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Preface

The aim of this book is to give a proof of Thurston’s Geometrisation Conjecture,
solved by G. Perelman in 2003. Perelman’s work completes a program initiated
by R. Hamilton, using a geometric evolution equation called Ricci flow. Perelman
presented his ideas in three very concise manuscripts [Per02], [Per03a], [Per03b].
Important work has since been done to fill in the details. The first set of notes
on Perelman’s papers was posted on the web in June 2003 by B. Kleiner and
J. Lott. These notes have progressively grown to the point where they cover the
two papers [Per02], [Per03b]. The final version has been published as [KL08].
A proof of the Poincaré Conjecture, following G. Perelman, is given in the book
[MT07] by J. Morgan and G. Tian. Another text covering the Geometrisation
Conjecture following Perelman’s ideas is the article [CZ06a] by H.-D. Cao and
X.-P. Zhu. Alternative approaches to some of Perelman’s arguments were given
by T. Colding and W. Minicozzi [CM07], T. Shioya and T. Yamaguchi [SY05], the
authors of the present book [BBB+07], [BBB+10], J. Morgan and G. Tian [MT08],
J. Cao and J. Ge [CG09], B. Kleiner and J. Lott [KL10].

One goal of this book is to present a proof more attractive to topologists. For
this purpose, we have endeavoured to reduce its analytical aspects to blackboxes
and refer to some well-known and well-written sources (e.g. [MT07],[CK04]). At
various points, we have favoured topological and geometric arguments over analytic
ones.

The bulk of Perelman’s proof is the construction and study of a kind of gen-
eralised solution of the Ricci flow equation called Ricci flow with surgery. In our
treatment, this part has been simplified by replacing Ricci flow with surgery by a
variant, which we call Ricci flow with bubbling-off. This is a sort of discontinuous,
piecewise smooth Ricci flow on a fixed manifold. For the last part of the proof, we
provide a completely different argument, based on the preprint [BBB+07], which
relies on topological arguments and Thurston’s hyperbolisation theorem for Haken
manifolds. We use a technique borrowed from the proof of the orbifold theorem
([BLP05]).

We have tried to make the various parts of the proof as independent as possible,
in order to clarify its overall structure. The book has four parts. The first two
are devoted to the construction of Ricci flow with bubbling-off. These two parts,
combined with [CM07] or [Per03a], are sufficient to prove the Poincaré Conjecture,
as we explain in Section 1.2.3. Part III is concerned with the long-time behaviour
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vi Preface

of Ricci flow with bubbling-off. Part IV completes the proof of the Geometrisation
Conjecture and can be read independently of the rest. The material found here is
of topological and geometric nature.

The idea of writing this book originated during the party that followed the
conference held in honour of Larry Siebenmann in December 2005. It came after
several workshops held in Barcelona, München and Grenoble devoted to the read-
ing of Perelman’s papers and the Kleiner–Lott notes. A first version of this book
was handed out as lecture notes during the trimestre on the Ricci curvature held in
I.H.P. (Paris) in
May 2008.

The results of this monograph have been announced in the survey article [Mai08].
We warn the reader that there are a few discrepancies between that article and
the present book, due to changes in terminology and minor adjustments in state-
ments of theorems. For an introduction to the Poincaré Conjecture that follows
the approach of this book, see [Mai09].

Many expository texts about Perelman’s work have been written. We rec-
ommend, among others, [And04], [Bes06b], [Mor05], [Lot07], [Mor07], [Tao06],
[Yau06], [Bes05], [Bes06a], [BBB06], [Bes07].

The authors wish to thank the Agence Nationale de la Recherche for its sup-
port under the programs FOG (ANR-07-BLAN-0251-01) and GROUPES (ANR-
07-BLAN-0141), as well as the Feder/ Micinn grant MTM2006-04546. We have
also been supported by the Clay Mathematics Institute, the Fondation des Sci-
ences Mathématiques de Paris, the Centre Emile Borel, and the Centre de Recerca
Matemàtica. The third author thanks the Institut Universitaire de France for
his support. The fourth author thanks the Institut de Recherche Mathématique
Avancée (UMR CNRS 7501 and Université de Strasbourg) where he held a posi-
tion during most of the writing of this book. The last author received the prize
“ICREA Acadèmia”, funded by the Generalitat de Catalunya.

We warmly thank B. Kleiner, J. Lott, J. Morgan and G. Tian for numer-
ous fruitful exchanges. Part of this work originated in workshops organized at
Barcelona, Grenoble and München. We thank all the participants of these ac-
tivities, in particular J. Dinkelbach, V. Bayle, Y. Colin de Verdière, S. Gallot,
B. Leeb, L. Rozoy, T. Schick and H. Weiss. The trimestre on the Ricci curvature
organized at I.H.P. in the spring 2008 has played an essential role and we thank
the participants and particularly E. Aubry, R. Bamler, R. Conlon, Z. Djadli and
D. Semmes.

We warmly thank C. Vernicos, for inviting us to give lectures at NUI Maynooth,
and for the numerous exchanges held there. The fourth author would like to
thank Burkhard Wilking, Christoph Böhm, and the differential geometry team at
Münster for fruitful exchanges. Finally, the authors wish to thank O. Biquard,
T. Delzant, L. Guillou, P. Pansu and M. Paun for discussions and insights.
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Chapter 1

The Geometrisation
Conjecture

1.1 Introduction

At the international conference of mathematics devoted to Some Questions of Ge-
ometry and Topology, organized in 1935 by the University of Geneva, W. Threlfall
started his lecture with the following words:

“Nous savons tous que le problème d’homéomorphie des variétés à n dimen-
sions, posé par Poincaré, est un des plus intéressants et des plus importants de
la Géométrie. Il est intéressant en soi car il a donné naissance à la Topolo-
gie combinatoire ou algébrique, théorie comparable par son importance à la
Théorie des fonctions classique. Il est important par ses applications à la
Cosmologie, où il s’agit de déterminer l’aspect de l’espace de notre intuition
et de la physique. Dès l’instant où le physicien a envisagé la possibilité de
considérer l’espace de notre intuition, espace où nous vivons, comme clos,
la tâche du mathématicien est de lui proposer un choix d’espaces clos, et
même de les énumérer tous, comme il le ferait pour les polyèdres réguliers.
. . .Malheureusement le problème n’est complètement résolu que pour deux di-
mensions.”

The question discussed by Threlfall is the homeomorphism problem for compact
3-dimensional manifolds, which asks for an algorithm to decide whether two such
manifolds M,N are homeomorphic. During the last 70 years this problem was
central in 3-dimensional topology. It came down to W. Thurston’s Geometrisation
Conjecture at the end of the 1970s. Finally this conjecture was solved in 2003 by
G. Perelman.

A classical result states that every compact surface admits a Riemannian met-
ric with constant curvature. This result contains the topological classification of
surfaces mentioned by Threlfall. Moreover, some important properties of surfaces,

1



2 CHAPTER 1. THE GEOMETRISATION CONJECTURE

e.g. linearity of the fundamental group, can be deduced from this fact. Geometric
structures on surfaces are also central in studying their mapping class groups.

Recall that a Riemannian manifold X is called homogeneous if its isometry
group Isom(X) acts transitively on X. We call X unimodular if it has a quotient
of finite volume. A geometry is a homogeneous, simply-connected, unimodular
Riemannian manifold. A manifold M is geometric if M is diffeomorphic to the
quotient of a geometry X by a discrete subgroup of Isom(X) acting freely on X.
We also say that M admits a geometric structure modelled on X. By extension, a
manifold with boundary is geometric if its interior is geometric.

In dimension 2 the situation is rather special, since a geometry is always of
constant curvature. This is no longer true in dimension 3. Thurston observed that
there are, up to a suitable equivalence relation, eight maximal1 3-dimensional
geometries: those of constant curvature S3, E3, and H3; the product geometries
S2×E1 and H2×E1; the twisted product geometries Nil and ˜SL(2,R), and finally
Sol, which is the only simply-connected, unimodular 3-dimensional Lie group which
is solvable but not nilpotent.

A 3-manifold is spherical (resp. Euclidean, resp. hyperbolic) if it admits a ge-
ometric structure modelled on S3 (resp. E3, resp. H3). It follows from standard
arguments in Riemannian geometry that a 3-manifold is spherical (resp. Euclidean,
resp. hyperbolic) if and only if it admits a complete Riemannian metric of constant
sectional curvature equal to +1 (resp. 0, resp. −1). A metric of constant positive
sectional curvature is often called a round metric.

The classification of spherical 3-manifolds was completed by H. Seifert and
W. Threlfall in 1932 [TS31], [TS33]. A key observation for this classification is that
every finite subgroup of SO(4) acting freely and orthogonally on S3 commutes with
the action of some SO(2)-subgroup of SO(4). This SO(2)-action induces a circle
foliation on the manifold where each circle has a saturated tubular neighbourhood.
This phenomenon led Seifert [Sei33] to classify all 3-manifolds carrying such a
foliation by circles, nowadays called Seifert fibred manifolds. It turns out that a
compact 3-manifold is Seifert fibred if and only if it admits a geometric structure
modelled on one of the six following geometries: S3, E3, S2 × E1, Nil, H2 × E1,
S̃L(2,R).

Poincar’s Fundamental Polyhedron Theorem gives a general method for build-
ing a hyperbolic 3-manifold by identifying the faces of a convex polyhedron of
H3. However, this construction does not provide a criterion to decide whether
a compact 3-manifold admits a hyperbolic structure. It was only in 1977 that
such a criterion was conjectured by W. Thurston, and proved for a large class of
compact 3-manifolds, the so-called Haken 3-manifolds. The fact that this criterion
holds true is part of a wider conjecture proposed by Thurston, the Geometrisation
Conjecture, which gives a general picture of all compact 3-manifolds.

The content of the Geometrisation Conjecture is that every compact 3-manifold
splits along a finite collection of embedded surfaces into canonical geometric pieces.

1In this context, maximal means that there is no Isom(X)-invariant Riemannian metric on
X whose isometry group is strictly larger than Isom(X).
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In order to be more precise, we need a definition: a closed connected surface in a
compact orientable 3-manifold M is essential if it is π1-injective and if it does not
bound a 3-ball nor cobound a product with a connected component of ∂M .

Conjecture 1.1.1 (Thurston’s Geometrisation Conjecture). The interior of any
compact, orientable 3-manifold can be split along a finite collection of essential,
pairwise disjoint, embedded 2-spheres and 2-tori into a canonical collection of geo-
metric
3-manifolds after capping off all boundary spheres by 3-balls.

Such a decomposition will be called a geometric decomposition. A special
case of the Geometrisation Conjecture is the so-called Elliptisation Conjecture,
which asserts that every closed orientable 3-manifold with finite fundamental group
is spherical. The famous Poincaré Conjecture is itself the special case of the
Elliptisation Conjecture where the fundamental group is trivial:

Conjecture 1.1.2 (Poincaré Conjecture). If M is a closed, simply-connected 3-
manifold, then M is diffeomorphic to the 3-sphere.

The Geometrisation Conjecture has far-reaching consequences for 3-manifold
topology. For instance, it implies that every closed, orientable, aspherical2 3-
manifold is determined, up to homeomorphism, by its fundamental group. This is
a special case of the so-called Borel Conjecture.

The existence of the topological decomposition required for Thurston’s Ge-
ometrisation Conjecture follows from two central results in 3-manifold topology:
the Kneser decomposition theorem and the JSJ-splitting theorem. An orientable
3-manifold M is irreducible if any embedding of the 2-sphere into M extends to an
embedding of the 3-ball into M . The connected sum of two orientable 3-manifolds
is the orientable 3-manifold obtained by pulling out the interior of a 3-ball in each
manifold and gluing the remaining parts together along the boundary spheres.

The first stage of the decomposition is due to H. Kneser for the existence
[Kne29], and to J. Milnor for the uniqueness [Mil62]:

Theorem 1.1.3 (Kneser’s decomposition). Every compact, orientable 3-manifold
is a connected sum of 3-manifolds that are either homeomorphic to S1 × S2 or
irreducible. Moreover, the connected summands are unique up to ordering and
orientation-preserving homeomorphism.

This result reduces the Geometrisation Conjecture to the case of irreducible
manifolds. The second stage of the decomposition is more subtle. An orientable
surface of genus at least 1, embedded in a 3-manifold, is incompressible if it is π1-
injective. An embedded torus in a compact, orientable, irreducible 3-manifold M
is canonical if it is essential and can be isotoped off any incompressible embedded
torus (see [NS97]). A compact orientable 3-manifold M is atoroidal if it contains
no essential embedded torus and is not homeomorphic to a product T 2 × [0, 1] or
a twisted product K2 ×̃ [0, 1].

