
cohomologuous if there exists a ['-invariant smooth function F' on X x
0X such that, for any £ in X and x,y in X,

Be(,y) — Ce(z,y) = F(x,€) — F(y,§).

Ezxample 2.11. The Busemann cocycle is a smooth boundary cocycle
which is invariant under all automorphisms of X.

There is a general philosophy, coming from [26], that under some
regularity assumptions, there is a bijection between cohomology classes
of functions on I'\.# and cohomology classes of I'-invariant boundary
cocycles on X. We shall make it explicit in the case of smooth objects.

To begin with, let us give an alternate definition of a smooth bound-
ary cocycle. This is a kind of generalization of the construction of the
Busemann cocycle.

Lemma 2.12. For any smooth function f on X x 0X, there exists a
unique smooth boundary cocycle B such that, for any x in X and & in
0X, if x1 is the unique neighbour of x on [x), we have

Be(z,21) = f(z,§).

Proof. Let x and y be in X, £ be in X and z be a point in [z€) N [y&).
We denote by xg = z,xq,...,x, = 2 the geodesic path from x to z and
by ¥o = ¥, ¥1,...,Yp = 2 the geodesic path from y to z. The number

> Fan &) =D fun€)
h=0 h=0

does not depend on z. We denote it by B¢(x,y). One easily checks
that B is then the unique smooth boundary cocycle satisfying the re-
quirements of the lemma. O
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Let us now focus on I'-invariant objects. Consider f in D(I'\.¥)
and a ['-invariant smooth boundary cocycle B. We shall say that f
is a potential for B is f is cohomologuous to the smooth function
s By, (m(s),m(Ts)).

Proposition 2.13. The map which sends a I'-invariant smooth bound-
ary cocycle to the set of its potentials induces a bijection between the
set of cohomology classes of T'-invariant smooth boundary cocycles and
the set of cohomology classes of smooth functions on I'\.7.

Before proving Proposition 2.13, let us give a lemma which will allow
us to get surjectivity of the involved map between cohomology classes.

There exists a natural surjective map . — X x0X, namely the map
s+ (m(s),s4). For fin D(I'\.¥), if f factors through a smooth func-
tion on X x0X, then by lemma 2.12 we can associate to it a I'-invariant
smooth boundary cocycle. To extend this to any f in D(I'\.”), let us
describe more precisely the fibers of the map . — X x 0.X.

For s in .7, define M; as the set of those ¢ in . such that 7(s) = 7 ()
and s, = t,. This is a compact subset of . and we have T'M, C Mr,.
We say that a function f in D(I'\.¥) is M-invariant if for any s in .7,
for any t in My, we have f(s) = f(t).

From the dynamical point of view, M, plays the role of a local stable
leaf for s. Thus, we get

Lemma 2.14. Let f be in D(I'\.). There exists k > 0 such that
foTF is M-invariant.

Proof. Heuristically, M, being a piece of the stable leaf of s with respect
to the transformation 7', if ¢ belongs to M,, the points T*T's and T*T't
must get closer and closer in I'\.”. The conclusion follows since f is
locally constant. Let us make this argument more precise.

For k in N and s in .7, set M¥ = T*Myp-«,. One has (5, MF = {s}.
We let D be the diagonal in (I'\.#)? and D* C (T'\.#)? be the image
of the set {(s,t) € |t € M*} under the natural map .2 — (I'\.%)2.

We claim that we have (5, D" = D in I'\.. Indeed, let s and ¢
be in .7 and assume that, for every k > 0, one has (I's,I't) € D¥. We
need to prove that s belongs to I't. By assumption, for every k > 0,
there exists v, in I’ with 4t € MF. We can assume that vy = e the
identity element. Then, let x = 7(s) = 7(t) and £ = s, = t; be the
common base point and the common endpoint of s and ¢. For any
k >0, as vt belongs to M* C M,, we also have

W =7 (t) = 7(s) = x and 1 = (Wt)+ = 54+ = ¢
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Thus, 74 belongs to the group Fg defined in Subsection 2.2. Let n = s_
and ¢ = t_ be the origins of s and . By Lemma 2.8, the action of Fg
on Ug = 0X \ {¢} is proper, hence Fg(’ is a closed subset of Ue. As, for
every k > 0, vt belongs to M*, we have ;¢ @ 7. Therefore, there

exists k > 0 with vw( = 1. As yx = z and 1€ = &, we get wt = s
and we are done.

Now, let (U;) be an open cover of I'\.# such that f is constant on
each of the U;. The set U = |J, U; x U; is open in (I'\.#)? and contains
D. By compactness, there exists & > 0 with D* C U.

Let s be in . and t be in M,, and let 5 and ¢ be their images in
I'\.7. By definition we have (T*s, T*t) € D*, hence (T*s, T*t) € U.
Now, from the definition of U, we get f(T*3) = f(T*t), which should
be proved. O

To prove injectivity of the map between cohomology classes, we will
need

Lemma 2.15. Let f be an M-invariant function in D(I\.%). If f is
cohomologuous to 0, then any function h in D(I'\.%) such that f =
h —hoT is M-invariant.

Proof. Let us first construct an M-invariant function h with f = h —
hoT. Let hy be in D(I'\.) with f = hy — hy oT. By Lemma 2.14,
there exists k > 0 such that hy = hy o T* is M-invariant. We have

k—1 k—1
f=hathyoT=f—foTt=) foTV=> foTi'
=0 =0

and we can set h = hy +Z§;éfoTj.
Now, by Proposition 2.3, if A’ is any other smooth function with
f=h—hoT, then h—h'is constant, hence h’ also is M-invariant. [

Proof of Proposition 2.13. By Lemmas 2.12 and 2.14, every smooth
function on I'\.¥ is the potential of some I'-invariant boundary cocycle.
To conclude the proof it only remains to prove that such a cocycle B
is cohomologuous to 0 if and only if its potentials are cohomologuous
to 0.

Assume first that B is cohomologuous to 0. Then there exists a
smooth I'-invariant function h on X x 90X such that, for any x,y in X
and £ in 0X, we have

Bg(l’,y) = h(l‘,g) - h(yag)
For s in .7, we get
B,, (n(s), 7(T5)) = h(n(s), 1) — h(n(Ts),5.),
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hence the potentials of B are cohomologuous to 0.

Conversely, assume that the potentials of B are cohomologuous to
0. By Lemma 2.15, there exists a [-invariant smooth function h on
X x 0X such that, for any = in X and £ in 0X,

Be(w, 1) = h(z,§) = h(z1,),

where 7 is the unique neighbour of z on [z£). By the uniqueness part
in Lemma 2.12, we get that B is a coboundary. 0

2.4. Additive kernels. Still following the main lines of [26], we will
now associate to an even cohomology class on I'\.# a family of smooth
symmetric functions on 9%X.

Proposition 2.16. Let B be a I'-invariant smooth boundary cocycle.
Assume that the potentials of B are even. Then, there exists a smooth
[-invariant function Q on X x 0°X such that, for any x in X, the
function (&,n) — Q.(&,n) is symmetric and that, for any x,y in X
and (£,n) in 0*°X, one has

1
(2.1) Qa(&m) = Qy(&n) = 5 (Belz,y) + By(,y)).
The function ) is unique up to a constant.

Definition 2.17. Such a map €2 will be called an additive kernel as-
sociated to B. More generally, we will speak of the additive kernels
associated to cocycles which are cohomologuous to B as the additive
kernels associated to the cohomology class of B.

Example 2.18. When B = b, the Busemann cocycle, let w be the Gro-
mov product, that is, for any = in X and (§,7) in 0X, w.(§,n) is
the distance from z to the geodesic line ({n). Then w satisifies the
conclusions of the Proposition.

Proof. Let us first define Q,(&,n) when x belongs to the geodesic line
(én). We let f be the smooth function s — B, (7(s), m(T's)) on I'\.7.
By assumption, the functions f and f o are cohomologuous. Hence,
the functions f and f o (1" are cohomologuous. We chose a smooth
function A such that

f—foll'=h—hoT.

We claim that A is then invariant under ¢, that is, h ot = h. Indeed,
we have

hot—hotT'=(h—hoT Y)oir=(hoT —h)oT ™"
=(foil —f)oT'v=f—foil'=h—hoT.
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By Proposition 2.3, h — h ot is a constant function. Let ¢ be its value.
As ¢? is the identity map, we have h = hot+ ¢ = h + 2¢, hence ¢ = 0,
and h is (-invariant.

If (¢,n) is in X and if x belongs to the geodesic line (£7), we set

0.(61) = Lh(s),

where s is the unique parametrized geodesic line such that s_ = ¢,
sy =n and 7(s) = x. As h is t-invariant, we have Q,(£,7n) = Q. (9, ).

Let us check that (2.1) holds on (£n). We let y be the unique neigh-
bour of x on [xn). By definition we have, on one hand,

2, (61) = Hh(Ts)

and, on the other hand,

By (z,y) = f(s) and Be(x,y) = —Be(y,x) = —f((T's).
Hence (2.1) holds for any two neighbouring points z and y on (£n). By

the cocycle identity, it holds for any two points.
Now, if x is any element in X, we set

0(6,1) = (&) + 5 (Bele,y) + By ).

where y is on the geodesic line (£n7). As (2.1) holds on (£7), this does

not depend on y. One easily checks that (2.1) holds everywhere.
Uniqueness follows from the fact that I' has a dense orbit on 9?°X

(see Proposition 2.3). O

The additive kernels determine the cocycle.

Lemma 2.19. Let B be an even smooth I'-invariant boundary cocycle.
Assume the cohomology class of B admits 0 as an additive kernel. Then
B is cohomologuous to 0.

Proof. Indeed, up to replacing B by a cohomologuous cocycle, one can
assume that, for any z,y in X and £ # 7 in 0X, one has Be(z,y) +
B, (z,y) = 0. Let &, n, ¢ be three different points in 90X, which exist due
to our assumptions on X. We get Be(z,y) = —B,(z,y) = Be(z,y) =
—B¢(z,y), hence Be(x,y) = 0 and we are done. O

Let still w be the Gromov product, as in Example 2.18. To prove
that certain formulae make sense, we shall use

Lemma 2.20. Let € be an additive kernel associated to a I'-invariant
smooth even boundary cocycle B. Then there exists C' > 0 such that,
for any x in X and £ #n in 0X, one has

19.(&,m)] < C(1+w.(&m)).
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Proof. The I'-invariant function h : s — Q) (s-,s4) on . is smooth.
As T'\.7 is compact, it is bounded. In the same way, the smooth I'-
invariant function f : s — B, (7(s),7(T's)) on . is bounded. We
chose C' > 0 with C' > max(|| f]| . , ||]l.,) and the result follows by the
defining properties of €. O

2.5. Normalized smooth functions. We will give a formula for the
function 2 in a particular case that will play an important role in the
article.

For any k& > 1, we denote by X} the set

Xy ={(z,y) € X*|d(z,y) = k}.

Given a ['-invariant symmetric function w on Xy, we can define an even
smooth function f on I'\.¥ by setting, for s = (zp,)pez in .7,

f(s) = w(xg, zx).
We then say that f is a normalized even function.

Lemma 2.21. Any smooth even function on I'\.7 is cohomologuous
to a normalized even function.

Proof. By Lemma 2.14, we can assume that f is M-invariant. Again,
by Lemma 2.14, applied to the function f o, there exists £ > 0 such
that, for any s = (xp)pez and t = (yp)nez in 7, if z, = y, for any
h > k, then f(s) = f(t). In other words, there exists a ['-invariant
function v on Xy, such that, for any s = (z)nez, f(s) = v(zo, k).
This gives also, f(:T"*s) = v(xy, 1), hence

1 1

Sfls)+ fT*s)) = 5 (v(@o, zi) +v(k, 20))-

Now, f being even, it is cohomologuous to %( f+ foiT*) and we are
done. ]

For normalized functions, we have an explicit formula for the asso-
ciated additive kernel.

Proposition 2.22. Let w be a I'-invariant symmetric function on X
for some k> 1. Let f be the associated normalized smooth even func-
tion on '\ and B be the smooth I'-invariant boundary cocycle defined
as in Lemma 2.12. Then, let us give a formula for the function Q from
Proposition 2.16. For z in X and (&,n) in 0°X, we let (y;)i>o and
(zi)i>0 denote the geodesic rays [x€) and [zn). Let j = w,(&,n) be the
distance from x to the geodesic line (§n) so that yo = zo,...,y; = 2;
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but yj+1 # 2j41. Then one can set

—_
N

-1

1
(w(yn, Yntk) + w(2h, Zhsk)) — 5 W(Yjths Zjrk—h)-
1

<

Q.(&m) =

N | —
>
Il

0

>
Il

The proof is straightforward.

Definition 2.23. If w is a [-invariant symmetric function on X for
some k > 1, we say that the additive kernels ) associated to the
cohomology class of the normalized function

s = (zh)nez — w(xo, Tp)

on . are the additive kernels associated to w.

3. NORMALIZED KERNELS AND BILINEAR FORMS

In this section, we will associate to every bounded symmetric func-
tion w on Xy, k£ > 1, a bounded symmetric bilinear form on a certain
Hilbert space Hy. The definition of this bilinear form will then be
related to the formula in Proposition 2.22.

Recall that, for & > 1, X}, stands for the set of pairs (a,b) in X?
with d(a,b) = k. We equip the countable set X with its counting
measure and, for 1 < p < oo, we let (P(X};) denote the associated
space of p-integrable functions, equipped with its natural norm. In
other words, a function 6 : X — R is in ¢7(X;) if and only if one has
> abex |0(a,0)[" < oo and the latter number is then [|0]7.

3.1. The Hilbert spaces H* and Hy. We start by building the space
HY. In case X is homogeneous (that is, for any x in X, its number
of neighbourgs d(z) is independent of x), the space H§ is the skew-
symmetric special representation of the group of automorphisms of X
as built in [28] and described in [14].

We fix x in X which will play the role of an origin and we associate
to it a smooth function x, on X; x 0X as follows: for any a ~ b in X
and £ in 0X, we set

Xa(a,0,§) = 1if [ad] C [2£) and [za] N [b€) = 0.
Xz(a,b,&) = —1if [ab] C [x€) and [zb] N [af)
Xz(a,b,&) = 0 else.

In other words, x.(.,.,£) may be seen as an oriented characteristic
function of the geodesic ray [z€). In particular, note that x,(a,b,&) is
skew-symmetric in (a, b).

Let us precisely describe how this map depends on z. From a direct
computation, we get

0.
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Lemma 3.1. For any x,y and a ~ b in X, the function x.(a,b,.) —
Xy(a,b,.) is constant on 0X. Its value ,,(a,b) is given by

duy(a,b) =1 if [ab] C [zy] and [xa] N [by] = 0.

dzy(a,b) = =1 if [ab] C [xy] and [zb] N [ay] = 0.

dzy(a,b) =0 else.
In particular, 0,y is a finitely supported function on X;.

Now, here comes the key observation which will allow us to relate
the scalar product on a certain subspace of £%(X;) to integral formulae
on the boundary. Recall that w is the Gromov product of X, that is,
for any z in X and & # 7 in 0X, w,(&,n) is the distance from x to
the geodesic line (¢n) (see Example 2.18). The proof of the following
is immediate.

Lemma 3.2. Fizx in X and & # n in 0X. Let y in X be such that
(&) N [xn) = [zy]. Then we have

Xx(a> b7 g)X:r:(aa b> 77) = l[ab]C[my}a a~beX.
In particular, the function (a,b) — xz(a,b,&)xz(a,b,n) is finitely sup-
ported on X, and we have

D Xala,b,6)xala,b,m) = 2w, (6, 7).

a~beX

Recall that, if U is a totally discontinuous compact topological space,
the space of distributions on U is denoted by D*(U): this is the dual
space to the space D(U) of smooth functions on U. Also, D§(U) denotes
the space of distributions 7" on U such that (T, 1) = 0, which we view
as the dual space to D(U) = D(U)/R.

As xz(a,b, &) depends smoothly on &, we can use it to define a linear
map from distributions to functions on X;. Fix x in X. If T is in
D(0X), we let P, T be the skew-symmetric function on X such that,
for any a ~ b in X,

PxT(av b) = <T7 Xx(a7 b7 ')>'
From Lemma 3.1 we immediately get

Lemma 3.3. For x,y in X, T in D*(0X) and a ~ b in X, we have
P.T(a,b) — P,T(a,b) = 6,,(a,b)(T, 1) and (T, 1) =Y P, T(x,z2).

In particular P,T — P,T is a finitely supported function on X, and, if
T is in D§(0X), the function P,T = PT does not depend on .

We can describe the spaces P,D*(0X) and PD§(0X).
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Lemma 3.4. For any x in X, the map P, establishes a linear isomor-
phism between the space D*(0X) and the space of skew-symmetric func-
tions 0 on Xy such that, for any a # x in X, one has )y, . 0(a,b) = 0.

The map P establishes a linear isomorphism between the space
D§(0X) and the space of skew-symmetric functions 0 on Xy such that,
for any a in X, one has ), , 0(a,b) =0.

In the proof, we shall need the following notation which will also be
used later in the article. If x # y are in X, we let U, be the closed
open subset in X defined by

Upy = {§ € 0X|[zy] N [y¢) = {y}}-

By definition, for any = in X, the open sets Uy, y € X \{z}, generate
the topology of 0X. From this, we get

Lemma 3.5. Fiz z in X. Let ¢ be in D(0X). There exists ¢ > 1 and
a function f on S*(x) such that p = > yesir) W),

Proof. By definition, for every ¢ in 0X, there exists y # z such that
§ € Uyy and f is constant on U,,. By compactness, there exists finitely
many yi,...,Yy, in X ~ {z} such that, for 1 < i < n, f is constant
on U,,, and these open subset cover 0X. The result follows by taking
= maxi<i<n d(l‘, yz) [

Proof of Lemma 3.4. Note that the second part of the Lemma follows
from the first and the formula for (7,1), 7' € D*(0X), from Lemma
3.3.

Now, let us prove the first part. Let 6 be a skew-symmetric function
on X; such that, for any a # x in X, one has ), 60(a,b) =0 and let
us build 7" in D*(0X) with P,T = 6. For y in X, y # z, we let y_ be
the unique neighbour of y on [xy].

Pick ¢ and chose, as in Lemma 3.5, some ¢ > 1 and a function f
on SY(x) such that ¢ = > yest@ f(¥)1u,,. We claim that the number
Uy = Zyesg(x) fy)0(y_,y) does not depend on ¢. Indeed, for any y in

S¢(x), we have

0y—,y) = Y 0(y,2),

Yy

2FY—
hence uy = ugy1. As this number clearly depends linearly on ¢, we can
define a distribution T' by setting (T, @) = u, for ¢ large enough.
Let us check that we have § = P,T. To this aim, we pick (a,b) in
Xi. With no loss of generality, we can assume that we have d(z,b) =
¢ > 1 and a € [zb]. Then, by construction, we have x.(a,b,.) = 1y,,,
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hence P, T (a,b) = (T, 1y,,) = 6(a,b) and the description of P,D*(0X)
follows. [

We can now use the map P to define a remarkable Hilbert space.
We let H denote the space of distributions p in D*(0X) such that, for
some x in X, the function P,p belongs to ¢*(X;). By Lemma 3.3, this
condition does not depend on x. We equip it with the norm induced
by this embedding: the restriction of the norm to Hy = D§(0X) N HY
is independent of z. As, by Lemma 3.4, PD*(0X) N (*(X;) is a closed
subspace of £2(X}), the space HY is a Hilbert space.

Let v be a Borel probability measure on 0.X. For any 1 < p < oo,
we let MMP(v) C D(0X) denote the space of signed Borel measures on
0X whose density is p-integrable with respect to v. We write 9(v) =
MP(v) NDE(0X) for the set of those p in MP(v) with p(1) = 0.

Assume v is atom-free, so that for any z in X, w, is defined v ® v-
almost everywhere. For p > 1, we say that w is v-p-integrable if w, is
v ® v-p-integrable: this condition does not depend on the choice of x
since, for any z,y in X, one has |w, —w,| < d(z,y).

These properties are closely related to the structure of the space H¥
by the following Proposition which is a rather straightforward conse-
quence of Lemma 3.2:

Proposition 3.6. Let v be an atom-free Borel probability measure on

0X and x be in X. Then w is v-integrable if and only if v belongs to
H¥. In this case, we have

||73xu||§ = 2/ wd(v @ v).
02X

Inthesameway,f0r1§p<oocmd1<p’§oowith%+i%:1,

if w is v-p-integrable then IMP (v) is contained in H*. In this case, for
every p in MY (v), we have

1Papll? = 2 / wed(p @ p).
92X

Proof. For y in X, y # z, let y_ denote the neighbour of y on [zy|. For
any symmetric function 6 in ¢*(X;), we have

(3.1) Y oplab)=2 > 0y,y).

a~beX yeX~{z}
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For any k > 0 the function w® = min(w,, k) is smooth on X x 9X.

Let p be any element of D*(0X). By Lemma 3.2, we have
(3.2) > Puply—.y)’ = p @ p(wh),

yeX~{z}
d(z,y)<k

where p®p is the tensor square distribution of p when we use the natural
identification D(0X x 0X) ~ D(0X)®D(0X). By (3.1), the left hand-
side of (3.2) is increasing, with finite limit if and only if p belongs to H.
If p = v is a Borel probability measure, by the Monotone Convergence
Theorem, the right hand-side is increasing with finite limit if and only
if w is v-integrable. The first part of the proposition follows by taking
the limit as k — oo in (3.2).

Assume now w is v-p-integrable and assume the p in (3.2) belongs to
M (v). Then the right hand-side of (3.2) converges to [, w.d(p ®
p). Hence the left hand-side has a finite limit, that is, P,p belongs
to £?(X;). The computation of the norm follows by taking limits in
(3.2). O

3.2. Bilinear forms on H*. We will now define symmetric bilinear
forms on H“ for which an analogue of Proposition 3.6 will be true,
where w will be replaced by an additive kernel as in Proposition 2.22.

Fix £ > 1. If 6 is a function on X;, we define 6, as the func-
tion on Xj such that, for any a,b in X with d(a,b) = k, one has
021 (a,b) = 0(a,a,)0(by,b), where a; is the neighbour of a on [ab] and
by the neighbour of b on [ab]. Note that if 6 is skew-symmetric, then
021, is symmetric.

If k=1, we have 6; = 6%, In general, we easily get

Lemma 3.7. For any 0 in (*(X;), the function Oy, belongs to (*(Xy)
and we have ||0a||, < (D — 1)*1|0]3, where D = sup,¢y d(z).

Let w be a bounded symmetric function on Xj;. We associate to
w the symmetric bilinear form ®,, on ¢*(X;) such that, for any 6 in
62(X1)7

1
(3.3) P (6,0) = 5 > w(a,b)b(a,b).
(a,b)EXk

By Lemma 3.7 above, this bilinear form is well-defined and bounded.
For any z in X and £ # 7 in 0X, we also set, as in Proposition 2.22,
1 j—1 k—1

1
Q;(&n) = 3 D @Y, Ynsr) + w(zns 2ni)) — 3 > w(yjen, zjsk-n):
h=0 =1
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where (yn)p>0 and (zx)n>o are the geodesic rays [z€) and [zn) and
Jj = wy(§,m). Note that one has |QY| < (w, + (K — 1)) ||w||,, so that
integrability properties for w imply the same for Q*.

We now have an analogue of Proposition 3.6 for the bilinear form
D,.

Proposition 3.8. Fiz k > 1. Let w be a symmetric bounded function
on X and v be an atom-free Borel probability on 0X such that w is
v-integrable. Then, for any x in X, we have

O, (Pyv, Pov) = / QYd(v @ v).
02X

Inthesameway,for1§p<ooand1<p’§oowith%+7%:1, if

w s v-p-integrable then, for any x in X and p,0 in ‘J)?p/(u), we have

O, (Pop, Prb) = Q¥d(p®0).
02X
As for Proposition 3.6, the proof of Proposition 3.8 relies on an
elementary computation, which is a generalization of Lemma 3.2:

Lemma 3.9. Let k > 1. Fiz x in X and £ # n in 0X. Let (yn)n>o
and (zp)nr>0 be the geodesic rays [x€) and [xn) and j = w,(&,n). Then,
if a,b are in X with d(a,b) = k and ay and by are the neighbours of a
and b on [ab], we have

7—1

Xa (@, a1, )Xz (b1, b,n) = Z(l(bva):(yh,yh%) + Lab)=Gnenin))
h=0

k—1
- Z 1(avb):(yj+h7zj+k—h)'
h=1

Proof of Proposition 3.8. Again, this is a straightforward consequence
of Lemma 3.9. Let us be more precise.

We start by defining a truncated version of Q%. Fix ¢ > 0 and pick
&,min 0X. We let again (yp)n>0 and (z,)n>0 be the geodesic rays [z€)
and [zn). Now, if £ # n and w,(§,n) < £, we set

1

OiE,n) = B} Z (WY, Yn+r) + W (2h, 2nsk))
0<h<j—1
h+k<e
1
-5 Z W(Yjths Zjtk—h)-
1<h<k—1

J+h<t
Jtk—h<t
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Else, we just set

~
|

k

W(Yn, Yntk) +
0

T

k

w(2h7 Zh+k)-
0

Quh(E,n) =

DO | —

1
2

>
I
>
I

Then, Q¥* is a smooth function on X x X and, by Lemma 3.9, for
any p in D*(0X), we have
(3.4 S Y (Paphaslat) = (p® p)()
(a,b)eXy
d(z,a)<t
d(z,b)<¢
Now, on one hand, by definition, if p is in H*, the left hand-side of
(3.4) goes to @, (Pyp, Pyp) as { — oo.
On the other hand, assume that w is v-integrable so that, by Propo-
sition 3.6, v belongs to H*. We have |Q%!| < (w, + (k — 1)) [Jw||
and for any & # n in 90X, QW n) — Qv(¢,m). Hence, by the

Dominated Convergence Theorem, for p = v, the right hand-side of
(3.4) goes to 2 [, Q¥d(v ® v) as £ — oo and the first part of the
Proposition follows.

The second part is proved in the same way. O

3.3. Bilinear forms on H{. We will now focus on the case where w
is I-invariant and prove that the restriction of ®,, to Hy only depends
on the cohomology class of the normalized smooth function associated
to w.

Proposition 3.10. Let f be a smooth even I'-invariant function on
S, k>1 and w be a I'-invariant symmetric function on Xy such that
the normalized smooth function associated to w s cohomologuous to
f. Then the symmetric bilinear form (p,0) — ®,(Pp, PO) on HY is
[-invariant and does not depend on the choices of k and w.

Let Q be an additive kernel associated to the cohomology class of f.
Then, for1 <p < oo and1 < p’ < oo wz’thz—l)—i-i =1, if v is an atom-
free Borel probability measure on 0X such that w is v-p-integrable, for
any x in X and p,0 in ﬁﬁf)’/(u), we have

®,(Pp, PY) = / Qd(p®6).

92X
Remark 3.11. Let v be as above. It easy to check that the formula

in Proposition 3.10 defines a bilinear form on 9)?6’/(1/) which does not
depend on the choice of x nor of the one of €.
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Indeed, pick a smooth boundary B cocycle as in (2.1). For any x,y
in X, we have, for p in MM} (v),

/8 IRCECORLICRITPOIED
- / Bl n)dple) [ ot =0

0X

since p(1) = 0. In the same way, by the uniqueness statement in
Proposition 2.16, if f is cohomologuous to 0, §2 is of the form

(z,&,m) = F(x,8) + F(y,n)

for some smooth function F' on X x 0X and [,y »x Qed(p ® p) = 0
by the same argument.

Therefore, one way of proving the independence statement in Propo-
sition 3.10 would be to exhibit a Borel probability measure v on 90X
such that 91>°(v) is dense in H*, as will be done later in Corollary 7.3.
Here, we will chose an other more direct approach.

For normalized smooth even functions, we have a criterion for coho-
mology:

Lemma 3.12. Letk > k' >1andw : X — R andw' : Xy — R be I'-
mwvariant symmetric functions. Then the smooth normalized functions
associated to w and w' are cohomologuous if and only if there exists a

['-invariant skew-symmetric function v on Xy_1 such that, for any z,y
in X with d(z,y) = k, one has

k—k/
1
(3.5) w(x,y) = PR % W' (T, Thgw) +0(2, yp-1) — 0(21,Y),
where xg = x,%1,...,xE =Yy is the geodesic path from x to y.

When k = 1, by convention, a skew-symmetric function on Xj is 0.
By abuse of language, when w and w’ are as above, we shall say that
they are cohomologuous.

Proof. First, one easily checks that the normalized smooth function
associated to the function defined by the right hand-side of (3.5) is
cohomologuous to the normalized smooth function defined by w’. This
gives the “if” part of the statement and reduces the proof of the “only
if’part to the case where k' = k.

In other words, to conclude, we need to show that, if for some
[-invariant symmetric function w on Xj, the associated normalized
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smooth function is cohomologuous to 0, then there exists a skew-
symmetric function v on Xj_; such that, for any (z,y) in Xy, one
has w(z,y) = v(x,y1) — v(z1,y), where z; and y; are the neighbours
of x and y on [zy]. To do this, we will use the language of Subsection
2.3.

Indeed, by assumption, there exists a I'-invariant smooth function h
on . such that, for any s = (z5,)nez, one has w(xg, xx) = h(s) —h(T's).
Now, by Lemma 2.15, the function h is M-invariant, that is, it does
not depend on the coordinates (z),<o. In the same way, for any such
s, one has w(zg, z_x) = h(ts) — h(T'ts), hence

w(xy, 20) = h(tT"s) — W(TWT*s) = h(WT%s) — h(LT*'s),

so that, again by Lemma 2.15, the function h o (T*~! is M-invariant,
that is, h does not depend on the coordinates (zj,)p>k. In other words,
there exists a I'-invariant function v on Xj;_; such that, for any s
as above, one has h(s) = v(xg,zx-1). We get, for any (z,y) in X,
w(z,y) = v(r,y1) — v(r1,y), where z1 and y; are the neighbours of x
and y on [ry| and it only remains to prove that one can chose v to be
skew-symmetric.
Let still x,y, x1,y; be as above. We have

U(xvyl) - U($17y> = w(:c,y) = w<y7$) = U(ywxl) - U(ylwx)a

hence v(z,y1) + v(v1,2) = v(x1,y) + v(y,z1). In other words, the
[-invariant smooth function on .,

s = (Tn)nez — v(xo, Tp—1) + v(Tk—1, Zo)

is T-invariant. By Proposition 2.3, this function is constant, that is,
there exists ¢ such that, for any (z,y) in Xj;_y, one has v(x,y) +

v(y,z) = c. The result follows by replacing v with v — 5. O

By using Lemma 3.12, we can split the proof of independence in
Proposition 3.10 into two cases.

Lemma 3.13. Let k > 1 and w be a bounded symmetric function on
Xy. Assume that there exists a bounded skew-symmetric function v on
Xk_1 such that, for any (z,y) in Xy,

U}(l’,y) = U(xvyl) - U(l‘l,y),

where x1 and y; are the neighbours of x andy on [xy]. Then the bilinear
form ®,, is zero on the space PH{ .

Proof. By Lemma 3.4, we have to prove that, if 6 is a skew-symmetric
function in £2(X;) such that, for any x in X, one has > yen 02, y) =0,
then ®,,(60,0) = 0.
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Indeed, if £ =1, then v = 0 and there is nothing to prove. If k > 2,

we have
=300 Y Y )by gl ).

x€X T1~T d(yhx):kfl Yy~yi
z1€fzyy]  YEly]

Now, if z and y; are as under the sum, we have

Z 0(y1,y) = 0(y,92),

y~y1
y¢lzyi]

where ys is the neighbour of y; on [zy;]. Thus, we get
©,(0,0) =~ > bax(a,b)v(a,b),
(a,b)EXk,I

where 0, _1 is the same as in Subsection 3.2. As 0, ;_; is symmetric
and v is skew-symmetric, the latter sum is zero and we are done. [

Lemma 3.14. Let k > kK > 1 and w and w' be bounded symmetric
functions on Xy and Xy. Assume that, for any (z,y) in Xk,

k—E

1 /
w(z,y) = kK1 Z (Ths Thiw),
where xo = x,x1,...,Tr =Yy 1S the geodesic path from x toy. Then the

bilinear forms ®,, and ®,, are equal to each other on the space PHE .

Proof. Again, it suffices to prove that, if 6 is a skew-symetric function
in 2(Xy) with 3 0(z,y) = 0 for any x in X, one has ®,(6,0) =
®,/(0,0). For such a 0, we have

(3.6) 20,(6,0)

- k:’+1z > > > ow a,a-)0(b-,b),

h=0 (z,y)e X,/ d(a,y)=h+k" d(bx)=k—h
z€[ay] yE[xb)
where, if a and b are as under the sum, a_ and b_ are the neighbours
of a and b in [ay] and [xb]. Now, for any x,y in X with z ~ y, an easy
induction argument shows that, for h > 0,

Z O(a,a_) =0(z,y),
d(a,y)=h+1
z€[ay]
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hence, for (z,y) in X and 0 < h <k —F/,

> blaas) D 0(b-,b) = bhp(z,y).

d(a,y)=h+k’ d(b,x)=k—h
z€[ay] yE[zb|
By (3.6), we get ®,(0,0) = ®!,(0,0) as required. O

Proof of Proposition 3.10 . The fact that the definition of the bilinear
form is independent on w follows from Lemmas 3.12, 3.13 and 3.14.
As the linear map P : HY — ¢*(X;) and the quadratic maps 6 + 05,
k > 0, commute with the action of the group of automorphisms of X,
the bilinear form ®,, is I'-invariant on PH{ as soon as w is ['-invariant.

Finally, the integral formula follows from the one in Proposition 3.8
and from Remark 3.11. O

In the sequel of the paper, we will study those I'-invariant functions
w such that the associated symmetric bilinear form ®,, is non-negative
on Hy. This will require us to introduce first several notions related
to non-negative bilinear forms on vector spaces associated with X.

4. BILINEAR FORMS ON SMOOTH FUNCTIONS

In this section, we build scalar products on spaces of smooth func-
tions. The topological dual spaces of these spaces with respect to these
scalar products will later turn out to be defined by additive kernels.

4.1. Quadratic type functions. Recall that D(0X) = D(0X)/R is
the quotient space of D(0X) by the space of constant functions on 0.X.
We will give algebraic constructions of symmetric bilinear forms on the
space D(0X).

Recall that, for any & > 1, we let X stand for the set of (z,y) in
X? with d(z,y) = k. We set

X ={(x,y) € X*|z # y}.

A function ¢ : X, — R is said to be of quadratic type if it is symmetric
and if, for every (z,y) in X,, we have

p(r,y) = > olr,2).
o]
Recall also that, for (z,y) in X,, we let U,, be the closed open subset
of 0X

Upy = {§ € 0X|[zy] N [y€) = {y}}.
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Let p be a symmetric bilinear form on D(9X). We associate to p a
symmetric function ¢, on X, by setting, for any (z,y) in X,,

SOP('Z'7 y) = _p(]-Uzya 1Uym)
We get the following characterization of quadratic type functions:

Proposition 4.1. The map p — ¢, s a linear isomorphism between
the space of symmetric bilinear forms on D(0X) and the space of qua-
dratic type functions on X,.

The proof of this result will follow from a truncated version of it

which we will now give. We first define quadratic type functions on
X, k> 1.

Definition 4.2. Let £ > 1. If £ =1, a function ¢ : X; — R is said to
be of quadratic type if it is symmetric. If k£ > 2, a function ¢ : X — R
is said to be of quadratic type if it is symmetric and if the function

(4.1) o (zy) — Z o(z,y), Xp1 — R

2¢[wy]
is symmetric. The function ¢~ is called the reduction of ¢.

The reduction of a quadratic type function is of quadratic type.

Lemma 4.3. Let k > 2 and ¢ be a quadratic type function on Xj.
Then ¢~ is of quadratic type and, for (x,y) in X, we have

D elzy) = (@y) = elz.t).

2T t~y

#¢lay] t¢[wy]

Proof. We first prove the formula. As both ¢ and ¢~ are symmetric,
by (4.1), we have, for (z,y) in X,

() =9 (yx) = Y eltx) =) elx,t).

t~y t~y
t¢[zy] t¢[zy]

Now, about the first statement, if £ = 2, there is nothing to prove. If
k > 3, for (z,y) € Xy_1, we have

Yo zy) =Y D elxt),

2T 2Tty

=] Elel )
which is clearly symmetric in (z,y). Thus, ¢~ is of quadratic type. [

In particular, any quadratic type function ¢ on X, defines in a nat-
ural way a quadratic type function on all the X, 1 < h < k. By abuse
of notation, this function will be sometimes again denoted by .
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4.2. Quadratic fields. We will now give an interpretation of this no-
tion in terms of symmetric bilinear forms on certain spaces.

If £ > 0 is an integer, recall that, for any x in X, we denote by
S%(x), the sphere with center x and radius ¢ in X, that is, the set of
y in X with d(z,y) = ¢. We let V(x) denote the space of real-valued

functions on S*(x) and Ve(x) = V¥x)/R denote its quotient by the
line of constant functions.

If  and y are neighboring elements of X (that is, z ~ y), we let
S*(xy) denote the set

S'(ay) = {z € S(@)ly ¢ [22]} U {z € ‘()| ¢ [y2]}-
We let V¢(xy) denote the space of real-valued functions on S*(zy) and

Vé(xy) = V*(x)/R denote its quotient by the line of constant functions.
For any ¢ > 0 and any z,y in X with x ~ y, we define linear maps

V) 41
I, Vi(zy) = V7i(x)
VS ¢
oy V (x) = Vi(zy)
as follows.

If fis in V*(xy), then If, f is the function on S**'(z) such that, for
any z in S“1(z), one has

It ,f(2) = f(2) if y is on [22] (and hence d(y, 2) = ().
If f(2) = f(w) if y is not on [zz] and w is the neighbor of z on [zz].

If fis in V*(x), then J; f is the function on S*(zy) such that, for
any z in S%(zy), one has
I

Ty f(2) =
¢ . . . .
Joyf(2) = f(w) if y is on [22] and w is the neighbor of z on [z2].

z) if y is not on [zz] (and hence d(z, z) = /).

These maps are injections and they send constant functions to con-
stant functions. In particular, they induce linear injections Vg(xy) —
VHI(JC) and Vé(x) — Ve(xy) which we still denote by If, and JS,.

Finally, for any ¢ > 0 and z in X, we let M’ : V¢(z) — V(x) be
the map that sends a function f in V¥(z) towards the function M. f
such that, for any z in S“*(z),

M f(2) = f(w) where w is the neighbor of z on [z2].

In the same way, if z,y are in X and z ~ y, we let Mf;y Vi (zy) —
V& (zy) be the map that sends a function f in V*(zy) towards the
function M’ f such that, for any z in S (zy),

Mﬁyf(z) = f(w) where w is the neighbor of z on [zz].
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Again, we still denote by M! and by Mfy the associated injections
Vé(x) — V“l(:p) and Ve(xy) — V“l(:ﬁy).

An immediate computation gives
Lemma 4.4. For any £ > 0 and x,y in X with x ~ y, we have
¢ 7 ¢
Imy‘]:vy Mz
0+1 74 ¢
Jx; I, =M,
Let us describe how these maps allow to split the spaces into smaller

ones.

Proposition 4.5. For any ¢ > 1 and = in X, the space VE({E) is
spanned by the subspaces

IV ay), y~a
Fory,z in X withy ~x, z ~x and y # z, we have
15V @) N ISV (w2) = MOV T (@),
If ¢ > 2, we have
V' (2)/ MV =P, W ) MV ().

