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Abstract
In this article we prove a differentiable rigidity result. Let .Y;g/ and .X;g0/ be
two closed n-dimensional Riemannian manifolds (n � 3), and let f W Y ! X be a
continuous map of degree 1. We furthermore assume that the metric g0 is real hyper-
bolic and denote by d the diameter of .X;g0/. We show that there exists a number
" WD ".n;d/ > 0 such that if the Ricci curvature of the metric g is bounded below by
�.n�1/g and its volume satisfies volg.Y /� .1C"/volg0.X/, then the manifolds are
diffeomorphic. The proof relies on Cheeger–Colding’s theory of limits of Riemannian
manifolds under lower Ricci curvature bound.

1. Introduction
Let Y and X be two closed manifolds. The manifold Y is said to dominate X if there
is a continuous map f W Y ! X of degree one. An n-dimensional hyperbolic man-
ifold X has the smallest volume among the set of all Riemannian manifolds .Y;g/
such that Y dominates X and the metric g has Ricci curvature Ricg ��.n� 1/g. In
dimension nD 2 this is a consequence of the Gauss–Bonnet formula, and in dimen-
sion n� 3 this follows from the following.

THEOREM 1.1 ([3, p. 734])
Let .X;g0/ be an n-dimensional closed hyperbolic manifold, and let Y be a closed
manifold that dominates X . Then, for any metric g on Y such that Ricg ��.n�1/g,
one has volg.Y /� volg0.X/, and equality happens if and only if .Y;g/ and .X;g0/
are isometric.

The minimal volume of a closed manifold Y is defined as

minvol.Y /D inf
®
volg.Y /I jKg j � 1

¯
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where Kg is the sectional curvature of the Riemannian metric g. An n-dimensional
hyperbolic manifold X is characterized by its minimal volume among the set of all
Riemannian manifolds Y such that Y is homotopy equivalent to X . Namely, we have
the following.

THEOREM 1.2 ([2, Theorem 1.1])
Let X be an n-dimensional closed hyperbolic manifold, and let Y be a closed man-
ifold that dominates X . Then, minvol.Y / D minvol.X/ if and only if X and Y are
diffeomorphic.

The aim of this paper is to show the following gap result. It improves the above
Theorem 1.2 since we now require a lower bound on the Ricci curvature instead of a
pinching of the sectional curvature; moreover, under the hypothesis, we prove that if
the volume of Y is close to the volume of X , then these two manifolds are diffeomor-
phic. More precisely, we have the following.

THEOREM 1.3
Given any integer n � 3 and d > 0, there exists ".n;d/ > 0 such that the follow-
ing holds. Suppose that .X;g0/ is an n-dimensional closed hyperbolic manifold with
diameter � d and that Y is a closed manifold that dominates X ; that is, there exists
a degree-one map f W Y !X . Then Y has a metric g such that

Ricg � �.n� 1/g; (1)

volg.Y / � .1C "/volg0.X/ (2)

if and only if f is homotopic to a diffeomorphism.

In [10] the authors prove the existence of closed n-dimensional manifolds Y that
are homeomorphic to a closed n-dimensional hyperbolic manifold .X;g0/ but not
diffeomorphic to it. An immediate corollary of the above theorem is the following.

COROLLARY 1.4
With the above notation, there exists " > 0 depending on n and on the diameter of X
with the property that for any such Y and any Riemannian metric g on Y whose Ricci
curvature is bounded below by �.n� 1/ one has

vol.Y;g/ > .1C "/vol.X;g0/:

To be more precise, in [10] the manifold Y is obtained as follows:

Y DX]†;
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where † is an exotic sphere. Not every closed hyperbolic manifold X gives rise to
such a Y that is (obviously) homeomorphic but not diffeomorphic to X . Indeed, we
may have to take a finite cover of X . But when we get one construction that works,
it does on any finite cover X of X as well. The authors also prove that by taking
covers of arbitrary large degree we can put on Y a metric whose sectional curvature is
arbitrarily pinched around, say, �1. The stronger the pinching, the larger the degree.
Now assume that " could be taken independent of the diameter of X ; applying the
results of [3] one could show that the volumes of the two manifolds are very close
when the pinching on Y is very sharp (close to �1). The volume of Y endowed with
this pinched metric could then be taken smaller than .1C "/vol.X;g0/, by choosing
a covering of large degree; the manifolds, though, are not diffeomorphic. This gives
a contradiction and shows that “size” of X has to be involved in the statement of the
theorem, for example, its diameter.

1.1. Sketch of the proof
We argue by contradiction. Suppose that there is a sequence .Xk/k2N of closed hyper-
bolic manifolds with diameter � d and a sequence of closed manifolds Yk , of degree-
one continuous maps fk W Yk ! Xk and metrics gk on Yk satisfying hypotheses (3)
and (4) for some "k going to zero. Since fk is of degree one and Xk is hyperbolic, it
is equivalent to say (thanks to Mostow’s rigidity theorem) that fk is homotopic to a
diffeomorphism or simply that Xk and Yk are diffeomorphic. We thus assume that Yk
and Xk are not diffeomorphic. One then shows that up to a subsequence, for large k,
Yk is diffeomorphic to a closed manifold Y; Xk is diffeomorphic to a closed manifold
X , and X and Y are diffeomorphic. One argues as follows: by the classical finiteness
results we get the subconvergence of the sequence ¹Xkº. Indeed, the curvature is �1,
the diameter is bounded by hypothesis, and there is a universal lower bound for the
volume of any closed hyperbolic manifold of a given dimension, thanks to Margulis’s
lemma (see [6, Theorem 37.1.1]). Cheeger’s finiteness theorem then applies. More-
over, on a closed manifold of dimension � 3, there is at most one hyperbolic metric,
up to isometry. We can therefore suppose that Xk DX is a fixed hyperbolic manifold.
The inequality proved in Theorem 1.1 provides a lower bound for the volume of Yk as
it is explained below. We have no a priori bounds on the diameter of .Yk; gk/, but we
can use Cheeger–Colding’s theory to obtain subconvergence in the pointed Gromov–
Hausdorff topology to a complete metric space .Z;d/ with small singular set. To
obtain more geometric control, the idea is to use the natural maps between Yk and
X (see [3]). One can show that they subconverge to a limit map between Z and X ,
which is an isometry. Then X is an n-dimensional smooth closed Riemannian mani-
fold, which is the Gromov–Hausdorff limit of the sequence .Yk; gk/ of a Riemannian
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manifold of dimension n satisfying the lower bound (3) on Ricci curvature; therefore
X and Yk are diffeomorphic for large k by a theorem of J. Cheeger and T. Colding.

The paper is organized as follows. The construction and the properties of the
natural maps are given in Section 3. In Section 4, we construct the limit space Z and
the limit map F WZ!X . In Section 5, we prove that F is an isometry and conclude.

1.2. Maps of arbitrary degree and scalar curvature
For two closed manifolds Y and X we said above that Y dominates X if there exists
a map of degree one from Y onto X . We could have required that there exist a map
f W Y !X of nonzero degree. The main theorem of [3] was stated and proved in this
setup. More precisely, the following statement holds.

THEOREM 1.5 (see [3])
Let .X;g0/ be an n-dimensional closed hyperbolic manifold, and let Y be a closed
manifold such that there exists a map f W Y ! X with nonzero degree denoted
deg.f /. Then, for any metric g on Y such that Ricg ��.n�1/g, one has volg.Y /�
jdeg.f /jvolg0.X/, and equality happens if and only if f is homotopic to a Rieman-
nian covering (i.e., locally isometric) of degree jdeg.f /j from .Y;g/ onto .X;g0/.

With the technique developed in this article, the following result can be proved.

THEOREM 1.6
Given any integer n � 3 and d > 0, there exists ".n;d/ > 0 such that the follow-
ing holds. Suppose that .X;g0/ is an n-dimensional closed hyperbolic manifold with
diameter� d and that Y is a closed manifold such that there exists a map f W Y !X

with nonzero degree. Then Y has a metric g such that

Ricg � �.n� 1/g; (3)

volg.Y / � .1C "/jdeg.f /jvolg0.X/ (4)

if and only if f is homotopic to a covering of degree jdeg.f /j.

The proof is essentially the one described above; it uses the technique described
in the remainder of this text and the treatment of an arbitrary degree given in [2]. The
fact that the degree can be, in absolute value, greater than one yields extra technicali-
ties. For the sake of clarity we shall omit this proof in the present article and leave it
to the reader. A corollary is the following.

COROLLARY 1.7
Let .X;g0/ be a closed n-dimensional hyperbolic manifold. Then there exists " >
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0, such that, for any metric g on the connected sum X]X satisfying that its Ricci
curvature of g is not smaller than �.n� 1/,

vol.X]X;g/� 2.1C "/vol.X;g0/:

Indeed, X]X does not carry a hyperbolic metric and hence is not a double cover
of X . This can be proven, for example, by saying that the .n�1/-sphere on which the
connected sum is made does not bound a topological n-ball, whereas in a hyperbolic
manifold every such sphere bounds a ball. We may now ask whether such a result
could be true with a lower bound on the scalar curvature instead of a lower bound on
the Ricci curvature. The situation in dimension 3, completely clarified by Perelman’s
work, shows that the answer to this question is negative. More precisely, if .X;g0/ is
a 3-dimensional closed hyperbolic manifold, a consequence of [1, inequality 2.10] is
that

inf
®
vol.X]X;g/I Scal.g/��6

¯
D 2vol.X;g0/:

In dimensions greater than or equal to 4, it follows from [15] and the solution to the
Yamabe problem that

inf
®
vol.X]X;g/I Scal.g/��6

¯
� 2vol.X;g0/:

2. Some a priori control on .Y;g/
Some a priori control on the metric g will be needed in Sections 2 and 3. We give
here the necessary results.