2A manifold is aspherical if all its higher homotopy groups vanish.
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Theorem 1.1.4 (JSJ-splitting). A maximal (possibly empty) collection of dis-
joint, non-parallel, canonical tori is finite and unique up to isotopy. It cuts M
into 3-submanifolds that are atoroidal or Seifert fibred.

This splitting is called the JSJ-splitting because it was constructed by W. Jaco
and P. Shalen [JS79], and by K. Johannson [Joh79].

A compact, orientable, irreducible 3-manifold is Haken if its boundary is not
empty, or if it contains a closed essential surface. In the mid 1970s W. Thurston
proved the Geometrisation Conjecture for Haken 3-manifolds (see Otal [Ota01],
[Ota98]):

Theorem 1.1.5 (Thurston’s hyperbolisation theorem). The Geometrisation Con-
jecture is true for Haken 3-manifolds.

In particular, any atoroidal Haken 3-manifold M is hyperbolic or Seifert fibred.
The main goal of this book is to explain the proof of the remaining and most

difficult case, dealing with closed, atoroidal manifolds:

Theorem 1.1.6 (G. Perelman). Let M be a closed, orientable, irreducible, atoroidal
3-manifold. Then:

1. If π1(M) is finite, then M is spherical.

2. If π1(M) is infinite, then M is hyperbolic or Seifert fibred.

A standard argument using Kneser’s theorem and van Kampen’s theorem
shows that part (1) of Theorem 1.1.6 implies the Elliptisation Conjecture.3 More
generally, Theorems 1.1.5 and 1.1.6 together imply:

Corollary 1.1.7 (Geometrisation theorem). The Geometrisation Conjecture is
true for all compact orientable 3-manifolds.

Since the fundamental group of an irreducible Seifert manifold is either finite
or contains Z2 (see e.g. [BMP03]), one also obtains as a corollary:

Corollary 1.1.8 (Hyperbolisation theorem). A closed, orientable, irreducible 3-
manifold is hyperbolic if and only if π1(M) is infinite and does not contain a
subgroup isomorphic to Z2.

In fact, Perelman’s proof deals with all cases and allows us to recover the
geometric splitting of the manifold along spheres and tori. However, in this book
we focus on Theorem 1.1.6.

3Indeed, let M be a closed, orientable 3-manifold with finite fundamental group. By Theo-
rem 1.1.3, it is a connected sum of closed, orientable 3-manifolds Mi which are irreducible or
homeomorphic to S1 × S2. By the van Kampen theorem, π1(M) is a free product of the funda-
mental groups of the Mi’s, so by standard group theory, π1(Mi) is finite for each i, and trivial
except for at most one value of i. Since π1(S1 × S2) is infinite, this implies that each Mi is
irreducible. It is also atoroidal, since Z

2 does not embed into a finite group. Hence we can apply
Theorem 1.1.6 (1) to each Mi. It follows that all Mi’s are spherical, and all but at most one are
homeomorphic to S3. Therefore M is spherical.
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The main ingredient of the proof is the Ricci flow, which is an evolution equa-
tion introduced by R. Hamilton. In Section 1.2, we review general facts about
this equation, and define an object called Ricci flow with bubbling-off, which is
a variation on Perelman’s Ricci flow with surgery (cf. also [Ham97]). We then
state an existence result and deduce the Elliptisation Conjecture from this. In
Section 1.3 we tackle the long-time behaviour of Ricci flow with bubbling-off and
the case where π1(M) is infinite.

Remark 1.1.9. For more historical background on the Geometrisation Conjec-
ture, see e.g. [BMP03] and the references therein.

1.2 Ricci flow and elliptisation

1.2.1 Ricci flow

Notation. If g is a Riemannian metric, we denote by Rmin(g) the minimum of
its scalar curvature, by Ricg its Ricci tensor, and by vol(g) its volume.

Let M be a closed, orientable, irreducible 3-manifold. In the Ricci flow ap-
proach to geometrisation, one studies solutions of the evolution equation

dg

dt
= −2 Ricg(t), (1.1)

called the Ricci flow equation, which was introduced by R. Hamilton. A solution is
an evolving metric {g(t)}t∈I , i.e., a 1-parameter family of Riemannian metrics on
M defined on an interval I ⊂ R. In [Ham82], Hamilton proved that for any metric
g0 on M , there exists ε > 0 such that equation (1.1) has a unique solution defined
on [0, ε) with initial condition g(0) = g0. Thus there exists T ∈ (0,+∞] such that
[0, T ) is the maximal interval where the solution to (1.1) with initial condition g0
is defined. When T is finite, one says that the Ricci flow has a singularity at time
T . Ideally, one would like to see the geometry of M appear by looking at the
metric g(t) when t tends to T (whether T be finite or infinite). To understand
how this works, we first consider some (very) simple examples, where the initial
metric is locally homogeneous.

Example 1. If g0 has constant sectional curvature K, then the solution is given
by g(t) = (1− 4Kt)g0. Thus in the spherical case, where K > 0, we have T <∞,
and as t goes to T , the manifold shrinks to a point while remaining of constant
positive curvature.

By contrast, in the hyperbolic case, where K < 0, we have T = ∞ and g(t)
expands indefinitely, while remaining of constant negative curvature. In this case,
the rescaled solution g̃(t) := (4t)−1g(t) converges to the metric of constant sec-
tional curvature −1.

Example 2. If M is the product of a circle with a surface F of genus at least 2,
and g0 is a product metric whose second factor has constant (negative) curvature,
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then T =∞; moreover, the solution is a product of a constant metric on S1 with
an expanding metric on F .

In this case, g( · ) does not have any convergent rescaling. However, one can
observe that the rescaled solution g̃( · ) defined above collapses with bounded sec-
tional curvature, i.e., has bounded sectional curvature and injectivity radius going
to 0 everywhere as t goes to +∞.

Several important results were obtained by Hamilton [Ham82], [Ham86], [Ham93],
[Ham95b], [Ham99]. The following two can be viewed as partial results on the Ge-
ometrisation Conjecture:4

Theorem 1.2.1 ([Ham82]). Let M be a closed, orientable 3-manifold and g0 be
a Riemannian metric of positive Ricci curvature on M . Then T < ∞, and the
volume-rescaled Ricci flow vol(g(t))−2/3g(t) converges (modulo diffeomorphisms)
to a metric of positive constant sectional curvature as t→ T . In particular, M is
spherical.

Theorem 1.2.2 ([Ham99]). Let M be a closed, orientable 3-manifold and g( · ) be
a Ricci flow on M defined on [0,+∞). If the sectional curvature of the rescaled
flow g̃( · ) is bounded independently of t, then one of the following assertions holds:

1. As t tends to infinity, g̃( · ) converges modulo diffeomorphisms to a hyperbolic
metric.

2. As t tends to infinity, g̃( · ) collapses with bounded sectional curvature.

3. M contains an incompressible torus.

The general case, however, is more difficult, because it sometimes happens that
T <∞ while the behavior of g(t) as t tends to T does not allow us to determine the
topology of M . One possibility is the so-called neck pinch, where part of M looks
like a thinner and thinner cylindrical neck as one approaches the singularity. This
can happen even if M is irreducible (see [AK04] for an example where M = S3);
thus neck pinches may not give any useful information on the topology of M .

1.2.2 Ricci flow with bubbling-off

Throughout the book, we suppose that M is closed, orientable and irreducible.
In order to simplify the presentation, we also assume that M is RP 2-free, i.e.,
does not contain any submanifold diffeomorphic to RP 2. This is not much of a
restriction because the only closed, irreducible 3-manifold that does contain an
embedded copy of RP 2 is RP 3, which is a spherical manifold.5

4Note that we have reformulated Hamilton’s results, whose original statements concerned
normalised Ricci flow.

5To see this, observe that if M is an orientable 3-manifold containing an embedded projective
plane P , then the tubular neighbourhood U of P is a twisted I-bundle over RP 2. Its boundary
is an embedded 2-sphere S in M . If M is irreducible, then S bounds a 3-ball B, so M = U ∪ B.
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As we already explained, one of the main difficulties in the Ricci flow ap-
proach to geometrisation is that singularities unrelated to the topology of M may
appear. Using maximum principle arguments, one shows that singularities in a
3-dimensional Ricci flow can occur only when the scalar curvature tends to +∞
somewhere (see e.g. [Ham95b]). One of Perelman’s major breakthroughs was to
give a precise local description of the geometry at points of large scalar curvature:
every such point has a so-called canonical neighbourhood U . For instance U may
be an ε-neck (i.e., almost homothetic to the product of the round 2-sphere of unit
radius with an interval of length 2ε−1) or an ε-cap (i.e., a 3-ball such that a collar
neighbourhood of ∂U is an ε-neck) as pictured below.

See Chapter 3 for the precise definitions and Chapter 4 for more information
on ε-necks and ε-caps.

S2

2ε−1

ε-neck

S2

2ε−1

ε-neck

ε-cap

To avoid singularities, we fix a large number Θ, which plays the role of a
curvature threshold. As long as the maximum of the scalar curvature is less than
Θ, Ricci flow is defined. If it reaches Θ at some time t0, then there are two
possibilities: if the minimum of the scalar curvature of the time-t0 metric is large
enough, then every point has a canonical neighbourhood. As we shall see, this
implies that M is spherical (cf. Corollary 3.2.5). Thus the construction stops in
this case.6

6This situation is analogous to Perelman’s extinction case.
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δ-neck

Before surgery...

B3

B3

(M, g(t0))

Otherwise, we modify g(t0) so that the maximum of the scalar curvature of the
new metric, denoted by g+(t0), is at most Θ/2. This modification is called metric
surgery.

It consists in replacing the metric in some 3-balls containing regions of high
curvature by a special type of ε-caps called almost standard caps.

almost standard caps

....after surgery

(M, g+(t0))

Then we start the Ricci flow again, using g+(t0) as a new initial metric. This
procedure is repeated as many times as necessary. It follows from estimates on
the Ricci flow that it takes a certain amount of time for the maximum of the
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scalar curvature to double its value. Hence once Θ is fixed, surgery times cannot
accumulate.

The main difficulty is to choose Θ and do metric surgery in such a way that
the construction can indeed be iterated. In practice, we will fix three parameters
r, δ, κ > 0, where r is the canonical neighbourhoods’ scale, i.e., is such that all
points of scalar curvature at least r−2 have canonical neighbourhoods, δ is a small
number describing the precision of surgery, and κ prevents the metric from locally
collapsing. The threshold Θ is then determined by the numbers r, δ (cf. Theo-
rem 5.2.4 and Definition 5.2.5).

In this way, we construct an evolving metric {g(t)}t which is piecewise C1-
smooth with respect to t, and such that for each singular time t0 (i.e., value of
t such that g( · ) is not C1 in a neighbourhood of t0) the map t �→ g(t) is left-
continuous and has a right-limit g+(t0). The result of this construction is called
Ricci flow with (r, δ, κ)-bubbling-off.7 Since its precise definition is quite intricate,
we begin with the simpler, more general definition of a Ricci flow with bubbling-
off, which retains the essential features that are needed in order to deduce the
Elliptisation Conjecture.

We say that an evolving metric {g(t)}t as above is a Ricci flow with bubbling-off
if equation (1.1) is satisfied at all nonsingular times, and for every singular time
t0 one has

1. Rmin(g+(t0)) � Rmin(g(t0)), and

2. g+(t0) � g(t0).

The following theorem is one of the main results of this monograph; its proof
occupies Parts I and II:

Theorem 1.2.3 (Finite-time existence of Ricci flow with bubbling-off). Let M be
a closed, orientable, irreducible 3-manifold. Then

1. M is spherical, or

2. for every T > 0 and every Riemannian metric g0 on M , there exists a Ricci
flow with bubbling-off g( · ) on M , defined on [0, T ], with initial condition
g(0) = g0.

By iteration, one immediately obtains existence on [0,+∞) of Ricci flow with
bubbling-off on closed, orientable, irreducible 3-manifolds which are not spherical.
However, a lot of work remains to be done in order to obtain the necessary esti-
mates for hyperbolisation (see Section 1.3); this occupies Part III. Let us begin
with the application of Ricci flow with bubbling-off to elliptisation.

Remark 1.2.4. Ricci flow with bubbling-off with a given initial condition is of
course absolutely not unique. Even with the restricted definition of (r, δ)-bubbling-
off there is still no uniqueness result, due to possible freedom in the choice of the

7Note that the parameters r, δ, κ, and therefore Θ, are constant on each compact time interval,
but will change as t goes to infinity.
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place where surgery is performed. The question of finding a canonical surgery
procedure for Ricci flow in dimension 3 is still open.

Remark 1.2.5. There are a few differences between Ricci flow with bubbling-
off and Perelman’s Ricci flow with δ-cutoff. An obvious one is that a Ricci flow
with bubbling-off is an evolving metric on a fixed manifold rather than an evolving
manifold. This simplification is made possible by the extra topological assumptions
on M . Another, perhaps more significant difference is that surgery occurs before
the Ricci flow becomes singular, rather than at the singular time. Our construction
is in this respect closer in spirit to the surgery process envisioned by Hamilton
[Ham97].