Yy~
Proposition 4.6. For any ¢ > 1 and x,y in X with x ~ y, the space
Ve(xy) is spanned by the subspaces
¢ 77 ¢ 77
o,V (x) and J,,V (y).
The intersection of these two subspaces is
¢ 17t R v N DS §

The proofs are immediate.
For k > 1, we will now define the notion of a k-quadratic field. The
definition depends on the parity of k.

Definition 4.7. (k even) Let k be an even integer, k = 2¢, ¢ > 1.

A k-quadratic field is a family (p,).ex where, for any z in X, p, is a

symmetric bilinear form on Ve(x), such that, for any z,y in X with
x ~ 1y, we have

(I, Ve = (152" ) py.

This bilinear form on szl(xy) is denoted by pz,.
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Definition 4.8. (k odd) Let k be an odd integer, k = 2(+1, £ > 0. A
k-quadratic field is a family (p.y)z~yex where, for any =,y in X with

T ~ Y, Pay = Dy 1S a symmetric bilinear form on Vz(xy), such that, for
any x in X, the bilinear forms

(Joy) Pays Y~

are all equal to each other. This bilinear form on Vz(x) is denoted by
Dy -

From the combinatorial properties of the spaces, we have
Proposition 4.9. Let k > 2 and let p be a k-quadratic field. Then p~
is a (k — 1)-quadratic field.

We call p~ the reduction of p.

Proof. First assume k is even, k = 2¢, / > 1. For x in X and y with
y ~ x, we need to prove that the bilinear form

(Jey ') Pry

does not depend on y. By definition, we have

Py = (1ey ") Pas
hence

(Jay )Py = (I Ty ) s

Now, by Lemma 4.4,

L Tt =Myt
and the result follows.

Assume now k is odd, k =2¢+ 1, ¢ > 1. For x,y in X with x ~ y,

we need to prove that the bilinear forms
— - — -
([a:y 1)*px and (Iyx 1)*py
are equal to each other. Again, by definition, we have

Py = (Jr,) Pay
hence
(I )P = (Jay Loy ) Py
Still by Lemma 4.4, we have
0 -1 _ -1
Jo I = Mxy

Ty TY
and the result follows. O

Remark 4.10. If k = 1 the compatibility condition in the definition of
a l-quadratic field is empty. In particular, such a field is simply the
data of the symmetric function (x,y) — pgy(1s,1,) on X;. We shall
extend this correspondance to higher k.
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4.3. Fields and quadratic type functions. Let £ > 1 and p be a
k-quadratic field. We will associate to p a symmetric function ¢, on
X}, as follows. Pick z,y in X and let zg = x,21,...,2x = y be the
geodesic path from = to y. If k is even, k =2(, £ > 1, we set

90P<x7y) = _pzz(lfbv ]-y)-
If kisodd, k =20+ 1,0 > 0, we set

@p(‘r’y) = _pzzzz+1(1$7 ly)

Proposition 4.11. Fix k > 1. The map p — ¢, is a linear isomor-
phism between the space of k-quadratic field and the one of quadratic
type functions on Xj.

We will prove this proposition in several steps.

Lemma 4.12. For any k > 1, if p is a k-quadratic field, then the
function ¢, is of quadratic type. If k > 2, one has ¢,- = (p,)~.

Proof. If k = 1, this has already been noticed in Remark 4.10.
Assume k > 2. Recall that, by Proposition 4.9, p~ is a (k — 1)-
quadratic field. Let us prove that, for any (x,y) in X;_;, we have

(4.2) oo (2,9) = D p(z0).

zZ~T

2¢[zy]

Let zo = x,21,..., 21 = y be the geodesic path from x to y.
If kis even, k =20, £ > 1, we have

—¢p-(2.y) =15, Loy 1) = psy (17, 10, 170 1)
Now, by definition, we have

-1 -1
I, =1,and 157 1, =) 1,
and the result follows.

In the same way, if k£ is odd, k =2¢+ 1, £ > 1, we have

_Sop_ ($7 y) - pz_g<1$7 1y) - pzlzefl (Jfg2g711$7 Jfg,zz,l]'y)'
Again, by definition, we have

T l,=1,and JI, 1,=) 1.
and we are done.
In particular, as ¢, is symmetric, ¢, is of quadratic type. By com-

paring (4.1) with (4.2), we get ¢,- = (¢,) - O
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We will now prove that the map p — ¢, is injective. Recall that,
for any quadratic type function ¢ on X, we still denote by ¢ its nat-
ural extension to |J;.,, X¢. We get the following easy formula for
recovering p from ¢,.

Lemma 4.13. Let k > 1 and p be a k-quadratic field.
If k is even, k =20, £ > 1, for any x in X and z # t in S*(z), we
have

(43) pa&(lm 1t) = _wp(zvt)'

Ifkisodd, k=20+1,0>0, for any z,y in X with x ~y and any
z #tin SY(zy), we have

(44) pxy(lza 1t> = —()Op(Z,t)

Proof. We prove this by induction on k. If k = 1, this is obvious.

Assume k& > 2 and the result is true for & — 1.

Assume k is even, k = 2¢, £ > 1 and pick x in X and z # ¢ in S*(z).
If « belongs to [zt], (4.3) follows from the definition of ¢,. Else, there
exists a neighbour y of x such that z and ¢ belong to S*~*(y). We then
get

1, =1."(1.) and 1, = I} '(1,),
hence
p:p(lz; ]-t) = p;y(]-z; 1t)
Now, by the induction assumption, the latter is equal to ¢,(z,t) and
we are done.

In the same way, if k£ is odd, k = 20 + 1, ¢ > 1, we pick x,y in X
with z ~ y and z # t in S*(zy). If [zy] C [2t], again, we have (4.4) by
definition. Else, up to exchanging the roles of x and y, we can assume
z,t € S*(z), hence

1. =J.,(1.) and 1, = J. (1,)
and

pxy(]-z; 1t) = p;(lza ]-t)
Again, the result now follows from the induction assumption. O

Surjectivity will follow from the following elementary

Lemma 4.14. Let A be a finite set. Let V' be the space of real-valued
functions on A and V = V/R be its quotient by the space of constant
functions. Set Ay = {(a,b) € A%|a # b}. If p is a symmetric bilinear
form on V| let ¢, be the function on Ay defined by

‘:Dp(av b) = —p(1,,1), a#b.
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Then the map p — ¢, is a linear isomorphism between the space of
symmetric bilinear form on V and the space of symmetric real-valued
functions on As.

We are now ready to give the full

Proof of Proposition 4.11. Let k > 1. By Lemma 4.12, the map p — ¢,
sends k-quadratic fields to quadratic type functions on X,. By Lemmas
4.13 and 4.14, this map is injective. It remains to prove that it is
surjective. Fix ¢ a quadratic type function on X and let us construct
p such that ¢ = ¢,.

If kis even, k = 2¢, ¢ > 1, for any = in X, by Lemma 4.14, there

. . . . Ed4
exists a unique symmetric bilinear form p, on V" (x) such that

pe(1.,1,) = —p(z,w), z+#w e Sx).

Let us show that the family p = (p,)zex is a k-quadratic field. We
claim that, for any x ~ y in X, for any z # ¢, in S*"1(zy) we have

pm(Iﬁ;llfﬂ Iﬁgllt) = —p(z,1),

which, by Lemma 4.14, implies that (I, ')*p, = (I);')*py. Indeed, if 2
and t are in S*"!(y), we have

I;'(1.) =1, and I}, (1) = 1,,
hence by definition
po(Le) "1, 10, 1) = —¢p(2,t).
If 2 is in S*(z) and ¢ is in S*"1(y), we have

ILN1) = > 1sand I5'(1) =1,

2~z

2/ ¢[xz]
hence
pa(I5 1 I ) = = > (2 1) = —p(z, 1)
S tle]

Finally, if z and ¢ are in S*71(z), we have

IV = Y loand I (1) = ) 1o,
2~z t/~t

2/ ¢[x2] t'¢[z2]
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and again

pa(I L I ) = = > ) (2t
e Vi)
== > (1) = —p(z,1).
i
If kis odd, k = 2¢, £ > 0, still by Lemma 4.14, for any = ~ y in X,

there exists a unique symmetric bilinear form p,, on Vg(xy) such that

pxy<1za ]-t) = —@(Z,t), z 7é t e S£<£L'y)

We also show that the family p = (puy)syex is a k-quadratic field.
This will now follow from the fact that, for any x ~ y in X, for any
z # w, in SY(x),

pmy(J£y1z7 Jﬁylt) = —QO(Z,t),

which we prove as above. O

4.4. Fields and bilinear forms on smooth functions. We will now
give the proof of Proposition 4.1. To this aim, let us introduce a new
set of linear operators. For z in X and ¢ > 0, we let

NE: Vi (x) — D(0X)

be the linear operator such that, for any f in V*¥(z), y in S*(z) and &
in Uy, one has

N f(€) = f(y)-

Again, one still denotes by N the induced operator Ve(x) — D(0X).
We will use the easy

Lemma 4.15. For any x in X, one has
D(OX) = | NV (2)
£>0
and, for any £ > 0,
NerlMﬁ — NE.

Proof. The first part is a rewriting of Lemma 3.5. The second part
follows from a straightforward computation. 0



ADDITIVE REPRESENTATIONS 45

Proof of Proposition 4.1. Let p be a symmetric bilinear form on the
space D(0X). Then, since for any x # y in X, the closed open set Uy,
is the disjoint union of the U,,, z ~ z, z ¢ [zy], we have

oo(,y) = > eplz,y),

T

2§ [zy]
hence ¢, is of quadratic type.

If ¢, is 0, we claim that p is 0. Indeed, as the characteristic functions
of the closed open subsets Uy, v ~y € X, span D(0X), it suffices to
check that for any # ~ y and z ~ w in X, we have p(1y,,,1y.,) = 0.
As 1y,, + 1y,, = 1 and 1 is in the null space of p, we can assume
that y # w and x and z belong to [yw]. We then have U,, = U,, and
U.w = Uy, hence

p<]‘Uacy7 1Uzw) = _Qpp(yaw) = O’

and we are done.

Finally, if ¢ is a quadratic type function on X,, for any k£ > 1, let
i be the restriction of ¢ to X which is a quadratic type function
on Xj. By Proposition 4.11, there exists a unique k-quadratic field p*
such that ¢, = ¢. By Lemma 4.12, for k > 2, one has (pF)~ = p*~.
Fix x in X. We get, for any ¢ > 1,

(ME)*pQ(Z—H) _ p%'

By Lemma 4.15, this tells us that there exists a unique symmetric
bilinear form p on D(9X) such that, for any ¢ > 1,

(Np)'p = p*.
One verifies that ¢ = ¢,. O

4.5. Orthogonal extension of Euclidean fields. We just saw how
a globally defined quadratic type function on X, gives rise to quadratic
type functions on X} for any k£ > 1. We will now introduce a reverse
operation in the Euclidean case. It will rely on the following

Lemma 4.16. Let X be a finite-dimensional real vector space, d >
2 be an integer and Xi,..., X4 be subspaces of X. We assume that
there exists a subspace Xog of X such that, for any 1 < i # 7 < d,
XiNX; =X and X/ Xo = @, Xi/Xo. Let po,p1,-..,pa be positive
definite symmetric bilinear forms on X, X1, ..., Xq such that, for any
1 <i<d, pix, = po- For1 <i <d, letY; C X; be the orthogonal
complement of Xy in X; with respect to p;. Then, there exists a unique
positive definite symmetric bilinear form p on X such that, for any
1 <1 <d, px, = pi and, for any 1 < i # j < d, the spaces Y; and Y
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are orthogonal with respect to p. The form p is called the orthogonal
extension of p1,...,pq to X.

Definition 4.17. Let £ > 1. If p is a k-quadratic field, we shall say
that p is a k-Euclidean field if the associated symmetric bilinear forms
are positive definite.

If £ > 2, we will build an orthogonal extension of these fields which
is a (k + 1)-Euclidean field.

Definition 4.18. (k even) Let k be an even integer, k = 2¢, ¢ > 1.
If p is a k-Euclidean field, for any z ~ y in X, we let p;y denote the
orthogonal extension of p, and p, to Ve(xy), where Vé(x) and Vé(y)

are identified to subspaces of Ve(xy) through the maps ny and le,.
The family p* = (p;,)z~yex is called the orthogonal extension of p.

Definition 4.19. (k even) Let k be an odd integer, k = 2041, ¢ > 1. If
p is a k-Euclidean field, for any z in X, we let p denote the orthogonal

extension of (puy)y~z tO V“l(x), where the spaces Vg(xy), y ~ x, are

identified to subspaces of V“l(x) through the maps I, y ~ 2. The

family p™ = (p).ex is called the orthogonal extension of p.

The orthogonal extension is again a quadratic field. More precisely,
we have the following result, whose proof directly follows from the
definitions:

Proposition 4.20. Let k > 2 and p be a k-Fuclidean field. Then its
orthogonal extension p* is a (k + 1)-Euclidean field and (p™)~ = p.

4.6. The Hilbert space of a Euclidean field. Let p be a k-Eu-
clidean field with k& > 2. The successive orthogonal extensions of p
allow to define a quadratic type function ¢ on X, or equivalently,
by Proposition 4.1, a symmetric bilinear form p™ on D(0X), which
clearly turns out to be positive definite. We let H? be the completion
of D(0X) with respect to p> and we call it the Hilbert space of p.

If p is T-invariant, so is ¢,°, hence p> is I-invariant and H? comes
with a natural action of I' which makes it a unitary representation.

In the next section we will study the topological dual space of HP.

5. HILBERT SPACES OF DISTRIBUTIONS

5.1. Dual kernels. We will now introduce dual notions to the ones
studied above. We start with a dual statement to Lemma 4.14.
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Lemma 5.1. Let A be a finite set. Let V' be the space of real-valued
functions on A and

Vo={f€VI)_ f(a)=0}.
acA
If q is a symmetric bilinear form on Vg, let K7 be the function on Ax A
defined by

Kq(a,b) :q(la—lb,la— lb), a,b e A.

Then the map q — K9 is a linear isomorphism between the space of
symmetric bilinear forms on Vi and the space of symmetric real-valued
functions on A X A which are zero on the diagonal. If K is such a
function and q is the associated bilinear form, for any f,qg in Vo, we

have
1

a(f.9)=—5 D, Klab)f(a)f®).

(a,b)eA?

In the sequel, if A is a finite set and V is the space of real-valued
functions on A, we always identify the space V with its dual space
through the positive definite bilinear form on V'

(f.9) = fla)g(a).

acA
Let V4 be the space of functions in V' with zero sum,

Vo={feV]) fla)=0}

acA

The space V, may now be seen as the dual space of V = V/R.

In particular, for any ¢ > 0, for any x in X, let Vi{(z) denote the set
of real-valued functions on S*(z) with zero sum, and, for any z ~ y in
X, let V{(xy) denote the set of real-valued functions on S¢(xy) with
zero sum. We regard these spaces as the dual spaces of Ve(x) and
V' (zy).

Recall that if V' is a finite-dimensional real vector space, to any non-
degenerate symmetric bilinear form p on V', we can associate its dual
bilinear form ¢ on the dual space V* of V. The form ¢ is defined as
the image of p by the linear isomorphism from V to V* associated to
the form p.

Let p be a k-Euclidean field for some k& > 1.

If kiseven, Kk =2(, ¢ > 1, for any x in X, we let ¢, be the dual
symmetric bilinear form to p, on V{(x). If 2 and w are in S*(z), we

set
KP(z,w) = q.(1, — 1,1, — 1,,).
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If &, are in 0X, we write
K38 n) = K7(z,w),
where z (resp. w) is the intersection point of the geodesic ray [z€)
(resp. [xn)) with S*(z).
If kisodd, k =20+ 1, ¢ > 0, for any o ~ y in X, we let ¢, be
the dual symmetric bilinear form to p,, on V§(zy). If z and w are in
St (zy), we set

Kﬁy(z7w> - me(lz — 1,1, — ]-w)-
If £, are in 0X, we write
Kgy(é-? 77) - Kgy(z7 w)7
where z (resp. w) is the intersection point of the geodesic ray [z€)
(resp. [xn)) with S*(zy).
By Lemma 5.1, the Euclidean field p is completely determined by

the data of K. We have a nice way of computing K?" from K? and
K? . Recall that, for  in X, d(x) is the number of neighbours of x.

Proposition 5.2. Let p be a k-FEuclidean field for some k > 2.
Ifkis even, k =20, £ > 1, for any x ~ y in X, we have, as functions
on 0X x 0X,
+ -
Ky, =K+ K} — KT, .
Ifkisodd, k=20+1,0>1, for any x in X, we have, as functions
on 0X x 0X,
+ —
K =Y K? —(d(z) - 1)KV .
Yy~x

Proof. The proof is a direct translation of Lemma 5.3 below. U

Lemma 5.3. Let X, Xy, X1,..., Xy and po,p1,...,pas be as in Lemma
4.16. Let p be the orthogonal extension of pi,...,pq to X. FEquip the
dual spaces X*, X5, X7,..., X] of X, X, Xq,..., Xy with the bilinear
forms q,qo,q1 ..., qq which are dual to p,po, p1,...,pa- Then, for every
w, Y in X*, we have

(0, V) = qi(oix Uixy) + -+ @alexy, Yix,) — (d—1)a0(01x0, Y x0)-

Proof. For 1 <1 < d, let Y; C X; be the orthogonal complement of
Xo in X;. Set u; to be the vector in X; which represents ¢|x, with
respect to p;, that is, such that ¢(z;) = p;(u;, ;) for z; in X;. Write
u; = v; + w;, with v; in Xy and w; in Y;. By definition, we have
4i(P1x, P1x:) = Pilui, ui) = pi(vi, vi) + pi(w;, wy).

We claim that vy, ..., v4 are equal to each other. Indeed, for 1 <17 <
d, we have, for any xo in Xo, po(vi, 70) = pi(vsi, 20) = pi(us, 20) = @(20),
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which does not depend on ¢, hence v; does not depend on i since py is
positive definite.

Set v=v; =--=vgand u =v+w; +---+ wy. We claim that
the vector u represents the linear functional ¢ on X with respect to p.
Indeed, for z in X, write x = ¢ + 21 + - - - + x4, With xy in X, and z;
inY;, 1 <7<d. We have

p(x) = p(x0) + @(z1) + -+ + (24)
= po(v, o) + p1(ur, 1) + - - - + paua, z4)
= po(v, zo) + p1(w, z1) + - - - + pa(wq, va) = p(u, x),

where the latter equality follows from the definition of p in Lemma
4.16. We get, still by this definition,

q(p, @) = p(u,u) = po(v,v) + p1(wy,wr) + - - - + pa(wa, wa)
= pl(ub ul) +oe +pd(ud> ud) - (d - 1)p0(v, U)»
and the result follows. O

We will now axiomatize the relations which appear in Proposition
5.2.

Definition 5.4. (k even) Let k be an even integer, k = 2¢, ¢ > 1.
A k-dual prekernel is a family (K, ).cx where, for any z in X, K, is
a symmetric function on S¢(x) x S*(x) which is zero on the diagonal.
The symmetric bilinear form on V{(x) associated to K, by Lemma 5.1
is denoted by ¢~.

Definition 5.5. (k odd) Let k be an even integer, k =2+ 1, { > 0.
A k-dual prekernel is a family (K,y)zyex where, for any x ~ y in X,
K., = K, is a symmetric function on S*(zy) x S*(xy) which is zero
on the diagonal. The symmetric bilinear form on V{(xy) associated to

K,y by Lemma 5.1 is denoted by ¢J.

As above, depending on the context, we may also consider dual prek-
ernels as families of locally constant functions on 0X x 0.X.

Definition 5.6. Let £ > 2 be an integer. Then a k-dual kernel is a
pair (K, K~) where K is a k-dual prekernel and K~ is a (k — 1)-dual
prekernel.

Dual kernels admit orthogonal extensions which behave as in Propo-
sition 5.2.

Definition 5.7. Let £ > 2 be an integer and (K, K~) be a k-dual
kernel.
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If kiseven, k=20, ¢ > 1, for any x ~ y in X, set
K;:Kx%—Kx—K;y.

Then K is a (k + 1)-dual prekernel.
Ifkisodd,k:%—i—l (>1, foranyxinX, set

= Ky ~ K.
Yy~x
Then K is a (k + 1)-dual prekernel.
In both cases, the (k+1)-dual kernel (K, K) is called the orthogonal
extension of the k-dual kernel (K, K~). More generally, for any j > k,
we denote by (K7, K7~1) the (j—k)-th orthogonal extension of (K, K ™).

Remark 5.8. The orthogonal extension map (K, K~) — (KT, K) is a
linear embedding from the vector space of k-dual kernels into the vector
space of (k4 1)-dual kernels.

5.2. Large extensions of dual kernels. As an example of the use
of these notions, let us give formulae for the K/, j > k + 1. For
h >0 and z in X, we set B"(z) = Jycyep, S"(2) to be the ball with
center x and radius h in X. In the same way, for z ~ y in X, we set
B"(z) = Uyepep, S"(zy). Successive orthogonal extensions are defined
by summing the kernels on points and edges in these sets.

Lemma 5.9. Let k > 2 and (K, K~) be a k-dual kernel. The orthog-
onal extensions of (K, K~) may be defined by the following formulae.
Fixh>1and x ~y i X. If k is even, we have

K2 — Z K, — = Z

2€Bh(x) zteBM (x
z~t
k+2h—1 1 —
and KEP = Y~ K, — 5 Z K.
z€Bh—1(zy) 2, t€ B 1 (xy)

z~1

If k is odd, we have
Kt = Z K.~ Y (d(z) - 1)K

2, teB" () 2€Bh—1(x)
zrt
1 -
and K" = 3 Y Ku— > (dz)- DK
z,teB" (zy) z€Bh—1(zy)
zrt

Proof. We fix j > 3 and we prove the formula for K7 when (K, K7) is
a k-dual kernel by descending induction on k with 2 < k < j — 1.
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If k=4 — 1, the formula is the same as in Definition 5.7.

Now, assume that £ < 7 — 2 and that the formula holds for k + 1.
We will prove it for k. We need to split the discussion according to the
parities of j and k. Assume j is even, j = 2m, m > 2.

Ifkis, k =20, ¢ > 1, we set h = m — ¢ > 1. By the induction
assumption, applied to the (k + 1)-dual kernel (KT, K), we have

Z - ) (d(z) - DEK..

zteBh(z 2€Bh—1(x)
z~t

By Definition 5.7, we get

Ki=D S (KKK - Y () - K.

z,tEB"(z) z€Bh—1(z)
z~t

which equals

> [8M(z) N B (@) |K—— Y OK,- D (dz) - 1K,
2€Bh(z) z, teB: 2€BM—1(z)

where |.| is the cardinality of finite sets. For z in B"~!(x), we have
SY(z) € B"(z), hence |S*(z) N B"(z)| = d(z). For z in S"(x), we have
|S*(z) N B"(z)| = 1. Thus,

- Y K-35 ¥ K

2€Bh(z) z,teB"(z)
z~t

which should be proved.
If kisodd, k =2(+1,¢ > 1, weset h =m—{—1 > 1. The
induction assumption and Definition 5.7 now give

> Ki-g X K

2€Bh(z) z,teB"(z)
z~t
_ 1
> (Z K. — (d(z) — 1)K ) -5 K.
2€Bh(z) \t~z 2, teBh (x)
zrt

Note that

ST Y Ka= Y Kut Y Kzz,

zeBh th P tEBh( ) Zesh+1
zrot
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where, for z in S"*1(z), z_ is the neighbour of z on [zz]. Thus, we get

Ki=g Y Koo Y () - DE:,

zte B (z) 2€Bh(z)
z~t
as required.
The proofs in case j is odd are analoguous. 0

5.3. Non-negative dual kernels. We will introduce a non-negativity
property that is satisfied by the dual kernels of the form (K?, K? ),
where p is a Euclidean field. When this property holds, we can associate
a Hilbert space to a dual kernel.

We first start by introducing a natural notion for prekernels.

Definition 5.10. (k even) Let k£ > 2 be an even integer, k = 2¢, £ > 1,
and K be a k-dual prekernel. We say that K is non-negative if, for any
r in X, the bilinear form ¢¥ is non-negative.

Definition 5.11. (k odd) Let £ > 1 be an odd integer, k = 2¢ + 1,
¢ >0, and K be a k-dual prekernel. We say that K is non-negative if,
for any x ~ y in X, the bilinear form qg is non-negative.

Let us now define a related notion for dual kernels. We need some
more notation. For z ~ y in X and ¢ > 0, the adjoint maps of the
maps I}, and J;, will be denoted by I* and J.*. In other words, for
any x ~ y in X, we have linear maps

Gy 0+ ¢
Ly Vo (z) = Vi(xy)
L 170 ¢
SV (xy) = V(2)
defined as follows.

If fisin V*!(z), then IZ* f is the function on S*(xy) such that, for

any z in S*(zy), one has
Ie’*f(z) = f(z) if y is on [zz].
]e* Z f(w) if y is not on [zz].
welaz]

If fisin V¢(zy), then Jﬁ;jf is the function on S*(z) such that, for
any z in S*(z), one has

Je’*f(z) = f(z) if y is not on [zz].

Jé* Z f(w) if y is on [zz].

wéfe2]
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Let V and W be real vector spaces and let 7 : V' — W be a surjective
linear map. If ¢ is a non-negative symmetric bilinear form on V', we
define in Appendix A the Euclidean image m,q of ¢: this is a non-
negative symmetric bilinear form on W. For any w in W, we have

mq(w,w) = inf q(v,v).

w(v)=w

Definition 5.12. (k even) Let k£ > 2 be an even integer, k = 2¢, £ > 1,
and (K, K~) be a k-dual kernel.

We say that (K, K~) is non-negative if the dual prekernels K and
K~ are non-negative and if, for any x ~ y in X, we have

a5 > (1) dzy -
We say that (K, K~) is exact if it is non-negative and, for any x ~ y
in X, we have
£—1,% K K~
([xy )*qx - qa:y .
We say that (K, K~) is Euclidean if it is exact and, for any x in X,
the bilinear form ¢ is positive definite.

Definition 5.13. (k odd) Let £ > 2 be an odd integer, k = 2¢ + 1,
¢>1,and (K, K~) be a k-dual kernel.

We say that (K, K~) is non-negative if the dual prekernels K and
K~ are non-negative and if, for any x ~ y in X, we have

Qay 2> (T ) "ar -
We say that (K, K~) is exact if it is non-negative and, for any = ~ y
in X, we have
(Jﬁfg*)*qz = qgi'
We say that (K, K ) is Euclidean if it is exact and, for any = ~ y in
X, the bilinear form qg is positive definite.

As '\ X is finite, the vector space of I'-invariant k-dual kernels has
finite dimension. We denote it by K; and we set K7 C Ky to be the
set of I'-invariant non-negative k-dual kernels. Elementary properties
of Euclidean images give

Proposition 5.14. Let k > 2 and (H,H™) and (K,K~) be non-
negative k-dual kernels. Then (H + K, H- + K~) is non-negative.
The set of non-negative k-dual kernels is a convex cone in the vector
space of all k-dual kernels.
The set K} of T-invariant non-negative k-dual kernels is a closed
convex cone with non-empty interior inside the vector space Ky of I'-
wmwvariant k-dual kernels.
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For x in X, we let I, be the stabilizer of z in I', which by assumption
is a finite subgroup.

Proof. The fact that, for (H, H~) and (K, K~) as above, the dual kernel
(H + K,H™ + K7) is non-negative follows from Lemma A.5. As the
set of non-negative k-dual kernels is clearly stable by multiplication by
non-negative real numbers, it is a convex cone.

The set K is closed in K, as being defined by a set of closed in-
equalities. It remains to prove that it has non-empty interior.

We let S C X be a finite set of representatives for the I'-action on
vertices of X, that is, X = I'S and, for every x in S, 'z NS = {z}.
In the same way, we let X; = {{x,y}|(z,y) € X;} be the set of non
oriented edges of X and T C X be a finite set of representatives for
the I'-action on X;. Now, we first define I'-invariant dual prekernels as
follows.

Fix ¢ > 1. For x in S, we chose a I',-invariant positive definite sym-
metric bilinear form p2* on Vi (z). For z in X, we set p2* = (¢7')*p2;
where g in I is such that gz is in S. We let H?* be the associated
function on S*(x) x S*(z) as in Lemma 5.1.

Fix ¢ > 0. For {z,y} in T, we set 'y, = {g € I'|g{z,y} = {z,y}}
and we chose a I';,-invariant positive definite symmetric bilinear form
pff;ﬂ on V{(xy). For x ~ y in X, we set p%“ = (gil)*p%;r)l(gy) where
g in T is such that {gz,gy} is in T. We let HZ;*! be the associated
function on S¢(xy) x S*(zy) as in Lemma 5.1.

Now, let k be even, k = 2¢, { > 1. For x ~ y in X, we set K, =
Hf 4%,  Hy'and K, = Hj''. Then (K,K~) is a I-invariant
k-dual kernel which clearly lies in the interior of K}

In the same way, if kisodd, k =20+ 1, ¢ > 1, for x ~ y in X, we
set Ky = HE + HF '+ Hf ' and K, = HF ', Again, (K, K7) is an
interior point of K. U

Euclidean kernels are in one-to-one correspondance with Euclidean

fields.

Proposition 5.15. Let k > 2 and (K, K~) be a k-dual kernel. Then
(K, K™) is Euclidean if and only if there exists a k-Euclidean field p
such that (K, K~) = (K?, K" ).

The notions we have defined behave well with respect to orthogonal

extension.

Proposition 5.16. Let k > 2 and (K, K~) be a k-dual kernel. If
(K, K7) is non-negative (resp. exact, resp. Euclidean), so is the (k +
1)-dual kernel (K, K).
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Proof. This is a direct consequence of the abstract lemma below. [

Lemma 5.17. Let Wy, Wi, ..., Wy (d > 2) be finite-dimensional real
vector spaces, and, for 1 <1 < d, let w; : W; — Wy be a surjective
linear map. We set W to be the fibered product

{w= (w1, - ,wg) €Wy X -+ xWylV1<1i,j<d wiw)=w;(w;)}

and m - W — W;, 0 < 1 < d, to be the natural surjective linear

map. Assume qo, q1,-- . qq to be non-negative symmetric bilinear forms
on Wo, W, ..., Wq with ¢; > wjqo, 1 <i < d, and set

¢=mq+ -+ 7500 — (d— 1)m5qo.
Then,
(i) the symmetric bilinear form q is non-negative and q > wrq; for
1<i<d.
(ii) if we have (w;)«q; = qo for 1 < i < d, then we also have (7;)xq = ¢;
for1 <1 <d.
(iii) if the forms qi,...qq are positive definite, the form q is positive

definite.
Proof. (i) Pick 1 <i < d. We have

q="mq+ Z(W;Qj — Toqo) = T; Gi + Zﬂ;(% — Wi qo),
J#i J#i
hence ¢ > 77q;. In particular, ¢ is non-negative.

(i) Still fix 1 <4 < d and let w; be a vector in W;. We set wy =
w;(w;). For j # i, as (w;)«q; = qo, we can find w; in W; with w;(w;) =
wo and g;(wj, w;) = qo(wo, wp). Now the vector w = (wy,...,wyq)
belongs to W and by construction, we have m(w) = w; and ¢(w,w) =
Qi(wiuwi)-

(111) Let w = (wy,...,wy) be in W with ¢(w,w) = 0. By (i), for
1 < i < d, we have ¢;(w;,w;) < g(w,w), hence w; = 0. We get
w = 0. U

5.4. The Hilbert space of a non-negative dual kernel. Recall
that, by definition, the space D*(0X) of distributions on X is the dual
space of the space D(0X) of smooth functions on X and that D§(0X)
is the set of distributions T" with (T',1) = 0, which we freely identify
with the dual space of D(U) = D(0X)/R.
Recall also that we have defined natural linear operators, for x in X

and ¢ > 0,

NE: Vi) — D(0X).
Again, we let

N . D*(U) — Vi(x)
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denote the adjoint operator of N°.

To a non-negative kernel, we will associate a natural Hilbert space
of distributions by using the results in Appendix B.

Let £ > 2 and (K, K~) be a k-dual kernel. Recall that (K7);>y
denote the successive predual kernels obtained from (K, K~) by or-
thogonal extension. As above, for any even j > k —1, j = 2(, £ > 1,
for any z in X, we associate to K7 a symmetric bilinear form ¢’ on
Vi (z). When there is no ambiguity, we shall write ¢ for ¢&’. In the
same way, for any odd j > k-1, j=2(+1, (>0, for any x ~ y in
X, we let qgj or qiy denote the symmetric bilinear form associated to
K}, on Vy(zy).

Proposition 5.18. Let k > 2 and (K, K~) be a non-negative k-dual
kernel. Fiz x in X and let L™ denote the set of distributions 0 in
Do(0X) such that

sup 2 (N0, N50) < oo.

>k
Then L™5" is a vector subspace of Do(0X) and the map
6 = sup ¢ (N0, N,6)

k
>k

is a non-negative quadratic form on L5 . Let ¢®%~ be its polar form.
Both L5~ and ¢"*%~ do not depend on the choice of x. The space
HEE™ = [EE™ [ker ¢]K7  equipped with the positive definite bilinear
form induced by g% is complete.

From the definition of the Hilbert space associated to a Euclidean
field, we get

Corollary 5.19. If (K, K~) is Fuclidean and p is the k-Euclidean
field such that (K, K~) = (K?,K?"), then L*% = H&E" s exactly
the space of distributions which are bounded linear functional for the
scalar product p* on D(0X). In particular, H*X" may be seen as the
topological dual space of the Hilbert space HP associated to p.

The space HX™ | equipped with its natural scalar product, will be
called the Hilbert space associated to the dual kernel (K, K™).

Proof of Proposition 5.18. Let us check that the definition of the ob-
jects is independent on x. To this aim, let x ~ y be in X. For any ¢ > 0,
the linear operator I, J;, embeds V*(y) as a subspace in V**!(z). One

easily checks that one has Nﬁ*llﬁyjﬁx = Nf. Hence, if 20 > k, we get

Oox\* 20 O+1,6\x / T\ % [ Tl,x\* 20
(Ny ) Qy - (Na: ) (]:ry) (‘]yx> qy .
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By Proposition 5.16, we have
(JZ *)* 20 < q2Z+1 and (]Z *)*qizl;-&-l q22+2
Thus, we have
(NK *)* 22 (N€+1,*)*q2f+2
In particular, for any 0 in Do((?X ), we have
sup ¢2' (N;*0, N;*0) = sup g2 (N, 0, N, *0).
>1 >1

By connectedness of X, the latter equality holds for any x, y in X, hence
the constructions in the Proposition do not depend on the choice of x.

The rest of the proof directly follows from Lemma 4.15, Proposition
5.16 and Lemma B.3: indeed, the family (Voe(x),MfH’*,qie)Dg is a
non-negative projective system in the sense of Definition B.1, whose
algebraic projective limit may be identified with Dy(0.X) (see Appendix

B for more details). O

Note that for the moment, we don’t know wether L% is not re-
duced to 0. We will later prove that, when (K, K~) is I-invariant,
LBK™ contains the space H§ from Section 3. We will first show how
this phenomenon appears on a particular example.

5.5. Examples of dual kernels. In this Subsection, we give two ex-
amples of non-negative dual kernels. Their constructions are based on
the elementary

Lemma 5.20. Let A be a finite set and V' be the space of real-valued
Junctions on A and Vy be the subspace of functions f with ) ., f(a) =
0. We let q be the scalar product (f,g) — > ,c4 f(a)g(a) on Vi and,
for a in A, we let e, denote the evaluation linear functional f — f(a).
Then if q* is the scalar product dual to q on the dual space of Vg, for
a # bin A, we have q*(eq, e,) = ”T_l and q*(eq,ep) = —%, where
n = |A| is the cardinality of A.

Let us define a 2-dual kernel (x, x™). For any x ~ y in X, we set
Xzy(z,y) = 1. For any z in X and any neighbours y # 2 of x, we set

Xa(Y, 2) =2 x) L We call (y,x") the harmonic kernel.

Proposition 5.21. The harmonic kernel is a Fuclidean kernel.

Proof. Let x ~ y be in X and ¢, and g, be the symmetric bilinear
forms associated with x and x~ on the spaces V () and Vi (zy). By
construction (see Lemma 5.1), one has ¢.(f, f) = d(x Zzw f(2)? for
any f in Vil(z) and ¢, (1, — 1,1, — 1,) = 1. We must check that
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we have ¢, = (I%).q, Now, for any f in Vj(2), we have 1% f =

f(y)(1, — 1,), so that, by Lemma 5.20 and Lemma A.10, we have

1
I )eqe(ly — 15,1, — 1) = ———— =1,
where p, is the scalar product dual to ¢, on Vl(a:). O

We shall pursue the study of the harmonic kernel in Subsections
9.6 and 10.5. In particular, we will prove in Proposition 10.13 that the
Hilbert space of distributions HXX  associated to (x, x~) in Proposition
5.18 is exactly the Hilbert space Hy that has been studied in Section
3.

By changing slightly the construction, we can build another dual
kernel, that is not exact any more, but for which the computations are
easier. We define the Busemann kernel (k,x7) = (k% ') as follows.
For any x ~ y in X, we set /ﬁiy(x,y) = 1. For any x in X and any
neighbours y # z of x, we set x2(y,2) = 2. We denote by (k*)i>1
the dual prekernels obtained from (x2, k') by successive orthogonal
extensions as in Definition 5.7. For the Busemann kernel, all the objects
that have been introduced in Section 6 can be computed explicitely.

Proposition 5.22. The Busemann kernel (k*, k') is a non-negative 2-
dual kernel. Let k > 1. If k is even k=20, £ > 1, for any x in X and
z,t in SY(x), one has k¥(2,t) = d(2,t). Ifk is odd, k =20+ 1, £ >0,
Jor any x ~y in X and z,t in S*(xy), one has kE (z,t) = d(z,1t).

Proof. Let still (x,x~) be the harmonic kernel. For any z in X, we

have k, = %Xx and, for z ~ y in X, we have r,, = x,,. As, for

any x, % > 1 and as, by Proposition 5.21, the harmonic kernel

is Euclidean, the k-dual kernel (k — x, s~ — x7) = (k — x,0) is non-
negative, hence (k, k™) is non-negative by Proposition 5.14.

Let us compute ¥, k > 3. Assume k is even, k = 2¢, { > 2. Fix x
in X. For z,t in S%(x), Lemma 5.9 and the definition of (k,x~) give

ki (2,t) = 2B (z) N [=t]]
1
- 5\{(u,v) € B Y(x)|u ~ v and [uv] C [2t]}].
If z = t, all these numbers are 0. Else, one has d(z,t) > 2 and
|B Y (z) N [2t]] = d(z,t) — 1
{(u,v) € B (2)|u ~ v and [uv] C [2t]}] = 2(d(z,t) — 2)

and the result follows. The proof in the odd case is analoguous. 0
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Corollary 5.23. The Hilbert space of distributions H*" C Dy(0X)
assoctated to the Busemann kernel is exactly the space Hg .

Proof. For z,y,z in X, let ¢ be such that [zy] N [zz] = [zt]. We set
wy(y,z) = d(x,t). This extends the definition of the Gromov product
(see Example 2.18). If d(z,y) = d(z, 2) = £, we get

(5.1) d(y, z) = 20 — 2w, (y, 2).

