Devoir Surveillé du 03/03/2008 Durée 3h. Documents et calculatrices interdits

Exercice 1 – [QUESTIONS DIVERSES]

- 1) Montrer que le nombre de chiffres d'un entier $N \ge 1$ en base 2 est $\lfloor \log_2 N \rfloor + 1$.
- 2) On considère un algorithme opérant sur des données de taille $\leq N$ et dont le coût d'exécution est majoré par T(N), où $T: \mathbb{R}^+ \to \mathbb{R}^+$ est une fonction croissante vérifiant $T(x) \leq 2T(x/2) + x$. Prouver que le coût de l'algorithme est un $O(N \ln N)$.
- 3) Construire explicitement des corps finis de cardinal 27 et 16.

Exercice 2 – [CODES DE REED-SOLOMON]

Soient \mathbb{F}_q un corps fini de cardinal q et deux entiers k et n tels que $1 \leq k \leq n$. On fixe des éléments distincts $x_1, \ldots, x_n \in \mathbb{F}_q$ et on note \mathcal{P}_k l'ensemble des $P \in \mathbb{F}_q[X]$ de degré $\leq k-1$. L'ensemble Γ des $(P(x_1), \ldots, P(x_n)) \in (\mathbb{F}_q)^n$ pour P parcourant \mathcal{P}_k est un code de Reed-Solomon sur \mathbb{F}_q . Un « mot » est un élément de $(\mathbb{F}_q)^n$.

- 1) Montrer que Γ est un sous-espace vectoriel de $(\mathbb{F}_q)^n$ de dimension k.
- 2) On transmet de l'information sous forme de mots de Γ . On considère un mot $m=(m_1,\ldots,m_n)\in\Gamma$ que l'on envoie, on note $r=(r_1,\ldots,r_n)\in(\mathbb{F}_q)^n$ le mot reçu, $e=(e_1,\ldots,e_n):=r-m$ « l'erreur » et $t:=\lfloor (n-k)/2\rfloor$.
- a) Prouver qu'il existe un $Q \in \mathbb{F}_q[X,Y] \{0\}$ de la forme $Q(X,Y) = Q_0(X) + YQ_1(X)$ tel que $\forall i \in \{1,\ldots,n\}, \ Q(x_i,r_i) = 0, \ \deg Q_0 \leqslant n-1-t \ \text{et deg } Q_1 \leqslant n-1-t-(k-1).$ [Les coefficients de Q_0,Q_1 doivent vérifier un système linéaire.]
- b) On fait l'hypothèse (*) : le nombre d'erreurs de transmission (i.e. le nombre de e_i non nuls) est $\leq t$. Soit $P \in \mathcal{P}_k$ tel que $m = (P(x_1), \dots, P(x_n))$. En considérant son nombre de racines dans \mathbb{F}_q , montrer que Q(X, P(X)) = 0. En déduire que Q_1 divise Q_0 et que $P = -Q_0/Q_1$, en justifiant le fait que $Q_1 \neq 0$.
- c) Expliquer comment calculer m à partir de r (décodage de r) si l'on suppose (*). Prouver que le coût en opérations dans \mathbb{F}_q de la détermination de m est un $O(n^3)$.
- 3) On prend q = 5, n = 4, k = 2, $(x_1, x_2, x_3, x_4) = (1, 2, 3, 4)$ et r = (0, 4, 3, 0). On suppose que r contient au plus une erreur. Trouver le mot transmis m.

Exercice 3 – [ALGORITHME DE BERLEKAMP]

Soient p un nombre premier et $P \in \mathbb{F}_p[X]$ sans facteur carré et non constant. On note P_1, \ldots, P_k les facteurs irréductibles distincts de P dans $\mathbb{F}_p[X]$ et n > 0 le degré de P.

1) Montrer que la \mathbb{F}_p -algèbre $A := \mathbb{F}_p[X]/(P)$ est isomorphe à $\mathbb{F}_p[X]/(P_1) \times \cdots \times \mathbb{F}_p[X]/(P_k)$ et que $\mathbb{F}_p[X]/(P_i)$ est un corps fini de cardinal $p^{deg\ P_i}$ pour $i \in \{1, \ldots, k\}$.

- 2) On note Φ l'endomorphisme du \mathbb{F}_p -espace vectoriel A tel que $\Phi(Q \mod P) =$ $(Q^p-Q) \mod P$. En utilisant 1), prouver que $\mathrm{Ker}(\Phi)\simeq (\mathbb{F}_p)^k$. En déduire que $k = n - \operatorname{rg}(\Phi).$
- 3) On suppose que k > 1 et on choisit $Q \in \mathbb{F}_p[X]$ tel que $Q \mod P \in \text{Ker}(\Phi) \mathbb{F}_p$.
- a) Montrer que $Q^p Q = \prod_{a \in \mathbb{F}_p} (Q a)$. b) En remarquant que P divise $(Q^p Q)$, prouver qu'il existe $a \in \mathbb{F}_p$ tel que pgcd(P, Q - a) est un diviseur non trivial de P.
- 4) Expliquer comment calculer efficacement k en utilisant une \mathbb{F}_p -base simple de A. Évaluer en fonction de n et de p le coût en opérations dans \mathbb{F}_p du calcul de k et, lorsque k > 1, d'un facteur non trivial de P.