Let .X;g0/ be a hyperbolic manifold, and let Y be a manifold satisfying the
assumptions of Theorem 1.3. For any Riemannian metric g on Y satisfying the cur-
vature assumption (3), one has the following inequality:

volg.Y /� volg0.X/: (5)

It is a consequence of Besson–Courtois–Gallot’s inequality (see [3])

h.g/n volg.Y /� h.g0/
n volg0.X/; (6)

where h.g/ is the volume entropy, or the critical exponent, of the metric g, that is,

h.g/D lim
R!C1

1

R
ln
�
vol Qg.B Qg.x;R//

�
;

where Qg is the lifted metric on QY . Indeed, any metric g on Y which satisfies (3)
verifies, by Bishop’s theorem,

h.g/� h.g0/D n� 1: (7)
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One can obtain a lower bound of the volume of some balls by Gromov’s isolation
theorem (see [13, Theorem 0.5]). It shows that if the simplicial volume kY k—a topo-
logical invariant also called Gromov’s norm—of Y is nonzero, then for any Rieman-
nian metric g on Y satisfying the curvature assumption (3), there exists at least one
point yg 2 Y such that

volg
�
B.yg ; 1/

�
� vn > 0: (8)

Here B.yg ; 1/ is the geodesic ball of radius 1 for the metric g, and vn is a universal
constant. This theorem applies in our situation since, by an elementary property of
the simplicial volume, kY k � kXk if there is a degree-one map from Y to X (see
[13]). On the other hand, X has a hyperbolic metric, and hence kXk> 0 by Gromov–
Thurston’s theorem (see [13]).

Given this universal lower bound for the volume of a unit ball B.yg ; 1/, the vol-
ume of any ball B.y; r/ is bounded from below in terms of r and d.yg ; y/. Indeed,
recall that under the curvature assumption (3), Bishop–Gromov’s theorem shows that
for any 0 < r �R, one has

volg.B.y; r//

volg.B.y;R//
�

volHn.BHn.r//

volHn.BHnR//
; (9)

where BHn.r/ is a ball of radius r in the hyperbolic space Hn. AsB.yg ; 1/�B.y; 1C
d.yg ; y/C r/, one deduces from (9) that

volg
�
B.y; r/

�

� volg
�
B.y; 1C d.yg ; y/C r/

� volHn.BHn.r//

volHn.BHn.1C d.yg ; y/C r//
(10)

� vn
volHn.BHn.r//

volHn.BHn.1C d.yg ; y/C r//
: (11)

The curvature assumption (3) and the volume estimates (9) or (11) are those
required to use the noncollapsing part of Cheeger–Colding’s theory, as we shall see
in Section 3.

3. The natural maps
In Sections 3.1 and 3.2 we recall the construction and the main properties of the
natural maps defined in [3] (see also [4]).

3.1. Construction of the natural maps
Suppose that .Y;g/ and .X;g0/ are closed Riemannian manifolds and that

f W Y !X
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is a continuous map of degree one. For the sake of simplicity, we assume that g0 is
hyperbolic. (The construction holds in a much more general situation.) Then, for any
c > h.g/ there exists a C 1-map

Fc W Y �!X;

homotopic to f , such that for all y 2 Y ,

j JacFc.y/j �
� c

h.g0/

�n
; (12)

with equality for some y 2 Y if and only if dyFc is a homothety of ratio c
h.g0/

.
Inequality (6) is then easily obtained by integration of (12) and by taking a limit

when c goes to h.g/. In general, to obtain global rigidity properties, one has to study
carefully the behavior of Fc as c goes to h.g/.

The construction of the maps is divided in four steps. Let QY and QX be the univer-
sal coverings of Y and X , respectively, and let Qf W QY ! QX be a lift of f .

Step 1. For each y 2 QY and c > h.g/, let �cy be the finite measure on QY defined by

d�cy.z/D e
�c:�.y;z/dvQg.z/

where z 2 QY , Qg is the lifted metric on QY and �.:; :/ is the distance function of . QY ; Qg/.
Step 2. Pushing forward this measure gives a finite measure Qf��cy on QX . Let us

recall that it is defined by

Qf��
c
y.U /D �

c
y

�
Qf �1.U /

�
:

Step 3. One defines a finite measure �cy on @ QX by convolution of Qf��cy with all
visual probability measures Px of QX . Recall that the visual probability measure Px at
x 2 QX is defined as follows: the unit tangent sphere at x noted Ux QX projects onto the
geometric boundary @ QX by the map

v 2 Ux QX
Ex
�! �v.1/ 2 @ QX;

where �v.t/ D expx.tv/. The measure Px is then the pushforward by Ex of the
canonical probability measure on Ux QX ; that is, for a Borel set A 2 @ QX , Px.A/ is
the measure of the set of vectors v 2 Ux QX such that �v.C1/ 2A.

Then

�cy.A/D

Z
QX

Px.A/d Qf��
c
y.x/D

Z
QY

P Qf .z/.A/d�
c
y.z/:

One can identify @ QX with the unit sphere in Rn, by choosing an origin o 2 QX and
using E0. The density of this measure is given by (see [3])
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d�cy.�/D
�Z
QY

e�h.g0/B.
Qf .z/;�/e�c�.y;z/dvQg.z/

�
d�;

where � 2 @ QX , d� is the canonical probability measure on Sn�1, and B.:; �/ is a
Busemann function on QX normalized to vanish at x D o. We will use the notation

p.x; �/D e�h.g0/B.x;�/:

Step 4. The map

Fc W QY �! QX

associates to any y 2 QY the unique x 2 QX , which minimizes on QX the function

x!B.x/D

Z
@ QX

B.x; �/d�cy.�/

(see [3, Appendix A]).
The maps Fc are shown to be C1 and equivariant with respect to the actions of

the fundamental groups of Y and X on their respective universal covers. The quotient
maps, which are also denoted by Fc W Y ! X , are homotopic to f . Note that Fc
depends heavily on the metric g.

3.2. Some technical lemmas
Let us give some definitions.

Definition 3.1
For y 2 QY , let �cy be the probability measure on @ QX defined by

�cy D
�cy

�cy.@
QX/
:

Let us remark that we have

k�cyk D �
c
y.@
QX/D

Z
QY

e�c�.y;z/ dvQg.z/D k�
c
yk:

We consider two positive definite bilinear forms of trace equal to one and the corre-
sponding symmetric endomorphisms.

Definition 3.2
For any y 2 QY , u;v 2 TFc.y/ QX ,

hcy.u; v/D

Z
@ QX

dB.Fc.y/;�/.u/dB.Fc.y/;�/.v/d�
c
y.�/D g0

�
H c
y .u/; v

�
:
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And, for any y 2 QY , u;v 2 Ty QY ,

h0cy .u; v/D
1

�cy.@
QX/

Z
QY

d�.y;z/.u/d�.y;z/.v/d�
c
y.z/D g

�
H 0cy .u/; v

�
:

LEMMA 3.3
For any y 2 QY , u 2 Ty QY , v 2 TF.y/ QX , one has

ˇ̌
g0
�
.I �H c

y /dyFc.u/; v
�ˇ̌
� c

�
g0.H

c
y .v/; v/

�1=2�
g.H 0cy .u/;u/

�1=2
: (13)

Proof
Since Fc.y/ is an extremum of the function B, one has

dFc.y/B.v/D

Z
@ QX

dB.Fc.y/;�/.v/d�
c
y.�/D 0 (14)

for each v 2 TFc.y/ QX . By differentiating this equation in a direction u 2 Ty QY , one
obtainsZ

@ QX

DdB.Fc.y/;�/
�
dyFc.u/; v

�
d�cy.�/

C

Z
@ QX

dB.Fc.y/;�/.v/
�Z
QY

p
�
Qf .z/; �

��
�c d�.y;z/.u/

�
d�cy.z/

�
d� D 0:

Using Cauchy–Schwarz inequality in the second term, one gets

ˇ̌
ˇ
Z
@ QX

DdB.Fc.y/;�/
�
dyFc.u/; v

�
d�cy.�/

ˇ̌
ˇ

�

Z
@ QX

jdB.Fc.y/;�/.v/j
�Z
QY

p
�
Qf .z/; �

�
d�cy.z/

�1=2

�
�Z
QY

p
�
Qf .z/; �

�
jcd�.y;z/.u/j

2 d�cy.z/
�1=2

d�;

which is, using Cauchy–Schwarz inequality again,

� c
�Z
@ QX

jdB.Fc.y/;�/.v/j
2

Z
QY

p
�
Qf .z/; �

�
d�cy.z/d�

�1=2

�
�Z
@ QX

Z
QY

p
�
Qf .z/; �

�
jd�.y;z/.u/j

2 d�cy.z/d�
�1=2

D c
�Z
@ QX

jdB.Fc.y/;�/.v/j
2 d�cy.�/

�1=2�Z
QY

jd�.y;z/.u/j
2 d�cy.z/

�1=2

D c�cy.@
QX/
�
g0.H

c
y .v/; v/

�1=2�
g.H 0cy .u/;u/

�1=2
:
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It is shown in [3, Chapter 5] that DdB D g0�dB˝dB for a hyperbolic metric.
The left term of the inequality is thus �cy.@ QX/g0..I �H

c
y /dyFc.u/; v/. This proves

the lemma.

Definition 3.4
Let 0 < �c1.y/� � � � � �

c
n.y/ < 1 be the eigenvalues of H c

y .

PROPOSITION 3.5
There exists a constant A WDA.n/ > 0 such that, for any y 2 Y ,

j JacFc.y/j �
� c

h.g0/

�n�
1�A

nX
iD1

�
�ci .y/�

1

n

�2�
: (15)

Proof
The proof is based on the two following lemmas.

LEMMA 3.6
At each y 2 QY ,

j JacFc.y/j �
� c
p
n

�n det.Hyc/1=2

det.I �Hyc/
:

Proof
Let ¹viº be an orthonormal basis of TFc.y/ QX which diagonalizesHyc . We can assume
that dyFc is invertible since otherwise the above inequality is obvious. Let u0i D Œ.I �
Hy

c/ ı dyFc 	
�1.vi /. The Schmidt orthonormalization process applied to .u0i / gives

an orthonormal basis .ui / at Ty QY . The matrix of .I �Hyc/ ı dyFc in the basis .ui /
and .vi / is upper triangular; then

det.I �Hy
c/ JacFc.y/D

nY
iD1

g0
�
.I �Hy

c/ ı dyFc.ui /; vi
�
;

which gives, with (13),

det.I �Hy
c/j JacFc.y/j � c

n
� nY
iD1

g0
�
Hy

c.vi /; vi
��1=2� nY

iD1

g
�
H 0cy .ui /; ui

��1=2

� cn det.Hy
c/1=2

h1
n

nX
iD1

g
�
H 0cy .ui /; ui

�in=2
:

This proves the desired inequality since trace.H 0cy /D 1.
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LEMMA 3.7
Let H be a symmetric positive definite (n � n)-matrix whose trace is equal to one.
Then, if n� 3,

det.H/1=2

det.I �H/
�
� n

h.g0/2

�n=2�
1�A

nX
iD1

�
�i �

1

n

�2�

for some positive constant A.n/.