Let x bein X, /> 1 and qge be the symmetric bilinear form associ-
ated to k2¢ on V{(x). By Lemma 5.1, Proposition 5.22 and (5.1), for f
in V{(z), we have

@)= Y (waly.2) = O (W) f(2)

y,2€8%(x)
V4
- Z w:v(y7 z)f(y)f(z) = Z 1wz(y,z)2kf(y)f<z)'
y,2€5¢(x) k=1 y,ze5%(x)

Fix T in Dy(0X). We get

(5:2) GNJT,NST)= Y ) (T1y,) (T 10,.)

teX z€8 (=
1<d(z,t)<¢t t%[my}ﬂfx;}

= Z (T, 1y,,)* Z P.T(u,v)?

teX (u v GXl
1<d(z,t) <t d(z,u)<t
d(z,v)<t

where P, is as in Subsection 3.1. By Proposition 5.18, the space H""
is exactly the space of distributions 7" in Dy(0X) with P, T belonging
to £2(X1), which by definition is equal to Hg. By (5.2), for T in that
space, we have ||T||> = 2¢™~ (T, T). O

In the next sections, our goal will be to get a kind of generalization of
Corollary 5.23. More precisely, we will prove that, when a non-negative
dual kernel (K, K~) is T-invariant, the Hilbert space H%" contains
the completion of Hy with respect to a non-negative symmetric bilinear
form ®,, as in Section 3. This will rely on a formula which we will
establish in the next section.

6. AN ADDITIVE FORMULA FOR DUAL KERNELS

Given a k-dual kernel (K, K), the purpose of this section is to con-
struct a symmetric function w : X; — R such that the symmetric
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FIGURE 3. The points in the sum S%™(&, )

bilinear forms associated to (K, K~) may be defined by means of a for-
mula which is the same as the one in Proposition 2.22. Unfortunately,
this requires a lot of computations. At the first reading, it might be
more comfortable to skip this section, admit Proposition 6.20 and go
directly to Section 7.

6.1. The first geodesic backtracking. We start with some technical
results. Let £ > 2 and (K, K~) be a k-dual kernel. We will prove that
certain sums defined by using the dual prekernels (K7);>x_1 obtained
from (K, K~) by successive orthogonal extensions are equal. These
sums will play a key role in certain algebraic constructions.

For £ # n in 0X and z in (£7n), let us denote by z = xg, z1,xs, . ..
and z = yo, Y1, Y2, ... the geodesic rays [2§) and [zn). If ¢ € Z and
m > 1 are such that 2¢ + m > k, we will define S“™(¢,7n) as follows
(see Figure 3).

If m is even, m = 2n, n > 1, we set

So™(E,m) = Z K™ (e, ye) — K2 (e, ye)

teS™(z)
x1,y1¢[z2t]

(where for ¢ in S™(z), t_ is the neighbour of ¢ on [tz]).
If misodd, m=2n—1,n > 1, we set

ng(év 77) = Z Kz€2_et+m<va yf) - Ktz_e+m71(xf7 yf)'
teS™(z)
x1,y1¢[2t]

The following result tells us that, these sums are invariant under a
backtracking from the geodesic (£n).
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Lemma 6.1. For £ # n in 0X, z in (&n), ¢ € Z and m > 1 with
20+m > k+ 1, we have

Se™ (& m) = STHEE ).

The proof of this Lemma directly follows from the definition of the
successive orthogonal extensions.

Proof. If m is even, m = 2n, n > 1, we have

SEMEm = D K@ ye) — KX ).
teS™(z)
1,91 ¢[21]

Now, for ¢ in S™(z) with zy,y; ¢ [2t], we get
K™ (e, ye) — K25 (e, ye)
= Z Ko wemy, o) — (d(t) — 1 EZH™ 2 (20m1, ye1),

t'~t
t'#t—

hence, by replacing ¢ with ¢’ in the sum,
SEMEm) = D> KT M @ yen) = KPR (@, o)

teSnt1(z)
x1,y1¢[2t]

= SEtmrle ),

sincem+1=2(n+1) — 1.
Now, if m is odd, m = 2n — 1, n > 1, we have

ng(& 77) = Z Kt2_et+m(xfa yf) - Kt2_e+m71(xf7 yf)
teS™(2)
x1,y1¢[2t]
= Z K wemy, yor) — K957 (@0m1, ye1)

teS™(z)
x1,y1 ¢[2t]

In case m = 1, Lemma 6.1 gives

Corollary 6.2. Let € # n be in 0X and z be in (£n).

For any ¢ >k — 1, we have S“(&,n) = 0.

For any % </l < k—1, the sum S“Y(&,n) does not depend on x;,;,
1>k—1—1¢.

In the same spirit, Lemma 6.1 will allow us to prove that some other
sums depend on less points than what would appear at a first glance.
Recall that k£ > 2 and that (K, K7) is a k-dual kernel.
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Lemma 6.3. Let j > k—1 and (xp)nez be a parametrized geodesic line
i X with origin & and endpoint 1. Then, the quantity

J Jj—1
SRS (&m) =Y K¢ )
h=1 h=1
only depends on x, ..., x;.

Proof. We will establish a more general statement, namely that, for
any % < ¢ <k —1, the quantity

JHe+1—k j+e—k
A= > KX (Em) - > KX(Em)
h=k—( h=k—(
only depends on zy, ..., z;. This will be proved by induction on ¢. For
¢ =k — 1, this is the desired result.
If £ is even and ¢ = %, we have
J+1-£ j—t
AW =D Ky (@ne tngee1) = > Koy (Ther, Th)
h=t h=t

and the right hand-side only depends on xy, ..., x;.

If k is odd and ¢ = £, we have

jH+2—¢ jH1—¢
E K{Eh 1ThH f 77 §
h=0—1 h=0—-1

Now, for any / — 1 < h < j+1— ¢, we have

(g 77) xh 136}1(5 77) xhl’h+1 (6 77)
Y Kay(&n) = (d(a) = DK, (En).

Y~Th
YFTh—1,Tht1

Thus, we get
jH1—£
(6.1) A() = > (d(xn) = DK, (@h-ts1, Thie)
h=(—1
jH1—¢
B Z Z Kwhy(xh—e+17$h+£—1)

Y~Th
y7émh 1,Tht1

j+1—¢

- Z Ko, on(@h—t, Thie—1)
h—t
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and again the right hand-side only depends on xo, .., T .

Assume now the result is true for some & < ¢ < k — 2 and let us
prove that it still holds for ¢+ 1. To do thls we will express A({ + 1)
by means of A(¢). Indeed, we have

42—k b 1—k
A+ = > KX (En)— Y KXP(E).
h=k—t—1 h=k—(—1

Forany k—(—1<h<j+/0+1—k, we have

K3 72(€m) = K37, (&) + K320 (6m)

Th—1Th ThTh+1

+ Y E2ENE ) — (dlx) — DEZ(E ).

YATh—1,Th41

By putting (d(xs) — 2)-times the term K2°(¢,7) under the sum, the
latter quantity is equal to

K3, (&m) + K2 EL (&m) + S5 (€,m) — K2 (€ m).

Thus, we get

JHH1—F
A(L+1) = E KZX(¢
h=k—0(—1
GH+1—K GH+1—K
2041 Kl
> EXtLEm- ), S
h=k—¢ h=k—/0¢—1

Now, for any k — ¢ < h < j+/{+1—k, we have

K2t (Em) = K2 (&) + K2 (&n) — K21, (&)

We get
jH+1-k

(6.2) A+ =A@ - > SENE ).
h=k—{—1

By the induction assumption, A(¢) only depends on x,...,z;. By
Corollary 6.2 , forany k — ¢ —1 < h < j+/(+1—k, Sf’hl(f,n) only
depends on the points of ({n) which are at distance < k — ¢ — 1 of xy,.
As all these points belong to the segment [zox;], the results follows. [
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6.2. Lifting of the forms ¢i~? and ¢2* 2. Let still £ > 2 and let
(K, K~) be a k-dual kernel. For any even h > k—1, h =2(, ¢ > 1
(resp. for any odd h > k—1, h = 2(+ 1, ¢ > 0), for any z in X
(resp. for any x ~ y in X), we have an associated symmetric bilinear
form ¢X" = ¢ (vesp. quh = q,) on Vi (z) (resp. V{(zy)). We will
now build bilinear forms on V¢(x) (resp. V¥(zy)) whose restriction to
Vi () (resp. Vi(xy)) are equal to ¢ (resp. ¢f,). We will start with
the cases where ¢ =k — 1.
To construct such forms, we will use

Lemma 6.4. Let A be a finite set. Let V' be the space of real-valued
functions on A and

Vo={feV|) flo)=
acA
If q is a symmetric bilinear form on V, set, for a in A, u,(a) =
q(La, 14)-
Let qo be a symmetric bilinear form on Vy. Then the map q — uq
induces an affine isomorphism from the space of symmetric bilinear
forms q on 'V with q, = qo onto V.

Any such form ¢ will be called a lifting of qq.

As in Lemma 6.4, lifting bilinear forms on V{(z) and V{(zy) to
V4(x) and V¥(zy) will require choices. These choices will be achieved
by chosing what we will call a (K, K~ )-compatible function:

Definition 6.5. Let © be a function on X;_;. Then u is said to be
(K, K~)-compatible if, for any x,y in X with d(a: y) =k — 1, one has

(6.3) w(z,y) +u(y, ZKff (3 ZK% %

where (zj)pez is any parametrlzed geodesic line Wlth zo=x and zp_; =
y and & and n are its endpoints.

Remark 6.6. By Lemma 6.3, the right hand-side of (6.3) only depends
on x and y. In particular, compatible functions u always exist and if
(KT, K™) is I-invariant, one can chose u to be so.

To a (K, K~ )-compatible function, we associate its weight function:

Definition 6.7. If u is a (K, K~)-compatible function, we define its
weight function w on Xy, by, for any z,y in X with d(z,y) = k,
(6.4)
k-1 k
w(x,y) = u(z, z-1) +uly, z1) + Y K272(Em) = > K22 (&m),

h=1 h=1
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where (zp,)nez is any parametrized geodesic line with zg = x and 2z, = y
and £ and 7 are its endpoints.

Remark 6.8. Again, it follows from Lemma 6.3 that w(z,y) only de-
pends on the choice of z and y. Note that the weight function is
symmetric.

Ezxample 6.9. Recall the Busemann kernel from Subsection 5.5. A func-
tion v on X; is compatible with the Busemann kernel if and only if one
has, for any  ~ y in X,

u(zy) + u(yzr) = 1.
In this case, the associated weight function w on X is given by, for
any x,y in X with d(z,y) = 2,

w(ry) = u(rz) + u(yz),

where z is the middle-point of the segment [xy].

We are now ready to state our result on the lifting of the forms ¢?+~2
and ¢20=*. The formulae which appear in the construction of these
hftmgs are related to the ones in Proposition 2.22.

Proposition 6.10. Let k > 2, (K,K~) be a k-dual kernel, u be a
(K, K~)-compatible function and w be its weight function.

Then there exists a unique family (¢**72).ex such that, for any x in
X, §**=% is a symmetric bilinear form on V*=1(x) with (cjfck_Q)WOk_l(z) =
q**=2 and, for any z in S*71(x),

qgk—2<127 12) = U(ZB, Z)

In the same way, there exists a unique family (qi’; 3eex such that, for

A2k—3

any x ~y in X, ¢, " 1s a symmetric bilinear form on VE=2(2y) with

(g2h? ) V=2 () = qi’; 3 and, for any z in S*2(xy) N S*¥1(x),

Gzy (12, 12) = ulz, 2).

If xg, ..., xop_o is a geodesic path in X, one has
(65) qAach 12(156()7 Tok— 2 = __Zw xhaxh+k
h=0
=
(6’6) and qilz 233% 1(19007 lxzk—s) = _5 Z (xh7xh+k)-
h=0

Proof. The existence and uniqueness of the liftings is a direct transla-
tion of Lemma 6.4. We postpone the proof of (6.5) and (6.6) until next
subsection. U
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6.3. The bias function v. Let still £ > 2 and (K, K~) be a k-dual
kernel. In order to prove formulae (6.5) and (6.6) as well as to study

liftings of the forms ¢/, and ¢2/~', j > k — 1, we will need to define

a last function associated to te k-dual kernel (K, K~). This definition
will rely on the

Lemma 6.11. Let x ~ y be neighbouring points in X and & in X be
such that y ¢ [x€). Pickn in 0X with x ¢ [yn). Then, the quantity

2%—2 2%k—3
K]: (5777) - ny (5777)
does not depend on 7.
Proof. Let g = y,x1 = x,x9,... be the geodesic ray [y§) and yy =

T, Y1 = Y,Ya, ... be the geodesic ray [xn). We will prove by induction
on /¢ that, for any g < /¢ <k —1, the quantity

B(g) = Kii_g (55 77) - Kgi:glxk_g_l (57 77)

— 2 20—1
- ka—z ($k7 y2e—k+l) - Kwk‘—ﬁxk—é—l (xk'—]J y2é—k+1)

does not depend on 7. For ¢ = k — 1, this is the desired result.
If £ is even and ¢ = g, we have

B(g) = Kxe (IL’k, y) - Kac_gmg_l(xk—la y)
If £k is odd and ¢ = %, we have
B(E) = K:;Zfl(‘rlﬁ y2) - K.Tgflafgfg (‘rk—lu y2)7

which is equal to

Kxeflfw(x’ﬁy)—i_ Z Kreqz(l’k—hy)_(d(l‘f—l) - 1)K;g,1 (Ik—hy)'

ZTe—1
2FTe_2,T0—2
Assume now the result is true for some % < /?¢ < k—2 and let us
prove that it holds for ¢/ 4+ 1. We have

B(l+1) = K22 (&) — KX (&),

Tl—0—1 Tl—f—1Tk—0—2
which we can write as

B(t+1)=K3*) .. (&)

Tk—t—1Tk—¢

+ Z Kgﬁi}_lz(&n) - (d(zk—ﬁ—l) - 1)K§£_g_1(57 77)

2T g1
2ATR T 02

. . . 2£
By putting (d(wg—¢—1) —2)-times the expression K7, (£,7n) under the
sum sign, we get

B(l+1) =KX (&) — KX, (&n)+S2t, (&)

Tr——1Tk—¢ Thk—0—1



ADDITIVE REPRESENTATIONS 67

(where S9™(€,n) has the same meaning as in Subsection 6.1). Hence
B(t+1) = B(0)+ S5, (&),
By Corollary 6.2, S%! ~ (£,7m) only depends on the points of (£n) which

Th—L—1

are at distance < k—1—/¢ of z_,_1. As all these points belong to [y¢),
the results follows. O

From Lemma 6.11, we can associate to the dual kernel (K, K ™) its
bias function v on X} which will play an important role in the sequel.

Definition 6.12. We define the bias function v of (K, K~) as follows.
If z,y are in X and d(z,y) = k, we set

(6.7) v(z,y) = KX 2y, 2) — K23y, 2),

where z_ and y_ are the neighbours of z and y on [zy] and z is any
point in X with d(z,z) = k—2 and [zz]N[zy] = {z}. By Lemma 6.11,
the function v does not depend on the choice of z. Note that, by the
relation K2F—1 = K2F=2 4 K2F=2 — 2k=3 we also have

(6.8) v(w,y) = K37y t) = K22 (y-, 1),

for any ¢ in X with d(¢t,z) =k — 1 and [tz] N [zy] = {z}.

FEzxample 6.13. The bias function v of the Busemann kernel is the con-
stant function with value 1 on Xs.

The function v is related to the functions v and w by a cohomological
equation:

Lemma 6.14. Let u be a (K, K~)-compatible function and w be the
associated weight function. Let (xp)nez be a parametrized geodesic line

of X. We have
u(wo, xp_1) + v(xg, xx) = u(wy, 1) + W(TQ, TR ).
Proof. By the definitions in (6.3) and (6.4), we have
w(xo, T) = u(To, Tp—1) + u(Tk, T1)
+ K;?f_2<x2—k7 Ik) - K§§;13<x2—k7 xk—l) - (U(.Tl, xk) + u(x]w xl))
By (6.7), we have
Kif‘Q(xz_k, Ti) — Ki(’f;?’(xz_k, Tp—1) = v(zo, Tp)

and we are done. O

Using these relations, we are no ready to give the
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End of the proof of Proposition 6.10. We need to prove (6.5) and (6.6).
Let (zp)nez be a parametrized geodesic line.

First, we prove (6.5). On one hand, we have, by elementary proper-
ties of quadratic forms,

24282 (Lag, Lay, o) = u(@p_1, o) + w(Tp_1, Ton—2) — Kot (0, Top—2).

On the other hand, by Lemma 6.14, we have

k—2 k—2
Zw $h7$h+k = U(IO, $k—1) - U(Ik—h Izk—Q) + U(ﬂﬁh, $h+k)
h=0 h=0
and, by (6.7),
k—2
v(Zh, Thik)
h=0
k—1
= K2 (@ng1-k Thih-1) — K22 (Thai—k, Thyn2)-
h=1

By (6.3), this gives

k2
Z 0(xh, Than) = Kor (w0, Top—2) — u(zo, Tp-1) — w(Th—1, o),
h=0

hence

k—2
Zw Thy Thik) Kx,]: 1 (anka 2) — u(Tp—1,%0) — U(Th_1, Top—2)
=0

that is, (6.5) holds.
In the same way, let us prove (6.6). Again, we have, on one hand,
by standard properties of quadratic forms,

2 T (11'07 11‘21@—3)

qu 2Tk —1

= u(@y_1, To) + (T2, Top—3) — Kov 2~ (@0, Top—3)

and, on the other hand, still by Lemma 6.14,

ko

-3

B

-3

W(xp, Thk) = w(xg, Tp—1) — U(Tp—2, Top—3) + v(zh, Thik)-
0

T

0

T
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By (6.7),
k-3
V(ZTh, Thak)
h=0
k—2
- Ka%;’fiQ(th*kv Thik-1) — Ki',fff’xh (Thi1-k Thik—2),
h=1

hence, by (6.3),

ol
w

V(Th, Thik) = Kifjxkfl(xo,@k—s) —u(zo, Tp—1) — u(Tp_1, 70),
0

T

and (6.6) follows. O

6.4. Lifting of the forms ¢2~' and ¢’. Recall that k > 2 and
(K, K~7) is a k-dual kernel. We let v be the bias function of (K, K~) as
in Definition 6.12. More generally, for any j > k, we let v; : X; — R

be the bias function of the j-dual kernel (K7, K771).

Proposition 6.15. Let k > 2, (K,K~) be a k-dual kernel, u be a
(K, K~)-compatible function and w be its weight function. Fiz j >
k—1.

Then there exists a unique family (G%)ex such that, for any x in X,
G¥ is a symmetric bilinear form on VI(x) with (qﬁj)‘voj(x) = ¢¥ and,

for any z in S7(z),

.

7 (1.,1.) = u(w, zx1) + ) onl, 2n),

h=k
where zp = x,21,...,2; = z 1s the geodesic path from x to z. In the
same way, there exists a unique family (dii_l)xex such that, for any

v~ yin X, @' is a symmetric bilinear form on VI~ (xy) with

(cjﬁi_l)wgil(w) = 27" and, for any z in ST (xy) NS (z),

J
7 (L L) = ulwz) + Y vale, ),
h=k

where, as above, zy = x, 21, ..., z; = 2 is the geodesic path from x to z.
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If xg, ..., 295 is a geodesic path in X, one has
=
(6.9) 07 (Lag; 1ay,) = 3 W(Thyjy1—ks Thijr1)
h=0
=
(610) an/d q/\g‘jjllxj (19307 13323',1) = _5 w($h+j+1_k, xh-ﬁ-]—}—l)
h=0

The proof of (6.9) and (6.10) relies on additional properties of the
bias function v.

Lemma 6.16. For any v ~ y in X and any z,t in S*(zy) with
y & [rz] and z ¢ [yt], we have

2k—1 2k—3 —

Ky (z,t) — K72 (2o, ) = v(x,t) +0(y, 2),
where z_ and t_ are the neighbours of z and t on [zt].
Proof. By (6.7), we have

v(w,t) = K*7% (2 t) — K222t
and u(y, 2) = K*2(2,1 ) — K*3(:_1).
The result now follows from the relation

2k—1 _ po2k—2 2k—2 2k—3
Ko7 (2,t) = K75 (2, ) + K7 (2, t) — K2 (2, ).

Lemma 6.17. For any x in X and any z,t in S*(x) with x € [zt], we
have

K*(2,t) = K*72(2_t_) = v(z, 2) + v(z, 1),
where z_ and t_ are the neighbours of z and t on [zt].

Proof. Let z; and t; be the neighbours of = on [zz] and [zt]. By (6.8),
we have

v(z,2) = Ko7 (2, 00) — K272 (e 1)

t
rz1
and v(z,t) = K** 12 t) — K2**72(2_,t_).

xty

Now we have
K2*(z,t) — K2*72(2_,t_)
=v(z,2) +v(z,t) + Z K% Yo t) — K*2(2_ 1))

y~x
y#£21,t1

= v(x, 2) + vz, t) + Sz, 1),
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where by S¥~11(z t) we mean the same as S¥b1(£, ) for some &,
in 0X with [zz] C [2§) and [2t] C [zn) (see Subsection 6.1 for the
definition of S“™(&,n)). By Corollary 6.2, we have S¥=11(2,¢) = 0 and
we are done. O

Proof of Proposition 6.15. Again, existence of the liftings is a direct
consequence of Lemma 6.4.

We will now prove formulae (6.9) and (6.10). If j = £ — 1, they hold
by Proposition 6.10. We can therefore assume that j > k.

We start by proving (6.9). We claim that, for any = in X and z,t
in S/(x) with x € [z,t], if z_ and ¢_ are the neighbours of z and ¢ in
Si71(z), we have

(6.11) 7 (1,,1,) =¢7 %1, ,1; ).
This implies (6.9) by induction on j. By definition, one has
dg%j(lm 12) = (ﬁj—2(1277 1z7> + Uj(ZL’, Z)
07 (1,1,) = ¢77(Le_, 10 ) + (a0, t),

hence, by elementary properties of quadratic forms,

27 (12, 14) — 247 *(1., 1)
=v;(z,2) + vj(z,t) — KZ(z,t) + KX 7?(2_,t_).
By Lemma 6.17, applied to the j-dual kernel (K7, K/~1), the latter is
zero and (6.11) follows.
In the same way, let us prove (6.10). For any x ~ y in X and z,t

in S~ (xy) with 2 € S77!(z) and t € S77(y), we now claim that we
have

(6.12) G 1, 1) = ¢ 3 (1, ,1,).

ay
Again this implies (6.10) by induction on j. By definition, one has
G (1, 1) = 771, 1.) +u(y, 2)
G0 (1, 14) = ¢ (1o, 1) +vy(a, 1),
hence, by elementary properties of quadratic forms,
242071 (1,,1,) — 242 7°(1., 1)
= vj(, 2) +vj(w,t) — K3y~ (2,) + K575 (2, 1),

By Lemma 6.16, applied to the j-dual kernel (K7, K/~1), the latter is
zero and (6.12) follows. O
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6.5. The second geodesic backtracking. Our goal now is to obtain
a formula for ¢¥(1.,1;), even when z is not on [z, ¢]. This will require
to prove additional cancellation properties of certain sums defined by
using dual kernels.

Let still £ > 2 and (K, K~) be a k-dual kernel. Let x ~ y be in X
and £,m be in 0X. For ¢ € Z and m > 0 with 2¢ +m > k, we define
TEm™(€,n) as follows.

If m is even, m = 2n, n > 0, we set

ToMEm) = Y KX n) - KX )

zeS" T (y)
z€[yz]

(where for z in S"™!(y), z_ is the neighbour of z on [yz]).
If misodd, m=2n—1,n > 1, we set

TrEm = Y KXIM(Em) - K2XNE ).

zeS" T (y)
x€lyz]

By backtracking from y, we get

Lemma 6.18. For &,n in 0X, x ~y in X, £ € Z and m > 0 with
20+m > k+ 1, we have

To(&,m) = To V" (E ).
Proof. The proof is the same as the one of Lemma 6.1. 0

From this we deduce a property of invariance of certain values of
(K, K~) by backtracking.

Lemma 6.19. Let x be in X and & # n be in 0X with x ¢ ({n). We
set i =d(x,(&n)) = we(§,m) > 1. Let z be the element of ({n) that is
closest to x and y be the neighbour of x on [xz] (see Figure 4). Then
we have

K2URZ2 (¢ oy = K2R =3¢ ) = K2F2(&,n).

Proof. Tt suffices to show that we have
K072 (E,m) = Kot 73 (6 m) = G4 En).
Now, by the recursive definition of kernels,
G (NNES ()R Sl ()
= K, (- YEm) + T2 m) + T =21 (&)
By Lemma 6.18, we have
Toy e 720(&m) = T, 272 (g m) and Tyt 21(€, ) = T, =2+ (&,m).
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F1GURE 4. The points in Lemma 6.19

If kis even, k = 2¢, £ > 1, we have
T e = S Kieom) - Ki (&)

teSH(y)
z€[yt]

and, for any ¢ in S™(y) with z € [yt], we have w,(§,n) = 2i + £ —1 >

¢+ 1, hence
Kt(gan) - Kt__t(éan) = 0
If kisodd, k =20+ 1, £ > 1, we have

Téf’wfk %( Z Ky (&m) — K (&n)
teSit(y)
z€lyt]
and, for any ¢ in S™(y) with = € [yt], we have wy(£,n) = 2i +0—1 >
¢+ 1, hence
Ky (&n) =K (§,n) =0.

In both cases, we get T."9(¢, 1) = 0 and a fortiori T " >1(£,n) =
0 and the result follows. O

6.6. The additive formula. We will show that for large enough 7,
G%(1,,1,) is given by the same formula as in Proposition 2.22.

Proposition 6.20. Let still k > 2 and (K, K~) be a k-dual kernel.
We chose a (K, K~)-compatible function on Xy_1 and we let w denote
the associated weight function. For x in X and & # n in 0X, let

20 = T, 21, ... be the geodesic ray [x€) and ty = x,t1, ... be the geodesic

ray [zn). Seti = w,(&,n). Then, for every j > i+ k — 1, we have
= k—1

7(1,,,1,) = 3 Z(w(zh, Zhgk) +w(th, thik)) — 3 Z W(Zith, titk—h)-

h=0 h=1



74 JEAN-FRANCOIS QUINT

If i > 1, we have 2271 (1,,, 1)) = ¢ (1., 14,).

Tzl
To compute ¢%(1,,1,), we will need
Lemma 6.21. Let (z4)nez be a parametrized geodesic line. For any
7 >k, we have
vj+1(20, Tj1) = 0j (@1, Tj41).
Proof. By (6.7), we have

v (o, Tj1) = K2 (w14, wj41) — K22 (@15, 25),

whereas, by (6.8),
Vi, @jn) = KGI2) (w2, w00) — K317 (20—, 7).
We get, by the recursive definition of kernels,
i1 (20, Tj41) — vi(2n, wi41) = S0HE M),
where £ and 7 are the endpoints of (zj)sez and SI71(€,n) is as in

Subsection 6.1. As j—1 > k—1, by Corollary 6.2, we have S7 11 (€,n) =
0 and the result follows. O

Corollary 6.22. Let (xp)nez be a parametrized geodesic line. For any
1>0andj>1i+k—1, we have
i—1

qAQQSg(li7 ]-xj) = Z w(l’h, xh+k> + q}%fjiz)<1m], ]_x])
h=0

Proof. By the the definition in Proposition 6.15, we have

J
Cﬁg(lww 1:vj) = U(xoa xk—1) + th(xo,xh).

h=k
By Lemma 6.21, this may be written as
j—k
qig}(lmﬂlm]) = u(x[))xk—l) + U(l‘haxh—l—k)'
h=0
We get
qig(1$]7 1$])
i—1
= u(T0, Tp—1) + Z v(xh, Tpyk) — w(x;, Tipg—1) + Cfif]_z)(lxj, 1,,)
h=0

and the result follows from Lemma 6.14. O
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Proof of Proposition 6.20. Again by elementary properties of quadratic
forms, we have

QQEJ(:[ZJ) 1tj) = inj(]-Z]a 1ZJ) + (’jij(]-tj’ 1tj) - Kij(z_b tj)

By Lemma 6.19, applied to the (j — 4 + 1)-dual kernel (K7~ Ki=%),
we have

K7 (zj,1;) = K2U70(z,1))
(note that z; = t;). By Corollary 6.22, we get

i—1 i—1

Qqu%j(lzj, ]‘tj) = 2di(j_i)(1zj7 1tj> + Z w<Zh7 Zh—f—k) + Z w(thv th-l-k)‘
h=0 h=0

Now, by Proposition 6.15, we have

kol

-1

Qﬁi(j_i)(lzja 1) =— W(Zign, Litk—n)
1

>
Il

and the formula for ¢2/(1.,,1,) follows.
If © > 1, we have z; = t; and, by the definition in Proposition 6.15,

~27—1 227
qszl <1Zj7 ]‘Zj) - qx](]-zj7 ]-Zj)
and qAZ]_l(]‘tj’ ]‘tj> = in]<1tj7 1tj)7

T2z1

as well as, by Lemma 6.19, applied to the (j — i + 1)-dual kernel
(Kj*i‘i’l’ Kjfi)’

K2z, t5) = K2 (25, t5).

Tzl

We get q2j_1(12j7 1tj) = inj(lzj7 ]-tj)' |:|

T21

7. DUAL KERNELS AND ADDITIVE KERNELS

In this section, we use Proposition 6.20 to draw a link between the
language of Section 3 and the language of dual kernels. We will prove
that, given a [-invariant non-negative dual kernel (K, K~), the asso-
ciated space of distributions L¥X" always contains the space HY and
that the symmetric bilinear form ¢%~ when restricted to HY, is equal
to @, where w is a I'-invariant weight function of (K, K~). Conversely,
we will prove that, if for a given symmetric I'-invariant function w on
Xk, k > 2, the bilinear form ®,, is non-negative on H{, then there
exists a [-invariant non-negative k-dual kernel (K, K~) which admits
w as a weight function.
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7.1. A dense subspace of H{. First, we will need to gather addi-
tional information on the Hilbert space Hy from Section 3. Recall that,
if v is a Borel probability measure 0.X, we write 91> (v) for the space
of signed Borel measures on 0.X which are absolutely continuous with
respect to v with a bounded density. The purpose of this Subsection is
to construct a Borel probability measure v such that 91> (v) is a dense
subspace of H“. We start with a general criterion for density.

Proposition 7.1. Let x be in X and v be a fully supported Borel
probability measure on 0X. Assume that one has

1

sup ——— v(U,.)? < o0,
vex V(Usy)? ZGZX
y#w yE€xz]

then v is atom-free, w is v-integrable and IM>(v) is dense in H.

Remark 7.2. For x # y in X, the quantity W S sex v(Ugz)? may
i y€lxz]
be seen as a local version of the norm of H%.

Proof. The proof relies on a straightforward construction of approxi-
mations of the elements of H¥ by elements of 9> (v). We will use
again the language of Subsection 3.1.

Let, for any y # x in X, y_ be the neighbour of y on [z, y]. First note
that, since by definition one has P,T'(y_,y) = v(U,,), the assumption
implies that the function P,v belongs to £2(X;) hence, by Proposition
3.6, that w is v-integrable. In particular, by the same result, we have
me(v) C H.

Now, if T"is a distribution, for any ¢ > 1, we define a smooth function
on 0X by setting, for any £ in 90X,

T <T7 1Ua:y>
Pr (5) V(ny) )
where y is the unique element of S*(z) with y € [z£). This makes
sense since v(U,,) # 0 as v has full support. We define m,(7") as the
distribution ¢! v which belongs to M>(v).

We now use again the notation of Section 3.1. If T" belongs to H¥, we
claim that the assumption implies that m,(7) . T in H¥. Indeed,

by construction, for any y # x with d(x,y) < ¢, we have (7,(T), 1y,,) =
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(T',1y,,), hence

1Pe(me(T) = T)llz =2 Y (m(T) =T\ 10,,)"

yeX
d(z,y)>¢
<4 > ((m(T), 10, + (T, 10,,)°)
yeX
d(z,y) >0

Now, on one hand, as T" belongs to H“, one has

> (T 1y,,)? —0.
yEX —00
d(z,y)>¢

On the other hand, we have

w10, = D D (m(T),1p,.)°

d(z,y)>t yeX zeX
d(z,y)=L y€[z2]

<T7 1U‘Ly>2 2

= g — g v(Uy.)”.
yeX V(U”Cy) 2€X
d(z,y)=~ y€[xz]

By assumption, the latter goes to 0 as ¢ — oo and we are done. U

Corollary 7.3. There exists a fully supported atom-free Borel proba-
bility measure v on 0X such that w is v-integrable and IM>(v) is dense
in HY.

Recall that, for z in X, d(z) > 3 is the number of neighbours of z.

Proof. For example, one can fix x in X and define the associate prob-
ability measure v, as the unique Borel probability measure such that,
for any y # x in X, if xg = x,x1,...,2, = y is the geodesic path from
x to y, one has

1 1 1
dz)d(z1) —1  d(zeq)—1
Let us check that the criterion in Proposition 7.1 holds. By construc-

tion, for any y # x, and z ~ y with z ¢ [zy], we have v,(U,,) =
——+—1,(Uy,), hence
d(y)—1 Y

Vm(Um ) =

1 1
2 = —— 2 < - 2.
ZENy Ve (Uyy) ) = 1yx(ny) < 2Vx(ny)

2¢[zy]
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By induction, we get, for £ >0, 3~ cge(,) Ve(Us2)? < 572 (Uyy)?, hence
yElzz]
Y sex v(Uy.)? < 2v(Uyy)? and the result follows by Proposition 7.1.
yElzz]
O

We can use the existence of v to get a proof that the bilinear form
®,, from Subsection 3.2 determines w up to cohomology.

Corollary 7.4. Let w be a I'-invariant symmetric function on Xj.
Assume that ®,, s zero on Hy. Then the normalized smooth function
on I'\.& associated to w is cohomologuous to 0.

The proof uses an elementary fact from measure theory.

Lemma 7.5. Let (X,v) be a probability space and € be a symmetric
function in LY (X x X,v®v). The following are equivalent.
(i) For every p in L>°(X,v) with [, pdv =0, we have

/X . Qz,y)p(z)p(y)dv(z)dv(y) = 0.

(ii) There exists a function F in LY(X,v) such that for v ® v-almost
every (x,y) in X x X, one has Q(z,y) = F(z) + F(y).
The function F' is then uniquely determined by ).

Proof of Corollary 7.4. Let € be an additive kernel associated to w
and, as in Corollary 7.3, let v be a fully supported atom-free Borel
probability measure on 0.X such that w is v-integrable.

Fix z in X. By Proposition 3.10, we have

/ax e mdp(©)dnln) =0

for every p in M (v). By Lemma 7.5, there exists a function F, in
L'(0X,v) such that, for v ® v-almost every (£,n) in X x X, one
has Q.(&,nm) = F.(§) + F.(n). As for every n in 0X, the function
€ — Q.(&,n) is smooth on 0X \ {n}, the function F, is smooth. As F,
is uniquely determined by €2, the function (z,&) — F,(§) on X x 0X
is [-invariant. For every x,y in X and £ # 7 in 0.X, we have

Q.(&m) — Q(&n) = (F(&) — F,(§)) + (Fu(n) — Fy,(n)),

that is, 2 is an additive kernel associated to the trivial cohomology
class. The conclusion follows by Lemma 2.19. U
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7.2. From dual kernels to additive kernels. Now, we will show
how one can use Proposition 6.20 in order to associate an additive
kernel to a dual kernel.

Theorem 7.6. Let k > 2, (K, K~) be a non-negative I'-invariant k-
dual kernel, w a T'-invariant (K, K~)-compatible function on Xy_1 and
w its weight function. Then the symmetric bilinear form ®.,, is non-
negative on HY. More precisely, one has HY C L¥% and the restric-
tion of ¢™* to HE is equal to @,,.

See Subsections 3.2 and 3.3 for the definition and properties of ®,,.
See Proposition 5.18 for the definition of the spaces L%~ and HXX~
and the bilinear form ¢'%" associated to the dual kernel (K, K~). See
Definitions 6.5 and 6.7 for the notion of a (K, K~ )-compatible function
and its weight function.

Knowing Theorem 7.6, we can prove that the Hilbert space associ-
ated to (K, K ™) is large:

Corollary 7.7. Let k > 2 and (K, K~) be a I'-invariant non-negative
k-dual kernel. Then, for every £ > g and any x i X, the linear map

N maps HESE onto Vi (x)/ ker ¢%.

If V is a vector space and ® is a non-negative symmetric bilinear
form on V', a linear functional ¢ on V is said to be bounded with
respect to @ if one cand find C' > 0 with p(z)? < C®(z,z) for any z
in V. In other words, one has ker ® C ker ¢ and ¢ is bounded with
respect to the Euclidean structure associated to ® on V/ker ®.

Corollary 7.8. Let k > 2, (K, K~) be a Euclidean I'-invariant k-dual
kernel, u a I'-invariant (K, K~)-compatible function on Xy_1 and w
its weight function. Then, for every o in D(0X), the associated linear
functional on Hy is bounded with respect to ®,,.

For non necessarily non-negative dual kernels we also get
Corollary 7.9. Let k > 2, (K, K™) be a I'-invariant k-dual kernel, u

a I-invariant (K, K~)-compatible function on Xy_1 and w its weight
function. Then, for every 0 in H§, one has

¢z (NJ"0, N}"0) —— ®,,(0,0).
j—o0

We now start the proof of Theorem 7.6 and its Corollaries. We will
also estalish weaker versions of these results for non necessary non-
negative dual kernels. This will be possible thanks to the easy

Lemma 7.10. Let k > 2. Any I'-invariant k-dual kernel may be writ-
ten as the difference of two non-negative I'-invariant k-dual kernels.
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Proof. Indeed, in the finite-dimensional space of all [-invariant k-dual
kernels, the set of non-negative ones is a convex cone with non-empty
interior by Proposition 5.14. U

To dominate certain error terms, we shall use

Lemma 7.11. Let k > 2, (K,K™) be a I'-invariant k-dual kernel, u
a I-invariant (K, K~)-compatible function on Xy_1 and w its weight
function. Then, there exits C > 0 such that, for any j > k — 1, x in
X, z,t in S(z), one has

Q@ (1.,1,)| < C(1+i+3j),

where i = |[xz] N [xt]| and ¢¥ is the symmetric bilinear form on VI (z)
associated to the choices of (K, K~) and u as in Subsection 6.4.

Proof. Thanks to Lemma 7.10, we may and will assume that (K, K ™)
is non-negative.

Note that, as I'\X is finite, the functions u and w are bounded.
In particular, by Proposition 6.20, there exists C; > 0 such that, if
j>k—12in X, z,tin S?(z), are such that |[zz] N [xt]| < j+1—k,
one has

G’ (1., 1)] < Co(1 + ).
In the same way, by applying Corollary 6.22 to + = 57 + 1 — k, there
exists Cy > 0 such that, for any j >k — 1, z in X, z in S7(z), one has

G2 (1.,1)] < Ci(1+ ).
Now, let j >k —1, z in X, z,t in S’(x), be such that
i=|lzz]N[at]| > j+1—k
Weset { =14+ k—12> 7. We have
2477 (12, 14) = G (12, 12) + G57 (14, 14) — K77 (2,1)

and it only remains to get a bound for K%(z,t). But, as the kernel
(K, K7) is non-negative, by Proposition 5.16, we have

0< K2(z2,t) < K*(z,t).

