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JEAN-FRANÇOIS QUINT

Abstract. We continue the systematic study of unitary represen-
tations of tree lattices from [7], [8] and [9] whose goal is to describe
the spectral theory of such representations.

The spectral transform of [9], which is a concrete version of
the spectral theorem, allows to define a map from the set of all
such representations to spaces of measures on [−1, 1] with values
in the set of non-negative bilinear forms on some finite dimensional
vector spaces. In this paper, we describe the subspace spanned by
the range of this map up to a finite dimensional space.
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1. Introduction

1.1. Objective of the article. Let q ≥ 2 be an integer and X be a
homogeneous tree of degree q+1. We equip X with a proper action of
a discrete group Γ such that the quotient set Γ\X is finite. We write
∂X for the boundary of X. This is a totally discontinuous compact
topological space and the natural action of Γ on ∂X is minimal. We
write D(∂X) for the space of locally constant real valued functions on
∂X and D(∂X) for the quotient space of D(∂X) by the line of constant
functions.

Our purpose in this paper, which is the sequel of [7], [8] and [9], is
to study Γ-invariant non-negative symmetric bilinear forms on D(∂X).
The space of all such bilinear forms is a convex cone Q+(D(∂X))Γ ⊂
Q(D(∂X))Γ, where the latter stands for the space of all Γ-invariant
symmetric bilinear forms on D(∂X).

The completion of D(∂X) with respect to such a non-negative bi-
linear form is a unitary representation of Γ. Conversely, any unitary
representation of Γ which admits a cyclic and harmonic first cohomol-
ogy class may be obtained in such a way. This point of view is explained
in the independent Appendix A (see in particular Remark A.9). Thus,
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studying Γ-invariant non-negative symmetric bilinear forms on D(∂X)
amounts to studying a wide class of unitary representations of Γ.

For these representations, in particular for the extremal ones, we
aim at a better understanding of the spectral problem stated in [9,
Subsection 1.1]. In other words, we want to describe the spectral theory
of (the completion of) the operator Q defined on the space of all Γ-
equivariant maps f : X → D(∂X) by

Qf(x) =
1

q + 1

∑
y∼x

f(y), x ∈ X.

As in [9], for technical reasons, it will turn out to be more convenient
to work instead in the space of all Γ-equivariant maps f : X1 → D(∂X)
whereX1 is the set of oriented edges ofX. Following the terminology of
[9], we will call such maps Γ-invariant ∞-pseudofunctions and denote
the space of all Γ-invariant ∞-pseudofunctions by H∞. For H in H∞
and (x, y) in X1, we write Hxy ∈ D(∂X) for the value of H at (x, y).

The space H∞ comes with two natural operators R and S given by

(RH)xy =
∑
z∼x
z ̸=y

Hxz and (SH)xy = Hyx, H ∈ H∞, (x, y) ∈ X1.

From the relations R2 = q + (q − 1)R and S2 = 1, one deduces that
the operator

P =
1

q + 1
(RS + SR− (q − 1)S)

is central in the algebra A spanned by R and S.
Denote byQ(H∞)R,S the space of all symmetric bilinear forms onH∞

for which the operators R and S are symmetric. If p is in Q(D(∂X))Γ,
we associate to p an element of Q(H∞)R,S, which we still denote by p,
by setting, for H, J in H∞,

p(H, J) =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
p(Hxy, Jxy)

(this construction is already used in [9]). This defines an injective linear
map

(1.1) Q(D(∂X))Γ → Q(H∞)R,S,

and an element of Q(D(∂X))Γ is non-negative if and only if the asso-
ciated bilinear form on H∞ is non-negative. The spectral transform
of [9] (whose main properties will be recalled below), together with
the standard spectral theorem, give a full description of non-negative
elements in Q(H∞)R,S.



ADDITIVE REPRESENTATIONS 5

The linear map in (1.1) is not surjective and hence this description
can not be carried back directly to Q(D(∂X))Γ. The purpose of this
article is to bound the default of injectivity in (1.1) in the following
way.

In [9, Section 2], the space H∞ is written as a union H∞ =
⋃

k≥−1Hk

of finite-dimensional spaces, where for k ≥ −1, Hk is the space of Γ-
invariant k-pseudofunctions. By restriction of (1.1), for k ≥ −1, we
get a natural map

(1.2) Q(D(∂X))Γ → Q(AHk)
R,S

whereAHk is the (infinite-dimensional) subspace ofH∞ spanned by the
images ofHk under the elements of the algebraA andQ(AHk)

R,S is the
space of all symmetric bilinear forms on AHk for which the operators
R and S are symmetric. The main result of this article yields

Corollary 1.1. For k ≥ 0, the image of Q(D(∂X))Γ in Q(AHk)
R,S

has finite codimension.

1.2. Strategy of the proof. We will deduce Corollary 1.1 above from
a dual injectivity statement.

Indeed, as in [7, Subsection 2.1], denote by S the space of paramet-
rized geodesic lines of X and by T : S → S and ι : S → S the time
shift and the time reversal. Recall from [8, Subsection 5.3] that the
space Q(D(∂X))Γ may be identified with the space D∗(Γ\S )ι,T of dis-
tributions on Γ\S that are invariant by both ι and T . In other words,
this space may be seen as the dual space of the space of cohomology
classes of smooth ι-invariant functions on Γ\S .
Our strategy for proving Corollary 1.1 will be to write the linear

map in (1.1) as the adjoint of a map with values into the space of
cohomology classes of smooth ι-invariant functions on Γ\S . To this
aim, we need to construct a space whose dual space may be identified
with Q(AHk)

R,S. This will use the spectral transform of [6].
Indeed, with the aim of diagonalizing the operator P , in [9, Section

6], we have constructed the spectral transform. For k ≥ 0, this map
induces a linear isomorphism between the space AHk ⊂ H∞ and the
quotient space of the spaceH2

k[t] of all polynomial functions with values
in H2

k by the space of functions of the form

G(t)∨>∨ −
(
0 −1
q (q + 1)t

)
G(t)>,

where G(t) is in H2
k−1[t] (see [9, Subsection 2.2] for the ∨ and > no-

tation). The spectral transform intertwines the action of R and S in
H∞ with the action of certain polynomial matrix operators Rt and St
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on H2
k[t]. In particular, it intertwines the action of P and that of the

multiplication by t, that is, it diagonalizes the action of P .
These properties allow to identify Q(AHk)

R,S with the dual space of
a certain explicit quotient of the space ⊗2H2

k[t] of polynomial functions
with values in the tensor square ⊗2H2

k of H2
k.

Therefore, to prove Corollary 1.1, we will construct a linear map
⊗2H2

k[t] → D(Γ\S ). Actually, by using an elementary reduction,
we will only have to consider a certain linear map Ωk : ⊗2Hk[t] →
D(Γ\S ), which we will call the ultraweight map, since it shares some
relations with the weight map of [7, Section 8]. Thanks to explicit
formulas for the ultraweight map, we will be able to describe, up to a
finite-dimensional subspace, the set of polynomial tensors H in ⊗2Hk[t]
such that Ωk(H) is a coboundary with respect to the dynamics T on
Γ\S . This is our main result, which in turn will lead to Corollary 1.1.

1.3. Structure of the article. References to [7], [8] and [9] are indi-
cated with I, II and III.

In Section 2, we introduce Hölder continuous functions and the coho-
mology equivalence relation among them on Γ\S . We show a version
of the Livs̆ic Theorem. This is mostly a translation from the language
of subshifts of finite type (see [6, Chapter 1]). The space Γ\S plays
the role of a two-sided shift, whereas the space Γ\S+ plays the one
of a one-sided shift. We introduce a transfer operator on functions on
Γ\S+. We use its spectral properties to write a decomposition of ev-
ery Hölder continuous function on Γ\S as the sum of a coboundary, a
constant and a function depending only on the future (that is defined
on Γ\S+) that is killed by the transfer operator.

In Section 3, we study certain classes of functions on Γ\S which
are defined by sums. We call these sums endpoints series. By using
the decomposition of functions from Section 2 and a mixing property
of the action of T , we describe the space of endpoints series which are
coboundaries. Later, this criterion will be applied to endpoints series
associated to the ultraweight map.

In Section 4, we write a Plancherel formula for functions on X1. This
formula is essentially equivalent to the one for functions on X that is
established in [3]. We will later need this version on X1 when studying
the ultraweight map.

In Section 5, we introduce the fundamental bilinear map. This con-
struction is dual to the identification between the spaces Q(D(∂X))Γ

and D∗(Γ\S )ι,T in Subsection II.5.3. The fundamental bilinear map
Φ sends H∞ × H∞ to D(Γ\S ). If p is in Q(D(∂X))Γ and θ is the
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associated distribution in D∗(Γ\S )ι,T , for H, J in H∞, we have

(1.3) p(H, J) = ⟨θ,Φ(H, J)⟩,

where we use the same letter to denote p and the associated bilinear
form on H∞. We also introduce spectral fundamental bilinear maps
which send H∞ ×H∞ to the space of Hölder continuous functions on
Γ\S . Thanks to the Plancherel formula of Section 4, we decompose
the fundamental bilinear map by means of the spectral bilinear maps.
We use this decomposition to describe the spectral theory of the rep-
resentation of Γ associated with a (ι, T )-invariant probability measure
by the correspondance in II.5.3.

In Section 6, we use the explicit definition of the spectral bilinear
maps to write them as the sum of a coboundary and an endpoints
series as in Section 3. For k ≥ 1, j ≥ 0, the j-th coefficient of this
endpoints series (when restricted to Hk ×Hk ⊂ H∞ ×H∞) is defined
by a bilinear map

κj,k : Hk ×Hk → Vj+k,

where, for h ≥ 0, Vh is the space of all Γ-invariant functions on

Xh = {(x, y) ∈ X|d(x, y) = h}.

We build a linear map ωk : Hk → Vk such that, if j ≥ k − 1, for H, J
in Hk, κj,k(H, J) is cohomologous to the function on Xj+k,

(1.4) (x, y) 7→ −ωk(H)(xxk)ωk(J)(yyk)− ωk(J)(xxk)ωk(H)(yyk),

where xk and yk are the elements of [xy] at distance k from x and y.
The map ωk is called the weight map of k-pseudofunction. The study
of the weight map will play an important role in our next results.

In Section 7 we give some elementary properties of the weight map
ωk. This weight map of pseudofunctions shares some analogies with
the weight map Wk of k-dual kernels of Section I.8, but the weight
map Wk maps Kk onto the space of cohomology classes of symmetric
Γ-invariant functions on Xk, whereas the range of the weight map ωk

is far away from being all of Vk. Nevertheless, we show that for k ≥ 1,
a Γ-invariant k-pseudofunction H may be written as G∨> − G>∨ for
some G in Hk−1 if and only if the Γ-invariant function ωk(H) on Xk

is a coboundary. We extend this result to sequences by showing that,
for (Hj)j≥1 a finitely supported sequence in Hk, there exists a finitely
supported sequence (vj)j≥0 in Vk−1 such that, for (a, b) in Xk and j ≥ 1,

(1.5) wj(a, b) = vj(a, b1)− vj−1(a1, b),
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if and only if there exists a finitely supported sequence (Gj)j≥0 in Hk−1

such that, for j ≥ 1, one has

Hj = G>∨
j −G∨>

j−1 if k is even(1.6)

= G∨>
j −G>∨

j−1 if k is odd.

This result will not be used directly, but its proof serves as a model for
an analogue result for functions on spaces Xk × Xk, Proposition 9.3.
The latter statement will be our main tool for transfering the general
cohomology criterion for endpoints series of Section 3 to the language
of pseudofunctions by means of the endpoints formulas of Section 6.
The proof of the technical Proposition 9.3 will occupy the next two
sections.

In Section 8, we introduce some algebraic formalism which will be
used to solve certain algebraic equations on spaces of tensors.

In Section 9, we state and prove Proposition 9.3 by using the pre-
viously introduced formalism. This result focuses on the map ⊗2ωk :
⊗2Hk → ⊗2Vk. Given a finitely supported sequence (Hj)j≥1 in ⊗2Hk,
it says that, whenever the images by ⊗2ωk of the Hj satisfy analogues
of (1.5) for functions of two variables, then the Hj may be defined from
sequences in Hk ⊗Hk−1 and Hk−1 ⊗Hk through analogues of (1.6).

In Section 10, we introduce the ultraweight map Ωk, which is a linear
map from ⊗2Hk[t] to the space of Hölder continuous functions on Γ\S .
Its definition uses the Plancherel formula of Section 4 and the spectral
maps of Section 5, which allows to relate it to the fundamental bilinear
maps (and hence to the duality formula (1.3)). Although the ultra-
weight is a priori defined as a Hölder continuous function, this relation
shows that it is cohomologous to a smooth function. We state Propo-
sition 10.14 which is a description, up to a finite-dimensional space,
of the space of those H in ⊗2Hk[t] such that Ωk(H) is a coboundary.
To prepare the proof, we use the formulas from Section 6 to write the
ultraweight as the sum of an endpoints series and a coboundary.

In Section 11, we finish the proof of Proposition 10.14. Given H
in ⊗2Hk[t] such that Ωk(H) is a coboundary, we apply the criterion
of Section 3 to the above mentioned endpoints formula for the ultra-
weight. Thanks to (1.4), this tells us that the images by ⊗2ωk of the
coefficients of high degree of H in a certain basis of ⊗2Hk[t] satisfy
certain equations. Proposition 9.3 precisely allows to transfer these
equations to relations in ⊗2Hk. We use these relations to conclude.
Finally, in Section 12, we state and prove the main result of the arti-

cle, which describes, up to a finite-dimensional space, the null space of
a certain linear map from ⊗2H2

k[t] to the space of cohomology classes
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of smooth functions of Γ\S . This map is defined thanks to the ultra-
weight Ωk+1 and to a linear map Ik : H2

k → Hk+1 (which is essentially
the converse of the spectral transform when restricted to constant poly-
nomials in H2

k[t]). By duality and the crucial formula (1.3), this yields
Corollary 1.1.

In the independent Appendix A, we explain how the space D(∂X)
can be considered as a universal model for representations equipped
with a cyclic harmonic first cohomology class. We recall the basic
definitions of cohomology in degree 1 and we explain how cohomology of
Γ-modules can be defined by means of Γ-equivariant maps onX andX1.
We use this point of view to introduce harmonic cohomology classes and
we show that, in a unitary representation, a harmonic class is associated
with a unique harmonic cocycle. We define unitary representations
with a spectral gap and we show that, for these representations, all
cohomology classes are harmonic. All this Appendix is built up from
material borrowed from [1, 4, 5, 10].

1.4. Notation. We freely use the notation of I, II and III.
If G is a group acting on a set A, we identify G-invariant functions

on A with functions on the quotient space G\A.
For k ≥ 0, we denote by Xk the set of pairs (x, y) in X with d(x, y) =

k. When there is no confusion, we often write xy instead of (x, y) to
denote an element of Xk. The set X0 is identified with X.
For 0 ≤ h ≤ k and (x, y) in Xk, when no confusion is possible, the

element of the segment [xy] which is at distance h from x is denoted
by xh.

2. Hölder continuous cohomology classes

The space S of parametrized geodesic lines in X comes with the
action of the geodesic shift map T . So far, we have only considered the
cohomology relation among smooth functions on Γ\S (see for example
Subsection I.2.3, Subsection I.3.3, Subsection I.11.1, Subsection II.5.2).
We will now need to develop the language of cohomology classes for
Hölder continuous functions, as in hyperbolic dynamics (see [6, Chapter
1]).

2.1. Hölder continuous functions and cohomology. We introduce
the language of Hölder continuous function and the cohomology equiv-
alence relation.

Recall from Subsection 2.1 that an element σ of S is a sequence
(σi)i∈Z, where, for any i in Z, we have σi+1 ∼ σi and σi+1 ̸= σi−1.
Given 0 < α < 1, we shall say that a function f : S → R is α-Hölder
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continuous if there exists C > 0 such that, for every σ and σ′ in S ,
and every h ≥ 0, we have

(2.1) (∀i |i| ≤ h σi = σ′
i) ⇒ |f(σ)− f(σ′)| ≤ Cαh.

If there exists α in (0, 1) such that f is α-Hölder continuous, we simply
say that f is Hölder continuous.
Two Γ-invariant Hölder continuous functions f and g are said to be

cohomologuous if there exists a Γ-invariant Hölder continuous function
h on S such that f − g = h−h◦T . We shall see later in Corollary 2.7
that, when f and g are smooth, then h must be smooth. Therefore,
the cohomology relation on smooth functions is the same as the one
defined in Subsection I.2.3. A function is called a coboundary if it is
cohomologuous to 0. We will sometimes write f ≡ g to say that f is
cohomologous to g.

The following Livs̆ic Theorem characterizes cohomology:

Proposition 2.1. Let f be a Hölder continuous function on Γ\S .
Then the following are equivalent:
(i) f is a coboundary.
(ii) for any σ in S and h ≥ 1 with T hσ ∈ Γσ, one has

h−1∑
i=0

f(T iσ) = 0.

(iii) for any T -invariant Borel probability measure µ on Γ\S , one has∫
Γ\S

fdµ = 0.

(iv) There exists a continuous function h on Γ\S with f = h− h ◦ T .
Proof. This is an adaptation of the classical argument from hyperbolic
dynamics (see [2, Theorem 19.2.1]).
Note that the implications (i)⇒(iv), (iv)⇒(iii) and (iii)⇒(ii) are

obvious. We will now show (ii)⇒(i).
Let f be a Hölder continuous function on S which satisfies (ii). Fix

C, α as in (2.1). We will build a Hölder continuous function h on S
with f = h − h ◦ T . By Proposition I.2.3, there exists σ in S whose
orbit under T is dense in Γ\S . In particular, for any i ̸= j ∈ Z, we
have T iσ ̸= T jσ. We start by defining h on T Zσ by setting, for j ≥ 0,

h(T jσ) = −
j−1∑
i=0

f(T iσ) and h(T−jσ) =

j−1∑
i=0

f(T i−jσ).

We get f = h − h ◦ T on T Zσ. To conclude, we will show that h
may be extended by continuity to all of Γ\S . By standard arguments
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of topology, it suffices to prove that h satisfies a uniform continuity
property.

Therefore, we choose integers i < j and we assume that T iσ and
T jσ are closed in Γ\S . In other words, there exists ℓ ≥ 1 and γ in
Γ with σj+k = γσi+k for all k ∈ Z with |k| ≤ ℓ. We defined a family
τ = (τk)k∈Z of points in X by setting, for k in Z,

τk = γqσi+r,

where 0 ≤ r < j − i and k = q(j − i) + r.
We claim that τ is a parametrized geodesic line. Indeed, since σ is a

parametrized geodesic line, for every k in Z ∖ (j − i)Z, τk−1 and τk+1

are different neighbours of τk. If k = q(j− i) for q in Z, this is still the
case: indeed, we have

τk−1 = γq−1σj−1

τk = γqσi = γq−1σj

τk+1 = γqσi+1 = γq−1σj+1,

where we have used the fact that σj = γσi and σj+1 = γσi+1.
Let us use this construction and the assumption on f to show that

h(T iσ) and h(T jσ) are close to each other. Indeed, by definition, we
have

h(T iσ)− h(T jσ) =

j−i−1∑
k=0

f(T i+kσ).

Assume first that ℓ < j − i. Then, by construction, for any −ℓ ≤
k ≤ j − i + ℓ, we have σi+k = τk. This and the assumption that f is
Hölder continuous, tell us that, for 0 ≤ k ≤ j − i− 1, we have∣∣f(T i+kσ)− f(T kτ)

∣∣ ≤ Cαmin(k,j−i−k)+ℓ.

Besides, as T j−iτ = τ , by the assumption on f , we have

j−i−1∑
k=0

f(T kτ) = 0.

We get

∣∣h(T iσ)− h(T jσ)
∣∣ ≤ Cαℓ

j−i−1∑
k=0

αmin(k,j−i−k) ≤ 2Cαℓ

∞∑
k=0

αk =
2C

1− α
αℓ.

If ℓ ≥ j − i, as the orbit of σ under T is dense in Γ\S , we can find
an integer g with |g − i| > ℓ and |g − j| > ℓ and an element γ′ in Γ



12 JEAN-FRANÇOIS QUINT

such that, for any k with |k| ≤ ℓ, one has σg+k = γ′σi+k, and hence
also σg+k = γ′γ−1σj+k. By applying the previous case, we get∣∣h(T iσ)− h(T gσ)

∣∣ ≤ 2C

1− α
αℓ and

∣∣h(T jσ)− h(T gσ)
∣∣ ≤ 2C

1− α
αℓ.

Hence ∣∣h(T iσ)− h(T jσ)
∣∣ ≤ 4C

1− α
αℓ.

Standard arguments of topology tell us that h admits a Hölder contin-
uous extension to all of Γ\S . □

2.2. Functions on S+. In Section 3, we will establish a criterion for
a certain type of Hölder continuous functions to be coboundaries. To
this aim, we will need to study functions only depending on the fu-
ture. We start by showing that every Hölder continuous function is
cohomologuous to such a function.

As in Subsection I.2.3, say that a function f on S is M -invariant if,
for any σ and σ′ in S , if σh = σ′

h for any h ≥ 0, then f(σ) = f(σ′).
Write S+ = X×∂X and ϖ : S → S+, σ 7→ (σ0, σ

+). AnM -invariant
function is a function of the form f+ ◦ ϖ, where f+ is a function on
S+.

We have an analogue of a classical result of hyperbolic dynamics.

Lemma 2.2. Let f be a Hölder continuous function on Γ\S . Then f
is cohomologous to an M-invariant Hölder continuous function.

If f is smooth, this is Lemma I.2.14.

Proof. If Γ is torsion free, this can be directly deduced from the ana-
logue statement for subshifts of finite type (see [6, Proposition 1.2]).
We prove the general case by following the same lines.

We start by choosing a section of the natural map S → S+ as
follows. We pick a system of representatives D ⊂ X1 for the action of
Γ, that is, we have X1 = ΓD and Γ(x, y)∩D = {(x, y)} for any (x, y) in
D. Then, we choose any map ψ : D → ∂X such that, for (x, y) in X1,
we have y /∈ [xψ(x, y)). We extend ψ to all X1: for (x, y) in X1∖D, we
set ψ(x, y) = γψ(γ−1(x, y)), where γ is an arbitrary element of Γ with
γ(x, y) ∈ D. The map ψ is not Γ-equivariant in general, but it satisfies
the following properties which will be enough for our purposes:

y /∈ [xψ(x, y)) and ψ(Γ(x, y)) ⊂ Γψ(x, y), (x, y) ∈ X1.

For (x, ξ) in S+ = X × ∂X, we set ρ(x, ξ) to be the parametrized
geodesic line σ with σ0 = x, σ+ = ξ and σ− = ψ(x, y), where y = σ1 is
the neighbour of x on [xξ).
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Let σ be in S . The element ρ(σ0, σ
+) has the same future as σ, that

is ϖρ(σ0, σ
+) = ϖ(σ). We set

h(σ) =
∑
k≥0

f(T kσ)− f(T kρ(σ0, σ
+)).

The series converges as f is Hölder continuous and the function h is
Γ-invariant. We have

h(σ)− h(Tσ)− f(σ) =

− f(ρ(σ0, σ
+)) +

∑
k≥0

f(T kρ(σ1, σ
+))− f(T k+1ρ(σ0, σ

+)).

As the right hand side of the latter is clearly M -invariant, it only
remains to prove that h is Hölder continuous.

Indeed, let C and α be as in (2.1). Pick ℓ ≥ 1 and σ and τ in S with
σi = τi for any |i| ≤ ℓ. Note that by construction, the same property
holds when σ and τ are replaced by ρ(σ0, σ

+) and ρ(τ0, τ
+). We write

h(σ)− h(τ) =
m∑
k=0

f(T kσ)− f(T kτ)−
m∑
k=0

f(T kρ(σ0, σ
+))− f(T kρ(τ0, τ

+))

+
∞∑

k=m+1

f(T kσ)− f(T kρ(σ0, σ
+))−

∞∑
k=m+1

f(T kτ)− f(T kρ(τ0, τ
+)),

where m is the floor integer of ℓ
2
. This gives

|h(σ)− h(τ)| ≤ 2C
m∑
k=0

αℓ−k + 2C
∞∑

k=m+1

αk ≤ 4C

1− α
αm

and the conclusion follows. □

2.3. Transfer operator. We introduce a transfer operator acting on
functions on Γ\S+. The properties of this operator will allow us to
develop criteria for Hölder continuous functions to be coboundaries.

Let f be a function on S+ = X × ∂X. By analogy with [6, Chapter
2], for (x, ξ) in S+, we set

(2.2) L f(x, ξ) =
1

q

∑
y∼x

y/∈[xξ)

f(y, ξ).

We call L the transfer operator (in the language of [6], we should say
the transfer operator associated to the constant potential log q). Note
that L 1 = 1.
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We will establish some standard spectral properties of the operator
L . Later, they will help us to solve cohomological equations.

First, we introduce a family of Banach spaces. Given α in (0, 1)
and f a function on S+, we say that f is α-Hölder continuous if the
function f ◦ϖ on S is α-Hölder continuous. Note from (2.1), that the
function f is α-Hölder continuous if and only if there exists C > 0 such
that, for every h ≥ 0, x in X and ξ, η in ∂X, we have

|[xξ) ∩ [xη)| ≥ h+ 1 ⇒ |f(x, ξ)− f(x, η)| ≤ Cαh.

The infimum of all C satisfying the above inequality is then called the
α-Hölder constant of f and is denoted by Cα(f).

For α in (0, 1), we let H +
α denote the space of all Γ-invariant α-

Hölder continuous functions on S+. The space H +
α is a Banach space

with respect to the natural Hölder norm defined by, for any f in H +
α ,

∥f∥α = sup |f |+ Cα(f).

As mentioned above, we have L 1 = 1. If Γ is not bipartite (see

Subsection III.2.1), we set H
+

α = H +
α /R1 to be the quotient of H +

α

by the line of constant functions.
If Γ is bipartite, let v be a function on X that is constant on neigh-

bours and w be the opposite of v, that is, for any x ∼ y in X, we have
v(x) = w(y). Set fv to be the function (x, ξ) 7→ v(x) on S+. Then, we

have L fv = fw. We let H
+

α denote the quotient space of H +
α by the

2-plane of functions of the form fv where v is as above.

The transfer operator L has a spectral gap in H
+

α .

Proposition 2.3. Let α be in (0, 1). The operator L has spectral

radius < 1 in the quotient space H
+

α . In particular, any function f in
H +

α may be written as f = g − L g + c for some constant function c
and some g in H +

α . The constant c is uniquely defined by f and g is
unique up to the addition of a constant function.

In the course of the proof, we will need elementary facts from abstract
functional analysis.

Lemma 2.4. Let V be a Banach space and T : V → V be a bounded
linear operator.
(i) Assume W is a finite dimensional subspace of V with TW ⊂ W .
Then the spectrum of T in V is the union of the spectrum of T in W
and the spectrum of T in V/W .
(ii) Let v ̸= 0 be a vector of V with Tv = v. Assume 1 is not a spectral
value of T in V/Rv. Then (1 − T )V is a closed subspace of V and
V = Rv ⊕ (1− T )V .
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Proof. (i) For λ ∈ C, assume λ is not a spectral value of T in V . Then,
λ is not an eigenvalue of T in V , hence not in W . As W is finite
dimensional, the restriction of λ − T to W is invertible, which means
that (λ − T )−1 preserves W . Then, it induces an endomorphism in
V/W , which is the inverse of the one induced by λ− T , so that λ− T
is invertible in V/W .

Conversely, assume λ is neither a spectral value of T in W nor in
V/W . As V is finite-dimensional, it admits a closed complementary
subspace X and the decomposition V = W ⊕X is an isomorphism of
Banach spaces. In this decomposition, T may be written as a matrix

T =

(
A B
0 C

)
, where A is an endomorphism of W , B is a bounded

linear map X → W and C is a bounded endomorphism of X. By
assumption, both λ − A and λ − C are invertible. Then, λ − T is
invertible with inverse in matrix form

(λ− T )−1 =

(
(λ− A)−1 (λ− A)−1B(λ− C)−1

0 (λ− C)−1

)
.

(ii) As above, we write V = Rv⊕X, where X is a closed hyperplane.
The endomorphism T may be written as

T (tv + x) = (t+ φ(x))v + Sx, t ∈ R, x ∈ X,

where S is a bounded endomoprhism of X and φ is a continuous linear
functional on X. By assumption, 1 is not a spectral value of S. We set
ψ = φ ◦ (S − 1)−1, so that ψ is also a continuous linear functional of
X. For x in X, we have

T (ψ(x)v + x) = (ψ(x) + φ(x))v + Sx = ψ(Sx) + Sx,

hence the space Y = {ψ(x)v + x|x ∈ X} is stable under T . One easily
checks that Y is closed, that V = Rv⊕ Y and that (T − 1)V = Y . □

Proof of Proposition 2.3. We let V ⊂ H +
α be the space of functions on

Γ\S+ which are of the form (x, ξ) 7→ v(x, x1), where x1 is the neighbour
of x on [xξ) and v is a Γ-invariant function on X1. Then V is stable
under L and, by Corollary II.5.6, the operator L has spectral radius

< 1 on the image of V in H
+

α .
To conclude, we will show that L has spectral radius ≤ α in H +

α /V .
To this aim, we change slightly the definition of the Hölder constant of
a function: for f in H +

α , we set

C1
α(f) = sup

(x,ξ,η)∈X×∂X×∂X
h≥1

|[xξ)∩[xη)|≥h+1

α−h|f(x, ξ)− f(x, η)|,
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that is, we consider the above supremum only when the intersection
[xξ) ∩ [xη) contains at least two points. One easily checks that the
seminorm C1

α induces a norm on H +
α /V which is equivalent to the

quotient norm of the Hölder norm. Now, a direct computation shows
that, for f in H +

α , one has

C1
α(L f) ≤ αC1

α(f),

hence L has spectral radius ≤ α in H +
α /V .

It follows from the first part of Lemma 2.4 that L has spectral radius

< 1 in H
+

α . The rest of the statement is a consequence of the second
part of Lemma 2.4. □

2.4. Decomposition of Hölder continuous functions. Thanks to
the spectral properties of the transfer operator L , we get a way of
decomposing a Hölder continuous function.

Corollary 2.5. Let f be a Hölder continuous function on Γ\S . Then
f may be written as

g = h− h ◦ T + g ◦ϖ + c,

where c is a constant function, h is a Hölder continuous function on
Γ\S , g is a Hölder continuous function on Γ\S+ and L g = 0. The
constant c and the function g are uniquely determined by f ; the function
h is uniquely determined up to the addition of a constant function.

Proof. First, we prove the existence of the decomposition. By Lemma
2.2, we can find a Hölder continuous function h1 on Γ\S and a Hölder
continuous function f1 on Γ\S+ with

f = h1 − h1 ◦ T + f1 ◦ϖ.

By Proposition 2.3, there exists a Hölder continuous function h2 on
Γ\S+ and a constant c such that

L f1 = L h2 − h2 + c.

Write T+ : S+ → S+ for the natural transformation, that is, for (x, ξ)
in S+, T+(x, ξ) = (x1, ξ), where x1 is the neighbour of x on [xξ). We
have ϖT = T+ϖ and, for any function φ on S+, L (φ◦T+) = φ. Thus,
if we set g = f1 − h2 + h2 ◦ T+ − c, we get L g = 0 and

f = g ◦ϖ + (h1 + h2 ◦ϖ)− (h1 + h2 ◦ϖ) ◦ T + c

and the existence of the decomposition follows.
As for the uniqueness, let c be a constant, h be a Hölder continuous

function on Γ\S and g be a Hölder continuous function on Γ\S+ with
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L g = 0. Assume that we have

g ◦ϖ + h− h ◦ T + c = 0.

First, we claim that h is M -invariant, that is h = h1 ◦ ϖ for some
function h1 on Γ\S+. Indeed, let σ and τ be in S with ϖ(σ) = ϖ(τ).
Then, as h ◦ T − h = g ◦ϖ + c, we have

h(σ)− h(τ) = h(Tσ)− h(Tτ).

By iterating this identity, we get, for k ≥ 0,

h(σ)− h(τ) = h(T kσ)− h(T kτ).

As h is continuous on the compact set Γ\S and the parametrized
geodesic lines T kσ and T kτ get closer and closer to each other as k →
∞, we get h(σ) = h(τ), hence h = h1 ◦ϖ for some Hölder continuous
function h1 on Γ\S+.

Now, we have g+ h1 − h1 ◦ T+ + c = 0. By applying the operator L
to this identity, we get

L h1 − h1 + c = 0.

By Proposition 2.3, h1 is a constant function. In particular, we have
h1 = h1 ◦ T , hence g + c = 0. As L g = 0, this gives c = 0, hence also
g = 0, which should be proved. □

2.5. Solving the cohomological equation in subspaces. Later,
we shall use the proof of Corollary 2.5 through the following ad hoc
formulation.

Corollary 2.6. Let V be a Banach space, Λ : V → V be a bounded
operator and u be a non zero vector of V . Assume Λu = u and 1− Λ
is invertible in the quotient space E/Ru. Fix 0 < α < 1 and suppose
we are given a bounded linear map Θ : E → H +

α with ΘΛ = LΘ
and Θu = 1. Let v be in E and assume that the Hölder continuous
function Θ(v) ◦ ϖ is a coboundary on Γ\S , that is, there exists a
Hölder continuous function h on Γ\S with Θ(v) ◦ ϖ = h − h ◦ T .
Then, we must have

h = Θ(Λw) ◦ϖ
for some w in V .

Proof. Set f = Θ(v) ◦ϖ so that we have f ◦ϖ = h− h ◦ T . As in the
proof of Corollary 2.5, this tells us that h = h1 ◦ ϖ for some Hölder
continuous function h1 on Γ\S+. We have f = h1 − h1 ◦ T+, hence,
still as in the proof of Corollary 2.5,

L f = L h1 − h1.
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Now, Lemma 2.4 and the assumption imply that there exists a real
number c and a w in V with v = Λw − w + cu. We have Λv =
Λ2w − Λw + cu, hence, by applying Θ to this identity, we get

L f = LΘ(Λw)−Θ(Λw) + c.

From the uniqueness statement in Proposition 2.3, we get

h1 −Θ(Λw) ∈ R1 = Θ(Ru),
and the conclusion follows. □

Thanks to this technical result, we can prove that smooth functions
are cohomologous when viewed as Hölder continuous functions, if and
only if they are cohomologous in the sense of Subsection I.2.3 (see also
Lemma I.3.12). For k ≥ 1, we let Vk stand for the space of Γ-invariant
functions on Xk.

Corollary 2.7. Let f be a smooth function on Γ\S . Assume that
there exists a Hölder continuous function h on Γ\S with f = h−h◦T .
Then, h is smooth.

More precisely, given k ≥ 1 and w in Vk, the smooth function σ 7→
w(σ0σk) on S is a coboundary if and only if there exists v in Vk−1 such
that, for any xy in Xk, one has

w(xy) = v(xy1)− v(x1y),

where x1 and y1 are the neigbours of x and y on [xy].

In the sequel, as in I, for k ≥ 1, we shall say that two elements w
and w′ in Vk are cohomologous if there exists v in Vk−1 such that, for
any xy in Xk, one has

w(xy)− w′(xy) = v(xy1)− v(x1y).

Proof. Note that the second part of the statement follows from the first
and Lemma I.2.14. Thus, we only need to prove the second part. We
will obtain it by using Corollary 2.6.
For k ≥ 1, define a map Θk from Vk to the space of smooth functions

on Γ\S+ by setting, for w in Vk and (x, ξ) in S+,

Θkw(x, ξ) = w(x, xk),

where xk is the unique element of [xξ) with d(x, xk) = k. By compact-
ness, the space of smooth functions on Γ\S+ is

⋃
k≥1Θk(Vk).

We define an endomorphism Λk of Vk by setting, for w in Vk and
(x, y) in Xk,

Λkw(x, y) =
1

q

∑
z∼x
z ̸=x1

w(z, y1),
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where x1 and y1 are the neighbours of x and y in [xy]. Note that we
have LΘk = ΘkΛk.

Let Ik : Vk → Vk+1 be the injection given by, for w in Vk and (x, y)
in Xk+1,

Ikw(x, y) = w(x, y1),

where as above, y1 is the neighbour of y in [xy]. We have Λk+1Ik = IkΛk

and Θk+1Ik = Θk. Besides, we have Λk+1Vk+1 ⊂ IkVk. Thus, for k ≥ 2,
the spectrum of Λk in Vk is the union of {0} and the spectrum of Λ1 in
V1. By using Corollary II.5.6, we get that 1−Λk is invertible in Vk/R1
for any k ≥ 1. Hence, the assumption of Corollary 2.6 is satisfied.

Assume k ≥ 2 and let w be in Vk such that the function Θkw is a
coboundary when viewed as a Hölder continuous function Γ\S . By
Corollary 2.6, the solutions h of the equation Θkw = h− h ◦ T belong
to the space

ΘkΛkVk ⊂ ΘkIk−1Vk−1 = Θk−1Vk−1.

The conclusion follows.
It remains to deal with the case where k = 1. Then, let still w be

in V1. If the smooth function σ 7→ w(σ0σ1) on S is a coboundary, the
above in case k = 2 tells us that there exists v in V1 such that, for any
xy in X1 and any neighbour z ̸= x of y, one has

w(xy) = v(xy)− v(yz).

In particular, for y in X, let z, z′ be two neighbours of y. As q ≥ 2,
the vertex y admits a neighbour x that is neither z nor z′, and we get

v(yz) = v(xy)− w(xy) = v(yz′),

hence, there exists u in V0 such that

v(yz) = u(y), yz ∈ X1.

For xy in X1, we get

w(xy) = u(x)− u(y)

as required. □

Remark 2.8. Let f be a Hölder continuous function on Γ\S and θ be
a T -invariant distribution. Assume that f is cohomologous to some
smooth function g. Then, it follows from Corollary 2.7 above that
⟨θ, g⟩ is independent on the choice of g. In the sequel, we shall write
this number as ⟨θ, f⟩.
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3. The cohomological equation for endpoints series

We will use the cohomology theory of Hölder continuous functions to
give a criterion for certain functions defined by series to be cobound-
aries.

3.1. Endpoints series. We define a particular construction of smooth
functions on Γ\S . This type of functions will later appear naturally
in the spectral theory of the action of Γ on D(∂X).

In the sequel, we will be concerned with the following finite-dimen-
sional spaces. For k ≥ 0, we let as above Vk be the space of all functions
on Γ\Xk. We shall also think to Vk as the space of all functions on Xk

which are Γ-invariant. In the same way, for h, k ≥ 1, we let Wh,k be
the space of all functions on (Γ\Xh)× (Γ\Xk). Equivalently, we shall
also see Wh,k as the space of functions on Xh ×Xk which are invariant
under the product action of Γ× Γ. When h = k, we will write Wk for
Wk,k.

For ℓ ≥ h, k ≥ 1, we define the space Wh,k,ℓ as follows: an element w
of Wh,k,ℓ,α is a family (wj)j≥ℓ where wℓ belongs to Vℓ and (wj)j≥ℓ+1 is a
finitely supported sequence in Wh,k.

Still for ℓ ≥ h, k ≥ 1, let us construct a linear map Θh,k,ℓ : Wh,k,ℓ →
D(Γ\S+). For w = (wj)j≥ℓ in Wh,k,ℓ, we define the associated endpoints
series Θh,k,ℓw as the function such that, for (x, ξ) in S+, one has

(3.1) Θh,k,ℓw(x, ξ) = wℓ(x0xℓ) +
∞∑

j=ℓ+1

wj(x0xh, xj−kxj),

where (xj)j≥0 is the parametrization of the geodesic ray [xξ).

3.2. Accessible pairs. We will give a criterion for an endpoints series
to be a coboundary in the sense of Section 2. To state this criterion,
we need to introduce new subsets of (Γ\Xh)× (Γ\Xk), h, k ≥ 1.

Definition 3.1. Let j ≥ h, k ≥ 1. A pair (Γab,Γxy) in (Γ\Xh) ×
(Γ\Xk) is said to be j-accessible if there exists pq in Xj such that
pph ∈ Γab and qkp ∈ Γxy, where ph and qk are the elements of [pq]
wich lie at distance h from p and k from q. The set of j-accessible
pairs in (Γ\Xh)× (Γ\Xk) is denoted by ((Γ\Xh)× (Γ\Xk))j.

In other words, the pair (Γab,Γxy) is j-accessible if there exits a
path of length j from Γab to Γxy.
When j is large, we can describe the set ((Γ\Xh)× (Γ\Xk))j.

Lemma 3.2. Assume Γ is not bipartite. Then, there exists an integer
n such that, for every h, k ≥ 1, and every j ≥ h+ k + n, every pair in
(Γ\Xh)× (Γ\Xk) is j-accessible.
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Assume Γ is bipartite. Then, there exists an integer n such that, for
every h, k ≥ 1, and every j ≥ h + k + n, a pair (ab, xy) in (Γ\Xh) ×
(Γ\Xk) is j-accessible if and only if the integral number d(b, x) has the
same parity as j − h− k.

Proof. This is a consequence of the equidistribution statement in Corol-
lary II.5.6. We keep the notation of this result. Note that we have ρ = q
and that u and u∨ may be chosen to be the constant function 1. For
ab in X1, let vab denote the Γ-invariant function defined by

vab(xy) =
∑
γ∈Γ

1ab=γ(xy).

By Lemma II.3.25, we have

⟨vab,1⟩ =
∑

xy∈Γ\X1

1

|Γx ∩ Γy|
vab(xy) = 1.

If Γ is not bipartite, by Corollary II.5.6, for ab in X1, we have

1

qn
Rnvab −−−→

n→∞

1∑
xy∈Γ\X1

1
|Γx∩Γy |

.

Therefore, there exists n such that, for every m ≥ n and every ab and
xy in X1, we can find a geodesic path b−1 = a, b0 = b, b1, . . . , bm in
X and γ in Γ with bm−1 = γx and bm = γy. In particular, the pair
(ab, xy) is j-accessible in (Γ\X1)× (Γ\X1) for every j ≥ n+ 1.

Still when Γ is not bipartite, if (ab, xy) is in (Γ\Xh)×(Γ\Xk) for some
h, k ≥ 1, we claim that (ab, xy) is j-accessible for every j ≥ h+k+n−1.
Indeed, for such a j, we have i = j−h−k+1 ≥ n, hence, by the previous
case, there exists pq inXi+1 and γ in Γ with pp1 = b1b and q1q = γ(xx1),
where as usual, b1, x1, p1 and q1 are the neighbours of b, x, p and q on
[ab], [xy], [pq] and [pq]. Then, we have d(a, γy) = j and b, γx ∈ [a(γy)],
so that the pair (ab, xy) is j-accessible in (Γ\Xh)× (Γ\Xk).