Proof
The proof is given in [3, Appendix B5]. This is the point where the rigidity of the
natural maps fails in dimension 2.

This completes the proof of Proposition 3.5.

3.3. Some nice properties
We now show that when the volumes of .Y;g/ and .X;g0/ are close, the natural
maps Fc have nice properties. More precisely, we will show that when vol.Y;g/ �
.1 C "/vol.X;g0/ and 0 � c � h.g/ � ı with " and ı small enough, then dFc is
almost isometric on a set of large relative volume (see Lemma 3.11). We then prove
that Fc is uniformly Lipschitz on balls of radius R when " � ".R/ and ı � ı.R/
are small enough (see Lemma 3.12). We finally end Section 3 by showing that Fc is
“quasi-contracting” on balls of radius R (see Lemma 3.13).

In this section, we shall consider Fc as a map from .Y;g/ to .X;g0/. We suppose
that the metric g satisfies the curvature assumption (3) and the assumption on its
volume (4) for some " > 0. Let us introduce some terminology.

Definition 3.8
Let 0 < ˛ < 1. We say that a property holds ˛-a.e. (˛-almost everywhere) on a set A
if the set AC of points of A where the property holds has relative volume bigger than
or equal to 1� ˛, that is,

vol.AC/

vol.A/
� 1� ˛:

We show that dFc is ˛-close to being isometric ˛-a.e. on Y for some positive
˛."; c/. Moreover, ˛."; c/! 0 as "! 0 and c ! h.g/. On the other hand, given
any radius R > 0, one shows that kdFck is uniformly bounded on balls B.yg ;R/,
provided c is close enough to h.g/. Recall that we have a lower bound for the volume
of .Y;g/ but we do not have an upper bound for its diameter. The key point is to show
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that H c
y is ˛-close to 1

n
Id on a set of large volume, and is bounded on a ball of fixed

radius, with respect to the parameters "; c.
To estimate from above c � h.g/ we introduce a parameter ı > 0. We suppose

that the volume entropy of g satisfies the inequalities

h.g/ < c � h.g/C ı: (16)

Observe that (7), (15), and (16) imply that

j JacFc.y/j �
�h.g/C ı
h.g0/

�n
�
�
1C

ı

n� 1

�n
; (17)

for all y 2 Y . The map Fc is thus almost volume decreasing. On the other hand, as
volg.Y / is close to volg0.X/, the set in Y where Fc decreases the volume a lot must
have a small measure. Equivalently, j JacFc j must be close to 1 in the L1-norm. We
now give a precise statement.

LEMMA 3.9
If ı is small enough, there exists ˛1 D ˛1."; ı/ > 0 such that for ˛1-a.e. on Y one has,

1� ˛1 � j JacFc.y/j; (18)

and for all y 2 Y one has

j JacFc.y/j � 1C ˛1: (19)

Moreover, ˛1."; ı/! 0 as " and ı! 0.

Proof
Let

˛Dmax

�r�
1C

ı

n� 1

�n
� 1;
p
"

�
:

Thus
�
1C

ı

n� 1

�n�1
� 1C ˛2

and " � ˛2. In particular, j JacFc.y/j � 1C ˛2 � 1C ˛ for all y 2 Y , if ı is small
enough so that ˛ is less than 1. (We also assume that " is small.)

As Fc has degree one, we have

volg0.X/D
Z
Y

F �c .dvg0/D

Z
Y

JacFc.y/dvg.y/:
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Denote by Y˛1 the set of points y 2 Y such that

j JacFc.y/j � 1� ˛:

We have

volg0.X/ �
Z
Y

j JacFc.y/jdvg.y/ (20)

D

Z
Y˛1

j JacFc.y/jdvg.y/C

Z
Y nY˛1

j JacFc.y/jdvg.y/ (21)

� .1C ˛2/volg.Y˛1/C .1� ˛/volg.Y n Y˛1/ (22)

D volg.Y /C ˛
2 volg.Y˛1/� ˛ volg.Y n Y˛1/: (23)

Then, using assumption (4) and the inequality (5) on the volume, we get

volg.Y n Y˛1/ �
volg.Y /� volg0.X/

˛
C ˛ volg.Y˛1/ (24)

�
� "
˛
C ˛

�
volg.Y / (25)

� 2˛ volg.Y /: (26)

Clearly, 1� 2˛ � j JacFc.y/j on Y˛1 and j JacFc.y/j � 1C 2˛ on Y , which proves
the lemma with ˛1."; ı/D 2˛.

From this lemma, we deduce that Fc is almost injective. Indeed, let x 2 X ; one
defines N.Fc ; x/ 2 N [ ¹1º to be the number of preimages of x by Fc . As Fc
has degree one, one has N.Fc ; x/ � 1 for all x 2 X . We then define X1 WD ¹x 2
X;N.Fc ; x/D 1º. Observe that N.Fc ; x/� 2 on X nX1.

LEMMA 3.10
There exists ˛2 D ˛2."; ı/ > 0 such that

volg0.X1/� .1� ˛2/volg0.X/ (27)

and Z
XnX1

N.Fc ; x/dvg0.x/� ˛2."; ı/volg0.X/: (28)

Moreover, ˛2."; ı/! 0 as " and ı! 0.

In particular, there exists ˛0 > 0 such that N.Fc ; x/D 1 ˛0-a.e. on X .
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Proof
One defines

˛2."; ı/D 2

��
1C

ı

n� 1

�n
.1C "/� 1

�
:

From (15) and the area formula (see [16, Section 3.7]), we have

� c

h.g0/

�n
volg.Y / �

Z
Y

j JacFc.y/jdvg.y/ (29)

D

Z
X

N.Fc ; x/dvg0.x/ (30)

D

Z
X1

N.Fc ; x/dvg0.x/

C

Z
XnX1

�
N.Fc ; x/� 1C 1

�
dvg0.x/ (31)

D volg0.X/C
Z
XnX1

�
N.Fc ; x/� 1

�
dvg0.x/ (32)

and

volg0.X nX1/ �
Z
XnX1

�
N.Fc ; x/� 1

�
dvg0.x/ (33)

�
� c

h.g0/

�n
volg.Y /� volg0.X/ (34)

�

�� c

h.g0/

�n
.1C "/� 1

�
volg0.X/ (35)

�
˛2."; ı/

2
volg0.X/: (36)

Thus, since N.Fc ; x/� 2.N.Fc ; x/� 1/ on X nX1, we get

volg0.X nX1/�
Z
XnX1

N.Fc ; x/dvg0.x/� ˛2."; ı/volg0.X/;

and this proves the lemma.

The following lemma says that dFc.y/ is almost isometric at points y where
JacFc.y/ is almost equal to 1.

LEMMA 3.11
There exists ˛3 D ˛3."; ı/ > 0 such that the following holds. Let Y˛1 be the set of
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points where (18) holds, that is, 1 � ˛1."; ı/ � j JacFc.y/j. Let y be a point in Y˛1 ,
and let u 2 TyY ; then

.1� ˛3/kukg � kdyFc.u/kg0 � .1C ˛3/kukg : (37)

Moreover, ˛3."; ı/! 0 as ", ı! 0.

Proof
The inequality (15) implies that, for all y 2 Y ,

���H c
y �

1

n
Id
���2 � 1

A

�
1�
j JacFc.y/j�
1C ı

n�1

�n
�
:

Let us define

ˇ1 D ˇ1."; ı/D
1

A1=2

�
1�

1� ˛1."; ı/�
1C ı

n�1

�n
�1=2

; (38)

where ˛1."; ı/ is the constant from Lemma 3.9. Clearly, ˇ1."; ı/! 0 as " and ı! 0.
Let Y˛1 be the set of points where (18) holds. On Y˛1 , one has

���H c
y �

Id

n

���2 � ˇ12: (39)

Let ¹uiºiD1;:::;n be an orthonormal basis of TyY , and let vi D dyF.ui /. Writing Id�
H c
y D

n�1
n

IdC 1
n

Id�H c
y , one gets

ˇ̌
g0
�
.Id�H c

y /dyFc.ui /; dyFc.ui /
�ˇ̌

�

ˇ̌
ˇ̌g0
��n� 1

n
Id
�
dyFc.ui /; dyFc.ui /

�ˇ̌ˇ̌

�

ˇ̌
ˇ̌g0
��1
n

Id�H c
y

�
dyFc.ui /; dyFc.ui /

�ˇ̌ˇ̌ (40)

�
n� 1

n
kdyFc.ui /k

2
g0
�
���1
n

Id�H c
y

���:kdyFc.ui /k2g0 (41)

�
�n� 1

n
� ˇ1

�
kdyFc.ui /k

2
g0
: (42)

Writing H c
y D

1
n

IdCH c
y �

1
n

Id, one has

g0
�
H c
ydyFc.ui /; dyFc.ui /

�1=2

� g0

��1
n

Id
�
dyFc.ui /; dyFc.ui /

�1=2
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C

ˇ̌̌
ˇg0
��
H c
y �

1

n
Id
�
dyFc.ui /; dyFc.ui /

�ˇ̌̌
ˇ
1=2

(43)

�
� 1
p
n
C ˇ

1=2
1

�
kdyFc.ui /kg0 : (44)

Taking the trace of the right-hand side of (13) and using the Cauchy–Schwarz
inequality, one has

nX
iD1

g0
�
H c
ydyFc.ui /; dyFc.ui /

�1=2
g
�
H 0cy .ui /; ui

�1=2

�
� 1
p
n
C ˇ

1=2
1

�� nX
iD1

kdyFc.ui /k
2
g0

�1=2� nX
iD1

g
�
H 0cy .ui /; ui

��1=2
(45)

D
� 1
p
n
C ˇ

1=2
1

�� nX
iD1

kdyFc.ui /k
2
g0

�1=2
: (46)

By (13), the trace of (42) is not greater than the right-hand side of (46) multiplied
by c, and hence