Now, again,

K (z,t) = ¢2°(1., 1) + @201, 1) — 243 (1., 1),
hence

K?(2,1) <2(Cy + Cy)(1 +£) = 2(Cy + Cy) (k + 1)

and

@2 (1.,1,)| < Ci(1+j) + (Cy + Co)(k + i),
which should be proved. O
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Now, we will use the formulae in Propositions 3.10 and 6.20 to prove
that ¢"% is equal to ®,, on certain spaces:

Lemma 7.12. Let k > 2, (K,K™) be a I'-invariant k-dual kernel, u
a T-invariant (K, K~)-compatible function on Xy_1 and w its weight
function. We also let v be a Borel probability measure on X such that
w is v-integrable. Then, for every p in MF(v), one has

g2 (N?*p, N2 p) —= Pulp.p).

See Subsection 3.1 for the definition of the space MF (v).

Proof. The proof is a direct consequence of the fact that the formulae
appearing in Proposition 2.22 and Proposition 6.20 are the same.
More precisely, let us fix  in X. For any p in 9 (v), we have, for

(71) (NP NFp) = D (1 10)p(Us)p(Use),
z,t€S7 (z)

where, as above, U,, C 0X is the set of £ in 0X with z € [z€) and, as
in Subsection 5.4, N7* is the linear operator that sends a distribution
T on 90X to the function z — (T, 1y;,.) on S7(x). We define a smooth
function on 0X x X by setting

(72) Y& = Y @111, (n), &neEdX.
z,t€59 ()

We let 2 be as in Proposition 2.22; so that, by Proposition 3.10, for
any p in 9MG°(v), one has

Bulpr) = [ Qu(ndp(©aot)

Then, we claim that we have

(7.3) Q) ——Q, in LY(0X x 0X,v @),
j—o0
which, by (7.1), implies the Lemma.
Indeed, we split the sum in the right hand-side of (7.2) depending
wether |[zz] N [xt]| < j+1—Fkor |[zz] N [xt]| > j+ 2 — k and we get,
by Proposition 6.20, for ({,7) in 0X,

(74) Qg:(ga 77) = Qx(f? n)lwx(faﬁ)ﬁj-i-l—k
+ ) @)1 (O, ()

z,teS7 (x)
o)) [25+2—F
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Let us prove that the terms with |[zz] N [zt]| > j + 2 — k in the right
hand-side of (7.4) will play a negligible role. Let C' be as in Lemma
7.11, so that, for any z,¢ in S7(x) with i = |[zz] N [zt]] > j+2 — k, we
have

¥ (1.,1,)] < CQ2i+k—1).
We get

/ 13 (&, )| dw(€)du(n)
we (€,n)>j+2—k

<C 2wz (€, 1) + k= 1] dv(£)dw(n),

wz(§m)2j+2—k

hence, by the Dominated Convergence Theorem, as w is v-integrable,

s e o

Jj—00

In the same way, by Lemma 2.20, 2, is v ® v-integrable and

(7.6) / 12 (6.m)| dv(€)du(n) — 0.
wz(Em)>j+2—k

J—00

Now (7.3) follows from (7.4), (7.5) and (7.6). O

Proof of Theorem 7.6. We will get the result from Lemma 7.12 by an
approximation argument. To this aim, we chose an atom-free Borel
probability measure v on 0X such that w is v-integrable and 9> (v)
is dense in H“: such a measure exists by Corollary 7.3.

Fix x in X and let us note that, for any ¢ > 1, the linear operator
N%* is bounded on H“. Indeed, for any y in S¢(x) and T in D*(0X),
we have NY*T'(y) = P,T(y_,y) where y_ is the neighbour of y on [zy]
and P, is as in Subsection 3.1. In particular, for ¢ > g, the bilinear
form (N5*)*¢% is bounded on H.

Fix p in Hy. By assumption, there exists a sequence (p,) in 9> (v)
which converges to p in Hy. By Lemma 7.12, for ¢ > % and any n, we
have

qie(Nf*pm Nf*pn) < @y (pn, pn),
hence, as (N5*)*¢% is bounded on HY, by going to the limit, we get

@ (N p, Ny p) < @ulp, p).

As a consequence we have HY C LXE™ and, as ¢/%" is non-negative,
it is a bounded bilinear symmetric form on Hy. Now, as again by
Lemma 7.12, we have ¢% (p, p) = ®,(p, p) for any p in M>(v), we
also have ¢ (0,0) = ®,(0,0) for any 0 in HY. O
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Proof of Corollary 7.7. Again, we use Corollary 7.3 to chose a fully
suported atom-free Borel probability measure v on 0.X such that w is
v-integrable. By Lemma 7.12, we have 9°(v) € HSX ™. Now, as v
has full support, for any ¢ > 0, the linear operator N* maps H%%"~
onto Vif(z). The result follows. O

Proof of Corollary 7.8. Let ¢ be in D(0X). We have to show that the
linear functional 6 — (6, ) is bounded on H{§ with respect to the
positive symmetric bilinear form ®,,. By Theorem 7.6, it suffices to
show that it is bounded on H® X", Indeed, fix z in X. By Lemma
4.15, we have ¢ € NV¥(z) for some ¢ > £ As the the dual kernel
(K, K) is Euclidean, for any ¢ > g, the form ¢ is positive definite on
Vi(x), hence there exists C' > 0 such that, for any T in Dy(0X), one has
(T, p)? < C@*(NL*T, N.*T). The conclusion follows since, for T in
HSE™ one has ¢¥(N.*T, No*T) < ¢"K (T, T) by construction. [

Proof of Corollary 7.9. This is a direct consequenceof Theorem 7.6 and
Lemma 7.10. U

7.3. The image dual kernel. We will now aim at proving a converse
statement to Theorem 7.6. To do this, given a I'-invariant function w
on Xy, with ®,, non-negative, we need to prove that ®,, may be built
by use of a dual kernel. In this subsection, we will define our candidate
for being this dual kernel. This dual kernel will be constructed by
taking Euclidean images of ®,, (see Appendix A for the definition of
the Euclidean image of a non-negative bilinear form under a surjective
linear map).

Let us do this precisely. We need some more notation. Recall that,
for any ¢ > 0, for any z in X, we have a natural linear operator
Nt Vi) — D(0X). In the same way, for x ~ y, and any ¢ > 0,
we define Nf, : V¥(xy) — D(0X) as the linear operator such that for
any z in S%(zy) N S (x), Nf,(1.) = 1y,.. One also let N, denote

the induced operator Vz(xy) — D(0X). One has the compatibility
relations

(7.7) NS, = N{,and Ni J., =Ni, (>0, z~y€EX.

Ty Ty

We denote the adjoint operators of N and ny in the usual way.

Lemma 7.13. For { > 1 and x in X, we have No*(HE) = Vi{(x). For
(>0 and x ~y in X, we have NG (Hy) = Vi (xy).

Proof. As in Corollary 7.3, let v be a fully-supported Borel probability
measure on X with MM (v) C HY. For £ > 1, z in X and f in V{(x),
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we set ¢ to be the smooth function on dX defined by

o= Y )i,

yeSt(z) v(Usy)

By construction, the distribution p = ¢v belongs to HY and N%*(p) =
f. The proof in the odd case is analoguous. U

Let £ > 2 and w be a symmetric [-invariant function on Xj. Assume
that ®,, is non-negative on Hy. In this case, thanks to Lemma 7.13,
we can associate to w a family of dual prekernels as follows. Let j be
an integer, j > 1.

If j is even, j = 2, £ > 1, for any z in X, set ¢/ = (N%*),®,, and
define K7 as the associated function on S*(z)? as in Lemma 5.1.

If jisodd j =20+1,¢ >0, for any x ~ y in X, set qu = (Nf;,*)ﬂ)w
and define K7, as the associated function on S*(zy)? as in Lemma 5.1.

Then the relations (7.7) together with Lemma A.4 imply that, for
any j > 2, (K7, K’71) is an exact j-dual kernel.

Definition 7.14. Let k£ and w be as above. For any j > 1 the j-dual
kernel K7 is called the image j-dual prekernel of w and, if j > 2, the
j-dual kernel (K7, K771) is called the image j-dual kernel of w.

We can relate these kernels to the formalism developed in Section 5.

Lemma 7.15. Let k > 2 and w be a symmetric I'-invariant function
on Xy. Assume that ®,, is non-negative on HY. Let K7, j > 1 be as
above. Then, for any j > k + 1, the j-dual kernel (K7, K'71) is the
orthogonal extension of the (j — 1)-dual kernel (K7~ K772).

The proof of Lemma 7.15 will rely on the following abstract charac-
terization of orthogonal extensions:

Lemma 7.16. Let X be a finite-dimensional real vector space, d >
2 be an integer and Xi,..., Xy be subspaces of X. We assume that
there exists a subspace Xog of X such that, for any 1 < i # 7 < d,
XiNX; =X and X/ Xo = @, Xi/Xo. Let po,p1,-..,pa be positive
definite symmetric bilinear forms on X, X1, ..., Xq such that, for any
1 <@ <d, pix, =po- Forl <i<d, let W; C X* be the orthogonal
subspace of Z#i X, that is, the kernel of the natural surjective map
Xr— (Z#i X;)*. Let q be a positive definite symmetric bilinear form
on X such that p)x, = p;, 1 <1 < d. Then q is the orthogonal extension
of p1,...,pa if and only if, for any 1 < i # 57 < d, the spaces W; and
W; are orthogonal with respect to the dual form of q.
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Proof. Let p be the orthogonal extension of py,...,ps and, for 1 < i <
d, let Y; be the orthogonal complement of X, in X; with respect to
pi- We set Yy = Xy. By definition, we have X = @,_,.,Y; and this
decomposition is orthogonal with respect to p. Let W be the dual space
of X and T': X — W be the linear isomorphism associated to p (that
is, for any z,y in X, we have p(z,y) = (Tz,y)). The dual form p*
of p is given by p* = (T~1)*p. Let W, be the orthogonal complement
of @,.,.,W; with respect to p*. We have W = P,_,.,W; and, by
construction, this decomposition is the image of the one of X by T,
that is, TY; = W;, 0 <1 < d. In particular, the W;, 0 < i < d, are
p*-orthogonal to each other.

Let A : X — X be the endomorphism such that, for any x,y in
X, q(z,y) = p(Azx,y). To conclude, we need to prove that A is the
identity map. One easily shows that the dual form ¢* of ¢ satisfies
q*(v,w) = p*(Bv,w), v,w in W, where B =TA'T~. Fix1<i<d.
Saying that W is ¢*-orthogonal to all the W, j # ¢, amounts to saying
that we have BW; C W; & W,. Pulling back this property by T', we
get Y; C AX,;. Now, we will use the other assumption on ¢, namely
that its restriction to X; is p;. Indeed, fix y; in Y;. We have just
seen that we can write y; = Ax; for some z; in X;. For any z; in
Xi, we have p(yi, zi) = p(Azi, zi) = q(xi,21) = p(xi, 2;), hence as p;
is non-degenerate, x; = y;. Thus, we get Ay; = y; for any y; in Y;.
As A is p-symmetric and Xy = Y is the p-orthogonal complement of
D,<icyYi, we get AXy C X,. Since the restriction of ¢ to Xj is equal
to the restriction of p, A is the identity map and g = p as required. [

Now, we will split the proof of Lemma 7.15 into several cases. First
we will assume that ®,, is coercive, that is, it is positive definite and
defines the topology of HY. Note that, as D(0X) may be seen as a
(dense) subspace of the topological dual space of Hf, the restriction
of the dual bilinear form of ®, to D(0X) defines a positive definite
symmetric bilinear form on D(0X). We denote it by p.

We will now use again the language of Section 4 and study the qua-
dratic fields obtained by pulling back p to our usual finite-dimensional
spaces of functions. Let 7 > 1.

If j is even, j = 2¢, £ > 1, for any x in X, set p/. = (N%)*p.

If jis odd j = 20+ 1, £ > 0, for any z ~ y in X, set pl, = (N.,)*p.

Then the relations (7.7) imply that p’ is a j-quadratic field. As p
is positive definite, this field is Euclidean. The field p’ and the dual
prekernel K7 are in duality as in Subsection 5.1.
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Proof of Lemma 7.15 in case ®,, is coercive and j is odd. We set j =
20+1,¢> 1. Let us fix x ~ y in X and consider the positive symmetric
bilinear form pJ, on Vz(a:y) Its dual form on V{(xy) is ¢,. In order
to apply Lemma 7.16, we need to show that the spaces W, = ker Jﬁ;
and W, = ker Jf,;j are orthogonal with respect to qiy. Note that we
have W, & W, = ker M '*. Also note that, on Dj(dX), we have
M,V NLe = NE 5% and that the space ker NI '* may be written as
the direct sum of the spaces D, and D, of distributions defined by

D, ={T € Do(0X)|NL,"*T =0 and 1y, T = 0}
Dy ={T € Dy(0X)|N.,"*T = 0 and 1y, T = 0}.

Clearly, the map Nf’y* sends D, onto W, and D, onto W,,.

Consider the closed subspace L = Hg N ker ny_ L*in HY. We set
L,=LND,and L, = LN D, and we have again a decomposition
L = L,® Ly, which is now a decomposition of L as a direct sum of two
orthogonal subspaces in Hg. Here comes the crucial phenomenon in
the proof: we claim that this decomposition is still orthogonal for the
bilinear form ®,,. Indeed, let p, be in L, and p, be in L,. We must
prove that @, (ps, py) = 0. By the definition of ®,, in Subsection 3.2,
we have

T8 Pulpep) =5 3 wlah)Ppu(a,a)Poy(bib),

(a,b)EXk

where, as usual, for a # b in X, a; is the neighbour of a on [ab] and b,
the one of b.

We claim that for any (a, b) in X}, we have Pp,(a, ar)Ppy(b1,b) = 0.
Indeed, by construction, for any s ~ ¢ in X, if Pp,(s,t) # 0, then
d(s,x) and d(t,x) are > ¢ — 1 and y is not in [zs]| nor in [zt]. In the
same way, if Pp,(s,t) # 0, then d(s,y) and d(t,y) are > ¢ — 1 and x
is not in [ys] nor in [yt]. Therefore, for a # b in X and a4, b; as above,
if Pp.(a,ar1)Ppy(b1,b) # 0, we must have d(a,z) > ¢ and d(b,y) > ¢
and [zy|] C |ab], hence d(a,b) > 20 +1 = j > k. By (7.8), we get
Dy (pa, py) = 0. A

By Lemma A.7, this implies that the spaces W, and W, are ¢, -
orthogonal. By Lemma 7.16, p}, is the orthogonal extension of pJ~"
and p)~". O

The proof in the even case follows the same lines.
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Proof of Lemma 7.15 in case ®,, is coercive and j is even. In this ca-
se, weset j = 20, ¢ > 2. We fix x in X and we consider the positive sym-

metric bilinear form p’, on Vz(x), with its dual form ¢/ on V{{(x). We
set, for any y ~ z, W, = ﬂ;;:; ker I;7'*. We get ker M~ =, W,

and we need to show that this decomposition is ¢Z-orthogonal. Again,
there is a related decomposition of D§(0X): we may write ker Nf
as the direct sum of the spaces D,, y ~ x which are defined as

D, ={T € Dy(OX)|IN; T =0and Vz ~ 2,2 £y 1p,.T = 0}.

The map N%* sends D, onto W,.

In HY, we define the closed subspaces L = H$ Nker N:~%* and, for
y ~x, L, = LN Dy, so that we have the orthogonal decomposition
L = @yw L,. Again, this decomposition is still orthogonal for the
bilinear form ®,,. Indeed, if y and z are two different neighbours of x
and p, and p, are in L, and L,, we have, as in (7.8),

(19 Bulppp) =5 O wlab)Ppyla,a)Po-(bn,b).

(avb)eXk

Again, we claim that Pp,(a,a1)Pp.(b1,b) = 0 for any (a,b) in Xj.
Indeed, in this case, for any s ~ ¢ in X, if Pp,(s,t) # 0, then d(s,x)
and d(t,z) are > £ —1 and y is in [xs] and in [zt]; if Pp.(s,t) # 0, then
d(s,z) and d(t,x) are > ¢ — 1 and z is in [zs] and in [zt]. Therefore,
for a # b in X, if Ppy(a,a1)Pp.(b1,b) # 0, we must have d(a,z) > ¢
and d(b,z) > ¢ and z € [ab], hence d(a,b) > 2( = j > k. By (7.9), we
get @, (py, p.) = 0. The conclusion follows as in the odd case. O

Proof of Lemma 7.15 in the general case. We will use the approxima-
tion result from Proposition A.8 in the appendix to be brought back
to the coercive case. Let us be more precise.

By definition, the scalar product of H is the bilinear form associated
to the constant function with value 2 on X;. By Lemma 3.14, it is also
the bilinear form associated to the constant function with value 2 on
Xj. Therefore, as ®,, is non-negative, for any € > 0, the bilinear form
®,,. associated to w. = w + ¢ is coercive. Let, for any ¢ > 0 and j > 1,
K7 be the image j-dual prekernel of w.. Then, by Proposition A.8, for
any j > 1, we have

K/ — K’
e—0
(where the convergence takes place in the finite-dimensional vector
space KC; of I'-invariant j-dual prekernels). Fix j > k+1. For ¢ > 0, as
we is Euclidean, (K7, KZ71) is the orthogonal extension of the (j — 1)-
dual kernel (K77!', K772). As the relations defining the orthogonal
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extension are linear, they are continuous, hence (K7, K7~') is the or-
thogonal extension of the (j — 1)-dual kernel (K7~! K772). O

7.4. From additive kernels to dual kernels. We are now ready to
prove that w may be recovered from its image k-dual kernel.

Theorem 7.17. Let k > 2 and w be a symmetric I'-invariant function
on Xy. Assume that O, is non-negative on H§ and let (K, K~) be its
image k-dual kernel. Then, there exists a T'-invariant (K, K~ )-compat-
wble function u on Xj_1 with w as its weight function.

From this, we draw results on the structure of the symmetric bilinear
forms ®,,. See Definitions 5.12 and 5.13 for the notion of an exact
kernel.

Corollary 7.18. Let k > 2, w be a symmetric I'-invariant function
on Xy and (K, K~) be a I'-invariant exact k-dual kernel. Assume that
®,, is non-negative. Then (K, K™) is the image k-dual kernel of ®,, if
and only if w is a weight function of (K, K~) and HY has dense range
in HEE,

If H is a vector space and ® is a non-negative symmetric bilinear
form on H, the space of all bounded linear functionals of H with respect
to ® may be seen as the topological dual space of H/ker ® and comes
with a natural Hilbert space structure.

Corollary 7.19. Let k > 2 and w be a symmetric I'-invariant function
on Xy such that ®,, is non-negative on HY. Let U, C D(0X) be the
space of ¢ in D(OX) such that the linear functional T — (T, p) is
bounded with respect to ®,, on Hy. Then U, s dense in the space of
all linear functionals on HY which are bounded with respect to ®,,.

We also have a statement in case ®,, is not necessarily non-negative.

Corollary 7.20. Let k > 2 and w be a symmetric I'-invariant function
on Xi. Then there exists a I'-invariant k-dual kernel (K, K~) such
that, for any 0 in Hy, one has

@I (N2, N7*0) —— ®,,(0,0).

j—o0
In particular, w is a weight function of (K, K™).

Let us now prove this results. In the coercive case, Theorem 7.17
will follow from the easy

Lemma 7.21. Let H be a Hilbert space with scalar product p and (K,)
be decreasing sequence of closed subspaces of H with (), K, = {0}. For
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any £, let my be the quotient map H — H/K,. Then, for any x,y in
H, we have

(70)«p (e, Tey) v p(z,y).

Proof. For any ¢, let Hy be the orthogonal complement of K, and 6, be
the orthogonal projection onto Hy. Then (7). p(mex, mpy) = p(bez, Opy).
As |J, Hy is dense in H, ;2 and 6,y converge to = and y and the result
follows. O

Proof of Theorem 7.17 in case ®,, is coercive. In that case, it follows
from Lemma 7.15 and Lemma 7.21 that, for any ¢ in Hy, we have
q)w(ea 0) = qK’K7 (‘97 9)

Now, we use the theory in Section 6: we chose a (K, K~ )-compatible
function ' as in Definition 6.5 which is I'-invariant (this is possible
as noticed in Remark 6.6) and we let w’ denote the associated weight
function. By Theorem 7.6, the form ¢®* " is equal ®,, on HY. Thus,
we get &, = &, on Hy. By Corollary 7.4, this tells us that the
normalized smooth functions associated to w and w’ are cohomologu-
ous. Equivalently, by Lemma 3.12, there exists a [-invariant skew-
symmetric function v on Xj_; such that, for any (z,y) in X, one has
w(z,y) = w'(z,y) + v(x,y1) — v(x1,y), where as usual x; and y; are
the neighbours of z and y on [xy]. We set u(z,y) = u'(x,y) + v(z,y)
for any (z,y) in Xj_1. As v is skew-symmetric, by Definition 6.5, u
is still a (K, K~ )-compatible function and by Definition 6.7, its weight
function is w. O

The proof in the general case will rely on the same approximation
argument as the proof of Lemma 7.15. We will also need

Lemma 7.22. Let k > 2 and (K, K~) be a I'-invariant k-dual kernel.
Then the map u — w is an affine isomorphism between the space of
[-invariant (K, K~ )-compatible functions and the space of I'-invariant
weight functions.

Proof. We need to prove that this map is injective. Let u and u' be
[-invariant (K, K ~)-compatible functions on Xj_; with the same asso-
ciated weight function. Then, as both v and v’ are (K, K~ )-compatible,
the function u” = v’ — u is skew-symmetric. As v and ' have the same
weight function, for any (z,y) in X, we have u"(z,y1) + v’ (y,z1) =
0 (where z; and y; are the neighbours of = and y on [zy]), hence
u’'(x,y1) = v’ (x1,y). In particular, the smooth function s = (z1,)pez —
u”(xg, xx_1) is invariant under the shift map of Section 2. By Propo-
sition 2.3, it is constant. Hence u” is constant and, as it is skew-
symmetric, it is zero, which should be proved. O
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Proof of Theorem 7.17 in the general case. As in the proof of Lemma
7.15, we set w. = w + ¢ for € > 0, so that the bilinear form ®,,_ is
coercive and, by Proposition A.8, we have (K., K;) — (K,K"),

e—0
where (K., K_) is the image k-dual kernel of w.. By the coercive case,

for € > 0, there exists a I-invariant (K., K. )-compatible function u,
on X1 such that w,. is the associated weight function.

We claim that w. has a limit v as ¢ — 0 which is a (K, K™)-
compatible function and the associated weight function is w, which
finishes the proof. Indeed, from Lemma 7.22, we know that the map
(K, K~ ,u) — (K,K ,w) is a linear isomorphism from the space of
[-invariant triples (K, K, u) where (K, K~) is a k-dual kernel and u
is a (K, K~ )-compatible function onto the space of I'-invariant triples
where w is a weight function. As all the involved spaces are finite-
dimensional this linear isomorphism is a homeomorphism and the claim

follows. O

Proof of Corollary 7.18. This is a direct consequence of Theorem 7.6,
Theorem 7.17 and Lemma B.7. ]

Proof of Corollary 7.19. Let (K, K~) be the image k-dual kernel of ®,,.
Then, by Theorem 7.6 and Theorem 7.17, the restriction of ¢"% to
Hg is ®,, and, by Corollary 7.18, HY has dense range in H**" . Thus,
we must show that U, has dense range in the topological dual space
of HSK™  As, by Proposition 5.18, H®X™ is complete with respect
to ¢ this amounts to proving that the orthogonal space of U, in
HXE™ is 0. In other words, if Ul is the space of those T in L¥K~
such that (T, ) = 0 for any ¢ in U,, we must show that we have
Ul C ker g™k,

We fix z in X and, for £ > 1, we let, as in Subsection 5.4, N¢ denote
the natural linear operator V¢(z) — D(0X). We also set U, to be the

orthogonal space of ker((N5*),®,,) in Vz(x) (where as usual, we have

identfied Vg(a:) with the dual space of V{(x)). Now, one easily checks
that one has U, = [J,», N2U; so that a distribution 7" belongs to U,
if and only if, for any ¢ > 1, N%*T belongs to ker((N%*),®,,) and we
are done since (K, K~) is the image k-dual kernel of ®,,. U

Proof of Corollary 7.20. The set of I'-invariant symmetric functions w’
on Xy with ®,, coercive is non-empty, as it contains the constant posi-
tive functions. Since it is an open convex cone in the finite-dimensional
vector space of symmetric [-invariant functions on X, any such func-
tion w may be written as a difference v’ — w”, where ®,, and ®,»
are coercive. By Theorem 7.17, we can find non-negative I'-invariant
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k-dual kernels (K', (K')~) and (K", (K"”)~) which admit v’ and w” as
weight functions. Therefore, w is a weight function of the dual ker-
nel (K,K~) = (K' — K",(K')~ — (K")7). The convergence follows
from Theorem 7.6 (or from Corollary 7.9). Note that, as soon as this

convergence takes place, w must be a weight function of (K, K~) by
Corollary 7.4. U

8. THE WEIGHT MAP

Our aim now will be to give a characterization of those dual kernels
which are the image kernels of a I'-invariant function w with non-
negative associated bilinear form on Hy, or equivalently of those exact
dual kernels (K, K~) such that HY has dense range in H*5". This
will require us to go back to the language of Section 6 and to study
more carefully the map that sends a dual kernel to its weight functions.

More precisely, for k > 2, let as above Ky denote the real vector space
of T-invariant k-dual kernels (which is finite-dimensional since I'\ X is
finite). We also let W, denote the quotient space of the space of sym-
metric I-invariant real valued functions on X}, by the space of functions
of the form (z,y) — w(z,z1) + u(y,y1), where u is a skew-symmetric
[-invariant function on X,_; and x; and y; are the neighbours of x
and y on [ry|. By Lemma 3.12, the space YW, may be seen as a space
of cohomology classes of smooth functions on I'\.#. By Definitions
6.5 and 6.7, if (K, K~) is a -invariant k-dual kernel, the set of its
[-invariant weight functions is an equivalence class in W;. Thus, we
have a well-defined linear map Wy, : K — W, which we call the weight
map. We will now prove that it is surjective and describe its null space.

8.1. Surjectivity of the weight map. For I'-invariant k-dual ker-
nels, surjectivity of the weight map follows from Corollary 7.20. In this
Subsection, we give a direct proof of this phenomenon by exhibiting
an explicit section of the weight map. This construction will be used
again in Section 11.

We need new notation. Let £ > 1 and w be a symmetric function
on Xy. For any z,y in X with j = d(x,y) > k, we set

j—k
Z w= Zw(zh, Zh+k);
h=0

[zy]

where * = 29,21,...,2r = ¥y is the geodesic path from z to y. If
d(z,y) <k, we set 3, w=0.
We easily get
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Lemma 8.1. Let k > 1, w be a symmetric function on Xy, x,y be in
X with d(z,y) > k+1 and z1,y1 be the neighbours of x and y on [xy].

We have
Zw+ Zw—Zw—i—Zw

[zy] [z191] [z31] [z1y]
Now, let £ > 2 and let still w be a symmetric function on X;. For
j >k — 1, we define a j-dual prekernel K“J by setting, if j is even,
j=2(,¢>1, for any z in X and z,t in S*(z),
K" (z,t) Zw
[2t]

and in the same way, if jisodd, j =20+ 1, ¢ >0, for any z ~ y in X
and z,t in S%(z),

[=1]
For j = k, we simply write K" for K“*. Note that K“*~1 = 0.
An elementary computation gives

Proposition 8.2. Let k > 2 and w be a symmetric function on Xj.
Then, for any j > k, the (j + 1)-dual kernel (K“7*+1 K“J) is the
orthogonal extension of (K*J, K%J~1).

See Definition 5.7 for the meaning of the orthogonal extension of a
dual kernel.

Proof. Let temporarily (L, K*7) denote the orthogonal extension of
(KwJ, K*J=1). We have to prove that L = K%J*1,

Assume jiseven, j =20, ¢ > 1. We fix x ~ yin X and z # t in
S*(zy). Let z; and t; be the neighbours of z and t on [zt]. If [zy] C [2]
and, for example, d(x,z) = ¢ = d(y,t), we have

ny<,2,t) = K;”’j(z,tl) + K;“’j(zl,t) — K;Ul;jil(zltl)

SDNED WED oY

[2t1] [211] [z1,t1]
= Zw = K29+ (z,1),
£

where we have applied Lemma 8.1 to the segment [zt|, which was pos-
sible since d(z,t) = j+1 > k+ 1. Now, if [zy] ¢ [2t] and for example
d(z,z) = d(t,x) = {, we have

Zl,tl Z’LU—KwJ 1 Zl,tl),

[z1t1]
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hence
Loy(z,t) = (2,11) Zw = K29t (2,1)
[2t]
and we are done.

Assume jisodd, j =20+ 1,¢ > 1. We fix zin X and y # z in
S (z) and we let as above 1, 21 be the neighbours of y and z on [yz].
If 2 belongs to [yz], we let a be the neighbour of x on [zy] and b be its
neighbour of [xz]. We have

L:v(y7 Z) = K:IEUJ(yv Zl) + K (y7 Zl)
+ Y KS(y,z) — (d(x) — DKy, 20),

C~T

c¢{a,b}
hence, as d(y, z)=j+1>k+1, by Lemma 8.1,

Zw—i—Zw— Z w—z:w—Kw]Jrl Y, 2).

[yz1] [v12] [y1,21] [v,]
Now, if z ¢ [yz] and a is the neighbour of = with d(y,a) = d(z,a) = ¢,
we have, for any b ~ z, b # a,

KZ;J(?/LZl) = Z w = K;”’j_l(yl,zl),
[y121]
hence
Lo(y,2) = Kl (y,2) = > w =Ky, 2),

[y2]
which should be proved. 0

Corollary 8.3. Let k > 2 and w be a symmetric I'-invariant function
on Xi. Then a function v on X1 is (K*,0)-compatible if and only
iof it 1is skew-symmetric. In particular, if uw = 0, the associated weight
function is w.

Proof. By Definition 6.5 and Proposition 8.2, u is a (K™, 0)-compatible
function if and only if, for any =,y in X with d(z,y) = k — 1 and any
parametrized geodesic line (Zh)hez with zg = x and z,_1 = v,

k—1 - k—2 —
(ZL’ y —|—U y,x Z Z Zuzi-‘rk’ Z Z Zuzz-‘rk

h=1i=h+1-k h=1 i=h+1-k

In the right hand-side of the latter, the pairs (h,i) with 1 < h <k —2
and h+1—-k<i:<h—2 appear twice. Thus, we get

k— k2
u(z,y) +uly,x E w(zi, Zivk) E w(zp-1, Zntk-1) = 0,
=0 h=1
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that is, u is skew-symmetric.

Now, we let u be 0, so that, by Definition 6.7, the associated weight
function w’ must verify that, for any z,y in X with d(z,y) = k, if
(zn)nez is a parametrized geodesic line with zy = = and 2z, = v,

k=1  h—1

w'(z,y) = Z w(2i, Zivk) — Z Z_: w(2i, Zivk)-

=1 i=h+1-k h=1 i=h+1-k

Again, in the right hand-side of the latter, the pairs (h,i) with 1 < h <
k—1land h+1—Fk <i < h—2 appear twice and we get

>

k—1 k-2
w'(z,y) = W(zp-1, Znk-1) — Zw(% Zivk) = w(T,Y),
h=1 i=1
which should be proved. O

For I'-invariant k-dual kernels, we retrieve Corollary 7.20.

Corollary 8.4. For any k > 2, the weight map Wy : K — Wy 1is
surjective.

8.2. Pseudokernels. Now that we have proved that the weight map is
surjective, we will study its null space. This will be done by introducing
a new vector space Lj_1, together with an injective linear map L;_; —
Ky from L;_; to the space of I'-invariant k-dual kernels. The range of
L1 under this map will exactly be the null space of the weight map.
The proof of this result will be the objective of the next subsections.

We start by defining a new notion. Again, we have to split the
definition according to the parity of k.

Definition 8.5. (k odd) Let k be an odd integer, k = 2¢ + 1, ¢ > 0.
A k-pseudokernel is a family (Lgy)(z,)ex, where for any (z,y) in Xj,
L., is a symmetric function on S*(xy) x S*(zy) which is zero on the
diagonal. The symmetric bilinear form on V{(zy) associated to Ly, by
Lemma 5.1 is denoted by r%,.

Remark 8.6. Note that in the odd case, although the set on which L,
is defined is symmetric in  and y, the function L,, is not necessarily
equal to L,,.

Definition 8.7. (k even) Let k be an even integer, k = 2¢, £ > 1. A
k-pseudokernel is a family (L, )(z4)ex, where for any (z,y) in Xy, Ly,
is a symmetric function on S¢(x) x S*(x) which is zero on the diagonal.
The symmetric bilinear form on V{f(x) associated to L, by Lemma 5.1
is denoted by 7, .
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Remark 8.8. Note that in the even case, although the set on which L,
is defined only depends on z, the function L,, a priori also depends on
the choice of a neighbour y of x.

As for dual kernels, when this will be convenient, we will sometimes
think to the L, as being locally constant functions on 0X x 0.X.

For any & > 1, we define £ as the vector space of I'-invariant k-
pseudokernels. Let us build a linear map from £, to K.

Definition 8.9. (k odd) Let k be an odd integer, k = 20 + 1, £ > 0,
and L = (Lgy)(zy)cx, be a k-pseudokernel. We define the (£ + 1)-dual
kernel (K, K~) associated to L by the formulae

Ky=Y Ly, z€X,

y~zx

Ky =L+ Ly, w~yeX.

Equivalently, the bilinear forms associated to (K, K ) verify

o = _(I)yrh, reX,

Y~z

L

K~ L
oy =Tyt Ty T~yeX

Definition 8.10. (k even) Let k be an even integer, k = 2¢, ¢ > 1,
and L = (Lgy)(zy)ex, be a k-pseudokernel. We define the (k + 1)-dual
kernel (K, K~) associated to L by the formulae

Kmy:ny+Lym7 xwaXa

1
Ki=—S" L., X.
: d(x)—lz v TE

Yy~
Equivalently, the bilinear forms associated to (K, K ) verify

05 = (Joy ey + () e v~y EX,

Ty Ty Yy

- 1
K L X
= ————--- E .
R CEP LN

Y~z
This construction defines an injective linear map £ < Kry1.

Proposition 8.11. Let k > 1 and L be a k-pseudokernel. If the asso-
ciated (k + 1)-dual kernel is 0, then L is zero.

The proof relies on a general property of symmetric bilinear forms
which are built through surjective maps.
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Lemma 8.12. Let Wy, Wi, ..., Wy (d > 2) be finite-dimensional real
vector spaces and, for 1 < i < d, let w; : W; — Wy be a surjective
linear map. We set W to be the fibered product

{w = (wl, tee ,’lUd) S Wl X X Wd|v1 < Z,] < d w,(wl) = wj(wj)}

and m; - W — W,;, 0 <1 < d, to be the natural surjective linear map.
Assume qq, . .. qq to be symmetric bilinear forms on Wy, ..., Wy and set
q="miq1 + -+ 7m;q4. Then we have ¢ = 0 if and only if there exists
symmetric bilinear forms py,...,pq on Wy with ¢; = wip;, 1 <1 < d,
and py + -+ pqa = 0.

Proof. If p1, ..., pg exist, then clearly ¢ = 0. Let us prove the converse
statement.

Assume ¢ = 0 and let us fix 1 < ¢ < d. Let us show that there
exists a symmetric bilinear form p; on Wy with ¢; = @/p;. In other
words, we claim that, if w; and w} are in W; and w;(w;) = w;(w)),
then ¢;(w;, w;) = ¢;(w},w}). Indeed, for any j # 4, pick w; in W; with
w;i(w;) = w;(w;) = w;(w}) and let w and w’ be the unique elements of

W such that

mi(w) = w; and m;(w') = w;

mi(w) = w; and m;(w') = w;,  j# .
As q(w,w) = q(w',w") = 0, we have

qi(wi, w;) = — ZCI(U’]’, w;) = g;(wy, wj),
J#
which should be proved.
Now, for any 1 < i < d, we have built a symmetric bilinear form p;

on Wy with ¢; = w}p;. In particular, we have 0 = ¢ = 7§(p1 +- - - +pa),
hence p; + -+ +pg = 0. O

We shall also need the easy

Lemma 8.13. Let A be a finite set with at least 3 elements and u be a
real-valued function on A. Assume that, for any real-valued function f

on A with Y ., f(a) =0, we have Y, u(a)f(a)> =0. Then u = 0.

Proof. Pick a # b in A. By applying the assumption to f = 1, — 1,,
we get u(a) +u(b) = 0. Now, chose ¢ in A with ¢ # a and ¢ # b, which
is possible since A has at least three elements. We get u(a) = —u(b) =
u(c) = —u(a), hence u(a) = 0, which should be proved. O

Proof of Proposition 8.11. We prove the statement by induction on k >
1.
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If £ = 1, the data of a 1-pseudokernel L is equivalent to the data
of the function w : (z,y) — Ly(z,y) on X;. Now, saying that the
2-dual kernel associated to L is zero implies that, for any x in X, the
quadratic form

fe> ulzy) fy)?

Yy~x
is zero on V! (z). By Lemma 8.13, we get u = 0 as required.

Assume now k > 2 and the statement is proved for £k — 1 and let us
prove that it is still true for k. Let L be a k-pseudokernel such that
the associated (k 4+ 1)-dual kernel is 0.

If kiseven, k=20, £ > 1, for any x ~ y in X, we have

Lk \x, L Cox\*, L __
(ny> T:):y + (Jy:r) Tyz = 0.

Hence, by Lemma 8.12, there exists a family (Suy)(y)cx, Where, for
any (z,y) in Xi, s,y is a symmetric bilinear form on Vi (zy) with
rh, = (It ") Sz and s4y + sy, = 0. Equivalently, there exists a
(k — 1)-pseudokernel M such that L,, = M,, and M,, + M,, = 0,
(xz,y) € X;. As the (k + 1)-dual kernel associated to L is zero, we also
get Zyw M, =0, x € X, hence the k-dual kernel associated to M is
zero. By induction, we get M = 0 and therefore L = 0.

In the same way, if k is odd, £k =20+ 1, ¢ > 1, for any x in X, we

have

Sy, =0

%
Hence, by Lemma 8.12, there exists a family (s;y)(2)cx, Where for
any (z,y) in X1, Szy is a symmetric bilinear form on V{f(z) with r}, =
(J5)* 82y and we have 37 s,y = 0, x € X. Equivalently, there exists
a (k — 1)-pseudokernel M such that L,, = M,,, (z,y) € X;, and
> yme May = 0, 2 € X. As the (k + 1)-dual kernel associated to L is
zero, we also get M, + M,, = 0, x ~ y € X, hence the k-dual kernel

associated to M is zero. By induction, we get M = 0 and therefore
L=0. U

8.3. Orthogonal extension of pseudokernels. For £ > 1, we have
embedded Ly as a susbpace of ;1. Now, orthogonal extension defines
an injective linear map g1 = Kiyo. We will show how the restric-
tion of orthogonal extension of dual kernels to pseudokernels may be
obtained as an intrinsinc linear map from Ly to Ly;.

Definition 8.14. (k odd) Let k£ be an odd integer, k =20+ 1, £ > 0.
If L is a k-pseudokernel, we define its orthogonal extension L™ as the



98 JEAN-FRANCOIS QUINT
(k 4 1)-pseudokernel such that

Ly =) L., (z,y) € X1

27y

Equivalently, the symmetric bilinear forms associated to L™ are re-
lated to the ones associated to L by the formula

;y - Z([:i;)*rxzv (xg y) € Xl-

zZ~T

27y

Definition 8.15. (k even) Let k be an even integer, k = 2¢, ¢ > 1.
If L is a k-pseudokernel, we define its orthogonal extension L as the
(k + 1)-pseudokernel such that

Li, = Ly, (2,y) € X1.

r

Equivalently, the symmetric bilinear forms associated to Lt are re-
lated to the ones associated to L by the formula

r;—y = (‘]yzg)*ry:m (x,y) € Xl'
The reader should beware the order of the variables!