The proof in the non bipartite case follows the same lines by keeping
in mind that the action of Γ preserves the classes of the even distance
equivalence relation on X. □

By using the notion of an accessible pair, we can formulate the main
result of this Section. This is a criterion for an endpoints series to be
a coboundary.

Proposition 3.3. Let ℓ ≥ h, k ≥ 2 and w = (wj)j≥ℓ be in Wh,k,ℓ. Then
the following are equivalent.
(i) The endpoints series Θh,k,ℓw is a coboundary, when wiewed as a
smooth function on Γ\S .
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(ii) There exists t in Vℓ−1 and finitely supported sequences (uj)j≥ℓ in
Wh,k−1 and (vj)j≥ℓ in Wh−1,k such that, for every ab in Xℓ,

wℓ(ab) = t(ab1)− t(a1b) + uℓ(aah, bk−1b) + vℓ(aah−1, bkb)

and, for every j ≥ ℓ+1 and every j-accessible pair (ab, xy) in (Γ\Xh)×
(Γ\Xk),

wj(ab, xy) = uj(ab, x1y) + vj(ab1, xy)− uj−1(ab, xy1)− vj−1(a1b, xy).

In the statement above, for a, b in X and i ≤ d(a, b), we have denoted
by ai the point of the segment [ab] that lies as distance i from a.

First part of the proof. We prove the easy case of the Proposition, that
is, (ii)⇒(i). Let u and v be as as in the statement. Fix σ in S . By
definition, for every j ≥ ℓ+ 1, the pair (σ0σh, σj−kσj) is j-accessible in
(Γ\Xh)× (Γ\Xk). Therefore, by (3.1) and the assumption, we have

Θh,k,ℓw(σ) = t(σ0σℓ−1)− t(σ1σℓ) + uℓ(σ0σh, σℓ−k+1σℓ)

+ vℓ(σ0σh−1, σℓ−kσℓ) +
∑
j≥ℓ+1

uj(σ0σh, σj−k+1σj) + vj(σ0σh−1, σj−kσj)

− uj−1(σ0σh, σj−kσj−1)− vj−1(σ1σh, σj−kσj).

By using the cancellation of the telescoping series, we get

Θh,kw(σ) = t(σ0σℓ−1)− t(σ1σℓ)

+
∑
j≥ℓ

vj(σ0σh−1, σj−kσj)− vj(σ1σh, σj+1−kσj+1) = h(σ)− h(Tσ),

where

h(σ) = t(σ0σℓ−1) +
∑
j≥ℓ

vj(σ0σh−1, σj−kσj).

The result follows. □

The proof of the converse statement will last until the end of the
Section.

3.3. Vanishing endpoints series. We begin by determining the null
space of the endpoints series operator.

Lemma 3.4. Let ℓ ≥ h, k ≥ 1 and w be in Wh,k,ℓ. Assume the end-
points series function Θh,k,ℓw vanishes on Γ\S . Then, there exists a
finitely supported sequence u = (uj)j≥ℓ in Wh,k−1 such that, for every
ab in Xh,

wℓ(ab) = uℓ(aah, bk−1b)
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Figure 1. Proof of Lemma 3.4

and, for every j ≥ ℓ+1 and every j-accessible pair (ab, xy) in (Γ\Xh)×
(Γ\Xk),

wj(ab, xy) = uj(ab, x1y)− uj−1(ab, xy1).

Note that the converse is true, in view of the first part of the proof
of Proposition 3.3.

Proof. The idea of the proof is that u may be defined by integrating
w along certain paths. The fact that the integral does not depend on
the path is warranted by the vanishing of the function Θh,k,ℓw. Let us
write this precisely.

For j ≥ h + k − 1, write (Xh × Xk−1)j for the set of pairs (ab, xy)
such that d(a, y) = j and b and x belong to [ay]. If j ≥ ℓ, we define a
function uj on (Xh ×Xk−1)j by setting

uj(ab, xy) = wℓ(p0pℓ) +

j∑
i=ℓ+1

wi(ab, pi−kpi), (ab, xy) ∈ (Xh ×Xk−1)j,

where a = p0, p1, . . . , pj = y is the geodesic parametrization of the
segment [ay] (in particular, we have ph = b and pj−k+1 = x).

The function uj is invariant under the diagonal action of Γ on (Xh×
Xk−1)j. We claim that the vanishing assumption on Θh,k,ℓw implies
that uj satisfies the following additional invariance property: for every
(ab, xy) in (Xh × Xk−1)j and every γ in Γ, if (γ(ab), xy) also belongs
to (Xh ×Xk−1)j, then

uj(ab, xy) = uj(γ(ab), xy)

(see Figure 1).
Indeed, for such ab, xy and γ, let a = p0, p1, . . . , pj = y be the

geodesic parametrization of the segment [ay] and choose a ξ in ∂X
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such that [yξ)∩ [ay] = [yξ)∩ [(γa)y] = ∅. Finally, let x0 = x, x1, . . . be
the geodesic parametrization of the geodesic ray [xξ). We get

Θh,k,ℓw(a, ξ) =

wℓ(p0pℓ) +

j∑
i=ℓ+1

wi(ab, pi−kpi) +
∞∑

i=j+1

wi(ab, xi−j−1xi−j+k−1)

= uj(ab, xy) +
∞∑

i=j+1

wi(ab, xi−j−1xi−j+k−1)

and in the same way,

Θh,k,ℓw(γa, ξ) = uj(γ(ab), xy) +
∞∑

i=j+1

wi(γ(ab), xi−j−1xi−j+k−1).

As Θh,k,ℓw = 0 and the functions wi, i ≥ ℓ, are invariant under the
product action of Γ× Γ on Xh ×Xk, we obtain

uj(γ(ab), xy) = −
∞∑

i=j+1

wi(ab, xi−j−1xi−j+k−1) = uj(ab, xy)

as required.
Note that by definition, the image of (Xh × Xk−1)j in (Γ\Xh) ×

(Γ\Xk−1) is the set ((Γ\Xh) × (Γ\Xk−1))j of j-accessible pairs. The
previous tells us that we can consider uj as a function on ((Γ\Xh) ×
(Γ\Xk−1))j. We extend it as a function defined everywhere on (Γ\Xh)×
(Γ\Xk−1) by setting uj(ab, xy) = 0 for any (ab, xy) in the complement
of ((Γ\Xh) × (Γ\Xk−1))j in (Γ\Xh) × (Γ\Xk−1). Note that as above,
for (ab, xy) in ((Γ\Xh)× (Γ\Xk−1))j, we have

uj(ab, xy) = −
∞∑

i=j+1

wi(ab, xi−j−1xi−j+k−1),

where (xi)i≥0 is the parametrization of a geodesic ray [xξ) with [xξ) ∩
[ay] = [xy]. Therefore, since the sequence (wj)j≥ℓ+1 is finitely sup-
ported, the sequence (uj)j≥ℓ is also finitely supported.

Finally, on one hand, for ab in Xℓ, we have

wℓ(ab) = uℓ(aah, bk−1b).

On the other hand, if j ≥ ℓ + 1 and (ab, xy) is a j-accessible pair in
(Γ\Xh)× (Γ\Xk), we can find γ in Γ such that d(a, γy) = j and b and
γx belong to [a(γy)]. Then, we have

(ab, γ(x1y)) ∈ (Xk ×Xk−1)j and (ab, γ(xy1)) ∈ (Xk ×Xk−1)j−1.
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We get

wj(ab, xy) = wj(ab, γ(xy)) = uj(ab, γ(x1y))− uj−1(ab, γ(xy1))

= uj(ab, x1y)− uj−1(ab, xy1)

as required. □

3.4. A symbolic transfer operator. To prove Proposition 3.3, we
will apply Corollary 3.4 to the endpoints operator Θh,k,ℓ. To this aim,
we will introduce a new operator Λh,k,ℓ acting on sequences spaces
Wh,k,ℓ, ℓ ≥ h, k ≥ 2, which will be semiconjugate to the transfer oper-
ator L via Θh,k,ℓ.

Let ℓ ≥ h, k ≥ 1 and w = (wj)j≥ℓ be a sequence where wℓ is a
function on Γ\Xℓ, and, for j ≥ ℓ + 1, wj is a function on (Γ\Xh) ×
(Γ\Xk). We define a new sequence Λh,kw by setting, for ab in Xℓ,

(3.2) (Λh,k,ℓw)ℓ(ab) =
1

q

∑
c∼a
c ̸=a1

(wℓ(cb1) + wℓ+1(cah−1, bkb))

and, for j ≥ ℓ+ 1 and (ab, xy) in Xh ×Xk,

(3.3) (Λh,k,ℓw)j(ab, xy) =
1

q

∑
c∼a
c ̸=a1

wj+1(cb1, xy)

The definition of the transfer operator L in (2.2) and the one if the
endpoints operator Θh,k,ℓ in (3.1) directly give

Lemma 3.5. Let ℓ ≥ h, k ≥ 1. For any w in Wh,k,ℓ, we have

LΘh,k,ℓw = Θh,k,ℓΛh,k,ℓw.

In order to apply Corollary 3.4, we will prove

Lemma 3.6. Let ℓ ≥ h, k ≥ 1. Let u be the element of Wh,k,ℓ such that
uj = 0 for j ≥ ℓ + 1 and that uℓ(ab) = 1 for ab in Xℓ. Then, we have
Λh,k,ℓu = u and Λh,k,ℓ − 1 is invertible in Wh,k,ℓ/Ru.
Proof. For i ≥ 0, let W i

h,k,ℓ be the space of sequences w in Wh,k,ℓ,α with

wj = 0 for any j ≥ ℓ + i + 1, so that Wh,k,ℓ =
⋃

i≥0 W i
h,k,ℓ. By (3.2)

and (3.3), the space W 0
h,k,ℓ is stable under Λh,k and, for i ≥ 1, we have

Λh,kW i
h,k,ℓ ⊂ W i−1

h,k,ℓ. The latter implies in particular that Λh,k,ℓ − 1 is

invertible in the quotient space Wh,k,ℓ/W 0
h,k,ℓ.

Now, still by (3.2), we may identify W 0
h,k,ℓ with Vℓ and the restriction

of Λh,k,ℓ with the operator L defined by, for w in Vℓ and ab in Xℓ,

Lw(ab) =
1

q

∑
c∼a1
c ̸=a1

w(cb1).
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From the proof of Corollary 2.7, we know that L − 1 is invertible in
Vℓ/R1. Thus, Λh,k,ℓ − 1 is invertible in W 0

k,α/Ru. Therefore, Λh,k,ℓ − 1
is invertible in Wh,k,ℓ,α/Ru as required. □

3.5. Solving the cohomological equation. Thanks to the study
of the symbolic transfer operator, we can apply Corollary 2.6 and
transport the cohomological equation back to an equation in sequences
spaces.

Second part of the proof of Proposition 3.3. We now prove the difficult
case of the Proposition, that is, (ii)⇒(i). Thus, we assume that we are
given w in Wh,k,ℓ such that the endpoint series Θh,k,ℓw is a coboundary,
when viewed as a smooth function on Γ\S .

By Lemma 3.5 and Lemma 3.6, we can apply Corollary 2.6. This
tells us that the solutions h of the equation

(3.4) Θh,k,ℓw = h− h ◦ T
belong to Θh,k,ℓΛh,k,ℓWh,k,ℓ,α.

As we have assumed h ≥ 2, in view of the range of the operator
Λh,k,ℓ in Wh,k,ℓ,α as described from (3.2) and (3.3), we can assume that
there exists a function t on Γ\Xℓ−1 and a finitely supported sequence
v = (vj)j≥ℓ of functions on (Γ\Xh−1)× (Γ\Xk) such that, for any σ in
S ,

h(σ) = t(σ0σℓ−1) +
∑
j≥ℓ

vj(σ0σh−1, σj−kσj).

Thus, from (3.4), we get

Θh,k,ℓw(σ) = t(σ0σℓ−1)− t(σ1σℓ)

+
∑
j≥ℓ

vj(σ0σh−1, σj−kσj)− vj(σ1σh, σj−k+1σj+1)

= t(σ0σℓ−1)− t(σ1σℓ) + vℓ(σ0σh−1, σℓ−kσℓ)

+
∑
j≥ℓ+1

vj(σ0σh−1, σj−kσj)− vj−1(σ1σh, σj−kσj)

= Θh,k,ℓw
′(σ),

where w′ = (w′
j)j≥ℓ is the element of Wh,k,ℓ,α defined by

w′
ℓ(ab) = t(ab1)− t(a1b) + vℓ(aah−1, bkb), ab ∈ Xℓ

and, for j ≥ ℓ+ 1,

w′
j(ab, xy) = vj(ab1, xy)− vj−1(a1b, xy), ab ∈ Xh, xy ∈ Xk.

The result now follows from Lemma 3.4. □
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4. The Plancherel formula on X1

The purpose of this Section is to establish a Plancherel formula for
functions on X1. For functions on X, such a formula is obtained in [3].
Our formula is closely related to the latter.

4.1. Polynomial functions of the spectral parameter. We start
by introducing remarkable polynomial functions which will play a role
all along the article. We use the notation of Subsection III.3.3 for
objects related to spectral analysis, so that below, t = 1

q+1
(u+ q

u
) will

be the spectral parameter.
Let t be in C and write (q + 1)t = u + q

u
for some u in C∗. For

(q + 1)2t2 ̸= 4q (that is, u2 ̸= q), we set

A0(t) = 1,

Aj(t) = uj +
( q
u

)j
j ≥ 1,

Bj(t) =
uj −

(
q
u

)j
u− q

u

j ≥ 0.

The reason for the choice of the value A0 will become clear later.
These functions play a role in the spectral formulas of [3]. They are

actually regular.

Lemma 4.1. For j ≥ 0, the functions Aj and Bj are polynomial func-
tions. For t in C and j ≥ 1, the following relations hold:

(q + 1)tBj(t) = Bj+1(t) + qBj−1(t) and Bj+1(t) = Aj(t) + qBj−1(t).

Proof. Let t, u be in C with (q+1)tu = u2 + q. For (q+1)2t2 ̸= 4q, we
have B0(t) = 0 and B1(t) = 1. Take j ≥ 1. We have

(q + 1)tBj(t) =

(
u+ q

u

u− q
u

)(
uj −

( q
u

)j)
,

=
1

u− q
u

(
uj+1 − q

( q
u

)j−1

+ quj−1 −
( q
u

)j+1
)

= Bj+1(t) + qBj−1(t).

In particular, an easy induction argument shows thatBj is a polynomial
for any j ≥ 0.
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Figure 2. Construction of ε

Besides, still for j ≥ 1, we have

Aj(t) + qBj−1(t) = uj +
( q
u

)j
+ q

uj−1 −
(
q
u

)j−1

u− q
u

=
1

u− q
u

(
uj+1 − quj−1 + q

( q
u

)j−1

−
( q
u

)j+1

+ quj−1 − q
( q
u

)j−1
)

= Bj+1(t).

As Bj+1 and Bj−1 are polynomials, so is Aj. □

4.2. Geometric functions on X1 ×X1. We will use the above poly-
nomial functions to define bilinear forms on the space D(X1) of finitely
supported functions on X1. This definition will also require us to use
some notation to describe the respective positions of two edges.

First, we introduce a notion of the distance between two elements of
X1. For ab and xy in X1, we set

δ(ab, xy) = max(d(a, x), d(b, x), d(a, y), d(b, y))− 1.

This number is non-negative and satisfies the relations

δ(ab, xy) = δ(xy, ab) = δ(ba, xy).

One can check that δ actually defines a distance on the set of non
oriented edges, that is, the quotient of X1 by the involution ab 7→ ba.
We shall not use this fact.

We also introduce a function ε that checks whether two edges have
compatible orientations or not. For ab in X1, we set ε(ab, ab) = 1,
ε(ab, ba) = −1 and, for xy in X1 with δ(ab, xy) ≥ 1,

ε(ab, xy) = 1 if b, x ∈ [ay] or a, y ∈ [bx],

ε(ab, xy) = −1 if b, y ∈ [ax] or a, x ∈ [by]
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(see Figure 2). We have the relations

ε(ab, xy) = ε(xy, ab) = −ε(ba, xy).

4.3. Spectral bilinear forms on D(X1). We now begin the construc-
tion of the elements of the Plancherel formula.

For t in C, we define a function χt on X1 ×X1 as follows. For ab in
X1, we set

χt(ab, ab) = 1 and χt(ab, ba) = 0.

For ab and xy in X1 with j = δ(ab, xy) ≥ 1, we set

χt(ab, xy) =
1

2qj
Aj(t) if ε(ab, xy) = 1

χt(ab, xy) =
q − 1

2qj
Bj(t) if ε(ab, xy) = −1.

Later, we shall need the following easy bound:

Lemma 4.2. Let ab and xy be in X1 and t, u be in C with (q+1)tu =
q + u2. We have

χt(ab, xy) ≤ (δ(ab, xy) + 1)max

(
|u|−δ(ab,xy) ,

∣∣∣ q
u

∣∣∣−δ(ab,xy)
)
.

Proof. Indeed, for j ≥ 1, we have

q−j|Aj(t)| =
∣∣∣∣u−j +

( q
u

)−j
∣∣∣∣ ≤ 2max

(
|u|−j ,

∣∣∣ q
u

∣∣∣−j
)
.

For j ≥ 0, we have

q−j|Bj(t)| = q−j

∣∣∣∣∣
j−1∑
h=0

uh
( q
u

)j−1−h

∣∣∣∣∣ ≤ j

q
max

(
|u|−j ,

∣∣∣ q
u

∣∣∣−j
)
.

□

By abuse of notation, we still write χt for the symmetric bilinear
form on D(X1) defined by

χt(f, g) =
∑

ab,xy∈X1

χt(ab, xy)f(ab)g(xy), f, g ∈ D(X1).

This bilinear form will be used to describe the continuous part of the
spectrum in the Plancherel formula. We first relate it to natural oper-
ations on functions on X1.

For f a function on X1 and xy in X1, we write

(4.1) Rf(xy) =
∑
z∼x
z ̸=y

f(xz) and Sf(xy) = f(yx).



30 JEAN-FRANÇOIS QUINT

We have R2 = q + (q − 1)R and S2 = 1, so that we also set

P =
1

q + 1
(RS + SR− (q − 1)S),

as in Subsection III.3.1. Then, P commutes with both R and S. A
direct computation shows

Lemma 4.3. Let f, g be in D(X1). For t in C, we have

χt(Rf, g) = χt(f,Rg),

χt(Sf, g) = χt(f, Sg)

and χt(Pf, g) = tχt(f, g).

4.4. Special spectral bilinear forms on D(X1). To describe the
discrete part of the spectrum in the Plancherel formula, we introduce
two bilinear forms that are related to the special representations of the
group of automorphisms of X (see [3]).

For ab, xy in X1, we set

χsp
1 (ab, xy) = ε(ab, xy)q−δ(ab,xy),

χsp
(−1)(ab, xy) = (−q)−δ(ab,xy).

Again, for f, g in D(X1), we write

χsp
1 (f, g) =

∑
ab,xy∈X1

χsp
1 (ab, xy)f(ab)g(xy),

and χsp
(−1)(f, g) =

∑
ab,xy∈X1

χsp
(−1)(ab, xy)f(ab)g(xy).

We get

Lemma 4.4. Let f, g be in D(X1). We have

χsp
1 (Rf, g) = −χsp

1 (f, g), χsp
(−1)(Rf, g) = −χsp

(−1)(f, g),

χsp
1 (Sf, g) = −χsp

1 (f, g), χsp
(−1)(Sf, g) = χsp

(−1)(f, g),

χsp
1 (Pf, g) = χsp

1 (f, g) and χsp
(−1)(Pf, g) = −χsp

(−1)(f, g).

4.5. Statement of the formula. Denote by ⟨., .⟩2 the standard scalar
product on D(X1), that is,

⟨f, g⟩2 =
∑
ab∈X1

f(ab)g(ab), f, g ∈ D(X1).

The Plancherel formula reads as
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Proposition 4.5. For any t in Iq, the symmetric bilinear form χt is
non-negative on D(X1). So are the symmetric bilinear forms χsp

1 and
χsp
(−1).

Let f, g be in D(X1). We have

(4.2) ⟨f, g⟩2 =
2

q + 1

∫
Iq
χt(f, g)dµq(t) +

q − 1

2(q + 1)
χsp
1 (f, g) +

q − 1

2(q + 1)
χsp
(−1)(f, g).

As in Subsection III.3.3, we wrote Iq =
[
−2

√
q

q+1
,
2
√
q

q+1

]
and we let µq

be the Borel probability measure on Iq which is absolutely continuous

with respect to Lebesgue measure, with density t 7→ q+1
2π

√
4q−(q+1)2t2

1−t2
.

Note that, by Lemma 4.1, for f, g in D(X1), the function t 7→ χt(f, g)
is polynomial, so that the integral in (4.2) makes sense.

4.6. Functional relations. The proof of Proposition 4.5 essentially
relies on the computation of the integrals of the functions Aj and Bj,
j ≥ 0, with respect to the measure µq. We will actually establish other
related facts about them that we will need later in the article.

We begin by defining a third family of polynomial functions. We set

(4.3) C0 = 1 and Cj = Bj+1 −Bj−1, j ≥ 1.

Lemma 4.6. For any j ≥ 0, Cj has degree j and the familly (Cj)j≥0

is an orthogonal basis of R[t] with respect to the scalar product of the
Lebesgue space L2(µq). For any j ≥ 1, we have∫

Iq
Cj(t)

2dµq(t) = (q + 1)qj−1.

This directly follows from the study of the spherical transform of X
in [3]. Below, we give a direct proof in our language.

Proof. We have B0 = 0 and B1 = 1. This, together with the formula
(q + 1)tBj(t) = Bj+1(t) + qBj−1(t), j ≥ 1, t ∈ R, from Lemma 4.1
shows that Bj+1 has degree j for any j ≥ 0. This implies that Cj also
has degree j. In particular (Cj)j≥0 is a basis of the vector space R[t].
To check that this basis is actually orthogonal and to compute the∫

Iq Cj(t)
2dµq(t), j ≥ 1, we will use the Plancherel formula for the model

operators established in Proposition III.4.2.
We adopt temporarily the notation of Subsection III.4.1 and we claim

that, for j ≥ 0, the spectral transforms of the sequences 12j and 12j+1
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in R(N) are defined by

(4.4) 1̂2j(t) =

(
Bj+1(t)
−Bj(t)

)
and 1̂2j+1(t) =

(
−Bj(t)
Bj+1(t)

)
, t ∈ R.

This, we show by induction on j. For j = 0, by Proposition III.4.2, we

have 1̂0(t) =

(
1
0

)
and, as 11 = S++10,

1̂1(t) =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
.

Now, if j ≥ 1 and (4.4) holds for j−1, as 12j = R++12j−1, Proposition
III.4.2 gives

1̂2j(t) =

(
q (q + 1)t
0 −1

)(
−Bj−1(t)
Bj(t)

)
=

(
(q + 1)tBj(t)− qBj−1(t)

−Bj(t)

)
=

(
Bj+1(t)
−Bj(t),

)
where the latter identity follows from Lemma 4.1. Also, as 12j+1 =

S++12j, we get 1̂2j+1(t) =

(
0 1
1 0

)
1̂2j(t) and hence (4.4) holds for j.

Therefore, it holds for any j.
Set x0 = 10 and xj = 12j + 12j−1, j ≥ 1. From (4.3) and (4.4), we

get, for any j ≥ 0,

x̂j(t) =

(
Cj(t)
0

)
, t ∈ R.

Besides, for the scalar product of Subsection III.3.4, the family (xj)j≥0

is orthogonal and we have

⟨x0, x0⟩+ = 1 and ⟨xj, xj⟩+ = (q + 1)qj−1, j ≥ 1.

The conclusion now follows from the Plancherel formula of Proposition
III.5.2 and the definition of the matrix a++(t), t ∈ R, in Subsection
III.3.1. □

We can express the families (Aj)j≥0 and (Bj)j≥0 in the orthogonal
basis (Cj)j≥0.
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Corollary 4.7. For any j ≥ 0, we have

Aj = Cj − (q − 1)
∑

0≤h<j
j−heven

Ch

Bj =
∑

0≤h<j
j−hodd

Ch.

Proof. The formula for (Bj)j≥0 directly follows from the definition of
(Cj)j≥0. The formula for (Aj)j≥0 is obtained from the latter and the
relation Aj = Bj+1 − qBj−1 in Lemma 4.1. □

This implies the following integral computation that will be used in
the proof of Proposition 4.5.

Corollary 4.8. Let j ≥ 2 be even. We have∫
Iq
Ajdµq = −(q − 1) and

∫
Iq
Bjdµq = 0.

Let j ≥ 1 be odd. We have∫
Iq
Ajdµq = 0 and

∫
Iq
Bjdµq = 1.

We can now give the

Proof of Proposition 4.5. We will check that, for every ab, xy in X1, we
have

(4.5)
2

q + 1

∫
Iq
χt(ab, xy)dµq(t) +

q − 1

2(q + 1)
χsp
1 (ab, xy)

+
q − 1

2(q + 1)
χsp
(−1)(ab, xy) = 1ab=xy.

Indeed, assume first ab = xy. Then, by construction, for any t in R,
we have χt(ab, ab) = 1 and also χsp

1 (ab, ab) = 1 = χsp
(−1)(ab, ab). We get

equality in (4.5).
Assume ab = yx. We have χt(ab, ba) = 0 for any t in R whereas

χsp
1 (ab, ab) = 1 and χsp

(−1)(ab, ab) = −1. Again, (4.5) holds.

We now check the cases where j = δ(ab, xy) ≥ 1.
If ε(ab, xy) = 1, we have χt(ab, xy) =

1
2
q−jAj(t), hence, by Corollary

4.8, ∫
Iq
χt(ab, xy)dµq(t) = −1

4
q−j(q − 1)((−1)j + 1).
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The definitions of χsp
1 and χsp

(−1) give

χsp
1 (ab, xy) = q−j and χsp

(−1)(ab, xy) = (−q)j,

hence the left hand-side of (4.5) vanishes.
Finally, if ε(ab, xy) = −1, we have χt(ab, xy) = 1

2
(q − 1)q−jBj(t),

hence, by Corollary 4.8,∫
Iq
χt(ab, xy)dµq(t) =

1

4
q−j(q − 1)(1− (−1)j).

By definition,

χsp
1 (ab, xy) = −q−j and χsp

(−1)(ab, xy) = (−q)j,

and (4.5) is valid.
Therefore, we have shown that (4.5) holds for any value of ab and

xy, that is, equivalently, (4.2) holds for any functions f, g in D(X1). It
only remains to prove that the bilinear forms χsp

1 , χsp
(−1) and χt, t ∈ Iq,

are non-negative. Fix f in D(X1). Let φ be in R[t], a polynomial
function. By (4.2), Lemma 4.3 and Lemma 4.4, we have

2

q + 1

∫
Iq
φ(t)2χt(f, f)dµq(t) +

q − 1

2(q + 1)
φ(1)2χsp

1 (f, f)

+
q − 1

2(q + 1)
φ(−1)2χsp

(−1)(f, f) = ⟨φ(P )f, φ(P )f⟩2 ≥ 0.

Elementary real analysis arguments show that we have χsp
1 (f, f) ≥

0, χsp
(−1)(f, f) ≥ 0 and χt(f, f) ≥ 0 for µq-almost any t in Iq. The

conclusion follows as χt(f, f) depends continuously on t. □

5. Fundamental bilinear maps

In Subsection II.5.3, we have established a natural correspondance
between Γ-invariant bilinear forms on D(∂X) and (ι, T )-invariant dis-
tributions on the space Γ\S , where S is the space of parametrized
geodesic lines of X, T is the time shift and ι the natural involution.

We will now construct a dual object that is a bilinear map from
the space H∞ of Γ-invariant ∞-pseudofunctions towards the space of
smooth functions on Γ\S . We will then use the Plancherel formula
for X1, Proposition 4.5, to split this bilinear maps into spectral com-
ponents.



ADDITIVE REPRESENTATIONS 35

σ0
σ−1 σ1

σ− σ+

Figure 3. The set Xσ
1

5.1. Global fundamental bilinear map. We define the global fun-
damental bilinear map H∞ ×H∞ → D(Γ\S ), where H∞ is the space
of Γ-invariant ∞-pseudofunctions introduced in Subsection III.2.3.

Let σ = (σh)h∈Z be a parametrized geodesic line (see Subsection
I.2.1). We shall always denote by σ+ and σ− the endpoints of σ in ∂X.
More precisely, we will write σ+ to be the endpoint of the geodesic ray
(σh)h≥0 and σ

− to be the endpoint of the geodesic ray (σ−h)h≥0. We also
write ⟨σ⟩ for the set {σh|h ∈ Z}, where we forget the parametrization.
Thus, we have ⟨σ⟩ = (σ−σ+).
We let Xσ

1 be the subset of X1 defined by

Xσ
1 = {xy ∈ X1|[x, σ0] ∩ ⟨σ⟩ = {σ0}}

(see Figure 3). The main interest of this set is that it allows to define
partitions of X1 associated to the orbit of σ under the time shift T .
Indeed, we have

Lemma 5.1. Let σ be a parametrized geodesic line. We have

X1 =
⊔
h∈Z

XThσ
1 ,

that is, any xy in X1 belongs to exactly one of the sets XThσ
1 , h ∈ Z.

Proof. Indeed, writing σ = (σh)h∈Z, we let h be the unique element of
Z with

d(x, σh) = min
j∈Z

d(x, σj).

□

Let H be an ∞-pseudofunction as in Subsection III.2.3, that is, H
is a map xy 7→ Hxy from X1 to the space D(∂X). Thus, if xy is in
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X1, Hxy is a smooth function on ∂X which is defined up to an additive
constant. In particular, for any ξ, η in ∂X, the number

∆Hxy(ξ, η) = Hxy(ξ)−Hxy(η)

is well defined. If H is a k-pseudofunction for some k ≥ −1, we write
∆Hxy(ξ, η) for ∆(H>∞

)(ξ, η) (see Subsection III.2.3 for the notation).
Now, note that, as Γ has finitely many orbits in X1, we have H∞ =⋃
k≥−1H>∞

k . In particular, if H is a Γ-invariant ∞-pseudofunction,
there exists ℓ ≥ 0 such that, for any ξ ̸= η in ∂X, we have ∆Hxy(ξ, η) =
0 for any xy in X1 with d(x, (ξη)) ≥ ℓ. This justifies the following
definition.

Definition 5.2. We define the global fundamental bilinear map

Φ : H∞ ×H∞ → D(Γ\S )

as follows. For any H, J in H∞ and any σ in S , we set

Φ(H, J)(σ) =
1

2

∑
xy∈Xσ

1

∆Hxy(σ
+, σ−)∆Jxy(σ

+, σ−).

Note that, for H, J as above, the function Φ(H, J) is ι-invariant.
The fundamental bilinear map has to be thought of as a map towards

the space of cohomology classes of smooth functions on Γ\S , where
cohomology classes were defined in Subsection I.2.3 and Subsection 2.1
(both definitions being compatible by Corollary 2.7). In this sense,
the next lemma says that the natural operators of the space of ∞-
pseudofunctions are symmetric with respect to Φ.

Lemma 5.3. Let H, J be inH∞. Then, we have Φ(RH, J) = Φ(H,RJ)
and the smooth functions Φ(SH, J) and Φ(H,SJ) are cohomologuous.
So are the smooth functions Φ(PH, J) and Φ(H,PJ)

See Subsection III.2.5 for the definition of R and S. As usual, we
write P = 1

q+1
(RS + SR− (q − 1)S).

Proof. In view of the definition of P , it suffices to prove the statements
for R and S. Fix σ in S . The fact that an edge xy of X1 belongs
to Xσ

1 only depends on x. This directly implies that Φ(RH, J)(σ) =
Φ(H,RJ)(σ). Besides, we have

Xσ
1 ∖ {yx|xy ∈ Xσ

1 } = {σ0σ1, σ0σ−1},
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which implies

2Φ(SH, J)(σ)− 2Φ(H,SJ)(σ) = ∆Hσ1σ0(σ
+, σ−)∆Jσ0σ1(σ

+, σ−)

+ ∆Hσ−1σ0(σ
+, σ−)∆Jσ0σ−1(σ

+, σ−)

−∆Hσ0σ1(σ
+, σ−)∆Jσ1σ0(σ

+, σ−)

−∆Hσ0σ−1(σ
+, σ−)∆Jσ−1σ0(σ

+, σ−)

= Ψ(H, J)(Tσ)−Ψ(H, J)(σ),

where

Ψ(H, J)(σ) = ∆Hσ0σ−1(σ
+, σ−)∆Jσ−1σ0(σ

+, σ−)

−∆Hσ−1σ0(σ
+, σ−)∆Jσ0σ−1(σ

+, σ−).

The Lemma follows. □

5.2. Invariant distributions. We will now relate the fundamental
bilinear map Φ to the constructions of Subsection II.5.3. Let p be a
Γ-invariant symmetric bilinear form on D(∂X). As in Section III.7, we
still write p for the symmetric bilinear form on H∞ defined by, for any
(H, J) in H∞,

p(H, J) =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
p(Hxy, Jxy).

We use the same notation for the associated bilinear forms on Hk,
k ≥ −1.

Proposition 5.4. Let p be a Γ-invariant symmetric bilinear form on
D(∂X) and θ be the associated (ι, T )-invariant distribution on Γ\S .
For any (H, J) in H∞, we have

p(H, J) = ⟨θ,Φ(H, J)⟩.

The proof is a consequence of the discussion in Subsection II.5.3 and
of the following purely combinatorial

Lemma 5.5. Let G be a discrete group, A be a discrete set and U be a
totally discontinuous locally compact topological space. Assume we are
given actions of G on A and U with the following properties: the action
of G on A has finite stabilizers and finitely many orbits; the action of
G on U is proper and cocompact.

Pick a distribution θ on G\U and denote by θ̃ the associated G-
invariant distribution on U . Let φ : A × U → R be a G-invariant
function which is locally constant in the following uniform way: for
every u in U , there exists a neighborhood V of u in U such that φ(a, .)
is constant on V for every a in A. Assume for every a in A, φ(a, .) has
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compact support in U and, for every u in U , φ(., u) has finite support
in A. Then, the function u 7→

∑
a∈A φ(a, u) is locally constant on U

and we have ∑
a∈G\A

1

|Ga|

〈
θ̃, φ(a, .)

〉
=

〈
θ,
∑
a∈A

φ(a, .)

〉
.

Proof. Recall from Subsection II.5.3 that θ̃ and θ are related as follows:
if ψ is in D(U) and ψ(u) =

∑
g∈G ψ(gu) for u in U , then we have

⟨θ̃, ψ⟩ = ⟨θ, ψ⟩.
Fix a system of representatives S for the action of G on A, that is,

S ⊂ A is such that A = GS and Ga ∩ S = {a} for every a in S. By
definition, we have∑
a∈G\A

1

|Ga|

〈
θ̃, φ(a, .)

〉
=
∑
a∈S

1

|Ga|

〈
θ̃, φ(a, .)

〉
=

〈
θ̃,
∑
a∈S

1

|Ga|
φ(a, .)

〉
.

For u in U , set ψ(u) =
∑

a∈S
1

|Ga|φ(a, u). The assumption on φ

implies that ψ is in D(U). As S is a system of representatives for the
action of G on A, for u in U , we have

ψ(u) =
∑
g∈G

∑
a∈S

1

|Ga|
φ(ga, u) =

∑
a∈A

φ(a, u).

The Lemma follows. □

Proof of Proposition 5.4. Still as in Subsection II.5.3, we associate to

θ a Γ-invariant and (ι, T )-invariant distribution θ̃ on S . In the same
way, as the quotient of S by the time shift T may be identified with

∂2X, we associate to θ̃ a distribution θ∂2X on ∂2X. Note that θ̃ and
θ∂2X are Γ-invariant and symmetric.

Let H, J be in H∞ and xy be in X1. By Lemma II.5.9, we have

p(Hxy, Jxy) =
1

2
θ∂2X((ξ, η) 7→ ∆Hxy(ξ, η)∆Jxy(ξ, η)).

By Lemma 5.1, we get

p(Hxy, Jxy) =
1

2
θ̃
(
σ 7→ ∆Hxy(σ

+, σ−)∆Jxy(σ
+, σ−)1xy∈Xσ

1

)
.

Thus, we obtain

p(H, J) =

1

2

∑
xy∈Γ\X1

1

|Γx ∩ Γy|
θ̃
(
σ 7→ ∆Hxy(σ

+, σ−)∆Jxy(σ
+, σ−)1xy∈Xσ

1

)
.
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The Proposition follows by applying Lemma 5.5 to the action of Γ on
A = X1 and U = S and to the function

φ : X1 × S → R, (xy, σ) 7→ ∆Hxy(σ
+, σ−)∆Jxy(σ

+, σ−)1xy∈Xσ
1
.

□

5.3. Spectral fundamental bilinear maps. We will use the Plan-
cherel formula for X1, Proposition 4.5, to decompose the global funda-
mental bilinear map Φ into spectral components. We start by intro-
ducing those components.

The spectral components will depend from a complex parameter t.
We will only define these components as t ranges in the domain delim-
ited by a certain ellipse in C. We define Eq ⊂ C as the set of those t in
C such that

(ℜt)2 +
(
q + 1

q − 1
ℑt
)2

< 1.

Note that Eq ∩ R = (−1, 1). Elementary computations show

Lemma 5.6. Let t be in C. Then t belongs to Eq if and only if the
solutions of the equation (q + 1)tu = q + u2 satisfy 1 < |u| < q.

Proof. For u in C∗, write u = ρeiθ for some ρ > 0 and θ in R. Then,
we have

t =
1

q + 1

(
u+

q

u

)
=
ρ+ q

ρ

q + 1
cos θ +

ρ− q
ρ

q + 1
sin θ.

Thus, if ρ =
√
q, when u ranges in the circle {|u| = √

q}, t ranges in
the interval Iq; if ρ ̸=

√
q and u ranges in the circle {|u| = ρ}, t ranges

in the ellipse (
q + 1

ρ+ q
ρ

ℜt

)2

+

(
q + 1

ρ− q
ρ

ℑt

)2

= 1.

The conclusion follows. □

Corollary 5.7. Let H be in H∞ and K be a compact subset of Eq. We
have

sup
(ξ,η)∈∂2X
ab∈X1
t∈K

∑
xy∈X1

|χt(ab, xy)∆Hxy(ξ, η)| <∞.

Proof. By Lemma 5.6, we can find β > 0 such that, for any t in K and
u in C with (q + 1)tu = q + u2, we have 1 + β ≤ |u| ≤ q − β. We
fix such t, u. As H∞ =

⋃
ℓ≥1H>∞

2ℓ , we can assume that H belongs to
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H>∞

2ℓ for some ℓ ≥ 1. Let (ξ, η) be in ∂2X. For xy in X1, we have
∆Hxy(ξ, η) = 0 as soon as d(x, (ξη)) ≥ ℓ. Note that we have

sup
j≥0

|{xy ∈ X1|δ(ab, xy) = j, d(x, (ξη)) ≤ ℓ}| <∞.

Besides, as H is Γ-invariant, we have

sup
(ξ,η)∈∂2X
xy∈X1

|∆Hxy(ξ, η)| <∞.

By Lemma 4.2, we get, for some C > 0, for any (ξ, η) in ∂2X and ab
in X1,∑

xy∈X1

|χt(ab, xy)∆Hxy(ξ, η)| ≤ C
∑
j≥0

(j + 1)max

(
|u|−j ,

∣∣∣ q
u

∣∣∣−j
)
.

As 1+β ≤ |u| ≤ q−β, the latter sum is uniformly bounded as t ranges
in K. □

The convergence of these sums justifies the following

Definition 5.8. Let t be in Eq. For any H, J in H∞ and any σ in S ,
we set

Φt(H, J)(σ) =
1

2

∑
ab∈Xσ

1
xy∈X1

χt(ab, xy)∆Hab(σ
+, σ−)∆Jxy(σ

+, σ−).

We call Φt the spectral fundamental bilinear map associated to t.

Note that, for t and H, J as above, the function Φt(H, J) is ι-
invariant.

The spectral fundamental bilinear map creates Hölder continuous
functions. For 0 < α < 1, we let Hα denote the space of α-Hölder
continuous functions on Γ\S , equipped with the natural norm

∥f∥α = sup |f |+ sup
h≥0

σ,τ∈S
∀|i|≤h σi=τi

α−h |f(σ)− f(τ)| , f ∈ Hα.

Lemma 5.9. Let H, J be in H∞. For any t in Eq, Φt(H, J) is a Hölder
continuous function. More precisely, given an open subset Ω of C,
whose closure in C is contained in Eq, there exists 0 < α < 1 such that
Φt(H, J) belongs to Hα for any t in Ω and the map t 7→ Φt(H, J),Ω →
Hα is analytic.

Proof. Let Ω be as in the statement. Then, by Lemma 5.6, we can find
α < 1 such that, for any t in Ω and u in C with (q + 1)ty = q + u2,
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we have |u|−1 < α and
∣∣∣uq ∣∣∣ < α. The statement then follows by using

Lemma 4.2 as in the proof of Corollary 5.7. □

As for the global fundamental bilinear map, we shall think to the
spectral fundamental bilinear maps as maps towards the space of co-
homology classes of Hölder continuous functions. We get, by analogy
with Lemma 4.3 and Lemma 5.3,

Lemma 5.10. Let H, J be in H∞ and t be in Eq. Then we have

Φt(RH, J) = Φt(H,RJ)

and the Hölder continuous functions

Φt(H, J)− Φt(J,H),

Φt(SH, J)− Φt(H,SJ)

and Φt(PH, J)− tΦt(H, J)

are coboundaries.

To avoid lenghty dominations in converging sums, we shall use

Lemma 5.11. Let f be a Hölder continuous function on Γ\S . Assume
that there exists a family (hn)n∈Z of continuous functions on Γ\S such
that

sup
σ∈S

∑
n∈Z

|hn(σ)| <∞ and sup
σ∈S

∑
n∈Z

|hn(T nσ)| <∞

and such that f =
∑

n∈Z hn ◦ T n − hn. Then, f is a coboundary.