�n� 1
n
� ˇ1

� nX
iD1

kdyFc.ui /k
2
g0
� c

� 1
p
n
C ˇ

1=2
1

�� nX
iD1

kdyFc.ui /k
2
g0

�1=2
;

and

� nX
iD1

kdyFc.ui /k
2
g0

�1=2
� c

1p
n
C ˇ

1=2
1

n�1
n
� ˇ1

�
p
n
�
1C

ı

n� 1

�1Cpnˇ1=21
1� n

n�1
ˇ1

:

Let us define

ˇ2 WD ˇ2."; ı/D
�
1C

ı

n� 1

�2�1Cpnˇ1=21
1� n

n�1
ˇ1

�2
� 1:

Clearly, ˇ2."; ı/! 0 as " and ı! 0. One has

nX
iD1

kdyFc.ui /k
2
g0
� n.1C ˇ2/:

Let L be the endomorphism of TyY defined by LD .dyFc/� ı dyFc . We have

trace.L/D
nX
iD1

g
�
L.ui /; ui

�
D

nX
iD1

g
�
dyFc.ui /; dyFc.ui /

�
� n.1C ˇ2/: (47)
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On the other hand,

j1� ˛j2 � j JacFc.y/j
2 D det.L/�

� trace.L/

n

�n
� .1C ˇ2/

n;

which shows that there is almost equality in the arithmetic-geometric inequality. We
then get that there exists some ˛3."; ı/ > 0, with ˛3."; ı/! 0 as "; ı! 0, such that

kL� Idk � ˛3."; ı/:

Thus for any y 2 Y˛1 and u 2 TyY ,

.1� ˛3/kuk � kdyFc.u/kg0 � .1C ˛3/kuk; (48)

and dyFc is almost isometric.

We now prove that given a fixed radius R > 0, the natural maps Fc have uni-
formly bounded differential dFc on B.yg ;R/ if the parameters ", ı are sufficiently
small. Recall that the point yg has been chosen such that (8) holds; namely,
volg.B.yg ; 1//� vn.

LEMMA 3.12
Let R > 0. Then there exist ".R/ > 0 and ı.R/ > 0 such that for any 0 < " < ".R/
and 0 < ı < ı.R/, and for any y 2B.yg ;R/,

kdyFck � 2
p
n: (49)

Proof
We first prove that for all y 2 Y , kdyFck is bounded from above by �cn.y/, the maxi-
mal eigenvalue of H c

y (see Definition 3.4). Recall that all eigenvalues of H 0cy are less
than one and that 0 < �cn < 1. Let u be a unit vector in Ty QY , and let v D dyFc.u/.
Equation (13) gives

�
1� �cn.y/

�ˇ̌
g0
�
dyFc.u/; dyFc.u/

�ˇ̌
� c�cn.y/

1=2g0
�
dyFc.u/; dyFc.u/

�1=2
: (50)

Hence

kdyFc.u/kg0 �
c
p
�cn.y/

1� �cn.y/
: (51)

We thus have to show that �cn.y/ is not close to 1. More precisely, let ˇ > 0 such that
1
n
C ˇ < 1; one then defines

�.ı;ˇ/ WD
� n� 1C ı
n� 1� nˇ

�p
1C nˇ � 1 > 0:
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Clearly, �.ˇ; ı/ ! 0 as ı;ˇ ! 0. One can check that if �cn.y/ �
1
n
C ˇ, then

kdyFc.u/kg0 �
p
n.1C �/. For our purpose, we may suppose that � � 1. Now let

ın > 0 and ˇn > 0 be such that if 0 < ı � 10ın and 0 < ˇ � 10ˇn, then �.ı;ˇ/� 1.
Moreover, we define "n > 0 such that if 0 < " < "n and 0 < ı � 10ın, then with the
notation of (38) and Lemma 3.9, ˇ1."; ı/� ˇn. In what follows, we suppose " and ı
to be sufficiently small.

By (39) we have that j�cn.y/�
1
n
j � ˇ1."; ı/ on Y˛1 . Recall that Y˛1 has a large

relative volume in Y . The idea is first to estimate �cn on a neighborhood of Y˛1 and
then to show that this neighborhood contains B.yg ;R/ if the parameters " and ı are
sufficiently small relative to R.

For this purpose we need to estimate the variation of �cn. Recall thatH c
y is defined

by

g0
�
H c
y .u/; v

�
D

Z
@ QX

dB.Fc.y/;�/.u/dB.Fc.y/;�/.v/d�
c
y.�/:

Let U , V be parallel vector fields near Fc.y/ extending unit tangent vectors at Fc.y/,
u, and v. We compute the derivative of g0.H c

y .U /;V / in a direction w 2 TyY :

w � g0
�
H c
y .U /;V

�
D

Z
@ QX

DdB.Fc.y/;�/
�
dyF.w/;U

�
dB.Fc.y/;�/.V /d�

c
y.�/

C

Z
@ QX

dB.Fc.y/;�/.U /DdB.Fc.y/;�/
�
dyF.w/;V

�
d�cy.�/

C

Z
@ QX

dB.Fc.y/;�/.U /dB.Fc.y/;�/.V /w � d�
c
y.�/:

The Buseman functions of the hyperbolic space satisfies kDdBk � 1 and kdBk � 1,
and thus

ˇ̌
w � g0

�
H c
y .U /;V

�ˇ̌
� 2kdyFc.w/kg0 C

ˇ̌
ˇ
Z
@ QX

w � d�cy.�/
ˇ̌
ˇ:

Recall that

d�cy.�/D
d�cy.�/

�cy.@
QX/
D

R
QY p.

Qf .z/; �/e�c�.y;z/ dvQg.z/R
QY e
�c�.y;z/ dvQg.z/

d�:

Differentiating this formula yields

w � d�cy.�/D

R
QY p.

Qf .z/; �/.�c � d�.y;z/.w//e
�c�.y;z/ dvQg.z/

�cy.@
QX/

d� (52)

�
d�cy.�/

�cy.@
QX/2
�

Z
QY

�
�c � d�.y;z/.w/

�
e�c�.y;z/ dvQg.z/: (53)
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Since jd�.y;z/.w/j � kwkg , we have

ˇ̌
ˇ
Z
@ QX

w � d�cy.�/
ˇ̌
ˇ�

Z
@ QX

2ckwkg d�
c
y.�/D 2ckwkg ; (54)

which gives jw � g0.H c
y .U /;V /j � 2kdyFc.w/kg0 C 2ckwkg . If w is a unit vector,

then (51) yields

ˇ̌
w � g0

�
H c
y .U /;V

�ˇ̌
� 2c

� p
�cn.y/

1� �cn.y/
C 1

�
: (55)

Let us now consider small constants 
 > ˇ > 0 and define

r.ı;ˇ; 
/ WD

� ˇ

2.n� 1C ı/

� q
1
nC�

1�
�
1
nC�

� C 1
� > 0:

Our goal is to prove that

inf
°
d.y0; y1/

ˇ̌̌
y0; y1 2 Y;�

c
n.y0/�

1

n
C ˇ;�cn.y1/�

1

n
C 


±
� r.ı;ˇ; 
/:

Let y0 2 Y so that �cn.y0/�
1
n
Cˇ. Assume that there exists y 2 Y such that �cn.y/�

1
n
C 
. One defines

r WD inf
°
d.y0; y/

ˇ̌
ˇ y 2 Y;�cn.y/� 1n C 


±
:

By continuity, there exists y1 2 Y such that �cn.y1/D
1
n
C 
 and d.y0; y1/D r .

Let � W Œ0; r	 �! Y be a minimizing geodesic from y0 to y1. We easily see
that �cn.�.t// <

1
n
C 
 for any 0 � t < r . Let U.t/ be a parallel vector field in X

along Fc.�/ such that U.r/ is a unit eigenvector of H c
y1

. Then, using (55) with

P�:g0.H
c
�.t/
U.t/;U.t//D d

dt
g0.H

c
�.t/
U.t/;U.t//, one has

j�cn.y1/� �
c
n.y0/j �

ˇ̌
g0
�
H c
�.r/U.r/;U.r/

�
� g0

�
H c
�.0/U.0/;U.0/

�ˇ̌
(56)

D
ˇ̌
ˇ
Z r

0

d

dt
g0
�
H c
�.t/U.t/;U.t/

�
dt
ˇ̌
ˇ (57)

� 2c

Z r

0

� p
�cn.�.t//

1� �cn.�.t//
C 1

�
dt (58)

� 2cr

� q
1
n
C 


1�
�
1
n
C 


� C 1
�
: (59)
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As a consequence,

r �

� ˇ

2.n� 1C ı/

� q
1
nC�

1�
�
1
nC�

� C 1
� D r.ı;ˇ; 
/:

We now set 
D 2ˇn so that �.ı; 
/ � 1 for any ı � ın. One then defines rn WD
r.ın; ˇn; 2ˇn/. Let us recall that for " � "n and ı � ın, we have ˇ1."; ı/ � ˇn. On
Y˛1 , one has �cn.y/�

1
n
C ˇ1."; ı/�

1
n
C ˇn. Hence, if �cn.y1/�

1
n
C 2ˇn, one has

d.y1; Y˛1/� r
�
ı;ˇ1."; ı/; 2ˇn

�
� r.ın; ˇn; 2ˇn/D rn:

We thus have proved that in the rn-neighborhood of Y˛1 , one has �cn.y/�
1
n
C 2ˇn.

This implies that

kdyFck �
�
1C �.ı; 2ˇn/

�p
n� 2

p
n:

Let us denote by Vrn.Y˛1/ the rn-neighborhood of Y˛1 . It remains to show that
B.yg ;R/� Vrn.Y˛1/, if "� ".R/ and ı � ı.R/. Let us recall that

volg.Y˛1/

volg.Y /
� 1� ˛1;

and hence

volg.Y n Y˛1/� ˛1 volg.Y /� ˛1.1C "/volg0.X/ WD v."; ı/:

Clearly, v."; ı/! 0 when ", ı! 0. On the other hand, by (11) for any y 2B.yg ;R/,
we have

volg
�
Bg.y; r0/

�
� vn

volHn.BHn.r0//

volHn.BHn.1CRC r0//
WD v0.R/ > 0: (60)

If v0.R/ > v."; ı/, then for any y 2 B.yg ;R/ one has Bg.y; rn/ 6� Y n Y˛1 , which
means that Bg.y; rn/ intersects Y˛1 . This shows that d.y;Y˛1/ < rn and
y 2 Vrn.Y˛1/.