Remark 8.16. The orthogonal extension map L + L™ is injective. This
is obvious in the even case. In the odd case, if k =20+ 1, ¢ > 0, and
L is a k-pseudokernel, for z ~ y in X, one has

D LE = (d(x) = 1)Ly + (d(z) - 2)L3,

27y

and injectivity follows.
These definitions are justified by the

Proposition 8.17. Let k > 1 and L be a k-pseudokernel, with associ-
ated (k + 1)-dual kernel (K, K~). Then the (k + 2)-dual kernel asso-
ciated to the orthogonal extension L™ of L is the orthogonal extension
(KT,K) of K.

In other words, we have a commutative diagram
+
/Jk —_— Ek—f—l

l l

+
Kit1 —— Kiyo,

where the horizontal arrows are orthogonal extensions.
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Proof. The proof follows directly from the definitions. Let (H, H™) be
the (k + 2)-dual kernel associated to L.
If k£ is odd, we have, for any  ~ y in X,

Hpyy = L5+ L, =Y Le:+ Y Ly

Hy et
= Lo+ > Ly — (Lay+ Lyo) = K, + K, — K, = K,
Tz yt zy yx T Y Ty Yy
2~T t~y

and also, for any rin X,

H, _1§L _1§;Lm 2 Lee = Ko

27y

which should be proved.
If k is even, we have, for any x in X,

= Koy —(d(@) = 1)K, = (Loy+ Lya) = > Lay

y~z Y~z y~z
— — + _
=D Ly =) L,
Y~z y~z

and also, for any = ~ y in X,
Ky =Ly + Ly, :LZ‘;:—i—LJr H_,

Ty
and the result follows. O

8.4. Large extensions of pseudokernels. Recall that our goal is to
prove that the null space of the weight map is exactly the space of
pseudokernels. To do this, we will apply to pseudokernels the formal-
ism of Section 6 and prove that the weight functions of pseudokernels
are coboundaries. This requires us to associate to a k-pseudokernel L a
certain function on Xj. As for dual kernels, the definition of this func-
tion will use large orthogonal extensions of L. We start with describing
those extensions.

The following result is an analogue for pseudokernels of Lemma 5.9
for dual kernels.

Lemma 8.18. Let k > 1 and L be a k-pseudokernel. The orthogonal
extensions of L may be defined by the following formulae. Fix h > 0
and x ~y in X. If k is odd, we have

Lk+2h Z L. ..

€8 ()

z¢[yz]
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If k is even, we have

L= 3" L.

zeSh 1 (y)

yé[zz]

Proof. Assume for example that k is odd and let us prove the result by
induction on A > 0. For h = 0, there is nothing to prove. If the result
holds for h > 0, then, by Definition 8.14, for x ~ y in X, we have

Lﬁz_zhﬂ = ZL];;% = Z Z Ly = Z Ly_y.

e 2T e §hH () tesh+2(y)
7 el vl
The result follows since, by Definition 8.15, one has LF?"+? = LFt2h+1,

O
This directly gives, by using again Definition 8.15 in the even case,

Corollary 8.19. Let k > 1 and L be a k-pseudokernel. For x ~ y in
X, we have
2%—1 _ _
L= " L. k=241 (>0

2841 (z)

z¢[yz2]
2k—1 __ _
L= Y L., k=20, (>1

2€8%(x)
z¢[yz]

In particular, we get

Corollary 8.20. Let k > 1 and L be a k-pseudokernel. For x ~ y in
X and &, in Uy, we have L2 (€,1) = 0.

Proof. If kis odd, k =20+ 1, £ > 0, by Corollary 8.19, we have
LN En = ) L&)

zGSZ'H(m)
z¢[yz]
By assumption, for z as above, the geodesic rays [z£) and [zn) both
meet the sphere S*(2z_) at x, hence L, .(£,7n) = 0.
In the same way, if k is even, k = 2¢, £ > 1, Corollary 8.19, gives

LAY Em) = > L (&)
2€8%(x)

z¢lyz]

Now, for such a z, the geodesic rays [2£) and [zn) both meet the sphere
S¢(z) at z, hence L,._(£,m) = 0. O
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By applying Proposition 8.17, from Lemma 8.19, we get

Corollary 8.21. Let k > 1 and L be a k-pseudokernel. The associated
dual prekernels may be defined by the following formulae. Fiz h > 0
and x ~y in X. If k is odd, we have

K5+2h+1 _ Z Lz , and Kk+2h Z L. ..

2€Sh+1(z ze8h (zy)

If k s even, we have

Ky =) L and KjP'= % L.,

2€Sh(zy) ze8h(z)

where in the last equation, we assume h > 1.

Proof. For example, let us proof the first formula. Definition 8.9,
Proposition 8.17 and Lemma 8.18 give

Kbl ZLE% Z Z L. ..

Yy~ Y~z zeShH (2)
z¢[yz]
The formula follows as the sphere S"*!(z) may be written as the dis-
joint union
§" () = | {z € 8" @)z ¢ [y2]}-
Yy~

O

8.5. Weight functions of pseudokernels. We will now prove that,
for £ > 2, the weight map is zero on the image of £;_; in K. This
will be achieved by giving an explicit formula for the compatible func-
tions and weight functions of pseudokernels. As mentioned above, this
requires the definition of a new function associated to a pseudokernel
whose existence is warranted by

Lemma 8.22. Let k > 1 and L be a k-pseudokernel. Let (x,y) be in
Xk and (zp)nez be a parametrized geodesic line with zo = x and z, = y.
Then, the quantity

L2 (zem 21) = L35 (21, )
only depends on x and y.

Proof. 1t k is odd, k = 2{ + 1, £ > 0, by Corollary 8.19, we have
ch]lel(zl—kv 2) = Z Ly +(z1-k, 2k).

tESerl(zo)
20¢[21t]
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For t as above, the segment [2;_1t] meets the sphere S‘(tt_) at z, hence
Ly (z1-k, z) does not depend on the choice of the points (zp,)n<o.
In the same way, if k is even, k = 2¢, ¢ > 1, Corollary 8.19, gives

2k 1
Lo (21ks 2k) E Ly (21-k, 2k).

tESe(Z())
Zo%[?qt]

Now, for such a z, the segment [z;_,t] meets the sphere S*(t) at 2,
hence L; (21, z) again does not depend on the choice of the points

(Zh)h<o- O

We can define a natural function associated to a pseudokernel.

Definition 8.23. Let £ > 1 and L be a k-pseudokernel. We define its
pseudoweight v as the unique function on X} such that, for any (z,y)
in X%, one has

v(z,y) = L2 Nz, ) = L2 (212, ),
where (zp,)nez is any parametrized geodesic line with zy = x and z, = v.

Note that if L is I'-invariant, so is v.
We now get a formula for weight functions of pseudokernels.

Proposition 8.24. Let k > 1, L be a k-pseudokernel, v be the pseu-
doweight of L and (K, K~) be the (k4 1)-dual kernel associated to L.
Then a function w on Xy, is (K, K~ )-compatible if and only if, for any
(x,y) in Xy, one has

w(z,y) +uly, x) = v(z,y) + v(y, z).
If u is such a function, the associated weight function w on X1 veri-
fies, for any (,y) in X1,
U)(.CE, y) = ’LL(Q?, yl) + U(y, .73'1) - ’U(l‘7 yl) - U(y> 5131)

(where as usual 1 and y, are the neighbours of x and y on [xy]).
This directly implies
Corollary 8.25. Assume L is I'-invariant. Then Wi (K, K~) = 0.

Proof of Proposition 8.24. The proof relies on straightforward but te-
dious computations.

First, we establish the formula for u. Let (z,y) be in Xy and (zp)nez
be a parametrized geodesic line with zp = = and z; = y. Denote by &
and 71 the endpoints of (zp,)pez. By Definition 6.5, we have

k k—1
(e, y) +uly,x) =Y KZTL (Em) = Y K2H(E ).

h=1 h=1
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By Proposition 8.17, we have,
KF=>"L%"' acX,

b~a
and K7 =LY '+ LY, a~beX.

Therefore, we get

k
u(w,y) +uly,x) = (L1 (&) + L2 (€m))
h=1
k—1
(Lnghl 1 (57 77) Lg}ljzhil Z Z Li]ljwl (67 T])
h=1 W Zp

w?ézh 1:2h+1

By Corollary 8.20, in the right hand-side of the latter, the third sum
is zero, so that this equation gives

u(w,y) +uly,x) = LENEn) + LI (6m) = v(z,y) +u(y, o),
and we are done.

Now, we prove the formula for w. Let (x,y) be in Xy and (zp)nez
be a parametrized geodesic line with zy = x and 2,1, = y. Still denote
by & and 7 its endpoints. By Definition 6.7, we have

k41
(x y) = U(Zm Zk) + U(Zk+1> Zl + Z K% ZKff 11zh
h=1
Again, by Proposition 8.17 and Corollary 8.20, this gives

w(x y) = u(zo, 21) + u(2k41, 21)
k+1
+Z Lifzhl 1 Li;]jzhil (5 77)) Z(Lgf 11Zh (§’ 77) szzhl 1(67 n))
h=1
We get

U}(ZL‘7 y) - U(Zo, Zk) + U(Zk+1, Zl) Lz§z11 (f? 77) - Lifillzk (57 77)
= u(z, y1) + uly, ©1) — v(z, y1) — v(y, 21)
as required. ]

8.6. Weight functions of orthogonal extensions. Thanks to Pro-
position 8.24 and Corollary 8.25, we know that that the weight map is
0 on pseudokernels. It remains to show the converse statement, that if
a k-dual kernel admits a weight function which is a coboundary then
this dual kernel is the one associated to some (k—1)-pseudokernel. Our
strategy will be to start by a weaker statement, namely that if a k-dual
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kernel admits a weight function (and hence has all its weight func-
tions) of the form (z,y) — v(x,y1) + v(y, z1) for some non-necessarily
skew-symmetric function v on X,_1, then it must be the sum of a pseu-
dokernel with an orthogonal extension. As a preliminary, the purpose
of this subsection is to prove that the weight functions of orthogonal
extensions are actually of this form.

Proposition 8.26. Let k > 2 and (K, K~) be a k-dual kernel with
orthogonal extension (K+, K). Let u be a (K, K~)-compatible function
and w be the associated weight function for (K, K~). Then a function
ut on Xy is (K, K)-compatible if and only if one has, for any (z,y)
m Xk,

U’Jr('r?y) + U+(y,l‘) = w(x,y) + u<xlay> + U(th).

In that case, the associated weight function w* for (Kt K) is defined
by, for any (x,y) in Xy,

w+(x,y) = U+($»y1) + u+(y7xl) - u(xla Y1) — u(y1, fl‘l)‘

Corollary 8.27. Let k > 2 and (K, K~) be a k-dual kernel with or-
thogonal extension (K, K). Let w be a weight function for (K, K™)
and wt be a weight function for (K, K). Then there exists a skew-
symmetric function v on Xy such that, for any (x,y) in Xgi1, one
has

W () = () + wen, ) + o) - ooy,

If (K, K™), w and w* are T-invariant, one can chose v to be so.

In both statements, for x # y in X, we have as usual denoted by x
and y; the neighbours of z and y on [zy].

Note that, in Corollary 8.27, the functions w and w™ are related in
the same way as the functions w and w’ in Lemma 3.12.

Again, the proofs will follow from the definitions by straightforward
computations.

Proof of Proposition 8.26. By Definition 6.5, saying that the function
ut is (K, K)-compatible amounts to saying that, for any (x,y) in X,
if (2)nez is a parametrized geodesic line with zyp = x and z, = y, we
have

k k-1

81)  wt(wy)+ut(y,) =) K2TL (&) =D K2 ),

h=1 h=1



ADDITIVE REPRESENTATIONS 105

where ¢ and 7 are the endpoints of (zp,)pez. Now, forany 1 < h < k—1,
we have

K28&m) = K20 (Em) + K251 (&,m)
+ Y KENE ) = (d(z) — DEZTE ).

trzp,
t¢{zh_1,2n11}

This can be written as

2k 2k—1 2k—1
th (57 77) th 12h (57 77) thzh+1 (57 77)
k—1,1 2k—2
+ Szh ! (5777) - th (57 77),

where S¥~11 is as in Subsection 6.1. By Corollary 6.2, we have S¥~1! =
0 and hence (8.1) gives

( y) ZKWC ? ZKZQ}If 112h

As K2k—1 _K2k2+K2k2 K2k3 Qghgk;—l,weget

Zh—1%h Zh—1 Zh—12hp"’
k—1
+ + _ E 2k—3 2 2k— 2
Uu (.ZC, y) + U <y7 l’) - th,lzh K
h=2

Now we use Definitions 6.5 and 6.7 for (K, K~ ), Wthh give

U+(l', y) + u+<y7 SL’) = (U(l’,yl) + u<y17 %)) + (U(l‘l, y) + U(y,l’l))
+ (w(z,y) — u(z,y1) — u(y, 21)),
that is

ut(z,y) +u(y,2) = w(z,y) +uly, 2) +ulz,y),
which should be proved.

For weight functions, the same computation yields, for any (z,y) in
Xkt1, any parametrized geodesic line (z5)pez with endpoints £ and 7
and zp = x and 2,11 = v,

k
wh(z,y) = ut (2, y1) + u'(y, 21) +ZK2’“ 2&m) = ) K28 (&)
h=2 h=2
= ut(z,y1) +u' (y, 21) — u(zy, y1) — ulys, 1)
O

Proof of Corollary 8.27. Let u (resp. u™) be the (K, K~)-compatible
(resp. (KT, K)-compatible) function with w (resp. w™) as its weight
function. Fix (z,y) in Xy 1, let z; and y; be their neighbours on [zy]
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and xo and ys be the neighbours of x; and y; on [z;y;]. Proposition
8.26 gives

w(z, ) = u"(z,y1) +u (1, 2) — u(zy, y1) — ulye, )

u
w\x1, ) = U+($1,y) + U+<y,$1) - U({E27y) - u(ylaml)
u

Yy
w+(x,y) = +<$7yl) + U+(y7$1) - u(xlayl) - u(yhxl)?
hence
1
wh(z,y) — S(w(@ ) +wlzy,y)) = vlz,y) + v(y, 21),
where, for any (a,b) in X,

v(a,b) = %(u+(a, b) — ut (b, a) + ulbr, a) — u(ar, b)),

O

8.7. Split weight functions. Our goal is still to prove that if a dual
kernel admits a weight function which is a coboundary, then it is a
pseudokernel. As mentionned above, we will first prove a weaker ver-
sion of this statement which will play a key rule in the final proof. We
start by introducing a new notion.

Let k > 2 and w be a symmetric function on X;. We shall say that
w is split if there exists a function v on Xj;_; such that for any (z,y)
in X}, one has w(z,y) = v(z,y1) +v(y,x1) (note that we don’t require
v to have any symmetry property).

By Definition 6.7, if a dual kernel admits a split weight function,
all its weight functions are split. Proposition 8.24 and Corollary 8.27
tell us that the weight functions of a pseudokernel and those of an
orthogonal extension are split. We have a converse statement:

Proposition 8.28. Let k > 3 and (K, K~) be a k-dual kernel. Then
the weight functions of (K, K~) are split if and only if there exists
a (k — 1)-pseudokernel L, with associate k-dual kernel (J,J~), and a
(k — 1)-dual kernel (H, H™), with orthogonal extension (H*, H), such
that K =H"+J and K- =H+ J".

Let £ > 2 and (K, K~) be a k-dual kernel. We begin the proof of
this fact by introducing a new function on X}, associated to (K, K ™).

If kis even, k = 2¢, £ > 1, we define the preweight of (K, K~) as the
function w_ on X}, such that, for any (z,y) in Xy, w_(x,y) = K,(z,y),
where a is the middle point of [zy], that is, a is the unique point of
[zy] with d(x,a) =€ = d(y,a).

If kis odd, k = 20+ 1, £ > 1, we define the preweight of (K, K )
as the function w_ on X such that, for any (z,y) in X, w_(z,y) =
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Kap(z,y), where [ab] is the middle edge of [zy], that is, a and b are the
unique points of [zy| with d(z,a) = = d(y,b).

Remark 8.29. Note that the preweight actually does not depend on
K.
Lemma 8.30. Let k > 2, (K,K~) be a k-dual kernel, w_ be the

preweight of (K, K~) and w be a weight function of (K,K~). Then
the function w — w_ 1is split.

Proof. The proof of this fact follows from a careful rereading of the
proof of Lemma 6.3.

More precisely, it follows from this proof (in case j = k) that, for
any (z,y) in Xj, and any & < ¢ <k — 1, the number

l /+1
we(z,y) = > KX(En)— Y K271 (&n)
h=k—¢ h=k—¢

does not depend on the choice of a parametrized geodesic line (24)pez
with zp = x and z; = y and endpoints ¢ and 7.

By Definition 6.7, the function w — wy_4 is split. We claim that, for
any g < ¢ < k—2, the function wy, 1 —wy is split. To prove this we will
use again the notation S%™(&,n) which was introduced in Subsection
6.1. For any (z,y) in Xj;_1, we set

ve(z,y) = 551, (6, ZS“

hké

where x = 2y, ..., 2,1 = y is the geodesic path from = to y and (£n) is
any geodesic line with [zy] C (&n). It follows from Corollary 6.2 that
ve(x,y) does not depend on the choice of (). Now, Equation (6.2) in
the proof of Lemma 6.3 gives, for any (z,y) in X,

Wi (2, y) = we(z,y) + ve(, y1) + ve(y, 1)

and wyy; — wy is indeed split.

To conclude, it remains to compute w, for the lowest possible value
of £.

If kis even and ¢ = 2 we have, for any (z,y) in X, if z is the middle
point of [zy] and a and b are the neighbours of z respectively on [zz]
and on [yz],

wg(x,y) - Kz(may) - Ka_z(xayl) - Kb_z(ywrl)

hence w, — w_ is split.



108 JEAN-FRANCOIS QUINT

If k is odd and ¢ = ¥ fix (z,y) in X}, and let [2¢] be the middle

edge of [zy] (with d(z,2) = ¢—1 = d(y,t)). Equation (6.1) in the proof
of Lemma 6.3 reads as

we(z,y) = w_(z,y) — (d(z) — 1)K, (z,y1) — (d(t) — 1)Ky (21,9)
+ Z Ko.(x1,) + Z Ky(w1,91).

aglay] béffg,,]
In particular, wy — w_ is split and the lemma follows. U

We have an abstract criterion for a bilinear form to split as a sum.

Lemma 8.31. Let Wy, Wi,..., Wy (d > 2) be finite-dimensional real
vector spaces and, for 1 < i < d, let w; : W; — Wy be a surjective
linear map. We set W to be the fibered product

{U) = (’LUl, cee ,’LUd) € W1 X e X Wd\V1 S Z,j S d wl(wz) = wj(wj)}

and m; - W — W;, 0 <1 < d, to be the natural surjective linear map.
For any 1 <i<d, we set X; = ﬂ#ikerﬂj cw.

Let q be a symmetric bilinear form on W . Then there exists symmet-
ric bilinear forms qi,...qq on W, ..., Wy with ¢ = 7iq1 + -+ + T)qa
if and only if, for any 1 < i # j < d, the spaces X; and X, are
q-orthogonal, that is, q(X;, X;) = 0.

Proof. Clearly, if ¢ = m{q1 + --- + m;qq for some symmetric bilinear
forms q1,...qq on Wy, ..., Wy, then for any i # j, the spaces X; and
X are g-orthogonal.

Conversely, assume this is the case and let us build ¢q,...q;. We
chose a subspace Xy of W such that the restriction of my to X is an
isomorphism onto Wy. We then have W = Xy ® X; @ ---® Xy and, by
assumption, if w = xg+---+x4isin W, with z; € X;, 0 <i < d, one
has

Now, for any 1 < ¢ < d, the restriction of m; to Xy + X; is an isomor-
phism onto W;. Therefore, there exists a unique symmetric bilinear
form ¢; on W; such that, for z¢ in X,y and z; in X;, one has

1
77 qi(zo + @i, ko + x;) = EQO(IO, %o) + qi(xi, ;) + 2q;(wo, ;).

By construction, one has ¢ = 7jq; + - - - + 7jqq. O

Proof of Proposition 8.28. Let (K, K~) be a k-dual kernel which ad-
mits a split weight function. By Lemma 8.30, the preweight w_ of
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(K, K™) is split. We will show that this amounts to saying that one
can apply Lemma 8.31 to the bilinear forms associated to K. Fix a
function v on Xj_1 with w_(z,y) = v(x,y1) + v(y, 21), (z,y) € X;.

First assume k is odd, £k =2¢+ 1, ¢ > 1. Fix z,y in X. We claim
that the subspaces

ker ny* and ker Jyex*

of Vif(zy) are qh-orthogonal. Indeed pick f, in ker Jf;t* and f, in
ker ny* . We have

0 be S y) NS (x)
fy(@)=0 ae€Sz)nS™t(y)
0 a €S (z)NSy)

Z f,(0) =0 b € S (y) NS ().

Therefore, by Lemma 5.1,

1
Qay(fos fy) = —3 > w(a,b)fula)fy(b)
acSt(x)NSt1(y)
beSt(y)NSH1(x)

:_% 3 ST (@ by) + v(b, a)) fla) £, (8) = 0

a1€5-1(x)nSt an~al  p~oh

By Lemma 8.31, we can find a family (suy), y)€X17 where, for any
(2,9), Say is a symmetric bilinear form on Vy (x) and ¢J, = (Je ) Sy +
(J5)*Sya. In other words, there exists a (k — 1)-pseudokernel M with
K.y = M,y + M, for any x ~ y in X. This is not over since for the
moment there is no relation between K~ and M. To correct this, we
set

H, =Y M, ~1)K; z¢€X,

y~x

ny == Mxy - Hx (:v,y) € Xl
and we set H~ = 0 and we consider (H, H™) = (H,0) as a (k—1)-dual
kernel and L as a (k — 1)-pseudokernel. Let (H™, H) be the orthogonal

extension of (H,0) and (J,J~) be the k-dual kernel associated to L.
By construction, we have, for x ~ y in X,

Koy = My + My, = Loy + Lyo + Hy + Hy = Joy + H,
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and, for z in X,

= ()
1 1
iy (St - ) =g St

Yr~x Yr~x
which should be proved.

Now assume k is even, k = 2¢, / > 2, and let us proceed in the same
way. We fix z in X and we set, for y ~ x,

W, = ﬂ ker I21* € V().

z#y

We claim that these spaces are ¢X-orthogonal to each other. Indeed,
for y ~ x and f, in W,,, we have

fy(b)=0 be Shx) NS (y)
> A =0 mesT @0 )

a~ai

ag[zai]
Now pick y # 2z among the neighbours of « and chose f, in W, and f,
in W,. Again by Lemma 5.1, we have

1

@ (frnf)==5 > w-(a)f(a)f()
acSt(x)NSt—1(y)
beSt(z)NS 1 (2)

:_% 3 ST (Wlasby) + v(b,an) fy(a) £(5) = 0

a l—1 —2 an~aj b~b1

biggiflgxgm:gEfQEy)) agé[:un] b¢[$b1]
By Lemma 8.31, we can now find a (k — 1)-pseudokernel M with K, =
>y May. We set

Hyy=M,y+M,—-K, x~yecX

zy

L:Uy:Mxy_sz :L’EX

Again, we let (H", H) denote the orthogonal extension of the (k — 1)-
dual kernel (H,0) and (J, J~) the k-dual kernel associated to the (k—1)-
pseudokernel L and we have, for any x in X,

Ko=> My=> Lo+ Y Hy=J,+HS

y~zx y~x y~x
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and, for x ~ vy,
Km_y = Mmy + Mym - Hmy - Lmy + Lyz + ny - Jx_y + nya
which should be proved. U

8.8. The null space of the weight map. We are now ready to con-
clude:

Theorem 8.32. Let k > 2 and (K, K~) be a k-dual kernel. Then the
following are equivalent.

(i) There exists a skew-symmetric function v on Xy_1 such that the
function (z,y) — v(z,y1) + v(y,z1) on Xy is a weight function of
(K, K™) (where as usual, for (z,y) in Xy, x1 and y; are the neighbours
of x and y on [xy]).

(ii) There exists a (k — 1)-pseudokernel L such that (K, K~) is the k-
dual kernel associated to L.

In case (K, K~) is I'-invariant, the function v in (i) may be chosen to
be I'-invariant.

In other words, for I'-invariant kernels, we have

Corollary 8.33. For any k > 2, the null space of the weight map
Kr — W is the space Ly_1 of (k — 1)-pseudokernels.

We will need the elementary

Lemma 8.34. Let k > 2 and ¢ be a function on X} such that, for any
(x,y) in Xgi1, one has o(x,y1) + ©(y,x1) = 0. Then, there erists a
skew-symmetric function ¥ on X;_1 such that, for any (z,y) in Xi_1,
one has o(z,y) = ¥(x1,y).

Proof. Fix (x,y) in X;_;. Let z be a neighbour of y that is not on [xy].
If ¢ is a neighbour of z that is not on [xy], we have p(t,y) = —¢(z, z),
hence this value does not depend on ¢t. We define it as ¢(x,y). By
construction, 1 is skew-symmetric and we are done. 0

Proof of Theorem 8.32. (ii)=(1) is Proposition 8.24.

We prove (i)=(ii) by induction on k > 2.

First assume k = 2. Pick a 2-dual kernel (K, K~) which satisfies the
assumptions. In this case, a function v on X is (K, K~ )-compatible if
and only if, for any = ~ y in X, one has

u(w,y) +uly,z) = K, (v,y).

Now, by assumption, there exists such a function u as well as a skew-
symmetric function v on X; such that, for any x in X any y # z in
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S1(x), one has
U(y7$> + U(Z,ZL’) = u(y,x) + U(Z’Zi) + Kz(yaz) - Kgc_y(xay) - Kgc_z<$7z)
= —u(z,y) —u(z, 2) + K.(y, 2).

We define a 1-pseudokernel by setting, for any (z,y) in X, L, (z,y) =
v(y,x) + u(z,y). The relations above directly imply that (K, K~) is
the 2-dual kernel associated to L.

Assume now k£ > 3 and the result is true for £k — 1. Again we
chose a k-dual kernel (K, K~) which satisfies the assumptions of the
Proposition, that is, there exists a skew-symmetric function v on Xj;_;
such that the functon (z,y) — v(z,y1) + v(y,z1) on X is a weight
function of (K, K~). In particular, this weight function is split, hence,
by Proposition 8.28, there exists a (k—1)-pseudokernel L and a (k—1)-
dual kernel (H, H™) such that (K, K~) is the sum of the k-dual kernel
associated with L and of the orthogonal extension (H*, H) of (H, H™).
To conclude, it suffices to prove that (H, H™) is the (k — 1)-dual kernel
associated to some (k — 2)-pseudokernel. We will get this by applying
the induction hypothesis to (H, H~). To this aim, we chose a weight
function w on Xy for (H, H~). By Proposition 8.24, Corollary 8.27
and the assumption, there exists a skew-symmetric function v’ on Xj_;
such that, for any (z,y) in X}, one has

w(x, ) +wly, 1) =0 (x, 1) + ' (y, x1)

(recall that weight functions are symmetric). By Lemma 8.34, there
exists a skew-symmetric function v” on Xj_» such that, for any (z,y)
in X;_q, one has

w(z,y) = (z,y) + 0" (21, 9).
As w is symmetric and v’ is skew-symmetric, we have
1
w(:c, y) = 5(1}//(3717 y) + U”(yh Q?))

Now, the induction assumption tells us that (H, H ™) is the (k—1)-dual
kernel associated to some (k — 2)-pseudokernel. By Propositon 8.17,
(H™, H) is the k-dual kernel associated to some (k — 1)-pseudokernel.
Therefore, (K, K~) also is of this form, which should be proved. O

9. IMAGE DUAL KERNELS

For k > 2, we have introduced in Definition 7.14 the notion of the
image dual kernel of a I'-invariant function w on Xj such that the
symmetric bilinear form ®,, on H is non-negative. We will simply say
that a k-dual kernel (K, K~) is an image dual kernel if one can find
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such a w with (K, K~) being the image dual kernel of w. Note that,
in view of Lemma A.4, this implies in particular that (K, K™) is exact
in the sense of Definitions 5.12 and 5.13.

In the present Section, we will use the characterization of the null
space of the weight map obtained above to give a geometric criterion
for an exact dual kernel to be an image dual kernel.

9.1. Non-negative pseudokernels. We have the following natural

Definition 9.1. (k odd) Let k be an odd integer, k = 2( + 1, ¢ > 0,
and L be a k-pseudokernel. We say that L is non-negative if, for any
x ~ gy in X, the symmetric bilinear form Tﬁy associated to L on Vi (zy)
is non-negative.

Definition 9.2. (k even) Let k be an even integer, k = 2¢, { > 1,
and L be a k-pseudokernel. We say that L is non-negative if, for any
x ~yin X, the symmetric bilinear form r7, associated to L on V{ ()
is non-negative.

Recall that we write Ky, k > 2, for the space of I'-invariant k-dual
kernels and Ly, k > 1, for the space of ['-invariant k-pseudokernels. As
above, we let ;7 C K}, stand for the set of non-negative I-invariant
k-dual kernels. In the same way, we let £ C L stand for the set
of non-negative I-invariant k-pseudokernels. The sets K and £ are
closed convex cones (see Proposition 5.14 in the former case). As in
Section 8, for k > 2, we identify L£;_; with a subspace of K. Note that
there is no obvious relation between IC,': and Ez_l. The main result of
this Section is

Theorem 9.3. Let k > 2 and (K, K~) be in K;f. Then (K, K~)+ L1
contains a unique image kernel (H, H™) and the (k — 1)-pseudokernel
L with (H,H™) = (K,K~) + L is non-negative. In particular, the
following are equivalent:

(i) (K, K™) is an image kernel.

(ii) we have (K, K™)+ L ) NKf = (K, K™).

(iil) we have (K, K~) + L) NK;{ C (K, K~) — L{,.

Let us explain the underlying ideas in this result. Given (K, K~)
as above, we pick a weight function w for (K, K~). Theorem 7.6 tells
us that the pre-Hilbert space of distributions associated to (K, K~)
contains H and that the restriction of ¢®* to HY is equal to @,
In particular, ®,, is non-negative. We let (H, H™) be its image dual
kernel. Theorem 7.17 tells us that w is a weight function for (H, H™).
Therefore, Theorem 8.32 tells us that (H, H~) belongs to (K, K~) +
Lr—1. Now, we would like to prove that (H, H™) actually belongs to
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(K,K~) + £ ,. This is the main difficulty of the proof. Indeed,
from the construction, it is clear that, for any j > k — 1, the dual
prekernel H9 — K7 is non-negative. But saying that the pseudokernel
(H — K, H- — K7) is non-negative (as a pseudokernel) is an a priori
stronger property. Therefore, the proof of this result will require us to
compare several notions of non-negativity.

9.2. Weakly non-negative pseudokernels. We introduce a new no-
tion of non-negativity for pseudokernels which will play a central role
in the proof of Theorem 9.3.

Let L be a k-pseudokernel. In Definitions 8.14 and 8.15, we have
introduced the orthogonal extension of L. If L is non-negative, its
orthogonal extension L' is a non-negative (k4 1)-pseudokernel, so that
all its successive orthogonal extensions L7, j > k, are non-negative.

As in Definitions 5.10 and 5.11, we shall say that a dual prekernel
is non-negative if the associated bilinear forms are non-negative. Let
(K, K7) be the (k + 1)-dual kernel associated to L and let K7, j > k,
be the dual prekernels obtained from (K, K~) by successive orthogonal
extensions. From Definitions 8.9 and 8.10, it is clear that if L is non-
negative, all the K7, j > k, are non-negative dual prekernels.

We shall need a weaker notion of non-negativity for pseudokernels.

Definition 9.4. Let £ > 1 and L be a k-pseudokernel with associated
(k + 1)-dual kernel (K, K~). We say that L is weakly non-negative if
the dual prekernels K7, j > k, are non-negative.

The previous discussion directly gives

Lemma 9.5. Let k > 1. Any non-negative k-pseudokernel is also
weakly non-negative.

The converse of this statement is not true. Nevertheless, for I'-
invariant pseudokernels, we have a criterion for being weakly non-
negative which involves only finitely many kernels.

Proposition 9.6. Let £k > 1 and L be a I'-invariant k-pseudokernel
with associated (k + 1)-dual kernel (K, K~). Then L is weakly non-
negative if and only if L**7! is non-negative and the dual prekernels
K, k< j <2k — 3, are non-negative.

This technical result is the main ingredient of the proof of Theorem
9.3. One of the directions of the equivalence is easier to prove and
actually holds without assuming the kernel to be I'-invariant. Indeed,
it will follow from the following general formula.
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Lemma 9.7. Let k > 2 and L be a k-pseudokernel. For any x in X,

we have .
K?k—2 — L2k_1.
* d(z)—1 Z e

y~z

For any 7 >0 and x ~y in X, we have
KQ(jJrk)fl _ Z LQk*l and K2(j+k) _ Z L2k71'

Y zZ_z
2€87 (zy) z€87+1(x)

In this statement, for 7 > 1 and 2z in S/(zy) we have denoted by
z_ the neighbour of z in S7~!(zy). For j = 0, we write x_ = y and
Yy = 2x.

Proof. As k > 2, we have 2k — 2 > k and Proposition 8.17 says that
K?72is the (2k —2)-predual kernel associated to L?**~2. By Definitions
8.10 and 8.15, we get

1 1
K2k72 — L2k72 — L2k71.
v d(z)—1 Z W d(x)—1 Z e

Yy~ y~z

The other formulae follow from Proposition 8.17 and Corollary 8.21.
O

This gives a first direction in Proposition 9.6.

Corollary 9.8. Let k > 1 and L be a k-pseudokernel with associated
(k + 1)-dual kernel (K, K~). If L**=1 is non-negative, then, for every
j > max(k,2k — 2), the j-dual prekernel K7 is non-negative.

Proof. If k = 1, there is nothing to prove since 2k — 1 = 1. If k > 2,
the result directly follows from Lemma 9.7. t

9.3. Negative edges. To finish the proof of Proposition 9.6, we will
show that for I'-invariant pseudokernels, the converse to Corollary 9.8
holds. In this Subsection, we begin by showing that, if L is a weakly
non-negative k-pseudokernel, for most of the edges (z,y), Li’;_l must
represent a non-negative symmetric bilinear form. This fact will rely
on the following abstract

Lemma 9.9. Let d > 1 be an integer and Vi,...,Vy be real vector
spaces. Set V=V & ---®Vy. Forl <i<d, we let p; be a non-zero
linear functional on V; and q; be a symmetric bilinear form on V;. We
set ¢ to be the linear functional p1+---+pq and q to be the symmetric
bilinear form q + -+ + qq on V. Assume that q is non-negative on
the hyperplane ker ¢ of V.. Then there exists at most one 1 < i < d
such that q; admits negative vectors. In that case the maximal negative
subspaces of q; have dimension one.
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Proof. Assume there exists 1 <17 # j < d and v; in V; and v; in V; with
¢i(vi,v;) < 0 as well as gj(vj,v;) < 0. Then ¢ is negative definite on
the 2-plane W = Rv; @ Rv; C V. As W N ker ¢ is non zero, ¢ can not
be non-negative on ker ¢. Now, let ¢ be such that ¢; admits negative
vectors. For the same reason as above, any negative subspace of V;
must have zero intersection with ker ¢;, hence, it must be a line. O

From Lemma 9.9, we will deduce a geometric property of a certain
set of exceptional edges associated to a weakly negative pseudokernel.
Let N C X; be a set of oriented edges of X. We will say that N meets
the spheres at most once if, for any  in X and h > 1, we have

{z € S"(@)|(2-,2) € N} < 1.
Let £ > 1 and L be a k-pseudokernel. We define the set N of nega-

tive edges of L as the set of those (z,y) in X; such that the symmetric
bilinear form associated to Lfc’;_l on V& ! (xy) has negative vectors.

Lemma 9.10. Let £ > 1 and L be a k-pseudokernel. Assume L is
weakly non-negative. Then the set Ny, of negative edges of L meets the
spheres at most once.

Proof. For £ > 0 and x ~ y in X, we define the set S% (zy) as

Si(zy) = {z} U{z € S' ()l ¢ [y2]}-
This is the boundary of a rooted subtree in X. We also define W*(xy)
as the vector space of all real-valued functions on S (zy) and as usual,

we let Wg(ajy) denote the quotient of W*(xy) by the space of constant
functions and W{(zy) denote the space of those f in W(xy) with
Y e St (xy) f(z) = 0, which we identify in the usual way with the dual

=t
space of W (zy).

Let £ > 1 and L be a k-pseudokernel. Pick x ~ y in X. By Lemma
8.22, we may sce L2~ as a symmetric function on S5~ (zy) x S5~ (zy)
which is zero on the diagonal. Thanks to Lemma 5.1, we associate to
it a symmetric bilinear form 7" on the space WE=t(zy). Note that,
saying that (x,y) belongs to N is the same as saying that rij admits
negative vectors.

Now, let z,y be in X with x # y and let still y_ be the neighbour of
yon [zy|. Set h = d(z,y) > 1 and pick £ > 0. Then, we have a natural
injective linear map HY, : W*(y_y) — V"*(z) defined as follows. For
z in S"(z) and f in W¥(y_y), we set

H.f(2) =] (z) ify € [e2]
HEf(2) =f(y-) else.
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Note that saying that y belongs to [xz] amounts to saying that z belongs
to S (y_y) or that y_ does not belong to [yz]. One still let H., denote

the induced map Wé(y_y) — VhM(:B).
Let still h > 1 and ¢ > 0. For x in X, one easily checks that, as
Sh+t(x) may be written as the disjoint union

Sy = || {ze S Wly- ¢ yl},

yeSh(x)

the space VhH(x) is spanned by the spaces HﬁyWZ(y_y), y € S"(x),
and that the kernel of the surjective map

P #,: @ W (y_y) » V" (@)

yesh(z) yeSh(x

is the line spanned by the vector @ye sh(z) Ly_- BY duality, this tells us
that the adjoint map

@H“‘ h+€ %@Woyy

yeSh(z) yeSh(z)

is injective and that its range is the set of vectors @yeSh(:p) fy in
D, csni Wo(y-y) with 3= i,y fy(y-) = 0. Therefore, we are in the

same situation as in Lemma 9. 9 We will now introduce symmetric
bilinear forms in order to precisely apply this Lemma.

Let £ > 1 and L be a weakly nonnegative k-pseudokernel and still
let K7, j > k denote the associated dual prekernels. By Lemma 8.22
and Lemma 9.7, for any h > 1 and z in X, we have

2k+2h—2 __ E k—1,x\x_ +L
qZ - (H ) T’y Y
yesh(z)

2k+2h—2 K2k+2h—2
T

where ¢ is the symmetric bilinear form associated to
on V§th=1(x). By assumption, this symmetric bilinear form is non-
negative. By Lemma 9.9, at most one of the symmetric bilinear forms
7“+L w Y€ Sh(x), admits negative vectors, which should be proved. [

9.4. A mixing argument. In this Subsection, we will strenghten
Lemma 9.10 by showing that, if L is a weakly negative I'-invariant
pseudokernel, the set Ny of its negative edges must be empty. This
will require us to study a certain linear operator acting on the space of
[-invariant functions on edges.