Proof. This is a consequence of Livs̆ic Theorem, Proposition 2.1. In-
deed, let µ be a T -invariant Borel probability measure on Γ\S . By
the Dominated Convergence Theorem, the series

∑
n∈Z hn ◦ T n − hn

converges in L1(Γ\S , µ). As
∫
Γ\S (hn ◦ T n − hn)dµ = 0 for every n

in Z, we get
∫
Γ\S fdµ = 0. The conclusion follows from Proposition

2.1. □

Proof of Lemma 5.10. The fact that Φt(RH, J) = Φt(H,RJ) is ob-
tained as in the proof of Lemma 5.3, by using the corresponding prop-
erty of χt from Lemma 4.3.

Let us prove that Φt(H, J)−Φt(J,H) is a coboundary. From Lemma
5.1, we get, for σ in S ,

Φt(H, J)(σ) =
1

2

∑
h∈Z

∑
ab∈Xσ

1

xy∈XThσ
1

χt(ab, xy)∆Hab(σ
+, σ−)∆Jxy(σ

+, σ−).
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By using the symmetry of χt, we get

Φt(H, J)(σ)− Φt(J,H)(σ) =
∑
h∈Z

Ξt,h(H, J)(T
hσ)− Ξt,h(H, J)(σ),

where, for h in Z,

Ξt,h(H, J)(σ) =
1

2

∑
ab∈XT−hσ

1
xy∈Xσ

1

χt(ab, xy)∆Hab(σ
+, σ−)∆Jxy(σ

+, σ−).

Due to Corollary 5.7, we have

sup
σ∈S

∑
h∈Z

|Ξt,h(H, J)(σ)| <∞ and sup
σ∈S

∑
h∈Z

∣∣Ξt,h(H, J)(T
hσ)
∣∣ <∞.

Therefore, by Lemma 5.11, Φt(H, J)− Φt(J,H) is a coboundary.
We now study Φt(SH, J)− Φt(H,SJ). By using the relation

χt(ba, xy) = χt(ab, yx),

for ab, xy in X1, and by reasoning as in the proof of Lemma 5.3, we
obtain, for σ in S ,

Φt(SH, J)− Φt(H,SJ) = Ψt(H, J)(σ)−Ψt(H, J)(Tσ),

with

Ψt(H, J)(σ) =
1

2

∑
xy∈X1

(
∆Hσ−1σ0(σ

+, σ−)χt(σ−1σ0, xy)

−∆Hσ0σ−1(σ
+, σ−)χt(σ0σ−1, xy))

)
∆Jxy(σ

+, σ−).

By reasoning as in the proof of Lemma 5.9, one can show that the func-
tion Ψt(H, J) is Hölder continuous on Γ\S . The conclusion follows.

Finally, notice from Lemma 4.3 that we have Φt(J, PH) = tΦ(H, J).
As the above implies that Φt(PH, J) is cohomologous to Φt(J, PH),
the last statement follows. □

5.4. Special spectral fundamental bilinear maps. We still aim at
using the Plancherel formula of X1 from Proposition 4.5 in order to
decompose the global fundamental bilinear map Φ. Thus, we need to
introduce special components.

Recall the definition of δ in Subsection 4.2. The convergence in the
formulae defining these special components is warranted by

Lemma 5.12. Let H be in H∞. We have

sup
(ξ,η)∈∂2X
ab∈X1

∑
xy∈X1

q−δ(ab,xy)|∆Hxy(ξ, η)| <∞.
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The proof is the same as the one of Corollary 5.7.

Definition 5.13. For any H, J in H∞ in H∞, and any σ in S , we set

Φsp
1 (H, J)(σ) =

1

2

∑
ab∈Xσ

1
xy∈X1

χsp
1 (ab, xy)∆Hab(σ

+, σ−)∆Jxy(σ
+, σ−)

Φsp
(−1)(H, J)(σ) =

1

2

∑
ab∈Xσ

1
xy∈X1

χsp
(−1)(ab, xy)∆Hab(σ

+, σ−)∆Jxy(σ
+, σ−)

We call Φsp
1 and Φsp

(−1) the special spectral fundamental bilinear maps.

Again, for H, J as above, the functions Φsp
1 (H, J) and Φsp

(−1)(H, J)
are ι-invariant.

These bilinear maps send H∞ to Hq−1 .

Lemma 5.14. Let H, J be in H∞. Then, the functions Φsp
1 (H, J) and

Φsp
(−1)(H, J) are q

−1-Hölder continuous on Γ\S .

Proof. This directly follows from the definition of χsp
1 and χsp

(−1) in Sub-

section 4.4 and from the fact that, for H in H∞, xy in X1 and (ξ, η)
in ∂2X, ∆Hxy(ξ, η) is 0 when xy is far enough from the geodesic line
(ξη). □

In the same way as for Lemma 5.10, we show

Lemma 5.15. Let H, J be in H∞. Then we have

Φsp
1 (RH, J) = −Φsp

1 (H, J) and Φsp
(−1)(RH, J) = −Φsp

(−1)(H, J)

and the Hölder continuous functions

Φsp
1 (H, J)− Φsp

1 (J,H), Φsp
(−1)(H, J)− Φsp

(−1)(J,H),

Φsp
1 (SH, J) + Φsp

1 (H, J), Φsp
(−1)(SH, J)− Φsp

(−1)(H, J),

Φsp
1 (PH, J)− Φsp

1 (H, J), Φsp
(−1)(PH, J) + Φsp

(−1)(H, J),

are coboundaries.

5.5. The Plancherel formula for fundamental bilinear maps.
From the Plancherel formula in X1, we can decompose the global fun-
damental bilinear map.
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Proposition 5.16. Let H, J be in H∞. For σ in S , we have

Φ(H, J)(σ) =
2

q + 1

∫
Iq
Φt(H, J)(σ)dµq(t)

+
q − 1

2(q + 1)
Φsp

1 (H, J)(σ) +
q − 1

2(q + 1)
Φsp

(−1)(H, J)(σ).

Proof. For ab in X1 and (ξ, η) ∈ ∂2X, Corollary 5.7 and Lemma 5.12,
together with the Dominated Convergence Theorem give, by the same
computation as in the proof of Proposition 4.5,

∆Jab(ξ, η) =
2

q + 1

∫
Iq

∑
xy∈X1

χt(ab, xy)∆Jxy(ξ, η)dµq(t)

+
q − 1

2(q + 1)

∑
xy∈X1

χsp
1 (ab, xy)∆Jxy(ξ, η)

+
q − 1

2(q + 1)

∑
xy∈X1

χsp
(−1)(ab, xy)∆Jxy(ξ, η).

The conclusion then follows from the definition of the fundamental
bilinear maps. □

Our goal is to use Proposition 5.16 to get a better understanding of
the spectral theory of completions of D(∂X) with respect to Γ-invariant
non-negative symmetric bilinear forms. We can already manage the
case of representations associated to Radon measures. Recall from
Proposition II.5.14 that if ν is a finite (ι, T )-invariant Borel measure
on Γ\S , the associated Γ-invariant symmetric bilinear form on D(∂X)
is non-negative.

Corollary 5.17. Let ν be a finite (ι, T )-invariant Borel measure on
Γ\S and p be the associated Γ-invariant symmetric bilinear form on
D(∂X). Then, in the completion of H∞ with respect to p, the spectrum
of the operator P is Iq ∪{−1, 1}. The associated spectral measures are
absolutely continuous with respect to the Lebesgue measure on Iq.

Proof. Let H, J be in H∞. By Proposition 5.4, we have

p(H, J) =

∫
Γ\S

Φ(H, J)dν.
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By Lemma 5.9, we can apply Fubini Theorem in the Plancherel formula
of Proposition 5.16; this gives

p(H, J) =
2

q + 1

∫
Iq

∫
Γ\S

Φt(H, J)dνdµq(t)

+
q − 1

2(q + 1)

∫
Γ\S

Φsp
1 (H, J)dν +

q − 1

2(q + 1)

∫
Γ\S

Φsp
(−1)(H, J)dν.

As ν is T -invariant, by Lemma 5.10 and Lemma 5.15, for any polyno-
mial function φ in R[t], we get

p(φ(P )H, J) =
2

q + 1

∫
Iq
φ(t)

∫
Γ\S

Φt(H, J)dνdµq(t)

+
q − 1

2(q + 1)
φ(1)

∫
Γ\S

Φsp
1 (H, J)dν

+
q − 1

2(q + 1)
φ(−1)

∫
Γ\S

Φsp
(−1)(H, J)dν.

The conclusion follows by standard properties of spectral analysis of
self-adjoint operators. □

6. Endpoints series and fundamental bilinear maps

In order to be able to study the spectral fundamental maps, we will
now show that, up to a coboundary, they can be written as an endpoints
series as in Subsection 3.1.

6.1. Weight of pseudofunctions. In this Subsection, for k ≥ 0, we
associate to every k-pseudofunction a function on Xk. This construc-
tion will later allow us to rewrite the definition of the spectral funda-
mental maps.

Definition 6.1. Let k ≥ 0 be an integer and H be a k-pseudofunction.
We define the weight ωk(H), which is a function on Xk, as follows. Let
ab be in Xk and a0 = a, a1, . . . , ak = b be the geodesic parametrization
of the segment [ab]. For c in X, c ̸= b we write c− for the neighbour of
c on [bc].

If k = 0 and H is the 0-pseudofunction associated to the function u
on X, we set ω0(H) = u.

If k is even, k = 2ℓ, ℓ ≥ 1, we set

ωk(H)(ab) = ∆Haℓaℓ+1
(b, a) +

ℓ−1∑
i=1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆Hcc−(b, a2i).
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If k is odd, k = 2ℓ+ 1, ℓ ≥ 0, we set

ωk(H)(ab) = ∆Haℓaℓ+1
(b, a) +

ℓ∑
i=1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆Hcc−(b, a2i−1).

Later, in Section 6, we will study the weight map ωk. For the moment
we show how it appears naturally when handling fundamental bilinear
maps.

6.2. Initial bilinear maps. Here, we introduce a notation in order
to reformulate the definition of the fundamental bilinear maps and we
relate this notation with the weight defined above.

For σ in S , we set

Xσ = {x ∈ X|[x, σ0] ∩ ⟨σ⟩ = {σ0}},

so that Xσ
1 = {xy ∈ X1|x ∈ Xσ}.

Recall from Subsection 3.1 that, for k ≥ 1, we let Vk stand for the
space of Γ-invariant functions on Xk.

Assume k is even, k = 2ℓ, ℓ ≥ 1. If H is a k-pseudofunction, for
σ in S and ab in Xσ

1 with d(a, σ0) = r, the quantity ∆H>∞

ab (σ+, σ−)
is zero if r ≥ ℓ. If r < ℓ, this quantity only depends on the segment
[σ−(ℓ−r), σℓ−r]. Therefore, for j ≥ 0, there exists a symmetric bilinear
map

κj,k : Hk ×Hk → Vj+k

such that, for any H, J in Hk and σ in S , one has∑
ab∈Xσ

1

∆H>∞

ab (σ+, σ−)∆J>∞

ab (σ+, σ−) = κ0,k(H, J)(σ−ℓ, σℓ)

if j = 0 and∑
a,x∈Xσ

d(a,x)=j

∆H>∞

aa1
(σ+, σ−)∆J>∞

xx1
(σ+, σ−)

+

j∑
h=1

∑
a∈Xσ

x∈XThσ

d(a,x)=j

(∆H>∞

aa1
(σ+, σ−)∆J>∞

xx1
(σ+, σ−)+∆H>∞

xx1
(σ+, σ−)∆J>∞

aa1
(σ+, σ−))

= κj,k(H, J)(σ−ℓ, σj+ℓ)

if j ≥ 1 (where as usual, for a, x as above, a1 and x1 are the neighbours
of a and x on [ax]).
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Assume now k is odd, k = 2ℓ+1, ℓ ≥ 0. To deal with the symmetries
associated with edges instead of vertices we introduce a new family of
subsets of X1. For σ in S , we set

Xσ,♯
1 = Xσ

1 ∪ {σ1σ0}∖ {σ0σ−1}.

IfH is a k-pseudofunction, for σ in S and ab inXσ,♯
1 , ab /∈ {σ0σ1, σ1σ0},

the quantity ∆H>∞

ab (σ+, σ−) is zero if r = min(d(a, ⟨σ⟩), d(b, ⟨σ⟩)) ≥ ℓ.
If r < ℓ, this quantity only depends on the segment [σ−(ℓ−r), σℓ−r].
Besides, the quantity ∆H>∞

σ0σ1
(σ+, σ−) only depends on the segment

[σ−ℓ, σℓ+1]. Therefore, for j ≥ 0, there exists a symmetric bilinear map

κj,k : Hk ×Hk → Vj+k

such that, for any H, J in Hk and σ in S , one has∑
ab∈Xσ,♯

1

∆H>∞

ab (σ+, σ−)∆J>∞

ab (σ+, σ−) = 2κ0,k(H, J)(σ−ℓ, σℓ+1)

if j = 0 and∑
ab,xy∈Xσ,♯

1
δ(ab,xy)=j
b,y∈[ax]

∆H>∞

ab (σ+, σ−)∆J>∞

xy (σ+, σ−)

+

j∑
h=1

∑
ab∈Xσ,♯

1

xy∈XThσ,♯
1

δ(ab,xy)=j
b,y∈[ax]

(∆H>∞

ab (σ+, σ−)∆J>∞

xy (σ+, σ−)+∆H>∞

xy (σ+, σ−)∆J>∞

ab (σ+, σ−))

= 2κj,k(H, J)(σ−ℓ, σj+ℓ+1)

if j ≥ 1.
When j ≥ k − 1, we have a better formula for these bilinear maps

which will help us to write the fundamental bilinear maps as endpoints
series.

Lemma 6.2. Let k ≥ 1, j ≥ k − 1 and H, J be in Hk. Then the
function κj,k(H, J) is cohomologous to the function

Xj+k → R, xy 7→ −ωk(H)(xxk)ωk(J)(yyk)− ωk(J)(xxk)ωk(H)(yyk),

where xk and yk are the elements of [xy] at distance k from x and y.

Proof. Assume k is even, k = 2ℓ, ℓ ≥ 1. Take σ in S . As men-
tioned above, for a in Xσ with d(a, ⟨σ⟩) ≥ ℓ and b ∼ a, we have
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∆H>∞

ab (σ+, σ−) = 0. Therefore, for h ≥ 0, a in Xσ and x in XThσ, if
d(a, x) = j and ∆H>∞

aa1
(σ+, σ−)∆J>∞

xx1
(σ+, σ−) ̸= 0, we have

h ≥ j − 2(ℓ− 1) = j − k + 2 ≥ 1.

More precisely, we have

κj,k(H, J)(σ−ℓσj+ℓ) =∑
0≤r,s≤ℓ−1

∑
a∈Sr(σ0)∩Xσ

x∈Ss(σj−r−s)∩XTj−r−sσ

∆Haa1(σℓ−r, σ−(ℓ−r))∆Jxx1(σj+ℓ−r−2s, σj−r−ℓ)

+ ∆Hxx1(σj+ℓ−r−2s, σj−r−ℓ)∆Jaa1(σℓ−r, σ−(ℓ−r)).

For r, s as above, the smooth function

σ 7→
∑

a∈Sr(σ0)∩Xσ

x∈Ss(σj−r−s)∩XTj−r−sσ

∆Haa1(σℓ−r, σ−(ℓ−r))∆Jxx1(σj+ℓ−r−2s, σj−r−ℓ)

is cohomologous to

σ 7→
∑

a∈Sr(σℓ+r)∩XTℓ+rσ

x∈Ss(σj+ℓ−s)∩XTj+ℓ−sσ

∆Haa1(σ2ℓ, σ2r)∆Jxx1(σj+2ℓ−2s, σj).

The conclusion follows by using Definition 6.1.
Assume k is odd, k = 2ℓ+ 1, ℓ ≥ 0. Now, for ab in X1 and σ in S ,

we have ∆Hab(σ
+, σ−) = 0 as soon as min(d(a, ⟨σ⟩), d(b, ⟨σ⟩)) ≥ ℓ. For

j ≥ k−1, we will split the sum defining κj,k(H, J)(σ−ℓσj+ℓ+1) according
to whether a = σ0 or not and whether x = σh+1 or not. Thus, we write

κj,k(H, J) = κ00j,k(H, J) + κ01j,k(H, J) + κ10j,k(H, J) + κ11j,k(H, J),

where, first,

κ00j,k(H, J)(σ−ℓσj+ℓ+1) = ∆Hσ0σ1(σℓ+1, σ−ℓ)∆Jσj+1σj
(σj+ℓ+1, σj−ℓ)

+ ∆Hσj+1σj
(σj+ℓ+1, σj−ℓ)∆Jσ0σ1(σℓ+1, σ−ℓ),

which is cohomologous to the function

σ 7→ ∆Hσℓσℓ+1
(σk, σ0)∆Jσj+ℓ+1σj+ℓ

(σj+k, σj)

+ ∆Hσj+ℓ+1σj+ℓ
(σj+k, σj)∆Jσℓσℓ+1

(σk, σ0);
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second,

κ01j,k(H, J)(σ−ℓσj+ℓ+1) =∑
1≤s≤ℓ

∑
x∈Ss(σj+1−s)∩XTj+1−sσ

∆Hσ0σ1(σℓ+1, σ−ℓ)∆Jxx−(σj+ℓ+2−2s, σj−ℓ)

+ ∆Hxx−(σj+ℓ+2−2s, σj−ℓ)∆Jσ0σ1(σℓ+1, σ−ℓ),

which is cohomologous to the function

σ 7→
∑
1≤s≤ℓ

∑
x∈Ss(σj+ℓ+1−s)∩XTj+ℓ+1−sσ

∆Hσℓσℓ+1
(σk, σ0)∆Jxx−(σj+k+1−2s, σj)

+ ∆Hxx−(σj+k+1−2s, σj)∆Jσℓσℓ+1
(σk, σ0);

third,

κ10j,k(H, J)(σ−ℓσj+ℓ+1) =∑
1≤r≤ℓ

∑
a∈Sr(σ0)∩Xσ

∆Haa−(σℓ−r+1, σ−ℓ+r−1)∆Jσj+1−rσj−r
(σj+ℓ+1−r, σj−ℓ−r)

+ ∆Hσj+1−rσj−r
(σj+ℓ+1−r, σj−ℓ−r)∆Jaa−(σℓ−r+1, σ−ℓ+r−1),

which is cohomologous to the function

σ 7→
∑
1≤r≤ℓ

∑
a∈Sr(σℓ+r)∩XTℓ+rσ

∆Haa−(σk, σ2r−1)∆Jσj+ℓ+1σj+ℓ
(σj+k, σj)

+ ∆Hσj+ℓ+1σj+ℓ
(σj+k, σj)∆Jaa−(σk, σ2r−1);

fourth

κ11j,k(H, J)(σ−ℓσj+ℓ+1) =∑
1≤r,s≤ℓ

∑
a∈Sr(σ0)∩Xσ

x∈Ss(σj+1−r−s)∩XTj+1−r−sσ

∆Haa−(σℓ−r+1, σ−ℓ+r−1)∆Jxx−(σj+ℓ+2−r−2s, σj−ℓ−r)

+ ∆Hxx−(σj+ℓ+2−r−2s, σj−ℓ−r)∆Jaa−(σℓ−r+1, σ−ℓ+r−1),

which is cohomologous to

σ 7→
∑

1≤r,s≤ℓ

∑
a∈Sr(σℓ+r)∩XTℓ+rσ

x∈Ss(σj+ℓ+1−s)∩XTj+ℓ+1−sσ

∆Haa−(σk, σ2r−1)∆Jxx−(σj+k+1−2s, σj)

+ ∆Hxx−(σj+k+1−2s, σj)∆Jaa−(σk, σ2r−1).

Using Definition 6.1 yields the conclusion. □
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6.3. Endpoints series formulas for the spectral fundamental
bilinear maps. In this section, we use the previous constructions to
give an alternative formula for defining the spectral fundamental maps
by means of an endpoints series as in Subsection 3.1.

We will need new families of polynomial functions besides the (Aj)j≥0

and the (Bj)j≥0 from Subsection 4.1 and the (Cj)j≥0 from Subsection
4.6. For j ≥ 0, we set

Dj = Aj − (q − 1)Bj = Cj − (q − 1)
∑

0≤h<j

Ch

Ej = Aj + (q − 1)Bj = Cj − (q − 1)
∑

0≤h<j

(−1)j−hCh

Fj = qAj − (q − 1)Bj+1 = Cj − (q2 − 1)
∑

0≤h<j
j−h even

Ch,

where the equalities follow from Corollary 4.7.
As in Subsection III.2.1, for k ≥ −1, we write Hk = Hk,+⊕Hk,− the

decomposition into eigenspaces of the ∨ operator.

Proposition 6.3. Let k ≥ 2 and t be in Eq.
Assume k is even. Then, for any H, J in Hk,+, the Hölder continu-

ous function Φt

(
H>∞

, J>∞)
is cohomologous to the Hölder continuous

function Φ+
t,k(H, J) defined by, for σ in S ,

Φ+
t,k(H, J)(σ) =

q + 1

4
κ0,k(H, J)(σ0, σk)+

q(q + 1)

4

k−2∑
j=1

q−jCj(t)κj,k(H, J)(σ0σj+k)

−q(q + 1)

4

∞∑
j=k−1

q−jCj(t)(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj)).

For any H, J in Hk,−, the Hölder continuous function Φt

(
H>∞

, J>∞)
is cohomologous to the Hölder continuous function Φ−

t,k(H, J) defined
by, for σ in S ,

Φ−
t,k(H, J)(σ) =

q + 1

4q
κ0,k(H, J)(σ0, σk)−

q + 1

4q

k−2∑
j=1

q−jFj(t)κj,k(H, J)(σ0σj+k)

+
q + 1

4q

∞∑
j=k−1

q−jFj(t)(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj)).

Assume k is odd. Then, for any H, J in Hk,+, the Hölder continu-
ous function Φt

(
H>∞

, J>∞)
is cohomologous to the Hölder continuous
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function Φ+
t,k(H, J) defined by, for σ in S ,

Φ+
t,k(H, J)(σ) =

k−2∑
j=0

q−jEj(t)κj,k(H, J)(σ0σj+k)

−
∞∑

j=k−1

q−jEj(t)(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj)).

For any H, J in Hk,−, the Hölder continuous function Φt

(
H>∞

, J>∞)
is cohomologous to the Hölder continuous function Φ−

t,k(H, J) defined
by, for σ in S ,

Φ−
t,k(H, J)(σ) = κ0,k(H, J)(σ0σk)−

k−2∑
j=1

q−jDj(t)κj,k(H, J)(σ0σj+k)

+
∞∑

j=k−1

q−jDj(t)(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj)).

The proof is a consequence of the formulas below. These allow to
compute the spectral bilinear forms of Subsection 4.3 in eigenspaces
of the operators R and S by means of our new families of polynomial
functions.

Lemma 6.4. Fix t in R.
For a, x in X and j = d(a, x), we have

∑
b∼a
y∼x

χt(ab, xy) =
(q + 1)2

2
j = 0

=
q + 1

2qj−1
Cj(t) j ≥ 1.

For a in X anb b, c ∼ a, b ̸= c, we have

χt(ab, ab)− χt(ab, ac) =
q + 1

2q
.

For a, x in X with j = d(a, x) ≥ 1 and b ∼ a, y ∼ x with b, y /∈ [ax],

χt(ab, xy)− χt(aa1, xy)− χt(ab, xx1) + χt(aa1, xx1) = − q + 1

2qj+1
Fj(t).
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For ab, xy in X1 and j = δ(ab, xy), we have

χt(ab, xy)− χt(ab, yx) = ε(ab, xy) j = 0

=
1

2qj
Dj(t)ε(ab, xy) j ≥ 1

χt(ab, xy) + χt(ab, yx) = 1 j = 0

=
1

2qj
Ej(t) j ≥ 1.

The proofs directly follow from the definition of χt in Subsection 4.3.

Proof of Proposition 6.3 in case k is even. For t in Eq, H, J in H∞ and
σ in S , we set

(6.1) Φ′
t(H, J)(σ) =

1

2

∑
ab,xy∈Xσ

1

χt(ab, xy)∆Hab(σ
+, σ−)∆Jxy(σ

+, σ−)

+
1

2

∑
h≥1

∑
ab∈Xσ

1

xy∈XThσ
1

χt(ab, xy)(∆Hab(σ
+, σ−)∆Jxy(σ

+, σ−)

+ ∆Hxy(σ
+, σ−)∆Jab(σ

+, σ−)).

As in Corollary 5.9, one shows that Φ′
t(H, J) is a Hölder continuous

function. In view of Definition 5.8, by Corollary 5.7 and Lemma 5.11,
Φ′

t(H, J) and Φt(H, J) are cohomologous.
Assume RH = qH and RJ = qJ . As, for x ∼ y in X, the elements

Hxy and Jxy of D(∂X) only depend on x, we will write Hx and Jx for
them below. In particular, from Lemma 6.4, we get

Φ′
t(H, J)(σ) =

(q + 1)2

4

∑
a∈Xσ

∆Ha(σ
+, σ−)∆Ja(σ

+, σ−)

+
q + 1

4

∑
a̸=x∈Xσ

Cd(a,x)(t)

qd(a,x)−1
∆Ha(σ

+, σ−)∆Jx(σ
+, σ−)

+
q + 1

4

∑
h≥1

∑
a∈Xσ

x∈XThσ

Cd(a,x)(t)

qd(a,x)−1
(∆Ha(σ

+, σ−)∆Jx(σ
+, σ−)

+ ∆Hx(σ
+, σ−)∆Ja(σ

+, σ−)).
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Recall that k ≥ 2 is an even integer, k = 2ℓ, ℓ ≥ 1. Take H, J in
Hk,+. From the formula above, we write

Φ′
t(H

>∞
, J>∞

)(σ−ℓσℓ) =
q + 1

4
κ0,k(H, J)(σ)

+
q(q + 1)

4

∞∑
j=1

q−jCj(t)κj,k(H, J)(σ−ℓσj+ℓ).

The first case now follows from Lemma 6.2.
We now address the second case. We will follow the same lines as

above. We start by noticing that, by Lemma 6.4, if H, J are in H∞
with RH = −H and RJ = −J , for a, x in X with j = d(a, x) ≥ 1 and
ξ, η in ∂X, we have∑

b∼a
y∼x

χt(ab, xy)∆Hab(ξ, η)∆Jxy(ξ, η)

= − q + 1

2qj+1
Fj(t)∆Haa1(ξ, η)∆Jxx1(ξ, η).

When a = x, we get∑
b,c∼a

χt(ab, ac)∆Hab(ξ, η)∆Jac(ξ, η) =
q + 1

2q

∑
b∼a

∆Hab(ξ, η)∆Jab(ξ, η).

Thus, when RH = −H and RJ = −J , we may rewrite (6.1) as

Φ′
t(H, J)(σ) =

q + 1

4q

∑
ab∈Xσ

1

∆Hab(σ
+, σ−)∆Jab(σ

+, σ−)

− q + 1

4

∑
a̸=x∈Xσ

Fd(a,x)(t)

qd(a,x)+1
∆Haa1(σ

+, σ−)∆Jxx1(σ
+, σ−)

− q + 1

4

∑
h≥1

∑
a∈Xσ

x∈XThσ

Fd(a,x)(t)

qd(a,x)+1
(∆Haa1(σ

+, σ−)∆Jxx1(σ
+, σ−)

+ ∆Hxx1(σ
+, σ−)∆Jaa1(σ

+, σ−)).

For H, J in Hk,−, we get

Φ′
t(H

>∞
, J>∞

)(σ) =
q + 1

4q
κ0,k(H,K)(σ−ℓ, σℓ)

− q + 1

4q

∞∑
j=0

q−jFj(t)κj,k(H, J)(σ−ℓσj+ℓ).

Again, the conclusion follows from Lemma 6.2. □
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Proof of Proposition 6.3 in case k is odd. The odd case will be dealt
with in an analogue way. Given H, J in H∞, we define a new Hölder
continuous function that is cohomologous to Φt(H, J). For σ in S , we
set

(6.2) Φ′′
t (H, J)(σ) =

1

2

∑
ab,xy∈Xσ,♯

1

χt(ab, xy)∆Hab(σ
+, σ−)∆Jxy(σ

+, σ−)

+
1

2

∑
h≥1

∑
ab∈Xσ,♯

1

xy∈XThσ,♯
1

χt(ab, xy)(∆Hab(σ
+, σ−)∆Jxy(σ

+, σ−)

+ ∆Hxy(σ
+, σ−)∆Jab(σ

+, σ−)).

By (6.1), Φ′′
t (H, J) and Φ′

t(H, J) are cohomologous.
Assume SH = H and SJ = J . In view of Lemma 6.4, we have

Φ′′
t (H, J)(σ) =

1

2

∑
ab∈Xσ,♯

1

∆Hab(σ
+, σ−)∆Jab(σ

+, σ−)

+
1

2

∑
ab,xy∈Xσ,♯

1
δ(ab,xy)≥1
b,y∈[ac]

Eδ(ab,xy)(t)

qδ(ab,xy)
∆Hab(σ

+, σ−)∆Jxy(σ
+, σ−)

+
1

2

∑
h≥1

∑
ab∈Xσ,♯

1

xy∈XThσ,♯
1

b,y∈[ac]

Eδ(ab,xy)(t)

qδ(ab,xy)
(∆Hab(σ

+, σ−)∆Jxy(σ
+, σ−)

+ ∆Hxy(σ
+, σ−)∆Jab(σ

+, σ−)).

Recall that k ≥ 1 is an odd integer, k = 2ℓ + 1, ℓ ≥ 0. For H, J in
Hk,+, we get

Φ′′
t (H

>∞
, J>∞

)(σ) =
∑
j≥0

q−jEj(t)κj,k(H, J)(σ−ℓσj+ℓ+1).

Lemma 6.2 yields the first case of the Proposition.
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For the second case, givenH, J inH∞ with SH = −H and SJ = −J ,
we use Lemma 6.4 and (6.2) to write, for σ in S ,

Φ′′
t (H, J)(σ) =

1

2

∑
ab∈Xσ,♯

1

∆Hab(σ
+, σ−)∆Jab(σ

+, σ−)

− 1

2

∑
ab,xy∈Xσ,♯

1
δ(ab,xy)≥1
b,y∈[ac]

Dδ(ab,xy)(t)

qδ(ab,xy)
∆Hab(σ

+, σ−)∆Jxy(σ
+, σ−)

− 1

2

∑
h≥1

∑
ab∈Xσ,♯

1

xy∈XThσ,♯
1

b,y∈[ac]

Dδ(ab,xy)(t)

qδ(ab,xy)
(∆Hab(σ

+, σ−)∆Jxy(σ
+, σ−)

+ ∆Hxy(σ
+, σ−)∆Jab(σ

+, σ−)).

For H, J in Hk,−, we obtain

Φ′′
t (H

>∞
, J>∞

)(σ) = κ0,k(H, J)(σ−ℓσℓ+1)

−
∑
j≥1

q−jDj(t)κj,k(H, J)(σ−ℓσj+ℓ+1).

Still by Lemma 6.2, the last case of the Proposition follows. □

6.4. An endpoints series formula for the special spectral funda-
mental maps. In the case of the special spectral fundamental maps,
following the same strategy as above yields

Proposition 6.5. Let k ≥ 1.
Assume k is even. Then, for any H, J in Hk,+, the Hölder contin-

uous functions Φsp
(−1)

(
H>∞

, J>∞)
and Φsp

1

(
H>∞

, J>∞)
are cobound-

aries. For any H, J in Hk,−, the Hölder continuous functions Φ
sp
(−1)

(
H>∞

, J>∞)
and Φsp

1

(
H>∞

, J>∞)
are cohomologous to the Hölder continuous func-

tions Φsp,−
(−1),k(H, J) and Φsp,−

1,k (H, J) defined by, for σ in S ,

Φsp,−
(−1),k(H, J)(σ) =

q + 1

2q
κ0,k(H, J)(σ0, σk)−

(q + 1)2

2q

k−2∑
j=1

(−q)−jκj,k(H, J)(σ0σj+k)

+
(q + 1)2

2q

∞∑
j=k−1

(−q)−j(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj))
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and

Φsp,−
1,k (H, J)(σ) =

q + 1

2q
κ0,k(H, J)(σ0, σk)−

(q + 1)2

2q

k−2∑
j=1

q−jκj,k(H, J)(σ0σj+k)

+
(q + 1)2

2q

∞∑
j=k−1

q−j(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj)).

Assume k is odd. Then, for any H, J in Hk,+, the Hölder continu-
ous function Φsp

1

(
H>∞

, J>∞)
is a coboundary; the Hölder continuous

function Φsp
(−1)

(
H>∞

, J>∞)
is cohomologous to the Hölder continuous

function Φsp,+
(−1),k(H, J) defined by, for σ in S ,

Φsp,+
(−1),k(H, J)(σ) = 2κ0,k(H, J)(σ0, σk)+4

k−2∑
j=1

(−q)−jκj,k(H, J)(σ0σj+k)

−4
∞∑

j=k−1

(−q)−j(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj)).

For any H, J in Hk,−, the Hölder continuous function Φsp
(−1)

(
H>∞

, J>∞)
is a coboundary; the Hölder continuous function Φsp

1

(
H>∞

, J>∞)
is co-

homologous to the Hölder continuous function Φsp,−
1,k (H, J) defined by,

for σ in S ,

Φsp,−
1,k (H, J)(σ) = 2κ0,k(H, J)(σ0, σk)− 4

k−2∑
j=1

q−jκj,k(H, J)(σ0σj+k)

+4
∞∑

j=k−1

q−j(ωk(H)(σ0σk)ωk(J)(σj+kσj)+ωk(J)(σ0σk)ωk(H)(σj+kσj)).

The proof is analogue to that of Proposition 6.5, by replacing Lemma
6.4 with

Lemma 6.6. For a, x in X and j = d(a, x), we have∑
b∼a
y∼x

χsp
1 (ab, xy) = 0 =

∑
b∼a
y∼x

χsp
(−1)(ab, xy).

For a in X anb b, c ∼ a, b ̸= c, we have

χsp
1 (ab, ab)− χsp

1 (ab, ac) = χsp
(−1)(ab, ab)− χsp

(−1)(ab, ac) =
q + 1

q
.
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For a, x in X with j = d(a, x) ≥ 1 and b ∼ a, y ∼ x with b, y /∈ [ax],
we have

χsp
1 (ab, xy)− χsp

1 (aa1, xy)− χsp
1 (ab, xx1) + χsp

1 (aa1, xx1) = −(q + 1)2

qj+1

χsp
(−1)(ab, xy)− χsp

(−1)(aa1, xy)− χsp
(−1)(ab, xx1) + χsp

(−1)(aa1, xx1) =
(q + 1)2

(−q)j+1
.

For ab, xy in X1, we have

χsp
1 (ab, yx) = −χsp

1 (ab, xy)

χsp
(−1)(ab, yx) = χsp

1 (ab, xy).

7. The weight of pseudofunctions

In the sequel of the article, we will study the consequences of Propo-
sition 3.3, which describes under which conditions an endpoints series
is a coboundary, when applied to the endpoints series which appear in
Proposition 6.3 and Proposition 6.5. To this aim, we will need a better
understanding of the weight map of pseudofunctions.

7.1. Weight and natural operations. First, we relate the weight
construction to the natural operations on pseudofunctions of Subsec-
tion III.2.2.

Lemma 7.1. Let k ≥ 0, H be a k-pseudofunction, ab be in Xk+1 and
a1 and b1 be the neighbours of a and b on [ab]. If k is even, we have

ωk+1(H
>)(ab) = ωk(H)(ab1) and ωk+1(H

>∨)(ab) = ωk(H
∨)(a1b).

If k is odd, we have

ωk+1(H
>)(ab) = ωk(H)(a1b) and ωk+1(H

>∨)(ab) = ωk(H
∨)(ab1).

The weight map ωk was introduced in Definition 6.1.

Proof. If k = 0, and H is the 0-pseudofunction associated to the func-
tion u on X (see Subsection III.2.1), we have

ω1(H
>)(ab) = ∆H>

ab(b, a) = u(a)(1b(b)− 1b(a)) = u(a) = ω0(H)(a)

and

ω1(H
>∨)(ab) = ∆H>∨

ab (b, a) = ∆H>
ba(b, a)

= u(b)(1a(b)− 1a(a)) = −u(b) = ω0(H
∨)(b).

Assume now k ≥ 1 and let us write as usual a0 = a, a1, . . . , ak+1 = b
for the geodesic parametrization on the segment [ab].
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If k is even, k = 2ℓ, ℓ ≥ 1, we have

ωk+1(H
>)(ab) = ∆H>

aℓaℓ+1
(b, a) +

ℓ∑
i=1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆H>
cc−(b, a2i−1)

= ∆Haℓaℓ+1
(b1, a) +

ℓ∑
i=1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆Hcc−(b1, a2i).

As b1 = a2ℓ, the last term of the sum vanishes and, as required, we get
ωk+1(H

>)(ab) = ωk(H)(a). Besides,

ωk+1(H
>∨)(ab) = ∆H>

aℓ+1aℓ
(b, a) +

ℓ∑
i=1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆H>
c−c(b, a2i−1)

= ∆Haℓ+1aℓ(b, a1) +
ℓ∑

i=1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆Hc−c(b, a2i−1).

Now, on one hand,

∆Haℓ+1aℓ(b, a1) +
∑

c∼aℓ+1

c/∈{aℓ,aℓ+2}

∆Haℓ+1c(b, a1) = ∆H∨
aℓ+1aℓ+2

(b, a1),

whereas, on the other hand, for 2 ≤ i ≤ ℓ, by setting d = c− in the
sums below, we get

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆Hc−c(b, a2i−1) =
∑
d∈X

[aℓ+id]∩[ab]={aℓ+i}
d(d,aℓ+i)=i−1

∆H∨
dd−(b, a2i−1).

We obtain indeed ωk+1(H
>∨)(ab) = ωk(H

∨)(a1b).
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If k is odd, k = 2ℓ+ 1, ℓ ≥ 0, we have

ωk+1(H
>)(ab) = ∆H>

aℓ+1aℓ+2
(b, a) +

ℓ∑
i=1

∑
c∈X

[aℓ+i+1c]∩[ab]={aℓ+i+1}
d(c,aℓ+i+1)=i

∆H>
cc−(b, a2i)

= ∆Haℓ+1aℓ+2
(b, a1) +

ℓ∑
i=1

∑
c∈X

[aℓ+i+1c]∩[ab]={aℓ+i+1}
d(c,aℓ+i+1)=i

∆Hcc−(b, a2i)

= ωk(H)(a1b)

and in the same way,

ωk+1(H
>∨)(ab) = ∆H>∨

aℓ+1aℓ+2
(b, a)+

ℓ∑
i=1

∑
c∈X

[aℓ+i+1c]∩[ab]={aℓ+i+1}
d(c,aℓ+i+1)=i

∆H>∨
cc−(b, a2i).

First, we have

∆H>∨
aℓ+1aℓ+2

(b, a) = ∆Haℓ+1aℓ(b1, a) +
∑

c∼aℓ+1

c/∈{aℓ,aℓ+2}

∆Haℓ+1c(b1, a1);

second, for 1 ≤ i ≤ ℓ, we have∑
c∈X

[aℓ+i+1c]∩[ab]={aℓ+i+1}
d(c,aℓ+i+1)=i

∆H>∨
cc−(b, a2i) =

∑
d∈X

[aℓ+i+1d]∩[ab]={aℓ+i+1}
d(d,aℓ+i+1)=i+1

∆Hd−d(b1, a2i+1);

in particular, for i = ℓ, this vanishes as b1 = ak = a2ℓ+1. We get
ωk+1(H

>∨)(ab) = ωk(H
∨)(ab1). □

7.2. Injectivity properties of the weight. We will show that pseud-
ofunctions are determined by their weight. We start by stating a con-
verse to Lemma 7.1.

Lemma 7.2. Let k ≥ 1 and H be a k-pseudofunction. Assume there
exists a function v on Xk−1 such that, for any ab in Xk, one has
ωk(H)(ab) = v(a1b). Then, if k is even, there exists a (k − 1)-pseudo-
function G with H = G> and v = ωk−1(G). If k is odd, there exists a
(k − 1)-pseudofunction G with H = G>∨ and v = ωk−1(G

∨)

Proof. If k = 1, for a ∼ b in X1, we have ω1(H)(ab) = ∆Hab(b, a) =

v(b), which means that Hab = v(b)1b = −v(b)1a in V
0
(ab). We get

H = G>∨ where G is the 0-pseudofunction associated with −v and
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hence v = −ω0(G) = ω0(G
∨) (see Subsection III.2.1 and Subsection

III.2.2).
Suppose k is even, k = 2ℓ, ℓ ≥ 1. Then, saying that there exists a

(k− 1)-pseudofunction G with H = G> is saying that, for every x ∼ y
in X and every a, a′ in Sℓ(x) such that d(a, a′) = 2 and y /∈ [ax]∪ [a′x],
we have ∆Hxy(a, a

′) = 0. Indeed, assume the latter holds. Then, pick
b in Sℓ(x) with y ∈ [bx]. By assumption, we have d(a, b) = d(a′, b) = k.
Let a1 be the neighbour of a on [ax], which is also the neighbour of a′

on [a′x] since d(a, a′) = 2, and write a1, a2, . . . , ak = b for the geodesic
parametrization of the segment [a1b]. Then, by Definition 6.1 and the
asusmption, we have

∆Hxy(b, a) = v(a1b)−
ℓ−1∑
i=1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

∆Hcc−(b, a2i) = ∆Hxy(b, a
′).

Hence ∆Hxy(a, a
′) = ∆Hxy(b, a

′)−∆Hxy(b, a) = 0 and therefore, there
exists a (k−1)-pseudofunction G with H = G>. We have v = ωk−1(G)
by Lemma 7.1.

If k is odd, k = 2ℓ + 1, ℓ ≥ 1, we proceed in the same way. We
first show that there exists a (k− 1)-pseudofunction G with H = G>∨.
Indeed this amounts to saying that, for every x ∼ y in X and every a, a′

in Sℓ(xy) with d(a, a′) = 2 and x ∈ [ay], one has ∆Hxy(a, a
′), which

is warranted by Definition 6.1 and the assumption. Then, Lemma 7.1
ensures that v = ωk−1(G

∨). □

From this, we can deduce that the weight determines the pseudo-
function.

Corollary 7.3. Let k ≥ 0 and H be a k-pseudofunction. If ωk(H) = 0,
then H = 0.

In general, for k ≥ 3, the weight map does not map Hk onto the
space of Γ-invariant functions on Xk.