1.2.3 Application to elliptisation

To deduce the first part of Theorem 1.1.6 from Theorem 1.2.3, all we need is the
following result (cf. [Per03a], [CM05]:)

Theorem 1.2.6 (Finite-time extinction). Let M be a closed, orientable, irre-
ducible 3-manifold with finite fundamental group. For each Riemannian metric g0
on M there is a number T (g0) > 0 such that if g( · ) is a Ricci flow with bubbling-
off on M defined on some interval [0, T ] and with initial condition g(0) = g0, then
T < T (g0).

To see why Theorems 1.2.3 and 1.2.6 together imply Theorem 1.1.6 (i), let M
be a closed, orientable, irreducible 3-manifold with finite fundamental group. Let
g0 be an arbitrary Riemannian metric on M . Let T (g0) be a positive number given
by Theorem 1.2.6. If M were not spherical, then we would be in the second case
of Theorem 1.2.3. Applying this with T = T (g0) gives a contradiction.

We now give a proof of Theorem 1.2.6 using a result of Colding and Minicozzi
[CM05], [CM07]. See [Mai09] for a somewhat more detailed discussion.

Let M be a 3-manifold satisfying the hypotheses and g0 be a Riemannian
metric on M . Let Ω be the space of smooth maps f : S2 × [0, 1] → M such that
f(S2×{0}) and f(S2×{1}) are points. Since π1(M) is finite, we have π3(M) �= 0
(see, e.g., [Mai08], Lemma 2.2). It follows that there exists f0 ∈ Ω which is not
homotopic to a constant map [MM88], Lemma 3. Let ξ be the homotopy class of
f0. We set

W (g) := inf
f∈ξ

max
s∈[0,1]

E(f( · , s)),
where E denotes the energy

E(f( · , s)) =
1
2

∫
S2
|∇xf(x, s)|2g dx.

Let {g(t)}t∈[0,T ] be a Ricci flow with bubbling-off such that g(0) = g0. First
consider the function t �→ Rmin(t). At regular times it is continuous and satisfies
(see Corollary C.2.2 in the Appendix)

d+

dt
Rmin � 2

3
R2

min(t), (1.2)
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where we use d+

dt to denote the limsup of forward difference quotients.
If t0 is a singular time, then it follows from Definition 2.2.1 (1) that the left

limit of Rmin at t0 is no greater than its right limit.
As a consequence, Rmin(t) satisfies the following a priori lower bound:

Rmin(t) � Rmin(0)
1− 2tRmin(0)/3

. (1.3)

At regular times, the function t �→ W (g(t)) is continuous, and since ξ is non-
trivial, by [CM05], [CM07] it satisfies

d+

dt
W (g(t)) � −4π − 1

2
Rmin(t)W (g(t)) � −4π +

Rmin(0)
4tRmin(0)

3 − 2
W (g(t)). (1.4)

Now if t0 is a singular time, it follows from Definition 2.2.1 (2) that the left
limit of W at t0 is no smaller than its right limit. Since the right-hand side
of (1.4) is not integrable and W (g(t)) cannot become negative, this easily implies
an upper bound on T depending only on Rmin(0) and W (g0). Thus the proof of
Theorem 1.2.6 is complete.

For future reference, we note the following byproduct of Theorem 1.2.3 and
(1.3):

Theorem 1.2.7. Let M be a closed, orientable, irreducible 3-manifold. If M has
a metric of positive scalar curvature, then M is spherical.

Remark 1.2.8. Perelman’s argument for finite-time extinction uses an invariant
A(α(g)) in place of the width W (g). This invariant is defined using the second
homotopy group of the space of loops in M .

1.3 3-manifolds with infinite fundamental group

Let M be a closed, orientable, irreducible 3-manifold with infinite fundamental
group. Our next goal is to prove that M is hyperbolic, or Seifert fibred, or contains
an incompressible torus, which gives part (ii) of Theorem 1.1.6. First we need to
refine the existence theorem for Ricci flow with bubbling-off in order to include
more geometric information.

Note that since M has infinite fundamental group, it is not spherical, hence,
by Theorem 1.2.7, does not carry any metric with positive scalar curvature.

We adopt the convention that throughout the book, all hyperbolic 3-manifolds
are complete and of finite volume.

1.3.1 Long-time behaviour of the Ricci flow with bubbling-
off

We consider, for any metric g on M the two following scale invariant quantities:

R̂(g) := Rmin(g) · vol(g)2/3 � 0,
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and

V̂ (g) =
(
Rmin(g)
−6

)3/2

vol(g) =

(
R̂(g)
−6

)3/2

� 0.

In particular, when H is a hyperbolic manifold, we let V̂ (H) = vol(H) denote
V̂ (ghyp), and R̂(H) denote R̂(ghyp), where ghyp is the hyperbolic metric. On the
other hand, note that V̂ (g) = 0 if Rmin(g) = 0.

Those quantities are monotonic along the Ricci flow on a closed manifold, as
long as Rmin remain nonpositive (see Corollary C.2.2). This is also true in presence
of bubbling-off by conditions (i) and (ii) of Definition 2.2.1. As a consequence, we
have:

Proposition 1.3.1. Let {g(t)} be a Ricci flow with bubbling-off on M . Then

1. the function t �→ R̂(g(t)) is nondecreasing;

2. the function t �→ V̂ (g(t)) is nonincreasing.

In order to state the main theorem of this subsection, we need two definitions.
The first is standard and goes back to Gromov, the second is specific to our
situation and is essentially due to Perelman.

Definition 1.3.2. Let k > 0 be an integer. Let (Mn, gn, xn) be a sequence of
pointed Riemannian manifolds, and let (M∞, g∞, x∞) be a pointed Riemannian
manifold. We shall say that (Mn, gn, xn) converges to (M∞, g∞, x∞) in the Ck-
sense if there exists a sequence of numbers εn > 0 tending to zero, and a sequence
of Ck+1-diffeomorphisms ψn from the metric ball B(x∞, ε−1

n ) ⊂M∞ to the metric
ball B(xn, ε−1

n ) ⊂Mn such that ψ∗
n(gn)−g∞ has Ck-norm less than εn everywhere.

We say that the sequence subconverges if it has a convergent subsequence.

Definition 1.3.3. Let (X, g) be a Riemannian 3-manifold. We say that a point
x ∈ X is ε-thin with respect to g if there exists a radius ρ ∈ (0, 1] such that the ball
B(x, ρ) has the following two properties: all sectional curvatures on this ball are
bounded below by −ρ−2, and the volume of this ball is less than ερ3. Otherwise,
x is ε-thick with respect to g.

We are now in position to state the main result of this subsection (cf. [Per03b],
Sections 6 and 7). Recall that we denote by g̃(t) the rescaled evolving metric
(4t)−1g(t), the rescaling being motivated by the example of hyperbolic manifolds.

Theorem 1.3.4 (Thin-thick decomposition). Let M be a closed, orientable, irre-
ducible, non-spherical 3-manifold. For every Riemannian metric g0 on M , there
exists a Ricci flow with bubbling-off g( · ) defined on [0,+∞) with the following
properties:

1. g(0) = g0.

2. The volume of the rescaled metric g̃(t) is bounded independently of t.
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3. For every ε > 0 and every sequence (xn, tn) ∈ M × [0,+∞), if tn tends
to +∞ and xn is ε-thick with respect to g̃(tn) for each n, then there exists
a hyperbolic 3-manifold H and a basepoint ∗ ∈ H such that the sequence
(M, g̃(tn), xn) subconverges to (H, ghyp, ∗) in the C2-sense.

4. For every sequence tn → ∞, the sequence g̃(tn) has controlled curvature in
the sense of Perelman.

The proof of this theorem occupies Part III.

Remark 1.3.5. “Controlled curvature in the sense of Perelman” is a technical
property, which is weaker than a global two-sided curvature bound, but suffices
for some limiting arguments. For the precise definition, see 13.1.1.

Remark 1.3.6. The third conclusion may be vacuous, i.e., there need not exist
a sequence of uniformly thick basepoints in spacetime with time going to infinity.
The simplest example of this is the case where the manifold M is Euclidean and
g0 is a flat metric: then g(t) = g0 for all t, and diam(g̃(t)) goes to zero as t goes to
+∞. One says that g̃( · ) “collapses to a point” in this case. For a more detailed
discussion of collapsing, see Chapter 13.

Next is a fairly straightforward corollary of Theorem 1.3.4:

Corollary 1.3.7. Let M be a closed, orientable, irreducible, non-spherical 3-mani-
fold. For every Riemannian metric g0 on M , there exists an infinite sequence of
Riemannian metrics g1, . . . , gn, . . . with the following properties:

(i) The sequence (vol(gn))n�0 is bounded.

(ii) For every ε > 0 and every sequence xn ∈ M , if xn is ε-thick with respect
to gn for each n, then the sequence (M, gn, xn) subconverges in the pointed
C2 topology to a pointed hyperbolic 3-manifold (H, ghyp, ∗), where vol(H) =
V̂ (H) � V̂ (g0).

(iii) The sequence gn has controlled curvature in the sense of Perelman.

Proof. Applying Theorem 1.3.4, we obtain a Ricci flow with bubbling-off {g(t)}t∈[0,∞)
with initial condition g0. Pick any sequence tn → +∞ and set gn := g̃(tn) for
n � 1. Assertions (i), (iii) and the first part of (ii) follow directly from the con-
clusions of Theorem 1.3.4. To see that V̂ (H) � V̂ (g0), remark that (V̂ (gn))n�0 is
nonincreasing. Indeed, it follows from Proposition 1.3.1 and the scale invariance of
V̂ . On the other hand, Rmin(ghyp) � lim inf Rmin(gn) and vol(H) � lim inf vol(gn),
hence V̂ (H) � lim inf V̂ (gn) � V̂ (g0).

1.3.2 Hyperbolisation

We now explain the proof of the second part of Theorem 1.1.6. We shall define two
topological invariants V0(M) and V̄ (M). Let M be a closed 3-manifold. For us, a
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link in M is a (possibly empty, possibly disconnected) closed 1-submanifold of M .
A link is hyperbolic if its complement is a hyperbolic 3-manifold. We shall study
the volume of these complements endowed with the (unique) hyperbolic metric.

Definition 1.3.8. We define

V0(M) := inf {vol(M \ L) | L hyperbolic link ⊂M} .
Notice that V0(M) is finite because any closed 3-manifold contains a hyperbolic

link [Mye82]. Since the set of volumes of hyperbolic 3-manifolds is well-ordered by
Thurston–Jørgensen theory (see e.g. [Gro81a], [Mai10] and the references therein),
this infimum is always realised by some hyperbolic 3-manifold H0; in particular, it
is positive. We note that M is hyperbolic if and only if H0 = M (see e.g. [Bes00]).

Definition 1.3.9. For any closed manifold M we define

V̄ (M) := inf {vol(g) | Rmin(g) � −6} .
We then have the following proposition proved in Appendix E (Proposition

E.1.7). It can be thought of as a criterion for hyperbolicity.

Proposition 1.3.10. Let M be any closed, orientable 3-manifold. Suppose that
the inequality V̄ (M) � V0(M) holds. Then equality holds, M is hyperbolic, and
the hyperbolic metric realises V̄ (M) and V0(M).

Proof. It is a result of the following fact. Let H0 be a hyperbolic manifold home-
omorphic to the complement of a link L0 in M and whose volume realises V0(M).
It is sufficient to show that L0 is empty. If this is not true we show that M car-
ries a metric gε such that vol(gε) < V0(M) and Rmin(gε) � −6, hence proving
that V̄ (M) < V0(M); a contradiction. This can be done by a direct construc-
tion as in Anderson [And02], p. 21–23. We give an alternative proof following
Salgueiro [Sal09] in Appendix E. (Cf. also Section 6 in [BBB+07].)

An immediate corollary is the following:

Corollary 1.3.11. For every closed, orientable 3-manifold M one has V̄ (M) �
V0(M).

Let us now again assume that M is a closed, orientable, irreducible 3-manifold
whose fundamental group is infinite. These topological hypotheses imply that M
does not carry any metric of positive scalar curvature. We then easily check that

V̄ (M) = inf{V̂ (g) | g metric on M}. (1.5)

In the (rather special) case where M has a metric of nonnegative scalar curvature,
then V̄ (M) = 0.

At last, we can state a second result which, together with Proposition 1.3.10,
implies the second part of Theorem 1.1.6, i.e., the ‘hyperbolisation’ part of the
Geometrisation Conjecture.
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Theorem 1.3.12. Let M be a closed, orientable, irreducible 3-manifold with in-
finite fundamental group. If V̄ (M) < V0(M), then M is a Seifert fibred manifold
or contains an incompressible torus.