Thus, let F} be the vector space of all I'-invariant functions on the
set of edges X; of X. As I'\X is finite, F} has finite dimension. We
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define an endomorphism of F; by setting, for ¢ in F} and x ~ y in X,

To(x,y) = m > oy, 2).

e
Note that 71 = 1.

We will start by describing the adjoint operator of T'. To this aim,
we will need to define a convenient scalar product on Fj. In order to
deal with the case where I' stabilizes an edge of X, we will use the
following elementary combinatorial result:

Lemma 9.11. Let A be a set and G be a group acting on A such
that, for any a in A, its stabilizer G, in G is finite. Then, for any
non-negative G-invariant function @ on A2, we have

1 1 _
Z m@(aab): Z ’Ga|<ﬂ(a),

(a,b)eG\A? acG\A

where, for any a in A, p(a) =), 4 p(a,b).

Recall that, with the notation of the Lemma, if ¢ is a G-invariant
function on A, }° 5\ 4 (a) means the sum of ¢ on a system of repre-
sentatives in A of the elements of G\ A (when this makes sense). See [2]
for related volume formulae in quotients of trees by discrete subgroups.

For any z in X, we still denote by I', the stabilizer of x in I', which
is a finite subgroup of I'. We define a scalar product on F} by setting,
for any ¢, in F7,

T, nT,|”
1
= E T |§ o(x, y)(x,y),

e\ X y~z
where the latter equality follows from Lemma 9.11.

Lemma 9.12. The adjoint operator of T with respect to the scalar
product on Fy is the operator T such that, for any ¢ in E and x ~ y
m X,

1
Th(z,y) = d@) =1 ; Y(z, ).

z#y
Note that again 771 = 1.
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Proof. Let temporarily S stand for the operator defined in the state-
ment of the Lemma. For any ¢, in F}, we have, by Lemma 9.11,

UERTESDY yrxrlwryyd(y)l— =D ey 2z, y)

(z,y)er\ X1 j;g
1 1
=Y w2 e ().
Ty d(y) — 1 7, 2
yelM\ X Y
r#z

The same argument shows that the latter quantity also equals (p, Sv),
which should be proved. O

We are now ready to prove

Lemma 9.13. Let N C X be a set of oriented edges of X which meets
the spheres at most once. If N is I'-invariant, it is empty.

The intuition of the Lemma is that, as the graph I'\ X is a discrete
analogue of a compact negatively curved Riemannian manifold, the
images in I'\ X of large spheres in X must satisfy an equidistribution
property. Let us make this precise.

Proof. As every x in X has at least three neighbours, for any n > 1,
we have, for x ~ y in X,

T"1n(z,y) <27"{2 € S"(y)(2-, 2) € N} <277,
hence T"1y — 0 in F}. Now, as 771 = 1, we get (1,1y) = 0, that

n—oo

is by definition,

S L dmy) =0
|Fmey|

(z,y)el\ X1

and N = (). O
As announced, we can now conclude the

Proof of Proposition 9.6. Let L be I'-invariant k-pseudokernel with as-
sociated dual prekernels K7, j > k.

Assume the dual prekernels K7, k < j < 2k — 3 are non-negative. If
the (2k — 1)-pseudokernel L1 is non-negative, by Corollary 9.8, the
dual prekernels K7, j > 2k — 2 are non-negative, hence L is weakly
non-negative.

Conversely, assume L to be weakly non-negative and let Ny be its
set of negative edges. By Lemma 9.10, Ny meets the spheres at most
once. Now, as L is ['-invariant, Ny, is a ['-invariant subset of X;. Thus,
by Lemma 9.13, Ny, is empty, which should be proved. O
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9.5. A geometric criterion for image kernels. We will now use
Proposition 9.6 to prove Theorem 9.3. A key argument in the proof
will be

Lemma 9.14. Let k > 2 be even, L be a (k — 1)-pseudokernel and
(K, K~) be a non-negative k-dual kernel. Assume that the k-pseudok-
ernel L™ is non-negative and that the k-dual kernel (K, K~) + L is
exact. Then L is non-negative.

Proof. Set { = g As usual, for z in X denote by ¢& the symmetric

bilinear form associated with K, on V{(z) and, for z ~ y in X, denote
by qmy and rL , the symmetric bilinear forms associated to K, and Ly,
on Vit (zy). Note that the symmetric bilinear form 7“5;

L, on V{f(z) is defined by
= Sk,

As (K, K™) + L is exact, we have
(Iﬁ;l* qx +Z IK 1**L qu —|—’f’ _{_,ryx’

zZ~T

assocnated to

which gives, by Lemma A.6,
“1x + -
(L ")elay +75,) = dy + 70
As LT is non-negative, by Lemma A.5, we get

(Iﬁgl’*)*qx (]:ﬁy b *) < qacy + Tym?

hence

L -1\ K K-
Tyx > ([xy )*qx - qa}y :

As (K, K~) is non-negative, we have (15, 1*),qf > ¢X~ and therefore

ri, is non-negative, which should be proved. U

Note that, if k is even and if L is a k-pseudokernel, L is non-negative
if and only if LT is. Therefore, by an easy induction argument which
relies on Propositon 5.16 and Proposition 8.17, we get

Corollary 9.15. Let k > 2, L be a (k — 1)-pseudokernel and (K, K™)
be a non-negative k-dual kernel. Assume that the j-pseudokernel L7 is
non-negative for some j > k—1 and that the k-dual kernel (K, K~ )+ L
1s exact. Then L is non-negative.

Together with Proposition 9.6, this gives
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Corollary 9.16. Let k > 2, L be a weakly non-negative I'-invariant
(k—1)-pseudokernel and (K, K~) be a non-negative I'-invariant k-dual
kernel. Assume that the k-dual kernel (K, K~) + L is exact. Then the
(k — 1)-pseudokernel L is non-negative.

We are now ready to conclude the

Proof of Theorem 9.3. Let (K, K~) be as in the setting a [-invariant
non-negative k-dual kernel. As in Proposition 5.18, we let L% be the
space of distributions associated to (K, K~) equipped with its natural
non-negative symmetric bilinear form ¢%. We chose a I'-invariant
weight function w for (K, K~). By Theorem 7.6, we have Hy C L*%
and the restriction of ¢™**" to HY is the bilinear form ®,, from Section
3. We let (H, H™) be the image k-dual kernel of ®,,, as in Definition
7.14. By Theorem 7.17, w is a weight function of (H, H™). Therefore,
by Corollary 8.33, there exists L in Ly with (H,H™) = (K, K~)+ L.

We claim that (H, H ™) is the unique image kernel in (K, K~)+ L
indeed, let w’ be a symmetric I'-invariant function on Xj such that
®,, is non-negative on Hy. If the image dual kernel of w’ belongs to
(H,H™ )+ L1, by Corollary 8.33 and Lemma 3.13, we have ®,, = &,
hence the image dual kernel of ®,, is (H, H™).

We will now show that the (k — 1)-pseudokernel L is non-negative.

First, we show that it is weakly non-negative, as in Definition 9.4.
As usual, for j > k — 1, we set H? and K7, to be the j-dual prek-
ernels associated to (H,H~) and (K, K~) by successive orthogonal
extensions. We claim that H/ — K7 is a non-negative dual prekernel.
Indeed, assume that j is even, 5 = 2¢, £ > 1. Fix x in X and let, as
is Subsection 5.4, N’ be the natural linear operator V*(z) — D(0.X).
By definition, we have ¢/%~ > (N )*¢X" on L¥X" and, by Lemma
715, ¢’ = (N%*),®,. Thus, we get ¢/’ > ¢/’ as required. The proof
is analoguous in the odd case.

Now, as (H,H™) is exact (see Lemma A.4), and (K, K~) is non-
negative, by Corollary 9.16, L is a non-negative (k — 1)-pseudokernel,
that is, L belongs to the cone £;. This finishes the proof of the first
part of the Proposition. The second part follows easily. 0

9.6. The harmonic kernel. As an example of the use of Theorem
9.3, we will now apply it to show that the harmonic kernel (x,x™)
from Subsection 5.5 is an image kernel. Recall that this 2-dual kernel
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is defined by

_ d(z) —1 1
Xz(y,z)—QW, reX, y#ze€S (v),

Xaoy(®,y) =1, z~yelX.
By Proposition 5.21, the harmonic kernel is Euclidean.
Proposition 9.17. The harmonic kernel is an tmage kernel.

The proof will use the following elementary extension of Lemma 5.20,
which follows from a straight forward computation using Lemma A.10.

Lemma 9.18. Let A be a finite set with at least two elements, Vy be
the vector space of functions with zero sum on A and u be a positive
function on A. We set q to be the symmetric bilinear form

(f:9) = ) _ula)f(a)g(a)

acA

on Vy. Then, for every a in A, if e, is the evaluation linear functional
f f(a) on Vy, one has

(€a)xq = u(a) (1 - u(i)s) R ;

where S =3, 4 ﬁ

Proof of Proposition 9.17. By Theorem 9.3, we must show that, if L is
a [-invariant non-negative 1-pseudokernel such that the 2-dual kernel
(x, X~ ) + L is non-negative, then L = 0. Now, for any z ~ y in X,
the space V' (zy) is a line spanned by the vector 1, — 1, and the linear
operator 9" sends a function f in Vi () to f(y)(1, — 1,). Therefore,
by Lemma 5.20, Definition 8.9 and Lemma 9.18, we must show that, if
u is a ['-invariant non-negative function on X; such that, for any x ~ y
in X, one has

9.1) wu(x,y) + ———

where

then necessarily u = 0.
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Let us prove this claim. We let v and S be as above. From (9.1), we
get, for (z,y) in X7,

(9.2)
1+ u(z,y) + u(y, ) > (u(x,y) + %) (u(y,az) + ﬁ) S(x).
By setting .
S(x7y> = % U(Q’I,Z) + d(dx()x;1 )
we have

(u(x,y) + %) S(x) =1+ (u(x,y) + ﬁ) S(x,y)

and (9.2) becomes

1— ﬁ +u(zy) > (U(w,y) + M) (U(y, ) + %) S(z,y),

d(z) d(x)
or, equivalently, as u(zx,y) + d(d”?x;l > 0,
1
9.3 >uly,r) + ——.
0% Sty =00 aw)
Set m = max(y yex, w(x,y). For z ~y in X;, we have
dlr)—1
S,y > 2L
m+ S
d(z)
hence, from (9.3),
Ll my S m_, 1
m = .
dz) = d(z)—1 diz)—1 d(x)
As d(z) > 3, we get m = 0, which should be proved. O

We have just proved that the harmonic kernel is an image kernel or,
equivalently by Corollary 7.18, that the space H§ is dense in the Hilbert
space of distributions HXX  associated to (x, x~). In Proposition 10.13
below, we will show that these two spaces are actually equal.

10. ADMISSIBLE KERNELS

We have described the image kernels. These are the dual kernels
which are the image kernels associated to a non-negative bilinear form
®,,, where w is a symmetric I'-invariant function on X;. We will now
focus on the case where ®,, is coercive, that is where ®,, defines on Hy
the same topology as the standard scalar product.



124 JEAN-FRANCOIS QUINT

We will need to use again part of the language that was introduced in
Section 4. Recall in particular that a k-Euclidean field is a k-quadratic
field whose associated bilinear forms are positive definite (see Definition
4.17). To such a field, we have associated a k-dual kernel in Section 5,
where such dual kernels are called Euclidean dual kernels (see Definition
5.12 and Definition 5.13). The data of a Euclidean field or of the
associated Euclidean dual kernel are equivalent.

Definition 10.1. Let £ > 2 and p be a [-invariant k-Euclidean field,
with associated Euclidean k-dual kernel (K, K~). We shall say that
p and (K, K~) are admissible if there exists a symmetric [-invariant
function w on Xy such that &, is coercive and (K, K~) is the image
dual kernel of w.

The purpose of this section is to give a criterion for a I'-invariant
Euclidean field to be a admissible which only involves finite-dimensional
spaces.

10.1. Convolution operators. In this subsection, we relate the fact
that a Fuclidean field is admissible with the fact that a certain convo-
lution operator is bounded in ¢*(X7). This will require us tu use again
the language of Section 4.

Recall that X, stands for the space of pairs (z,y) in X? with z # y
and X, for the pairs (z,y) in X? with z ~ y. If ¢ is a function on
X, we will associate to ¢ an operator P, acting on skew-symmetric
functions on X as follows. Given a finitely supported skew-symmetric
function ¢ on X;, we set, for (z,y) in X,

(10.1) Po(wy)= D ol a)pba)— Y ely,a)ba)

(a,b)EXl (a,b)eXl
y,b€[zal z,b€[yal
1
= 5(p(@y) + oy, 2))d(@, y),

which by construction is a skew-symmetric function on X;. Note that,
if o is symmetric, for any x # y in X, if 1 and y; are the neighbours
of z and y on [zy], we have

(10.2) Pp(1yy, — 1yy)(z,21) = (2, ).

The operator P, was defined in order to warrant this latter property.

Note also that if ¢ is I'-invariant, the operator P, commutes with the

action of I'. In this case, we call P, the convolution operator of ¢.
We let £%(X;) denote the Hilbert space of skew-symmetric square-

summable functions on X;. By (standard) abuse of language, we shall

say that P, is bounded on ¢2 (X;) if there exists a constant C' > 0 such
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that, for every finitely supported skew-symmetric function 1 on Xj,
one has [P, < C [,

Now, let £ > 2 and p be a k-Euclidean field. In Section 4 (see in
particular Subsection 4.6), we have associated to p a symmetric func-
tion ¢p°. This function describes the scalar product obtained from p

on D(9X) by successive orthogonal extensions. Here comes a criterion
for p to be admissible.

Proposition 10.2. Let k > 2 and p be a I'-invariant k-Fuclidean
field. Then p is admissible if and only if the convolution operator Ppe

is bounded in (*(X).

Proof. First assume that p is admissible. Then, by definition, there ex-
ists a [-invariant symmetric function w on Xj such that the Euclidean
dual kernel (K, K~) associated to p (see Subsection 5.1) is the image
kernel of @, (see Definition 7.14). Then, let © be the self-adjoint oper-
ator of Hy which represents ®,,. As ®,, is coercive, © is invertible. For
0 in D(0X), let 0* be the element of Hy which represents the bounded
linear functional 7'+ T'(f) on HY . By Theorem 7.6 and Theorem
7.17, saying that (K, K~) is the image kernel of ®,, amounts to saying
that, for any 6,6, in D(0X), one has

poo(91792) = <@719T79§>-

Now let P be the linear map defined in Subsection 3.1: by Lemma 3.4,
P is an isomorphism from Hg onto a closed subspace of 2 (X;). Let
IT be the orthogonal projection from ¢ (X;) onto this subspace. By
construction of the map P, for any x ~ y in X, for any 7" in Hf, we
have

1
(10'3) T(]'Uzy) = PT(QS, y) = <PT7 1(as,y)> = §<PT7 1(x,y) - 1(y,r)>a

hence P(17, ) = I1(3(1(zy) — 1ya)). Let T be the bounded operator
of 2 (X}) such that, for ¢ in ¢? (X;), we have Tv) = P(O~T) where
T is the distribution 7" in HY with P(T") = IIy). By construction, for

any a ~ b and x ~ y in X with b,y € [az], we have

(T(Lap) — L) Ly — o)) = 4™ (Lo, 1v,,)
= —4¢p%(a,7) = =2(Ppee (1(ap) — 1o0): (Le) — L))

where we have used (10.2). By linearity, we get 2Pje0tp = =T for any
skew-symmetric finitely supported function ¢ on X; and hence Py is
bounded.

Let us keep the same notation and prove the converse statement. We
now assume that P is a bounded endomorphism of 2 (X1). Note in
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particular that (10.2) implies that P, is self-adjoint. Besides, by
the description of the space PHY in Lemma 3.4 and still by (10.2), a
direct computation shows that the range of Ppe. is contained in PHy'.
Therefore, there exists a bounded self-adjoint operator = of H{ such
that, for any ¢ in % (X)), one has P,xt = P(ZT) where T is the
distribution 7" in Hy with P(T) = I[Iyp. Pick 6 in D(0X). By (10.3)
above, as the 1y,,, © ~ y € X, span D(0X) as a vector space, we
can find a finitely supported skew-symmetric function 1 on X; with
[Ty = PO*. Now, (10.2) gives

poo(g’ 9) = _<P902°w7 ¢> = —<EH*, 6.*>
In particular, there exists C' > 0 such that
(10.4) p>(6,0) < C|16"|
for any 6 in D(0X).

Let (K, K~) be the Euclidean k-dual kernel associated to p as in
Subsection 5.1 and HSX™ be the Hilbert space of distributions as-
sociated to (K, K~) as in Subsection 5.4. We claim that the latter
inequality implies the inclusion HXX~ C HY as spaces of distribu-
tions. Indeed, by Corollary 5.19, the space H¥X™ is exactly the
topological dual space of the space D(0X), equipped with the scalar
product p®. Hence, if T is a distribution in H*X" we can find
C" > 0 with T(0)* < C'p>(0,0), 0 € D(0X). From (10.4), we get
T(0)* <CC’ HH*H2, hence, for any skew-symmetric finitely supported
function ¢ on X;, (PT,4)% < CC' ||IIy||* < CC"||4||*. Therefore, PT
belongs to ¢2(X7), that is, T belongs to HY as claimed.

By Theorem 7.6, we know that we have HY C H® " and that the
inclusion map is bounded. We just proved that this inclusion map is
surjective, so that by the open mapping theorem it is an isomophism of
Banach spaces. Therefore, still by Theorem 7.6, if w is a weight func-
tion of (K, K~), the bilinear form ®,, is coercive. Finally, we note that,
by Lemma B.7, as the dual kernel (K, K~) is exact, the bilinear forms
associated to (K, K~) are the images of the scalar product of H%X"
by the natural surjective maps (see Definition 5.12 and Definition 5.13
for the notion of an exact kernel). Now we just proved that H*X" was

equal to Hy and that the scalar product was a coercive bilinear form
®,,, so that by definition, the Euclidean field is admissible. O

10.2. Quadratic pseudofields. We will now look for a condition to
ensure that the convolution operator associated to a quadratic type
function obtained by successive orthogonal extensions is bounded. This
condition will use a recursive formula for such quadratic type functions.
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To state this formula, we will need to use a new vector space which
can be seen as a concrete version of the dual space of the space L of
[-invariant k-pseudokernels.

Recall that, for any ¢ > 0 and any z in X (resp. any  ~ y in X),

the space Ve(x) (resp. Vz(xy)) is the quotient space of the space of

functions on S*(x) (resp. S*(zy)) by the line of constant functions.
Fix k> 1. If kisodd, k =20+ 1, ¢ > 0, a k-quadratic pseudofield is

a family (szy)(w4)ex, such that, for any (z,y) in Xi, s,y is a symmetric

bilinear form on Vg(xy). If £ is even, k = 2¢, ¢ > 1, a k-quadratic
pseudofield is a family (Szy)(y)ex, such that, for any (z,y) in X, sy

is a symmetric bilinear form on Vé(ac). The space of all I'-invariant
k-quadratic pseudofields is denoted by M. Let us identify M} with
the dual space of Ly.

Let s = (Sgy)(@yex, be in My and L be in Ly, that is s is a I'-
invariant k-quadratic pseudofield and L is a ['-invariant k-pseudokernel.
For any (z,y) in X;, L defines a symmetric bilinear form T':%y on the
dual space of the space where s, is defined. By making use of the
quadratic duality from Appendix C, we get a well-defined real number
(rk,, szy) which comes from the duality between these spaces. Now, to
define a duality between £ and My, we need to average these numbers
over I'\ X;. Asin Subsection 9.4, we just have to be careful to deal with
the case where I' fixes some edges in X.

Recall that, for any « in X, we denote by I', the stabilizer of x in I,
which is a finite subgroup of I'. If s is in M} and L is in L, we set

1 L
(10.5) (Lisy= > m(rw Say)-
(w,y)EF\Xl
By Lemma 9.11, we can also write

(10.6) Lsy= 3 |F1z| S L, 5.

e\ X Y~z

From now on, we shall use this duality to identify M}, with the dual
space of L.

As an example of the use of Formulae 10.5 and 10.6, we will com-
pute the adjoint operator of the orthogonal extension of I'-invariant
pseudokernels which is a linear map £, — Lgy1.

Let s = (Say)(@y)ex, be a (k4 1)-quadratic pseudofield. We define
the reduction s~ of s which will be a k-quadratic pseudofield. If k is
odd, k =20+41, ¢ > 0, we let s~ be the k-quadratic pseudofield defined
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S;y = (Iﬁy>* Z Szzs (x,y) € X;.
If kis even, k = 2¢, / > 1, we let s~ be the k-quadratic pseudofield
defined by
S;y = (‘]ﬁy)*syzv (x7y) S Xl.

As announced, we get

Lemma 10.3. The reduction operator s — s~ , Myi1 — My is the
adjoint operator of the orthogonal extension operator L — Lt L, —

£k+1.

The proof is closely related to the one of Lemma 9.12.

Proof. Let s be a I'-invariant (k 4 1)-quadratic pseudofield and L be a

[-invariant k-pseudokernel, with associated bilinear forms (14y) (2 x, -
First assume k is odd, £ = 20 + 1, ¢ > 0. By the duality formula

(10.6), (L™, s) is the sum over I'\ X of the I'-invariant function on X

1
T T Z<T;—y, Suy)-

y~z

~a(I15%)*r,., Thus,

By definition, we have, for any (z,y) in Xy, r}, = Zz#
27y

for z in X, we have

Z<T;_y’ S$y> = Z <(I£;*)*TIZ, Sacy>

= Z <TCEZ7 ([ﬁz)*sxz) = Z(rxm S;z>7
Y,z~T 2T
y#£z

where the second equality comes from Lemma C.2. Therefore, again by
the duality formula (10.6), (L™, s) = (L, s~ ), which should be proved.

Assume now k is even, k = 2¢, ¢ > 1, so that we now have, for (z,y)
in Xy, rf, = (J37)*ray. By the duality formula (10.5) and again by
Lemma C.2, (LT, s) is the sum over I'\ X; of the I'-invariant function
on X;

1

1
T
I, NLy

(35, y) = Jgf}g*)*rxy’ Sxy) = mvyl‘? (Jgfcc)*sxy>7

which is also equal to (L, s7). O
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10.3. Quadratic transfer operators. Recall that our aim is to give
a recursive formula for quadratic type functions obtained by successive
orthogonal extensions. This formula will involve the powers of a linear
operator acting on I'-invariant quadratic pseudofields that we will now
define. We call these operators the quadratic transfer operators as
they are analoguous to the transfer operators of hyperbolic dynamics
studied for example in [29].

Let £ > 2 and p be a k-Euclidean quadratic field (which we do not
assume to be I'-invariant for the moment).

Let z,y be in X with x ~ y. With p (and its orthogonal extensions)

come Euclidean structures on the spaces Vé(x) and Ve(xy), for any ¢ >
0. In particular, the injective linear operators [ﬁy : Vg(:zry) — V“l(x)

and J., Ve(:v) — Ve(xy) admit adjoint operators with respect to
these Euclidean structures. We denote these adjoint operators as

]ﬁgp : VZH(x) — Vz(xy)
and Jf;jp : Vz(xy) — Vg(x).

These are surjective operators which heavily depend on p.
Let us now define the quadratic transfer operator 7},. Again, we need
to split the definition according to the parity of k.

Definition 10.4. (k even) Let £ > 2 be an even integer, k = 2¢, { > 1
and p be a k-Euclidean field. If s = (S4y)@y)ex, is a (k — 1)-quadratic
pseudofield, we set, for any (z,y) in X7,

(Tps)ay = Y (LML) s

zZ~T

27y

Definition 10.5. (k odd) Let k£ > 3 be an odd integer, k = 20+1,¢ > 1
and p be a k-Euclidean field. If s = (s4y)(2,4)cx, is a (K — 1)-quadratic
pseudofield, we set, for any (z,y) in X7,

(T58) ey = (JﬁpJﬁy)* Z Syz-

zy
zF#x
We will show later that, when p is I'-invariant, it is is admissible if
and only if the spectral radius of 7}, on Mj_; is < 1. As a first step
towards this result, let us study the behaviour of 7, under orthogonal
extensions.

Lemma 10.6. Let k£ > 2, p be a k-Euclidean field with orthogonal
extension p* and s be a k-quadratic pseudofield. Then, if k is even,



130 JEAN-FRANCOIS QUINT

k = 2(, for any (z,y) in Xy, we have

(Tp+8)ay = (Iﬁg;l’Tp)*S;x'

If kis odd, k =20+ 1, for any (z,y) in X1, we have
(T 8)ay = (Jﬁgp)* Z Spzt

zZ~T

2#Y

In both cases, this gives in particular (Ty+s)™ = Ty(s™).

Corollary 10.7. Assume p to be I'-invariant. Then the spectrum of
Tp+ in My, is the union of {0} and the spectrum of T, in My_;.

Proof. By Remark 8.16, the orthogonal extension operator is injective
on pseudokernels. Therefore, by Lemma 10.3, the reduction map wy, :
M, — My is surjective. Now, Lemma 10.6 implies that TpJr is 0 on
the null space of w;, and that the endomorphism induced by 7,+ on
M/ ker wy, >~ My, is conjugated to T,. The result follows. O

The proof of Lemma 10.6 uses

Lemma 10.8. Let k£ > 2 and p be a k-Euclidean field. For any ¢ > %,
for any x ~ y in X, we have

Lip 7€ _ 14—170—1,ip
Syl Ty = Ly Loy o'

For any { > %, for any x in X and any y, z in S*(x) with y # z, we
have

Jétert — gt gbte

rz Txy :

xzYxy

Proof. In the first case, this is a direct consequence of the fact that, un-

der the assumptions, the scalar product of the space Ve(xy) is obtained
from the scalar products on the subspaces Jﬁyvg(a:) and fovg(y) by
orthogonal extension.

In the same way, in the second case, this follows from the fact that the
scalar product of the space v (x) is obtained from the scalar products
on the subspaces Iﬁyve(xy), y ~ x, through orthogonal extension. [J

Proof of Lemma 10.6. Assume k is even, k = 2(. For x ~ y in X, by
Lemma 10.8, we have Jfg”Jﬁy = Iﬁ;llﬁgl’”’. Plugging this relation in
the definition of T+, we get

(Tye8)ay = (I5 e V)Y sy = (I M) (L)) sy
z~vy Yy

= (I, "™")*s,..
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This gives
(Tye )y = (e, VD (Tyes)as = (I, ) Y (LM 5% = (Tys )y

Now, assume k is odd, £k = 2¢ 4+ 1. For z in X, again by Lemma
10.8, we have I Tple = JZ J&P Now, the deﬁnltlon of T+ gives

Tz 1Yy
(T 8)ay = (JP)" D (S0 520 = (JofP)* Y s
Thus, we get
(Ty+5) 7y = (o) (Tt 8)ye TG sy = (T )y
z~y
ZF#x

4

10.4. Computing quadratic type functions. We will now give a
formula for the quadratic type function associated to a Euclidean field.
Thanks to this formula, we will be able to relate the question whether
the associated convolution operator is bounded to the domination of
the spectral radius of the quadratic transfer operator.

Proposition 10.9. Let k > 2 and p be a I'-invariant k-FEuclidean field.
Assume that the associated quadratic transfer operator has spectral ra-
dius < 1 on the finite-dimensional vector space My_1 of I'-invariant
(k — 1)-quadratic pseudofields. Then p is admissible.

As we already said, the converse is also true, but we will prove it
only later.

We now give our formula for the quadratic type function. To state
it, we need to introduce a new notation in order to avoid some possible
confusions. For x # z in X and ¢ = d(z,z), we let 1 denote the

characteristic function of {z}, viewed as an element of the space Vé(a:).
In the same way, for z ~ y and z in X, if £ = min(d(z, 2),d(z,y)), we
let 1%¥ denote the characteristic function of {z}, viewed as an element
of the space Ve(xy)

Lemma 10.10. Let k > 2 and p be a k-Fuclidean field. Let a,b be in
X with j = d(a,b) > k and let co = a,cq,...,c; = b be the geodesic
path from a to b.

If k is even, k =20, £ > 1, we have
(10.7)
(P;O(a,b> _ _pcz(lce [@ 1 [Z 1Tp[€ 1 IZ 1 IE 1,tp 1;,7'—8).

a ? TCpCpy1 T Co41Ce Cz+1cz+2 Cj—0—1Cj—p Cj—4Cj—p—1
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If kis odd, k =20+ 1, { > 1, we have

(10.8)  ¢p7(a,b) = —Pegeey, (17,

Jf £,Tp 4 R 4 4ip 101'—13—103'—4)
Co+1Ce "~ CoCry1 ™ CopaCot Cj—pCj—p—1"Cj—g—1Cj—g~ b :

Proof. We fix j and we prove this result by descending induction on
k with 2 < k < j. For k = j, the result is the very definition of
@ (a,b) = @p(a,b). Now, assume k < j — 1 and the result is true for
k+1. By definition, we have p>°(a, b) = Toge (a,b), so that we can apply
the induction assumption to compute this number.

If k is even, k = 2{, the induction assumption tells us that —2°(a, b)

. CyC,
is the pf,,. -scalar product of the vectors 1,""" and
{4 L,1p 4 R {4 L,1p Cj—t—1Cj—¢
JCZ+1CZ JCZCZJrl JC£+202+1 chflcj—éfl ']ijzﬂcjfe lb

. —
in the space V' (cocpy1). Now, we have

cecor1 — Tb ) Cj—t—1Cj—t _ 7L Cj—¢
1 JCZCZ+110 and 1, ch_écj_g_llb .

Therefore, by the definition of the adjoint operators, —(pgo(a, b) is the
De,-scalar product of the vectors 15 and

Lip L Lip 7l R {4 £,1p £ Cj—sp
JCeCe+1JCe+1CeJCzCz+1JCe+zcz+1 Cj—écj—é—lch—e—lcj—ijcj—lcj—l—llb
. —t .
in the space V' (¢;). By Lemma 10.8, for ¢ < h < j — ¢ — 1, we have
gbiv gt _ -1 pt-Lip
ChCh41 Y Cht1Ch ~ ~ChRCh41” Cht1Ch’

and (10.7) follows.
In the same way, if k is odd, & = 2¢ + 1, the induction assumption
tells us that —pp°(a, b) is the pf -scalar product of the vectors 15" and

£ £,Tp 1 . [f £,Tp 1Cj—e—1
Ce+1Ce4+2" Ce42Co41" Co42C043 Cj—¢—2Cj—f—1"Cj—g—1Cj—¢—2"b

in the space VZH(CEH). As we have

coy1 — T¥ CoCot1 Cj—t—1 _ ¥ Cj—t—1Cj—¢
17 ICU—chla and 1, ch—l—lcj—zlb ,

by the definition of the adjoint operators, —¢5°(a, b) is the pe,c,, ,-scalar

coc
product of the vectors 1, " and
[esz {4 £7Tp £ e ][’Tp {4 1Cj_g_1Cj_[
Cltlcy ™ Co4+1CL+27 Co4+2C0+17 Co42C043 Cj—f—1Cj—4—2"Cj—¢—1Cj—¢ b

in the space Vg(cwgﬂ). By Lemma 10.8, for / < h < j —{—2, we have

et gt _ gt 0,tp
Ch+1Ch "~ Ch4+1Ch+2 Ch+1Ch ¥ Ch41Ch+2

and (10.8) follows. O



ADDITIVE REPRESENTATIONS 133

The main idea of the proof of Proposition 10.9 is to use quadratic
transfer operators in order to give a simpler form of (10.7) and (10.8).

Proof of Proposition 10.9. Assume k is even, k = 2¢, £ > 1 and let us
define a I'-invariant (k — 1)-quadratic pseudofield s. For any « ~ y in
X, we set smy to be the symmetric bilinear form on Veil(xy) such that,
for f in A ( y), one has

se(f )= > pU5L 1) = > gy (f. 15, 011,)%

acSt(x) acSt(x)
y¢[zal y¢[zal

By using Definition 10.4, where the quadratic transfer operator is con-
structed, and Lemma 10.10, we get, for any b in S*(y) with = ¢ [yb],
for any n > 0,

(T38)ay(Iy, "1, I P1) = Y 0p%(a,b)%,
aesk+n+1(b)
[zy]Clab]

Therefore, if T}, has spectral radius < 1, we can find p < 1 such that
> Mg (a,h)? < o0
(a,b)ET\ X,

(recall that I'\ X is finite). By Haagerup inequality (see Proposition
D.3), the convolution operator Py is bounded in ¢* (X;). By Propo-
sition 10.2, the Fuclidean field p is admissible.

Assume k is odd, k = 2¢+ 1, £ > 1. Now, we define a I'-invariant
(k — 1)-quadratic pseudofield s by setting, for every x ~ y in X and

every f in Ve(x),
sep(£ )= pey(JL 1) = ) py(fI51)2

beSt(y) beSt(y)
x¢ [yb] xE[yb]

Now, using Definition 10.4 and Lemma 10.10 yields, for any a in S (x)
with y ¢ [za], for any n > 0, if z is the neighbour of x on [az],

(T )ey (T, ML) = Y (a0
besktntl(q)
[zy]C[ab]

As above, if T}, has spectral radius < 1, we can find p < 1 such that
> e (a,b) < oo
(a,b)EF\X*

and Proposition D.3 and Proposition 10.2 give the conclusion. 0



134 JEAN-FRANCOIS QUINT

10.5. The harmonic field. As an example and for further use, we
will apply the previous constructions and results to the harmonic kernel
from Subsections 5.5 and 9.6.

We start by giving a more explicit definition of the adjoint operators
in case k = 2. We keep using the notation of Lemma 10.10.

Lemma 10.11. Let p be a 2-FEuclidean quadratic field. For any x ~ vy
in X and any f in Vl(:c), we have

[0t — p&? 1‘2 o
Y p:?y(lyyalyy) Y
Proof. Indeed, in case k = 2, v (zy) is a line which is spanned by 13Y,

I, sends 13¥ to 17 and we have by definition p, (17, 17) = py, (137, 153%

Corollary 10.12. Let p be a 2-Fuclidean field. Then the associated
quadratic type function p° on X, may be computed as follows. Fix
x#yinX.

If d(x,y) = 1, one has p°(x,y) = ¢p-(z,y) = pg, (15¥,13¥).

If d(z,y) = 2, one has ¢;°(2,y) = ¢p(v,y) = —p.(13,1;), where z
is the middle point of [xy].

In general, if j = d(z,y) > 2 and © = zp,21,...,2; = y is the
geodesic path from x to y, one has

I op(zho1, 2hea)
Hij Pp— (Zm Zh+1)

These formulae are closely related to the ones appearing in the work
of Mlotkowski [27].

o (z,y) =

Proof. For j = 1,2 this is the definition of ¢7°. Now, for j > 3, note
that we have, by Lemma 10.11,
pzj—l(léjil’ 12:;) Zj-1%j-2
— Zj_12j—2 q72j—1Zj—2\ - Z;_
ij,12j72(13§'72 ! 7122‘72 ! ) 7
— SOP(Z]'—Q’ y) 1ZJ:71Zj72
wp-(2j-2,2-1) 77

0,ip Zj—1 __
Izj71zj721y o

)

where, in the second equality, we have used the relation 1Z7,77% +

127177 = 0. We obtain

0 ot qEe ep(2j-2,Y) 122
2j_2%j—1" zj_12j—2Y ] ] Zj—1"
j—2%j j—1%j5 Dp- (z]_% Zg—l) J
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By Lemma 10.10, this gives

©op(Zj—2,Y)
p-(2j-2,2j1)

O (r,y) = ¢ (, 2j-1)
whence the result. O

Now, we go back to the harmonic kernel (x, x~) of Subsection 5.5.
We let 7 be the associated 2-Euclidean field, which we call the harmonic
field.

Proposition 10.13. The harmonic field is admissible. The associ-
ated quadratic transfer operator T, on the space My of I'-invariant
1-quadratic pseudofields has spectral radius < %

Proof. We will apply Proposition 10.9. To this aim, we need to say more
on the quadratic transfer operator T,. Let s be a 1-quadratic pseud-
ofield and, for (r,y) in Xi, set u(zy) = s4,(13%,15Y) = 54, (137, 137).
Let p be a 2-Euclidean field. By Lemma 10.11, for = in X and vy, 2

neighbours of z, we have

(15, 17
px(1y,17) 122,

z )Tz

[O,Tp[() 1Y —

rz TxyTy

Therefore, by Definition 10.4, we can identify T}, with the operator that
sends a function v on X; to the function

pa(1y,17)°
(z,y) = Z _fwu(w)'

zZ~x pa:z(lz )Tz )2
Now, for the harmonic field 7, by Lemma 5.20, we have

m(15,1;) = 1 and 7,(1;,17) = —

Yy

1
—if .
dy =1 V7=
Thus T, may be seen as the operator that sends a function v on X; to
the function

1

zZ~T

27y

With respect to the uniform norm on functions on X;, this operator
has norm < sup,y d(z—ﬁfl < %, hence it has spectral radius < % By
Proposition 10.9, the Euclidean field 7 is admissible. O
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10.6. Tangent dual kernels. We now aim at establishing the con-
verse of Theorem 10.9, namely that if a I'-invariant Euclidean kernel
is admissible, its quadratic transfer operator has spectral radius < 1.
Our argument is differential geometric and requires us to compute the
tangent space of the space of Euclidean kernels, viewed as a subman-
ifold of the vector space of dual kernels. This is the purpose of this
subsection.

Fix k > 2. We denote by Py the set of all I'-invariant k-Fuclidean
fields. The space Py is an open subset of the finite-dimensional vector
space of all I'-invariant k-quadratic fields. In particular, it comes with
a natural manifold structure. As explained in Subsection 5.1, there is
a natural injective map Pr — Kj where, as in Section 8, ;. stands
for the space of I'-invariant k-dual kernels. It will turn out that this
map is an immersion and that we can describe the tangent spaces of its
range. To do this we again need to define a family of linear operators.

Let p be a k-Euclidean field. Then, for £ > 0 and  ~ y in X,
p defines a Euclidean structure on the spaces Vi{(x) and V| (zy) that

is dual to the Euclidean structure on the spaces V' (z) and Ve(xy).
Now, we have linear surjective operators I;* : () — V{(2y) and
Jor Vi (zy) — Vi (z). We define the operators

Ly ™ Vg (zy) = Vo™ (@)
and J1 2 Vg (2) — Vg (ay)

as being the adjoints of these operators with respect to the Euclidean
structure p. They are injective operators which can also be seen as the
adjoint operators, with respect to the duality, of the above introduced
operators I_1P and J5IP.

Proposition 10.14. Let k > 2. The natural map Pr — Kj is an
immersion. Fix p in Py and let T, Py, denote the tangent space of Py,
viewed as a subspace of Ky,.

If k is even, k =20, £ > 1, then TPy, is the space of all I'-invariant
k-dual kernels whose associated bilinear forms (qz)zex and (qg,)z~yex
satisfy the relations

(Iﬁ;l,*Tp)*qm _ q;y _ (]ggl,ﬁp)*qy’ T~y E X

Ifk is odd, k = 20+1, £ > 1, then T, Py, is the space of all I'-invariant
k-dual kernels whose associated bilinear forms (quy)z~yex and (q; )zex
satisfy the relations

(J:ﬁfy*Tp)*qysy =q, = (J:ﬁ’Z*Tp)*qzz, re X, y,z~ux.
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Proof. As P}, is an open subspace of the vector space of all k-quadratic
fields, its tangent space may be identified with this vector space. Now,
fix p in P. The Euclidean structures associated with p on the spaces

V' (z) and Ve(xy), ¢>0,x ~yin X, give rise to isomorphisms between
these spaces and the spaces V{(x) and Vj(zy). These isomorphisms
conjugate the linear maps [fy and Jﬁy with the above defined linear
maps 5 and J5*. The conclusion follows from these facts and
standard considerations on the tangent space of the space of scalar
products on a finite-dimensional vector space. 0

10.7. The adjoint quadratic transfer operator. Our goal is still to
prove that a Euclidean field p is admissible if and only if the associated
quadratic transfer operator T}, has spectral radius < 1. We will actually
need to use the adjoint operator of the quadratic transfer operator
which we will now describe.