Proof. For k = 0, 1, the proof is immediate. The general case follows
by Lemma 7.2 and a straightforward induction argument. □

7.3. Weights and cohomology. Now, we describe under which con-
dition a weight function is a coboundary.

Proposition 7.4. Let k ≥ 1 and H be in Hk. Then the following are
equivalent:
(i) The weight function ωk(H) is a coboundary.
(ii) There exists G in Hk−1 such that H = G∨> −G>∨.
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This statement is closely related to Theorem I.8.32. The equiva-
lence of the different notions of cohomology among elements of Vk is
established in Corollary 2.7.

Formally, Proposition 7.4 will not be used later in the article. Nev-
ertheless, its statement and its proof serve as a model for those of
Proposition 7.12 and Proposition 9.3 below. The latter result will play
a crucial role in applying the cohomology criterion of Proposition 3.3
to endpoints series as in Proposition 6.3 or Proposition 6.5.

First part of the proof. The direction (ii)⇒(i) is easy. Indeed, assume
H = G∨> − G>∨ for some G in Hk−1. Then, by Lemma 7.1, for ab in
Xk we have,

ωk(H)(ab) = ωk−1(G
∨)(a1b)− ωk−1(G

∨)(ab1) if k is even

= ωk−1(G
∨)(ab1)− ωk−1(G

∨)(a1b) if k is odd.

The conclusion follows. □

Here is the difficulty for proving the converse statement. Assuming
that (i) holds, we know from Corollary 2.7 that there exists a function
v on Xk−1 such that, for ab in Xk, one has ωk(H)(ab) = v(ab1)−v(a1b).
But we don’t know whether v is the weight function of some (k − 1)-
pseudofunction. It turns out that this is the case, but this requires
some work to be proved.

We will need to introduce a new object. For k ≥ 1, we define a
complete k-pseudofunction as a family (Hxy)xy∈X1 such that, for xy in
X1, ik k is even, k = 2ℓ, ℓ ≥ 1, Hxy is an element of V ℓ(x); if k is odd,
k = 2ℓ + 1, ℓ ≥ 0, Hxy is an element of V ℓ(xy). Thus, the definition
is the same as the one of a k-pseudofunction, except that we don’t kill
the constant functions in the spaces V ℓ(x) and V ℓ(xy).

Starting from a complete k-pseudofunction, one can obtain a k-

pseudofunction by killing the constant part. In particular, if H̃k is
the space of Γ-invariant complete k-pseudofunctions, we have a natu-

ral map H̃k → Hk.

Lemma 7.5. Let k ≥ 1. The natural map H̃k → Hk is surjective.

Since the stabilizers of the elements of X in Γ are finite, the proof
is a direct consequence of the following classical phenomenon in group
theory:

Lemma 7.6. Let V be a real vector space, equipped with an action of
a finite group G. Let W be a G-invariant subspace. Then the natural
map V → V/W maps the space V G of G-invariant elements of V onto
(V/W )G.
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The advantage of dealing with complete pseudofunctions is that for
them, we can replace the weight by a function that is defined on smaller
segments. Indeed, for k ≥ 1 and H a complete k-pseudofunction, we
define the pseudoweight ρk(H) of H as follows. If k is even, k = 2ℓ,
ℓ ≥ 1, for ab in Xℓ+1, we set

(7.1) ρk(H)(ab) =
∑
c∈X

d(b,c)=ℓ
b1∈[bc]

Hcc−(b)−
ℓ−1∑
i=1

∑
c∈X

d(b1,c)=i
b,b2 /∈[b1c]

Hcc−(ai)−Hb1b(a).

If k is odd, k = 2ℓ+ 1, ℓ ≥ 0, for ab in Xℓ+1, we set

(7.2) ρk(H)(ab) =
∑
c∈X

d(b,c)=ℓ+1
b1∈[bc]

Hcc−(b)−
ℓ∑

i=1

∑
c∈X

d(b1,c)=i
b,b2 /∈[b1c]

Hcc−(ai−1)−Hb1b(a).

From Definition 6.1, we directly get

Lemma 7.7. Let k ≥ 1 and H be in H̃k. The pseudoweight ρk(H) is
cohomologous to the weight ωk(H).

By abuse of language, we have denoted by ωk(H) the weight of the
image of H in Hk.

We define the natural operations H 7→ H> and H 7→ H∨ for com-
plete pseudofunctions as for pseudofunctions (see Subsection III.2.2).

As in Subsection I.8.7, for k ≥ 1, we say that a Γ-invariant function
w on Xk is split if we can find Γ-invariant functions u and v on Xk−1

such that, for xy in Xk, one has

w(xy) = u(xy1) + v(x1y).

We have a criterion for a complete k-pseudofunction to be obtained
through complete (k − 1)-pseudofunctions.

Lemma 7.8. Let k ≥ 2 and H be in H̃k.
If k is odd, there exists F,G in H̃k−1 with H = F> +G>∨.
If k is even, k = 2ℓ, ℓ ≥ 1, then the following are equivalent:

(i) there exists F,G in H̃k−1 with H = F> +G>∨.
(ii) the function xy 7→ Hy1y(x) is split on Xℓ+1.
(iii) the pseudoweight ρk(H) is split on Xℓ+1.

Proof. Assume k is odd, k = 2ℓ+1, ℓ ≥ 1, and recall from Proposition
I.4.6 that, for xy in X1, we have V

ℓ(xy) = J ℓ
xyV

ℓ(x)+J ℓ
yxV

ℓ(y). Choose
a system of representatives S ⊂ X1. for the action of Γ on X1. Then,
for xy in S, Hxy is a (Γx∩Γy)-invariant element of V ℓ(xy). By Lemma
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7.6, there exists (Γx ∩ Γy)-invariant elements fxy in V ℓ(x) and gyx in
V ℓ(y) with

Hxy = J ℓ
xyfxy + J ℓ

yxgyx.

As fxy and gyx are Γx ∩ Γy-invariant, there exists unique F,G in H̃k−1

such that Fxy = fxy and Gyx = gyx for xy in S. By construction, we
have H = F> +G>∨.

Assume now k is even, k = 2ℓ, ℓ ≥ 1 and first note that, in view of
the definition of the pseudoweight ρk(H) in (7.1), the function xy 7→
ρk(H)(xy) +Hy1y(x) is split on Xℓ+1, so that (ii) is equivalent to (iii).

Let us prove (i)⇒(ii). Suppose we may write H = F> + G>∨ with

F,G in H̃k−1. Then, a direct computation gives, for xy in Xℓ+1,

Hy1y(x) = F>
y1y

(x) +
∑
z∼y1
z ̸=y

G>
y1z

(x)

= Fy1y(x1) +
∑
z∼y1

z /∈{y,y2}

Gy1z(x1) +Gy1y2(x)

= Fy1y(x1) +
∑
z∼y1
z ̸=y2

Gy1z(x1)−Gy1y(x1) +Gy1y2(x)

(the last step only being necessary when k = 2). As required, the
function xy 7→ Hy1y(x) is split.

Conversely, we now prove (ii)⇒(i). Thus, assume we may find Γ-
invariant functions v and w on Xℓ such that, for xy in Xℓ+1, one has

Hy1y(x) = v(xy1) + w(x1y).

We define F and G in H̃k−1 as follows: for xy in Xℓ, we set

Fyy1(x) = Hyy1(x) Fy1y(x) = w(xy)

Gyy1(x) = v(xy) Gy1y(x) = 0.

A direct computation then shows that H = F> +G>∨. □

Second part of the proof of Proposition 7.4. We prove (i)⇒(ii) by in-
duction on k ≥ 1. Let H be in Hk and assume that ωk(H) is a
coboundary. By Corollary 2.7, we may find a Γ-invariant function
v on Xk−1 such that, for any xy in Xk, one has

ωk(H)(xy) = v(xy1)− v(x1y).

If k = 1, we let G be the 0-pseudofunction associated with the func-
tion −v on X0 = X. Then, Definition 6.1 and Lemma 7.1 imply that
we have ω1(H −G∨> +G>∨) = 0, hence H = G∨> −G>∨ by Corollary
7.3.
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If k = 2, we let G be the 1-pseudofunction associated with the func-
tion xy 7→ v(yx) on X1. As above, we get H = G∨> −G>∨.

Suppose k ≥ 3 and the result holds for k− 1; let us show that it also
holds for k.

If k is odd, by Lemma 7.5 and Lemma 7.8, we may find J,K in Hk−1

with

(7.3) H = J>+K>∨ = (J+K∨)>−K∨>+K>∨ = L>−K∨>+K>∨,

where L = J+K∨. Then the first part of the proof and the assumption
ensure that the weight ωk(L

>) is a coboundary. By Lemma 7.1, the
weight ωk−1(L) is a coboundary. Thus, by the induction assumption,
we may find M in Hk−2 with L =M∨> −M>∨. By (7.3), we get

H = L> −K∨> +K>∨ =M∨>> −M>∨> −K∨> +K>∨

= (M> +K)>∨ − (M> +K)∨>

(where we have used Lemma III.2.6). The conclusion follows.
If k is even, k = 2ℓ, ℓ ≥ 1, we will proceed in the same way, by show-

ing that the assumption of Lemma 7.8 is satisfied. Indeed, by Lemma
7.5, we may assume that H is a Γ-invariant complete k-pseudofunction
(which we still denote by H by abuse of language). Then, by the as-
sumption and Lemma 7.7, the pseudoweight ρk(H) is a coboundary.
By Corollary 2.7, this means that we may find a Γ-invariant function
v on Xℓ such that, for any ab in Xℓ+1, one has

ρk(H)(ab) = v(ab1)− v(a1b).

In particular, ρk(H) is split and, by Lemma 7.8, there exists J,K in
Hk−1 with H = J> +K>∨. We conclude as in the odd case. □

7.4. Sequences of pseudofunctions. We will now prove a statement
for sequences of weights that may be seen as a generalization of Propo-
sition 7.4. The proof will rely on some improvements of the techniques
used above. It will also serve as a model for the proof of Proposition
9.3 below, which will be a further generalization that will play a crucial
role in translating the conclusion of Proposition 3.3 in the language of
pseudofunctions.

We start with a definition that is inspired by the language of Propo-
sition 3.3.

Definition 7.9. Let k ≥ 1. We say that a finitely supported sequence
(wj)j≥1 in Vk is cohomologically trivial if there exists a finitely sup-
ported sequence (vj)j≥1 in Vk−1 such that, for j ≥ 1 and ab in Xk, one
has

wj(ab) = vj(ab1)− vj−1(a1b).
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This notion is invariant under some shifts.

Lemma 7.10. Let h ≥ k ≥ 1 and (wj)j≥1 be a finitely supported
sequence in Vk. For j ≥ 1 and ab in Xh, set w

′
j(ab) = wj(aak). As-

sume the sequence (w′
j)j≥1 is cohomologically trivial in Vh. Then, the

sequence (wj)j≥1 is cohomologically trivial in Vk.

The proof will use the easy

Lemma 7.11. Let k ≥ 1 and u, v be Γ-invariant functions on Xk.
Assume that, for any ab in Xk+1, we have

u(ab1) = v(a1b).

Then, there exists a Γ-invariant function w on Xk−1 such that, for
every ab on Xk, one has

u(ab) = w(a1b) and v(ab) = w(ab1).

Proof of Lemma 7.10. It suffices to prove the statement when h = k+1,
the general case following by an easy induction. If h = k + 1, we can
find a finitely supported sequence (vj)j≥0 in Vk such that, for j ≥ 0
and ab in Xk+1, we have

wj+1(ab1)− vj+1(ab1) = −vj(a1b).

By Lemma 7.11, there exists a function uj on Xk−1 such that, for ab in
Xk−1, we have

wj+1(ab)− vj+1(ab) = −uj(a1b) and vj(ab) = uj(ab1).

Thus, for j ≥ 1, we get

wj(ab) = uj(ab1)− uj−1(a1b)

as required. □

The objective of the remainder of the Section is to show

Proposition 7.12. Let k ≥ 1 and (Hj)j≥1 be a finitely supported se-
quence of elements of Hk. Assume that the sequence (ω(Hj))j≥1 is
cohomologically trivial in Vk. Then, there exists a finitely supported
sequence (Gj)j≥0 of elements of Hk−1 such that, for j ≥ 1, one has

Hj = G>∨
j −G∨>

j−1 if k is even

= G∨>
j −G>∨

j−1 if k is odd.

Note that the converse is also true by Lemma 7.1.
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7.5. Splitting sequences. The proof of Proposition 7.12 will follow
the same lines as the one of Proposition 7.4. In particular, we will show
that the assumption implies that we can apply the criterion of Lemma
7.8 to the pseudofunctions Hj, j ≥ 1. This is achieved in the following

Lemma 7.13. Let k ≥ 2 be an even integer, k = 2ℓ, ℓ ≥ 1, and
(Hj)j≥1 be a finitely supported sequence of elements of Hk. Assume
that the sequence (ω(Hj))j≥0 is cohomologically trivial in Vk. Then, for
every j ≥ 1, there exists Fj and Gj in Hk−1 with

Hj = F>
j +G>∨

j .

We introduce new notation for the proof. We keep the language of
Subsection 7.3. For k ≥ 4 an even integer, k = 2ℓ, ℓ ≥ 2, and H a
complete k-pseudofunction, we define a family of functions on segments
of different sizes.
For ab in Xℓ+1, we set

ρ0k(H)(ab) = −Hb1b(a).

For 1 ≤ i ≤ ℓ− 2 and ab in Xℓ−i+1, we set

ρik(H)(ab) = −
∑
c∈X

[b1c]∩[ab]={b1}
d(c,b1)=i

Hcc−(a).

And lastly, for i = ℓ− 1 and ab in X2, we set

ρℓ−1
k (H)(ab) =

∑
c∈X

b1∈[bc]
d(c,b)=ℓ

Hcc−(b)−
∑
c∈X

[b1c]∩[ab]={b1}
d(c,b1)=ℓ−1

Hcc−(a).

Thus, Definition 6.1 can be rewritten as, for ab in Xk,

(7.4) ωk(H)(ab) =
ℓ−1∑
i=0

ρik(H)(a2iaℓ+i+1).

If k = 2, we set ρ02(H) = ω2(H), so that (7.4) still holds.

Proof of Lemma 7.13. Note that, for k = 2, the statement directly
follows from Definition 6.1, Lemma 7.5 and Lemma 7.8. Assume k ≥ 4
and let (vj)j≥0 be a finitely supported sequence in Vk−1 such that, for
ab in Xk and j ≥ 1, we have

ω(Hj)(ab) = vj(ab1)− vj−1(a1b).
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By Lemma 7.5, we can assume that (Hj)j≥1 is a finitely supported

sequence of elements of H̃k. Then, by (7.4), we get

vj(ab1)− vj−1(a1b) =
ℓ−1∑
i=0

ρik(Hj)(a2iaℓ+i+1)

=
ℓ−1∑
i=0

ρik(Hi+j)(aiaℓ+1)−
ℓ−1∑
i=1

(ρik(Hi+j)(aiaℓ+1)− ρik(Hj)(a2iaℓ+i+1))

=
ℓ−1∑
i=0

ρik(Hi+j)(aiaℓ+1)− v′j(ab1) + v′j−1(a1b),

where, for j ≥ 0 and ab in Xk−1, we have set

v′j(ab) =
ℓ−1∑
i=1

i−1∑
h=0

ρik(Hi+j−h)(ah+iah+ℓ+1).

By Lemma 7.10, there exists a finitely supported sequence (v′′j )j≥0 of
Γ-invariant functions on Xℓ+1 such that, for any j ≥ 1 and ab in Xℓ+1,
one has

ℓ−1∑
i=0

ρik(Hi+j)(aiaℓ+1) = v′′j (ab1)− v′′j−1(a1b).

In particular, the function ρ0k(Hj) is split on Xℓ+1 and the conclusion
follows from Lemma 7.8. □

We can now conclude by using an induction argument.

Proof of Proposition 7.12. As for Proposition 7.4, we prove this state-
ment by induction on k ≥ 1.

Assume k = 1. For j ≥ 0, we let Gj be the 0-pseudofunction as-
sociated with the function vj on X0 (see Subsection III.2.1). Then,
Definition 6.1, Lemma 7.1 and Corollary 7.3 imply that, for j ≥ 1, we
have Hj = G>∨

j−1 −G∨>
j .

Assume k = 2. For j ≥ 0, we let Gj be the 1-pseudofunction as-
sociated with the function xy 7→ vj(yx) on X1 (see again Subsection
III.2.1). Then, as above, for j ≥ 1, we get Hj = G∨>

j−1 −G>∨
j .

Suppose now k ≥ 3 and the statement holds for k − 1. If k is odd,
we know from Lemma 7.5 and Lemma 7.8 that we may find sequences
(Jj)j≥1 and (Kj)j≥1 in Hk−1 such that, for j ≥ 1, we have

Hj = J>
j +K>∨

j = (Jj +K∨
j+1)

> +K>∨
j −K∨>

j+1.

As (Hj)j≥1 is finitely supported, we may assume that (Jj)j≥1 and
(Kj)j≥1 also are.
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For j ≥ 1, we set Lj = Jj + K∨
j+1. Then, by Lemma 7.1, for ab in

Xk, we have

ωk−1(Lj)(ab1) = ωk(L
>
j )(ab)

= ωk(Hj)(ab)− ωk(K
>∨
j )(ab) + ωk(K

∨>
j+1)(ab)

= ωk(Hj)(ab)− ωk−1(K
∨
j )(a1b) + ωk−1(K

∨
j+1)(ab1).

Therefore, by Lemma 7.10, the sequence (ωk−1(Lj))j≥1 is cohomologi-
cally trivial in Vk−1. By the induction assumption, there exists a finitely
supported sequence (Mj)j≥0 of elements of Hk−2 such that, for j ≥ 1,
one has

Lj =M>∨
j −M∨>

j−1.

By using Lemma III.2.6, we get

Hj = L>
j +K>∨

j −K∨>
j+1 = (M>

j −Kj+1)
∨> − (M>

j−1 −Kj)
>∨

and we are done.
Suppose now k is even. By Lemma 7.13, there exist sequences (Jj)j≥1

and (Kj)j≥1 in Hk−1, which we may assume to be fintely supported,
such that, for j ≥ 1, we have

Hj = J>
j +K>∨

j = (J∨
j+1 +Kj)

>∨ + J>
j − J∨>∨

j+1 .

We now set Lj = Jj+1 +K∨
j , so that Lemma 7.1 gives, for ab in Xk,

ωk−1(Lj)(ab1) = ωk(L
∨>∨
j )(ab)

= ωk(Hj)(ab)− ωk(J
>
j )(ab) + ωk(J

∨>∨
j+1 )(ab)

= ωk(Hj)(ab)− ωk−1(Jj)(a1b) + ωk−1(Jj+1)(ab1).

By Lemma 7.10, the sequence (ωk−1(Lj))j≥1 is cohomologically trivial
in Vk−1. By the induction assumption, there exists a finitely supported
sequence (Mj)j≥0 of elements of Hk−2 such that, for j ≥ 1, one has

Lj =M∨>
j −M>∨

j−1.

By using again Lemma III.2.6, we obtain

Hj = L∨>∨
j + J>

j − J∨>∨
j+1 = (M∨>∨

j − J∨
j+1)

>∨ − (M∨>∨
j−1 − J∨

j )
∨>

as required. □

8. Simplification schemes

Our objective in the next two Sections is to show Proposition 9.3,
which is a generalization of Proposition 7.12 for functions of two sets
of variables. Later, it will be used to check the consequences of Propo-
sition 3.3 when it is applied to the objects appearing in the Plancherel
formula in Proposition 5.16.
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In the present Section, as a preliminary, we study certain linear equa-
tions on functions on two variables. As analogous equations will also
appear later on tensor products of spaces of pseudofunctions, we re-
group those two studies in a common abstract formalism, which we
call the language of simplication schemes.

8.1. Definition and examples. We now introduce precisely this lan-
guage and we relate it to our two examples.

Definition 8.1. A simplification scheme is a family

(V−, V, V+, L,R, L+, R+)

where V−, V and V+ are real vector spaces and L and R are injective
linear maps V− → V and L+ and R+ are injective linear maps V → V+
with the following property: we have L+R = R+L and, for every v and
w in V , if

L+v = R+w,

there exists u in V with v = Ru and w = Lu.

We set this definition in order to encompass the following two exam-
ples.

Example 8.2. For k ≥ 0, we set V− = Hk−1, V = Hk and V+ = Hk+1.
Then, for G in V− and H in V , we set

LG = G> RG = G∨>

L+H = H> R+H = H>∨.

This defines a simplification scheme as follows from Lemma III.2.6 and
Lemma III.2.8. The same construction works for pseudokernels instead
of pseudofunctions, by Lemma II.2.4 and Lemma II.2.5.

Example 8.3. For k ≥ 1, we set V− = Vk−1, V = Vk and V+ = Vk+1.
Then, for f in V− and ab in Xk, we set

Lf(ab) = f(a1b) and Rf(ab) = f(ab1).

In the same way, for g in V+ and ab in Xk+1, we set

L+g(ab) = g(a1b) and R+g(ab) = g(ab1).

This defines a simplification scheme by Lemma 7.11.
We extend this definition for k = 0 in the following way. The space

V0 is the space of Γ-invariant functions on X0 = X. We let V−1 be the
space of Γ-invariant functions on X which are constant on neighbours:
this space is the line of constant functions if Γ is not bipartite; it has
dimension 2 else. If f is in V−1, we set Lf to be f , viewed as an
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element of V0, and Rf to be the opposite of f , that is, for a ∼ b in X,
Rf(a) = f(b). If g is in V0, for a ∼ b in X, we set

L+g(ab) = g(b) and R+g(ab) = g(a).

Again, one easily checks that this defines a simplification scheme.

To avoid heavy notation, in this sequel, we will only write (V−, V, V+)
to mean a simplification scheme and we will use the letters L and R to
design the associated linear maps for every simplification scheme. We
will also simply write L instead of L+ and R instead of R+.

8.2. Tensor products. In the rest of the Section, we will describe
how the simplification rule of simplification schemes behaves in tensor
products. Here, we start by introducing precisely our notation for
tensor products.

Let V and W be vector spaces. We write V ⊗W for the algebraic
tensor product of V with W . If V = W , we write ⊗2V for V ⊗V . If X
is another vector space and φ : V ×W → X is a bilinear map, we still
write φ : V ⊗W → X for the linear map such that φ(v⊗w) = φ(v, w),
for v in V and w in W . If V ′ and W ′ are other vector spaces and
χ : V → V ′ and ψ : W → W ′ are linear maps, we denote by u 7→ χuψ
the natural associated linear map V ⊗W → V ′ ⊗W ′, so that, for v in
V and w in W , one has χ(v ⊗ w)ψ = (χv)⊗ (ψw).
The following is standard:

Lemma 8.4. Let V , V ′ and W be vector spaces and φ : V → V ′ be a
linear map. Then the linear map u 7→ φu, V ⊗W → V ′⊗W has kernel
(kerφ)⊗W and range (φV )⊗W .

As in Section 3, for h, k ≥ 1, we write Vk for the space of Γ-invariant
functions on Xk and Wh,k for the space of (Γ × Γ)-invariant functions
on Xh ×Xk. We identify Wh,k with the tensor product Vh × Vk in the
standard way. More precisely, for v in Vh and w in Vk, we consider
v ⊗ w as the function on Xh ×Xk defined by

(v ⊗ w)(ab, xy) = v(ab)w(xy), ab, xy ∈ Xk.

8.3. Tensor products of simplification schemes. In the abstract
framework of simplification schemes, we establish the following result
that will allow us to solve functional equations with two variables.

Proposition 8.5. Let (V−, V, V+) and (W−,W,W+) be simplification
schemes. Take g, h in V ⊗W+ and j, k in V+ ⊗W . Assume we have

Lg +Rh+ jL+ kR = 0.
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Then, there exist a in V− ⊗W+, b in V+ ⊗W− and c, d, e, f in V ⊗W
such that

g = Ra+ cL+ dR h = −La+ eL+ fR

j = bR− Lc−Re k = −Lb− Ld−Rf.

We will split the proof into several steps.

Lemma 8.6. Let (V−, V, V+) and (W−,W,W+) be simplification sche-
mes. Asssume f is in V− ⊗W+ and g, h are in V ⊗W and we have

Lf = gL+ hR.

Then, there exist a in V ⊗W− and b, c in V− ⊗W with

f = bL+ cR

g = aR + Lb

h = −aL+ Lc.

Proof. The relation Lf = gL + hR implies that gL + hR has trivial
image in (V/LV−)⊗W+. Therefore, by Definition 8.1 and Lemma 8.4,
there exists a in V ⊗W− such that g − aR and h+ aL both belong to
LV− ⊗W . In other words, we can find b, c in V− ⊗W with

g = aR + Lb and h = −aL+ Lc.

We get

Lf = gL+ hR = LbL+ LcR

and the conclusion follows. □

Lemma 8.7. Let (V−, V, V+) and (W−,W,W+) be simplification sche-
mes and f, g, h, j be in V ⊗W . Assume we have

LfL+RgL+ LhR +RjR = 0.

Then, there exist a, d in V− ⊗W and b, c in V ⊗W− such that

f = Ra+ bR g = −La+ cR

h = Rd− bL j = −Ld− cL.

Proof. We write the starting equation as

(Lf +Rg)L+ (Lh+Rj)R = 0.

By Definition 8.1 and Lemma 8.4, there exists k in V+ ⊗W− such that

Lg +Rg = kR and Lh+Rj = −kL.
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By Lemma 8.6, we can find u, x in V− ⊗W and v, w, y, z in V ⊗W−
with

k = Lv +Rw −k = Ly +Rz

f = Ru+ vR h = Rx+ yL

g = −Lu+ wR j = −Lx+ zL.

By looking at the two equations above which involve k, we get

Lv +Rw + Ly +Rz = 0.

By Definition 8.1 and Lemma 8.4, we know that there exists l in V− ⊗
W− with

v + y = Rl and w + z = −Ll,
which yields

f = Ru− yR +RlR h = Rx+ yL

g = −Lu− zR− LlR j = −Lx+ zL.

The result folllows with a = u+ lR, b = −y, c = −z and d = x. □

Proof of Proposition 8.5. The assumption implies that Lg + Rh has
trivial image in V+ ⊗ (W+/(LW +RW )). Therefore, by Definition 8.1
and Lemma 8.4, there exists l in V− ⊗W+ such that g−Rl and h+Ll
both belong to V ⊗ (LW + RW ). We choose g0, g1, h0, h1 in V ⊗W
with

g = Rl + g0L+ g1R and h = −Ll + h0L+ h1R.

In the same way, we can find m in V+ ⊗W− and j0, j1, k0, k1 in V ⊗W
satisfying

j = mR + Lj0 +Rj1 and k = −mL+ Lk0 +Rk1.

The assumption now reads as

Lg0L+ Lg1R +Rh0L+Rh1R + Lj0L+Rj1L+ Lk0R +Rk1R = 0,

which we rewrite as

L(g0 + j0)L+R(h0 + j1)L+ L(g1 + k0)R +R(h1 + k1)R = 0.

We can therefore apply Lemma 8.7. This tells us that we may find u, x
in V− ⊗W and v, w in V ⊗W− with

g0 + j0 = Ru+ vR h0 + j1 = −Lu+ wR

g1 + k0 = Rx− vL h1 + k1 = −Lx− wL.

We get

j = mR+Lj0+Rj1 = mR−Lg0+LRu+LvR−Rh0−RLu+RwR

= mR− Lg0 + LvR−Rh0 +RwR
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and in the same way,

k = −mL+Lk0+Rk1 = −mL−Lg1+LRx−LvL−Rh1−RLx−RwL
= −mL− Lg1 − LvL−Rh1 −RwL.

Since g = Rl+ g0L+ g1R and h = −Ll+ h0L+ h1R, the result follows
with

a = l c = g0 d = g1

b = m+ Lv +Rw e = h0 f = h1.

□

8.4. The case of pseudofunctions. We now translate Proposition
8.5 for our concrete examples and we add the description of the bound-
ary cases. In case of pseudofunctions, as in Example 8.2, we get

Corollary 8.8. Let h, k ≥ −1, G,H be in Hh ⊗Hk+1 and J,K be in
Hh+1 ⊗Hk. Assume we have

>G+ ∨>H + J> +K>∨ = 0.

Then, if h and k are both ≥ 0, there exist A in Hh−1 ⊗Hk+1, B in
Hh+1 ⊗Hk−1 and C,D,E, F in Hh ⊗Hk such that

G = >∨A+ C> +D>∨ H = − >A+ E> + F>∨

J = B∨> − >C − ∨>E K = −B> − >D − ∨>F.

If h ≥ 0 and k = −1, there exist A in Hh−1 ⊗ H0 and B,C in
Hh ⊗H−1 with

K − J = >B + ∨>C

G = ∨>A+B>

H = − >A+ C>.

If h = k = −1, there exists A in H−1 ⊗H−1 with

G−H = A> and K − J = >A.

Proof. In case h, k ≥ 0, this is Proposition 8.5. In case h ≥ 0 and
k = −1, the equation reads as

>G+ ∨>H = (K − J)>

and the conclusion follows from Lemma 8.6. Finally, if h = k = −1,
we have

>(G−H) = (K − J)>

and the conclusion is obvious. □
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We also include the translation of Lemma 8.6 which we shall need
later.

Corollary 8.9. Let h, k ≥ 0. Asssume F is in Hh−1⊗Hk+1 and G,H
are in Hh ⊗Hk and we have

>F = G> +H>∨.

Then, there exist A in Hh ⊗Hk−1 and B,C in Hh−1 ⊗Hk with

F = B> + C>∨

G = A∨> + >B

H = −A> + >C.

8.5. The case of functions on segments. In the case of Example
8.3, we get

Corollary 8.10. Let h, k ≥ 0, g, h be in Wh,k+1 and j, k be in Wh+1,k.
Assume that, for pq in Xh+1 and xy in Xk+1, we have

g(p1q, xy) + h(pq1, xy) + j(pq, x1y) + k(pq, xy1) = 0.

Then, if h and k are both ≥ 1, there exist a inWh−1,k+1, b inWh+1,k−1

and c, d, e, f in Wh,k such that, for pq in Xh and xy in Xk+1,

g(pq, xy) = a(pq1, xy) + c(pq, x1y) + d(pq, xy1)

h(pq, xy) = −a(p1q, xy) + e(pq, x1y) + f(pq, xy1)

and, for pq in Xh+1 and xy in Xk,

j(pq, xy) = b(pq, xy1)− c(p1q, xy)− e(pq1, xy)

k(pq, xy) = −b(pq, x1y)− d(p1q, xy)− f(pq1, xy).

If h ≥ 1 and k = 0, there exist a in Wh−1,1, b in Wh+1,−1 and c, d, e, f
in Wh,0 such that, for pq in Xh and X1,

g(pq, xy) = a(pq1, xy) + c(pq, y) + d(pq, x)

h(pq, xy) = −a(p1q, xy) + e(pq, y) + f(pq, x)

and, for pq in Xh+1 and xy in X1,

j(pq, x) = b(pq, y)− c(p1q, x)− e(pq1, x)

k(pq, x) = −b(pq, x)− d(p1q, x)− f(pq1, x).
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If h = k = 0, there exist a in W−1,1, b in W1,−1 and c, d, e, f in W0,0

such that, for pq, xy in X1,

g(p, xy) = a(q, xy) + c(p, y) + d(p, x)

h(pq, xy) = −a(p, xy) + e(p, y) + f(p, x)

j(pq, x) = b(pq, y)− c(q, x)− e(p, x)

k(pq, x) = −b(pq, x)− d(q, x)− f(p, x).

We also state the results in degenerated cases.

Corollary 8.11. Let k ≥ 0, g, h be in Wk,0 and j be in Wk+1,−1.
Assume that, for pq in Xk+1 and x in X, we have

g(p1q, x) + h(pq1, x) + j(pq, x) = 0.

Then, if k ≥ 1, there exist a in Wk−1,0 and b, c in Wk,−1 such that,
for pq in Xk and x in X,

g(pq, x) = a(pq1, x) + b(pq, x)

h(pq, x) = −a(p1q, x) + c(pq, x)

and, for pq in Xk+1 and x in X,

j(pq, x) = −b(p1q, x)− c(pq1, x).

If k = 0, there exist a in W−1,0 and b, c in W0,−1 such that, for pq in
X1 and x in X,

g(p, x) = a(q, x) + b(pq, x)

h(pq, x) = −a(p, x) + c(pq, x)

j(pq, x) = −b(q, x)− c(p, x).

Proof. This is a direct consequence of Lemma 8.6. □

9. Tensors products of pseudofunctions

In this Section, we state and prove Proposition 9.3, which will be our
main tool for translating the result of Proposition 3.3 in the language
of pseudofunctions.

9.1. Sequences of tensors. We define the double weight of tensors,
which is obtained directly from the weight construction. We introduce
a notion of cohomological triviality for sequences of elements of Wh,k,
h, k ≥ 0, that is inspired by the language of Proposition 3.3. Then, we
state an analogue of Proposition 7.12.

For k ≥ 0 and v in Vk, we set v∨ to be the function ab 7→ v(ba) on
Xk. Let still ωk be the weight of pseudofunctions from Definition 6.1.
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Definition 9.1. For h, k ≥ 0, and H in Hh⊗Hk, we define the double
weight ϖh,k(H) as the element ωhHω

∨
k of Wh,k. In other words, for any

J in Hh, K in Hk, ab in Xh and xy in Xk, one has

ϖh,k(J ⊗K)(ab, xy) = ωh(J)(ab)ωk(K)(yx).

When h = k, we write ϖk for ϖk,k.

Definition 9.2. Let h, k ≥ 1. We say that a finitely supported se-
quence (wj)j≥1 in Wh,k is cohomologically trivial if there exist finitely
supported sequences (uj)j≥0 in Wh,k−1 and (vj)j≥0 in Wh−1,k such that,
for any j ≥ 1 and ab in Xh and xy in Xk, one has

wj(ab, xy) = uj(ab, x1y)− uj−1(ab, xy1) + vj(ab1, xy)− vj−1(a1b, xy).

The following statement is a tensor analogue of Proposition 7.12. Its
proof will last until the end of the Section.

Proposition 9.3. Let k ≥ 1 and (Hj)j≥1 be a finitely supported se-
quence of elements of ⊗2Hk. Assume that the sequence (ϖk(Hj))j≥1

is cohomologically trivial in Wk. Then, there exist finitely supported
sequences (Fj)j≥0 in Hk ⊗Hk−1 and (Gj)j≥0 in Hk−1 ⊗Hk such that,
for j ≥ 1, one has

Hj = F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1 if k is even

= F∨>
j − F>∨

j−1 +
>∨Gj − ∨>Gj−1 if k is odd.

Note that the converse is also true by Lemma 7.1.

9.2. Shortening the dependence. We will prove Proposition 9.3 by
following the same lines as for proving Proposition 7.12. In particular,
we will need the following analogue of Lemma 7.10:

Proposition 9.4. Let h′ ≥ h ≥ 1, k′ ≥ k ≥ 1 and (wj)j≥1 be a
finitely supported sequence in Wh,k. For j ≥ 1, ab in Xh′ and xy in
Xk′, set w

′
j(ab, xy) = wj(aah, yky). Assume that the sequence (w′

j)j≥1

is cohomologically trivial in Wh′,k′. Then, the sequence (wj)j≥1 is co-
homologically trivial in Wh,k.

This result will follow from several applications of Corollary 8.10 and
Corollary 8.11. We summarize them in the technical

Lemma 9.5. Let h ≥ 1, k ≥ 0 and (uj)j≥0 be a finitely supported
sequence in Wh,k. Assume that there exist a finitely supported sequence
(u′j)j≥1 in Wh,k−1 and finitely supported sequences (αj)j≥1, (βj)j≥1,
(γj)j≥1 and (δj)j≥1 in Wh−1,k such that, for any j ≥ 1, ab in Xh and
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xy in Xk, one has

uj(ab, xy) = u′j(ab, xy1) + αj(a1b, xy) + βj(ab1, xy)(9.1)

uj−1(ab, xy) = u′j(ab, x1y) + γj(a1b, xy) + δj(ab1, xy).

Then, there exist finitely supported sequences (φj)j≥1 in Wh−1,k and
(ψj)j≥1 in Wh−2,k such that, for any j ≥ 2, ab in Xh−1 and xy in Xk+1,
one has

αj(ab, x1y)− γj(ab, xy1) + βj−1(ab, x1y)− δj−1(ab, xy1) =

φj(ab, x1y)− φj−1(ab, xy1) + ψj(ab1, x1y)− ψj−1(a1b, x1y).

Note that, when h = 1 or k = 0, there is a slight abuse of notation in
(9.1) which should be understood by means of the language of Example
8.3.

Proof. We fix h ≥ 1 and we prove the result by induction on k ≥ 0.
For k = 0, (9.1) says that, for any j ≥ 1, ab in Xh and xy in X1, one

has

uj(ab, x) = u′j(ab, x) + αj(a1b, x) + βj(ab1, x)

uj−1(ab, x) = u′j(ab, y) + γj(a1b, x) + δj(ab1, x).

If j ≥ 2, we get

u′j−1(ab, x) + αj−1(a1b, x) + βj−1(ab1, x)

= u′j(ab, y) + γj(a1b, x) + δj(ab1, x).

Thus, Corollary 8.11 says that we may find vj in Wh−2,0 and α
′
j and β

′
j

in Wh−1,−1 such that, for ab in Xh−1 and x in X, one has

αj−1(ab, x)− γj(ab, x) = vj(ab1, x) + α′
j(ab, x)

βj−1(ab, x)− δj(ab, x) = −vj(a1b, x) + β′
j(ab, x).

If j is large, we assume vj = 0 and α′
j = β′

j = 0. For j ≥ 2, ab in Xh−1

and xy in X1, we get

(9.2) αj(ab, y)− γj(ab, x) + βj−1(ab, y)− δj−1(ab, x) =

γj+1(ab, y) + vj+1(ab1, y) + α′
j+1(ab, y)− γj(ab, x)

+ δj(ab, y)− vj(a1b, y) + β′
j(ab, y)− δj−1(ab, x).
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We define a finitely supported sequence (εj)j≥1 in Wh−1,−1 as follows.
For j ≥ 1, ab in Xh−1 and x in X, we set

εj(ab, x) = −
∑
i≥j+1

i−j even

(α′
i+1(ab, x) + β′

i(ab, x))

−
∑
i≥j+1

i−j odd

(α′
i+1(ab, y) + β′

i(ab, y)),

where y is any neighbour of x. Thus, for j ≥ 2, ab in Xh−1 and xy in
X1, we get

α′
j+1(ab, y) + β′

j(ab, y) = εj(ab, y)− εj−1(ab, x),

hence, from (9.2),

αj(ab, y)− γj(ab, x) + βj−1(ab, y)− δj−1(ab, x) =

γj+1(ab, y)− γj(ab, x) + δj(ab, y)− δj−1(ab, x)

+ vj+1(ab1, y)− vj(a1b, y) + εj(ab, y)− εj−1(ab, x)

and the conclusion follows by setting, for j ≥ 1 and x in X,

φj(ab, x) = γj+1(ab, x) + δj(ab, x) + εj(ab, x), ab ∈ Xh−1,

ψj(ab, x) = vj+1(ab, x), ab ∈ Xh−2.

We now deal with the case where k ≥ 1. To avoid using the same
abuse of notation as in the statement, we separate the cases k = 1 and
k ≥ 2.

For k = 1, (9.1) says that, for any j ≥ 1, ab in Xh and xy in X1, one
has

uj(ab, xy) = u′j(ab, x) + αj(a1b, xy) + βj(ab1, xy)

uj−1(ab, xy) = u′j(ab, y) + γj(a1b, xy) + δj(ab1, xy).

If j ≥ 2, we get

u′j−1(ab, x) + αj−1(a1b, xy) + βj−1(ab1, xy)

= u′j(ab, y) + γj(a1b, xy) + δj(ab1, xy).

Thus, Corollary 8.10 says that we may find u′′j in Wh,−1, vj in Wh−2,1

and α′
j, β

′
j, γ

′
j, δ

′
j in Wh−1,0 such that, for ab in Xh−1 and xy in X1, one

has

αj−1(ab, xy)− γj(ab, xy) = vj(ab1, xy) + α′
j(ab, y)− γ′j(ab, x)(9.3)

βj−1(ab, xy)− δj(ab, xy) = −vj(a1b, xy) + β′
j(ab, y)− δ′j(ab, x)
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and, for ab in Xh and xy in X1, one has

u′j(ab, x) = u′′j (ab, x) + α′
j(a1b, x) + β′

j(ab1, x)

u′j−1(ab, x) = u′′j (ab, y) + γ′j(a1b, x) + δ′j(ab1, x).

If j is large, we assume u′′j = 0, vj = 0 and α′
j = β′

j = γ′j = δ′j = 0.
Then, in view of the first case, we may find finitely supported sequences
(φ′

j)j≥1 in Wh−1,0 and (ψ′
j)j≥1 in Wh−2,0 such that, for any j ≥ 2, ab in

Xh−1 and xy in X1, one has

α′
j(ab, y)− γ′j(ab, x) + β′

j−1(ab, y)− δ′j−1(ab, x) =

φ′
j(ab, y)− φ′

j−1(ab, x) + ψ′
j(ab1, y)− ψ′

j−1(a1b, y).

Besides, for j ≥ 2, ab in Xh−1 and xy in X2, we get, from (9.3),

αj(ab, x1y)− γj(ab, xy1) + βj−1(ab, x1y)− δj−1(ab, xy1) =

γj+1(ab, x1y) + vj+1(ab1, x1y) + α′
j+1(ab, y)− γ′j+1(ab, x1)− γj(ab, xy1)

+ δj(ab, x1y)− vj(a1b, x1y) + β′
j(ab, y)− δ′j(ab, x1)− δj−1(ab, xy1).

The conclusion follows by setting, for j ≥ 1 and xy in X1,

φj(ab, xy) = γj+1(ab, xy) + δj(ab, xy) + φ′
j+1(ab, y), ab ∈ Xh−1,

ψj(ab, xy) = vj+1(ab, xy) + ψ′
j+1(ab, y), ab ∈ Xh−2.

Now, we assume that k ≥ 2 and the result holds for k − 1. Let
us show that it also holds for k. This is analogous to the case above.
Indeed, (9.1) says that, for any j ≥ 1, ab in Xh and xy in Xk, one has

uj(ab, xy) = u′j(ab, xy1) + αj(a1b, xy) + βj(ab1, xy)

uj−1(ab, xy) = u′j(ab, x1y) + γj(a1b, xy) + δj(ab1, xy).