Notice that in contrast to Proposition 1.3.10 the proof of Theorem 1.3.12 does
use the Ricco flow.

Theorem 1.3.12 relies on the following statement which we shall prove in
Part IV and which is independent of the results of Parts I–III:

Theorem 1.3.13 (Weak collapsing). Let M be a non-simply connected, closed,
orientable, irreducible 3-manifold. Suppose that there exists a sequence gn of Rie-
mannian metrics on M satisfying the following properties:

(1) The sequence vol(gn) is bounded.

(2) For every ε > 0 and every sequence xn ∈ M , if xn is ε-thick with respect
to gn for each n, then the sequence (M, gn, xn) subconverges in the pointed
C2-topology to a pointed hyperbolic 3-manifold (H, ghyp, ∗), where vol(H) <
V0(M).

(3) The sequence gn has locally controlled curvature in the sense of Perelman.

Then M is a Seifert fibred manifold or contains an incompressible torus.

Proof of Theorem 1.3.12 assuming Theorem 1.3.13. Take a metric g0 on M such
that V̂ (g0) < V0(M), which exists by definition of V̄ (M). Applying Corollary 1.3.7
with initial condition g0, we find a sequence gn satisfying exactly the assumptions
of Theorem 1.3.13. Indeed, if H is a hyperbolic limit appearing in (2), we have by
Corollary 1.3.7 (ii) that vol(H) = V̂ (H) � V̂ (g0) < V0(M). Hence the conclusion
follows from Theorem 1.3.13.

Remark 1.3.14. Let us explain again why Proposition 1.3.10 and Theorem 1.3.12
implies the Hyperbolisation Theorem as stated in 1.1.8: the fundamental group of
a Seifert manifold is either finite or contains Z2 (see e.g. [BMP03]); similarly, if
M contains an incompressible torus, then its fundamental group contains Z2.

Remark 1.3.15. Notice that Theorem 1.3.12 and Proposition 1.3.10 have an
important consequence. It allows to show that if M is hyperbolic then, among
the Riemannian metric with Rmin � −6, the hyperbolic metric is the unique one
which realises V̄ (M). An even stronger version can be proved (see [And05], p.
133, and [KL08], Section 93).

1.4 Some consequences of geometrisation

1.4.1 The homeomorphism problem

The main consequence of the Geometrisation Conjecture is the solution of the
homeomorphism problem for 3-manifolds. The homeomorphism problem asks for
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an algorithm to determine whether or not two compact 3-manifolds are homeo-
morphic. Since the set of homeomorphism classes of 3-manifolds is countable, this
leads to a classification of 3-manifolds, that is to say a complete list of 3-manifolds
without duplication.

We discuss here only the case of closed orientable 3-manifolds and do not try
to indicate the simplest algorithm. The general case needs a more sophisticated
version of the Jaco–Shalen–Johannson decomposition, in order to deal with bound-
ary issues. For a detailed account of the proof in the general case, we refer to the
lectures on the homeomorphism problem for 3-manifolds given by W. Jaco at the
Peking Summer School in July 2005 and available at the following address:

http://cauchy.math.okstate.edu/∼jaco/pekinglectures.htm

Theorem 1.4.1. There is an algorithm to decide if two closed, orientable 3-
manifolds are homeomorphic.

The proof outlined below follows Sela’s solution of the homeomorphism prob-
lem for closed orientable 3-manifolds admitting a geometric decomposition [Sel95],
Section 10. It is based on a succession of works culminating with Perelman’s proof
of the Geometrisation Conjecture.

Step 1. Given a closed, orientable, triangulated 3-manifold M, there is an al-
gorithm to either construct a prime decomposition of M or conclude that M is
homeomorphic to S3.

This result follows the Rubinstein–Thompson algorithm to recognize S3 [Rub97],
[Rub95], Thompson and the work of W. Jaco and J. Tollefson [JT95]. See also
[Hak61], [JR89] and [JLR02].

Step 2. Given a closed, orientable, irreducible, triangulated 3-manifold M, there
is an algorithm to decide if M is Haken.

Such an algorithm is given in [JO84].

Step 3. The homeomorphism problem is algorithmically solvable for closed, ori-
entable Haken 3-manifolds.

This result follows from the works of W. Haken [Hak62], G. Hemion [Hem79]
and S. Matveev [Mat97], [Mat03].

Steps 1 to 3 reduce the homeomorphism problem to the case of non-Haken
3-manifolds. By Theorem 1.1.6, these manifolds fall into two classes: they are
either Seifert fibred or hyperbolic.

The next two steps deal with irreducible, non-Haken 3-manifolds having a
Seifert fibred structure.

Step 4. There is an algorithm which decides if a given closed, orientable, irre-
ducible, triangulated 3-manifold M which is not Haken is a Seifert fibred space.
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This follows from work of T. Li [Li06] and J. H. Rubinstein [Rub95] and
[Rub04]. Notice that since the manifold M is known to be hyperbolic or Seifert
fibred, Z. Sela gives an algorithm at the level of the fundamental group to decide
whether M is a non-Haken Seifert fibred space or a hyperbolic manifold, by run-
ning two algorithms at the same time: one to detect the word hyperbolicity of
π1(M) and the second to look for a central element in π1(M) using the fact that
the word problem is solvable in π1(M), since it is residually finite (see [Sel95],
Section 10).

Step 5. The homeomorphism problem is algorithmically solvable for non-Haken,
Seifert fibred 3-manifolds.

These Seifert fibred 3-manifolds are either spherical with finite fundamental
group or their fundamental group is a central extension of a Euclidean or hyper-
bolic triangle group by an infinite cyclic group. One can algorithmically determine
if such a manifold M is spherical, because its first homology group H1(M ; Z) is
finite and there are finitely many spherical 3-manifolds with given homology, see
[Orl72]. Therefore, using the solution of the word problem, one can check if π1(M)
is isomorphic to a finite group in the list. Then the homeomorphism problem
for spherical 3-manifolds is algorithmically solvable, since, except for lens spaces,
spherical manifolds are determined by their fundamental group, which is finite.
Moreover, one can also decide when two lens spaces are homeomorphic.

By [OVZ67], non-Haken, Seifert fibred 3-manifolds with infinite fundamen-
tal group are determined, up to homeomorphism, by their fundamental group.
Z. Sela has shown how to solve algorithmically the isomorphism problem for these
fundamental groups, using the uniqueness of the central extension, see [Sel95],
Section 10.

Another more geometrical approach is to use the fact that these manifolds
have Heegaard genus 2 and that the homeomorphism problem is algorithmically
solvable for 3-manifolds having Heegaard genus 2 (see [Rub97], [Rub04]).

Hence we are left with the case of manifolds having a hyperbolic structure:

Step 6. Given two closed, orientable, hyperbolic 3-manifolds, there is an algorithm
to decide whether or not they are homeomorphic.

The Mostow rigidity theorem states that homotopy equivalent, closed, hyper-
bolic 3-manifolds are homeomorphic. Then the solution of the homeomorphism
problem for closed hyperbolic 3-manifolds follows from Sela’s algorithm to solve
the isomorphism problem for word hyperbolic groups, since we know the constant
δ of hyperbolicity [Sel95], Section 7.

We remark that, according to Manning’s algorithm to recognize hyperbolic-
ity of 3-manifolds [Man02], given a closed orientable, triangulated hyperbolic 3-
manifold, there is an algorithm to construct the hyperbolic structure.

In contrast, the homeomorphism problem is not solvable for closed triangulated
manifolds of dimension n � 4. Any finitely presented group can be realized as the
fundamental group of a closed 4-manifold. This fact shows the impossibility of
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classifying 4-manifolds since it is impossible to classify finitely presented groups.
Here is a more precise statement, see [Mar60] and also [CL06].

Theorem 1.4.2 (Markov). For every natural number n � 4, one can build a
combinatorial n-dimensional manifold Mn such that there is no algorithm to decide
whether a PL n-manifold is PL-homeomorphic to Mn.

In fact, according to [CL06], all manifolds of dimension n � 5 and all manifolds
of the type M4 # 14(S2 × S2) satisfy the conclusion of the theorem.

1.4.2 Fundamental group

In general, closed, orientable 3-manifolds are not determined, up to homeomor-
phism, by their fundamental group. However, the solution of the Geometrisation
Conjecture implies that it is the case for closed, orientable, prime 3-manifolds,
unless they are lens spaces. This result shows the importance of the fundamen-
tal group in the study of 3-manifolds and solves the Borel Conjecture for closed,
aspherical 3-manifolds.

Theorem 1.4.3. Let M,N be two closed, orientable, prime 3-manifolds. If M is
not a lens space, then M is homeomorphic to N if and only if π1(M) is isomorphic
to π1(N).

By Perelman’s proof of the Geometrisation Conjecture, a closed prime 3-
manifold is either homeomorphic to S2 × S1 or it is irreducible and either Haken,
hyperbolic or Seifert fibred. Furthermore, the Geometrisation Conjecture implies
that two manifolds with isomorphic fundamental group belong to the same class.
Then the theorem is due to F. Waldhausen [Wal68a] when they are Haken, to
Mostow rigidity when they are hyperbolic and to P. Scott [Sco83] when they are
Seifert fibred with infinite fundamental group. In the remaining case where the two
manifolds are spherical and have finite fundamental groups, the theorem follows
from the work of Seifert and Threlfall (see for example [Orl72]).

As said above, any finitely presented group can be realized as the fundamental
group of a closed 4-manifold. In contrast, closed 3-manifolds admit topologi-
cal and geometrical properties that put strong constraints on their fundamental
groups. For example the existence of a Heegaard decomposition shows that a
closed 3-manifold (fundamental) group admits a finite balanced presentation, i.e.,
a presentation with as many relators as generators.

The existence of a geometric decomposition implies that any 3-manifold group
is the fundamental group of a graph of groups whose vertices are discrete sub-
groups of isometries of the 3-dimensional geometries, and the edge groups are
trivial or isomorphic to Z2. This graph of group structure reduces in principle any
problem on 3-manifold groups to combination theorems for fundamental groups of
geometric manifolds, which are linear groups.

It is still not known whether 3-manifold groups are linear, however they share
some fundamental properties with finitely generated linear groups. For example
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they are residually finite and they satisfy Tits alternative: a 3-manifold group
contains a non-abelian free group unless it is virtually solvable.

A consequence of this algebraic structure is that some classical decision prob-
lems formulated by Dehn in 1910 are solvable in the class of closed 3-manifold
groups.

The word problem (Dehn 1910) asks for an algorithm to decide whether or
not a word in the generators represents the trivial element. Its solution for a
3-manifold group relies on early work by Waldhausen [Wal68b] and more recent
work on automatic groups, cf. [ECH+92]. The solution of the word problem is also
a consequence of the property that 3-manifold groups are residually finite.

The conjugacy problem (Dehn 1910) asks for an algorithm to decide whether
or not a pair of words in the generators are conjugate. Given an algorithm to
solve the word problem, the solution for 3-manifold groups is due to J.-P. Préaux
[Pré06], [Pré05].

The solutions to these problems use their topological versions, i.e., given a 3-
manifold with some finite topological data from which the group presentation is
deduced. It turns out that the existence of solutions for these problems does not
depend on the finite presentation involved, but only on the isomorphism class of
G.

The isomorphism problem (Tietze 1908, Dehn 1910) asks for an algorithm to
decide whether or not two finite presentations of groups in a given class present
isomorphic groups. Given two compact 3-manifolds M and N , the existence of an
algorithm to decide if π1(M) and π1(M) are isomorphic follows from the solution
of the homeomorphism problem.

Theorem 1.4.4. The word problem, the conjugacy problem and the isomorphism
problem are solvable in the class of fundamental groups of closed, orientable 3-
manifolds.

The proof of this theorem does not require only that the groups are known to be
isomorphic to fundamental groups of 3-manifolds, but that the topological types
of these manifolds are known. It follows from Theorem 1.4.3 that only finitely
many closed, orientable 3-manifolds can have a fundamental group isomorphic to
a given group G, and that this number is bounded by the order of the torsion
part of the abelianization of G. Hence, given a presentation of a closed, orientable
3-manifold group, one can use Tietze transformations to find algorithmically the
3-manifolds realizing this fundamental group in the enumerable list of all closed
orientable 3-manifolds.

By work of Stallings [Sta62], the property for a finitely presented group to
belong to the class of the fundamental groups of compact 3-manifolds is markovian,
and thus it is algorithmically undecidable. More precisely, given any non-empty
class of connected 3-manifolds, there is no algorithm for deciding whether or not a
finite presentation of a group defines a group isomorphic to the fundamental group
of an element of this class.

Stallings’ result raises the question of characterizing the fundamental groups
of closed, orientable, irreducible 3-manifolds. There are actually two main conjec-
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tures related to this question. Due to the solution of the Geometrisation Conjec-
ture, it turns out that for the class of word hyperbolic groups these two conjectures
are equivalent.