Recall that we have identified the dual space of the space M, of
k-quadratic pseudofields with the space L, of k-pseudokernels.

Lemma 10.15. Let k > 2 and p be a k-FEuclidean field. Define a
linear operator Ty on the space of (k—1)-pseudokernels in the following
way. Let L be a (k — 1)-pseudokernel with associated bilinear forms
(Fay) @y)ex -

If k is even, k = 2(, £ > 1, then T L is the (k—1)-pseudokernel with
associated bilinear forms defined by, for (z,y) in Xy,

(Tyr)ay = D (Lo W I ) ey, = (TP N (100 ..

zZ~y Elad’)
zF#x zF#x
If k is odd, k =20+ 1, £ > 1, then T;L is the (k — 1)-pseudokernel
with associated bilinear forms defined by, for (z,y) in Xy,

(Ty7)ay = Z(Jf;;*Jﬁ’z*Tp)*sz.
Then if p is U'-invariant, the operator T : L1 — Li_1 is the adjoint
operator of the quadratic transfer operator T}, : My_1 — Mj_4.

Proof. The proof is closely related to the one of Lemmas 9.12 and
10.3. We recall the argument. We keep the notation of Subsection
10.2. In particular (.,.) is the duality between L£;_; and Mj_;. We
pick r in £;_; and s in Mj_; and we need to show that we have
<T;T, s) = (r,Tps).
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If £ is even, k = 2¢, ¢ > 1, by Definition 10.4 and Lemma 9.11,
(r,Tps) is the sum on I'\ X of the I'-invariant function on X

me; Txy, Tsxy |F | ;x Tﬁyy, Ie lTp]£y1> SZ$>.
y#z
Now, for x in X and y, 2z ~ = with y # z, by Lemma C.2, we have
(g (P15 2) = (1) 1y (111"
= (L " L2 17) 10y, 520).

Hence (r,T),s) is the sum on F\X of the I'-invariant function on X

|F | Z ZCEJSZQT

which, still by Lemma 9.11, is equal to (T, s).
If kisodd, Kk =2¢+1, ¢ > 1, by Definition 10.5 and Lemma 9.11,
(r,Tps) is the sum on I"'\ X of the I'-invariant function on X

l, l
' 2o e = |x;, e, (T o) 5.

TH#z
As above, for y in X and z, 2z ~ y, z # 2z, by Lemma C.2, we have

(g (Tl Ty )" 8y2) = (T Ty ) Ty 542

Hence (r,T,s) is the sum on I"'\ X of the I'-invariant function on X

Y= = Z((T;T)ym Syz)s
T, &
which, again by Lemma 9.11, is equal to (1,7, s). O

We summarize the computation of the tangent space of P, and the
definition of the adjoint quadratic transfer operator.

Proposition 10.16. Let k > 2 and p be a I'-invariant k-Fuclidean
kernel. Then, as subspaces of L;_1, we have

Ek—l N Tp'Pk = ker(T; — 1)

Proof. We pick L in £, which we view as a family (r4y) @ y)ex, of
symmetric bilinear forms.

Asume k is even, k = 2¢, { > 1. Then by Definition 8.9 and Propo-
sition 10.14, saying that r is tangent to P, at p is saying that, for any
(x,y) in X7, one has

(Iﬁ;L*Tp)* Z([ﬁ;l’*)*rm =Tay + Tyz-

zZ~T
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As, by construction, [ﬁ;l’*lﬁgl’*w is the identity operator of V(f_l(xy),
this is equivalent to saying that
0—1,% 0—1,% _
(]zy Tp)* Z(Izz )*Tﬂcz = Tyz,

zZ~T

27y
which, by Lemma 10.15, reads as (1,7)ys = 7ye-
Now, if k is odd, kK = 2¢+1, ¢ > 1, by Definition 8.10 and Proposition
10.14, saying that r is tangent to Py at p is saying that, for any (x,y)
in X7, one has

* * * 1
(‘]ﬁy Tp)*((Jﬁb ) Ty + (Jg(jég ) Tyz) = m Z Ts-
As above, by construction, J5* Jf; 7 is the identity operator of V{(z),
so that this is equivalent to saylng that
L% Tl,% LU — 2
W08) U= e Y- 2022,

zZT

2y

For (z,y) in X7, we sum (10.9) applied to the pairs (z, z) with z ~ z,
z #1y. We get

S = _122rm i_ZZrm:x.

Z~T 2Tt Z~T

27y 2FY t#z 27y

Thus, if r is in T, Py, we have T7r = r. Conversely, if T7r = r, the
same computation shows that (10.9) holds and hence that r is in the
tangent space T, Pj. O

10.8. The weight map as a diffeomorphism. We are ready to state
and prove

Theorem 10.17. Let k > 2 and p be a I'-invariant k-FEuclidean kernel.
Then p is admissible if and only if the quadratic transfer operator T, has
spectral radius < 1 on the space My,_1 of (k—1)-quadratic pseudofields.

In the course of the proof, we shall use a classical generalization of
the Perron-Frobenius Theorem. Recall that, if V' is a finite-dimensional
vector space, a closed convex cone C C V is said to be proper if it does
not contain any vector line.

Lemma 10.18. Let V be a finite-dimensional real vector space and T
be an endomorphism of V' which preserves a proper closed convex cone
C of V' with nonempty interior, that is, TC C C. Then the spectral
radius of T' 1s an eigenvalue of T associated to an eigenvector in C.
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Proof. It T is nilpotent, there is nothing to prove. Else, let p > 0 be
the spectral radius of 7. By replacing T with p~'T, we can assume
p = 1. Let V' be the subspace of V' whose complexification is the sum
of all eigenspaces of T" associated with eigenvalues of modulus 1 of T'.
Then T preserves V' and the closure in GL(V”) of the sub-semigroup
spanned by the restriction 77 of T' to V' is a compact subgroup K of
GL(V").

Fix any norm on V. It follows from the Jordan reduction of 7" that
there exists a proper subspace W of V with T-'W = W and, for any

vin V ~. W, any limit point in V of ——7"v belongs to V.

[T ]|
Now, as C has non-empty interior, we can pick such a v in C. There-
fore, the closed convex cone C' = C NV’ is non-zero. Pick ¢ in C'.

Then v" = fK kv'dk, the average of kv' with respect to the Haar mea-
sure of K, is K-invariant. To conclude, it suffices to prove that v” # 0.
But, by the Hahn-Banach Theorem, C’' being a proper closed convex
cone in V', there exists a linear functional ¢ on V' which is positive on
C' ~ {0}. As, for any k in K, kv" belongs to C’, we have ¢(kv') > 0,
hence ¢(v”) > 0 and v” # 0. The result follows. O

In our case, the quadratic transfer operators preserve a natural con-
vex cone. We say that a quadratic pseudofield is non-negative if all the
associated symmetric bilinear forms are non-negative. From the fact
that T}, is defined by taking sums of pull-back maps between vector
spaces, we directly get

Lemma 10.19. Let k > 2, p be a k-Euclidean field and s be a non-
negative (k — 1)-quadratic pseudofield. Then T,s is non-negative.

For k > 1, let M} C Mj, be the cone of I-invariant non-negative
k pseudofields. This is a proper closed convex cone in My with non-
empty interior.

Proof of Theorem 10.17. Proposition 10.9 says that if 7}, has spectral
radius < 1, then p is admissible. Let us prove the converse statement.
We will use the results of Section 7 to show that the weight map is a
local diffeomorphism from the space of admissible kernels to the space
of cohomology classes of functions and then conclude by using the study
of the weight map from Section 8 and Proposition 10.16. Let us do this
precisely.

As in Section 8, we let W, stand for the space of cohomology classes
of I'-invariant symmetric functions on X, and Wy : K — W, for the
weight map. We also let ¢, : P, — K denote the natural injection.

Let us introduce maps that are related to the Hilbert space Hg. We
let OQ>(HY) denote the space of continuous quadratic forms on the
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P
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kak Hka

Uy,
| | Wi

F1GURE 5. The objects in the proof of Theorem 10.17

Hilbert space Hy and Q°, (Hy) C Q>(H{') denote the open subset of
coercive positive quadratic forms. The image map IIj, : Q%°, (Hy) — Px
is well-defined. Finally, we have a linear map Fj, : W, — Q>(HY') that
sends the cohomology class of a function w to the quadratic form ®,,.
We let Uy, = F, Q% (H¥) be the open set of cohomology classes of
those w such that ®,, is coercive. To summarize, we have maps:

(1010) kak : Pk — Wk and 11, F}, :Z/{k — Pk

and we want to describe the set P4 = TI,F;(Uy,) of admissible I'-
invariant k-Euclidean kernels. This situation is pictured in Figure 5.

Here comes the key observation of the proof, that is, Theorem 7.17
says that

for any w in U,. Now, let us notice that all the maps involved in
(10.10) are smooth. Indeed, Wy and Fj are linear maps defined on
finite-dimensional vector spaces and ¢, is smooth by Proposition 10.14,
whereas II;, is smooth by Proposition A.16. Therefore, (10.11) gives,
by the chain-rule,
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for w in Uy. Set p = Il Frw. As the map Wy is linear, we have
dy(Wiir) = Widper and (10.12) implies that Wi (T,Px) = W, that is
Wi, maps TP, onto W.

Let us show that, for p in P2 W, actually induces a linear iso-
morphism from T,P; onto Wj. As we have just shown this map to
be surjective, this amounts to proving that both P, and W, have the
same dimension. To do this, let 7 be the harmonic field, as in Subsec-
tion 10.5, which is a I'-invariant 2-Euclidean field. We write 7* for the
(k — 2)-th orthogonal extension of 7: this is a [-invariant k-Euclidean
field. Proposition 10.13 says that 7, and hence 7%, is admissible, and
also that the quadratic transfer operator T, has spectral radius < % on
M. Then, it follows from Corollary 10.7, that T+ has spectral radius
< % on My_1. By duality, the adjoint quadratic transfer operator 77,
has spectral radius < % on Lj_1. By Proposition 10.16, we have there-
fore L1 N T, +Pr = {0}. By Corollary 8.33, L is exactly the null
space of Wy, so that we have just shown that W}, is injective on T+ Pk,
and hence that P, and VW, have the same dimension.

Now we know that for p in P, W, is injective on T, Py, that is, still
by Corollary 8.33, L1 N'T,P, = {0}. By Proposition 10.16, 1 is not
an eigenvalue of the quadratic transfer operator 7,,. By Lemma 10.19,
the operator T, preserves the cone M; | C M,_; of I-invariant non-
negative (k—1)-quadratic pseudofields. Hence, by Lemma 10.18, since 1
is not an eigenvalue of T}, the spectral radius of T}, is # 1. As O, (H{)
is convex and F}, is linear, the open set U) = F,;lQio+(H5“) C W, is
convex and hence P,?d = Il F.U, is connected, since II; is continuous
on QF (HY) by Proposition A.16. As T, depends continuously on p
on Py, so does the spectral radius of T,. Now, for 7% the (k — 2)-th
orthogonal extension of the harmonic kernel, we have shown above that
T« has spectral radius < 1. Therefore, for any p in P4, T}, has spectral
radius < 1, which should be proved. O]

As a Corollary of the proof, we get

Corollary 10.20. Let k > 2. Then the space Wy has the same di-
mension as the space of T-invariant k-quadratic fields. The set P
of admissible I'-invariant k-Euclidean fields is open in Py. The weight
map Wy, : Ky — Wy, induces a smooth diffeomorphism from P onto
1ts 1mage.

Remark 10.21. The fact that W, and the space of ['-invariant k-qua-
dratic fields have the same dimension also follows from the duality
between these spaces established in Proposition 11.2 below.
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11. THE ADMISSIBLE RIEMANNIAN METRIC

In this Section, for k& > 2, we will define a natural Riemannian
metric on the space P of admissible I-invariant k-Euclidean fields.
The orthogonal extension embedding P4 — P4, will be proved to a
Riemannian immersion. This metric may be seen as an analogue of the
natural Riemannian metric on the space of positive definite symmetric
bilinear forms of a finite-dimensional vector space (see [20]).

11.1. Invariant quadratic type functions. The construction of this
Riemannian metric will rely on certain duality properties on the space
of I'-invariant functions on Xy, k£ > 2. To introduce these properties, we
go back to the point of view of quadratic type functions from Subsection
4.1 and say a little more about I'-invariant ones.

First, we have a natural surjectivity result:

Lemma 11.1. Let £ > 2. The reduction map ¢ +— @~ maps I'-
mvaritant quadratic type functions on X onto I'-invariant quadratic
type functions on Xj_1.

To prove this, let us introduce some notation which extends the
objects of Subsection 9.4. As usual, for x # y in X, we let z; and 1
denote the neighbours of x and y on [zy].

Fix k£ > 1. We let F}, denote the finite-dimensional vector space of
[-invariant functions on X;. We define Sy : F, — F} as being the
natural symmetry operator, Syv(z,y) = v(y,z), v € Fy, (z,y) € Xg,
and we set " C Fj, and F,, C F}, to be respectively the space of
symmetric and skew-symmetric functions. We also let Ly and Ry be
the left and right augmentation operators Fy, — Fj.1 defined by, for v
in F), and (z,y) in Xg.1,

Liyv(z,y) = v(z1,y) and Ryo(z,y) = v(z, y1).
Note that one has Sii1Lr = RiSky and Ly 1 R = Ryy1Lk. Lastly, we

equip Fj with the Si-invariant scalar product (.,.) defined by, for u,v
in Fk,

1
(111) <U, 'U> = Z —u(x,y)v(:v,y)
I, NIy
(z,y) €T\ X
A direct computation using as usual Lemma 9.11 shows that, with
respect to this scalar product, the adjoint maps of L, and Ry are the
reduction operators LL and R,Tg, defined by, for v in Fjy; and (z,y) in
Xku
Liv(z,y) = Z v(z,y) and Rlv(z,y) = Zv(m,t).

T tr\/y

Gl t#y1
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In particular, by Definition 4.2, a function ¢ in Fj; has quadratic type
if and only if it is symmetric and the function LLQO in F} is symmetric.
By Lemma 4.3, one then has L,TC(p = RZAp =@ .

Let Fi, k > 2, denote the finite-dimensional vector space of I'-
invariant k-quadratic fieds.

Proof of Lemma 11.1. Recall the reduction map p — p~ of Subsection
4.2. For k > 3, we denote by pr : Fr — Fi_1 the reduction map
of I'-invariant k-quadratic fields. This is a linear map. If £ > 3, by
Proposition 4.20, for any I'-invariant (k — 1)-Euclidean field p, one
has (p™)~ = p. Hence the space py(Fy) contains the open subset of
Euclidean fields in F;_; (which is nonempty by Proposition 5.21). We
get pp(Fr) = Fr—1. The conclusion follows, by the identification of
quadratic fields with quadratic type functions in Proposition 4.11 and
Lemma 4.12.

It remains to prove the case where k = 2. Recall that F;” C F; is
the space of symmetric functions. We claim that LI maps Fy~ onto
Fiy. This amounts to proving that the adjoint map of the restriction
of LI to Fj is injective. As the orthogonal projection of Fy onto Fy
is 2(1 + S,), this adjoint map is 1(1 + S3)L;. Let now u be in Fy
with (1 + S2)Lyu = 0. For any z in X and y # z in S'(z), we
have u(z,y) + u(z, z) = 0. Pick a third neighbour ¢ of z (which exists
by assumption). We have u(z,y) = —u(z,2) = u(z,t) = —u(z,y),
hence u = 0 as required. Thus LI(F;f) = Fy. In particular, if ¢ is a
symmetric function on X, we can find a symmetric function ¢ on Xs
with Liz/z = . By definition, 1 has quadratic type and ¥~ = . U

Now, we can show that, among symmetric functions, the orthogonal
complement of I'-invariant quadratic type functions on X} is the space
of I'-invariant functions that are coboundaries.

Proposition 11.2. Let k > 1 and w be a symmetric I'-invariant
function on Xy. Then one has (w,p) = 0 for every quadratic type
function ¢ on Xy if and only if there exists a skew-symmetric I'-
invariant function v on Xy_1 such that, for any (z,y) in Xi, w(z,y) =
U(CL’, yl) - U(xl’ y)

Note that we have exceptionnally denoted by X, the diagonal in
X x X. Skew-symmetric functions on X, are zero! The Proposition says
that the space of I'-invariant quadratic type functions on X, may be
seen as the dual space to the space of cohomology classes of symmetric
I'-invariant functions on Xj.

The proof relies on a classical phenomenon in duality that we state
in the context of Euclidean spaces.
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Lemma 11.3. Let V and W be Euclidean spaces and T :'V — W be a
linear map and X C W be a subspace. Then the orthogonal complement
of T~'X is given by

(T7'X)" =TH(X"),
where TT : W — V is the Fuclidean adjoint operator of T

Proof. If Y C W is a subspace, we claim that (TTY)t = T-1(Y1).
Indeed, for v in V', we have

ve (TY)Y e (WeY (uThy)=0)< (VyecY (Tv,y)=0)
& TveY™t
The resut follows by taking Y = X*. 0

Proof of Proposition 11.2. If k = 1, a quadratic type function on X; is
simply a symmetric function. Thus, by assumption, we have (w,w) =
0, hence w = 0 and we are done.

Assume k > 2. Recall that F ,:r and F}  are the spaces of symmetric
and skew-symmetric functions in Fy. Thus, by Definition 4.2, the space
of I'-invariant quadratic type functions on X} is

Fn (L) TR

As F; is the orthogonal complement of F;" in F}, Lemma 11.3 implies
that w belongs to the space

Fo+ L1 (F,_ ),

that is, we may write w = u+ Ly_;v where u and v are skew-symmetric
functions on X and X;_;. Now, w being symmetric, we get

w = Spw = Spu+ SpLi_1v = —u+ Rp_1Sk_1v = —u — Ry_qv,

hence

1 1 1 1
_ — — :—L _ _ = _
w 2w+25kw 51w v 2Rk v

and the result follows. O

11.2. The weight formula. Recall that our goal is to construct a
natural Riemannian metric on the space P of admissible [-invariant
k-quadratic fields. One of the main features of this Riemannian metric
is that it can be defined by two natural formulae. We will first prove
that these two definitions are equivalent.

Theorem 11.4. Let k > 2. Let p be a I'-invariant k-quadratic field
and ¢, : X — R be the associated quadratic type function. Let also
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(K,K~) be a I'-invariant k-dual kernel and w : X — R be a I'-
invariant weight function of (K, K~). If k is even, we have
(11.2)

1 K 1 1 _ k- 1
Z |Fx|<px,qm>—§ Z m(pxyaqmy>:§<@paw>~

zel\ X (z,y)eT\X1
If k 1s odd, we have
(11.3)
1 1 dlx)—1, - 1
S Y ey — Ym0 d ) = S(gp ).
T, Ny T, | 2
(z,y)eM X1 zel'\ X

The reader should compare (11.2) and (11.3) with the formulae in
Lemma 5.9.

As usual, for any ¢ > 1, if K is a 2¢-dual prekernel, for z in X,
we have denoted by ¢% the symmetric bilinear form associated with
K, on V{(z). If K is a (20 + 1)-dual prekernel, for x ~ y in X, we
have denoted by qg the symmetric bilinear form associated with K,
on V{(zy). See Section 4 for the notions of a quadratic field and the
associated quadratic type function. See Definition 6.7 for the notion
of a weight function of a dual kernel. As in Subsection 11.1, we have
denoted by (.,.) the natural scalar product on the space of I'-invariant
functions on X} which has been defined by Equation (11.1). As in
Appendix C, we have also denoted by (.,.) the natural duality between
the space of symmetric bilinear forms on a vector space and on its dual
space.

Definition 11.5. The bilinear pairing defined between dual kernels
and quadratic fields in Theorem 11.4 will be called the weight pairing.
We denote it by (p, K, K~) — [p, (K, K7)].

From the elementary properties of I'-invariant quadratic type func-
tions, we get a nice compatibility property of the weight pairing with
orthogonal extensions. Recall the notion of the reduction of a quadratic
field from Subsection 4.2.

Corollary 11.6. Let k > 2. Let p be a I'-invariant (k + 1)-quadratic
field with reduction p~ and (K, K~) be a I'-invariant k-dual kernel with
orthogonal extension (K+, K). We have

p. (K", K)] = [p~, (K, K7)].

Proof. We keep the notation from Subsection 11.1. Let w : X — R
be a I'-invariant weight function for (K, K~). Then, by Corollary 8.27,
the function 1(Rjw + Lyw) is a weight function for (K, K). Now,
note that, by Lemma 4.12, the quadratic type functions associated to
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p~ and p satisfy the relation ¢,- = (¢,)” = R,tgop = ngop. Thus, we
get

1 1
[p, (KT, K)| = Z(sop, Ryw + Liyw) = ;1<R£sop + Ly, w)

1 _ _
:§<@p*7w>:[p 7(K7K )]7
which should be proved. U
We now give the

Proof of Theorem 11.4. We will use the study of the weight map in
Section 8 to deduce the general case of Proposition 11.4 from particular
ones.

First, we assume that (K, K7) is the k-dual kernel associated with a
(k—1)-pseudokernel L. In that case, we will prove that both hand-sides
of (11.2) and (11.3) are zero.

Indeed, on one hand, Theorem 8.32 tells us that w is a coboundary,
that is, there exists a I'-invariant skew-symmetric function v on Xj;_;
such that, for any (z,y) in X, one has w(z,y) = v(z,y1) — v(z1,y)
where z; and y; are the neighbours of = and y on [zy]. Thus, by
Proposition 11.2, we have (p,, w) = 0.

On the other hand assume first that k is even, k = 2¢. For z ~ y in
X, we let as usual 7’ be the symmetric bilinear form associated with

(IE 1, *)*TL

Ly, on Vi Hwzy). By construction, we have ¢ = Y zy,

hence, again using Lemma 9.11,

1 K 1 {—1,%\x L
Z |1‘\x|<p$7qz > = Z m( za(l ) T:ch>

IGF\X (I7y) 6F\)(

y~z

By Lemma C.2, for x ~ y in X, we have

{—1,%\x, .L £—1\* L\ __ — L
<p937 (I ) Tmy> <<Ia:y ) pfmrxy) - <pxy7rxy>7

1 1 _ 1
Z =P ar) = Z m(pxy,%ﬁ.

e\ X T (z.y)€EM\Xy

hence

Now, we also have, for x ~ y in X, qﬁj = rﬁy + rﬁx and thus

1 1 _ K- _ 1 — L
2 Z |Fxm1—\y|<pzy7sz > - Z |Fzmry|<pzyarmy>

(z,y)eT\ X1 (z,y)eT\ X1

and the left hand-side of (11.2) is zero.
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In the same way, if k is odd, k = 2/ + 1, by Lemma C.2 and Lemma
9.11, we have

1 1 K\ __ 1 - L
2 Z ‘Fxﬂry‘<p$y’qu> - Z |1—\xm1—\y’<p3}7r,7;y>

(z,y)eT\ X1 (z,y)eT\ X1

1 d(z) —1 -
= > |F—$|Z<pxﬂ“£y> = > %(m&f ),
zel\ X Yy~ zel\X

where as usual, for x ~ y in X, rffy stand for the symmetric bilinear
form associated with L, on V{(z).

This finishes the case where (K, K~) is the dual kernel associated to
a pseudokernel. In the general case, now, we will use again the dual
kernel (K™,0) from Subsection 8.1. Recall from Corollary 8.3 that w
is a weight function of (K™,0). Therefore, by Theorem 8.32, the dual
kernel (K, K~) — (K™,0) is associated to a certain pseudokernel. As
we have just shown that (11.2) and (11.3) are true for pseudokernels,
it suffices to show that they are true when (K, K~) = (K",0).

In that case, assume first that k£ is even, k = 2¢. Then, for any x in
X and y, z in S¥(z), we have

K.(y,2) =w(y,z) =€ [yz]
K.(y,z) =0 else.

Therefore, by Lemma C.5,

<poc> qf) = _% Z w(?J? Z)px(ly’ ]-z)

(y,2)€S* (x) x S*(x)
z€[yz?]

— % Z w(y, 2)ep(Y, 2)-

(y,2)€8 (2)x S* ()
z€[yz]

Now, (11.2) follows from Lemma 9.11.
In the same way, if k is odd, k =2¢+ 1, for any x ~ y in X and z,t
in S*(z), we have
Kuy(z,t) =w(z,t) |2y C [yz]
Kuy(z,t) =0 else.

Therefore, by Lemma C.5,

1
<p1‘y7qz/> - 5 Z w(yaz)wp(zut)
(z,t) €St (zy) x St (xy)

[zy]Cl2t]
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and (11.3) again follows from Lemma 9.11. U

11.3. The weight tensor. Given k > 2, we will use the weight pairing
to define a natural smooth section g of the vector bundle Q(TP;) of
symmetric bilinear forms on the tangent space of Py. It turns out that
P2 is precisely a connected component of the set of p such that g, is
positive.

We now give the precise definition of g. Recall that in Subsection
5.1, we have defined an embedding from the space of k-Euclidean fields
into the space of k-dual kernels. In case of ['-invariant Euclidean fields,
the spaces are finite-dimensional and we have studied this embedding
from the point of view of differential geometry. In particular, we have
shown in Proposition 10.14 that it is a smooth map. As in Subsection
10.8, let us now denote this map by ¢ : Pr < Ki. As above, we also
denote by Fi the space of I'-invariant k-quadratic fields.

Let p in Py be a I'-invariant k-Euclidean field. If ¢ and r are I'-
invariant k-quadratic fields (which we view as tangent vectors to Py),
we set

gp<Q> T) = _[Q7 dka(T)],
where [.,.] is the weight pairing. We call g the weight tensor on Py.

The reason why we don’t mention the dependance on £ in our notation
for the weight tensor will become clear in the next subsections.

Lemma 11.7. Let k > 2. For any p in Py, g, is a symmetric bilinear
form on Fi.

If k is even, k = 20, £ > 1, let q,r be in F,. For x in X, let A,
and B, be the p,-symmetric endomorphisms of Vg(x) which represent
¢z and 1, with respect to p,. For x ~y in X, let Ay, and B, be the
Py -Symmetric endomorphisms of Vg_l(xy) which represent q,, and r,,
with respect to py,. One has

1 1 1 S
gp(Qa 7“) = Z tr(Awa) -5 Z ™ ~1 | tr(AxyB:cy)'
1 2 T N Ty
zel\X (zy)€N\Xy
If k is odd, k =20+ 1, £ > 1, let q,r be in Fr. Forx ~ y in X,
let A,y and By, be the py,-symmetric endomorphisms ofve(xy) which
represent g, and ry, with respect to py,. For x in X, let Ay and B,

be the p, -symmetric endomorphisms of Ve(x) which represent q,; and
r, with respect to p,;. One has

=3 3 mrrAnBy) — Y T )

(z,y)€T\ X1 Tz MLy z€D\X 1y
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Proof. The formulae are a direct consequence of the definition of the
tensor g, Theorem 11.4 and Lemma C.4. Symmetry follows. U

Remark 11.8. Note that, with the notation of Lemma 11.7, for x ~ y
in X, one has, if k is even, I[, VPA I = A = I VP A T and, if
kis odd, A; = Jf:Jprnyy.

11.4. Derivative of the orthogonal extension. We will prove that
the weight tensor is natural in the sense that, for £ > 2, the weight
tensor of Py is the pull-back of the one of Py, by the orthogonal
extension map. This will require us to first prove that this map is
smooth.

Let ng : P — Py denote the orthogonal extension map p — p™.

Proposition 11.9. Let k > 2. The orthogonal extension map ny s
smooth. Let p be in Py and q in Fi.. We have the following formulae
for describing the I'-invariant (k + 1)-quadratic field d,ng(q). If k is
even, k=20, L > 1, for x ~y in X, we have

Ay (@)ay = (JoP) a0 + (J5l?) a, — (M ) g,
If kisodd, k=2(+1,0>1, forx in X, we have

die(@)e = Y (Lf?) duy — (d(x) = (M) g

y~zx

The linear maps M, » € X, ¢ > 1, and Mfy, r~ye X, >0,
have been defined in Subsection 4.2. See Lemma 4.4 for their main
properties. We have denoted their adjoint linear maps with respect to
the Euclidean structures associated to p in the usual way.

Proposition 11.9 immediately follows from the following abstract re-
sult. As usual, for a vector space V, we denote by Q(V') the space
of symmetric bilinear forms on V' and by Q. (V) C Q(V) the set of
positive definite forms.

Lemma 11.10. Let X be a finite-dimensional vector space, d > 2 an
integer and Xo, X1, ..., Xq be subspaces of X. Assume that, for any 1 <
i # j <d, one has X;NX,; = X, and that X/ X, = @?:1 X;/Xqo. Set F
to be the space of all ¢ = (qo, q1, - - -, qa) i Q(Xo)x Q(X1) x...x Q(Xy)
with (¢:)v, = qo, 1 < i < d, and P C F to be the set of those p in
F such that each of the p;, 0 < 1 < d, is positive definite. Then the
orthogonal extension map n : P — Q. (X) is smooth. If p is in Q
and q is in F, one has

dpn(q) = Plqy + -+ + Piga — (d = 1) P o,
where, for 0 <i <d, P; is the n(p)-orthogonal projection X — Xj.
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Proof. As in Subsection C.2, for a vector space V', we let

Oy Qs (V) = Qi (V)
denote the natural smooth diffeomorphism between scalar products on
V' and on its dual space V*.

For 0 <1 < d, welet m; : X* — X/ be the restriction map. Set
K= 09(X{) x QX)) x ... x Q(X}) and let o : K — Q(X*) be the
linear map

(1o, 71y 7a) =TT+ -+ myrg — (d — 1)miro.
We also set D : P — K to be the product map

(p07p17 s apd) = (5X0<p0>7 5X1 (p1>’ s 75Xd(pd))'
By Lemma 5.3, we may write  as the product map 1 = 65 0cD. The
result now follows from the chain-rule and Lemma C.3. O

For k > 3, we still denote by pi : Fr — Fi_1 the reduction map of
[-invariant k-quadratic fields. This is a linear map.

Corollary 11.11. Letk > 2 and p be in P,. We have pyr1d,m, = Id 7, .
The map ny 1s a closed immersion.

Proof. By Proposition 4.20, we have (p™)~ = p for any p in Py, hence,
by differentiating this identity, pri1d,mx = Idz, (which can also be
checked directly by using the formulae in Proposition 11.9). In par-
ticular, d,n is injective. That it has closed range follows from the
characterization of orthogonal extensions in Lemma 7.16. U

11.5. Naturality of the weight tensor. We can now examine the
behaviour of the weight tensor under orthogonal extension.

Proposition 11.12. Let £ > 2 and p in P, be a I'-invariant k-
FEuclidean field. Chose I'-invariant quadratic fields q in Fp and r in
Fr+1- One has

9o+ (Ao (@), 7) = 9p(q; prsar).
Proof. By definition, we have

Gprt (dpmie(q), 1) = —[r, dpr b1 dpmie (r)] = —[r, dp (erep1m) (@)
Now, Proposition 5.2 tells us that the dual kernel associated to the
orthogonal extension of p is the orthogonal extension of the dual kernel
associated to p. By differentiating this property at p, we get that the

(k + 1)-dual kernel d,(tx+17x)(q) is the orthogonal extension of the
k-dual kernel d,(¢x)(¢). By Corollary 11.6, this gives

Ipt (dpnk(q)v T) = _[pk+17ﬂa dp<Lk)(r)] = gp(Qa karl?a)a
which should be proved. O
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In case pg+17 = 0, Proposition 11.12 gives

Corollary 11.13. Let k > 2, p be in Py, q be in Fi and r be in Friq
with pr1(r) =r~ = 0. One has g,+(dpynk(q),r) = 0.

In case r belongs to d,n(Fi), Proposition 11.12 gives
Corollary 11.14. Let k > 2 and p be in Py. One has (dpni)*gp+ = Gp-

In other words, the pull-back of the weight tensor of Py,; by the
orthogonal extension map is the weight tensor of Py.

Proof. By Corollary 11.11, for ¢ in Fj, one has py+1d,mx(q) = ¢, and
the result follows by by Proposition 11.12. 0

We will later use the following consequence of these results:

Corollary 11.15. Let k > 2 and p be in Py. Assume that g, is positive
on Fi. Then g,+ is positive on Fji.

Proof. By Corollary 11.11, we have Fjy11 = ker pgy1 @ dpni(Fr). By
Corollary 11.13, these two subspaces are g,+-orthogonal to each other.
Now, by the assumption and Corollary 11.14, g,+ is positive on the
space d,ni(Fi), whereas by Lemma 11.7, it is positive on ker py ;. The
result follows. O

11.6. Positivity and admissibility. We can use the previous results
to give a new criterion for a Euclidean field to be admissible.

Theorem 11.16. Let & > 2. The set P,?d C Pr of admissible T'-
invariant k-Euclidean fields is a connected component of the set of p in
Py such that the symmetric bilinear form g, on Fj, is positive.

See Definition 10.1 for the notion of an admissible kernel. It may
be true that P2 is actually equal to the set of p in Py such that g, is
positive.

Theorem 11.16 implies in particular that g induces on P2 the struc-
ture of a Riemannian manifold.

We start the proof with a general positivity result.

Lemma 11.17. Let A be a finite set with n elements, n > 3, V' be the
space of real-valued functions on A and V' be its quotient by the line of
constant functions. For f in'V set

D= @ S @
acA (a,b)eA?
a#b
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and view p as a scalar product on V. Then, for any non-zero p-
symmetric endomorphism S of V', we have

2 1 2
tI‘(S ) > 5219(51“’ ]-a) :

a€A

Proof. Equip as usual V' with the standard scalar product ¢ defined
by, for fin V, q(f, f) = > ,ca f(a)? and let P be the g-orthogonal
projection on Vo = {f € V|>_, f(a) = 0} which is the g-orthogonal
complement of constant functions. A direct computation shows that,
for fin V, one has p(f, f) = -*5q(Pf, f). In particular, p-symmetric
endomorphisms of V' may be identified with g-symmetric endomor-
phisms S of V' such that S1 = 0. For any such S, set ®(S5) =
tr(S?) — 3 > .caP(S1,,1,)% One has

(114) a9 = > q(Sla,le—ﬁZq(ma,la)?

(a,b)€A? acA

If n > 4, we have ﬁ < 1 and the result follows. It remains to deal

with the case where n = 3. Then, denote by a, b, ¢ the three elements
of A and set u = ¢(S1,,1.), v = ¢(S1.,1,) and w = ¢(S1,,1,). As
S1 =0, we get from (11.4),

®(S) = 2(u” +v* + w?) — é((u +0)? + (v +w)? + (w+u)?)
7 2 2 2 1
:Z<u T2+t w )—ﬂuv—i—vw—i—wu)

and a direct computation shows that this quadratic form on R3 is
positive definite. O

To prove Theorem 11.16, we will again use the harmonic field which
was studied in Subsections 5.5, 9.6 and 10.5. Recall from Proposition
10.13 that 7 is an admissible 2-Euclidean field.

Corollary 11.18. The symmetric bilinear form g, is positive on Fs.

Proof. By construction, for z in X and f in v (x), we have

w0 = WP = s Y S,

y#£2

and we can therefore aim at applying Lemma 11.18 to the set S'(z)
and the bilinear form 7.
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Fix ¢ in Fj and, as in Lemma 11.7, for x in X, let us denote by A,

the endomorphism of v () which represents ¢, with respect to p,. By
Lemma 9.11, Lemma 10.11, Lemma 11.7 and Remark 11.8, we have

9(q,9) = Z T, (tr (A2) ——Z?TIA]_ 1,) )

zel\ X y~T

which, by Lemma 11.18, is positive as soon as g # 0. U

Next, we will use the weight formula to characterize those p such
that g, is non-degenerate on Fyj.

Lemma 11.19. Let k > 2 and p be in Py. Then the symmetric bilinear
form g, is non-degenerate on Fy if and only if the quadratic transfer
operator of p does not admit 1 as an eigenvalue.

See Definitions 10.4 and 10.5 for the description of the quadratic
transfer operator.

Proof. Assume that the quadratic transfer operator of p admits 1 as an
eigenvalue. By Proposition 10.16, there exists a non-zero ¢ in Fj such
that d,tx(q) is a pseudokernel. Then, by Corollary 8.33, Proposition
11.2 and Theorem 11.4, for any r in F, one has g,(¢,r) = 0, hence g,
is degenerate.

Conversely, assume ¢ is a non-zero element in F; and g¢,(q,r) = 0
for any r in Fi. Chose a [-invariant weight function w for the I'-
invariant k-dual kernel d,¢x(¢). By Proposition 11.2 and Theorem 11.4,
for any r in Fj, one has (w, ¢,) = 0. By Proposition 4.11, for any I'-
invariant quadratic type function ¢ on Xy, one has (w, ) = 0, hence,
by Proposition 11.2, there exists a I'-invariant skew-symmetric function
v on Xy such that w(x,y) = v(x,y1) — v(x1,y) for (z,y) in X;. By
Theorem 8.32, the k-dual kernel d,ix(q) is a pseudokernel. Again by
Proposition 10.16, the quadratic transfer operator of p admits 1 as an
eigenvalue. U

Proof of Theorem 11.16. Note that, being the image of a convex set by
a continuous map, the set P24 of admissible kernels is connected.

By Corollary 11.15 and Corollary 11.18, the symmetric form g« is
positive on Fy, where 7% denotes the (k —2)-th orthogonal extension of
the harmonic kernel. By Proposition 10.13, 7% belongs to P and, by
Theorem 10.17 and Lemma 11.19, for any p in P24, the symmetric form
gp is non-degenerate. Therefore, as P24 is connected, g, is positive for
any p in P,

Let P, be the connected component of g« in the set of those p in Py
such that g, is positive. We have just shown the inclusion P C P;.
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Conversely, by Corollary 10.7, Proposition 10.13 and Lemma 11.19, for
any p in P;, the quadratic transfer operator 7, has spectral radius < 1,
hence p is admissible by Theorem 10.17. 0

APPENDIX A. EUCLIDEAN IMAGES

In this appendix, we study the notion of the Euclidean image of a
non-negative symmetric bilinear form by a surjective map.

A.1. Definition and first properties. We start by defining the Eu-
clidean image of a non-negative symmetric bilinear form under a sur-
jective linear map. This relies on the

Lemma A.1. Let V and W be real vector spaces and let g be a non-
negative symmetric bilinear form form on'V and @ : V. — W be a
surjective linear map. For any w in W, we set

¢(w) = inf q(v,v).

w(v)=w
Then ® is a non-negative quadratic form on W.

Definition A.2. Let the notation be as above. The polar form of ¢
is called the Euclidean image of ¢ by m and denoted by 7,q.

Remark A.3. Assume V is a Hilbert space with scalar product ¢ and =
is bounded. Let X be the orthogonal complement of ker 7 in V. Then
7 induces a linear isomorphism from X onto W and m,q is the image
by this linear isomorphism of the restriction of ¢ to X.

Proof of Lemma A.1. We will proceed to several reductions in order to
be brought back to the case in Remark A.3.