The lemma is proved if we define " D ".R/ > 0 and ı D ı.R/ > 0 to be suffi-
ciently small constants such that v."; ı/ < v0.R/.

We now prove that Fc is almost 1-Lipschitz.

LEMMA 3.13
For any fixed R > 0, there exists "2.R/ > 0 and ı2.R/ > 0 such that for every 0 < " <
"2.R/ and 0 < ı < ı2.R/, there exists � D �."; ı;R/ > 0 such that on Bg.yg ;R/,

dg0
�
Fc.y1/;Fc.y2/

�
� .1C �/dg.y1; y2/C �: (61)
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Moreover, �."; ı;R/! 0 as ", ı! 0.

Proof
The idea goes as follows. We have proved that dyFc is almost isometric on Y˛1 .
On the other hand, kdyFck is uniformly bounded in B.yg ;R/ if the parameters "
and ı are chosen sufficiently small. To prove the lemma one computes the lengths of
Fc.�/ where � is a minimizing geodesic in B.yg ;R/ whose intersection with Y˛1 is
large. Existence of such geodesics follows from an integral geometry lemma due to
T. Colding.

Fix some R > 0. We define the following constants.
If d > 0,

c1.n; d/ WD sup
0<s=2<r<s<d

volHn.@BHn.s//

volHn.@BHn.r//
:

If � > 0, R > 0,

c2.n; �;R/ WD c1.n; 2R/
�
2� volHn.BHn.�//

�
:

If " > 0, ı > 0,

�."; ı/ WD 2˛23."; ı/volg0.X/C 2.4nC 1/˛1."; ı/volg0.X/:

Clearly, �."; ı/! 0 as "; ı! 0.
Let �."; ı;R/ > 0 be the function implicitly defined by

volHn.�/� WD �."; ı/
2c1.n; 2R/volHn.1CRC 1/2

v2n
:

Again, we easily see that, for fixed R, �."; ı;R/! 0 as ", ı! 0. We also choose
"2.R/ > 0 and ı2.R/ > 0 such that "2.R/ � ".2R/, ı2.R/ < ı.2R/ and such that, if
0 < "� "2.R/ and 0 < ı < ı2.R/, then �."; ı;R/� 1.

Finally, one defines �."; ı;R/ WD max.2
p
n
p
�; 8
p
�/. From the remarks above

we can choose "2.R/ and ı2.R/ so that �."; ı;R/ < 1=R (for 0 < "� "2.R/, 0 < ı <
ı2.R/ and R big).

There are two cases.
Case (i). Let y1, y2 in Bg.yg ;R/ be such that d.y1; y2/ �

p
� . Using (49), if

0 < " < ".2R/, 0 < ı < ı.2R/ one has

d
�
Fc.y1/;Fc.y2/

�
� 2
p
n
p
� � �: (62)

Case (ii). Let y1, y2 in Bg.yg ;R/ be such that d.y1; y2/�
p
� . We will use the

following theorem, due to J. Cheeger and T. Colding (see [7, Theorem 2.11]), which
we describe now in a particular case. We keep the notations of [7].



50 BESSIÈRES, BESSON, COURTOIS, and GALLOT

Let us define A1 D Bg.y1; �/, A2 D Bg.y2; �/ and W D Bg.yg ; 2R/ where y1
and y2 are points as above sitting on a complete Riemannian manifold .Y;g/ with
Ricg ��.n� 1/g. For any z1 2 A1 and any unit vector v1 2 Tz1Y , the set I.z1; v1/
defined by

I.z1; v1/D
®
t
ˇ̌
�.t/ 2A2; �jŒ0;t� is minimal; � 0.0/D v1

¯

has a measure jI.z1; v1/j bounded above by 2� . Thus

D.A1;A2/ WD sup
z1;v1

jI.z1; v1/j � 2�;

and, similarly, D.A2;A1/ � 2� . For any z1 2 A1 and z2 2 A2, let �z1z2 be a min-
imizing geodesic from z1 to z2. Clearly, � �B.yg ; 2R/. Then, by [7, Theorem 2.11],
we have for any nonnegative integrable function e defined on Y ,

Z
A1�A2

Z d.z1;z2/

0

e.�z1;z2/.s/ ds

� c1.n; 2R/
�
D.A1;A2/vol.A1/CD.A2;A1/vol.A2/

�

�

Z
W

e.y/dvg.y/: (63)

By Bishop’s theorem, for i D 1, 2 we have

volg.Ai /� volHn
�
BHn.�/

�
;

and thus

c1.n; 2R/
�
D.A1;A2/vol.A1/CD.A2;A1/vol.A2/

�
� c2.n; �;R/:

Therefore, applying (63) to the function

e.y/D sup
u2UyY

�
kdyFc.u/k � kuk

�2

and using (37) on W \ Y˛1 and (49) on W n Y˛1 , we get

Z
A1�A2

Z d.z1;z2/

0

e.�z1;z2/.s/ ds

� c2.n; �;R/
�Z
W\Y˛1

e.y/dvg.y/C

Z
W nY˛1

e.y/dvg.y/
�

� c2.n; �;R/
�
˛23 :volg.Y /C .4nC 1/volg.Y n Y˛1/

�
� c2.n; �;R/�."; ı/: (64)
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Now, if we denote by � WD �z1z2 , then we have

j`.Fc ı �/� `.�/j D
ˇ̌̌Z d.z1;z2/

0

kd�.s/Fc. P�/k � k P�kds
ˇ̌̌

�

Z d.z1;z2/

0

sup
u2TyY

ˇ̌
kd�.s/Fc.u/k � kuk

ˇ̌
ds:

Using Cauchy–Schwarz inequality we have

j`.Fc ı �/� `.�/j
2

d.z1; z2/
�
.
R d.z1;z2/
0

supu jkd�.s/Fc.u/k � kukjds/
2

d.z1; z2/

�

Z d.z1;z2/

0

e
�
�.s/

�
ds:

Integrating on A1 �A2, we deduce from (64) that
Z
A1�A2

j`.Fc ı �z1z2/� `.�z1z2/j
2

d.z1; z2/
dvg.z1/dvg.z2/� c2.n; �;R/�."; ı/: (65)

By (11), for i D 1, 2 one has

volg.Ai /� vn
volHn.BHn.�//

volHn.BHn.1CRC �//
WD v0.�;R/ > 0:

From the obvious inequality

c2.n; �;R/�."; ı/�
1

v0.�;R/2

Z
A1�A2

c2.n; �;R/�."; ı/dvg.z1/dvg.z2/;

we get
Z
A1�A2

j`.Fc ı �z1z2/� `.�z1z2/j
2

d.z1; z2/
�

Z
A1�A2

c2.n; �;R/�."; ı/

v0.�;R/2
: (66)

As a consequence there exist z1 2A1 and z2 2A2 such that

j`.Fc ı �z1z2/� `.�z1z2/j
2 � d.z1; z2/

c2.n; �;R/�."; ı/

v0.�;R/2
:

On the other hand, one can check that by definition of � ,

c2.n; �;R/�."; ı/

v0.�;R/2
D �."; ı/

2c1.n; 2R/volHn.1CRC 1/2

v2n volHn.�/
� D �2:

This yields

j`.Fc ı �z1z2/� `.�z1z2/j
2 � d.z1; z2/�

2;
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and

d
�
Fc.z1/;Fc.z2/

�
� `.Fc ı �z1z2/� d.z1; z2/C �

p
d.z1; z2/:

Since d.yi ; zi / < � and d.y1; y2/�
p
� , we have

d.z1; z2/� d.y1; y2/C 2� � d.y1; y2/.1C 2
p
�/:

With our choice of � very small compared to 1, we also have

d.z1; z2/� d.y1; y2/� 2� �

p
�

2
:

We then have

d
�
Fc.y1/;Fc.y2/

�
� d

�
Fc.y1/;Fc.z1/

�
C d

�
Fc.z1/;Fc.z2/

�
C d

�
Fc.z2/;Fc.y2/

�
(67)

� 2
p
n� C d.z1; z2/C �

�
d.z1; z2/

�1=2
C 2
p
n� (68)

� 4
p
n� C d.y1; y2/

d.z1; z2/

d.y1; y2/

�
1C �.d.z1; z2//

�1=2
�

(69)

� 4
p
n� C d.y1; y2/.1C 2

p
�/.1C

p
2�3=4/ (70)

� 4
p
n� C d.y1; y2/.1C 8

p
�/: (71)

We finally get

d
�
Fc.y1/;Fc.y2/

�
� � C .1C �/d.y1; y2/; (72)

in case (ii).

4. A limit map on the limit space
In this section, we consider a sequence .Yk; gk/k2N of closed Riemannian n-mani-
folds satisfying the curvature bound (3) and the assumption that there exist an closed
hyperbolic n-manifold .X;g0/, degree-one maps fk W Yk!X , and a sequence "k!
0 such that

volgk .Yk/! volg0.X/; (73)

as k goes to C1. From (8), for every k 2 N, there exists ygk 2 Yk satisfying the
local volume estimate; that is, vol.Bgk .ygk ; 1//� vn > 0. For the sake of simplicity
we shall use the notation yk instead of ygk .

Below, we prove that .Yk; gk; yk/ subconverges in the pointed Gromov–Haudorff
topology to a limit metric space .Y1; d1; z1/. Moreover, there exists a sequence of
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natural maps Fck W .Yk; gk/! .X;g0/, with suitably chosen parameters ck , which
subconverges to a “natural map” F W Y1 �!X .

Let us recall the definition of the Gromov–Hausdorff topology. For two subsets
A;B of a metric space Z the Hausdorff distance between A and B is

dZH .A;B/ WD inf
®
" > 0

ˇ̌
B � V".A/ and A� V".B/

¯
2R[ ¹1º:

It is a distance on compact subsets of Z (see [11]).

Definition 4.1 (see [14])
Let X1, X2 be two metric spaces. Then the Gromov–Hausdorff distance dGH .X1;
X2/ 2R[1 is the infimum of the numbers

dZH
�
f1.X1/; f2.X2/

�

for all metric spaces Z and all isometric embeddings fi WXi !Z.