If j ≥ 2, we get

u′j−1(ab, xy1) + αj−1(a1b, xy) + βj−1(ab1, xy)

= u′j(ab, x1y) + γj(a1b, xy) + δj(ab1, xy).

Thus, Corollary 8.11 says that we may find u′′j in Wh,k−2, vj in Wh−2,k

and α′
j, β

′
j, γ

′
j, δ

′
j in Wh−1,k−1 such that, for ab in Xh−1 and xy in Xk,

one has

αj−1(ab, xy)− γj(ab, xy) = vj(ab1, xy) + α′
j(ab, x1y)− γ′j(ab, xy1)

(9.4)

βj−1(ab, xy)− δj(ab, xy) = −vj(a1b, xy) + β′
j(ab, x1y)− δ′j(ab, xy1)
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and, for ab in Xh and xy in Xk−1, one has

u′j(ab, xy) = u′′j (ab, xy1) + α′
j(a1b, xy) + β′

j(ab1, xy)

u′j−1(ab, xy) = u′′j (ab, x1y) + γ′j(a1b, xy) + δ′j(ab1, xy).

If j is large, we assume u′′j = 0, vj = 0 and α′
j = β′

j = γ′j = δ′j =
0. Then, in view of the induction assumption, we may find finitely
supported sequences (φ′

j)j≥1 in Wh−1,k−1 and (ψ′
j)j≥1 in Wh−2,k−1 such

that, for any j ≥ 2, ab in Xh−1 and xy in Xk, one has

α′
j(ab, x1y)− γ′j(ab, xy1) + β′

j−1(ab, x1y)− δ′j−1(ab, xy1) =

φ′
j(ab, x1y)− φ′

j−1(ab, xy1) + ψ′
j(ab1, x1y)− ψ′

j−1(a1b, x1y).

Besides, for j ≥ 2, ab in Xh−1 and xy in Xk+1, we get, from (9.4),

αj(ab, x1y)− γj(ab, xy1) + βj−1(ab, x1y)− δj−1(ab, xy1) =

γj+1(ab, x1y)+vj+1(ab1, x1y)+α
′
j+1(a1b, x2y)−γ′j+1(ab, x1y1)−γj(ab, xy1)

+δj(ab, x1y)−vj(a1b, x1y)+β′
j(ab, x2y)−δ′j(ab, x1y1)−δj−1(ab, xy1).

The conclusion follows by setting, for j ≥ 1 and xy in Xk,

φj(ab, xy) = γj+1(ab, xy) + δj(ab, xy) + φ′
j+1(ab, x1y), ab ∈ Xh−1,

ψj(ab, xy) = vj+1(ab, xy) + ψ′
j+1(ab, x1y), ab ∈ Xh−2.

□

Proof of Proposition 9.4. We first deal with the case where h′ = h+ 1
and k′ = k. Then, by Definition 9.2 and the assumption, there exists
finitely supported sequences (uj)j≥0 in Wh+1,k−1 and (vj)j≥0 in Wh,k

such that, for any j ≥ 1, ab in Xh+1 and xy in Xk, one has

wj(ab1, xy) = uj(ab, x1y)− uj−1(ab, xy1) + vj(ab1, xy)− vj−1(a1b, xy).

Then, Corollary 8.10 says that we may find αj inWh−1,k, βj inWh+1,k−2

and γj, δj, εj, ζj in Wh,k−1 such that, for ab in Xh and xy in Xk,

vj−1(ab, xy) = αj(ab1, xy) + γj(ab, x1y) + δj(ab, xy1)(9.5)

wj(ab, xy)− vj(ab, xy) = −αj(a1b, xy) + εj(ab, x1y) + ζj(ab, xy1)

and, for ab in Xh+1 and xy in Xk−1,

−uj(ab, xy) = βj(ab, xy1)− γj(a1b, xy)− εj(ab1, xy)

uj−1(ab, xy) = −βj(ab, x1y)− δj(a1b, xy)− ζj(ab1, xy).

By Lemma 9.4, the latter tells us that we may find finitely supported
sequences (φj)j≥1 in Wh,k−1 and (ψj)j≥1 in Wh−1,k−1 such that, for any
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j ≥ 2, ab in Xh and xy in Xk, one has

(9.6) γj(ab, x1y) + δj(ab, xy1) + εj−1(ab, x1y) + ζj−1(ab, xy1) =

φj(ab, x1y)− φj−1(ab, xy1) + ψj(ab1, x1y)− ψj−1(a1b, x1y).

Besides, by using (9.5), we get, for j ≥ 1,

wj(ab, xy) = αj+1(ab1, xy) + γj+1(ab, x1y) + δj+1(ab, xy1)

− αj(a1b, xy) + εj(ab, x1y) + ζj(ab, xy1).

By using (9.6), this gives

wj(ab, xy) = αj+1(ab1, xy)−αj(a1b, xy) +φj+1(ab, x1y)−φj(ab, xy1)

+ ψj+1(ab1, x1y)− ψj(a1b, x1y)

as required.
Now, we can obtain the case where h′ = h and k′ = k + 1 by sym-

metry. Indeed, in view of Definition 9.2, a sequence (wj)j≥1 in Wh,k is
cohomologically trivial if and only if the sequence of functions in Wk,h

(ab, xy) 7→ wj(yx, ba), j ≥ 1,

is cohomologically trivial. The general case follows by an easy induc-
tion. □

9.3. Splitting sequences. We pursue the proof of Proposition 9.3 by
proving an intermediate result, which will play the role of Lemma 7.13
in the proof of Proposition 7.12.

To state it, we introduce notation. For i ≥ 0 an integer, we set
r(i) = 0 if i = 0, r(i) = 1 if i = 1 and r(i) = 2(i − 1) if i ≥ 1. As
in Section III.2.2, if H is a pseudofunction we write H+ for H>∨. The
purpose of this Subsection is to establish the following

Lemma 9.6. Let k ≥ 4 be an even integer, k = 2ℓ, ℓ ≥ 2. Suppose, for
any 0 ≤ i ≤ ℓ+ 1, we are given a finitely supported sequence (Hi,j)j≥1

in Hr(ℓ+1−i) ⊗Hr(i). For j ≥ 1, we set

Hj = H+k

0,j + +2

H1,j
+k−1

+
ℓ−1∑
i=2

+2i

Hi,j
+k−2(i−1)

+ +k−1

Hℓ,j
+2

+ +k

Hℓ+1,j,

which is an element of ⊗2Hk. Assume that the sequence (ϖ(Hj))j≥1

is cohomologically trivial in Wk. Then, for any 0 ≤ i ≤ h, there exist
finitely supported sequences (Di,j)j≥1 and (Ei,j)j≥1 in Hr(ℓ+1−i)−1⊗Hr(i)

and (Fi,j)j≥1 and (Gi,j)j≥1 in Hr(ℓ+1−i) ⊗Hr(i)−1 such that, for j ≥ 1,
one has

Hi,j =
>Di,j +

∨>Ei,j + F>
i,j +G>∨

i,j .
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To prove this, we will aim at applying the tensor version of the
criterion of Lemma 7.8. To this purpose, we introduce the notion of a
split element of Wh,k for h, k ≥ 0 (see Subsection I.8.7 and Subsection
7.3 for the notion of a split elements of Vk, k ≥ 0). In the language of
Example 8.3, we say that an element u in Wh,k is split if it belongs to
LWh−1,k+RWh−1,k+Wh,k−1L+Wh,k−1R. More concretely, for example,
if h, k ≥ 1, this means that there exists v0, v1 in Wh−1,k and w0, w1 in
Wh,k−1 such that, for ab in Xh and xy in Xk,

u(ab, xy) = v0(ab1, xy) + v1(a1b, xy) + w0(ab, xy1) + w1(ab, x1y).

If h = 0 and k ≥ 1, this means that there exists v in W−1,k and w0, w1

in W0,k−1 such that, for ab in Xh and xy in Xk,

u(a, xy) = v(a, xy) + w0(a, xy1) + w1(a, x1y).

To study triangular families of tensors as in Lemma 9.6, we shall use

Lemma 9.7. Let k ≥ 1 and, for 0 ≤ i ≤ k, let (wi,j)j≥1 be a finitely
supported sequence in Wk−i,i. For j ≥ 1 and ab, xy in Xk, we set

wj(ab, xy) =
k∑

i=0

wi,j(aak−i, yiy).

Assume that the sequence (wj)j≥1 is cohomologically trivial in Wk.
Then, for every j ≥ 1 and 0 ≤ i ≤ k, the function wi,j is split in
Wk−i,i.

Proof. Let 0 ≤ h ≤ k+1 be the least integer such that, for all h ≤ i ≤ k,
for all j ≥ 1, wi,j = 0. We will show the statement by induction on h.
For h = 0, there is nothing to prove.

Assume h = 1. By assumption, the sequence of functions in Wk,k,

(ab, xy) 7→ w0,j(ab, y), j ≥ 1,

is cohomologically trivial. By Propositon 9.4, the sequence (w0,j)j≥1

is cohomologically trivial in Wk,0. In other words, by Definition 9.2,
there exist finitely supported sequences (uj)j≥0 in Wk,−1 and (vj)j≥0 in
Wk−1,0 such that, for any j ≥ 1, ab in Xk and xy in X1, one has

w0,j(ab, y) = uj(ab, y)− uj−1(ab, x) + vj(ab1, y)− vj−1(a1b, y).

Thus w0,j is split in Wk,0 as required.
Assume h ≥ 2 and the result is true for h − 1. By assumption, the

sequence of functions in Wk,k,

(ab, xy) 7→
h−1∑
i=0

wi,j(aak−i, yiy), j ≥ 1,
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is cohomologically trivial. By Definition 9.2 and Propositon 9.4, there
exist finitely supported sequences (uj)j≥0 in Wk,h−2 and (vj)j≥0 in
Wk−1,h−1 such that, for any j ≥ 1, ab in Xk and xy in Xh−1, one
has

(9.7)
h−1∑
i=0

wi,j(aak−i, yiy) =

uj(ab, x1y)− uj−1(ab, xy1) + vj(ab1, xy)− vj−1(a1b, xy).

We temporarily consider each wi,j, 0 ≤ i ≤ h− 1, as a function from
Xk−i towards Vi. From (9.7), we get, for ab in Xk,

wh−1,j(aak−h+1)− vj(ab1) + vj−1(a1b) ∈ LVh−2 +RVh−2

(where we have used the notation of Example 8.3). Thus, Lemma
7.10 and Lemma 8.4 say that there exist a finitely supported sequence
(v′j)j≥0 in Wk−h,h−1 such that for any j ≥ 1 and ab in Xk−h+1, one has

wh−1,j(ab)− v′j(ab1) + v′j−1(a1b) ∈ LVh−2 +RVh−2.

In other words, there exist finitely supported sequences (αj)j≥1 and
(βj)j≥1 in Wk−h+1,h−2 such that, for j ≥ 1, ab in Xk−h+1 and xy in
Xh−1, one has

wh−1,j(ab, xy) = v′j(ab1, xy)− v′j−1(a1b, xy) + αj(ab, xy1) + βj(ab, x1y)

and the function wh−1,j is split in Wk−h+1,h−1.
Besides, we set γj = αj+1+βj and we rewrite the latter as, for j ≥ 1,

ab in Xk−h+1 and xy in Xh−1,

wh−1,j(ab, xy) = v′j(ab1, xy)−v′j−1(a1b, xy)+αj(ab, xy1)−αj+1(ab, x1y)

+ γj(ab, x1y).

From (9.7), we get, for j ≥ 1 and ab, xy in Xk,

h−2∑
i=0

wi,j(aak−i, yiy) + γj(aak−h+1, yh−2y) = uj(ab, yh−2y)

− uj−1(ab, yh−1y1) + vj(ab1, yh−1y)− vj−1(a1b, yh−1y)

− v′j(aak−h, yh−1y) + v′j−1(a1ak−h+1, yh−1y)− αj(aak−h+1, yh−1y1)

+ αj+1(aak−h+1, yh−2y),

so that the sequence in Wk,k,

(ab, xy) 7→
h−2∑
i=0

wi,j(aak−i, yiy) + γj(aak−h+1, yh−2y), j ≥ 1,
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is cohomologically trivial. From the induction assumption, it follows
that the functions wh−2,j + γjR and wi,j, 0 ≤ i ≤ h− 3 are split. The
conclusion follows. □

To compute the weights of large orthogonal extensions, we shall use

Lemma 9.8. Let k ≥ 0 and H be in Hk. Fix h ≥ 0 even.
If k is even, for ab in Xh+k, we have

ωh+k

(
H+h

)
(ab) = ωk(H)(abh).

If k is odd, for ab in Xh+k+1, we have

ωh+k+1

(
H+h+1

)
(ab) = ωk(H

∨)(abh+1).

Proof. This is a direct consequence of Lemma 7.1. □

We now define the tensor squares of the objects introduced in Sub-
section 7.5. There, given k ≥ 2 even, k = 2ℓ, ℓ ≥ 1, and a complete
k-pseudofunction H, we have defined functions ρik(H) on Xℓ−i+1 for
any 0 ≤ i ≤ ℓ− 1.
Now, for k,m ≥ 2 even, k = 2ℓ, ℓ ≥ 1, m = 2n, n ≥ 1, 0 ≤ h ≤ ℓ− 1

and 0 ≤ i ≤ n− 1, we let σh,i
k,m : H̃k ⊗H̃m → Wℓ−h+1,n−i+1 be the linear

map such that, for H in H̃k, J in H̃m, ab in Xℓ−h+1 and xy in Xn−i+1,
one has

σh,i
k,m(H ⊗ J)(ab, xy) = ρhk(H)(ab)ρim(H)(yx).

From (7.4) and Definition 9.1, we get, for H in H̃k ⊗H̃m, ab in Xk and
xy in Xm,

(9.8) ϖk,m(H)(ab, xy) =
∑

0≤h≤ℓ−1
0≤i≤n−1

σh,i
k,m(H)(a2haℓ+h+1, yn+i+1y2i).

As in the proof of Lemma 7.13, this yields

Lemma 9.9. Let k,m ≥ 2 be even, k = 2ℓ, ℓ ≥ 1, m = 2n, n ≥ 1. Let

(Hj)j≥1 be a finitely supported sequence in H̃k ⊗ H̃m. For j ≥ 1, ab in
Xk and xy in Xm, set

wj(ab, xy) =
∑

0≤h≤ℓ−1
0≤i≤n−1

σh,i
k,m(Hh+i+j)(ahaℓ+1, yn+1yi)−ϖk,m(H)(ab, xy).

Then, the sequence (wj)j≥1 is cohomologically trivial in Wk,m.
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Proof. This is a direct computation. Indeed, by (9.8), for j ≥ 1, we
have, for ab in Xk and xy in Xm,∑

0≤h≤ℓ−1
0≤i≤n−1

σh,i
k,m(Hh+i+j)(ahaℓ+1, yn+1yi)−ϖk,m(H)(ab, xy) =

∑
0≤h≤ℓ−1
0≤i≤n−1

σh,i
k,m(Hh+i+j)(ahaℓ+1, yℓ+1yi)−σh,i

k,m(Hj)(a2haℓ+h+1, yn+i+1y2i).

For h, i as above, we write

σh,i
k,m(Hh+i+j)(ahaℓ+1, yn+1yi)− σh,i

k,m(Hj)(a2haℓ+h+1, yn+i+1y2i) =

h−1∑
p=0

σh,i
k,m(Hh+i+j−p)(ah+paℓ+p+1, yn+1yi)−σh,i

k,m(Hh+i+j−p−1)(ah+p+1aℓ+p+2, yn+1yi)

+
i−1∑
q=0

σh,i
k,m(Hi+j−q)(a2haℓ+h+1, yn+q+1yi+q)−σh,i

k,m(Hi+j−q−1)(a2haℓ+h+1, yn+q+2yi+q+1).

The conclusion follows by Definition 9.2. □

We will need an adapted version of Lemma 9.9 to deal with the
boundary terms appearing in Lemma 9.6.

For k ≥ 2, k = 2ℓ, ℓ ≥ 1, 0 ≤ i ≤ ℓ − 1, and m ∈ {0, 1}, we let

θik,m : H̃k ⊗ Hm → Wℓ+1−i,m and θim,k : Hm ⊗ H̃k → Wm,ℓ+1−i be the

linear maps defined by, for H in H̃k, J in Hm, ab in Xℓ+1−i,

θik,m(H ⊗ J)(ab, xy) = ρik(H)(ab)ωm(J)(xy) = θim,k(J ⊗H)(xy, ab).

If H is in H̃k ⊗Hm, from (7.4), we now get, for ab in Xk and xy in
Xm,

ϖk,m(H)(ab, xy) =
ℓ−1∑
i=0

θik,m(a2iaℓ+i+1, xy),

which, as above, yields

Lemma 9.10. Let k ≥ 2 be even, k = 2ℓ, ℓ ≥ 1, and m be in {0, 1}.
Let (Hj)j≥1 be a finitely supported sequence in H̃k ⊗Hm. There exists
a finitely supported sequence (vj)j≥0 in Wk−1,m such that, for any j ≥ 1
and ab in Xk and xy in Xm, one has

ℓ−1∑
i=0

θik,m(Hi+j)(aiaℓ+1, xy)−ϖk,m(H)(ab, xy) =

vj(ab1, xy)− vj−1(a1b, xy).
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Finally, we will need to complete the information given by Lemma
7.8 in case k = 0, 1.

Lemma 9.11. Let H be in H0. Then ω0(H) is split in V0 if and only
if there exists G in H−1 with H = G>.

Let H be in H1. Then ω1(H) is split in V1 if and only if there exists
F,G in H−1 with H = F> +G>∨.

Proof. Recall the conventions on pseudofunctions with low degree from
Subsection III.2.1 and Subsection III.2.2. If H in H0, then H is the 0-
pseudofunction associated with the function ω0(H) on X0. Then saying
that H is in H>

−1 is saying that ω0(H) is constant on neighbours.
IfH is inH1 andH = F>+G>∨ for F,G inH0, then ω1(H) is split by

Lemma 7.1. Conversely, let u, v be in V0 with ω1(H)(ab) = u(a)+v(b),
ab ∈ X1. Then, still by Lemma 7.1, we have H = F> −G>∨, where F
and G are the 0-pseudofunctions associated with u and v. □

We can now conclude the

Proof of Lemma 9.6. By Lemma 9.8, for j ≥ 1 and ab, xy in Xk, we
have

ϖk(Hj)(ab, xy) = ϖk,0(H0,j)(ab, y) +ϖk−2,1(H
∨
1,j)(ab2, y1y)

+
ℓ−1∑
i=2

ϖ2(ℓ−i),2(i−1)(Hi,j)(ab2i, x2(ℓ−i+1)y) +ϖ1,k−2(
∨Hℓ,j)(aa1, x2y)

+ϖ0,k(Hℓ+1,j)(a, xy).

By Lemma 7.5, we can assume that, for j ≥ 1, we have

H0,j ∈ H̃k ⊗H0

H1,j ∈ H̃k−2 ⊗H1

Hi,j ∈ H̃k−2i ⊗ H̃k−2(i−1) 2 ≤ i ≤ ℓ− 1

Hℓ,j ∈ H1 ⊗ H̃k−2

Hℓ+1,j ∈ H0 ⊗ H̃k.

By the assumption, Proposition 9.4, Lemma 9.7 and Lemma 9.10, we
can find finitely supported sequences (wi,j)j≥1 inWℓ+1−i,i, 0 ≤ i ≤ ℓ+1,
such that, on one hand, the sequence in Wℓ+1,ℓ+1,

(ab, xy) 7→
ℓ+1∑
i=0

wj(abi, xℓ+1−iy), j ≥ 1,
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is cohomologically trivial and, on the other hand, for j ≥ 1, the func-
tions

θ0k,0(H0,j)− w0,j i = 0

θ0k−2,1(H
∨
1,j)− w1,j i = 1

σ0
2(ℓ−i),2(i−1)(Hi,j)− wi,j 2 ≤ i ≤ ℓ− 1(9.9)

θ01,k−2(
∨Hℓ,j)− wℓ,j i = ℓ

θ00,k(Hℓ+1,j)− wℓ+1,j i = ℓ+ 1

are split in Wℓ+1−i,i for all 0 ≤ i ≤ ℓ+1. Therefore, by Lemma 9.7, for
any 0 ≤ i ≤ ℓ+1, the function wi,j is split in Wℓ+1−i,i. The conclusion
follows by Lemma 7.8, Lemma 9.11 and (9.9). □

9.4. Triangular sequences. In this final Subsection, we will use the
previous constructions to prove Proposition 9.3. We will split it into
several steps, which will eventually allow us to reduce the question to
the study of sequences of the form appearing in Lemma 9.6.

In the first step, we show

Lemma 9.12. Let k ≥ 4 be even, k = 2ℓ, ℓ ≥ 2, and (Hj)j≥1

be a finitely supported sequence in ⊗2Hk. Assume that the sequence
(ϖk(Hj))j≥1 is cohomologically trivial in Wk. Then, there exist finitely
supported sequences (Fj)j≥0 in Hk ⊗Hk−1, (Gj)j≥0 in Hk−1⊗Hk, and,
for 0 ≤ i ≤ ℓ− 1, (Hi,j)j≥1 in Hk−2i⊗H2(i+1) such that, for j ≥ 1, one
has

Hj =
ℓ−1∑
i=0

+2i

Hi,j
+2(ℓ−i−1)

+ F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1.

In the course of the proof, we shall need some easy properties of the
natural operations on pseudofunctions.

Lemma 9.13. Let h ≥ 0 and k ≥ −1.
If k is odd, for any H in Hk, we have

(H>∨)+
2h

= (H+2h

)>∨ and (H∨>)+
2h

= (H+2h

)∨>.

If k = 0, for any H in H0, we have

(H>∨)+
2h+1

= (H+2h+1

)>∨ and (H∨>)+
2h+1

= (H+2h+1

)∨>.

Proof. In both cases, the first equality is obvious since by definition
H+ = H>∨.

Assume first k is odd. Then, using Lemma III.2.6 and the fact that
H∨∨ = H, we get

H∨>++ = H∨>>∨>∨ = H>>>∨ = H>∨>> = H>∨>∨∨> = H++∨>.
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The conclusion follows by a straightforward induction.
Assume now k = 0. Then, by definition, we have H∨ = −H. Using

again Lemma III.2.6, we get

H∨>+ = −H>>∨ = −H∨>> = H>> = H>∨∨> = H+∨>.

The conclusion follows by the first case. □

Proof of Lemma 9.12. We will actually prove by induction on 0 ≤ h ≤
ℓ−1 that there exist finitely supported sequences (Fj)j≥0 in Hk⊗Hk−1,
(Gj)j≥0 in Hk−1⊗Hk, and, for 0 ≤ i ≤ h, (Hi,j)j≥1 in Hk−2i⊗Hk−2(h−i)

such that, for j ≥ 1, one has

(9.10) Hj =
h∑

i=0

+2i

Hi,j
+2(h−i)

+ F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1.

For h = 0, there is nothing to prove. Assume 0 ≤ h ≤ ℓ− 2 and (9.10)
holds for h. Let us show that it also holds for h+ 1.

We write k′ = 2(k − h+ 1) and we will apply Lemma 9.6 in ⊗2Hk′ .
Indeed, for j ≥ 1, we set

H ′
j =

h∑
i=0

+2i

Hi,j
+2(h−i)

.

Then, Lemma 7.1, (9.10) and the assumption imply that the sequence
(ϖk(H

′
j))j≥1 is cohomologically trivial in Wk. Therefore, if we now set,

H ′′
j =

+k−2h+2

(H ′
j)

+k−2h+2

=
h∑

i=0

+k−2(h−i−1)

Hi,j
+k−2(i−1)

,

then, by Lemma 9.8, the sequence (ϖk′(H
′′
j ))j≥1 is cohomologically triv-

ial in Wk′ . Thus, the assumption of Lemma 9.6 is satisfied. Hence,
for 0 ≤ i ≤ h, we may find finitely supported sequences (Ji,j)j≥1

and (Ki,j)j≥1 in Hk−2i ⊗ Hk−2(h−i)−1 and (Li,j)j≥1 and (Mi,j)j≥1 in
Hk−2i−1 ⊗Hk−2(h−i) such that, for j ≥ 1, one has

Hi,j = J>
i,j +K>∨

i,j + >Li,j +
∨>Mi,j

= N∨>∨
i,j + ∨>∨Pi,j + J>

i,j − J∨>∨
i,j+1 +

>Li,j − ∨>∨Li,j+1,

where Ni,j = K∨
i,j + Ji,j+1 and Pi,j =

∨Mi,j + Li,j+1.
Note that, since h ≤ ℓ− 2, for 0 ≤ i ≤ h, we have

k − 2i− 1 ≥ k − 2h− 1 ≥ 3.

Therefore, by Lemma 7.8 and Lemma 8.4, we can find finitely supported
sequences (Ui,j)j≥1 and (Vi,j)j≥1 in Hk−2i ⊗ Hk−2(h−i)−2 and (Wi,j)j≥1
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and (Xi,j)j≥1 in Hk−2i−2 ⊗Hk−2(h−i) with, for j ≥ 1,

Ni,j = U>
i,j + V >∨

i,j = Y >
i,j + V >∨

i,j − V ∨>
i,j+1(9.11)

Pi,j =
>Wi,j +

∨>Xi,j =
>Zi,j +

∨>Xi,j − >∨Xi,j+1,

with Yi,j = Ui,j + V ∨
i,j+1 and Zi,j = Wi,j +

∨Xi,j+1. For j ≥ 0, we set

Ai,j = −J∨
i,j+1 − V ∨>∨

i,j+1 and Bi,j = − ∨Li,j+1 − ∨>∨Xi,j+1 and we get, by
using Lemma III.2.6, for j ≥ 1,

Hi,j = Y ++
i,j + ++Zi,j + A>∨

i,j − A∨>
i,j−1 +

∨>Bi,j − >∨Bi,j−1.

Plugging this into (9.10) and using Lemma 9.13 yields, for j ≥ 1,

Hj = Y +2(h+1)

0,j +
h∑

i=1

+2i

(Zi−1,j + Yi,j)
+2(h+1−i)

+ +2(h+1)

Zh,j

+ C>∨
j − C∨>

j−1 +
∨>Dj − >∨Dj−1.

with, for j ≥ 0,

Cj =
h∑

i=0

+2i

Ai,j
+2(h−i)

+ Fj and Dj =
h∑

i=0

+2i

Bi,j
+2(h−i)

+Gj.

Thus, (9.10) holds also for h+ 1 and we are done. □

By using the same method, we can go one step further, but we have to
take into account the fact that H1 is in general not equal to H>

0 +H>∨
0 .

Corollary 9.14. Let k ≥ 4 be even, k = 2ℓ, ℓ ≥ 2, and (Hj)j≥1

be a finitely supported sequence in ⊗2Hk. Assume that the sequence
(ϖk(Hj))j≥1 is cohomologically trivial in Wk. Then, there exist finitely
supported sequences (Fj)j≥0 in Hk ⊗ Hk−1, (Gj)j≥0 in Hk−1 ⊗ Hk,
(H0,j)j≥1 in Hk ⊗ H1, (Hℓ,j)j≥1 in H1 ⊗ Hk and, for 1 ≤ i ≤ ℓ − 1,
(Hi,j)j≥1 in Hk−2i ⊗H2i such that, for j ≥ 1, one has
(9.12)

Hj = H+k−1

0,j +
ℓ−1∑
i=1

+2i

Hi,j
+k−2i

++k−1

Hℓ,j+F
>∨
j −F∨>

j−1+
∨>Gj−>∨Gj−1.

Proof. By Lemma 9.12, we get, for j ≥ 1,

(9.13) Hj =
ℓ−1∑
i=0

+2i

Hi,j
+k−2(i+1)

+ F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1,

where (Fj)j≥0 is a sequence in Hk ⊗ Hk−1, (Gj)j≥0 is a sequence in
Hk−1 ⊗Hk, and, for 0 ≤ i ≤ ℓ − 1, (Hi,j)j≥1 is a sequence in Hk−2i ⊗
H2(i+1).
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We apply the same procedure as in the proof of Lemma 9.12 by using
Lemma 9.6 in ⊗2Hk+4. We keep the same notation. The only difference
is that for j ≥ 1 and i = 0, the tensor N0,j belongs to Hk ⊗ H1 and
that, for i = ℓ − 1, the tensor Pℓ−1,j belongs to H1 ⊗ Hk. Therefore,
we can not apply Lemma 7.8 in order to split them as in (9.11). Thus,
the elements Yi,j and Vi,j are only defined for 1 ≤ i ≤ ℓ−1 and the Zi,j

and Xi,j are only defined for 0 ≤ i ≤ ℓ− 2.
We now get, for j ≥ 1,

H0,j = N∨>∨
0,j + ++Z0,j + J>

0,j − J∨>∨
0,j+1 +

∨>B0,j − >∨B0,j−1

Hℓ−1,j = Y ++
ℓ−1,j +

∨>∨Pℓ−1,j + A>∨
ℓ−1,j − A∨>

ℓ−1,j−1 +
>Lℓ−1,j − ∨>∨Lℓ−1,j+1

and, for 1 ≤ i ≤ ℓ− 2,

Hi,j = Y ++
i,j + ++Zi,j + A>∨

i,j − A∨>
i,j−1 +

∨>Bi,j − >∨Bi,j−1.

Using this in (9.13) and applying Lemma 9.13 gives, for j ≥ 1,

Hj = N∨+k−1

0,j +
ℓ−1∑
i=1

+2i

(Zi−1,j + Yi,j)
+k−2i

+ +k−1∨Pℓ−1,j

+ C>∨
j − C∨>

j−1 +
∨>Dj − >∨Dj−1.

with, for j ≥ 0,

Cj = −J∨+k−2

0,j+1 +
ℓ−1∑
i=1

+2i

Ai,j
+k−2(i+1)

+ Fj

and Dj =
ℓ−2∑
i=0

+2i

Bi,j
+k−2(i+1) − +k−2∨Lℓ−1,j+1 +Gj.

Thus, (9.12) holds as required. □

In the same way, we can get a last step. Recall that we write r(0) = 0,
r(1) = 1 and r(i) = 2(i− 1) for i ≥ 2.

Corollary 9.15. Let k ≥ 4 be even, k = 2ℓ, ℓ ≥ 2, and (Hj)j≥1

be a finitely supported sequence in ⊗2Hk. Assume that the sequence
(ϖk(Hj))j≥1 is cohomologically trivial in Wk. Then, there exists finitely
supported sequences (Fj)j≥0 in Hk ⊗Hk−1, (Gj)j≥0 in Hk−1 ⊗Hk and,
for 0 ≤ i ≤ ℓ + 1, (Hi,j)j≥1 in Hr(ℓ+1−i) ⊗ Hr(i) such that, for j ≥ 1,
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one has

(9.14)

Hj = H+k

0,j + +2

H1,j
+k−1

+
ℓ−1∑
i=2

+2i

Hi,j
+k−2(i−1)

+ +k−1

Hℓ,j
+2

+ +k

Hℓ+1,j

+ F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1.

Proof. We start with the decomposition (9.12) given by Corollary 9.15.
Again, we apply the induction procedure of the proof of Lemma 9.12
which now relies on the use of Lemma 9.6 in ⊗2Hk+2. We keep the
same notation, so that we first write, for j ≥ 1 and 0 ≤ i ≤ ℓ,

Hi,j = N∨>∨
i,j + ∨>∨Pi,j + J>

i,j − J∨>∨
i,j+1 +

>Li,j − ∨>∨Li,j+1,

where

N0,j, J0,j ∈ Hk ⊗H0 P0,j, L0,j ∈ Hk−1 ⊗H1

Ni,j, Ji,j ∈ Hk−2i ⊗H2i−1 Pi,j, Li,j ∈ Hk−2i−1 ⊗H2i 1 ≤ i ≤ ℓ− 1

Nℓ,j, Jℓ,j ∈ H1 ⊗Hk−1 Pℓ,j, Lℓ,j ∈ H0 ⊗Hk.

Now, the tensors Yi,j and Vi,j may be defined for 2 ≤ i ≤ ℓ and the
tensors Zi,j and Xi,j may be defined defined for 0 ≤ i ≤ ℓ− 2.
If ℓ ≥ 3, we get, for ϵ ∈ {0, 1},

Hϵ,j = N∨>∨
ϵ,j + ++Zϵ,j + J>

ϵ,j − J∨>∨
ϵ,j+1 +

∨>Bϵ,j − >∨Bϵ,j−1

Hℓ−ϵ,j = Y ++
ℓ−ϵ,j +

∨>∨Pℓ−ϵ,j + A>∨
ℓ−ϵ,j − A∨>

ℓ−ϵ,j−1 +
>Li,j − ∨>∨Li,j+1

and, for 2 ≤ i ≤ ℓ− 2,

Hi,j = Y ++
i,j + ++Zi,j + A>∨

i,j − A∨>
i,j−1 +

∨>Bi,j − >∨Bi,j−1.

If ℓ = 2, we have

H0,j = N∨>∨
0,j + ++Z0,j + J>

0,j − J∨>∨
0,j+1 +

∨>B0,j − >∨B0,j−1

H1,j = N∨>∨
1,j + ∨>∨P1,j + J>

1,j − J∨>∨
1,j+1 +

>L1,j − ∨>∨L1,j+1

H2,j = Y ++
2,j + ∨>∨P2,j + A>∨

2,j − A∨>
2,j−1 +

>L2,j − ∨>∨L2,j+1

In both cases, using this in (9.12) and applying Lemma 9.13 gives, for
j ≥ 1,

Hj = N∨+k

0,j +
+2

(Z0,j +N∨
1,j)

+k−1

+
ℓ−1∑
i=2

+2i

(Zi−1,j + Yi,j)
+k−2(i−1)

+
+k−1

(∨Pℓ−1,j + Yℓ,j)
+2

+ +k∨Pℓ,j + C>∨
j − C∨>

j−1

+ ∨>Dj − >∨Dj−1.
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with, for j ≥ 0,

Cj = −J∨+k−1

0,j+1 − +2

J1,j+1
∨+k−2

+
ℓ−1∑
i=2

+2i

Ai,j
+k−2i

+ +k−1

Aℓ,j + Fj and

Dj = B+k−1

0,j +
ℓ−2∑
i=1

+2i

Bi,j
+k−2i − +k−2∨Lℓ−1,j+1

+2 − +k−1∨Lℓ,j+1 +Gj.

Thus, we have established a decomposition of the form in (9.14) as
required. □

We can now conclude.

Proof of Proposition 9.3. As for Proposition 7.12, this relies on an in-
duction argument.

For k = 1, 2, the statement is a direct consequence of the definition
of the objects and of Lemma 7.1.

We now prove that if k ≥ 4 is even, k = 2ℓ, ℓ ≥ 2, and if the
statement holds for k− 2, it also holds for k. We apply Corollary 9.15.
Therefore, we may write, for j ≥ 1,

Hj = H+k

0,j + +2

H1,j
+k−1

+
ℓ−1∑
i=2

+2i

Hi,j
+k−2(i−1)

+ +k−1

Hℓ,j
+2

+ +k

Hℓ+1,j

+ F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1,

where the (Fj)j≥0 are in Hk⊗Hk−1, the (Gj)j≥0 are in Hk−1⊗Hk and,
for 0 ≤ i ≤ ℓ + 1, the (Hi,j)j≥1 are in Hr(ℓ+1−i) ⊗ Hr(i) and all these
sequences are finitely supported.

Since the sequence (ϖk(Hj))j≥1 is cohomologically trivial in Wk, by
Lemma 7.1, the assumption of Lemma 9.6 is satisfied. In particular,
the conclusion of this result for i = 0 says that we may find finitely
supported sequences (Pj)j≥1 in Hk ⊗H−1 and (Qj)j≥1 and (Rj)j≥1 in
Hk−1 ⊗H0 such that, for j ≥ 1,

H0,j = P>
j + >Qj +

∨>Rj = P>
j + ∨>∨Sj +

>Qj − ∨>∨Qj+1,

where Sj = Qj+1 +
∨Rj. As k ≥ 4, by Lemma 7.8 and Lemma 8.4, we

can find finitely supported sequences (Tj)j≥1 and (Uj)j≥1 in Hk−2⊗H0

such that, for j ≥ 1,

Sj =
>Tj +

∨>Uj =
>Vj +

∨>Uj − >∨Uj+1,

with Vj = Tj +
∨Uj+1. We get, for j ≥ 1,

H0,j = P>
j + ++Vj +

∨>Wj − >∨Wj−1,
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where, for j ≥ 0, Wj = − ∨Qj+1 − ∨>∨Uj+1. Now, for j ≥ 0, we set

Xj =
∑
i≥j+1

i−j even

Pi −
∑
i≥j+1

i−j odd

P∨
i ,

so that, for j ≥ 1, we get Pj = −Xj −X∨
j−1, hence

H0,j =
++Vj +

∨>Wj − >∨Wj−1 +X>∨
j −X∨>

j−1.

Reasoning in the same way from the conclusion of Lemma 9.6 for
i = ℓ+1, we obtain finitely supported sequences (Aj)j≥1 in H0⊗Hk−2,
(Bj)j≥0 in H0 ⊗Hk−1 and (Cj)j≥0 in H−1 ⊗Hk such that, for j ≥ 1,

Hℓ−1,j = A++
j +B>∨

j −B∨>
j−1 +

∨>Cj − >∨Cj−1.

We set

Jj = V +k−2

j +H+k−3

1,j +
ℓ−1∑
i=2

+2(i−1)

Hi,j
+k−2i

+ +k−3

Hℓ,j +
+k−2

Aj,

which is an element of ⊗2Hk−2. By using Lemma 9.13, we can write

Hj =
++Jj

++ +K>∨
j −K∨>

j−1 +
∨>Lj − >∨Lj−1,

with

Kj = Fj +X+k

j + +k

Bj and Lj = Gj +W+k

j + +k

Cj.

Therefore, as the sequence (ϖk(Hj))j≥1 is cohomologically trivial in
Wk, by Lemma 7.1, Propositon 9.4 and Lemma 9.8, the sequence
(ϖk−2(Jj))j≥1 is cohomologically trivial in Wk−2. By induction, we
may find finitely supported sequences (Mj)j≥0 in Hk−2 ⊗ Hk−3 and
(Nj)j≥0 in Hk−3 ⊗Hk−2 such that, for j ≥ 1,

Jj =M>∨
j −M∨>

j−1 +
∨>Nj − >∨Nj−1.

By using Lemma 9.13, we get

Hj = (Kj +
++Mj

++)>∨ − (Kj−1 +
++Mj−1

++)∨>

+
∨>

(Lj +
++Nj

++)− >∨
(Lj−1 +

++Nj−1
++)

and the conclusion follows.
So far, we have proved the Proposition for k = 1 and for k ≥ 2 even.

It remains to prove it for k ≥ 3 odd. For such a k, by Lemma 7.5
and Lemma 7.8, we can find finitely supported sequences (Jj)j≥1 and
(Kj)j≥1 in Hk⊗Hk−1 and (Lj)j≥1 and (Mj)j≥1 in Hk−1⊗Hk such that,
for j ≥ 1,

Hj = J>
j +K>∨

j + >Lj +
∨>Mj

= N>
j + >Pj +K>∨

j −K∨>
j+1 +

∨>Mj − >∨Mj+1,
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where Nj = Jj +K∨
j+1 and Pj = Lj +

∨Mj+1. Applying again Lemma
7.8, we can find finitely supported sequences (Uj)j≥1, (Vj)j≥1, (Wj)j≥1

and (Xj)j≥1 in Hk−1 ⊗Hk−1 with, for j ≥ 1,

Nj =
>Uj +

∨>Vj =
>Yj +

∨>Vj − >∨Vj+1

Pj = W>
j +X>∨

j = Z>
j +X>∨

j −X∨>
j+1,

where Yj =
>Uj +

∨Vj+1 and Zj = Wj + X∨
j+1. We set Aj = Yj + Zj,

Bj = Kj+1 +
>Xj+1 and Cj =Mj+1 + V >

j+1 and we get

Hj =
>Aj

> +B>∨
j−1 −B∨>

j + ∨>Cj−1 − >∨Cj.

As the sequence (ϖk(Hj))j≥1 is cohomologically trivial in Wk, Lemma
7.1 and Proposition 9.4 say that the sequence (ϖk−1(Aj))j≥1 is coho-
mologically trivial in Wk−1. Therefore, as the Proposition is true for
k − 1, we can find finitely supported sequences (Dj)j≥0 and (Ej)j≥0 in
in Hk−1 ⊗Hk−2 and Hk−1 ⊗Hk−2 such that, for j ≥ 1,

Aj = D>∨
j −D∨>

j−1 +
∨>Ej − >∨Ej−1.

By using Lemma III.2.6, we get

Hj = (>Dj
> −Bj)

∨> − (>Dj−1
> −Bj−1)

>∨ +
>∨

(>Ej
> − Cj)

− ∨>
(>Ej−1

> − Cj−1)

and the conclusion follows. □

10. The ultraweight map

We now come back to the study of the Plancherel formula of Proposi-
tion 5.16, which, as we have seen in the proof of Corollary 5.17, should
be thought of as a universal tool for defining the spectral theory of
non-negative Γ-invariant bilinear forms on D(∂X).

In the present Section, for k ≥ −1, we will use this Plancherel for-
mula to construct a linear map Ωk, from the space ⊗2Hk[t] of polyno-
mial functions with values in ⊗2Hk, towards the space of (cohomology
classes of) Hölder continuous functions on Γ\S . We will call Ωk the ul-
traweight map. Later, in Section 12 we will use the ultraweight map to
describe the bilinear forms on H2

k[t] that are obtained from Γ-invariant
symmetric bilinear forms on D(∂X) through the spectral transform of
Section III.6.

10.1. Plancherel formula and the ultraweight map. We start by
defining a new object that implicitely appears in the proof of Corollary
5.17.

The following definition is inspired by Proposition 5.16 and the latter
proof.



ADDITIVE REPRESENTATIONS 95

Definition 10.1. Let k ≥ −1 and H be in ⊗2Hk[t], that is, H is a
polynomial function with values in ⊗2Hk. We defined the ultraweight
Ωk(H) as the Hölder continuous function on Γ\S given by, for σ in
S ,

Ωk(H)(σ) =
2

q + 1

∫
Iq
Φt

(
>∞
H(t)>

∞
)
(σ)dµq(t)

+
q − 1

2(q + 1)
Φsp

1

(
>∞
H(1)>

∞
)
(σ) +

q − 1

2(q + 1)
Φsp

(−1)

(
>∞
H(−1)>

∞
)
(σ).