A group G is an orientable n-dimensional Poincaré duality group or a PD(n)-
group if for every ZG-module A there is an isomorphism between Hi(G;A) and
Hn−i(G;A). Equivalently, G is a PD(n)-group if it acts freely, properly discontin-
uously and cocompactly on a contractible cell complex X with the same cohomol-
ogy with compact supports as Rn: H∗

c (X,Z) ∼= H∗
c (R

n,Z). Fundamental groups
of closed, orientable, irreducible 3-manifolds are PD(3)-groups. A good reference
for this topic is [Bro82].

The first conjecture, due to C. T. C. Wall in the 1960s, asks whether this co-
homological duality is sufficient to characterize the fundamental group of closed
irreducible, orientable 3-manifolds, cf. C. T. C. Wall’s survey [Wal04].

Conjecture 1.4.5 (Wall). Every finitely presented PD(3)-group is isomorphic to
the fundamental group of some closed, orientable, irreducible 3-manifold.

B. Eckmann, P. Linnell and H. Müller have shown that PD(2)-groups are
surface groups, see [Eck87]. For n � 4, M. Davis [Dav98] gave examples of PD(n)-
groups which are not finitely presentable, and thus cannot be fundamental groups
of closed n-dimensional manifolds.

B. Bowditch [Bow04] has shown that every PD(3)-group with a non-trivial
infinite cyclic normal subgroup is isomorphic to the fundamental group of a Seifert
fibred manifold. Together with results by J. Hillman [Hil87] and C.B. Thomas
[Tho84], this implies that every PD(3)-group which contains a non-trivial, finitely
generated, normal subgroup of infinite index is isomorphic to the fundamental
group of some 3-manifold which is either Seifert fibred or a surface bundle.

The solution of the Geometrisation Conjecture implies that a PD(3)-group is
isomorphic to a 3-manifold group if and only if it contains a subgroup isomorphic to
the fundamental group of a closed, orientable, irreducible 3-manifold, see [Hil08].

M. Dunwoody and E. Swenson [DS00] have proved a torus theorem for PD(3)-
groups. Every PD(3)-group has one of the following properties:

(i) it is the fundamental group of a Seifert 3-manifold,

(ii) it splits over a subgroup isomorphic to Z⊕ Z,

(iii) it is atoroidal, i.e., contains no Z⊕ Z.

If the fundamental group of a closed, orientable, irreducible 3-manifold is
atoroidal, Perelman’s hyperbolization theorem shows that it is a discrete cocom-
pact subgroup of PSL(2,C). Gehring and Martin showed that some fundamental
properties of these groups depend only on a topological property of the dynamics
of their action on the sphere at infinity S2 of the 3-dimensional hyperbolic space
H3. They call this property the convergence property, and the groups of homeo-
morphisms of S2 satisfying this condition have been subject of much attention.
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Let Γ be a group acting by homeomorphisms on S2. Denote by ρ the associated
homomorphism from Γ to Homeo(S2). Then Γ is a called a convergence group if
for each sequence {gn} of elements of Γ such that the ρ(gn)’s are pairwise distinct,
there exist points a, b ∈ S2 and a subsequence {gnk

} such that lim ρ(gnk
)(x) = a

uniformly on compact subsets of S2 that do not contain b.
Denote by Θ(S2) the set of triples (x, y, z) ∈ S2×S2×S2 such that x, y, z are

pairwise distinct, topologized as a subset of S2×S2×S2. Then Γ is a convergence
group if and only if the induced action of Γ on Θ(S2) is proper. The convergence
group Γ is called uniform if the induced action on Θ(S2) is cocompact.

The second conjecture, due to J. Cannon, states that the convergence property
is sufficient to characterize discrete cocompact subgroups of PSL(2,C):

Conjecture 1.4.6 (Cannon). If Γ is a uniform convergence group acting on S2,
then Γ has a finite normal subgroup K such that Γ/K is a cocompact subgroup of
PSL(2,C).

B. Bowditch has shown that a uniform convergence group on S2 is word hyper-
bolic with boundary homeomorphic to the sphere S2. By M. Bestvina and G. Mess
[BM91], a word hyperbolic group is a PD(3)-group if and only if its boundary is
homeomorphic to S2, that is to say if and only if it is a uniform convergence group
on S2. It follows then from the solution of the Geometrisation Conjecture that for
word hyperbolic groups, Cannon’s conjecture is equivalent to Wall’s conjecture.

1.5 Final remarks

1.5.1 Comparison with Perelman’s original arguments

One important difference between Perelman’s approach and ours is that he does
not use Thurston’s hyperbolisation theorem for Haken manifolds. By studying
the long-time behaviour of Ricci flow with surgery, Perelman gets a thin–thick
decomposition theorem (cf. Theorem 1.3.4). He proves that the thick part is
hyperbolic and that the thin part is a graph manifold. This last result uses a
collapsing theorem for manifolds with toric boundary. In order to prove that
the boundary components of the thick part (if any) are incompressible in M , he
suggests two arguments. The first one, borrowed from Hamilton [Ham99], has two
steps: first prove that the hyperbolic pieces persist and then argue by contradiction
using the Meeks–Yau geometric loop theorem and the evolution of the area of a
minimal compressing disk under Ricci flow. The second one, which inspired our
argument in Section 1.3.2, uses earlier ideas of Anderson [And02] together with the
monotonicity along the Ricci flow of the first eigenvalue of some Schrödinger-type
operator.

A version of Perelman’s collapsing theorem for closed 3-manifolds is given in
the appendix of a paper by Shioya and Yamaguchi [SY05]. They use deep results
of Alexandrov space theory, including Perelman’s stability theorem [Per91] (see
also the paper by V. Kapovitch [Kap07]) and a fibration theorem for Alexandrov
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spaces, proved by Yamaguchi [Yam96]. Other proofs of Perelman’s collapsing
theorem can be found in papers by Morgan–Tian [MT08], Cao–Ge [CG09], and
Kleiner–Lott [KL10]. For more details see Section 13.4.

1.5.2 Beyond geometrisation

Hamilton–Perelman technology now has applications which go beyond the ge-
ometrisation of closed 3-manifolds. Dinkelbach and Leeb [DL09] use an equiv-
ariant version of Perelman’s Ricci flow with surgery to finish off Thurston’s ge-
ometrisation program for orbifolds, including the nonorientable case. In [BBM09]
the construction of Parts I and II of this monograph is generalised to complete
3-manifolds with bounded geometry. This result has an application to the classifi-
cation of complete Riemannian 3-manifolds with bounded geometry and uniformly
positive scalar curvature. Codá Marques [CM09] uses a refinement of Perelman’s
construction to prove the arcwise connectedness of the moduli space of metrics
with positive scalar curvature on a closed, orientable 3-manifold.

In [AST07], Agol, Storm and Thurston use the monotonicity of scalar curva-
ture along the Ricci flow and the existence of solutions for C0 initial conditions, to
prove the following. Let (M, g) be a hyperbolic 3-manifold with minimal surface
boundary, then vol(M, g) � 1

2v3‖DM‖, where DM denotes the double of M across
its boundary, ‖DM‖, the simplicial volume, and v3 denotes the volume of the reg-
ular ideal hyperbolic 3-simplex (see Section 13.2). This result is in turn used by D.
Gabai, R. Meyerhoff and P. Milley to determine the closed, orientable hyperbolic
3-manifold of smallest volume (see e.g. [Mai10] and the references therein).
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Ricci flow with bubbling-off:
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Chapter 2

Basic definitions

In order to prove the finite-time existence theorem for Ricci flow with bubbling-off
(Theorem 1.2.3), we need to introduce a more precise notion, called Ricci flow with
(r, δ, κ)-bubbling-off. As we already explained in Section 1.2.2, the parameters r, δ
control the scale of the canonical neighbourhoods, and the precision of the metric
surgery. The parameter κ refers to the important notion of κ-noncollapsing, intro-
duced by Perelman in [Per02], which will be defined in Chapter 4. In Chapter 5, we
will state an existence theorem for Ricci flow with (r, δ, κ)-bubbling-off (Theorem
5.3.1). This result implies Theorem 1.2.3. In order to make the proof of Theo-
rem 5.3.1 more digestible, and in particular to clarify the interdependence of the
various parameters, we will organise this proof in three independent propositions,
called Propositions A, B, C. These propositions will be proved in Part II.

In this section, we fix some conventions regarding Riemannian geometry, such
as the definitions of curvature and closeness of metrics. We also formalise the
fundamental notions of evolving metric and Ricci flow with bubbling-off.

Throughout this section, we let M be an n-dimensional manifold, where n � 2,
and U be an open subset of M .

2.1 Riemannian geometry conventions

Let g be a Riemannian metric on M . Then

Riem(X,Y, Z, T ) = g(DYDXZ −DXDY Z +D[X,Y ]Z, T )

is the Riemann curvature tensor and for any x ∈M , we denote by Rm(x) :
∧2

TxM →∧2
TxM the curvature operator defined by

〈Rm(X ∧ Y ), Z ∧ T 〉 = Riem(X,Y, Z, T ),

where ∧ and 〈 ·, · 〉 are normalised so that {ei ∧ ej | i < j} is an orthonormal basis
if {ei} is.

25
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We denote by |Rm(x)| the operator norm of Rm, which is also the maximum
of the absolute values of the sectional curvatures at x. We let R(x) denote the
scalar curvature of x. The infimum (resp. supremum) of the scalar curvature of g
on M is denoted by Rmin(g) (resp. Rmax(g)).

We write d : M ×M → [0,∞) for the distance function associated to g. For
r > 0 we denote by B(x, r) the open ball of radius r around x.

Finally, if x, y are points of M , we denote by [xy] a geodesic segment, that is a
minimizing curve, connecting x to y. This is a (common) abuse of notation, since
such a segment is not unique in general.

Closeness of metrics

Definition 2.1.1. Let T be a tensor on U , and N be a nonnegative integer. We
write

‖T‖2N,U,g := sup
x∈U

N∑
k=0

|∇kgT (x)|2g.

Here the pointwise norm is the Euclidean one. More precisely, if S is a p-linear
map on TxU then,

|S|2g =
∑

S(ei1 , . . . , eip)2,

where {ei} is a g-orthonormal basis at x. Let ε be a positive number and g0 be a
Riemannian metric on U . One says that g is ε-close to g0 on U if

‖g − g0‖[ε−1],U,g0 < ε.

One says that g is ε-homothetic to g0 on U if there exists λ > 0 such that λg is
ε-close to g0 on U .

A pointed Riemannian manifold (U, g, x) is called ε-close to a model (U0, g0, ∗)
if there exists a C[ε−1]+1-diffeomorphism ψ from U0 to U sending ∗ to x and such
that the pull-back metric ψ∗(g) is ε-close to g0 on U0. We say that (U, g, x) is
ε-homothetic to (U0, g0, ∗) if there is a positive number λ such that (U, λg, x) is
ε-close to (U0, g0, ∗). The map ψ is called an ε-isometry or an ε-homothety.

A Riemannian manifold (U, g) is ε-close (resp. ε-homothetic) to (U0, g0) if there
exist points x ∈ U and ∗ ∈ U0 such that the pointed manifold (U, g, x) is ε-close
(resp. ε-homothetic) to (U0, g0, ∗). If there is no ambiguity on the relevant metrics,
we may simply say that U is ε-close (resp. ε-homothetic) to U0.

2.2 Evolving metrics and Ricci flow with bubbling-
off

Let M be an n-manifold. An evolving metric on M defined on an interval [a, b] is
a map t �→ g(t) from [a, b] to the space of C∞ Riemannian metrics on M . In the
sequel, this space is endowed with the C2 topology. We say that an evolving metric
g( · ) is piecewise C1 if there is a finite subdivision a = t0 < t1 < · · · < tp = b of the



2.2. EVOLVING METRICS AND RICCI FLOW WITH BUBBLING-OFF 27

interval of definition with the following property: for each i ∈ {0, . . . , p− 1}, there
exists a metric g+(ti) on M such that the map defined on [ti, ti+1] by sending ti
to g+(ti) and every t ∈ (ti, ti+1] to g(t) is C1-smooth.

For t ∈ [a, b], we say that t is regular if g( · ) is C1-smooth in a neighbourhood
of t. Otherwise t is called singular. By definition, the set of singular times is finite.
If t ∈ (a, b) is a singular time, then it follows from the definition that the map g( · )
is continuous from the left at t, and has a limit from the right, denoted by g+(t).

There are similar definitions where the domain of definition [a, b] is replaced by
an open or a half-open interval I. When I has infinite length, the set of singular
times may be infinite, but must be discrete as a subset of R.

We often view an evolving metric g( · ) on a manifoldM as a 1-parameter family
of metrics indexed by the interval I; thus we use the notation {g(t)}t∈I . For each
pair (x, t) ∈ M × I, we have an inner product on TxM ; whenever necessary, we
use the notation g(x, t) for this inner product.