It is a distance on the space of isometry classes of compact metric spaces. One
says that a sequence .Xi /i2N of metric spaces converges in the Gromov–Hausdorff
topology to a metric space X1 if dGH .Xi ;X1/! 0 as i !1. Let xi 2 Xi and
x1 2 X1. One says that the sequence .Xi ; xi /i2N converges to .X1; x1/ in the
pointed Gromov–Hausdorff topology if for any R > 0, dGH .BXi .xi ;R/;BX1.x1;
R//! 0 as i!C1. (In fact, this definition holds only for length spaces, which will
be sufficient in our situation.)

To deal with the Gromov–Hausdorff distance betweenX1 andX2, it is convenient
to avoid the third space Z by using "-approximations between X1 and X2.

Definition 4.2
Given two metric spaces X1,X2 and " > 0, an "-approximation (or "-isometry) from
X1 to X2 is a map f WX1!X2 such that
(1) for any x;x0 2X1, jdX2.f .x/; f .x

0//� dX1.x; x
0/j< ";

(2) the "-neighborhood of f .X1/ is equal to X2.

Then one can show (see [5, Corollary 7.3.28]) that dGH .X1;X2/ < " if there
exists a 2"-approximation from X1 to X2 and similarly an "-approximation exists if
dGH .X1;X2/ < 2". Let us insist on the fact that these approximations may be neither
continuous nor even measurable.

Our goal is to prove the following.

PROPOSITION 4.3
Up to extraction and renumbering, the sequence .Yk; gk; yk/ satisfies the following.
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(1) There exists a complete pointed length space .Y1; d1; y1/ such that .Yk; gk;
yk/ converges in the pointed Gromov–Hausdorff topology to a metric space
.Y1; d1; y1/. Moreover, .Y1; d1/ has Hausdorff dimension equal to n.

(2) There exist sequences of positive numbers "k ! 0, ık ! 0, ck 2 	h.gk/;
h.gk/C ıkŒ, Rk !C1, such that "k � ".Rk/ and ık � ı.Rk/, where ".�/
and ı.�/ are given by Lemma 3.12, and such that the following holds. Let

Fck W .Yk; gk/! .X;g0/

be the natural map as defined in Section 2. Then Fck ı k converges uniformly
on compact sets to a map

F W Y1 �!X;

which is 1-Lipschitz.

The proof is divided in two steps described in the following sections.

Existence of the limit and its properties
Under the curvature bound (3) and the local volume estimate (11), the sequence
.Yk; gk/ is “noncollapsing” and part (1) of Proposition 4.3 is a straightforward appli-
cation of the Gromov and Cheeger–Colding compactness theorem (see [8, Theo-
rem 1.6]). Before proving point (2) of Proposition 4.3, let us describe some features
of the convergence and of the limit space which will be used later.

The continuity of the volume under the (pointed) Gromov–Hausdorff conver-
gence is crucial for our purposes. For ` > 0, note H ` the `-dimensional Hausdorff
measure of a metric space (see [5, Definition 1.7.7]).

THEOREM 4.4 ([8, Theorem 5.9])
Let pi 2 Yi , let p1 2 Y1 be their limit, and let R > 0. Then

lim
i!C1

volgi
�
B.pi ;R/

�
DHn

�
B.p1;R/

�
: (74)

In particular, Y1 satisfies the Bishop–Gromov inequalities (9) and the Bishop
inequality. By definition, a tangent cone at p 2 Y1 is a complete pointed Gromov–
Hausdorff limit, ¹Y1;p; d1; p1º of a sequence of rescaled space, ¹.Y1; r�1i d;p/º,
where ¹riº is a positive sequence such that ri ! 0. Indeed, by [12, Proposition 5.2],
every such sequence has a convergent subsequence, but the limit might depend on the
choice of the subsequence. Notice that this notion is different from the one described
in [5, Chapter 8] where the authors require that the limit be unique (does not depend
on the subsequence).
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Definition 4.5
The regular set R consists of those points, p 2 Y1, such that every tangent cone at
p is isometric to Rn. The complementary S D Y1 nR is the singular set.

Let Bn0 .1/�Rn be the unit ball.

Definition 4.6
The "-regular set R" consists of those points, p 2 Y1, such that every tangent cone,
.Y1;p; p1/, satisfies dGH .B.p1; 1/;Bn0 .1// < ". A point in Y1 nR" D S" is called
"-singular.

THEOREM 4.7 ([8, Theorem 5.14])

There exists "n > 0 such that for "� "n,
ı

R" has a natural smooth manifold structure.

Moreover, for this parameterization, the metric on
ı

R" is bi-Hölder equivalent to a
smooth Riemannian metric. The exponent ˛."/ in this bi-Hölder equivalence satisfies
˛."/! 1 as "! 0.

THEOREM 4.8 ([8, Theorem 6.1])
We have

Hn�2.S/D 0: (75)

Remark 4.9
Clearly, R D

T
">0R". The sets R", R are not necessarily open. However, for any

" > 0, there is some ı 2 .0; "/ such that Rı �
ı

R" (see [8, Appendix A.1.5]). In [9,

Section 3], it is also proved that
ı

R" is path connected. This important fact will be
used in the last part of this text.

We now study the density of the Hausdorff measure. A consequence of Bishop’s
inequality is that

lim sup
r!0

Hn.B.p; r//

volRn.r/
� 1:

Definition 4.10
The density at p of Y1 is

�.p/ WD lim inf
r!0

Hn.B.p; r//

volRn.r/
: (76)
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A consequence of [8, A.1.5] is the existence of some positive function �."/, with
�."/! 0 as "! 0, such that for every p 2R",

�.p/ > 1� �."/: (77)

Conversely, there exists a positive function ".�/, satisfying ".�/! 0 as � ! 0

and such that

�.p/� 1� � H) p 2R".�/: (78)

Remark 4.11
A point p is regular if and only if �.p/D 1. From now on, we consider "� "0, where
"0 � "n is sufficiently small so that �."0/ < 1=2; the density is thus strictly greater
than 1=2 on R".

Existence of the natural map at the limit
Let us now prove (2) of Proposition 4.3.

Proof
For every k 2 N and c > h.gk/, there exists a natural map Fc W .Yk; gk/! .X;g0/,
described in Section 2. We need to choose the values of c for each gk in order that Fc
satisfies some good properties. One argues as follows.

Given m 2 N�, one chooses positive numbers "m � "2.m/ and ım � ı2.m/ suf-
ficiently small such that �."m; ım;m/ � 1

m
, where ı2, "2 and � are given by Lem-

ma 3.13. One then defines

˛m Dmax
®
˛1."m; ım/; ˛2."m; ım/; ˛3."m; ım/; �."m; ım;m/

¯
;

where ˛1, ˛2 and ˛3 are defined in Lemmas 3.9, 3.10, and 3.11, respectively.
We check that ˛m! 0 asm!C1. By the hypothesis (73), there exists k1.m/ 2

N such that for any k � k1.m/, volgk .Yk/ � .1C "m/volg0.X/. Since for m fixed
Bgk .yk;m/ converges to B1.y1;m/, there exists k2.m/ 2 N such that for any k �
k2.m/, there exist ˛m-approximations from B1.y1;m/ to Bgk .yk;m/. Define
k.m/ WD max¹k1.m/; k2.m/º, and let  m W B1.y1;m/ �! Bgk .yk.m/;m/ be an
˛m-approximation. One can assume that  m.y1/ D yk.m/. Choose cm such that
h.gk/ < cm < h.gk/C ım, and consider

Fcm ı m WB1.y1;m/�!X:

Lemma 3.13 applies to Fcm on Bgk.m/.yk.m/;m/. Hence, for any p;q 2B1.y1;m/,

dg0
�
Fcm ı m.p/;Fcm ı m.q/

�
� .1C ˛m/dgk

�
 m.p/; m.q/

�
C ˛m

� .1C ˛m/d1.p; q/C .1C ˛m/˛mC ˛m:
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Applying the same reasoning as in Ascoli’s theorem, one can show that for any com-
pact K � Y1, there exists a subsequence of Fcm converging to a map FK WK!X .
We denote it by Fc�.m/ . If one uses an exhaustion of Y1 by compact sets and a
standard diagonal process, one can extract a subsequence of Fc�.m/ ı  �.m/ which
converges uniformly on any compact set to a map F W Y1!X . It is easy to see that
the map F is 1-Lipschitz.

Then one renumbers the subsequences Yk.�.m//,  �.m/, and Fc�.m/ such that,
for any m 2 N�, volgm.Ym/ � .1C "m/volg0.X/, h.gm/ < cm < h.gm/C ım, the
inequalities of Lemmas 3.9, 3.10, and 3.11 hold with ˛1, ˛2, ˛3 replaced by ˛m, and
those of Lemmas 3.12 and 3.13 hold on B.ym;m/� Ym with � replaced by ˛m. For
simplicity, the map Fcm will be denoted by Fm.

5. The limit map F W Y1 �!X is isometric
In this section we aim at proving that the limit map F D limFk ı k is an isometry,
that is, it is distance preserving. This will follow from the fact that F is a volume-
preserving 1-Lipschitz map. We prove first that F preserves the volume.

LEMMA 5.1
Let A� Y1 be a measurable subset. Then,

volg0
�
F.A/

�
DHn.A/: (79)

Proof
It suffices to prove the lemma when the set A is an open ball. Indeed, let us assume
that F preserves the volume of balls, and let A be a measurable set included in a
ball B WDB1.p; r/. Since F is contracting it does not increase the volumes (see [16,
Proposition 3.5]). Now, if volg0.F.A// < Hn.A/ and since we have volg0.F.B n
A//�Hn.B nA/, we have a contradiction with the preservation of the volume of B .
Similarly, if A is a measurable set of finite measure we can apply the same argument
with A and B nA for any ball B .

It is then enough to prove that for every B1.p; r/� Y1, volg0
�
F.B1.p; r//

�
�

Hn.B1.p; r//. By construction, F.B1.p; r// is the Hausdorff limit of
Fk ı k.B1.p; r//.