The fact that the formula makes sense and defines a Hölder contin-
uous function on Γ\S is a consequence of Lemma 5.9.

As for the fundamental bilinear maps, we will think to the ultra-
weight map as taking its values in the space of cohomology classes of
Hölder continuous functions on Γ\S . In this sense, our purpose will
now be to describe the null space of the ultraweight map: for k ≥ 1,
we let Θk be the space of those H in ⊗2Hk[t] such that Ωk(H) is a
coboundary in the space of Hölder continuous functions on Γ\S (in the
sense of Subsection 2.1). We call the elements of Θk the k-coboundary
polynomial tensors. The purpose of the remainder of the Section is to
use the previously introduced tools to describe the space Θk (up to a
finite-dimensional subspace).

10.2. The twist operator. We first construct an operator that pre-
serves the ultraweight in case Γ is bipartite.

If V is a vector space and A is an algebra acting on V , the algebra
A ⊗ A acts on V ⊗ V in a natural way: for v, w in V and a, b in A,
we have (a ⊗ b)(v ⊗ w) = (av) ⊗ (bw). In our situation, we fix k ≥ 1.
Then, the space Hk is equipped with an action of the algebra A1 of
Γ-invariant functions on X1. Indeed, if H is in Hk and u is in A1, we
let uH be the k-pseudofunction defined by

(uH)xy = u(xy)Hxy, xy ∈ X1.

The algebra A1 ⊗ A1 may be identified naturally with the algebra of
(Γ × Γ)-invariant functions on X1 × X1, so that every such function
defines an endomorphism of ⊗2Hk.

Let δ and ε be as in Subsection 4.2. We have a characterization of
bipartite actions:

Lemma 10.2. The action of Γ on X is bipartite if and only if the
function ε(−1)δ on X1 ×X1 is (Γ× Γ)-invariant.



96 JEAN-FRANÇOIS QUINT

Proof. Recall from Subsection III.2.1 that saying that Γ is bipartite
amounts to saying that the function (a, x) 7→ (−1)d(a,x) is (Γ × Γ)-
invariant onX×X. Now, in view of the definitions, for ab and xy inX1,
we have (−1)d(a,x) = ε(ab, xy)(−1)δ(ab,xy). The conclusion follows. □

Let the twist operation ≀ on pseudofunctions be defined as in Sub-
section III.2.6. From the definitions, one directly gets

Lemma 10.3. Let h, k ≥ 1 and H be in Hh ⊗ Hk. We have ≀H ≀ =
ε(−1)δH.

By abuse of notation, for any h, k ≥ −1, we will write ε(−1)δH
instead of ≀H ≀ for H in Hh ⊗Hk.

We can relate multiplication by ε(−1)δ and the natural operations.

Lemma 10.4. Assume Γ is bipartite. Let h, k ≥ −1 and H be in
Hh ⊗Hk. We have

∨
(ε(−1)δH) = (−1)kε(−1)δ(∨H) and (ε(−1)δH)∨ = (−1)hε(−1)δ(H∨)

as well as

>
(ε(−1)δH) = ε(−1)δ(>H) and (ε(−1)δH)> = ε(−1)δ(H>).

Proof. This can be obtained by a direct computation or by applying
Lemma IIII.2.22 and Lemma 10.3. □

Multiplication by ε(−1)δ also behaves well with respect to the double
weight map of Definition 9.1.

Lemma 10.5. Assume Γ is bipartite. Let k ≥ 1, H be in ⊗2Hk and
ab, xy be in Xk. We have

ϖk(ε(−1)δH)(ab, xy) = (−1)d(a,y)ϖk(H)(ab, xy).

Proof. It suffices to prove the claim when H is of the form J ⊗K for
J,K in Hk.
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Assume k is even, k = 2ℓ, ℓ ≥ 1. Then, by Definition 6.1 and
Definition 9.1, we have

ϖk(ε(−1)δH)(ab, xy) = (−1)d(aℓ,yℓ)∆Jaℓaℓ+1
(b, a)∆Kyℓyℓ+1

(x, y)

+
∑

1≤j≤ℓ−1

∑
z∈X

[yℓ+jz]∩[xy]={yℓ+j}
d(z,yℓ+j)=j

(−1)d(aℓ,z)∆Jaℓaℓ+1
(b, a)∆Kzz−(x, y2i)

+
∑

1≤i≤ℓ−1

∑
c∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

(−1)d(c,yℓ)∆Jcc−(b, a2i)∆Kyℓyℓ+1
(x, y)

+
∑

1≤i,j≤ℓ−1

∑
c,z∈X

[aℓ+ic]∩[ab]={aℓ+i}
d(c,aℓ+i)=i

[yℓ+jz]∩[xy]={yℓ+j}
d(z,yℓ+j)=j

(−1)d(c,z)∆Jcc−(b, a2i)∆Kzz−(x, y2i).

For 1 ≤ i, j ≤ ℓ− 1 and c, z as above, we have

d(aℓ, c) = 2i and d(yℓ, z) = 2j,

hence

(−1)d(aℓ,z) = (−1)d(c,yℓ) = (−1)d(c,z) = (−1)d(aℓ,yℓ) = (−1)d(a,y)

and the conclusion follows.
The proof is the same in the odd case. □

Assume Γ is bipartite. In view of Lemma 10.2, we can construct an
operator as follows. For k ≥ 1 and H in ⊗2Hk[t], we define the twist

H̃ of H as the polynomial tensor defined by

H̃(t) = ε(−1)δH(−t).
This operator preserves the ultraweight.

Lemma 10.6. Assume Γ is bipartite. Let k ≥ 1 and H be in ⊗2Hk[t].
We have

Ωk(H̃) = Ωk(H).

This statement is a direct consequence of the parity properties of the
polynomial functions Aj and Bj, j ≥ 0, of Subsection 4.1.

Proof. For j ≥ 0, the definitions of Aj and Bj give Aj(−t) = (−1)jAj(t)
and Bj(t) = (−1)j+1Bj(−t), hence χ−t = ε(−1)δχt. Also, we have
χsp
−1 = ε(−1)δχsp

1 . The conclusion now follows from the definition of Ωk

and the fact that the measure µq on R is symmetric. □
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10.3. Trivial coboundary polynomial tensors. We now give an a
priori list of polynomial tensors which are annihilated by the ultra-
weight map.

Definition 10.7. (k even) Let k ≥ 2 be an even integer. Then, we de-
fine the space of k-trivial coboundary polynomial tensors Θ0

k ⊂ ⊗2Hk[t]
as the subspace of ⊗2Hk[t] spanned by the following polynomial ten-
sors:

J ⊗K −K ⊗ J J,K ∈ Hk[t]

H H ∈ (Hk,+ ⊗Hk,−)[t]
>H> H ∈ (Hk−1,+ ⊗Hk−1,−)[t]

as well as

(q + 1)t >H> + (q − 1) >H∨> − 2 >H∨>∨

H ∈ (Hk−1,+ ⊗Hk−1,+ ⊕Hk−1,− ⊗Hk−1,−)[t]

and

(q + 1)tH>> + (q − 1)H>∨> −H∨>∨> −H>∨>∨

H ∈ (Hk ⊗Hk−2)[t]

and, if Γ is bipartite,

H̃ −H, H ∈ ⊗2Hk[t].

Definition 10.8. (k odd) Let k ≥ 1 be an odd integer. Then, we define
the space of k-trivial coboundary polynomial tensors Θ0

k ⊂ ⊗2Hk[t] as
the subspace of ⊗2Hk[t] spanned by the following polynomial tensors:

J ⊗K −K ⊗ J J,K ∈ Hk[t]

H H ∈ (Hk,+ ⊗Hk,−)[t]
>H> H ∈ (Hk−1,+ ⊗Hk−1,−)[t]

as well as

(q + 1)t >H> + (q − 1) >H>∨ − 2 >H∨>∨

H ∈ (Hk−1,+ ⊗Hk−1,+ ⊕Hk−1,− ⊗Hk−1,−)[t]

and

(q + 1)tH>> + (q − 1)H∨>> −H∨>∨> −H>∨>∨

H ∈ (Hk ⊗Hk−2)[t]

and, if Γ is bipartite,

H̃ −H, H ∈ ⊗2Hk[t].
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Note that the two definitions are identical except in the fifth case.
These uncomfortable definitions are justified by the following

Lemma 10.9. Let k ≥ 1 and H be a trivial coboundary polynomial
tensor in ⊗2Hk[t]. Then, the Hölder continuous function Ωk(H) is a
coboundary.

This is a consequence of the properties established in Lemma 5.10
and Lemma 5.15. To prove this precisely, we will need

Lemma 10.10. Let 0 < α < 1, I ⊂ R be a closed interval and
φ : I → Hα be a continuous function such that, for any t in I, φ(t)
is a coboundary. Then the Hölder continuous function

∫
I
φ(t)dt is a

coboundary.

Proof. Indeed, it follows from Livs̆ic Theorem, Proposition 2.1, that
the space of coboundaries is a closed subspace of Hα. □

In the context of the Plancherel formula for the fundamental bilinear
maps, we will use the previous under the following form.

Corollary 10.11. Let h ≥ 0 and k ≥ −1 be integers. For every H, J
in Hk, the ultraweight Ωk(t

hH ⊗ J) of the polynomial tensor thH ⊗ J
is cohomologous to Φ(P hH>∞

, J>∞
).

Proof. Indeed, it follows from Lemma 5.9, Lemma 5.10 and Lemma
10.10 that the function∫

Iq

(
thΦt

(
H>∞

, J>∞)− Φt

(
P hH>∞

, J>∞))
dµq(t)

is a coboundary. Then, the claim follows from Lemma 5.15 and Propo-
sition 5.16. □

We note that this yields

Corollary 10.12. Let k ≥ −1 and H be a polynomial tensor in ⊗2Hk[t].
Then the ultraweight Ωk(H) is cohomologous to a smooth function on
Γ\S .

Remark 10.13. In particular, if θ is a T -invariant distribution on Γ\S ,
for H in ⊗2Hk[t], we can define ⟨θ,Ωk(H)⟩ by means of the convention
of Remark 2.8.

Proof of Lemma 10.9. We will only deal with the case where k is even,
the odd case being analogous. We will check that in each of the five
first cases of Definition 10.7, the ultraweight is a coboundary, as in the
sixth case, the ultraweight is actually 0 by Lemma 10.6.

Let h ≥ 0 be an integer.
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Let J,K be in Hk. By Corollary 10.11, Ωk(t
hJ ⊗ K − thK ⊗ J)

is cohomologous to Φ(P hJ>∞
, K>∞

) − Φ(P hK>∞
, J>∞

), which is a
coboundary by Lemma 5.3.

In particular, if J is inHk,+ andK is inHk,−, then, as above Ωk(t
hJ⊗

K) is cohomologous to Φ(P hJ>∞
, K>∞

). As J∨ = qJ and K∨ = −K
and P commutes to R and S, we get, by Lemma 5.3,

Φ(P hJ>∞
, K>∞

) =
1

q
Φ(P hJ∨>∞

, K>∞
) =

1

q
Φ(P hRJ>∞

, K>∞
)

=
1

q
Φ(RP hJ>∞

, K>∞
) ≡ 1

q
Φ(P hJ>∞

, RK>∞
) =

1

q
Φ(P hJ>∞

, K∨>∞
)

= −1

q
Φ(P hJ>∞

, K>∞
)

(where we have written ≡ for the cohomology equivalence relation).
This gives Ωk(t

hJ ⊗K) ≡ 0 as required.
In the same way, if J is inHk−1,+ andK is inHk−1,−, since Ωk(t

hJ>⊗
K>) = Ωk−1(t

hJ ⊗K), we get Ωk(t
hJ> ⊗K>) ≡ 0.

Let now J,K be both in Hk−1,+ or both in Hk−1,−. Still by Corollary
10.11, we have

Ωk(t
h((q + 1)tJ> ⊗K> + (q − 1)J> ⊗K∨> − 2J> ⊗K∨>∨))

≡ (q + 1)Φ(P h+1J>∞
, K>∞

) + (q − 1)Φ(P hJ>∞
, SK>∞

)

− 2Φ(P hJ>∞, RSK>∞
).

As (q + 1)P = RS + SR− (q − 1)S, using Lemma 5.3, we obtain

Ωk(t
h((q + 1)tJ> ⊗K> + (q − 1)J> ⊗K∨> − 2J> ⊗K∨>∨))

≡ Φ(P hRSJ>∞, K>∞)− Φ(P hJ>∞, RSK>∞)

If J,K are inHk−1,+, we have SJ
>∞

= J>∞
and SK>∞

= K>∞
and the

latter is a coboundary. If they are in Hk−1,−, we have SJ>∞
= −J>∞

and SK>∞
= −K>∞

and the same holds. Thus, in both cases, we get

Ωk(t
h((q + 1)tJ> ⊗K> + (q − 1)J> ⊗K∨> − 2J> ⊗K∨>∨)) ≡ 0

as required.
Finally, we take J in Hk and K in Hk−2. By Corollary 10.11, we

have

Ωk(t
h((q+1)tJ⊗K>>+(q−1)J⊗K>∨>−J⊗K∨>∨>−J⊗K>∨>∨))

≡ Φ((q + 1)P h+1J>∞
, K>∞

)

+ Φ(P hJ>∞
, (q − 1)SK>∞ − SRK>∞ −RSK>∞

).
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As (q+1)P = RS+SR− (q−1)S, the conclusion follows from Lemma
5.3. □

Recall that, for k ≥ 1, we let Θk ⊂ ⊗2Hk[t] be the set of those poly-
nomial tensors H in ⊗2Hk[t] such that the Hölder continuous function
Ωk(H) on Γ\S is a coboundary. We have just shown that we have
Θ0

k ⊂ Θk. The next statement says that the reverse inclusion is true
up to a finite-dimensional subspace.

Proposition 10.14. There exists an integer n ≥ 0 such that, for any
k ≥ 2, we have Θk ⊂ Θ0

k + (⊗2Hk)k+n[t], that is, for every H in
⊗2Hk[t], if Ωk(H) is a coboundary, we may find a trivial coboundary
tensor J in Θ0

k such that H − J has degree ≤ k + n in t.

The proof of this statement will rely on Proposition 3.3. It will last
until the end of the next Section.

10.4. Endpoints series formulas for the ultraweight. In order to
be able to use Proposition 3.3 to analyse the vanishing of the ultra-
weight in cohomology, we translate the formulas of Section 6 in the
language of the ultraweight.

Let V be a vector space. Recall that a tensor in ⊗2V is said to be
symmetric if it is invariant by the natural involution of ⊗2V that maps
v1 ⊗ v2 to v2 ⊗ v1 for v1, v2 in V . The space of symmetric tensors is
denoted by S2V ⊂ ⊗2V .

We still let (Cj)j≥0 be the family of orthogonal polynomials of Sub-
section 4.6. From Proposition 6.3 and Proposition 6.4, we get

Proposition 10.15. Let k ≥ 1 and H be a symmetric polynomial
tensor in S2Hk[t]. For j ≥ 0, let Hj be the element of S2Hk defined by

Hj =

∫
Iq
Cj(t)H(t)dµq(t).

Assume k is even. Then, if H is in S2Hk,+[t], the ultraweight Ωk(H)
is cohomologous to the function

σ 7→ 1

2
κ0,k(H0) +

1

2

k−2∑
j=1

q−(j−1)κj,k(Hj)(σ0σj+k)

−
∞∑

j=k−1

q−(j−1)ϖk(Hj)(σ0σk, σjσj+k).
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If H is in S2Hk,−[t], the ultraweight Ωk(H) is cohomologous to the
function

σ 7→ 1

2q
κ0,k

qH0 + (q − 1)
∑
h>0

h even

Hh



− 1

2

k−2∑
j=1

q−(j+1)κj,k

q2Hj + (q2 − 1)
∑
h>j

j−h even

Hh

 (σ0σj+k)

+
∞∑

j=k−1

q−(j+1)ϖk

q2Hj + (q2 − 1)
∑
h>j

j−h even

Hh

 (σ0σk, σjσj+k).

Assume k is odd. Then, if H is in S2Hk,+[t], the ultraweight Ωk(H)
is cohomologous to the function

σ 7→ 1

q + 1
κ0,k

(
(q + 1)H0 + (q − 1)

∑
h>0

(−1)hHh

)

+
2

q + 1

k−2∑
j=1

q−jκj,k

(
qHj + (q − 1)

∑
h>j

(−1)j−hHh

)
(σ0σj+k)

− 1

q + 1

∞∑
j=k−1

q−jϖk

(
qHj + (q − 1)

∑
h>j

(−1)j−hHh

)
(σ0σk, σjσj+k).

If H is in S2Hk,−[t], the ultraweight Ωk(H) is cohomologous to the
function

σ 7→ 1

q + 1
κ0,k

(
(q + 1)H0 + (q − 1)

∑
h>0

Hh

)

− 2

q + 1

k−2∑
j=1

q−jκj,k

(
qHj + (q − 1)

∑
h>j

Hh

)
(σ0σj+k)

+
1

q + 1

∞∑
j=k−1

q−jϖk

(
qHj + (q − 1)

∑
h>j

Hh

)
(σ0σk, σjσj+k).

Note that, by Lemma 4.6, we have Hj = 0 for j large, so that all the
sums above are finite and define smooth functions on Γ\S .
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Remark 10.16. The formulas above only concern symmetric polynomial
tensors in ⊗2Hk,+⊕⊗2Hk,−. Indeed, due to the form of trivial polyno-
mial tensors in Definition 10.7 and Definition 10.8, and to Lemma 10.9,
the ultraweight of skew symmetric polynomial tensors and of polyno-
mial tensors in Hk,+⊗Hk,−⊕Hk,−⊗Hk,+ is a coboundary. Therefore,
for proving Proposition 10.14, we will only need to deal with symmetric
polynomial tensors H such that H∨ = ∨H.

The proof uses the following formula for computing the values of a
polynomial function at 1 and (−1) by means of its components in the
basis (Cj)j≥0.

Lemma 10.17. Let f in R[t] be a polynomial function. For j ≥ 0, set
fj =

∫
Iq f(t)Cj(t)dµq(t). Then we have

f(1) =
∑
j≥0

fj and f(−1) =
∑
j≥0

(−1)jfj.

Proof. Since by Lemma 4.6, the (Cj)j≥0 form a basis of R[t], it suffices
to check the formulas when f is one of them.

Now, the definition of these polynomials gives C0 = 1 and, for j ≥ 1,

Cj(1) = Bj+1(1)−Bj−1(1) =
qj+1 − 1

q − 1
− qj−1 − 1

q − 1
=
q2 − 1

q − 1
qj−1

= (q + 1)qj−1 =

∫
Iq
Cj(t)

2dµq(t),

where the last equality follows from Lemma 4.6. Thus, the first formula
holds. The second is obtained in the same way. □

Proof of Proposition 10.15. This is a direct computation. We start
with the endpoints formulas obtained in Proposition 6.3 and Propo-
sition 6.5, and we apply the construction of the ultraweight in Defini-
tion 10.1, the fact that integrals of coboundary are coboundaries which
was shown in Lemma 10.10, and Lemma 10.17 above which allows to
compute the values at (−1) and 1 of the polynomial tensors. □

11. Building trivial coboundary tensors

In the present Section, we will prove Proposition 10.14. Thus, for
k ≥ 1, we are given a polynomial tensorH in⊗2Hk[t] whose ultraweight
Ωk(H) is a coboundary and we want to build a trivial coboundary
tensor J such that H − J has degree ≤ k + n for some fixed n.
Our strategy is to apply Proposition 3.3 to the formulas in Propo-

sition 10.15. Then, we will use Proposition 9.3 to say more about the
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form of sequences related to the coefficients Hj =
∫
Iq Cj(t)H(t)dµq(t)

and relate them to the analogue sequences for trivial coboundary ten-
sors.

11.1. Cohomological equations and eigenvectors. First, we ana-
lyze precisely the fact that the sequences of polynomial tensors we will
need to study from Proposition 10.15 have values in ⊗2Hk,+⊕⊗2Hk,−,
k ≥ 1 (see Remark 10.16).

Proposition 11.1. Let k ≥ 1 and (Fj)j≥0 and (Gj)j≥0 be finitely sup-
ported sequences in Hk ⊗Hk−1 and Hk−1 ⊗Hk. For j ≥ 1, we set

Hj = F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1 if k is even

= F∨>
j − F>∨

j−1 +
>∨Gj − ∨>Gj−1 if k is odd

and we assume that Hj belongs to ⊗2Hk,+⊕⊗2Hk,−, that is,
∨Hj = H∨

j .
Then, if k is even, there exist finitely supported sequences (Pj)j≥1 in

Hk−2 ⊗Hk, (Qj)j≥1 in Hk ⊗Hk−2 and (Xj)j≥1 and (Yj)j≥1 in Hk−1 ⊗
Hk−1 such that for j ≥ 1, one has P∨

j = ∨P j, Q
∨
j = ∨Qj and

∨Fj − (q − 1)Fj + F∨
j−1 = Q>

j − (q − 1) >Xj +
∨>(Xj + Yj)

G∨
j − (q − 1)Gj +

∨Gj−1 =
>Pj − (q − 1)Y >

j + (Xj + Yj)
>∨.

If k is odd, there exist finitely supported sequences (Pj)j≥1 in Hk−2⊗
Hk, (Qj)j≥1 in Hk ⊗ Hk−2 and (Yj)j≥1 and (Zj)j≥1 in Hk−1 ⊗ Hk−1

such that for j ≥ 1, one has P∨
j = ∨P j, Q

∨
j = ∨Qj and

F∨
j + ∨Fj−1 = Q>

j + >Yj − ∨>Zj

∨Gj +G∨
j−1 =

>Pj − Y >
j − Z>∨

j .

The proof is a straightforward consequence of the results of Subsec-
tion 8.4 on the simplification of tensor equations. We split it according
to the parity of k.

Lemma 11.2. Let k ≥ 2 be even, F0, F1 be in Hk ⊗Hk−1 and G0, G1

be in Hk−1 ⊗Hk. We set

H = F>∨
1 − F∨>

0 + ∨>G1 − >∨G0.

Assume that we have ∨H = H∨, that is, H belongs to ⊗2Hk,+⊕⊗2Hk,−.
Then, there exist P in Hk−2⊗Hk, Q in Hk⊗Hk−2 and X, Y in Hk−1⊗
Hk−1 such that P∨ = ∨P , Q∨ = ∨Q and

∨F1 − (q − 1)F1 + F∨
0 = Q> − (q − 1) >X + ∨>(X + Y )

G∨
1 − (q − 1)G1 +

∨G0 =
>P − (q − 1)Y > + (X + Y )>∨.
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Proof. We set

J = ∨F1 − (q − 1)F1 + F∨
0

K = G∨
1 − (q − 1)G1 +

∨G0.

The relation ∨H = H∨ gives

∨F>∨
1 − ∨F∨>

0 + q >G1 + (q − 1) ∨>G1 − ∨>∨G0 =

qF>
1 + (q − 1)F>∨

1 − F∨>∨
0 + ∨>G∨

1 − >∨G∨
0

which we rewrite as
∨J> − J>∨ = >K∨ − ∨>K.

By Corollary 8.8, we may find U in Hk−2⊗Hk, V in Hk ⊗Hk−2 and
W,X, Y, Z in Hk−1 ⊗Hk−1, such that

K∨ = >∨U +W> +X>∨ K = >U − Y > − Z>∨(11.1)
∨J = V ∨> + >W + ∨>Y J = V > − >X − ∨>Z.

By comparing the above two expressions for J and K, we get
>∨U +W> +X>∨ = >U∨ − qZ> − (Y + (q − 1)Z)>∨

V ∨> + >W + ∨>Y = ∨V > − q >Z − ∨>(X + (q − 1)Z).

By Corollary 8.9, we may find A,E, F in Hk−1 ⊗Hk−2 and B,C,D in
Hk−2 ⊗Hk−1 with

W + qZ = A∨> + >B = >∨D + E>(11.2)

X + Y + (q − 1)Z = −A> + >C = − >D + F>

U∨ − ∨U = B> + C>∨

∨V − V ∨ = >E + ∨>F.

From the above, we get in particular

(A∨ − E)> =
>
(∨D −B) and (A+ F )> = >(C +D).

Thus, by Lemma 8.4, we can find L,M in Hk−2 ⊗Hk−2 with

E = A∨ − >L B = ∨D − L>

F = >M − A C =M> −D.

Using these relations in (11.2) gives

W + qZ = A∨> + >∨D − >L>(11.3)

X + Y + (q − 1)Z = −A> − >D + >M>

U∨ − ∨U = ∨D> −D>∨ − L>> +M∨>>

∨V − V ∨ = >A∨ − ∨>A− >>L+ >>∨M.
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The last two relations imply that we may find P in Hk−2 ⊗ Hk, Q in
Hk ⊗Hk−2 and R, S in Hk−2 ⊗Hk−2 such that

P∨ = ∨P Q∨ = ∨Q(11.4)

U +D> = P +R>> V + >A = Q+ >>S

R∨ − ∨R = −L+M∨ ∨S − S∨ = −L+ ∨M.

We set T = R+S−M . Note that the last two relations give T∨ = ∨T .
To simplify the next expressions, we set

P1 = P +
1

q − 1
T>>∨

Q1 = Q+
1

q − 1
∨>>T

X1 = X + A> − >S>

Y1 = Y + >D − >R>.

In particular, by (11.3), we get

X1 + Y1 + (q − 1)Z + >T> = 0

and, by (11.1), (11.2) and (11.4),

J = Q> − >X1 − ∨>Z = Q>
1 − >X1 +

1

q − 1
∨>(X1 + Y1)

K = >P − Y >
1 − Z>∨ = >P1 − Y >

1 +
1

q − 1
(X1 + Y1)

>∨

as required. □

In the odd case, the same technique yields

Lemma 11.3. Let k ≥ 1 be odd, F0, F1 be in Hk ⊗ Hk−1 and G0, G1

be in Hk−1 ⊗Hk. We set

H = F∨>
1 − F>∨

0 + >∨G1 − ∨>G0.

Assume that we have ∨H = H∨, that is, H belongs to ⊗2Hk,+⊕⊗2Hk,−.
Then, there exist P in Hk−2⊗Hk, Q in Hk⊗Hk−2 and Y, Z in Hk−1⊗
Hk−1 such that P∨ = ∨P , Q∨ = ∨Q and

F∨
1 + ∨F0 = Q> + >Y − ∨>Z

∨G1 +G∨
0 = >P − Y > − Z>∨.

Proof. The proof follows the same lines as the previous one. We set

J = F∨
1 + ∨F0 and K = ∨G1 +G∨

0 .

As above, the relation ∨H = H∨ gives
∨J> − J>∨ = >K∨ − ∨>K.
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By Corollary 8.8, we get U inHk−2⊗Hk, V inHk⊗Hk−2 andW,X, Y, Z
in Hk−1 ⊗Hk−1, such that

K∨ = >∨U +W> +X>∨ K = >U − Y > − Z>∨(11.5)
∨J = V ∨> + >W + ∨>Y J = V > − >X − ∨>Z.

We compare the two expressions for J and K and we get

>∨U +W> +X>∨ = >U∨ − Z> − Y >∨

V ∨> + >W + ∨>Y = ∨V > − >Z − ∨>X.

By Corollary 8.9, we may find A,E, F in Hk−1 ⊗Hk−2 and B,C,D in
Hk−2 ⊗Hk−1 with

W + Z = A∨> + >B = >∨D + E>(11.6)

X + Y = −A> + >C = − >D + F>

U∨ − ∨U = B> + C>∨

∨V − V ∨ = >E + ∨>F.

From the above, we get in particular

(A∨ − E)> =
>
(∨D −B) and (A+ F )> = >(C +D).

Thus, by Lemma 8.4, we can find L,M in Hk−2 ⊗Hk−2 with

E = A∨ − >L B = ∨D − L>

F = >M − A C =M> −D.

Using these relations in (11.6) gives

W + Z = A∨> + >∨D − >L>(11.7)

X + Y = −A> − >D + >M>

U∨ − ∨U = ∨D> −D>∨ − L>> +M∨>>

∨V − V ∨ = >A∨ − ∨>A− >>L+ >>∨M.

The last two relations imply that we may find P in Hk−2 ⊗ Hk, Q in
Hk ⊗Hk−2 and R, S in Hk−2 ⊗Hk−2 such that

P∨ = ∨P Q∨ = ∨Q(11.8)

U +D> = P +R>> V + >A = Q+ >>S

R∨ − ∨R = −L+M∨ ∨S − S∨ = −L+ ∨M.

We set T = R+S−M . Note that the last two relations give T∨ = ∨T .
To simplify the next expressions, we set

X1 = X + A> − >S> and Y1 = Y + >D − >R>,
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so that we get, by (11.7)

X1 + Y1 +
>T> = 0

and, by (11.5), (11.6) and (11.8),

J = Q> − >X1 − ∨>Z = (Q+ >>T )> + >Y1 − ∨>Z

K = >P − Y >
1 − Z>∨

as required. □

Proof of Proposition 11.1. This directly follows from Lemma 11.2 and
11.3 that we apply for each j ≥ 1. □

11.2. Building trivial coboundary tensors from Hk ⊗Hk−2. We
are still aiming at proving Proposition 10.14. We will now use the
particular form of the sequences appearing in Proposition 11.1 to re-
late them to the trivial coboundary polynomial tensors of Definition
10.7 and Definition 10.8. Unfortunately, this will require us to check
different cases separately. In the present Subsection, we show

Lemma 11.4. Let k ≥ 1 and (Kj)j≥1 and (Lj)j≥1 be finitely supported
sequences in Hk,+⊗Hk−2,+ and Hk,−⊗Hk−2,−. Let (Fj)j≥0 and (Gj)j≥0

be the unique finitely supported sequences in Hk ⊗Hk−1 such that, for
j ≥ 1, one has, if k is even,

(11.9) ∨Fj−(q−1)Fj+F
∨
j−1 = K>

j and ∨Gj−(q−1)Gj+G
∨
j−1 = L>

j

and, if k is odd,

(11.10) F∨
j + ∨Fj−1 = K>

j and G∨
j + ∨Gj−1 = L>

j .

Then, there exist trivial coboundary polynomial tensors H in ⊗2Hk,+[t]
and J in ⊗2Hk,−[t] such that, for j ≥ 1, one has, if k is even,

F>∨
j − F∨>

j−1 = q−jHj

G>∨
j −G∨>

j−1 = q−jJj + q−j(1− q−2)
∑
h>j

j−h even

Jh

and, if k is odd,

F∨>
j − F>∨

j−1 = q−jHj + q−j(1− q−1)
∑
h>j

(−1)j−hHh

G∨>
j −G>∨

j−1 = q−jJj + q−j(1− q−1)
∑
h>j

Jh,

where

Hj =

∫
Iq
Cj(t)H(t)dµq(t) and Jj =

∫
Iq
Cj(t)J(t)dµq(t).
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Note that the sequences (Fj)j≥0 and (Gj)j≥0 are uniquely defined by
(11.9) and (11.10) due to the easy

Lemma 11.5. Let V be a vector space and θ : V → V be an endomor-
phism. Then, for any finitely supported sequence (xj)j≥1 in V , there
exists a unique finitely supported sequence (yj)j≥0 in V such that, for
j ≥ 1, one has yj−1 = xj + θyj.

Proof. Indeed, for h ≥ j ≥ 0, one has necessarily

yj =
h∑

i=j+1

θi−j−1xi + θh−jyh.

Since both sequences are finitely supported, this gives

yj =
∞∑

i=j+1

θi−j−1xi,

hence the uniqueness. The existence follows from the fact that the
latter formula actually defines a finitely supported sequence. □

We shall use the following formulas which can be seen as a conse-
quence of the fact that the polynomial functions (Cj)j≥0 of Subsection
4.6 are the spherical transforms of the spheres of the tree X in the
language of [3].

Lemma 11.6. For j ≥ 0, the polynomial function (q + 1)tCj(t) may
be written as

(q + 1)tC0(t) = C1(t)

(q + 1)tC1(t) = C2(t) + (q + 1)C0(t)

(q + 1)tCj(t) = Cj+1(t) + qCj−1(t) j ≥ 2.

Proof. This directly follows from the definitions in Subsection 4.6. The
first relation is obvious. The third relation follows from the definition
of Cj, j ≥ 1, and the analogue property of Bj, j ≥ 1 in Lemma 4.1.
Finally, for proving the second relation, we write (q+1)t = q

u
+u, hence

C2(t) = B3(t)−B1(t) =
q2

u2
+ q + u2 − 1 = (q + 1)2t2 − (q + 1)

= (q + 1)tC1(t)− (q + 1)C0(t)

as required. □

We now start the proof of the main Lemma, which we split according
to the parity of k.
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Proof of Lemma 11.4 in case k is even. We first construct H. We look
for H to be of the form

H(t) = (q + 1)tP (t)>> − P (t)>∨> − P (t)>∨>∨,

where P is inHk,+⊗Hk−2,+[t]. Note thatH is then a trivial coboundary
polynomial tensor in view of Definition 10.7. For j ≥ 0, we set Pj =∫
Iq Cj(t)P (t)dµq(t). By Lemma 11.6, we have

H0 = P>>
1 − P>∨>

0 − P>∨>∨
0

H1 = P>>
2 + (q + 1)P>>

0 − P>∨>
1 − P>∨>∨

1

Hj = P>>
j+1 + qP>>

j−1 − P>∨>
j − P>∨>∨

j , j ≥ 2.

We set

M0 = q−1P>
1 − q−1(q + 1)P>∨

0

Mj = q−j−1P>
j+1 − q−jP>∨

j j ≥ 1,

so that, for j ≥ 1, as ∨Pj = P∨
j = qPj, we have

q−jHj =M>∨
j −M∨>

j−1.

To conclude, it suffices to choose P in order to have Mj = Fj for any
j ≥ 0. In view of the definition of the (Fj)j≥0 in the statement, we
compute

∨M1 − (q − 1)M1 +M∨
0 = q−2P>

2 − q−1(q + 1)P>
0

∨Mj − (q − 1)Mj +M∨
j−1 = q−j−1P>

j+1 − q1−jP>
j−1 j ≥ 2,

where we have used again the assumption that ∨Pj = qPj, j ≥ 0. Thus,
for the conclusion of the Lemma to hold, it suffices to have

q−2P2 − q−1(q + 1)P0 = K1 and q−j−1Pj+1 − q1−jPj−1 = Kj, j ≥ 2.

By Lemma 11.5, these equations uniquely define the finitely supported
sequence (Pj)j≥0, hence the polynomial tensor P (t). The conclusion
follows.

We now construct J , which we will seek to be of the form

J(t) = (q + 1)tQ(t)>> + qQ(t)>∨> −Q(t)>∨>∨,

where Q is in Hk,− ⊗ Hk−2,−[t]. As above, J is then trivial in view
of Definition 10.7. For j ≥ 0, we set Qj =

∫
Iq Cj(t)Q(t)dµq(t). By

Lemma 11.6, we have

J0 = Q>>
1 + qQ>∨>

0 −Q>∨>∨
0

J1 = Q>>
2 + (q + 1)Q>>

0 + qQ>∨>
1 −Q>∨>∨

1

Jj = Q>>
j+1 + qQ>>

j−1 + qQ>∨>
j −Q>∨>∨

j , j ≥ 2.
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Now, we set

N0 = −Q>
1 − (1 + q−1)Q>∨

0 − (1− q−2)
∑
h>0

h even

Q>
h+1 +Q>∨

h

and, for j ≥ 1,

Nj = −q−j(Q>
j+1 +Q>∨

j )− q−j(1− q−2)
∑
h>j

j−h even

Q>
h+1 +Q>∨

h .

A direct computation gives, for j ≥ 1, as ∨Qj = Q∨
j = −Qj,

q−jJj + q−j(1− q−2)
∑
h>j

j−h even

Jh = N>∨
j −N∨>

j−1.

We will choose Q in order to have Nj = Gj for any j ≥ 0. By using
again the assumption that ∨Qj = −Qj, j ≥ 0, we get

∨N1 − (q − 1)N1 +N∨
0 = q−2Q>

2 − q−1(q + 1)Q>
0

∨Nj − (q − 1)Nj +N∨
j−1 = q−j−1Q>

j+1 − q1−jQ>
j−1 j ≥ 2.

By Lemma 11.5, the equations

q−2Q2 − q−1(q + 1)Q0 = L1 and q−j−1Qj+1 − q1−jQj−1 = Lj, j ≥ 2.

uniquely define the finitely supported sequence (Qj)j≥0, hence the poly-
nomial tensor Q(t) and we are done. □

Proof of Lemma 11.4 in case k is odd. Now, we look for H to be of the
form

H(t) = ((q + 1)t+ (q − 1))P (t)>> − P (t)>∨> − P (t)>∨>∨,

where P is in Hk,+ ⊗ Hk−2,+[t]. By Definition 10.8, this is a trivial
polynomial tensor. For j ≥ 0, we set Pj =

∫
Iq Cj(t)P (t)dµq(t). By

Lemma 11.6, we have

H0 = P>>
1 + (q − 1)P>>

0 − P>∨>
0 − P>∨>∨

0

H1 = P>>
2 + (q − 1)P>>

1 + (q + 1)P>>
0 − P>∨>

1 − P>∨>∨
1

Hj = P>>
j+1 + (q − 1)P>>

j + qP>>
j−1 − P>∨>

j − P>∨>∨
j , j ≥ 2.

A tedious computation shows that, by setting

M0 = −(1 + q−1)P>
0 + q−1P>∨

1 − q−1(1− q−1)
∑
h>1

(−1)h(P>∨
h + P>

h )

and, for j ≥ 1,

Mj = −q−jP>
j + q−j−1P>∨

j+1 − q−j−1(1− q−1)
∑

h>j+1

(−1)j−h(P>∨
h + P>

h ),
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we get, for j ≥ 1,

q−jHj + q−j(1− q−1)
∑
h>j

(−1)j−hHh =M∨>
j −M>∨

j−1.

As above, we want to get Mj = Fj for any j ≥ 0, so that we compute

M∨
1 + ∨M0 = q−2P>

2 − q−1(q + 1)P>
0

M∨
j + ∨Mj−1 = q−j−1P>

j+1 − q1−jP>
j−1 j ≥ 2.

Using Lemma 11.5, we define the finitely supported sequence (Pj)j≥0,
hence the polynomial tensor P (t), by

q−2P2 − q−1(q + 1)P0 = K1 and q−j−1Pj+1 − q1−jPj−1 = Kj, j ≥ 2

and we are done.
Finally we search for a J of the form

J(t) = ((q + 1)t− (q − 1))Q(t)>> +Q(t)>∨> −Q(t)>∨>∨,

where Q is in Hk,−⊗Hk−2,−[t]. Still by Definition 10.8, the polynomial
tensor J is then trivial. For j ≥ 0, we set Qj =

∫
Iq Cj(t)Q(t)dµq(t).

By Lemma 11.6, we have

J0 = Q>>
1 − (q − 1)Q>>

0 +Q>∨>
0 −Q>∨>∨

0

J1 = Q>>
2 − (q − 1)Q>>

1 + (q + 1)Q>>
0 +Q>∨>

1 −Q>∨>∨
1

Jj = Q>>
j+1 − (q − 1)Q>>

j + qQ>>
j−1 +Q>∨>

j −Q>∨>∨
j , j ≥ 2.

In this case, we set

N0 = (1 + q−1)Q>
0 + q−1Q>∨

1 + q−1(1− q−1)
∑
h>1

Q>∨
h +Q>

h

and, for j ≥ 1,

Nj = q−jQ>
j + q−j−1Q>∨

j+1 + q−j−1(1− q−1)
∑

h>j+1

Q>∨
h +Q>

h ,

and we get, for j ≥ 1,

q−jJj + q−j(1− q−1)
∑
h>j

Jh = N∨>
j −N>∨

j−1.

In order to get Nj = Gj for any j ≥ 0, we compute

N∨
1 + ∨N0 = q−2Q>

2 − q−1(q + 1)Q>
0

N∨
j + ∨Nj−1 = q−j−1Q>

j+1 − q1−jQ>
j−1 j ≥ 2.

As above we use Lemma 11.5, to define the finitely supported sequence
(Qj)j≥0, hence the polynomial tensor Q(t), by

q−2Q2 − q−1(q + 1)Q0 = L1 and q−j−1Qj+1 − q1−jQj−1 = Lj, j ≥ 2.
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The result follows. □

11.3. Building trivial coboundary tensors from ⊗2Hk−1,+⊕⊗2Hk−1,−.
We continue preparing the proof of Proposition 10.14. Now, for k ≥ 1,
still in order to reconstruct the formulas from Proposition 11.1, we will
use a second kind of trivial polynomial tensors in ⊗2Hk[t], namely the
ones coming from ⊗2Hk−1[t] in Definition 10.7 and Definition 10.8. We
split the statements according to the parity of k.

Lemma 11.7. Let k ≥ 2 be even and (Xj)j≥1 and (Yj)j≥1 be finitely
supported sequences in ⊗2Hk−1. Let (Fj)j≥0 and (Gj)j≥0 be the unique
finitely supported sequences in Hk ⊗ Hk−1 and Hk−1 ⊗ Hk such that,
for j ≥ 1, one has,

∨Fj − (q − 1)Fj + F∨
j−1 = −(q − 1) >Xj +

∨>(Xj + Yj)

G∨
j − (q − 1)Gj +

∨Gj−1 = −(q − 1)Y >
j + (Xj + Yj)

>∨.

Then, there exist a trivial coboundary polynomial tensor H in ⊗2Hk[t]
such that, for j ≥ 2, one has,

qj(F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1) = (q + 1)(∨Hj +H∨

j )

− (q2 − 1)Hj − (1− q−2)
∑
h>j

j−h even

∨H∨
h − q(∨Hh +H∨

h ) + q2Hh,

where Hj =
∫
Iq Cj(t)H(t)dµq(t).

Lemma 11.8. Let k ≥ 1 be odd and (Yj)j≥1 and (Zj)j≥1 be finitely
supported sequences in ⊗2Hk−1. Let (Fj)j≥0 and (Gj)j≥0 be the unique
finitely supported sequences in Hk ⊗ Hk−1 and Hk−1 ⊗ Hk such that,
for j ≥ 1, one has,

F∨
j + ∨Fj−1 =

>Yj − ∨>Zj

∨Gj +G∨
j−1 = −Y >

j − Z>∨
j .