Definition 2.2.1. Let I ⊂ R be an interval. A piecewise C1 evolving metric
t �→ g(t) on M defined on I is said to be a Ricci flow with bubbling-off if

(i) the Ricci flow equation ∂g
∂t = −2 Ric is satisfied at all regular times;

(ii) for every singular time t ∈ I we have

(a) Rmin(g+(t)) � Rmin(g(t)), and
(b) g+(t) � g(t).

Let {g(t)}t∈I be a Ricci flow with bubbling-off on M . For t ∈ I, the time-t
singular locus of this solution, denoted by Σt, is the closure of the set {x ∈ M |
g(x, t) �= g+(x, t)}. If Σt �= ∅ then t is singular. The converse will be true for Ricci
flows with bubbling-off that will be considered later in this book: if t is singular
then g(t) �= g+(t) at some point.

Definition 2.2.2. A product subset X × [a, b] ⊂ M × I is scathed if X × [a, b)
contains a singular point. Otherwise, we say that X is unscathed . Similarly,
a curve γ : [a, b] → M is scathed if there exists t ∈ [a, b) such that γ(t) ∈ Σt.
Otherwise it is unscathed.

Note that a subset X × [a, b] may be unscathed even if there is a singular
point in X × {b}. This definition is consistent with our choice of making the map
t �→ g(t) continuous from the left.

A Ricci flow with bubbling-off without singular point is of course a true solution
of the Ricci flow equation. For brevity, we sometimes call such a solution a Ricci
flow.

It will occasionally be useful to consider partially defined Ricci flows, where
the domain of definition of t �→ g(x, t) is allowed to depend on x ∈ X:

Definition 2.2.3. Let (a, b] a time interval. A partial Ricci flow on U × (a, b] is
a pair (P, g( · , ·)), where P ⊂ U × (a, b] is an open subset which contains U × {b}
and (x, t) �→ g(x, t) is a smooth map defined on P such that the restriction of g to
any subset V × I ⊂ P is a Ricci flow on V × I.
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V
U

t → g(t)

Notation

If {g(t)}t∈I is an evolving metric on M , and (x, t) ∈ M × I, then we use the no-
tation Rm(x, t), R(x, t) to denote the curvature operator and the scalar curvature
respectively. For brevity we set Rmin(t) := Rmin(g(t)) and Rmax(t) := Rmax(g(t)).

We use dt( · , ·) for the distance function associated to g(t). The ball of radius
r around x for g(t) is denoted by B(x, t, r).

Definition 2.2.4. If T ( · ) is an evolving tensor on U × [a, b], g( · ) an evolving
metric, and N a nonnegative integer, we write

‖T ( · )‖N,U×[a,b],g( · ) = sup
t∈[a,b]

‖T (t)‖N,U,g(t).

Given two evolving metrics g0( · ), g( · ) on U × [a, b], we say that g( · ) is ε-close to
g0( · ) on U × [a, b], if

‖g( · )− g0( · )‖[ε−1],U×[a,b],g0( · ) < ε.

Equivalently,
sup
t∈[a,b]

‖g(t)− g0(t)‖[ε−1],U,g0(t) < ε.

Closeness of evolving metrics

Given two pointed evolving Riemannian manifolds (U0, g0( · ), ∗) and (U, g( · ), x),
where g0( · ) and g( · ) are defined on [a, b], we say that (U, g( · ), x) is ε-close to
(U0, g0( · ), ∗) if there exists a C[ε−1]+1-diffeomorphism ψ from U0 to U sending ∗
to x, and such that ψ∗g( · ) is ε-close to g0( · ) on U0× [a, b]. We say that (U, g( · ))
is ε-close to (U0, g0( · )) if there exist points x ∈ U and x0 ∈ U0 such that this
property holds.

Pointed convergence of evolving metrics

We say that a sequence of pointed evolving metrics (Mk, {gk(t)}t∈I , (xk, t0)) con-
verges smoothly to a pointed evolving metric (M∞, {g∞(t)}t∈I , (x∞, t0)) if there
exists an exhaustion of M by open sets Uk, such that x ∈ Uk for all k, and smooth
maps ψk : Uk → Mk, diffeomorphic onto their images, sending x to xk, such that
ψ∗
kgk( · )− g( · ) and all its derivatives converge to zero uniformly on compact sub-

sets of M × I.
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Definition 2.2.5. Let ({g(t)}t∈I) be an evolving metric on M , t0 ∈ I and Q > 0.
The parabolic rescaling with factor Q at time t0 is the evolving metric

t �→ Qg
(
t0 + t

Q

)
.

Remark 2.2.6. Any parabolic rescaling of a Ricci flow is a Ricci flow.

Distance comparison estimates under Ricci flow

We gather below some usual distance comparison estimates under Ricci flow.

Lemma 2.2.7 (Multiplicative distance-distortion). Let g( · ) be a Ricci flow on
U , defined for t ∈ [t1, t2]. Suppose that |Rm| � Λ on U × [t1, t2]. Then

e−2(n−1)Λ(t2−t1) � g(t2)
g(t1)

� e2(n−1)Λ(t2−t1). (2.1)

Proof. If |Rm| � Λ then |Ric| � (n − 1)Λ. Let x ∈ U and u ∈ TxU be a nonzero
vector. Then∣∣∣∣ ddtg(x,t)(u, u)

∣∣∣∣ = |2 Ric(x,t)(u, u)| � 2(n− 1)Λg(x,t)(u, u),

hence | ddt ln g(x,t)(u, u)| � 2(n−1)Λ. Integrating between t1 and t2 gives the result.

Remark 2.2.8. In particular, if t2 − t1 � (2Λ(n− 1))−1, we have

4−1 � g(t2)
g(t1)

� 4,

and
B
(
x, t2,

r

2

)
⊂ B(x, t1, r) ⊂ B(x, t2, 2r)

if B(x, t2, 2r) is compactly contained in U . This will be used repeatedly.

Remark 2.2.9. The upper bound (resp. lower bound) in (2.1) is true under the
assumption Ric � −(n− 1)Λ (resp. Ric � (n− 1)Λ).

Lemma 2.2.10 (Additive distance-distortion, [Ham95b], Section 17). Let g( · )
be a Ricci flow on M , and K be a constant. Suppose that dt(x0, x1) � 2r0 and
Ric � (n− 1)K for all x ∈ B(x0, t0, r0) ∪B(x1, t0, r0). Then

d

dt
dt(x0, x1) � −2(n− 1)

(
2
3
Kr0 + r−1

0

)
, (2.2)

at time t = t0.

Here is another distance-distortion lemma.
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Lemma 2.2.11 ([Ham95b], Theorem 17.12). There exists a constant C(n) > 0
such that if g( · ) is a Ricci flow on M such that Ric � (n−1)K for some constant
K > 0, then for all x0, x1 in M ,

d

dt
dt(x0, x1) � −C(n)K1/2. (2.3)

Notes

The convention we have chosen for the curvature operator is the same as Morgan–
Tian’s. Note that other conventions are to be found in the Ricci flow literature,
in particular in Hamilton’s papers.

The word unscathed was introduced by Kleiner and Lott in [KL08]. Our defi-
nition is slightly different from theirs.

The definition of Ricci flow with bubbling-off is new. As noted in the intro-
duction (see Remark 1.2.5), there are two main differences from Perelman’s Ricci
flow with surgery: first, the manifold does not change with time; second, more
importantly surgery is done before curvature blow-up (compare with [Ham97]).
This spares us the need to analyse the structure of the manifold at blow-up time
as in [Per03b], Section 3. However, the proof of existence uses contradiction argu-
ments which are quite close to Perelman’s (cf. [Per03b], Sections 4, 5).



Chapter 3

Piecing together necks and
caps

As explained in the introduction, one of Perelman’s main achievements is to show
that in a 3-dimensional Ricci flow, points of sufficiently high scalar curvature
have so-called canonical neighbourhoods. The precise definition, which is rather
technical, will be given in Chapter 4. In this chapter, we study weaker, simpler
notions called ε-necks and ε-caps, and prove some topological results about them.

3.1 Necks, caps and tubes

3.1.1 Necks

The standard ε-neck is the Riemannian product Nε := S2 × (−ε−1, ε−1), where
the S2 factor is round of scalar curvature 1. Its metric is denoted by gcyl. We fix
a basepoint ∗ in S2 × {0}.

Definition 3.1.1. Let (M, g) be a Riemannian 3-manifold and x ∈M . A neigh-
bourhood N ⊂M of x is called an ε-neck centred at x if (N, g, x) is ε-homothetic
to (Nε, gcyl, ∗).

If N is an ε-neck and ψ : Nε → N is a parametrisation, i.e., a diffeomorphism
such that some rescaling of ψ∗(g) is close to gcyl, then the sphere S = ψ(S2×{0})
is called the middle sphere of N . This is slightly abusive, since the parametrisation
is not unique.

3.1.2 Caps and tubes

Definition 3.1.2. Let (M, g) be a Riemannian 3-manifold and x be a point of
M . We say that U is an ε-cap centred at x if U is the union of two sets V,W such
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that x ∈ IntV , V is a closed topological 3-ball, W̄ ∩V = ∂V , and W is an ε-neck.
A subset V as above is called a core of U .

Definition 3.1.3. An ε-tube is an open subset U ⊂ M which is equal to a finite
union of ε-necks, and whose closure in M is diffeomorphic to S2 × I.

3.2 Gluing results

There is a function ε �→ f3(ε) tending to zero as ε tends to zero, such that if N is
an ε-neck with scaling factor λ and x, y ∈ N , then we have

|λR(x)− 1| � f3(ε),
∣∣∣∣R(x)
R(y)

− 1
∣∣∣∣ � f3(ε).

Definition 3.2.1. We fix a constant ε0 ∈ (0, 10−3) sufficiently small so that f3(ε),
f3(10ε) � 10−2 if ε ∈ (0, 2ε0].

Lemma 3.2.2. Let ε ∈ (0, 2ε0]. Let (M, g) be a Riemannian 3-manifold. Let
y1, y2 be points of M . Let U1 ⊂M be an ε-neck centred at y1 with parametrisation
ψ1 : S2 × (−ε−1, ε−1) → U1 and middle sphere S1. Let U2 ⊂ M be a 10ε-neck
centred at y2 with middle sphere S2. Call π : U1 → (−ε−1, ε−1) the composition of
ψ−1

1 with the projection of S2 × (−ε−1, ε−1) onto its second factor.
Assume that y2 ∈ U1 and |π(y2)| � (2ε)−1. Then the following conclusions

hold:

(i) U2 is contained in U1.

(ii) The boundary components of ∂U2 can be denoted by S+, S− in such a way
that

π(S−) ⊂ [π(y2)− (10ε)−1 − 10, π(y2)− (10ε)−1 + 10]

and
π(S+) ⊂ [π(y2) + (10ε)−1 − 10, π(y2) + (10ε)−1 + 10].

(iii) The spheres S1, S2 are isotopic in U1.

Proof. Let ψ2 : S2 × (−(10ε)−1, (10ε)−1) → U2 be a parametrisation, and call λi
the scaling factor of ψi for i = 1, 2. By choice of ε, the quotient λ2/λ1 is close
to 1, so the map ψ−1

1 ◦ ψ2 is almost an isometry. Then (i) and (ii) follow from
straightforward distance computations.

Let us show assertion (iii). By Corollary A.2.2, it suffices to prove that S2 is
not null-homologous in U1. Assume that on the contrary, S2 is null-homologous in
U1. Topologically, U2 is a tubular neighbourhood of S2, so the inclusion S2 → U2
is a homotopy equivalence. Hence the induced homomorphism H2(U2)→ H2(U1)
has zero image.
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Set S := ψ1(S2 × {π(y2)}). By (ii), the diameter of S is less than the distance
between y2 and ∂U2. It follows that S ⊂ U2. Now the inclusion S → U1 is
a homotopy equivalence, so the induced homomorphism H2(S) → H2(U1) is an
isomorphism. This is impossible.

We now treat the case of closed manifolds.

Proposition 3.2.3. Let ε ∈ (0, 2ε0]. Let (M, g) be a closed, orientable Rieman-
nian 3-manifold. Let X be a compact, connected, nonempty subset of M such that
every point of X is the centre of an ε-neck or an ε-cap. Then there exists an open
subset U ⊂M containing X such that either

(a) U is equal to M and diffeomorphic to S3 or S2 × S1, or

(b) U is a 10ε-cap, or

(c) U is a 10ε-tube.

In addition, if M is irreducible and every point of X is the centre of an ε-neck,
then Case (c) holds.

Proof. First we deal with the case where X is covered by ε-necks.

Lemma 3.2.4. If every point of X is the centre of an ε-neck, then there exists an
open set U containing X such that U = M ∼= S2 × S1, or U is a 10ε-tube.