We first show that this is also the Hausdorff limit of Fk
�
Bgk . k.p/; r/

�
. Let x 2

F.B1.p; r// and xk 2 F.B1.p; r// such that xk! x. Let pk 2B1.p; r/ such that
F.pk/D xk . By definition of the ˛k-approximation, one has dgk . k.pk/; k.p// <
r C ˛k . There exists zk 2 Bgk . k.p/; r/ such that dgk . k.pk/; zk/ < ˛k (e.g., zk
may be on the segment Œ k.pk/; k.p/	). Note that, by the triangular inequality,
d1.pk; y1/� rCd1.p;y1/, and recall that  k.y1/D ygk . Thus  k.pk/ remains
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at bounded distance from ygk . Then, applying Lemma 3.13 we have

dg0
�
Fk.zk/;Fk. k.pk//

�
� .1C ˛k/dgk

�
zk; k.pk/

�
C ˛k

� .1C ˛k/˛k C ˛k

�!
k!C1

0:

On the other hand, since Fk ı  k converges uniformly to F on compact sets,
Fk. k.pk// has the same limit as F.pk/D xk ; that is, Fk. k.pk//! x. From the
inequality above one deduces that Fk.zk/ ! x, which shows that x 2

limk!1Fk
�
Bgk . k.p/; r/

�
. One has then proved that F.B1.p; r// �

limk!1Fk
�
Bgk . k.p/; r/

�
. In order to prove the other inclusion, one argues sim-

ilarly. Given x 2 limk!1Fk
�
Bgk . k.p/; r/

�
, there exists xk 2 Fk

�
Bgk . k.p/; r/

�
such that xk ! x, with xk D Fk.zk/ where zk 2 Bgk . k.p/; r/. As  k is an ˛k-
approximation fromB1.y1; k/ toB.ygk ; k/, one has the inclusionBgk . k.p/; r/�
U˛k k.B1.p; r C ˛k// for large k, thus there exists qk 2 B1.p; r C ˛k/ satisfy-
ing dgk .zk; k.qk// < ˛k . As Y1 is a length space, there exists q0

k
2B1.p; r/ such

that d1.q0k; qk/ < ˛k . Then dgk . k.q
0
k
/; zk/� dgk . k.q

0
k
/; k.qk//Cdgk . k.qk/;

zk/ < 3˛k . Thus

dg0
�
Fk ı k.q

0
k/; xk

�
D dg0

�
Fk ı k.q

0
k/;Fk.zk/

�
� .1C ˛k/dgk

�
 k.q

0
k/; zk

�
C ˛k

� .1C ˛k/3˛k C ˛k! 0:

Hence dg0.Fk ı k.q
0
k
/; x/! 0. As Fk ı k converges uniformly to F on compact

sets, one has dg0.F.q
0
k
/; x/! 0, and thus x 2 F.B1.p; r//. This shows that x 2

F.B1.p; r// is the Hausdorff limit of Fk
�
Bgk . k.p/; r/

�
.

In order to prove the lemma, it is then sufficient to prove that

lim inf
k!C1

volg0
�
Fk.Bgk . k.p/; r//

�
� lim inf
k!C1

volg0
�
Fk.Bgk . k.p/; r//

�

�Hn
�
B1.p; r/

�
: (80)

Indeed, inequality (80) will imply that

volg0
�
F.B1.p; r//

�
� volg0

�
F.B1.p; r//

�
�Hn

�
B1.p; r/

�
and thus volg0

�
F.B1.p; r//

�
�Hn.B1.p; r// since F being Lipschitz, we have

volg0
�
F.B1.p; r//

�
D volg0

�
F.B1.p; r//

�
:

Recall that N.Fk; x/ is the number of preimages of x by Fk . We denote by Xk;1
the set of x 2 X such that N.Fk ; x/ D 1. The construction of the sequence .Fk/,
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Lemma 3.10 and our choice of the ˛k’s imply that volg0.Xk;1/� .1� ˛k/volg0.X/
and Z

XnXk;1

N.Fk; x/dvg0.x/� ˛k volg0.X/: (81)

We also denote by Yk;˛k the set of y 2 Yk such that

1� ˛k � j JacFk.y/j � 1C ˛k : (82)

Then Lemma 3.9 implies that volgk .Yk;˛k /� .1�˛k/volgk .Yk/, for k large enough.
We then have

volg0
�
Fk.Bgk . k.p/; r//

�

D

Z
Fk.Bgk . k.p/;r//

dvg0

D

Z
Fk.Bgk . k.p/;r//\Xk;1

dvg0.x/C volg0
�
Fk.Bgk . k.p/; r// nXk;1

�

�

Z
Bgk . k.p/;r/\F

�1
k
.Xk;1/\Yk;˛k

j JacFk.y/jdvgk .y/

� .1� ˛k/volgk
�
Bgk . k.p/; r/\F

�1
k .Xk;1/\ Yk;˛k

�
: (83)

On the other hand, using (82) and (81) we have

volgk
�
F �1k .X nXk;1/\ Yk;˛k

�

�

Z
F�1
k
.XnXk;1/\Yk;˛k

j JacFkj

1� ˛k
dvgk

�
1

1� ˛k

Z
XnXk;1

N.Fk; x/dvg0.x/

�
˛k

1� ˛k
volg0.X/;

and, consequently,

volgk
�
Bgk . k.p/; r/\F

�1
k .Xk;1/\ Yk;˛k

�
D volgk

�
Bgk . k.p/; r/\ Yk;˛k

�
� volgk

�
Bgk . k.p/; r/\F

�1
k .X nXk;1/\ Yk;˛k

�
� volgk

�
Bgk . k.p/; r/

�
� ˛k volgk .Yk/�

˛k

1� ˛k
volg0.X/:
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Plugging this inequality in (83) one gets

volg0
�
Fk.Bgk . k.p/; r//

�
� .1� ˛k/volgk

�
Bgk . k.p/; r/

�
� .1� ˛k/˛k volgk .Yk/� ˛k volg0.X/:

As Bgk . k.p/; r/ converges to B1.p; r/ in the Gromov–Hausdorff topology, Theo-
rem 4.4 implies that limk!1 volgk

�
Bgk . k.p/; r/

�
DHn.B1.p; r//; hence

lim inf
k!1

volg0
�
Fk.Bgk . k.p/; r//

�
�Hn

�
B1.p; r/

�
;

which proves the lemma.

We now prove that F is injective on the set of points where the density is larger
than 1=2.

LEMMA 5.2
The map F is injective on R" for  � 0.

Proof
Suppose that there are p1,p2 2R" such that F.p1/D F.p2/. As F is 1-Lipschitz,
we have for every r > 0,

F
�
B1.p1; r/[B1.p2; r/

�
�Bg0

�
F.p1/; r

�
:

By Lemma 5.1,

Hn
�
B1.p1; r/[B1.p2; r/

�
D volg0

�
F.B1.p1; r/[B1.p2; r//

�
� volg0

�
B1.F.p1/; r/

�
: (84)

For r < d.p1; p2/=2, the ballsB1.p1; r/ andB1.p2; r/ are disjoint. Hence, dividing
(84) by volRn.r/, we get

Hn.B1.p1; r//

volRn.r/
C

Hn.B1.p2; r//

volRn.r/
�

volg0.Bg0.F.p1/; r//

volRn.r/
:

Taking the liminf as r! 0 yields

�.p1/C �.p2/� �
�
F.p1/

�
D 1;

which is a contradiction, since � > 1=2 on R" if " < "0 (see Remark 4.11).

LEMMA 5.3

The map F is open on
ı

R" for  � 0.
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Proof

Let p 2
ı

R". We have to prove that there exists 
 > 0 such that Bg0.F.p/; 
/ �

F.
ı

R"/. There exists r > 0 such that B1.p; 2r/�
ı

R". For the sake of simplicity we
shall note B WD B1.p; r/. By the previous lemma, F.p/ … F.@B/. Thus, by com-
pactness of @B and continuity of F , there exists 
 > 0 such that dg0.F.p/;F.@B// >

. Notice that, since F is 1-Lipschitz, 
 < r . Here, one could use the theory of
local degree as in [3, Appendix C]; however, Y1 is not, a priori, a manifold and it
may even be not locally Lipschitz equivalent to Rn. Let R > 2r C d1.y1; p/ be a
fixed radius; it satisfies  k.B1.p; 2r//� Bgk .ygk ;R/ for large k. Let zk D  k.p/
and Bk WD B.zk; r/. The choice of R and the fact that the  k’s are approximations
show that Bk � B.ygk ;R/, for k large enough. We choose k large enough such that
dH .Fk.@Bk/;F .@B// �

�
10

. This is possible since dH . k.@B/; @Bk/ goes to zero,
Fk ı  k converges to F , and F.p/ is at distance from F.@B/ larger than 
. Let C

(resp., Ck) be the connected component of X n F.@B/ (resp., X n Fk.@Bk/), which
contains F.p/ (resp., Fk.zk/). Now the ball B.F.p/; 
=10/ is included in C , and
for k large enough, B.Fk.zk/; 
=10/ is included in Ck . On the other hand, by [11,
Corollary 4.1.26], deg.Fk jBk/ is constant on Ck , where, for a subset A� Yk ,

deg.Fk jA/.x/D
X

y2F�1
k
.x/\A

sign JacFk.y/:

We show that deg.Fk j Bk/D 1 on Ck as follows. We have to prove that at least one
point in Ck this degree is 1 since it is constant on this set. In order to do that, we shall
show that the set of such points has positive measure. Denote again by Xk;1 � X
the set of x 2 X such that N.Fk; x/ D 1; that is, x has one preimage by Fk . By
Lemma 3.10, volg0.Xk;1/� .1�˛k/volg0.X/. The intersection of Xk;1 with Ck has
a positive measure for k large enough; indeed, B

�
Fk.zk/;

�
10

�
� Ck and its volume

is bounded below by (11) and vol
�
B
�
Fk.zk/;

�
10

�
nXk;1

�
�! 0 as k!C1. Now,

by Lemma 3.12, one has Fk
�
B
�
zk ;

�

20
p
n

��
�B

�
Fk.zk/;

�
10

�
and B

�
zk;

�

20
p
n

�
�Bk

for large k, and an argument similar to the one used in (80) shows that the volume
of the image is bounded below. It thus intersects Xk;1 on a set of positive measure
for k large enough. This proves that deg.Fk jBk/D 1 on Ck . Since B.Fk.zk/; 
=10/
converges to B.F.p/; 
=10/, this last ball is included in Ck for k large; hence, any
point in B

�
F.p/; �

10

�
has a preimage by Fk in Bk . By taking the limit when k goes

to C1, we get B
�
F.p/; �

10

�
� F.B.p; r//� F.B.p; 2r//� F.

ı

R"/.