Then, there exist a trivial coboundary polynomial tensor H in ⊗2Hk[t]
such that, for j ≥ 2, one has,

qj(F∨>
j − F>∨

j−1 +
>∨Gj − ∨>Gj−1) =

∨Hj +H∨
j + (1− q−1)

∑
h>j

j−h even

∨Hh +H∨
h − ∨H∨

h−1 −Hh−1,

where Hj =
∫
Iq Cj(t)H(t)dµq(t).
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The complicated structure of the formulas above comes from the need
of applying them to the sequences appearing in Proposition 10.15.

To prove Lemma 11.7 and Lemma 11.8, we will need to use the
fact that in Proposition 9.3, the sequences (Fj)j≥0 and (Gj)j≥0 are not
uniquely determined by the sequence (Hj)j≥1.

Lemma 11.9. Let k ≥ 0 and (Bj)j≥0 be a finitely supported sequence
in ⊗2Hk.
If k is odd, for j ≥ 0, we set

Fj =
>∨Bj − ∨>Bj+1 and Gj = B>∨

j+1 −B∨>
j .

Then, for j ≥ 1, we have

F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1 = 0

and

∨Fj − (q − 1)Fj + F∨
j−1 = − >

((q − 1) ∨Bj + qBj+1 − ∨B∨
j−1)

+
∨>

(∨Bj −B∨
j )

as well as

G∨
j − (q − 1)Gj +

∨Gj−1 = ((q − 1)B∨
j + qBj+1 − ∨B∨

j−1)
>

+ (∨Bj −B∨
j )

>∨.

If k is even, for j ≥ 0, we set

Fj =
∨>Bj − >∨Bj+1 and Gj = B∨>

j+1 −B>∨
j .

Then, for j ≥ 1, we have

F∨>
j − F>∨

j−1 +
>∨Gj − ∨>Gj−1 = 0

and

F∨
j + ∨Fj−1 =

>
(Bj−1 − ∨B∨

j+1)−
∨>

(∨Bj −B∨
j )

∨Gj +G∨
j−1 = −(Bj−1 − ∨B∨

j+1)
> − (∨Bj −B∨

j )
>∨.

Proof. These are direct computations. □

We will split the proofs of Lemma 11.7 and 11.8 according to whether
the considered sequences belong to certain eigenspaces of the natural
operators.

Proof of Lemma 11.7 when ∨Xj = X∨
j and ∨Yj = Y ∨

j , j ≥ 1. First as-
sume that Xj + Yj = 0 for j ≥ 1. By Lemma 11.5, we know that
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there exists a unique finitely supported sequence (Bj)j≥0 in ⊗2Hk−1,+⊕
⊗2Hk−1,− such that, for j ≥ 1, one has

− 1

q − 1
Bj−1 +

∨Bj +
q

q − 1
Bj+1 = Xj.

Then, the conclusion directly follows from Lemma 11.9.
Now, assume that Xj = Yj for j ≥ 1. We will seek for H(t) to be of

the form

H(t) = (q + 1)t >A(t)> + (q − 1) >A(t)∨> − 2 >A(t)∨>∨

where A(t) is a polynomial tensor in (⊗2Hk−1,+ ⊕ ⊗2Hk−1,−)[t]. This
is a trivial polynomial tensor in view of Definition 10.7. For j ≥ 0, we
set Aj =

∫
Iq Cj(t)A(t)dµq(t) so that Lemma 11.6 gives, for j ≥ 2,

Hj =
>A>

j+1 + q >A>
j−1 + (q − 1) >A∨>

j − 2 >A∨>∨
j .

For j ≥ 2, we set

Jj = (q + 1)(∨Hj +H∨
j )− (q2 − 1)Hj

− (1− q−2)
∑
h>j

j−h even

∨H∨
h − q(∨Hh +H∨

h ) + q2Hh.

A direct computation gives

q−jJj = F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1,

where, for j ≥ 0,

qjFj =

q2 − 1

2
>A∨

j − (q + 1) ∨>A∨
j +

(q + 1)(q2 + 1)

2q
>Aj+1 −

q2 − 1

2q
∨>Aj+1

+
(q − 1)(q + 1)2

2q

∑
h>j

j−h even

q >A∨
h − ∨>A∨

h + q >Ah+1 − ∨>Ah+1

and

qjGj =

q2 − 1

2
∨A>

j − (q + 1) ∨A>∨
j +

(q + 1)(q2 + 1)

2q
A>

j+1 −
q2 − 1

2q
A>∨

j+1

+
(q − 1)(q + 1)2

2q

∑
h>j

j−h even

q ∨A>
h − ∨A>∨

h + qA>
h+1 − A>∨

h+1.
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In particular, this gives, for j ≥ 2,

qj(∨Fj − (q − 1)Fj + F∨
j−1) =

q(q2 − 1)

2
>Aj−1 − q(q + 1) ∨>Aj−1

− q2 − 1

2q
>Aj+1 +

q + 1

q
∨>Aj+1

and the symmetric relation

qj(G∨
j − (q − 1)Gj +

∨Gj−1) =
q(q2 − 1)

2
A>

j−1 − q(q + 1)A>∨
j−1

− q2 − 1

2q
A>

j+1 +
q + 1

q
A>∨

j+1.

Thus, to conclude, it suffices to ensure that, for j ≥ 2, one has

qjXj =
q + 1

2q
Aj+1 −

q(q + 1)

2
Aj−1,

which is possible by Lemma 11.5. □

We manage the odd case in an analogue way

Proof of Lemma 11.8 when ∨Yj = Y ∨
j and ∨Zj = Z∨

j , j ≥ 1. If Zj = 0
for any j ≥ 1, then, by Lemma 11.5, there exists a unique finitely
supported sequence (Bj)j≥0 in ⊗2Hk−1,+ ⊕ ⊗2Hk−1,− such that, for
j ≥ 1, one has

Bj−1 − ∨B∨
j+1 = Yj

and as above, the conclusion directly follows from Lemma 11.9.
We now assume Yj = 0 for any j ≥ 1 and we will construct H(t) of

the form

H(t) = (q + 1)t >A(t)> + (q − 1) >A(t)>∨ − 2 >A(t)∨>∨

where A(t) is a polynomial tensor in (⊗2Hk−1,+ ⊕ ⊗2Hk−1,−)[t]. This
is a trivial polynomial tensor in view of Definition 10.8. As usual, for
j ≥ 0, we set Aj =

∫
Iq Cj(t)A(t)dµq(t). By Lemma 11.6, we get, for

j ≥ 2,

Hj =
>A>

j+1 + q >A>
j−1 + (q − 1) >A>∨

j − 2 >A∨>∨
j .

For j ≥ 2, we set

Jj =
∨Hj +H∨

j + (1− q−1)
∑
h>j

j−h even

∨Hh +H∨
h − ∨H∨

h−1 −Hh−1.

A direct computation gives

q−jJj = F∨>
j − F>∨

j−1 +
>∨Gj − ∨>Gj−1,
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where, for j ≥ 0,

qjFj = − >Aj +
1

q
∨>A∨

j+1

+
q − 1

q2

∑
h>j

j−h even

− >Ah − >A∨
h + ∨>Ah+1 +

∨>A∨
h+1

and

qjGj = −A>
j +

1

q
∨A>∨

j+1 +
q − 1

q2

∑
h>j

j−h even

−A>
h − ∨A>

h + A>∨
h+1 +

∨A>∨
h+1.

For j ≥ 2, we obtain

qj(F∨
j + ∨Fj−1) = −q ∨>Aj−1 +

1

q
∨>Aj+1

qj(∨Gj +G∨
j−1) = −qA>∨

j−1 +
1

q
A>∨

j+1.

By Lemma 11.5, we may choose the (Aj)j≥0 in order to get, for j ≥ 1,

q−(j−1)Aj−1 − q−(j+1)Aj+1 = Zj

and the conclusion follows. □

11.4. Building trivial coboundary tensors from Hk−1,+⊗Hk−1,−⊕
Hk−1,−⊗Hk−1,+. We now aim at proving Lemma 11.7 and Lemma 11.8
for sequences in Hk−1,+ ⊗ Hk−1,− ⊕ Hk−1,− ⊗ Hk−1,+. We will follow
the same method as above, which consists into simplifying the proof
by removing cases where one can apply Lemma 11.9. Unfortunately,
the formulas in the remaining cases are less easy to handle than before.
To compensate this, we show

Lemma 11.10. Let k ≥ 1 be odd and (Xj)j≥1 and (Yj)j≥1 be finitely
supported sequences in Hk,+ ⊗Hk,− ⊕Hk,− ⊗Hk,+. Then, there exist
finitely supported sequences (Aj)j≥0 and (Bj)j≥0 in Hk,+⊗Hk,−⊕Hk,−⊗
Hk,+ such that, for j ≥ 1, one has

qj(Xj + Yj) = (q + 1)Aj +
q2 − 1

q

∑
h>j

j−h even

Ah + 2qj ∨Bj
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and

qj(Xj − Yj) = 2
q(q + 1)

q − 1
∨Aj−1 +

(q + 1)2

q

∑
h>j

j−h even

∨Ah−1

+
2q

q − 1
qj−1Bj−1 +

2

q − 1
qj+1Bj+1.

Proof. We set X0 = 0 = Y0. By Lemma 11.5, there exist unique finitely
supported sequences (Uj)j≥−1 and (Vj)j≥−1 inHk,+⊗Hk,−⊕Hk,−⊗Hk,+

such that, for j ≥ 0, one has

1

q
Uj+1 − qUj−1 =

q − 1

2(q + 1)
qj(Xj + Yj)

1

q
Vj+1 − qVj−1 =

q − 1

2(q + 1)
qj(Xj − Yj).

For j ≥ 0, we set

Aj =
2q

q − 1
Uj−1 +

2

q − 1
Uj+1 − 2 ∨Vj

and

qjBj = −2
q(q + 1)

q − 1
∨Uj−1 −

(q + 1)2

q

∑
h>j

j−h even

∨Uh−1

+ (q + 1)Vj +
q2 − 1

q

∑
h>j

j−h even

Vh.

Straightforward computations show that the conclusion holds. □

In the even case, we have

Lemma 11.11. Let k ≥ 0 be even and (Yj)j≥1 and (Zj)j≥1 be finitely
supported sequences in Hk,+ ⊗Hk,− ⊕Hk,− ⊗Hk,+. Then, there exist
finitely supported sequences (Aj)j≥0 and (Bj)j≥0 in Hk,+⊗Hk,−⊕Hk,−⊗
Hk,+ such that, for j ≥ 1, one has

qj+1Yj =
q − 1

2
Aj+1 − A∨

j+1 + (1− q−1)
∑
h>j

j−h even

q − 1

2
Ah+1 − A∨

h+1

+ qj+1Bj−1 − qj+1Bj+1
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and

qj+1Zj = qAj +
q2 − 1

2q

∑
h>j

j−h even

Ah + qj+1((q − 1)Bj − 2B∨
j ).

Proof. We set Y0 = 0 = Z0. By Lemma 11.5, there exist unique finitely
supported sequences (Vj)j≥−1 and (Wj)j≥−1 inHk,+⊗Hk,−⊕Hk,−⊗Hk,+

such that, for j ≥ 0, one has

Vj+1 − q2Vj−1 = qj+1Yj and Wj+1 − q2Wj−1 = qj+1Zj.

For j ≥ 0, we set

Aj = (q − 1)Vj − 2V ∨
j − qWj−1 −Wj+1

and

qj+1Bj = −qVj −
q2 − 1

2q

∑
h>j

j−h even

Vh

+
q − 1

2
Wj+1 −W∨

j+1 + (1− q−1)
∑
h>j

j−h even

q − 1

2
Wh+1 −W∨

h+1.

Again, the result follows by direct computations. □

We use the above decompositions to finish the proofs Lemma 11.7
and Lemma 11.8.

Proof of Lemma 11.7 when ∨Xj = −X∨
j and ∨Yj = −Y ∨

j , j ≥ 1. We split
the proof according to the decomposition given by Lemma 11.10.

First, assume that there exists a finitely supported sequence (Bj)j≥0

in Hk−1,+ ⊗Hk−1,− ⊕Hk−1,− ⊗Hk−1,+ such that, for j ≥ 1, one has

Xj =
1

q − 1
Bj−1 +

∨Bj +
q

q − 1
Bj+1

and Yj = − 1

q − 1
Bj−1 +

∨Bj −
q

q − 1
Bj+1.

In that case, the conclusion directly follows from Lemma 11.9.
Thus, by Lemma 11.10, we are reduced to deal with the case when

there exists a finitely supported sequence (Aj)j≥0 in Hk−1,+⊗Hk−1,−⊕
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Hk−1,− ⊗Hk−1,+ such that, for j ≥ 1, one has

qj(Xj + Yj) = (q + 1)Aj +
q2 − 1

q

∑
h>j

j−h even

Ah(11.11)

qj(Xj − Yj) = 2
q(q + 1)

q − 1
∨Aj−1 +

(q + 1)2

q

∑
h>j

j−h even

∨Ah−1.

Then, we let A(t) be the polynomial tensor defined by∫
Iq
Cj(t)A(t)dµq(t) = Aj, j ≥ 0.

As this polynomial tensor belongs to (Hk,+ ⊗Hk,− ⊕Hk,− ⊗Hk,+)[t],
the polynomial tensor H(t) = >A(t)> is trivial in view of Definition
10.7. For j ≥ 0, we set

Jj = (q + 1)(∨Hj +H∨
j )

− (q2 − 1)Hj − (1− q−2)
∑
h>j

j−h even

∨H∨
h − q(∨Hh +H∨

h ) + q2Hh.

A direct computation gives

q−jJj = F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1,

where, for j ≥ 0,

qjFj = (q + 1) >Aj + (1− q−2)
∑
h>j

j−h even

q >Ah −
1

2
∨>Ah −

q

2
>∨Ah−1

qjGj = (q + 1)A>
j + (1− q−2)

∑
h>j

j−h even

qA>
h − 1

2
A>∨

h − q

2
A∨>

h−1.

Using (11.11) yields the conclusion. □

Proof of Lemma 11.8 when ∨Yj
∨ = −qYj and ∨Zj

∨ = −qZj, j ≥ 1. We
now split the proof according to the decomposition given by Lemma
11.11.

We first assume there exists a finitely supported sequence (Bj)j≥0 in
Hk−1,+ ⊗Hk−1,− ⊕Hk−1,− ⊗Hk−1,+ such that, for j ≥ 1, one has

Yj = Bj−1 −Bj+1 and Zj = (q − 1)Bj − 2B∨
j .

Then, the conclusion directly follows from Lemma 11.9.
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By Lemma 11.11, it remains to manage the case when there exists
a finitely supported sequence (Aj)j≥0 in Hk−1,+ ⊗ Hk−1,− ⊕ Hk−1,− ⊗
Hk−1,+ such that, for j ≥ 1, one has

qj+1Yj =
q − 1

2
Aj+1 − A∨

j+1 + (1− q−1)
∑
h>j

j−h even

q − 1

2
Ah+1 − A∨

h+1

(11.12)

qj+1Zj = qAj +
q2 − 1

2q

∑
h>j

j−h even

Ah.

As above, we let A(t) be the polynomial tensor defined by∫
Iq
Cj(t)A(t)dµq(t) = Aj, j ≥ 0.

By Definition 10.8, the polynomial tensor H(t) = >A(t)> is trivial. For
j ≥ 0, we set

Jj =
∨Hj +H∨

j + (1− q−1)
∑
h>j

j−h even

∨Hh +H∨
h − ∨H∨

h−1 −Hh−1.

We get

q−jJj = F∨>
j − F>∨

j−1 +
>∨Gj − ∨>Gj−1,

where, for j ≥ 0,

qj+1Fj = − >Aj+1 + (1− q−1)
∑
h>j

j−h even

1

2
∨>Ah−1 − >Ah

qjGj = −A>
j+1 + (1− q−1)

∑
h>j

j−h even

1

2
A>∨

h−1 − A>
h .

The conclusion follows by using (11.12). □

11.5. Endpoints equations and trivial coboundary tensors. We
will now use the previous constructions to finish the proof of Proposi-
tion 10.14. We will need the following description of natural projections
in tensor spaces.

Lemma 11.12. Let k ≥ −1 and H be in ⊗2Hk. Write H = J+K+L
with J in ⊗2Hk,+, K in Hk,+ ⊗Hk,− ⊕Hk,− ⊗Hk,+ and L in ⊗2Hk,−.
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If k is even, we have

J =
1

(q + 1)2
(∨H∨ + ∨H +H∨ +H)

K =
1

(q + 1)2
(−2 ∨H∨ + (q − 1) ∨H + (q − 1)H∨ + 2qH)

L =
1

(q + 1)2
(∨H∨ − q ∨H − qH∨ + q2H).

If k is odd, we have

J =
1

4
(∨H∨ + ∨H +H∨ +H)

K =
1

2
(− ∨H∨ +H)

L =
1

4
(∨H∨ − ∨H −H∨ +H).

Proof. This is a direct computation. □

Proof of Proposition 10.14. Let H be in ⊗2Hk[t] and assume that the
ultraweight Ωk(H) is a coboundary. Let n be as in Proposition 3.3.
We will show that there exists a trivial coboundary tensor K such that
H −K has degree ≤ k + n.

By Definition 10.7 and Definition 10.8, we may assume that H is a
symmetric tensor and that it belongs to ⊗2Hk,+ ⊕⊗2Hk,−, that is, we
have ∨H = H∨. If Γ is bipartite, we can also assume that we have

H̃ = H, that is, H is invariant by the twist operator of Subsection
10.2. As usual, for j ≥ 0, we set Hj =

∫
Iq Cj(t)H(t)dµq(t).

Suppose k is even. Then, by Lemma 11.12, the component of H
in ⊗2Hk,+[t] is (q + 1)−1(H + H∨) and its component in ⊗2Hk,−[t] is
(q + 1)−1(qH −H∨). For j ≥ 0, we set

Jj = −(Hj +H∨
j ) + (qHj −H∨

j ) + (1− q−2)
∑
h>j

j−h even

qHh −H∨
h

= (q − 1)Hj − 2H∨
j + (1− q−2)

∑
h>j

j−h even

qHh −H∨
h .

Assume Γ is not bipartite. Then, by Lemma 3.2, Proposition 3.3 and
Proposition 10.15, there exist finitely supported sequences (uj)j≥0 in
Wk,k−1 and (vj)j≥0 in Wk−1,k such that, for every j ≥ k + n and ab, xy
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in Xk, we have

(11.13) q−jϖk(Jj)(ab, xy) =

uj(ab, x1y) + vj(ab1, xy)− uj−1(ab, xy1)− vj−1(a1b, xy).

Assume Γ is bipartite. As above, by Lemma 3.2, Proposition 3.3 and
Proposition 10.15, there exist finitely supported sequences u = (uj)j≥0

in Wk,k−1 and v = (vj)j≥0 in Wk−1,k such that, for every j ≥ k + n,
(11.13) holds for any ab, xy in Xk such that j + d(a, x) is even (recall
that k is even). Note that in these relations, for j ≥ 0, we only use the
values of the function uj on the set

{(ab, xy) ∈ Xk ×Xk−1|j + d(a, x) is odd}.

Thus, we can assume that, for every (ab, xy) in Xk × Xk−1 we have
uj(ab, xy) = 0 if j + d(a, x) is even. In the same way, we also assume
that, for every (ab, xy) in Xk−1×Xk we have vj(ab, xy) = 0 if j+d(a, x)

is even. Besides, recall that H̃ = H, so that, for j ≥ 0, we have by
the definition of the twist operator in Subsection 10.2, ε(−1)δHj =
(−1)jHj, hence, by Lemma 10.4, ε(−1)δJj = (−1)jJj. By Lemma
10.5, for every j ≥ 0 and ab, xy in Xk such that j + d(a, x) is odd, we
get ϖj(Jj)(ab, xy) = 0 so that (11.13) also holds for such pairs (ab, xy).

Hence, in both cases, we can assume that (11.13) is valid for any
j ≥ k+n and any ab, xy in Xk, that is, by Definition 9.2, the sequence
(q−jϖk(Jj))j≥k+n is cohomologically trivial in Wk. By Proposition 9.3,
we can find finitely supported sequences (Fj)j≥k+n−1 in Hk⊗Hk−1 and
(Gj)j≥k+n−1 in Hk−1 ⊗Hk such that, for j ≥ k + n, one has

q−jJj = F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1.

Recall that we have ∨Jj
=J∨

j , j ≥ 0. Therefore, by Proposition 11.1, we
may find finitely supported sequences (Pj)j≥1 in Hk−2 ⊗ Hk, (Qj)j≥1

in Hk ⊗ Hk−2 and (Xj)j≥1 and (Yj)j≥1 in Hk−1 ⊗ Hk−1 such that for
j ≥ 1, one has P∨

j = ∨P j, Q
∨
j = ∨Qj and, for j ≥ k + n,

∨Fj − (q − 1)Fj + F∨
j−1 = Q>

j − (q − 1) >Xj +
∨>(Xj + Yj)

G∨
j − (q − 1)Gj +

∨Gj−1 =
>Pj − (q − 1)Y >

j + (Xj + Yj)
>∨.

Thanks to Lemma 11.5, we can extend the definition of Fj and Gj to all
j ≥ 0 by using the above relations. Now, Lemma 11.4, Lemma 11.7 and
Lemma 11.12 precisely tell us that we may find a trivial coboundary
polynomial tensor K such that, for any j ≥ k + n, we have

Hj −Kj ∈ Hk,+ ⊗Hk,− ⊕Hk,− ⊗Hk,+,
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where Kj =
∫
Iq Cj(t)K(t)dµq(t). By Definition 10.7, the component

of H − K on (Hk,+ ⊗ Hk,− ⊕ Hk,− ⊗ Hk,+)[t] is a trivial coboundary
tensor. The conclusion follows in case k is even.

Suppose now k is odd. We just sketch the proof. For j ≥ 0, we set

Jj = H∨
j + (1− q−1)

∑
h>j

j−h even

H∨
h −Hh−1.

Using Lemma 3.2, Proposition 3.3 and Proposition 10.15, we get
(11.13) for all j ≥ k+n and ab, xy in Xk when Γ is not bipartite. When
Γ is bipartite, this is only true when d(a, x)+ j is odd. But as we have

assumed that H̃ = H, Lemma 10.4 says that ε(−1)δJj = (−1)j+1Jj,
j ≥ 0. Reasoning as above, we show that we can again assume (11.13)
to hold for all j ≥ k + n and ab, xy in Xk.

We conclude as in the even case by using Lemma 11.4, Lemma 11.8
and Lemma 11.12. □

12. Spectral obstructions

In Section III.6, we have introduced the spectral transform of pseud-
ofunctions. For k ≥ 0, the spectral transform essentially allows to
diagonalize the action of the natural operators on the subspace of H∞
spanned by the image of (Hk)

>∞
. This construction leads to the de-

scription of the spectral theory of orthogonal extension.
Now, as in Subsection 5.2, every Γ-invariant symmetric bilinear form

of D(∂X) defines in a natural way a symmetric bilinear form on H∞
for which the action of the operators R and S are symmetric. By
pulling back this bilinear form under the spectral transform (and the
polyextension map of Subsection III.2.3), we get a symmetric bilinear
form on H2

k[t] for which the polynomial operators of Subsection III.6.1
are symmetric and which vanishes on the range of the map described
in Proposition III.6.5.
In the present Section, we will use Proposition 10.14 to show that the

last two properties characterize the range of this map Q(D(∂X))Γ →
Q(H2

k[t]) up to a finite dimensional subspace.

12.1. The first step extension. For k ≥ −1, we introduce a map
H2

k → Hk+1 that will allow us to pull-back the result of Proposition
10.14 under the spectral transform.
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Definition 12.1. Let k ≥ −1. We define the first step extension map

Ik : H2
k → Hk+1 as follows. For H =

(
H0

H1

)
in H2

k, we set

IkH = H∨>
0 − (q − 1)H>

0 +H>∨
1 if k is even

= H∨>∨
0 − (q − 1)H∨>

0 +H>
1 if k is odd.

We shall see below in Lemma 12.6 that the first step extension map
allows to describe the behaviour of the converse of the spectral trans-
form on constant vectors. Before showing this, we establish some basic
properties of this map.

There is a compatibility of first step extension with some other ex-
tension maps. A direct computation (using as usual Lemma III.2.6)
yields

Lemma 12.2. Let k ≥ 0 and H be in H2
k. We have

(Ik−1H)> = Ik(H
∨>) if k is even

= Ik(H
>∨) if k is odd.

Using Lemma III.2.8 allows to determine the null space of the map
Ik:

Lemma 12.3. Let k ≥ 0 and H be in H2
k−1. Then IkH = 0 if and

only if there exists G in Hk−1 with H =

(
G∨>∨

−qG>

)
.

Proof. Assume k is even. Then, if IkH = 0, by Definition 12.1, we have

H∨>
0 − (q − 1)H>

0 = −H>∨
1 ,

hence, by Lemma III.2.6, there exists G in Hk−1 with

H∨
0 − (q − 1)H0 = G∨> and H1 = −G>.

The first relation amounts to H0 = q−1G∨>∨. Therefore, we obtain

H = q−1

(
G∨>∨

−qG>

)
as required. Conversely, if H may be written in this

way, a straightforward computation using Lemma III.2.6 shows that
IkH = 0.

The proof is analogue in the odd case. □

In the bipartite case, the first step extension behaves well with
respect to the operations introduced in Subsection III.2.6. Lemma
III.2.22 and Definition 12.1 give
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Lemma 12.4. Assume Γ is bipartite. Let k ≥ −1 and H be in H2
k.

Then, we have

Ik

(
H ≀

0

−H ≀
1

)
= (−1)k(IkH)≀.

Now, by using the first step extension map, we can relate the pull
back of the natural bilinear forms of Subsection 5.2 with the ultra-
weight.

Proposition 12.5. Let p be a Γ-invariant symmetric bilinear form on
D(∂X) and θ be the associated (ι, T )-invariant distribution of Γ\S .

For k ≥ 0 and H, J in H(N)
k . We have

p(EkH,EkJ) = ⟨θ,Ωk+1(IkĤ(t)⊗ IkĴ(t))⟩.

The polyextension map Ek was introduced in Definition III.2.11. The

spectral transform H 7→ Ĥ was constructed in Proposition III.6.3. The
ultraweight Ωk was introduced in Definition 10.1.

Note that, in the formula above, the ultraweight Ωk+1(IkĤ(t) ⊗
IkĴ(t)) is not a priori a smooth function. Nevertheless, by Corollary
10.12, we know that it is cohomologous to a smooth function, so that
the formula makes sense, thanks to the convention introduced in Re-
mark 2.8.

The proof relies on the next lemma which tells us that the first
extension map is essentially defined by studying the converse of the
spectral transform on constant vectors in H2

k[t].

Lemma 12.6. Let k ≥ −1 and H be in H2
k. Define G in H(N)

k by
setting Gi = 0 for i ≥ 2 and

G0 = H∨
0 − (q − 1)H0 G1 = H1 if k is even

G0 = H1 − (q − 1)H∨
0 G1 = H∨

0 if k is even.

Then we have

Ĝ(t) = H and EkG = (IkH)>
∞
.

Thanks to this Lemma, we could also have recovered Lemma 12.3 as
a consequence of Proposition III.6.5.

Proof. Note first that Definition III.2.11 gives in both cases

EkG = (G>
0 +G>∨

1 )>
∞
= (IkH)>

∞
.

Assume k is even. By Definition III.2.16, we have

G = G010 +G111 = G010 + S(G110).
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Using (III.6.1) and Proposition III.6.3, we obtain

Ĝ(t) =

(
q−1G∨

0

0

)
+St

(
q−1G∨

1

0

)
=

(
q−1G∨

0

0

)
+

(
0
G1

)
=

(
H0

H1

)
as required.

Assume k is odd. By Definition III.2.17, we have

G = G010 +G111 = G010 +R(G110).

Using (III.6.2) and Proposition III.6.3, we obtain

Ĝ(t) =

(
0
G0

)
+Rt

(
0
G1

)
=

(
0
G0

)
+

(
G∨

1

(q − 1)G1

)
=

(
H0

H1

)
as required. □

Proof of Proposition 12.5. We fix A,B in H2
k and we let K and L be

the elements of H(N)
k given by Lemma 12.6 so that

K̂(t) = A EkK = (IkA)
>∞

L̂(t) = B EkL = (IkB)>
∞
.

Let a, b ≥ 0 be integers. By Proposition III.6.3, the spectral transforms
of P aK and P bL are given by

P̂ aK(t) = taA and P̂ bL(t) = tbB.

By Lemma III.2.18, Lemma 5.3, Proposition 5.4 and Corollary 10.11,
we obtain

p(Ek(P
aK), Ek(P

bL)) = p(P aEkK,P
bEkL)

= ⟨θ,Φ(P aEkK,P
bEkL)⟩

= ⟨θ,Φ(P a+bEkK,EkL)⟩
= ⟨θ,Φ(P a+b(IkA)

>∞
, (IkB)>

∞
)⟩

= ⟨θ,Ωk+1(t
a+b(IkA)⊗ (IkB))⟩

= ⟨θ,Ωk+1(IkP̂ aK ⊗ IkP̂ bL)⟩.

The conclusion follows when H and J are of the form P aK and P bL.
This is sufficient as, by Proposition III.6.3, the elements of this form

span the space H(N)
k . □
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12.2. Tensors with trivial coboundary first step extension. We
aim at translating the result of Proposition 10.14 in the spectral rep-
resentation obtained through the spectral transform. To this aim, we
now describe the inverse image, under the first extension map, of the
space of trivial coboundary tensors of Definition 10.7 and Definition
10.8.

We first define a notational convention which complements the no-
tation of Subsection 8.2. If V and W are vector spaces, the elements of

the tensor product V 2⊗W 2 will be written as matrices u =

(
u00 u01
u10 u11

)
whose coefficients are elements of V ⊗W . The natural bilinear map
V 2 ×W 2 → V 2 ⊗W 2 will be defined by(

v0
v1

)
⊗
(
w0

w1

)
=

(
v0 ⊗ w0 v0 ⊗ w1

v1 ⊗ w0 v1 ⊗ w1

)
, v0, v1 ∈ V, w0, w1 ∈ V.

With this matrix convention, we can describe the action of linear
maps as follows. Assume V ′ and W ′ are other vector spaces and χ :
V 2 → (V ′)2 and ψ : W 2 → (W ′)2 are linear maps. We may write them
as matrices

χ =

(
χ00 χ01

χ10 χ11

)
and ψ =

(
ψ00 ψ01

ψ10 ψ11

)
whose coefficients are respectiely linear maps V → V ′ and W → W ′.
Then, the associated linear maps u 7→ χu, V 2 ⊗W 2 → (V ′)2 ⊗W 2 and
u 7→ uψ, V 2 ⊗ W 2 → V 2 ⊗ (W ′)2 are given by the following matrix
multiplications: for u in V 2 ⊗W 2, we have

χu =

(
χ00 χ01

χ10 χ11

)(
u00 u01
u10 u11

)
and uψ =

(
u00 u01
u10 u11

)(
ψ00 ψ10

ψ01 ψ11

)
.

The reader should beware that, for this computation rule to hold, the
antidiagonal coefficients of the latter matrix have to be exchanged.

Coming back to spaces of pseudofunctions, if Γ is bipartite, we extend
the definition of the twist operator of Subsection 10.2 as follows. For

k ≥ 0 and H(t) =

(
H00(t) H01(t)
H10(t) H11(t)

)
an element of ⊗2H2

k[t], we will

define the twist H̃ of H as the element

H̃(t) =

(
H̃00(t) −H̃01(t)

−H̃10(t) H̃11(t)

)
.

This definition allows to get

Lemma 12.7. Assume Γ is bipartite. Let k ≥ 0 and H be in ⊗2H2
k[t].

Then we have Ik(H̃)Ik = ĨkHIk.
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Proof. This is a direct consequence the definition of the twist operator
in Subsection 10.2 as well as of Lemma 10.3 and Lemma 12.4. □

Now we introduce our candidates for playing the roles of trivial
coboundary tensors in ⊗2H2

k[t].

Definition 12.8. Let k ≥ 0. We define the space of trivial spectral
obstructions in ⊗2H2

k[t] as the subspace Σ
0
k spanned by the polynomial

tensors

J ⊗K −K ⊗ J J,K ∈ H2
k[t]

RtH −HRt H ∈ ⊗2H2
k[t]

StH −HSt H ∈ ⊗2H2
k[t]

H∨>∨ −H>

(
0 q
−1 (q + 1)t

)
H ∈ (H2

k ⊗H2
k−1)[t]

and, if Γ is bipartite,

H̃ −H, H ∈ ⊗2Hk[t].

In this Definition, we have used the notation of Subsection III.6.1
for the operators Rt and St.

Proposition 12.9. Let k ≥ 1 and H(t) be in ⊗2H2
k[t]. Then the

element IkH(t)Ik of ⊗2Hk+1[t] belongs to Θ0
k+1 if and only if H(t)

belongs to Σ0
k.

The spaces of trivial coboundary polynomial tensors Θ◦
k, k ≥ 0, were

defined in Definition 10.7 and Definition 10.8.
In the proof, we will need to compute explicitely the values of the

double of the first step extension operator on the tensors that appear
in Definition 12.8. Note that, when k is even, the operator St of
Subsection III.6.1 does not depend on t. In the formulas below, we
simply denote it by S. In the same way, when k is odd, the operator
Rt is denoted by R.

Lemma 12.10. Let k ≥ 1. The action of the double first step extension
operator on the generators of the space of trivial spectral obstructions
in ⊗2H2

k[t] may be computed by using the following formulas.
If k is even, for H in ⊗2H2

k, we have

Ik(SH −HS)Ik =
∨(IkHIk)− (IkHIk)

∨.
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For H(t) =

(
H00(t) H01(t)
H10(t) H11(t)

)
in ⊗2H2

k[t] and J(t) =

(
H00(t)

∨H01(t)
H10(t)

∨ H11(t)

)
,

we have

Ik(RtJ(t)− J(t)Rt)Ik = q
>
(H00(t)

∨ − ∨H00(t))
>

+q(q+1)t >H10(t)
>+q(q−1) ∨>H10(t)

>−q ∨>∨H10(t)
>−q ∨>H10(t)

∨>

−q(q+1)t >H01(t)
>−q(q−1) >H01(t)

>∨+q >H01(t)
∨>∨+q >∨H01(t)

>∨

+ (q + 1)t(>H11(t)
>∨ − ∨>H11(t)

>)− ∨>
(∨H11(t)−H11(t)

∨)>∨.

For H(t) in Hk−1[t], we have

Ik

(
H0(t)

∨>∨

H1(t)
∨>∨

)
− Ik

(
0 −1
q (q + 1)t

)(
H0(t)

>

H1(t)
>

)
= H1(t)

∨>∨>∨

− (q − 1)H1(t)
>> +H1(t)

>∨> − (q + 1)tH1(t)
>>∨.

If k is odd, for H in ⊗2H2
k, we have

Ik(RH −HR)Ik =
∨(IkHIk)− (IkHIk)

∨.

For H(t) =

(
H00(t) H01(t)
H10(t) H11(t)

)
in ⊗2H2

k[t], we have

Ik(StJ(t)− J(t)St)Ik = − ∨>H00(t)
∨>∨ + ∨>∨H00(t)

>∨

+(q−1) ∨>H00(t)
∨>−(q−1) >∨H00(t)

>∨+(q+1)t(>∨H00(t)
∨>∨−∨>∨H00(t)

∨>)

+ >∨H10(t)
∨>∨ − (q − 1) >∨H10(t)

∨> + >H10(t)
>∨ − (q + 1)t >H10(t)

∨>

− ∨>∨H01(t)
∨> +(q− 1) >∨H01(t)

∨> − ∨>H01(t)
> +(q+1)t >∨H01(t)

∨>

+
>
(∨H11(t)−H11(t)

∨)>

For H(t) in Hk−1[t], we have

Ik

(
H0(t)

∨>∨

H1(t)
∨>∨

)
− Ik

(
0 −1
q (q + 1)t

)(
H0(t)

>

H1(t)
>

)
= H1(t)

∨>∨>

+H1(t)
>∨>∨ − (q − 1)H1(t)

>∨> − (q + 1)tH1(t)
>>.

Proof. These are straightforward computations. □

In case k ≥ 2 is even, Lemma 7.5 and Lemma 7.8 imply that the first
step extension Ik maps Hk onto Hk+1. This fact will make the proof
of Proposition 12.9 easier, so that we start with this case.

Proof of Proposition 12.9 when k is even. By Lemma 7.5 and Lemma
7.8, we have IkHk = Hk+1. By comparing the formulas in Definition
10.8 and the ones in Lemma 12.10 (and by using Lemma 12.7 in case Γ
is bipartite), we get IkΣ

0
kIk = Θ0

k+1. By Lemma 8.4 and Lemma 12.3,
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the null space of the map H(t) 7→ IkH(t),H2
k[t] → Hk+1[t] is the space

of polynomial of the form(
G(t)∨>∨

−qG(t)

)
=

(
G(t)∨>∨

0

)
−
(
0 −1
q (q + 1)t

)(
G(t)>

0

)
where G(t) is in Hk−1[t]. Therefore, in view of Definition 12.8, the null
space of the map H(t) 7→ IkH(t)Ik,⊗2H2

k[t] → ⊗2Hk+1[t] is contained
in Σ0

k. The conclusion follows. □

In case k is odd, we will need to give a set of generators for the space
(Ik ⊗2 H2

k[t]Ik) ∩Θ0
k+1. This will use

Lemma 12.11. Let k ≥ −1, H be in Hk and t be in R, t2 ̸= 1. Assume
that we have

H∨>∨> +H>∨>∨ = (q + 1)tH>> + (q − 1)H>∨> if k is even

= (q + 1)tH>> + (q − 1)H∨>> if k is odd.

Then H = 0.

Proof. We prove the statement by induction on k.
For k = −1, as the ∨ operator is −1 on 0-pseudofunctions (see

Subsection III.2.2), the assumption reads as tH+H∨ = 0, hence H = 0
since t2 ̸= 1.
Assume now k ≥ 0 and the Lemma holds for k − 1.
If k is even, Lemma III.2.8 says that we may find J in Hk with

(q + 1)tH> + (q − 1)H>∨ −H∨>∨ = J∨> and H>∨ = J>.

Applying again Lemma III.2.8 to the latter, we get K in Hk−1 with

J = K∨> and H = K>.

The assumption now reads as

K>∨>∨ +K∨>∨> = (q + 1)tK>> + (q − 1)K∨>> = 0,

and the conclusion follows from the induction assumption.
The proof is analogue in the odd case. □

We can now give a new version of Definition 10.7.

Lemma 12.12. Let k ≥ 2 be an even integer. Then, the space

(Ik−1(⊗2H2
k−1[t])Ik−1) ∩Θ0

k

is spanned by the following polynomial tensors:

J ⊗K −K ⊗ J J,K ∈ Ik−1H2
k−1[t]

H H ∈ (Hk,+ ⊗Hk,−)[t] ∩ Ik−1(⊗2H2
k−1[t])Ik−1

>H> H ∈ (Hk−1,+ ⊗Hk−1,−)[t]
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as well as

(q + 1)t >H> + (q − 1) >H∨> − 2 >H∨>∨

H ∈ (Hk−1,+ ⊗Hk−1,+ ⊕Hk−1,− ⊗Hk−1,−)[t]

and

(q + 1)tH>> + (q − 1)H>∨> −H∨>∨> −H>∨>∨

H ∈ ((Ik−1H2
k−1)⊗Hk−2)[t]

and, if Γ is bipartite,

H̃ −H, H ∈ Ik−1(⊗2H2
k−1[t])Ik−1.

Proof. The main difficulty is to show that the component of an element
of (Ik−1⊗2H2

k−1[t]Ik−1)∩Θ0
k corresponding to the fifth case of Definition

10.7 can be assumed to belong to (Ik−1H2
k−1 ⊗Hk−2)[t].

We first claim that, in this fifth case, in full generality, it suffices
to assume that the element H(t) belongs to (Hk,+ ⊗Hk−2,+ ⊕Hk,− ⊗
Hk−2,−)[t] (a fact that was already implicitely used in Subsection 11.2).
Indeed, fix H(t) in Hk ⊗Hk−2[t] and set

J(t) = (q + 1)tH(t)>> + (q − 1)H(t)>∨> −H(t)∨>∨> −H(t)>∨>∨.

When H(t) belongs to (Hk,+ ⊗ Hk−2,− ⊕ Hk,− ⊗ Hk−2,+)[t], we have
H(t)∨ + ∨H(t) = (q − 1)H(t), hence

J(t) = (q + 1)tH(t)>> + ∨H(t)>∨> −H(t)>∨>∨

and the latter belongs to (Hk,+ ⊗ Hk,− ⊕ Hk,− ⊗ Hk,+)[t] so that he
first two cases of Definition 10.7 already warrant that it is a trivial
coboundary polynomial tensor. Notice in particular, that, if H(t) is in
(Hk,+ ⊗Hk−2,+ ⊕Hk,− ⊗Hk−2,−)[t], then

J(t) = (q + 1)tH(t)>> + (q − 1)H(t)>∨> − ∨H(t)>∨> −H(t)>∨>∨,

so that J(t) belongs to (Hk,+ ⊗Hk,+ ⊕Hk,− ⊗Hk,−)[t].
In the same way, if Γ is bipartite, by Lemma 10.4, for H(t) in Hk ⊗

Hk−2[t], we have

J̃(t) = −(q + 1)tH̃(t)>> − (q − 1)H̃(t)>∨> + H̃(t)∨>∨> + H̃(t)>∨>∨.

Thus, we can also assume that H̃(t) = −H(t) and hence J̃(t) = J(t).
Now, let G(t) be in ⊗2H2

k−1[t] and assume that Ik−1G(t)Ik−1 is in Θ0
k.