Proof. Let x0 be a point of X and N0 be a 10ε-neck centred at x, contained in
an ε-neck U0, also centred at x. If X ⊂ N0 we are done. Otherwise, since X is
connected, we can pick a point x1 ∈ X ∩N0 and a 10ε-neck N1 centred at x1, with
x1 arbitrarily near the boundary of N0. By Lemma 3.2.2, an appropriate choice
of x1 ensures that N1 ⊂ U0 and the middle spheres of N0 and N1 are isotopic.
In particular, the closure of N0 ∪ N1 is diffeomorphic to S2 × I, so N0 ∪ N1 is a
10ε-tube.

If X ⊂ N0 ∪N1, then we can stop. Otherwise, we go on, producing a sequence
x0, x1, x2, . . . of points of X together with a sequence N0, N1, N2 . . . of 10ε-necks
centred at those points, such that N0∪· · ·∪Nk is a 10ε-tube. Since X is compact,
the scalar curvature on X is bounded. Hence definite volume is added at each
step. This implies that the construction must stop. Then either we have found
a 10ε-tube containing X, or N0 ∩ Nk �= ∅. In the latter case, we can adjust the
choice of xk and Nk so that the necks Ni cover M , and can be cyclically ordered
in such a way that two consecutive necks form a tube. Since M is orientable, it
follows that M is diffeomorphic to S2 × S1.

To complete the proof of Proposition 3.2.3, we need to deal with the case where
there is a point x0 ∈ X which is the centre of an ε-cap C0. By definition of a cap,
a collar neighbourhood of the boundary of C0 is an ε-neck U0. If X �⊂ C0, pick a
point x1 close to the boundary of C0. If x1 is the centre of a 10ε-neck N1, then
we apply Lemma 3.2.2 again to find that C1 := C0 ∪N1 is an ε-cap. If x1 is the
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centre of an ε-cap C1, then by an appropriate choice of x1 we can make sure that
∂C0 ∩ ∂C1 is empty. Thus either C0 ⊂ C1, or M = C0 ∪ C1.

Again we iterate the construction, producing an increasing sequence of 10ε-
caps C0 ⊂ C1 ⊂ · · · . For the same reason as before, the process stops, either when
X ⊂ Cn, or when we have expressed M as the union of two caps. In the latter
case, it follows from Alexander’s theorem that M is diffeomorphic to S3.

Finally, the addendum follows from Lemma 3.2.4, since S2×S1 is reducible.

Putting X = M , we obtain the following corollary:

Corollary 3.2.5. Let ε ∈ (0, 2ε0]. Let (M, g) be a closed, orientable Riemannian
3-manifold. If every point of M is the centre of an ε-neck or an ε-cap, then M
is diffeomorphic to S3 or S2 × S1. In particular, if M is irreducible, then M is
diffeomorphic to S3.

Here is another consequence of Proposition 3.2.3:

Corollary 3.2.6. Let ε ∈ (0, 2ε0]. Let (M, g) be a closed, orientable Riemannian
3-manifold. Let X be a compact submanifold of M such that every point of X is
the centre of an ε-neck or an ε-cap. Then one of the following conclusions holds:

(a) M is diffeomorphic to S3 or S2 × S1, or

(b) there exists a finite collection N1, . . . , Np of 10ε-caps and 10ε-tubes with dis-
joint closures such that X ⊂ ⋃iNi.

Proof. First apply Proposition 3.2.3 to each component of X. If Case (a) does not
occur, then we have found a finite collection N ′

1, . . . , N
′
q of 10ε-caps and 10ε-tubes

which cover X. If the closures of those caps and tubes are disjoint, then we get
conclusion (b).

Otherwise, we pick two members N ′
i , N

′
j is the collection whose closures are

not disjoint. By adding one or two necks if necessary, we can merge them into a
larger subset U ⊃ N ′

i ∪N ′
j . Observe that

• merging two tubes produces a tube or shows that M ∼= S2 × S1,

• merging two caps shows that M ∼= S3,

• merging a cap with a tube yields a cap.

Hence after finitely many merging operations, we are done.

We now describe the situation for open manifolds.

Definition 3.2.7. Let (X, g) be a (not necessarily complete) Riemannian 3-
manifold and ε be a positive number. An ε-horn is an open subset U ⊂ X which
has the following properties:

1. U is a union of ε-necks;
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2. U is diffeomorphic to S2 × R;

3. the scalar curvature is bounded on one end of U and tends to +∞ on the
other end.

Lemma 3.2.8. Let ε ∈ (0, 2ε0], (X, g) be a Riemannian 3-manifold, and γ : [0, 1)→
X be a continuous map such that every point of the image of γ is the centre of
an ε-neck, and R(γ(s)) → +∞ as s → 1. Then there exists a 10ε-horn U ⊂ X
containing the image of γ.

Proof. Set x0 := γ(0). Using the construction described in the proof of Lemma 3.2.4,
we produce an infinite sequence of points x0, x1, x2, . . . in the image of γ, and a
sequence of necks N0, N1, N2, . . . centred at those points, such that for every k,
N0∪· · ·∪Nk is a tube, obtained from N0∪· · ·∪Nk−1 by gluing a thickened sphere
at one end. The union U of all the Nk’s is thus diffeomorphic to S2 × R.

To see that it contains the whole image of γ, suppose it does not. Choose
s ∈ [0, 1) such that γ(s) �∈ U . Then all the xk’s are images of numbers in the
compact interval [0, s]. Hence we have an upper bound for their scalar curvatures,
which gives a lower bound for the distance d(xk, xk+1). This in turn implies that
d(x0, xk) goes to infinity, which is a contradiction.

Proposition 3.2.9. Let (M, g) be an open Riemannian 3-manifold. If every point
of M is the centre of a 2ε0-neck, then M is diffeomorphic to S2 × R.

Proof. The proof is similar to that of Lemma 3.2.8, except that after the choice
of x0 and N0, we pick two points x−1, x1, one near each boundary component of
N0. In this way we construct biinfinite sequences . . . , x−2, x−1, x0, x1, x2, . . . and
. . . , N−2, N−1, N0, N1, N2, . . . such that for each k, Nk is a neck centred at xk, and
each finite union N−k, . . . , Nk is a tube, obtained from the previous one by gluing
a thickened sphere at each end..

The union of these tubes is diffeomorphic to S2×R. To see that it is the whole
of M , we argue as in the proof of Lemma 3.2.8: if some point y ∈ M is not in
the union of the Nk’s, then we connect it to x0 by a continuous path and use the
compactness of this path to obtain a contradiction.

Therefore, M is diffeomorphic to S2 × R.

3.3 More results on ε-necks

Definition 3.3.1. Let (M, g) be a Riemannian 3-manifold and N be a neck in
M . Let [xy] be a geodesic segment such that x, y /∈ N . We say that [xy] traverses
N if the geometric intersection number of [xy] and the middle sphere of N is odd.

Lemma 3.3.2. Let ε ∈ (0, 10−1]. Let (M, g) be a Riemannian 3-manifold, N ⊂M
be an ε-neck, and S be a middle sphere of N . Let [xy] be a geodesic segment such
that x, y ∈M \N and [xy] ∩ S �= ∅. Then [xy] traverses N . In particular, if S is
separating in M , then x, y lie in different components of M \ S.
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Proof. Let [x′y′] be a subsegment of [xy] such that x′, y′ ∈ ∂N̄ and [x′y′]∩ S �= ∅.
Since [x′y′] is minimising, we have d(x′, y′) � 2d(S, ∂N̄). By choice of ε, this is
greater than the diameter of each component of ∂N̄ . Hence x′, y′ must belong to
two distinct such components.

This proves that there is exactly one subsegment [x′y′] such that x′, y′ ∈ ∂N̄ ,
[x′y′] ∩ S �= ∅ and (x′y′) ⊂ N . After perturbation, this segment must intersect S
transversally in an odd number of points.

Corollary 3.3.3. Let ε ∈ (0, 10−1]. Let (M, g) be a Riemannian 3-manifold,
U ⊂M be an ε-cap and V be a core of U . Let x, y be points of M \ U and [xy] a
geodesic segment connecting x to y. Then [xy] ∩ V = ∅.
Proof. By definition, U = N ∪V where N is an ε-neck of M . Let S be the middle
sphere of N . It is isotopic to ∂V , and separates M in two connected components,
one of them containing x, y, the other V . If [xy] ∩ V �= ∅ then [xy] intersects S.
The last assertion of Lemma 3.3.2 gives the contradiction.

Notes

Results similar to those in this chapter can be found in Chapter 19 of Morgan and
Tian’s book [MT07] and the paper by Dinkelbach and Leeb [DL09]. The versions
we give are sometimes weaker, but sufficient for the applications in this book.



Chapter 4

κ-noncollapsing, canonical
geometry and pinching

The purpose of this chapter is to introduce some notions that are fundamental for
understanding the behaviour of Ricci flow, in particular on 3-manifolds. We begin
with the κ-noncollapsing property, which was defined and used by Perelman in the
first breakthrough result of [Per02], to obtain an estimate on the local injectivity
radius. This property allows us to use compactness theorems to study the singu-
larities of Ricci flow. This leads to the notion of κ-solutions, which are models
for the singularities, and are described in Section 4.2. The classification of these
models then brings up the concept of canonical neighbourhoods, whose precise
definition is given in Section 4.2.2. In Section 4.3 we introduce the standard solu-
tion, which is the model for the almost standard caps which are added during the
surgery process. We conclude the chapter with some curvature pinching properties
of Ricci flow, which were discovered by Hamilton and Ivey (Section 4.4).

4.1 κ-noncollapsing

Let M be an n-manifold. Let {g(t)}t∈I be an evolving metric on M . A (backward)
parabolic neighbourhood of a point (x, t) ∈M × I is a set of the form

P (x, t, r,−Δt) = {(x′, t′) ∈M × I | x′ ∈ B(x, t, r), t′ ∈ [t−Δt, t]}.

In particular, the set P (x, t, r,−r2) is called a parabolic ball of radius r. Notice
that after parabolic rescaling with factor r−2 at time t, it becomes a parabolic ball
P (x, 0, 1,−1) of radius 1.

Definition 4.1.1. Fix κ, r > 0. We say that g( · ) is κ-collapsed at (x, t) on the
scale r if for all (x′, t′) ∈ P (x, t, r,−r2) one has |Rm(x′, t′)| � r−2, and

volB(x, t, r) < κrn.

37
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Otherwise, g( · ) is κ-noncollapsed at (x, t) on the scale r. We say that the evolving
metric g( · ) is κ-noncollapsed on the scale r if it is κ-noncollapsed on this scale at
every point of M × I.
Remark 4.1.2. g( · ) is κ-noncollapsed at (x, t) on the scale r if

|Rm| � r−2 on P (x, t, r,−r2) implies volB(x, t, r) � κrn.

Remark 4.1.3. If |Rm| � r−2 on P (x, t, r,−r2), a κ-noncollapsing property at
(x, t) on the scale r gives a positive lower bound for the injectivity radius of g(t)
at x which depends only on n, κ and r (cf. Theorem B.1.2).

Lemma 4.1.4 (κ-noncollapsing property closed in time). In the case when n = 3,
let g( · ) be a Ricci flow with bubbling-off defined on an interval (a, b], x ∈ M and
r, κ > 0. If for all t < b, g( · ) is κ-noncollapsed at (x, t) on all scales less than or
equal to r, then it is κ-noncollapsed at (x, b) on the scale r.

Proof. Assume that |Rm| � r−2 on P (x, b, r,−r2). Fix s < r. There exists ts < b
such that for all t ∈ [ts, b) we have P (x, t, s,−s2) ⊂ P (x, b, r,−r2). Without loss of
generality, we assume that there is no singular time in [ts, b). Now on P (x, t, s,−s2)
we have |Rm| � r−2 � s−2. Applying the noncollapsing hypothesis at (x, t) on
the scale s, we deduce that volB(x, t, s) � κs3. The result follows by letting first
t tend to b, then s tend to r.

4.2 κ-solutions

4.2.1 Definition and main results

Definition 4.2.1. Let κ > 0. A Ricci flow (M, g( · )) is called a κ-solution if the
following holds:

(i) It is ancient, i.e., defined on (−∞, 0].

(ii) For each t ∈ (−∞, 0], the metric g(t) is complete, and Rm( · , t) is nonnegative
and bounded.

(iii) There exists (x, t) ∈M × (−∞, 0] such that Rm(x, t) �= 0.

(iv) For every r > 0, the evolving metric g( · ) is κ-noncollapsed on the scale r.

A κ-solution is round if for each t, the metric g(t) has constant positive sectional
curvature.

The asymptotic volume of a complete Riemannian manifold (Mn, g) of non-
negative curvature is defined by

V(g) := lim
r→∞

volB(x, r)
rn

.