First, we will reduce the proof to the case where ® is non-zero on
non-zero vectors. Let Wy be the set of w in W such that ®(w) = 0
and let us show that ® is Wy-invariant, that is, for any w in W and
wo in Wy, we have ®(w + wy) = ®(w). Indeed, for such w and wy,
for any € > 0, we can find v and vy in V' with 7(v) = w, 7(vy) = wo,
q(v,v) < ®(w) + € and ¢(vg,vy) < €. By Cauchy-Schwarz inequality,
we have

q(v + vo, v+ v0) = q(v,v) + q(vo, vo) + 2q(v, vo)
< ®(v) + 2¢ + 2+/e(q(vo, vo) + €).

As ¢ is arbitrary, this gives ®(w + wy) < ®(w). By symmetry, we
get ®(w + wy) = P(w). In particular, if w is also in Wy, we have
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®(w 4 wy) = 0 and Wy is a subspace of W. For w in W, we have
inf  q(v,v) = inf ®(w+wy) = P(w).

veV woEW)p
w(v)Ew+Wo
Thus, by replacing W with the quotient space W/Wj, we can assume
that we have W, = 0.

Now, we can also assume that ¢ is positive definite. Indeed, if Vo C V
is the null space of ¢, we have w(V) C Wy, hence w(V;) = 0. Therefore,
we can replace V' with the quotient space V/Vj and assume that ¢ is a
scalar product. We equip V' with the associated topology.

Let U C V be the null space of m. We claim that U is closed
with respect to this topology. Indeed, if (v,) is a sequence in U that
converges to v in V', we have, by definition of the topology, ¢(v—v,,v—
vn) = |lv — v,? — 0, hence ®(m(v)) =0 and 7(v) = 0.

Let H be the completion of V' with respect to the positive definite
bilinear form ¢ and let X be orthogonal complement of the closure of
U in H. Then, as U is closed in V', the orthogonal projection H — X
induces an embedding of 6 : W ~ V/U — X and, for w in W, we have
O (w) = q(6w, bw). The result follows. O

Let us give some elementary properties of Euclidean images. This
operation behaves well under composition of surjective maps.

Lemma A.4. Let V,W, X be real vector spaces and w : V — W and
0 : W — X be surjective linear maps. If q is a non-negative symmetric
bilinear form on V, we have

0,m.q = (07)4q.
Also, it satisfies a concavity property.

Lemma A.5. Let V,W be real vector spaces and @ : V. — W be a
surjective linear map. If p and q are non-negative symmetric bilinear
forms on V', we have

7T*(p + Q) > T« + Tyq.
We have an invariance under certain translations:

Lemma A.6. Let V,W be real vector spaces and @ : V. — W be a

surjective linear map. Let p be a non-negative symmetric bilinear form

on V and q be a symmetric bilinear form on W. Then p 4+ w*q is

non-negative if and only if m.p + q is non-negative and we then have
mp+7q) =mp+q.

Orthogonal splittings are preserved.
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Lemma A.7. Let Vi,..., Vg, Wi, ..., Wy be real vector spaces and m; :
Vi — W; be surjective linear maps. Set'V = EBf:l Viand W = @?:1 W;
and write © for the sum map V. — W. Then if q is a non-negative
symmetric bilinear form on V' such that the Vi, ..., V4 are q-orthogonal
to each other, the Wy, ..., Wy are m.q-orthogonal to each other.

A.2. Approximation of Euclidean images. In the course of the
article, we have used the following approximation property of Euclidean
images.

Proposition A.8. Let H be Hilbert space with scalar product p, W be
a finite-dimensional real vector space and w: H — W be a continuous
surjective linear map. We assume that q is a continuous non-negative
symmetric bilinear form on H. Then we have the following convergence
of bilinear forms on W:

m(ep +q) —> ™.

Remark A.9. Even in finite-dimensional vector spaces, the map ¢ —
m.q has bad continuity properties at the undefinite bilinear forms. For
example, if V' = R? and, for any n > 1, g, is the polar form of the
quadratic form

(z,y) = (z+ (1/n)y)*,
then g, has a non-zero limit, whereas, for any non-zero linear functional
w of V., one has ¢,q, —— 0. This explains why, in Proposition A.8,

n—oo
we have made some additional assumptions to get a limit.

We will prove Proposition A.8 in several steps. The main idea is
to reduce it to the case where 7 is a linear functional. We start by
studying this situation.

If V is a vector space, ¢ is a non-zero linear functional and ¢ is
a non-negative symmetric bilinear form, we shall identify the bilinear
form ¢,q and the real number

puq(1,1) = inf g(v,0).
(pv)=1

This number is easy to compute:

Lemma A.10. Let V' be a real vector space, equipped with a non-
negative symmetric bilinear form q, W C V' be the null space of q and
© be a non-zero linear functional of V.

If ¢ is not zero on W, then ¢,q = 0.

If p 1s zero on W and ¢ is not continuous with respect to the topology
induced by q on V/W , then again p.q = 0.
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Finally, iof ¢ is zero on W and continuous with respect to the topology

on V/W, then
1
Pxq = T 20
el

where ||| stands for the norm of ¢ as a bounded linear functional of
the normed space V/W .

Proof. If pyw # 0, we can find w in W with (p,w) = 1 and hence
©xq = q(w,w) = 0 and we are done.

Else, we can assume W = 0 and q is a scalar product. If ¢ is not
continuous with respect to the topology induced by ¢, there exists a
sequence (u,) in V' with q(up,,u,) = 1 and (@, u,) — o0 We set

v, = —(wh suy and we have (p,v) = 1 and q(vn,v,) — 0, hence
o n—o0o

wxq = 0.

Finally, if ¢ is continuous, we can assume V to be complete with
respect to g. Now, let u be the unique vector of V' such that (p,v) =
¢(u,v), v € V, so that ||¢| = |lul| = q(u,u)2. Any vector v in V
with (¢, v) = 1 may be written as v = u + w with g(u,w) = 0.

q(u,u)
In particular, we then have g(v,v) = m + q(w,w) > q(iu) and the

result follows. O

The data of the numbers ,q allows to recover p.

Lemma A.11. Let V' be a real-vector space and q be a non-negative
symmetric bilinear form on V. For any v # 0 on V', we have
q(v,v) = sup p.q.
peVv*
<(,D,’U>=l
Proof. The statement is a direct consequence of Cauchy-Schwarz in-
equality. Let us be more precise.

By construction, we have ¢(v,v) > sup gev+ ¢.q and we only need
(pv)=1
to prove the reverse inequality.

We fix v in V with ¢(v,v) # 0 (if g(v,v) = 0, the statement is
evident). We consider the linear functional
q(v, w)
q(v,v)
so that ¢(v) = 1. Now, Cauchy-Schwarz inequality gives, for any w in
v,

QW

q(w, w)?
1

plw) < q(v,v)?
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hence, if p(w) = 1, ¢(w,w) > q(v,v). Thus, by definition, we get
©xq = q(v,v) and the result follows. n

Recall that, if V' is a finite-dimensional real vector space, we denote
by Q(V') the space of symmetric bilinear forms on V' and by Q. (V) C
Q(V) the set of non-negative ones. The set Q. (V) comes with its
natural topology as a closed subset of a finite-dimensional vector space.
We have an evident semicontinuity property.

Lemma A.12. Let V' be a finite-dimensional vector space. For any
© # 0in V*, the function q — p.q is upper semicontinuous on Q. (V),
that is, we have, for q in Q. (V),

Vq = limsup @, p.

p—q

Proof. Indeed, for any v in V, the function ¢ — ¢(v,v) is continuous
on Q(V), hence the function ¢ — ¢,q is the infimum of a family of
continuous functions. U

From this, we can deduce a continuity property:
Lemma A.13. Let V be a finite-dimensional vector space and q be in

Q. (V). Assume (q,) is a sequence in Q. (V) such that g, — q with
n—oo

qn > q, n > 0. Then, for any ¢ # 0 in V*, we have p,q, — ©xq.
n—oo

Proof. This is a consequence of semicontinuity and concavity. Indeed,
on one hand, by Lemma A.12, we have
(A.1) lim sup v, q, < ©.q.

On the other hand, for any n, we set p,, = ¢, — ¢, so that by assump-
tion, the bilinear form p,, is non-negative and p,, —— 0. In particular,
n—oo

again by Lemma A.12, we have ¢,p, —— 0. Now, by Lemma A.5,
n—oo
for any n, we have
Oxln = Pxq + OsPns

hence
(A.2) lim inf ©,q, > ©.q.
The result follows from (A.1) and (A.2). O

Next, we give a formula for ¢,q.

Lemma A.14. Let H be Hilbert space with scalar product p, u be a
non-zero vector of H, T be a bounded non-negative self-adjoint operator
of H and v be the spectral measure of u with respect to T'. Then if
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is the linear functional v — p(u,v) and q is the bilinear form (v, w)

p(Tv,w), we have
© dp(t)\ "
Pxq = (/ t( )) .
0
o0 dzz(t)

In particular, we have ¢,q = 0 if and only if f =00

Proof. Recall that v is a compactly supported positive Radon measure
on [0, 00). By the Spectral Theorem, we only need to prove the formula
when H = L%([0,00),v), u is the constant function 1 and T is the
operator f(t) — tf(t).

Note that if ©(0) > 0, we have ¢(19,1p) = 0 and ¢(1y) > 0, hence
v«q = 0 and the result holds. Therefore, we will now assume that we
have v(0) = 0.

In this case, by definition, we have

00 2
(puq)™ = sup Yo Jd)”
rersqoy Jo tf(t)*dv(t)
We let 1 be the Radon measure with du(t) = tdv(t). The supremum
above is finite if and only if the function ¢ — % belongs to L2([0, 00), ),
that is, the function ¢ — 7 belongs to L'([0, c0), ) When this holds,
the supremum is equal to [;°t72du(t) = [77 ¢ 'dw(t) O

From this formula, we can deduce a first case of Proposition A.8.

Corollary A.15. Let H be Hilbert space with scalar product p and
@ be a non-zero continuous linear functional on H. Then, if q is a
continuous non-negative symmetric bilinear form on H, we have:

. (ep+q) — puq.
e—0

Proof. Let u be the vector in H which represents ¢ and 7" be the
bounded self-adjoint operator on H which represents ¢. If v is the
spectral measure of u with respect to T, by Lemma A.14, for any

e > 0, we have
< du(t)\ "
@*(€p+q)—(/0 t+€) :

The conclusion follows from the Monotone Convergence Theorem. [

We are now ready to conclude.

Proof of Proposition A.8. For any € > 0, we set r. = m,(ep + q). As
the family (r.).~0o is an non-decreasing family of non-negative forms, it
has a limit r as ¢ — 0. We need to prove that r = m,q. On one hand,
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by Lemma A.4 and Corollary A.15, for any non-zero linear functional
p on W, we have
pure = (Pm)u(ep + ¢) — (97)eq = 0u7.q.

e—0

On the other hand, as, for any € > 0, r. > r, by Lemma A.13, we have
PxTe —7 4T
e—0
We get p,m,.q = p,r for any ¢, hence m,q = r by Lemma A.11. O

A.3. Derivative of the image map. For a finite-dimensional vector
space V| the map ¢ — 7,q is smooth on the space Q.. (V) of positive
definite bilinear forms on V. We have even used an infinite-dimensional
version of this result that we will now prove.

Fix a Hilbert space H with scalar product p. We recall that a con-
tinuous symmetric bilinear form ¢ on H is said to be coercive if there
exists € > 0 with ¢(v,v) > ep(v,v), v € H, or equivalently if ¢ is pos-
itive definite and defines the same topology as p on H. We denote by

. (H) the space of coercive continuous bilinear symmetric forms on
H, which is an open subset for the norm topology of the space Q> (H)
of continuous bilinear symmetric forms.

Proposition A.16. Let H be a Hilbert space, W be a finite-dimen-
sional vector space and m : H — W be a continuous surjective linear
map. We denote by /P : W — H the adjoint operator of 7, that is, the
linear map with (7,p)(7(v),w) = p(v, 7P(w)), v € H, w € W. Then
the map q — m.q, QF, (H) — Q4 (W) is smooth. Its derivative at p
is the linear map q — (77)*q, Q°(H) — Q(W).

Proof. Let ¢ be in Q%°, (H). We will compute the adjoint 7% of 7 with
respect to the scalar product ¢ on H. Let T be the unique self-adjoint
bounded operator on H such that q(vy,ve) = p(Tvy, v2) for vy, ve in H.
As ¢ is coercive, T is invertible. Let L C H be the kernel of w. The
space wP(W) is the orthogonal complement L of L with respect to
p. By construction, the orthogonal complement L9 of L with respect
to ¢ is T~1x™(W). In particular, the endomorphism 77 ~!7 of W is
injective, hence bijective. We denote by U its inverse. We claim that
we have 77 = T~ 17U Indeed, on one hand, the range of the linear
operator T~ 17U is T~1x(W) = L9 and on the other hand we have
7T~ '7PU = Idy. Therefore, we have 717 = T17™PU and, for wy, ws
in W,

(A.3) meq(wr, wo) = 7wy, wy) = (T 7 PUwy, T 7 PUw,)
= p(x"PUwy, T 7P Uwy,).
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As the inverse map is smooth on the space of invertible operators, m.q
depends smoothly on ¢. Let us now compute its derivative d,(m,) at
p. For this, we will derivate the quantity in (A.3) for T close to the
identity operator.

We let B(H ) denote the space of bounded operators on H. The deriv-
ative of the inverse map at the identity operator is © — —0, B(H) —
B(H). Hence, by the chain rule, the derivative of the map T
(7T~17P)~1 at the identity operator is the map © — 7O B(H) —
End(W). Let ¢ be in Q>*(H) and © be the self-adjoint operator asso-
ciated to q. We get, from (A.3), for wy, ws in W,

dp(m.)(q)
= p(rPrOTPw,, 7Pw,y) — p(rPw, OnPws,) 4 p(rPw, TP 7O Pws,).

Now we claim that the three numbers in the right hand-side of the
latter are actually equal to each other. Indeed, by construction the
operator 7?7 is the p-orthogonal projection on 7f(W), so that

p(7er7r®7erw1, 7rJ”’w2) = p(OrPw, 7r“’w2) = p(nPw;, OnPw,)
= p(nPw,, 7P 7OTPw,)

and
dy(7.)(q) = p(7Pwy, O1Pwy) = q(7Pwy, 7Pws)
as required. O

APPENDIX B. EUCLIDEAN PROJECTIVE LIMITS

The purpose of this appendix is to define and study the notion of a
Euclidean projective limit that has been used throughout the article.

B.1. Non-negative projective systems. We first define non-nega-
tive projective systems and the associated Euclidean projective limits.

Definition B.1. A non-negative projective system is a sequence
(X4, g, o) e>0 where, for any integer ¢ > 0, X, is a finite-dimensional
real vector space, gy is a non-negative symmetric bilinear form on X,
and 7, : Xy11 — X, is a surjective map such that (m,)*q, < qei1 (that
is, the bilinear symmetric form gy11 — (7)*q, is non-negative).

Remark B.2. For any ¢ > 0, let Y, C X, be the null space of ¢,. Then
we have 1Yy, 1 C Y, Set X, = X,/Yy and let 7y : X¢y1 — X¢ be the
natural map and g, be the bilinear form induced by ¢, on X,. Then the
sequence (X, Gy, Te)e>0 1S again a non-negative projective system and
the forms (g,)s>0 are all positive definite. We shall use this construction
repeatedly.
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Recall that the algebraic projective limit X of the projective system
(X, ) is defined as

X :1<iLnXg = {l’ = (33@)@20 € HX@ Ve>0 x _Wg(l'prl)}.

£20 >0
To any non-negative projective system we can associate a natural Hil-
bert space.

Lemma B.3. Let (Xy, qo, m)e>0 be a non-negative projective system
and let X be the algebraic projective limit of the projective system
(Xy,m). We let L C X be the set of those x = (x¢)r>0 in X such
that

sup qe (e, ¢) < 0.
>0

Then L is a vector subspace of X and there exists a unique non-negative
symmetric bilinear form q on L with

q(x,z) = sup qe(we, v¢), € L.
>0

The space H = L/kerq, equipped with the positive definite bilinear
form induced by q is complete.

Definition B.4. If (X, g, m)r>0 is @ non-negative projective system
the Hilbert space H from Lemma B.3 is called the Euclidean projective
limit of the system.

Remark B.5. Note that in general, there is no reason for H not to be
reduced to 0. We will address this question in the next subsections.

Proof of Lemma B.3. By Minkowski inequality (that is, the triangle
inequality for non-negative quadratic forms), for any z, y in L, we have,
for £ > 0,
1 1
Qe(xe + ye, ve + ye) < (qe(ze)? + qe(ye)?)?,
hence = + y belongs to L. Now, we set
o1
q(w,y) = lim S(q(e +y, 7 +y) = (. 2) = a(y,y))
One checks that ¢ is a symmetric bilinear form and that, for any x in
L,

Q(% $) = Sup CM(@, w)-
>0

In particular, g is non-negative.

It remains to prove that the space H = L/kerq is complete for
the bilinear form induced by ¢, which we still denote by ¢. First, we
assume that, for any ¢ > 0, ¢, is positive definite. In this case, we
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have kerq = {0} and H = L. We need to prove that any absolutely
convergent series in H is convergent. Let us pick a sequence (z,,) in H
and assume it is absolutely convergent, that is,

Z q(zn, xn)% < 00.

n

Set, for any n, x, = (4,)r>0. We have, for £ > 0,

1
ZQZ<xZ,n7xZ,n)§ < 00.
n

Hence the series ) x,, converges in the finite-dimensional Hilbert
space (Xy, q) towards an element z,. By uniqueness of the limit, we
have m¢(x¢41) = xp. Therefore, the element = (2¢)>0 in [, Xo
actually belongs to the algebraic projective limit X. Now, for any ¢,
we have

e, x0) < (Z QK(M,mM,n)é) < (Z q(zn, Tn) ) ;

hence x belongs to H. In the same way, one checks that )z, =z in
H.

In the general case, we let (X, q,, T¢)e>0 be as in Remark B.2 above,
that is X, is the quotient of X, by the null space of g, g, is the induced
symmetric bilinear form on X, and 7, : X,1 — X, is the natural
map. Then the algebraic projective limit X of the projective system
(X¢,qy)es0 is exactly the quotient of X by the space

kerg = {z = (x¢)>0 € X|VL >0 x4 € kerq,}.

We are brought back to the case where all the g, are positive definite.
O

N[

B.2. Straight systems. We now would like to have conditions for the
Euclidean projective limit to be large. To this aim, we introduce a new
notion.

Definition B.6. Let (X, g, m¢)e>0 be a non-negative projective sys-
tem. We shall say that the system is straight if, for every ¢ > 0, we
have (7;).qer1 = qe, that is, g, is the Euclidean image of gy .

Straight systems have good Euclidean projective limits.

Lemma B.7. Let (Xy, qo, m)e>0 be a straight non-negative projective

system and let H be its Fuclidean projective limit. Then, for any ¢ > 0,

the natural map py : H — X,/ ker q; is onto and one has (pe)xq = qo-
A subspace L C H s dense in H if and only if, for any ¢ > 0,

pe(L) = Xy/ ker qp and (pe)sqL = qe-
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Proof. As noticed in Remark B.2, we can assume that, for any ¢ > 0,
the symmetric bilinear form ¢, is positive definite. Set Wy = X, and
Po = qo and, for £ > 1, set W, = kerm,_1 and let p, be the restriction
of gy to Wy. The system being straight, we have an isomorphism X, —
Wo @ - - - W, which sends g, to pg+ - - - + p; and which identifies 7, with
the natural map Wy ®--- Wy 1 — Wy®- - - W,. Now we see that H may
be defined as Hilbertian direct sum of the Euclidean spaces (W, pe)r>o-
In particular, the first part of the lemma follows easily.

Let now L be a closed subspace of H such that, for any ¢ > 0,
pe(L) = Xo and (p)«q. = qe and let us prove that L = H. Indeed, we
can identify p, with the orthogonal projection H — X, = Wy & --- W,.
Now, as (p¢)«q = q¢, there exists a closed subspace Y7 of L such that
pe is an isometry from Y, onto X,. But as p, is an orthogonal projection
of H, this implies that Y, = X, hence X, C L. As this is true, for any
¢, we get L = H as required. O

B.3. Straightenable systems. We shall now see how can build a
straight system from one that is not.
For k > ¢, let us write 7, for the natural product map

Tge = Tg—1"""Tg ! Xk —>X4.

If the system is not straight, we can try to straighten it. There is a
natural formula for doing so.

Lemma B.8. Let (X4, qu, m)e>0 be a non-negative projective system.
Assume that, for any ¢ and any x in X,, one has
®y(x) = sup(my,e)uqr(z,z) =sup inf gy, y) < oo.
k>0 k>0 yeX

k
T 0 (Y)=2

Then, for any £, ®; is a quadratic form on X,. Let p, be its polar form.
The family (Xo, pe, Te)e>o is a straight non-negative projective system.

Definition B.9. Let (X, ¢, m/)e>0 be a non-negative projective sys-
tem. We say that it is straightenable if, for any ¢ and any x in X, we
have

sup(me.¢)«qr(x, x) < oo.
k>t

In this case, the straight non-negative projective system (Xg, ps, m¢)e>0
from Lemma B.8 is called the straightening of (X, gz, 7¢)>o0-

Proof of Lemma B.8. Fix ¢ > 0. For any k >/, let ®% denote the qua-
dratic form = — (m0)«qx(x, ) on Xy. If k > £, since g, > (mp—1)* @1,
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we have, for any x in X,

o (z) > nf Qo1 (me(y), T (y)) = P (@),

T, o(y)=2

where the latter inequality holds because of the surjectivity of m,_1. In
particular, we have

¥ () — Bu(w)

and P, is a quadratic form. As in the statement, we let p, denote its
polar form. Since ®;, > @ and &/ is the quadratic form associated to
qe, Py is non-negative. Finally, for any = in X, and any k& > ¢ + 1,
we have

{y € Xilme e (y) = 2} C{y € Xilmee(y) = me(y)},

hence ®yyy > (m)*®, and the family (X, pe, 7)e>0 is a non-negative
projective system. It remains to prove that this system is straight,
which is the main difficulty of the proof.

To this aim, we need to introduce more notation. For any /¢, let
W, C X, be the null space of ®,. As &, is the non-decreasing limit of
the ®F &k > ¢, there exists a smallest k > ¢ such that W is the null
space of ®¥. We denote it by j(¢). We also set V; = X;/W,.

Now, fix £ > 0 and z in X,. We claim that there exists y in X,y
such that m(y) = z and, for any k > ¢+ 1, @}, (y) < ®(y), which
finishes the proof

Indeed, by Lemma A.4, for k > ¢+ 1, we have (m,), @}, = ®f < @,.
As Xy, is finite-dimensional, this implies that the set

A ={y € Xea|m(y) = x and D5, (y) < Do(x)}

is not empty. Note that one has Ax,; C Ax. We let By be the image
of Ag in Vpyq. Then, if £ > j(£ + 1), By is a compact subset of V. As
this sequence is non-increasing, we have (), (641 By # () and we are
done. - O

The straightened system and the original one have the same Eu-
clidean projective limit:

Lemma B.10. Let (Xy, qo, me)e>0 be a straightenable non-negative pro-
jective system and let (Xo, pe, To)eso be its straightening. For any x =
(x¢)e>0 in the algebraic projective limit, we have

sup pe(e, x¢) = sup qe(xe, x¢).
>0 >0

In particular, both systems have the same Euclidean projective limit.
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Proof. On one-hand, we have, for any ¢ > 0, ¢, < py, hence

sup qe(xe, o) < sup pe(ze, 0).
>0 >0

On the other hand, for any k > ¢ > 0, we have 7, s(zx) = x4, hence

pe(we, x¢) = sup(me)uq(2, ) =sup  inf gy, y) < sup q(xr, o).
k>¢ k>0 yEXk k>t

7,0 (Y)=2¢

O

The notion of a straightenable system allows us to characterize the
case where the Fuclidean projective limit is large enough.

Proposition B.11. Let (X, o, m)e>0 be a non-negative projective sys-
tem with FEuclidean projective limit H. The following are equivalent:
(1) The system is straightenable.

(i) For any ¢ > 0, the natural map H — X,/ ker q, is onto.

(iii) There exists a Hilbert space K and a family (6¢)e>0 where, for any
¢ >0, 0, is a surjective continuous linear map K — X,/ ker q, with
0 = w1 and qu(0,(v), 0,(v)) < ||v]|* for any v in K.

Proof. (i)=(ii) This follows from Lemmas B.7, B.8 and B.10.
(11)= (iii) This is evident by taking H = K.
(111))=(i) Let ¢ > 0 and v be in K. For any k > ¢, we have
Tre(0k(v)) = 64(v). Hence,
: 2
sup  inf - au(y,y) < |lof”-
~ T,e(y)=0¢(v)

As the maps 6, are surjective, the system is straightenable. 0

APPENDIX C. QUADRATIC DUALITY

We recall here some basic facts about the duality between the spaces
of symmetric bilinear forms on a vector space and on its dual space.

C.1. Definition and elementary properties. Let V' be a finite-
dimensional vector space. As usual, we let V* denote its dual space
and Q(V') denote the space of symmetric bilinear forms on V.

For ¢, 1 in V*, we let 1 € Q(V') denote the bilinear form

(v,0) > 3 (p(0)o() + De)e(w))

on V. If ¢ = 9, we write ©? for pp. In the same way, for v,w in V,
we let vw denote the bilinear form

(0r) > 3 (P()(w) + B(v)o(w))



168 JEAN-FRANCOIS QUINT

on V* and, when v = w, we write v? for vv. In the formalism of multi-
linear algebra, the map o — ¢? (resp. v — v?) defines an isomorphism
between the spaces S?V* (resp. S?V') and Q(V) (resp. Q(V*)).

Any p in Q(V') defines a linear map 6, : V. — V* such that, for
v,w in V, one has p(v,w) = (d,v,w). The fact that p is symmetric
translates into saying that 6, is equal to its adjoint operator, that is,
0p = 0, (when V' is identified with the dual space of V*!)

For any p in Q(V) and ¢ in Q(V™*), we set

(p,q) = tr(0,0,) = tr(6,0,).

Lemma C.1. Let V be a finite-dimensional vector space. For any p in
Q(V) and v in V, we have (p,v?) = p(v,v). In particular, the pairing
(.,.) between Q(V') and Q(V*) is non-degenerate. For any ¢ in V* and
vinV, one has (©*,v*) = ¢(v)? and this property uniquely determines
the pairing (., .).

The pairing (.,.) is called the quadratic duality in this paper.

Proof. For vin V and g = v?, the linear map 6, : V* — V reads as ¢ —
@(v)v. Thus, for p in Q(V), 6,0, is the endomorphism w — p(v,w)v
of V whose trace is p(v,v). Non-degeneracy follows. The uniqueness
property comes from the fact that the p?, » € V* span Q(V) as a
vector space. O

The quadratic duality behaves well under linear maps.

Lemma C.2. Let V and W be finite-dimensional real vector spaces and
T :V — W be a linear map with adjoint linear map T : W* — V*.
If p is a symmetric bilinear form on W and q is a symmetric bilinear
form on V*, we have

(T"p,q) = (. (T")"q).-
Proof. Indeed, one has 0p«, = T70,1" and 0y, = 70,17, hence
(T*p,q) = tx(1T76,16,) = tr(6,760,1") = (p, (T™)*q).
O

C.2. A Euclidean formula. Let V' be a finite-dimensional vector
space. We will see how the formalism of the quadratic duality allows
to describe the classical GL(V)-invariant Riemannian metric on the set
Q.. (V) of positive definite symmetric bilinear forms on V.

If pisin Q4 (V), the map 6, : V — V* is a linear isomorphism.
We define the dual form dy(p) of p as the positive symmetric bilinear
form (6,')*p on V*. The map dy : Q44 (V) — Q4 (V*) is a smooth
diffeomorphism and we can compute its derivative.
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Lemma C.3. Let V' be a finite-dimensional vector space, p be a scalar
product on 'V and q be in Q(V'). We have

dpdv(q) = —(6,")"q.

For p,q as in the setting, there exists a unique p-symmetric endo-
morphism A of V' with ¢(v, w) = p(Av,w) for v,w in V. We say that
A is the endomorphism which represents ¢ with respect to p.

Proof. Let first ¢ be in @, (V) and A be the p-symmetric endomor-
phism which represents ¢ with respect to p. For any ¢, in V*, let
v =019 and w = 6,9 be the vectors such that ¢(u) = p(u,v) and
Y(u) = p(u,w) for win V. We have, by definition, 6, = 6,4, hence

v (q) (i, ¥) = q(A™ v, A7 w) = p(v, A w).
Therefore, for ¢ in Q(V), d,0v(¢)(¢,¥) = —p(v, Aw), which we may
write as d,dy (¢) = —(6,1)*q. O

P
The derivative of dy, allows to define the natural Riemannian metric

of Q4+ (V) (see [20, Chapter VIJ).

Lemma C.4. Let V' be a finite-dimensional vector space, p be a scalar
product on 'V and q,r be in Q(V'). We have

— (¢, dpdy (r)) = tr(AB),

where A and B are the p-symmetric endomorphisms of V' which repre-
sent q and r with respect to p.

Proof. We have 0, = 0,A and 0, = 0,B. By Lemma C.3, we get
0,6, () = — B0, ", hence, by definition, (g, d,d0v (1)) = — tr(6,ABO ) =
—tr(AB). O

C.3. A formula for finite sets. We give a formula for the quadratic
duality which was used in the proof of the weight formula in Subsection
11.2.

Let A be a finite set and V' be the space of real-valued functions
on A. We identify V' with its dual space through the bilinear form
(f,9) = > 4ea fla)g(a). As usual, we set V to be the quotient space
of V' by the line of constant functions and we identify the dual space
of V' with the space V; = {f € V|, f(a) = 0}.

If p and ¢ are symmetric bilinear forms on V and Vj, we set, for a,b
in A,

gop(a, b) = _p(lm 1b)
Kq<a7 b) = Q(]-zz — 1,1, — ]-b),

where by abuse of notation, we write 1,, 1, for their images in V.
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Lemma C.5. Let p and q be symmetric bilinear forms on V and Vj.

We have
1
(p,q) = 9 Z QDP(C%b)KQ(a’ b).

(a,b)e A2

Proof. Let T : V' — V be the natural quotient map, so that T* is the
inclusion Vy — V. We define a symmetric bilinear form ¢ on V' by
setting, for f,g in V,

W)=~ 3 Ka0)f)g(b)

(a,b)€A?

Then the restriction of § to Vj is ¢, that is, (T*)*¢ = ¢. Thus, by
Lemma C.2, we have

(p,q) = (p, (T7)"q) = (T"p, §).

Through the identification between V' and its dual space, the basis
(14)aca is equal to its dual basis, so that, by definition, we have

(T*p,q) = > p(T1,,T1,)G(1,, 1)
(a,b)cA2?

and the result follows. O

APPENDIX D. HAAGERUP INEQUALITY

In the course of the article, we have used Haagerup inequality from
[17] to ensure that certain convolution operators were bounded. In this
appendix, we show precisely how to adapt the original statement and
proof by Haagerup in order to have them fitting in our framework. This
adaptation could also be seen as following from [18] and [22].

We keep the notation of the article. In particular, X is a tree and I"
is a discrete group of automorphisms of X such that '\ X is finite.

D.1. Norms of convolutors. The original Haagerup inequality dom-
inates the norm of the convolution operator on ¢*(T") associated to a
function f on ¢*(T') by a weighted ¢>-norm of f. As, in our case, the
action of I' on X is not necessarily transitive, we use convolution op-
erators by I'-invariant functions on X,. We shall first define precisely
which kind of norms we will use on the space of such functions.

For ¢ a I-invariant function on X2, we set

1
(||90||g>2: Z WW(%?J)Q-
x Y

(z,y)elr\ X2
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Lemma D.1. There exists C' > 0 such that, for any I invariant func-
tion on ¢ on X, we have

1 r r
= llelly < sup le(z, ), < Cllells ,
C zeX

where, for x in X, ||p(x,.)|, is the norm of the function y — ¢(z,y)
in (2(X) if this function belongs to this space and oo else.

Proof. Lemma 9.11 gives

Uelhz = 3 % o, )2

zel\ X o]

The conclusion follows from the fact that I"\ X is finite. O

D.2. Bounded convolution operators. We recall that X, stands
for the set of (z,y) in X? with z # y and that, for k¥ > 1, X} stands
for the set of (x,y) with d(z,y) = k. As above, we write ¢? (X;) for
the space of square-integrable skew-symmetric functions on X;. For
a [-invariant function ¢ on X,, we defined in (10.1) the associated
convolution operator P, by the following formula: if ¢ is a finitely
supported skew-symmetric function ¢ on X, for (z,y) in Xj,

Pap(w,y) = Y elw,a)bba)— Y oy, a)(ba)

(a,b)eXy (a,b)eXy
y,b€[zal z,b€[yal
1
= 5, y) + oy, )z, y).

Haagerup inequality states as

Proposition D.2. Let ¢ be a I'-invariant function ¢ on X, such that
Y olwy)’d(z,y)* < oo
(z,y) €T\ X«
for some a > 2. Then the convolution operator P, is bounded in
7% (X7).

We will prove this by following the same lines as in [17]. First, we
translate [17, Lemma 1.3] which is the key observation of the proof.
We fix a point o in X that will play the role of an origin and, for any
integer k > 1, we set

Y = {(z,y) € Xi|max(d(o,x),d(o,y)) = k}.
We get
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Lemma D.3. There exists C' > 0 such that the following holds. Let
gk, 0 > 1 and ¢ be a I'-invariant function on X,., with support on
X, and v be a skew-symmetric function on X, with support on Y. If
J<k+l, k<l+jand l < j+ k, we have

() v,y < Clielly l1oll, -

In all other cases, we have Py)p =0 on Y.

Proof. It j 1, P, is just the multiplication operator by the function
(x,y) — (go(x y) + ¢(y, 7)) on 2 (X;). The required inequality fol-
lows since all the norms on the finite-dimensional space of I'-invariant
functions on X, are equivalent.

Therefore, we assume j > 2. In that case, for any function ¢ in
(> (X)) and any = ~ y in X, we have

P@¢(x7 y) = Z gp(l‘, a>¢<a1’ CL) - Z Qp(y’ b)¢(b17 b)?
a€Si(x) beSI (y)
y€[zal z€[yd]
where, for a,b as above ay,b; are their neighbour which are closest to
[zy]. For z in X with d(x,0) = x # o, we let x_ denote its neighbour
on [ox]. We must dominate the quantity

1Py 3 =2 > (Pov(a—, ).

d(z,0)=L

Now, recall that ¢ has support in X; and v has support in Y},. Hence
if, for some = with d(z,0) = ¢, we have Pyp(x_,z) # 0, then three
possibilities can occur:

— (i) there exists a in X with d(z,a) = j, d(a,0) = k, x_ € [ax] and
a ¢ [ox]. In that case, we have, by the triangle identity, j < k + ¢,
k <{+j,and ¢ < j+k. Let y be the point such that [ao] N [zo] = [yo]
and i = d(y,0). As z_ belongs to [ax|, we have y # x hence ¢ < ¢ — 1.
Besides, we have

j=d(a,z) =d(a,y)+d(y,z) = (k—1i)+ (L —1i) =k+{—2i,

so that 2 = k+ /¢ — j and this number must be even. Also, asi < {—1,
we have k < j+ ¢ — 2 and, as a ¢ [oz]|, we have i < k — 1, hence
(< j+k—2.

— (ii) there exists a in [ox_] with d(z,a) = j and d(a,0) = k — 1. In
that case, we have ¢ = d(x,0) = j+ k — 1.

— (i) there exists b in X with d(z,b) = j—1, d(b,0) = k and z_ ¢ [xb].
In that case, as z_ is not in [zb], we have = € [ob] hence k = ¢+ j — 1.
The three cases are pictured on Figure 6.
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Vyé‘ 2/0/‘
(i)

(i1)
b

(iii)

FIGURE 6. The three cases in the proof of Lemma D.3

Note in particular that the inequalities over j, k, ¢ imply that no two
of those three cases can happen simultaneanously.

We now prove the inequality in case (), that is, we assume that we
have j <k+ /¢, k<l+4+7—2,(<j+k—2 and that j + k + £ is even
z(md ;ive set i = 3(k + ¢ — j). The reasoning above, gives

D.1

2

I(Pow)1y,l; = 2 > Y. elza)d(a,a)

d(y,0)=1i d(x,y)=~0—1 d(a,y)=k—i
y€E[zo] [ao]N[zo]=[yo]

We define a new I'-invariant function ¢’ on X,.. For any (z,y) in X,,
if d(xz,y) = —1i, we set

Py = > w2’

d(z,z)=j
yElzz]

Else, we set ¢'(x,y) = 0. By (D.1) and Cauchy-Schwarz inequality, we
have

IElE<2 3 3 wlaa? 3 Play)?

d(y,0)=i d(a,0)=k d(z,0)=L
y€lao] y€[zo]

2 2
<sup [l¢"C )5 1215 -
yeX
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Now, let C' be as in Lemma D.1, as ¢’ is I'-invariant, we have
sup [[¢' (. y)ll, < C*sup [l (z, ),
yeX reX
and by the definition of ¢/,
r
sup [|¢"(, )|, = sup [[o(z, ), < Cllell; -
zeX reX

The result follows.
In case (ii), we have ¢ = j + k — 1 and we can write

Pyl =2 > > elry)¢y,y-)

d(y,o):k d(ac,y):j—l
yE[zo]

2 2
< sup [leC vz 1413,
yeX

and we conclude again by Lemma D.1.
Finally, in case (%ii), we have k = ¢+ j — 1 and
2

Py =2 > | Y. ela_,b)(b_,b)

d(z,0)=¢ \ d(b,0)=k
x€[bo]

As in case (i), we define a I'-invariant function ¢’ on X; by setting, for
any (u,v) in X7,

d(u,w)=j
y€(zz]

so that Cauchy-Schwarz inequality gives

I(Pet) Ly, ll, < sup @' (u,v) [[¥]l5,

u,v)EX]

and we conclude as above. O

From Lemma D.3, we easily deduce Proposition D.2 as in [17, Lemma
1.4, Lemma 1.5].

Proof of Proposition D.2. Pick a I'-invariant function ¢ on X,. Let us
for the moment fix 7 > 1 and set p; = ply,. Let ¢ be a finitely
suported skew-symmetric function on X;. For & > 1, we write ¢ =
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Yly,, so that ¢ = >, ., ¥. By Lemma D.3, we can find C' > 0 such
that, for any such v, for £ > 1, one has

j+e
1P 1y, |, < 3 (P 1y, < Cllilly D Nl -
k>1 k=j—¢|

Indeed, for any k ¢ [[j —/|, j+ /], Lemma D.3 says that (P,;1)1y, = 0.
We can dominate the norm of P, v by

1Boselly = D 1IPsvtw;
>1

Jjte

<Clleillz? Yo D Il

>1 \ k=|j—(|

j+e
< C(|lpsll)* Y @min(G,0) +1) Y [lexl
0>1 k=|j—¢|
< C%3j(llgsll5)* Y (2min(j, k) + 1) vl

k>1
. r
< C*95%(llgilly)* 191l

where we have used Cauchy-Schwarz inequality.
Now, we have

. r
1Poplly < > NP, < 3C 101D d sl -
Jjz1 j=1
Fix o > 2 and set " = 37, j'~*. For any sequence (z;);>1 of non-
negative real numbers, Cauchy-Schwarz inequality gives (3., Ju;)? <
C' 51 55, Thus, we get

1Powll; < 9C3C" 19115 Y 5% (llgsl5)”

Jj=1

and we are done. O
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