In view of the discussion above, we can assume that the component of
Ik−1G(t)Ik−1 corresponding to the fifth case of Definition 10.7 is of the
form

J(t) = (q + 1)tH(t)>> + (q − 1)H(t)>∨> −H(t)∨>∨> −H(t)>∨>∨,
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for some H in (Hk,+ ⊗Hk,+ ⊕Hk,− ⊗Hk,−)[t], with H̃(t) = −H(t) if

Γ is bipartite. In particular, we have ∨J = J∨ and J̃ = J̃ . Now, we
notice that the space Ik−1(⊗2H2

k−1[t])Ik−1 ⊂ ⊗2Hk[t] is invariant under

the symmetrization of tensors, the map F (t) 7→ ∨F (t)∨ and the twist
operator if Γ is bipartite (the latter by Lemma 12.7). Moreover, these
maps commute to each other. Therefore, in view of Definition 10.7, the
polynomial tensor J(t) may be written as the sum of a skew-symmetric
polynomial tensor and an element of Ik−1(⊗2H2

k−1[t])Ik−1. In other
words, the symmetrization of J(t) belongs to Ik−1(⊗2H2

k−1[t])Ik−1. As
J(t) belongs to (Hk ⊗ Ik−1H2

k−1)[t], this tells us that J(t) itself belongs
to Ik−1(⊗2H2

k−1[t])Ik−1. By applying Lemma 8.4 and Lemma 12.11, we
obtain that H(t) belongs to (Ik−1H2

k−1 ⊗Hk−2)[t].
Therefore, we have shown that the space (Ik−1(⊗2H2

k−1[t])Ik−1)∩Θ0
k

is the intersection of Ik−1(⊗2H2
k−1[t])Ik−1 with the subspace of ⊗2Hk[t]

spanned by the polynomial tensors

J ⊗K −K ⊗ J J,K ∈ Hk[t]

H H ∈ (Hk,+ ⊗Hk,−)[t]
>H> H ∈ (Hk−1,+ ⊗Hk−1,−)[t]

as well as

(q + 1)t >H> + (q − 1) >H∨> − 2 >H∨>∨

H ∈ (Hk−1,+ ⊗Hk−1,+ ⊕Hk−1,− ⊗Hk−1,−)[t]

and

(q + 1)tH>> + (q − 1)H>∨> −H∨>∨> −H>∨>∨

H ∈ (Ik−1H2
k−1 ⊗Hk−2)[t]

and, if Γ is bipartite,

H̃ −H, H ∈ Ik−1 ⊗2 H2
k−1[t]Ik−1.

The conclusion follows as Ik−1(⊗2H2
k−1[t])Ik−1 is stable under the sym-

metrization operator, the map F (t) 7→ ∨F (t)∨ and the twist operator
if Γ is bipartite. □

Proof of Proposition 12.9 when k is odd. This is analogue to the proof
in case k is even, by using Lemma 12.12 instead of Definition 10.7. □

12.3. Finiteness of genuine spectral obstructions. We now use
Proposition 12.9 to translate Proposition 10.14 into a result that only
leaves in the spectral world.
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Let p be a Γ-invariant symmetric bilinear form on D(∂X). For k ≥ 0,
we let p̂k be the symmetric bilinear form on H2

k[t] such that, for every

H, J in H(N)
k , one has

p̂k(Ĥ, Ĵ) = p(EkH,EkJ),

where Ek is the polyextension map of Definition III.2.11 and, as in
Subsection 5.2, we still write p for the symmetric bilinear form on H∞
associated with p.

The existence and uniqueness of p̂k are warranted by Proposition
III.6.3.

Now, we will associate to p̂k a linear functional on ⊗2H2
k[t] by the

following construction which may be seen as an abstract form of the
spectral theorem.

By construction in Subsection 5.2 (and by using Lemma I.9.11), for
H, J in H∞, we have

(12.1) p(RH, J) = p(H,RJ) and p(SH, J) = p(H,SJ)

where R and S are the natural operators on ∞-pseudofunctions de-
fined in Subsection III.2.5. This gives p(PH, J) = p(H,PJ), hence, by
Proposition III.6.3, for H(t), J(t) in H2

k[t],

(12.2) p̂k(tH(t), J(t)) = p̂k(H(t), tJ(t)).

Let V,W be vector spaces and r, s be inderminates. The product
map

V [r]×W [s] → (V ⊗W )[r, s], (v(r), w(s)) 7→ v(r)⊗ w(s)

defines an isomorphism between V [r]⊗W [s] and (V ⊗W )[r, s]. Under
this isomorphism, the subspace of V [r]⊗W [s] spanned by the tensors
of the form

(rv(r))⊗ w(s)− v(r)⊗ (sw(s)), v(r) ∈ V [r], w(s) ∈ W [s],

may be identified with the space (r − s)(V ⊗ W )[r, s]. Thus, if φ :
V [r] ⊗W [s] → R is a bilinear form such that, for every v(r) in V [r]
and w(s) in W [s], we have

φ(rv(r), w(s)) = φ(v(r), sw(s)),

we may consider φ as a linear functional on (V ⊗W )[r, s] which vanishes
on the space (r− s)(V ⊗W )[r, s]. Now, if U a vector space, we have a
natural map δ : U [r, s] → U [t] defined by letting r and s take the value
t, that is

δu(t) = u(t, t), u(r, s) ∈ U [r, s].
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Elementary algebraic considerations show that the null space of δ is
exactly the space (r − s)U [r, s]. Therefore, if φ is as above, we may
consider φ as a linear functional on (V ⊗W )[t].

By applying this construction to the bilinear form p̂k, since (12.2)
holds, we will now consider p̂k as a linear functional on ⊗2H2

k[t]. This
linear functional may also be computed as follows:

Lemma 12.13. Let p be a Γ-invariant symmetric bilinear form on
D(∂X) and θ be the associated (ι, T )-invariant distribution on Γ\S .
For k ≥ 0 and H in H2

k[t], we have

p̂k(H) = ⟨θ,Ωk+1(IkHIk)⟩.

Proof. This is a direct consequence of the definition of p̂k and of Propo-
sition 12.5. □

We shall now study the range of the map p 7→ p̂k.

Definition 12.14. Let k ≥ 1. We define the space of spectral ob-
structions as the subspace Σk of all H in ⊗2H2

k[t] such that, for any
Γ-invariant symmetric bilinear form p on D(∂X), one has p̂k(H) = 0.

We have an alternative definition of Σk by means of the trivial
coboundary tensors of Definition 10.7 and Definition 10.8.

Lemma 12.15. Let k ≥ 1. The space Σk ⊂ ⊗2H2
k[t] is the inverse

image of the space Θk+1 ⊂ ⊗2Hk+1[t] under the map H 7→ IkHIk. In
particular, we have Σ0

k ⊂ Σk.

In other words, all the polynomial tensors that appear in Definition
12.8 are killed by any linear functional p̂k as above.

Proof. The equivalence between the two definitions of Σk is a direct
consequence of Proposition 2.1, Corollary 2.7 and Lemma 12.13. The
inclusion Σ0

k ⊂ Σk then follows by Lemma 10.9 and Proposition 12.9.
□

We can use Proposition 10.14 to give a partial converse to Lemma
12.15.

Theorem 12.16. For any k ≥ 1, the space Σ0
k has finite codimension

in Σk. More precisely, there exists an integer n ≥ 0 such that, for
any k ≥ 1, we have Σk ⊂ Σ0

k + (⊗2H2
k)k+n[t], that is, every spectral

obstruction may be written as the sum of a trivial spectral obstruction
and a polynomial tensor of degree ≤ k + n.

As for Proposition 12.9, the proof of this statement will be easier in
the even case. In the odd case, we shall need



136 JEAN-FRANÇOIS QUINT

Lemma 12.17. Let k ≥ −1 and (Fj)j≥0 be a finitely supported se-
quence in Hk. Assume that, for every j ≥ 1, we have

F∨>
j = F>∨

j−1 if k is even

F>∨
j = F∨>

j−1 if k is odd.

Then Fj = 0 for any j ≥ 0.

Proof. As usual, we prove this statement by induction on k.
If k = −1, the assumptions says that, for any j ≥ 1, we have Fj +

F∨
j−1 = 0. The conclusion follows as the sequence (Fj)j≥0 is finitely

supported.
Suppose now k ≥ 0 and the result is true for k − 1.
Assume k is even. From the assumption and Lemma III.2.8, we know

that there exists a sequence (Gj)j≥0 in Hk−1 such that, for any j ≥ 1,
we have

F∨
j = G∨>

j−1 and Fj−1 = G>
j−1.

This gives G>∨
j = G∨>

j−1. Besides, as (Fj)j≥0 is finitely supported, so is
(Gj)j≥0. The conclusion follows by induction.

The proof in the odd case is analogue. □

Using the latter, we can show that the solutions to certain cohomo-
logical equations lie in smaller subspaces.

Corollary 12.18. Let k ≥ −1 be odd and (Hj)j≥1 be a finitely sup-
ported sequence in Ik(⊗2H2

k)Ik. Assume that there exist finitely sup-
ported sequences (Fj)j≥0 in Hk+1 ⊗Hk and (Gj)j≥0 in Hk ⊗Hk+1 such
that, for j ≥ 1, one has

Hj = F>∨
j − F∨>

j−1 +
∨>Gj − >∨Gj−1.

Then, for all j ≥ 0, we have

Fj ∈ (IkH2
k)⊗Hk and Gj ∈ Hk ⊗ (IkH2

k).

Proof. For j ≥ 1, we have

F>∨
j − F∨>

j−1 = Hj − ∨>Gj +
>∨Gj−1 ∈ (IkH2

k)⊗Hk+1.

By Lemma 8.4 and Lemma 12.17, Fj belongs to (IkH2
k) ⊗ Hk for all

j ≥ 0. The proof of the other case is symmetric. □

Proof of Theorem 12.16. Let n be as in Proposition 10.14. Take H in
Σk. By Lemma 12.15, IkHIk belongs to Θk+1 and Proposition 10.14
says that there exists J in Θ0

k+1 such that H−J has degree ≤ k+n+1.
If k is even, by Lemma 7.5 and Lemma 7.8, Ik maps Hk onto Hk+1

hence J belongs to Ik(⊗2H2
k[t])Ik and Proposition 12.9 implies that we

can find K in Σ0
k such that H −K has degree ≤ k + n+ 1.
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If k is odd, we claim that we can actually choose J to belong to
Ik(⊗2H2

k[t])Ik. Indeed, due to Corollary 12.18, all the constructions
in the proof of Proposition 10.14, when applied to a tensor H in
Θ0

k+1 ∩ Ik(⊗2H2
k[t])Ik, provide trivial coboundary tensors also living in

Ik(⊗2H2
k[t])Ik (see in particular Subsection 11.1 and Subsection 11.2).

We then conclude as in the even case by applying Proposition 12.9. □

12.4. The spectral projective limit. In Section I.4, we have intro-
duced the space Fk of Γ-invariant k-quadratic fields, k ≥ 2. This is
a finite-dimensional space and the reduction map p 7→ p− sends Fk+1

onto Fk. The projective limit of the system (Fk)k≥2 is naturally identi-
fied with the space Q(D(∂X))Γ of Γ-invariant symmetric bilinear forms
on D(∂X). We will now give an alternate construction of a projective
system whose limit may be identified with Q(D(∂X))Γ. The advantage
of this new system is that it will keep track of the spectral theory of
non-negative elements in Q(D(∂X))Γ. The drawback is that it will be
constructed through infinite-dimensional spaces.

We first note that we have a natural embedding ⊗2H2
k[t]/Σk ↪→

⊗2H2
k+1[t]/Σk+1.

Lemma 12.19. Let k ≥ 1 and H be in ⊗2H2
k+1[t]. Then, if k is even,

H is in Σk if and only if ∨>H>∨ is in Σk+1. If k is odd, H is in Σk if
and only if >∨H∨> is in Σk+1.

Proof. Assume k is even. Then from Definition 10.1, Lemma 12.2 and
Lemma 12.15, we get

H ∈ Σk ⇔ Ωk+1(IkHIk) is a coboundary

⇔ Ωk+2(
>IkHIk

>) is a coboundary

⇔ Ωk+2(Ik+1
∨>H>∨Ik+1) is a coboundary

⇔ ∨>H>∨ ∈ Σk+1.

The proof in the odd case is analogue. □

Thus, for any k ≥ 1, we have defined an injective map⊗2H2
k[t]/Σk ↪→

⊗2H2
k+1[t]/Σk+1. We denote by

Πk : (⊗2H2
k+1[t]/Σk+1)

∗ → (⊗2H2
k[t]/Σk)

∗

the dual surjective map.

Proposition 12.20. The maps

p 7→ p̂k : Q(D(∂X))Γ → (⊗2H2
k[t]/Σk)

∗, k ≥ 1,

define a linear isomorphism between Q(D(∂X))Γ and the projective
limit of the projective system ((⊗2H2

k[t]/Σk)
∗,Πk)k≥1.
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The main ingredient of the proof is the following injectivity property:

Lemma 12.21. Let p be in Q(D(∂X))Γ and assume that the associated
symmetric bilinear form on H∞ is zero. Then p = 0.

Proof. First assume that Γxy = {e} for some xy in X1. In this case,
if f, g are in D(∂X), we can find Γ-invariant ∞-pseudofunctions F,G
with Fxy = f , Gxy = g and Fab = Gab = 0 for any ab in X1 ∖ Γ(xy).
Then, by definition, we have p(f, g) = p(F,G) = 0, hence p = 0.

If all edges admit non trivial stabilizers, then reasoning as above
shows that, for any xy in X1, for any Γxy-invariant functions f, g in
D(∂X), we have p(f, g) = 0. For xy in X1, we let Uxy be as usual

Uxy = {ξ ∈ ∂X|y ∈ [xξ)}.

Then, as p is Γ-invariant and Uxy is Γxy-invariant, for any f in D(∂X),
we have

|Γxy|p(1Uxy , f) =
∑
γ∈Γxy

p(1Uxy , γf) = p

1Uxy ,
∑
γ∈Γxy

γf

 = 0.

Since the functions 1Uxy span D(∂X) when xy runs in X1, we get p = 0
as required. □

Proof of Proposition 12.20. Let U be the quotient by the cohomology
equivalence relation of the space of all Hölder continuous functions on
Γ\S which are cohomologuous to a smooth ι-invariant function. Then,
in view of Remark 2.8, we may identifyQ(D(∂X))Γ with the dual space
of U .

By Lemma 12.15, for k ≥ 1, the map H 7→ Ωk+1(IkHIk) induces an
embedding of ⊗2H2

k[t]/Σk into U , whose range we denote by Uk. Then,
Lemma 12.2 warrants that we have Uk ⊂ Uk+1 and Proposition 5.4
and Lemma 12.21 warrant that we have U =

⋃
k≥1 Uk. The conclusion

follows since, by Lemma 12.13, the restriction to Uk of the distribution
associated to some element p of Q(D(∂X))Γ may be identified with
p̂k. □

Thanks to these constructions, Theorem 12.16 yields the

Proof of Corollary 1.1. Fix k ≥ 0. We claim that the spaceQ(AHk)
R,S

may be identified with the dual space of the space ⊗2H2
k[t]/Σ

◦
k. Indeed,

if φ is some symmetric bilinear form on AHk such that the operators
R and S are symmetric with respect to φ, we let φ̂ be the bilinear form

on H2
k[t] such that, for every H, J in H(N)

k , one has

φ̂(Ĥ, Ĵ) = φ(EkH,EkJ),
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where Ek is the polyextension map of Definition III.2.11. As in Subsec-
tion 12.3, the existence and uniqueness of φ̂ are warranted by Propo-
sition III.6.3.

By Lemma III.6.1 and Proposition III.6.3, multiplication by t is a
symmetric endomorphism of H2

k[t] with respect to φ̂. Therefore, still
as in Subsection 12.3, we can consider φ̂ as an element of the dual
space of ⊗2H2

k[t]. It follows from Corollary III.2.14, Proposition III.6.3
and Proposition III.6.5 as well as Definition 12.8 that the map φ 7→ φ̂
establishes a linear isomorphism between Q(AHk)

R,S and the space of
those elements in the dual space of ⊗2H2

k[t] which vanish on the space
Σ◦

k of trivial spectral obstructions.
Besides, Proposition 12.20 shows that this map sends the image of

Q(D(∂X))Γ in Q(AHk)
R,S onto the space of those elements in the dual

space of ⊗2H2
k[t] which vanish on the space Σk ⊃ Σ◦

k of all spectral ob-
structions. The conclusion follows as, by Theorem 12.16, the quotient
space Σk/Σ

◦
k has finite dimension. □

Appendix A. Harmonic cocycles

The purpose of this Appendix is to explain how the study of non-
negative Γ-invariant symmetric bilinear forms on D(∂X) can be consid-
ered as the study of wide class of unitary representations of Γ, namely
the ones admitting a cyclic harmonic first cohomology class.

A.1. Geometric cocycles. We start by recalling the basic definitions
of 1-cohomology. We also introduce a geometric version of these defi-
nitions. Later, we will show that both versions define the same notion
of cohomology.

Let G be a group with a linear representation on a real vector space
V . A 1-cocycle of G in V is a map σ : G→ V such that, for any g1, g2
in G, one has

σ(g1g2) = σ(g1) + g1σ(g2).

This cocycle is said to be a coboundary if there exists some v in V such
that, for g in G, one has

σ(g) = gv − v.

The space of 1-cocycles is denoted by Z1(G, V ) and the one of 1-
coboundaries by B1(G, V ). The latter may be identified with the quo-
tient space V/V G of V by the space of G-invariant elements in V . Two
cocycles are said to be cohomologous if their difference is a coboundary.
The quotient space H1(G, V ) = Z1(G, V )/B1(G, V ) is called the first
cohomology group of G in V .
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Now, assume G is our tree lattice Γ. In this case, the group H1(Γ, V )
may be computed in a different way. Define a geometric cocycle of Γ in
V as a Γ-equivariant map σ : X1 → V which is skew-symmetric, that
is,

σ(y, x) + σ(x, y) = 0, (x, y) ∈ X1.

If φ : X → V is any map, we denote by dφ : X1 → V the map
defined by

dφ(x, y) = φ(y)− φ(x), (x, y) ∈ X1.

We shall say that a geometric cocycle σ is a geometric coboundary if
there exists a Γ-equivariant map φ : X → V with σ = dφ. Write
Z1
geom(Γ, V ) for the space of geometric cocycles and B1

geom(Γ, V ) for the
one of geometric coboundaries. Again, two geometric coycles are said
to be cohomologous if their difference is a geometric coboundary.

A.2. Loops and integration. We aim at showing that the quotient
space Z1

geom(Γ, V )/B1
geom(Γ, V ) may be identified with the first coho-

mology group H1(Γ, V ). This identification will rely on an integration
procedure of cocycles that we will now introduce.
For x, y in X, we define a path from x to y as a sequence x0 =

x, x1, . . . , xn = y in X with xk ∼ xk−1, 1 ≤ k ≤ n. As in subsection
I.2.1, we shall say that this path is geodesic if moreover, we have xk−1 ̸=
xk+1, 1 ≤ k ≤ n − 1. By assumption, there exists a unique geodesic
path from x to y.

Lemma A.1. Let x be in X and x0 = x, x1, . . . , xn = x be a path from
x to itself. Then, n is even and, if n > 0 and x does not belong to the
set {x1, . . . , xn−1}, we have x1 = xn−1.

Proof. We show this statement by induction on n. For n = 0, there is
nothing to prove. For n = 1, there is no path of length 1 from x to
itself.

Assume n ≥ 2 and the statement holds for any n′ < n. Let x0 =
x, x1, . . . , xn = x be a path from x to itself. Then, by uniqueness,
the path is not geodesic, that is, there exists 1 ≤ k ≤ n − 1 with
xk−1 = xk+1. For 0 ≤ j ≤ n− 2, we set

yj = xj if j ≤ k − 1

yj = xj+2 if j ≥ k.

Then, y0, . . . , yn−2 is a path from x to itself. In particular, the induction
assumption implies that n is even.

Now, assume x does not belong to the set {x1, . . . , xn−1}. If n = 2,
we have x1 = xn−1 as required. If n ≥ 4, then, necessarily, we have
2 ≤ k ≤ n − 2, y1 = x1 and yn−3 = xn−1. As x does not belong
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to the set {y1, . . . , yn−3} ⊂ {x1, . . . , xn−1}, the induction assumption
says that we must have y1 = yn−3, hence x1 = xn−1. The conclusion
follows. □

Using this result, we can show that the sum of a skew-symmetric
map along a path only depends on the endpoints.

Corollary A.2. Let V be a real vector space and σ : X1 → V be a
skew-symmetric map. Then, for any x, y in X, the element of V

n∑
k=1

σ(xk−1, xk)

does not depend on the choice a path x0 = x, x1, . . . , xn = y from x to
y.

In the sequel, for σ : X1 → V a skew-symmetric map and x, y in X,
we set

y∑
x

σ =
n∑

k=1

σ(xk−1, xk)

where x0 = x, x1, . . . , xn = y is a path x to y. Note that, for x, y, z in
X, we have the chain rule

(A.1)

y∑
x

σ +
z∑
y

σ =
z∑
x

σ.

Proof of Corollary A.2. Fix x in X. We claim that, given a path x0 =
x, x1, . . . , x2n = x from x to itself, we have

∑2n
k=1 σ(xk−1, xk) = 0. We

show this statement by induction on n ≥ 0.
If n = 0, there is nothing to prove. Assume n ≥ 1 and the statement

holds for all n′ < n. Let x0 = x, x1, . . . , x2n = x be a path from
x to itself. If there exits 1 ≤ j ≤ 2n − 1 with xj = x, then the
sequences x0, . . . , xj and xj, . . . , x2n are paths from x to itself and, by
the induction assumption, we have

2n∑
k=1

σ(xk−1, xk) =

j∑
k=1

σ(xk−1, xk) +
2n∑

k=j+1

σ(xk−1, xk) = 0.

If there exists no such j, by Lemma A.1, we have x1 = x2n−1, hence,
the sequence x1, . . . , x2n−1 is a path from x1 to itself. By the induction
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assumption, we get

2n∑
k=1

σ(xk−1, xk) = σ(x, x1) +
2n−1∑
k=2

σ(xk−1, xk) + σ(x2n−1, x)

= σ(x, x1) + σ(x1, x) = 0,

as σ is skew-symmetric. The claim follows.
Now assume x, y are in X and u0 = x, . . . , um = y and v0 =

x, . . . , vn = y are two paths from x to y. Since u0, . . . , un, vm−1, . . . , v0
is a path from x to itself, we get

m∑
k=1

σ(uk−1, uk) +
n∑

k=1

σ(vk, vk−1) = 0.

As σ is skew-symmetric, this gives
m∑
k=1

σ(uk−1, uk) =
n∑

k=1

σ(vk−1, vk)

as required. □

A.3. Geometric representation of cohomology. We will use the
constructions above to build an isomorphism between the quotient
space Z1

geom(Γ, V )/B1
geom(Γ, V ) and the cohomology group H1(Γ, V ).

This is an explicit version of [10, Proposition II.13].
Note that, for σ in Z1

geom(Γ, V ), we have the following equivariance
property of path summation:

(A.2)

γy∑
γx

σ = γ

y∑
x

σ, γ ∈ Γ, x, y ∈ X.

This together with (A.1) will be instrumental in proving

Proposition A.3. Let V be a real vector space equipped with a linear
action of Γ. Let σ be in Z1

geom(Γ, V ). For x in X and γ in Γ, set

σx(γ) =

γx∑
x

σ.

Then σx is a 1-cocycle of Γ in V .
If y is another element of X, the cocycles σx and σy are cohomolo-

gous. If θ is a geometric cocycle that is cohomologous to σ, the coycles
σx and θx are cohomologous.

The linear map Z1
geom(Γ, V )/B1

geom(Γ, V ) → H1(Γ, V ) associated with
this construction is an isomorphism.
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Proof. Fix σ in Z1
geom(Γ, V ). For x in X and γ1, γ2 in Γ, we have, by

(A.1) and (A.2),

σx(γ1γ2) =

γ1x∑
x

σ +

γ1γ2x∑
γ1x

σ =

γ1x∑
x

σ + γ1

γ2x∑
x

σ = σx(γ1) + γ1σx(γ2).

Thus, σx is a 1-cocycle of Γ in V .
Besides, for x, y in X and γ in Γ, still by (A.1) and (A.2), we have

σx(γ) =

y∑
x

σ +

γy∑
y

σ +

γx∑
γy

σ =

y∑
x

σ + σy(γ)− γ

y∑
x

σ,

hence σx − σy is a coboundary.
Assume that σ is a coboundary in Z1

geom(Γ, V ). Then, there exists a
Γ-equivariant map φ : X → V with σ = dφ. For x in X and γ in Γ,
we get

σx(γ) = φ(γx)− φ(x) = γφ(x)− φ(x),

hence σx is a coboundary in Z1(Γ, V ).
Conversely, fix x in X and suppose σx is a coboundary in Z1(Γ, V ).

Choose v in V with

σx(γ) = γv − v γ ∈ Γ.

For y in X, we set

φ(y) =

y∑
x

σ + v.

We claim that φ : X → V is Γ-equivariant. Indeed, by (A.1) and (A.2),
for γ in Γ, we have

φ(γy) =

γx∑
x

σ+

γy∑
γx

σ+v = σx(γ)+γ

y∑
x

σ+v = γv+γ

y∑
x

σ = γφ(y).

Again by (A.1), for y ∼ z in X, we have dφ(y, z) = φ(z) − φ(y) =
σ(y, z), hence σ is a geometric coboundary.

So far, we have shown that the map σ 7→ σx defines an injective
linear map Z1

geom(Γ, V )/B1
geom(Γ, V ) → H1(Γ, V ) that does not depend

on x. To conclude, it remains to prove that this map is surjective.
Therefore, we fix θ in Z1(Γ, V ) and we will build σ in Z1

geom(Γ, V ) such
that, for x in X, θ and σx are cohomologous.

First, we use a standard trick of finite groups theory to eliminate the
difficulties associated with stabilizers of vertices. For x in X, we set

vx =
1

|Γx|
∑
γ∈Γx

θ(γ).
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We notice that, by the cocycle property, for γ in Γx,

γvx − vx =
1

|Γx|
∑
η∈Γx

(γθ(η)− θ(γη)) = −θ(γ).

The latter implies the following property: if γ and η are in Γ and
γx = ηx, we have

(A.3) θ(γ) + γvx = θ(η) + ηvx.

Indeed, we write η = γζ where ζ belongs to Γx and we get, from the
cocycle property,

θ(η) + ηvx − θ(γ)− γvx = γθ(ζ) + γζvx − γvx = 0.

Now, we fix a system of representatives S ⊂ X for the action of Γ
on X. In other words, we have X = ΓS and, for x in S, S ∩Γx = {x}.
To build σ, we will first build a map φ : X → V which will play the
role of a primitive of σ, that is, we will have σ = dφ. More precisely,
for x in X, we choose γ in Γ with γ−1x ∈ S and we set

φ(x) = θ(γ) + γvγ−1x.

Due to (A.3), this does not depend on the choice of γ. The map
φ : X → V is not Γ-equivariant in general. But, for x in X and γ in
Γ, we have, by the construction and the cocycle property of θ,

φ(γx)− γφ(x) = θ(γ).

Therefore, if we set σ = dφ, the map σ : X1 → V is Γ-equivariant.
Thus, σ is a geometric cocycle. To conclude, we compute, for x in S
and γ in Γ,

σx(γ) = φ(γx)− φ(x) = θ(γ) + γvx − vx.

Therefore, σx and θ are cohomologous as required. □

A.4. Harmonic cohomology classes. In the sequel, we use Propo-
sition A.3 to identify the spaces Z1

geom(Γ, V )/B1
geom(Γ, V ) and H1(Γ, V ).

We will now introduce a notion of a harmonic cohomology class that
is inspired by Hodge theory and is essentially the same as the one in
[1, 5].

Let V be a vector space. A skew-symmetric map σ : X1 → V is said
to be harmonic if, for x in X, one has∑

y∼x

σ(x, y) = 0.
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Example A.4. Let V be D(∂X). For x ∼ y in X1, set σ(x, y) = 1Uxy

where, as usual,

Uxy = {ξ ∈ ∂X|y ∈ [xξ)}.
Then, σ is a harmonic skew-symmetric map.

This example is universal in the following sense:

Lemma A.5. Let V be a real vector space and let σ : X1 → V be a
harmonic skew-symmetric map. Then, there exists a unique linear map
ρ : D(∂X) → V such that, for x ∼ y in X, one has

σ(x, y) = ρ(1Uxy).

If V is equipped with an action of Γ and σ is Γ-equivariant (that is, σ
is a harmonic geometric cocycle), then ρ is also Γ-equivariant.

Proof. In case V = R the existence and uniqueness of ρ are established
in Lemma I.3.4. The general case can be obtained in the same way. The
equivariance property for cocycles directly follows from uniqueness. □

A map φ : X → V will be said to be harmonic if, for x in X, one
has

1

q + 1

∑
y∼x

φ(y) = φ(x).

Let V be a vector space with an action of Γ. We will say that
a cohomology class in H1(Γ, V ) is harmonic if it admits a harmonic
representative in Z1

geom(Γ, V ). We can describe the obstruction for this
representative to be unique.

Lemma A.6. Let V be a real vector space equipped with a linear action
of Γ. Then, the harmonic representatives of the trivial cohomology
class in H1(Γ, V ) are the geometric 1-cocycles of the form dφ, where
φ : X → V is a harmonic Γ-equivariant map.

The proof is immediate.

A.5. Unitary representations. We now gather all the previous con-
structions to describe the space of harmonic cohomology classes of a
unitary representation.

If Γ acts on a vector space V , write HomΓ(D(∂X), V ) for the space
of all Γ-equivariant linear maps D(∂X) → V . In Lemma A.5, we have
defined a natural isomorphism between the spaces HomΓ(D(∂X), V )
and the space of harmonic cocycles in Z1

geom(Γ, V ).
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Proposition A.7. Let V be a Hilbert space equipped with a unitary
action of Γ. The natural map

HomΓ(D(∂X), V ) → H1(Γ, V )

is an isomorphism onto the space of harmonic cohomology classes.

The proof uses the following generalization of Appollonius Theorem
which gives a strong convexity property of the balls in Hilbert spaces.

Lemma A.8. Let V be a Hilbert space, v1, . . . , vn be vectors in V and
t1, . . . , tn be non-negative real numbers with

∑n
i=1 ti = 1. We have∥∥∥∥∥ ∑

1≤i≤n

tivi

∥∥∥∥∥
2

+
1

2

∑
1≤i,j≤n

titj ∥vi − vj∥2 =
∑

1≤i≤n

ti ∥vi∥2 .

The proof is immediate.

Proof of Proposition A.7. By Lemma A.5, it only remains to prove that
every harmonic cohomology class admits a unique harmonic represen-
tative. This, we will show by using the criterion in Lemma A.6.

To this aim, we study harmonic Γ-equivariant maps φ : X → V .
We claim that any such φ is constant, with values in the space V Γ of
Γ-invariant vectors of V . This will follow from the maximum principle.
Indeed, the function x 7→ ∥φ(x)∥ is Γ-invariant on X. As Γ has finitely
many orbits in X, this function reaches its maximum value, that is,
the set

E = {x ∈ X| ∥φ(x)∥ = sup
y∈X

∥φ(y)∥}

is not empty. For x in E, since φ is harmonic, we have

φ(x) =
1

q + 1

∑
y∼x

φ(y).

Note that all the φ(y), y ∼ x, have norm ≤ ∥φ(x)∥. By applying
Lemma A.8 to the vectors φ(y), y ∼ x, with constants coefficients, we
obtain that all these vectors are equal to each other and hence to φ(x).
Therefore E = X and φ is constant with value some v ∈ V . Since φ is
Γ-equivariant, the vector v is Γ-invariant.

In particular, the harmonic cocycles defined in Lemma A.6 are all
0, which amounts to say that a harmonic cohomology class admits a
unique harmonic representative. □

Remark A.9. Given a harmonic geometric cocycle σ let us say that the
cohomology class of σ is cyclic if the range of σ : X1 → V spans a
dense subspace of V . This amounts to saying that the linear map ρ :
D(∂X) → V associated with σ has dense image. Then, the pull back of
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the scalar product of V under ρ is a Γ-invariant non-negative symmetric
bilinear form on D(∂X). In that sense, the study of these bilinear
forms may be understood as the study of all unitary representations of
Γ which admit a cyclic harmonic cohomology class.

A.6. Spectral gap. To conclude, we will give a sufficient criterion
for all cohomology classes of a unitary representation to be harmonic.
Before stating it, we discuss the properties of unitary representations
that are far away from the trivial representations.

Let V be a Hilbert space equipped with a unitary action of Γ. We
denote by F(X, V )Γ and F(X1, V )Γ the spaces of Γ-equivariant maps
X → V and X1 → V , which we equip with the natural Hilbert spaces
structures defined in Subsection III.1.1. In particular, the operator Q
on F(X, V )Γ defined by

Qφ(x) =
1

q + 1

∑
y∼x

φ(y), φ ∈ F(X, V )Γ, x ∈ X,

is self-adjoint.
Recall that Γ is said to have almost invariant vectors in V if, for any

ε > 0 and any finite subset F of Γ, there exists v in V with ∥v∥ = 1
such that one has

∥γv − v∥ ≤ ε, γ ∈ F.

The next result may be seen as a reformulation of Kesten’s criterion
for amenability [4].

Proposition A.10. Let V be a Hilbert space equipped with a unitary
action of Γ. The following are equivalent
(i) the group Γ has almost invariant vectors in V .
(ii) the number 1 belongs to the spectrum of Q in F(X, V )Γ.

If these conditions are not satisfied, we shall say that the represen-
tation of Γ in V has a spectral gap.

The main difficulty of the proof of Proposition A.10 is to establish
the following technical statement which may be seen as an effective
version of the proof of Proposition A.7.

Lemma A.11. There exists a non decreasing sequence (αn)n≥0 of con-
tinuous non-negative functions on [0,∞) such that αn(0) = 0 for any
n ≥ 0 and with the following property. Let V be a Hilbert space equipped
with a unitary action of Γ, ε > 0 and φ be in F(X, V )Γ with ∥φ∥ = 1
and ∥Qφ− φ∥ ≤ ε. Pick x in X with ∥φ(x)∥ = supy∈X ∥φ(y)∥. Then,
for any y in X with d(x, y) = n, one has

∥φ(x)− φ(y)∥ ≤ αn(ε).
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Proof. Set C = supx∈X |Γx|
1
2 and, for ε ≥ 0, define by induction

α0(ε) = 0(A.4)

αn+1(ε) = αn(ε) + 2(qC(αn(ε) + Cε))
1
2 + Cε, n ≥ 0.

The sequence is non decreasing and the functions (αn)n≥0 are all con-
tinuous with value 0 at 0.

Now, let V , ε > 0 and φ be as in the statement. Set

M = sup
x∈X

∥φ(x)∥ .

Note that the definition of the norm on F(X, V )Γ gives

1 = ∥φ∥2 =
∑

x∈Γ\X

1

|Γx|
∥φ(x)∥2 ,

hence M ≤ C. Besides, we have∑
x∈Γ\X

1

|Γx|
∥Qφ(x)− φ(x)∥2 ≤ ε2,

hence, for all x in X,

(A.5) ∥Qφ(x)− φ(x)∥ ≤ Cε.

Fix x in X with ∥φ(x)∥ = M . We will show by induction on n ≥ 0
that, for every y in X with d(x, y) = n, one has ∥φ(x)− φ(y)∥ ≤ αn(ε).
For n ≥ 0, there is nothing to prove. Assume the statement holds for
n ≥ 0. Fix y in X with d(x, y) = n. By applying the formula in Lemma
A.8 to the vectors φ(z), z ∼ y, we obtain

1

2(q + 1)2

∑
w,z∼y

∥φ(w)− φ(z)∥2 ≤M2 − ∥Qφ(y)∥2 .

From (A.5) and the induction assumption, we get

∥Qφ(y)∥ ≥ ∥φ(y)∥ − Cε ≥M − (αn(ε) + Cε),

hence

(A.6)
1

2(q + 1)2

∑
w,z∼y

∥φ(w)− φ(z)∥2 ≤M2 − (M − (αn(ε) + Cε))2

≤ 2C(αn(ε) + Cε).
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Fix z ∼ y. By Cauchy-Schwarz inequality, we have

∥φ(z)−Qφ(y)∥ ≤ 1

q + 1

∑
w∼y
w ̸=z

∥φ(z)− φ(w)∥

≤ q
1
2

q + 1

∑
w∼y
w ̸=z

∥φ(z)− φ(w)∥2


1
2

.

Applying (A.6) yields

∥φ(z)−Qφ(y)∥ ≤ 2(qC(αn(ε) + Cε))
1
2 ,

hence, from (A.5),

∥φ(z)− φ(y)∥ ≤ 2(qC(αn(ε) + Cε))
1
2 + Cε.

Therefore, by (A.4) and the induction assumption, we get

∥φ(x)− φ(z)∥ ≤ αn+1(ε)

as required. □

Proof of Proposition A.10. (i)⇒(ii) First assume that Γ has almost in-
variant vectors in V . Fix a system of representatives S ⊂ X for the
action of Γ and set

(A.7) F = {γ ∈ Γ|∃x, x′ ∈ S x ∼ γx′} ∪
⋃
x∈S

Γx.

Since the action of Γ on X is proper, the set F is finite.
Fix 0 < ε < 1 and a unit vector v in V such that ∥γv − v∥ ≤ ε for

any γ in F . We will use v to build φ in F(X, V )Γ with Qφ close to φ.
For x in S, set

vx =
1

|Γx|
∑
γ∈Γx

γv.

We have ∥vx − v∥ ≤ ε, hence ∥vx∥ ≥ 1−ε. Let φ be the unique element
of F(X, V )Γ such that φ(x) = vx for x in S. By definition, we have

∥φ∥2 =
∑
x∈S

1

|Γx|
∥vx∥2 ,

hence ∥φ∥ ≥ (1− ε)c, where c =
(∑

x∈S |Γx|−1) 1
2 .

We claim that, for every x in S and y ∼ x, we have ∥φ(y)− φ(x)∥ ≤
3ε. Indeed, for such x, y, choose γ in Γ with z = γ−1y ∈ S. Then, by
(A.7), γ belongs to F and we get

∥φ(y)− φ(x)∥ = ∥γvz − vx∥ ≤ ∥γvz − γv∥+∥γv − v∥+∥v − vx∥ ≤ 3ε.
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Since by definition, we have

∥Qφ− φ∥2 =
∑
x∈S

1

|Γx|

∥∥∥∥∥ 1

q + 1

∑
y∼x

(φ(y)− φ(x))

∥∥∥∥∥
2

,

we obtain ∥Qφ− φ∥ ≤ 3cε and hence ∥Qφ− φ∥ ≤ 3ε(1−ε)−1 ∥φ∥. As
ε is arbitrary, 1 is a spectral value of Q in F(X, V )Γ.

(i)⇒(ii) Assume now that 1 is a spectral value of Q in F(X, V )Γ.
We need to show that V admits almost invariant vectors. Let (αn)n≥0

be as in Lemma A.11 and fix ε > 0 and a finite subset F of Γ. We still
take S ⊂ X to be a set of representatives for the action of Γ and we
set

n = sup
x∈S
γ∈F

d(γx, x).

As the function αn is continuous at 0, we can find η > 0 such that
αn(η) ≤ ε. As 1 is a spectral value of the self-adjoint operator Q, we
can find φ in F(X, V )Γ with ∥φ∥ = 1 and ∥Qφ− φ∥ ≤ η. Choose x in
S with ∥φ(x)∥ = supy∈X ∥φ(y)∥ and set v = φ(x). Since

1 = ∥φ∥2 =
∑
y∈S

1

|Γy|
∥φ(y)∥2 ,

we have ∥v∥ ≥ c−1, where, as above, c =
(∑

x∈S |Γx|−1) 1
2 . Besides,

Lemma A.11 yields, for γ in F ,

∥γv − v∥ = ∥φ(γx)− φ(x)∥ ≤ αn(η) ≤ ε.

The conclusion follows. □

A.7. Spectral gap and harmonic cocycles. We now show that,
when the representation has a spectral gap, all cohomology classes are
harmonic. The following is mostly a translation from [1, 5].

Proposition A.12. Let V be a Hilbert space equipped with a unitary
action of Γ. If Γ has a spectral gap in V , any 1-cohomology class in
H1(Γ, V ) is harmonic. In other words, the natural map

HomΓ(D(∂X), V ) → H1(Γ, V )

is an isomorphism.

Proof. Note that the two statements are equivalent by Proposition A.7.
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Consider the operator d : F(X, V )Γ → F(X1, V )Γ. For an element
φ in F(X, V )Γ, we get, by using Lemma I.9.11,

∥dφ∥2 =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
∥φ(y)− φ(x)∥2

= (q + 1)2
∑

x∈Γ\X

1

|Γx|
∥Qφ(x)− φ(x)∥2 = (q + 1)2 ∥Qφ− φ∥2 .

By Proposition A.10 and the assumption, 1 is not a spectral value of Q.
Since Q is self-adjoint in F(X, V )Γ, this tells us that we may find ε > 0
such that, for φ in F(X, V )Γ, we have ∥Qφ− φ∥ ≥ ε ∥φ∥. Therefore,
we get ∥dφ∥ ≥ (q + 1)ε ∥φ∥ and the operator d has closed range in
F(X1, V )Γ. Note that the orthogonal complement of dF(X, V )Γ in
F(X1, V )Γ is the kernel of the adjoint operator d† of d. Thus, every
element σ in F(X1, V )Γ may be written as

(A.8) σ = dφ+ θ,

with φ in F(X, V )Γ, θ in F(X1, V )Γ and d†θ = 0.
We claim that, for θ in F(X1, V )Γ and x in X, we have

d†θ(x) =
∑
y∼x

θ(y, x)− θ(x, y).

Indeed, for φ in F(X, V )Γ, by applying again Lemma I.9.11, we obtain

⟨dφ, θ⟩ =
∑

(x,y)∈Γ\X1

1

|Γx ∩ Γy|
⟨φ(y)− φ(x), θ(x, y)⟩

=
∑

x∈Γ\X

1

|Γx|
⟨φ(x),

∑
y∼x

θ(y, x)− θ(x, y)⟩.

Now, let σ be a geometric coycle of Γ in V , so that σ is a skew-
symmetric element of F(X1, V )Γ. Decompose σ as in (A.8). As σ and
dφ are skew-symmetric, so is θ, so that θ is also a geometric cocycle.
In particular, for x in X, we get

0 = d†θ(x) =
∑
y∼x

θ(y, x)− θ(x, y) = −2
∑
y∼x

θ(x, y).

Hence θ is harmonic as required. □
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[7] J.-F. Quint, Additive representations of tree lattices 1. Quadratic fields and

dual kernels, preprint, 2020.
[8] J.-F. Quint, Additive representations of tree lattices 2. Radical pseudofields

and limit metrics, preprint, 2021.
[9] J.-F. Quint, Additive representations of tree lattices 3. Spectral theory of Eu-

clidean fields, preprint, 2021.
[10] J.-P. Serre, Arbres, amalgames, SL2, Astérisque 46, 1977.