LEMMA 5.4

There exists c."/ > 0 such that F W
ı

R" �! F.
ı

R"/ � X is locally .1 C c."//-bi-
Lipschitz. Moreover, c."/! 0 as "! 0.



62 BESSIÈRES, BESSON, COURTOIS, and GALLOT

Proof
The idea is the following: we already know that F is 1-Lipschitz and volume preserv-
ing. In particular, a ball B1.p; r/� Y1 is sent into a ball Bg0.F.p/; r/�X . If the
ball in Y1 is in the almost-regular part and has a small radius, its volume is close to
the Euclidean one, and so is the volume of the hyperbolic ball. One can then estimate
how much the image of B1.p; r/ is close to filling Bg0.F.p/; r/. If one considers
the images of two disjoint balls, one can estimate how the corresponding hyperbolic
balls overlap, and thus the distance between their centers.

Let p 2
ı

R". Let r.p; "/ > 0 be a radius such that for every 0 < r � r.p; "/,

Hn.B1.p; r//

volRn.r/
� 1� �."/;

and let r" D min¹"; r.p; "/º. One can assume that r" is smaller than the injectivity
radius of X . Let 0 < r < r2" be such that B1.p; r/ �R". For every q 2 B1.p; r/,
B1.p; r" � r

2
" /�B1.q; r"/. Thus,

Hn
�
B1.q; r"/

�
�Hn

�
B1.p; r" � r

2
" /
�

(85)

�
�
1� �."/

�
volRn.r" � r

2
" / (86)

�
�
1� �."/

�
.1� r"/

n volRn.r"/: (87)

Suppose that there exist p1,p2 2 B1.p; r/, p1 6D p2, and a number 0 < � < 1 such
that

dg0
�
F.p1/;F .p2/

�
� �d1.p1; p2/:

Define r 0 D d1.p1; p2/=2 > 0, and notice that r 0 < r . By (74) and the Bishop–
Gromov inequality (9), for i D 1, 2, one has

Hn
�
B1.pi ; r

0/
�
�Hn

�
B1.pi ; r"/

�volHn.r 0/

volHn.r"/
:

Thus, by Lemma 5.1, inequality (85) and Bishop–Gromov inequality we have

volg0
�
F.B1.p1; r

0/[B1.p2; r
0//
�

DHn
�
B1.p1; r

0/
�
CHn

�
B1.p2; r

0/
�

(88)

� 2
�
1� �."/

�
.1� r"/

n volHn.r 0/

volHn.r"/
volRn.r"/ (89)

� 2
�
1� �."/

�
.1� r"/

n volRn."/

volHn."/
volRn.r

0/ (90)

� 2#."/volRn.r
0/ (91)

where #."/D .1� �."//.1� "/n volRn ."/
volHn ."/

! 1 as "! 0.
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On the other hand,

F
�
B1.p1; r

0/[B1.p2; r
0/
�
�Bg0

�
F.p1/; r

0
�
[Bg0

�
F.p2/; r

0
�
:

Hence

volg0
�
F.B1.p1; r

0/[B1.p2; r
0//
�

� volg0
�
Bg0.F.p1/; r

0/
�
C volg0

�
Bg0.F.p2/; r

0/
�

� volg0
�
Bg0.F.p1/; r

0/\Bg0.F.p2/; r
0/
�
: (92)

For any x 2 X and any s > 0 smaller than the injectivity radius of X one has
volg0.B.x; s//D volHn.s/. Let x be the middle point of the segment ŒF .p1/F.p2/	.
Then

B
�
x; r 0.1� �/

�
�B

�
F.p1/; r

0
�
\B

�
F.p2/; r

0
�
:

Indeed, if x0 2B.x; r 0.1� �//, then d.x0;F .pi //� d.x0; x/C d.x;F.pi // < r 0.1�
�/C �r 0 D r 0 for i D 1, 2. Thus (92) gives

volg0
�
F.B.p1; r

0/[B.p2; r
0//
�

� 2volHn.r
0/� volHn

�
r 0.1� �/

�
(93)

� 2volRn.r
0/

volHn.r 0/

volRn.r 0/
� .1� �/n volRn.r

0/ (94)

� 2volRn.r
0/

volHn."/

volRn."/
� .1� �/n volRn.r

0/ (95)

D
�
2

volHn."/

volRn."/
� .1� �/n

�
volRn.r

0/: (96)

For the third inequality we have used Bishop–Gromov’s inequality. From (91) and
(96), we find

.1� �/n � 2
�volHn."/

volRn."/
� #."/

�
! 0:

Therefore,

� � 1� 21=n
�volHn."/

volRn."/
� #."/

�1=n
WD 1� c."/! 1;

as "! 0. One has proved that inside the ball B.p; r/,

dg0
�
F.p1/;F .p2/

�
�
�
1� c1."/

�
d1.p1; p2/;

and the proof of the lemma follows by choosing c."/ so that 1�c1."/� .1Cc."//�1.
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Remark 5.5

On the connected (see Remark 4.9) open set F.
ı

R"/ � X , the metric g0 induces a

distance �". The above lemma shows that F W .
ı

R"; d1/ �! .F.
ı

R"/; �"/ is a .1C
c."//-bi-Lipschitz homeomorphism. If one can prove that �" D dg0 , one deduces that
R" has bounded diameter. One then concludes that dGH .Yk; Y1/! 0 and that F W
Y1!X is isometric.

More precisely, we prove the following proposition.

PROPOSITION 5.6

The set F.
ı

R"/ satisfies the following:

(1) for any x1; x2 2 F.
ı

R"/, dg0.x1; x2/D �".x1; x2/;

(2) F.
ı

R"/DX ;
(3) F W .Y1; d1/�! .X;dg0/ is an isometry.

Proof

Let x1,x2 2 F.
ı

R"/. Without loss of generality, one can suppose that x2 is not in the
image of the cut-locus of x1. Clearly, �".x1; x2/ � dg0.x1; x2/. Let � W Œ0; 1	 �! X

be a g0-minimal geodesic from x1 to x2. We do not know that � is in F.
ı

R"/; we

then prove that there exist paths in F.
ı

R"/ arbitrarily close to � . Let r > 0 be a radius

such that Bg0.x2; r/ � F.
ı

R"/. We consider geodesics with the origin x1 and the
extremity in B.x2; ı/, for a small ı > 0. More precisely, let uD P�.0/; then for any
v 2 Ux1X such that u? v, one defines �s;v.t/D expx1.t.uC s:v/d.x1; x2//. There
exists r.ı/ > 0 such that �s;v.1/ 2B.x2; ı/ if jsj � r.ı/ and one can choose r.ı/! 0

as ı goes to 0.
We claim that for every ı > 0, there exists such a �s;v which is embedded in

F.
ı

R"/.
Let us show that one can find such �s;v disjoint from F.S/, where S is the sin-

gular set of Y1 introduced in Definition 4.5. The idea is that if any �s;v would hit
F.S/ at least in one point, then the Hausdorff dimension of F.S/ would be larger
than n� 1, which is a contradiction. More precisely, one considers a truncated cone
Uı defined as follows. Let

� W 	0; r.ı/	� .Ux1X \ u
?/� Œ0; 1	!X

be defined by �.s; v; t/D �s;v.t/. If ı is sufficiently small, then � is an embedding.
One defines Uı D �.	0; r.ı/	� .Ux1X \ u

?/� Œ0; 1	/. Let us denote by Uı.1=2/ the
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hypersurface in Uı defined as �.	0; r.ı/	/� .Ux1X \ u
?/� ¹1=2º/:

Let P W Uı ! Uı.1=2/ be the projection along geodesics defined by P.�s;v.t// D
�s;v.1=2/. Since we are on a fixed Riemannian manifold, there exists a constant C > 0
such that P is C -Lipschitz from Uı to X . In particular, P decreases the Hausdorff
dimension; that is,

dimH

�
P.Uı \F.S//

�
� dimH

�
Uı \F.S/

�
� dimH .S/

� n� 2

< dimUı.1=2/D n� 1:

Hence, there exists x 2 Uı.1=2/ such that x …….F.S//. This implies that the geodes-
ic �s;v such that x D �s;v.1=2/ does not intersect F.S/.

We now prove that �s;v is embedded in F.
ı

R"/. Let t0 2 .0; 1	 be maximal such

that �s;v.Œ0; t0Œ/ � F.
ı

R"/. By Lemma 5.4, the path ˇ D F �1 ı �s;v is well defined
on Œ0; t0Œ and has a length bounded by .1C c."//d.x1; x2/. Since F is bi-Lipschitz,
dgk .ˇ.t/; ˇ.t

0// � C jt 0 � t j, and hence there exists a limit p D limt!t0 ˇ.t/ 2 Y1.
By continuity of F , F.p/ D �s;v.t0/, and since �s;v.t0/ … F.S/, we have that p …

S . This implies that p 2 R D
T
"R" D

T
">0

ı

R" and, consequently, that t0 D 1,

because
ı

R" is open.
Hence

�".x1; x2/ � `.�s;v/C d0
�
�s;v.1/; x2

�
�
p
1C r2.ı/d0.x1; x2/C ı:

As ı was arbitrary, this gives �".x1; x2/� d0.x1; x2/.
The second assertion is proved in a similar way. Suppose there is a ball B.x; r/�

X n F.
ı

R"/, and consider a geodesic � from a point x1 inside F.
ı

R"/ to x. Then we
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find another geodesic from x1, close to � , disjoint from F.S/, and with extremity in

X nF.
ı

R"/. Arguing as above, we find a contradiction.

Now part (3) of Proposition 5.6 is straightforward. Using the density of
ı

R" in

Y1 and of F.
ı

R"/ in X , we find that F W .Y1; d1/ �! .X;d0/ is a .1C c."//-bi-
Lipschitz homeomorphism for any 0 < " < "0, and thus is isometric.

End of Proof of Theorem 1.3
Proposition 5.6 implies that the diameter of .Y;gk/ remains bounded. Thus, dGH ..Y;
gk/; .Y1; d1//! 0 (for the nonpointed convergence). As .Y1; d1/ is isometric
to .X;g0/, one deduces that dGH ..Y;gk/; .X;g0//! 0 as k !1. By [8, Theo-
rem A.1.12], Y is diffeomorphic to X . The fact that f is homotopic to a diffeomor-
phism is classic for hyperbolic manifolds.
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