One easily sees, using Bishop–Gromov inequality B.1.1, that the limit is well de-
fined and does not depend on x ∈ M . We state here fundamental results on
κ-solutions.
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Theorem 4.2.2 (Vanishing asymptotic volume, [Per02], Section 11.4, [KL08],
Proposition 41.13). For any κ-solution (M, g( · )), one has V(g(t)) = 0 for all t.

Theorem 4.2.3 (Compactness theorem, [Per02], Section 11.7, [KL08], Theorem
46.1). For all κ > 0, the space of pointed 3-dimensional κ-solutions (M, g( · ), (x, 0))
such that R(x, 0) = 1 is compact for the pointed convergence of flows.

Theorem 4.2.4 ([Per02], Corollary 11.3, [KL08], Corollary 40.1 and Section 43).
Every 2-dimensional κ-solution is round.

Theorem 4.2.5 (Universal κ, [Per03b], Section 1.5, [KL08], Proposition 50.1).
There exists a universal constant κsol > 0 such that any 3-dimensional κ-solution
is round or a κsol-solution.

4.2.2 Canonical neighbourhoods

The cylindrical flow is S2 × R together with the product Ricci flow on (−∞, 0],
where the first factor is round, normalised so that the scalar curvature at time 0
is identically 1. We denote this evolving metric by gcyl(t).

Definition 4.2.6. Let ε > 0. Let M be a 3-manifold, {g(t)}t∈I be an evolving
metric onM , and (x0, t0) ∈M×I. An open subsetN ⊂M is called a strong ε-neck
centred at (x0, t0) if there is a number Q > 0 such that (N, {g(t)}t∈[t0−Q−1,t0], x0)
is unscathed and, after parabolic rescaling with factor Q at time t0, ε-close to
(S2 × (−ε−1, ε−1), {gcyl(t)}t∈[−1,0], ∗).
Remarks 4.2.7. (i) Fix Q > 0, and consider the flow (S2 × R, Qgcyl(tQ−1))
restricted to (−Q, 0]. Then for every x ∈ S2 × R, the point (x, 0) is the centre of
a strong ε-neck for all ε > 0.

(ii) If (x0, t0) is the centre of a strong ε-neck, then there is a neighbourhood Ω
of x0 such that for all x ∈ Ω, (x, t0) is the centre of a strong ε-neck: one can use the
same set N and factor Q, but change the parametrisation so that the basepoint ∗
is sent to x rather than x0. Choosing Ω smaller, we also have that (x, t0) is the
centre of a strong ε0-neck for all evolving metric g̃( · ) sufficiently close to g( · ) is
the C[ε−1] topology.

(iii) By abuse of language, we shall sometimes call strong ε-neck the parabolic
set N × [t0 −Q−1, t0] ⊂M × I, rather than the set N ⊂M .

Definition 4.2.8. Let ε, C > 0 and {g(t)}t∈I be an evolving metric on M . We
say that an open subset U ⊂M is an (ε, C)-cap centred at (x0, t0) if U is an ε-cap
which satisfies furthermore the following estimates for the metric g(t0): R(x0) > 0
and there exists r ∈ (C−1R(x0)− 1

2 , CR(x0)− 1
2 ) such that

(i) B(x0, r) ⊂ U ⊂ B(x0, 2r),

(ii) the scalar curvature function restricted to U has values in a compact subin-
terval of (C−1R(x0), CR(x0)),
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(iii) volU > C−1R(x0)−3/2 and if B(y, s) ⊂ U satisfies |Rm| � s−2 on B(y, s)
then

C−1 <
volB(y, s)

s3
. (4.1)

Moreover, the following inequalities hold true on U :

(iv)

|∇R(x)| < CR(x)
3
2 , (4.2)

(v)
|ΔR(x) + 2|Ric(x)|2| < CR(x)2, (4.3)

(vi)

|∇Rm(x)| < C|Rm(x)| 32 , (4.4)

Remarks 4.2.9. (i) The diameter of U is at most 4r, which in turn is bounded
above by a function of C and R(x0).

(ii) The estimate (4.3) implies the following scale-invariant bound on the time-
derivative of R: ∣∣∣∣∂R∂t (x, t)

∣∣∣∣ < CR(x, t)2. (4.5)

(iii) For suitable C = C(ε), any strong ε-neck also satisfies (i)–(vi).
(iv) The property of being the centre of an (ε, C)-canonical neighbourhood is

open with respect to changing the point, and the metric in the C[ε−1] topology.
(v) If U is an (ε, C)-cap, then the set of all centres of U is open.

Definition 4.2.10. Let ε, C be positive numbers and {g(t)}t∈I) be an evolving
metric on M . We say that a point (x, t) admits (or is the centre of) an (ε, C)-
canonical neighbourhood if x is the centre of an (ε, C)-cap for g(t) or if x is the
centre of a strong ε-neck which satisfies (i)–(vi) of Definition 4.2.8.

In the next theorem, we say that M is RP 2-free if it does not contain any
embedded RP 2.

Theorem 4.2.11 ([Per02], Section 1.5, [KL08], Lemma 59.7). For all ε > 0 there
exists Csol = Csol(ε) such that, if (M, {g(t)}t∈(−∞,0]) is a 3-dimensional RP 2-free
κ-solution, then M is a spherical manifold, or every (x, t) ∈ M × (−∞, 0] is the
centre of an (ε, Csol)-canonical neighbourhood.
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4.3 The standard solution I

4.3.1 Definition and main results

We will consider a Riemannian manifold §0 satisfying a number of properties, such
as: §0 is diffeomorphic to R3, it is complete, the sectional curvature is nonnegative
and bounded, it is rotationally symmetric, a neighbourhood of infinity is isometric
to the product S2 × [0,+∞).

This manifold will be called the standard initial metric and its centre of sym-
metry will be denoted by p0. For technical reasons, one needs to be more precise
in the choice of §0, so the definition will be given in Chapter 7. In this section, we
record some properties of §0 for future reference. For brevity, a Ricci flow is said
to be complete (resp. to have bounded sectional curvature) if each of its time slices
has this property.

Theorem 4.3.1 ([Per03b], Section 2, [KL08], Sections 61–64, and [CZ06b], [LT05]
for the uniqueness). The Ricci flow with initial condition §0 has a maximal solution
defined on [0, 1), which is unique among complete Ricci flows of bounded sectional
curvature.

Definition 4.3.2. This solution is called the standard solution.

Proposition 4.3.3 ([KL08], Lemma 60.3). There exists κst > 0 such that the
standard solution is κst-noncollapsed on all scales.

Proposition 4.3.4 ([Per03b], Claim 5, [KL08], Lemma 63.1). For every ε > 0
there exists Cst(ε) > 0 such that for all (x, t) ∈ §0 × [0, 1), if t > 3/4 or x ∈
B(p0, 0, ε−1), then (x, t) has an (ε, Cst)-canonical neighbourhood. Otherwise, there
is an ε-neck B(x, t, ε−1r) such that P (x, t, ε−1r,−t) is ε-close to the corresponding
subset of the cylindrical flow.

Moreover, we have the estimate Rmin(t) � constst(1 − t)−1 for some constant
constst > 0.

4.3.2 Neck strengthening

The following lemma is a variant of [MT07], Proposition 15.2. Let Kst be the
supremum of the sectional curvatures of the standard solution on [0, 4/5].

Lemma 4.3.5 (Neck strengthening). For all ε ∈ (0, 10−4) there exists β = β(ε) ∈
(0, 10−3) such that the following holds. Let a, b be real numbers satisfying a < b < 0
and |b| � 3/4, let (M, g( · )) be a 3-dimensional Ricci flow with bubbling-off defined
on (a, 0], and x ∈M be a point such that

(i) R(x, b) = 1;

(ii) (x, b) is the centre of a strong βε-neck;

(iii) P (x, b, (βε)−1, |b|) is unscathed and satisfies |Rm| � 2Kst.
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Then (x, 0) is the centre of a strong ε-neck.

Proof. We argue by contradiction, assuming that there exists a number ε, a se-
quence βk → 0, sequences ak, bk with ak < bk, bk ∈ [−3/4, 0], and for each k a
Ricci flow with bubbling-off (Mk, {gk(t)}ak,0]) with a point xk ∈Mk such that

(i) R(xk, bk) = 1;

(ii) (xk, bk) is the centre of a strong βkε-neck Nk of scaling factor Qk;

(iii) P (xk, bk, (βkε)−1, |bk|) is unscathed and satisfies |Rm| � 2Kst, but

(iv) (xk, 0) is not the centre of a strong ε-neck.

Here is the picture:

(x, 0)

Q−1

|b|

strong εβ-neck centred at (x, b)

P (x, b, (εβ)−1, |b|)

(x, b)

strong ε-neck wanted

From assumptions (i), (ii) we first deduce that |Rm| � 2 on Mk× [bk−Q−1
k , bk]

for all k. Using the curvature bound |Rm| � 2Kst on P (xk, bk, (βkε)−1, |bk|), the
Distance-Distortion Lemma 2.2.7 gives a constant c such that B(xk, 0, c(βkε)−1) ⊂
B(xk, bk, (βkε)−1). Hence we have |Rm| � max{2Kst, 2} on P (xk, 0, c(βkε)−1,
bk −Q−1

k ).
Using the injectivity radius estimate (Theorem B.1.2), we deduce from the

closeness with the cylinder at (xk, bk), and from the bounded curvature, a positive
lower bound on the injectivity radius at (xk, 0).

Note that the normalisation R(xk, bk) = 1 implies that Qk → 1. The Compact-
ness Theorem C.3.1 gives a subsequence of (Mk, {gk(t)}t∈[bk−Q−1

k ,0], (xk, 0)) which
converges to a complete pointed Ricci flow (M∞, g∞( · ), (x∞, 0)) of bounded cur-
vature, defined on (b − 1, 0], where b := lim bk ∈ [−3/4, 0]. In particular, the
sequence of pointed Riemannian manifolds (Mk, gk(bk − (2Qk)−1), xk) converges
smoothly to (M∞, g∞(b− 1/2), x∞).

From the hypothesis that Nk is a strong βkε-neck of scaling factor Qk
centred at (xk, bk), we deduce that (Mk, Qkgk(bk − (2Qk)−1), xk) converges to
(S2 × R, gcyl(−1/2), ∗). Hence (M∞, g∞(b − 1/2), x∞) is isometric to this cylin-
der. By the Chen–Zhu uniqueness theorem [CZ06c], we deduce that the limit flow
(M∞, {g∞(t)}t∈[b−1/2,0]) is the cylindrical flow up to parabolic scaling. The same
conclusion holds on (b− 1, 0] since Nk is a strong βkε-neck for each k.
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We have R(x∞, b) = 1, hence R(x∞, 0) = (1 + b)−1 � 1. By Remark 4.2.7 (i)
we are done.

4.4 Curvature pinched toward positive

In this section, we discuss the so-called Hamilton–Ivey pinching property of the
Ricci flow.

Let (M, g) be a 3-manifold and x ∈ M be a point. We denote by λ(x) �
μ(x) � ν(x) the eigenvalues of the curvature operator Rm(x). According to our
conventions, all sectional curvatures lie in the interval [ν(x), λ(x)]. Moreover, λ(x)
(resp. ν(x)) is the maximal (resp. minimal) sectional curvature at x. If C is a
real number, we sometimes write Rm(x) � C instead of ν(x) � C. Likewise,
Rm(x) � C means λ(x) � C.

It follows that the eigenvalues of the Ricci tensor are equal to λ+μ, λ+ν, and
μ+ν; as a consequence, the scalar curvature R(x) is equal to 2(λ(x)+μ(x)+ν(x)).

For evolving metrics, we use the notation λ(x, t), μ(x, t), and ν(x, t), and corre-
spondingly write Rm(x, t) � C for ν(x, t) � C, and Rm(x, t) � C for λ(x, t) � C.

Definition 4.4.1. Let φ be a nonnegative function. A metric g on M has φ-almost
nonnegative curvature if R takes its values in the domain of φ and if Rm � −φ(R)
on M .

Remark 4.4.2. In this case, we also have a bound above of the curvature operator
by a function of the scalar curvature, namely

R

2
+ 2φ(R) � R

2
− μ− ν = λ � Rm � ν � −φ(R).

Now we consider a family of positive functions (φt)t�0 defined as follows. Let
st = e2

1+t and define
φt : [−2st,+∞)→ [st,+∞)

as the reciprocal of the increasing function

s �→ 2s(ln(s) + ln(1 + t)− 3).

As in [MT07], we use the following definition.

Definition 4.4.3. Let I ⊂ [0,∞) be an interval and {g(t)}t∈I be an evolving
metric on M . We say that g( · ) has curvature pinched toward positive at time t if
for all x ∈M we have

R(x, t) � − 6
4t+ 1

, (4.6)

Rm(x, t) � −φt(R(x, t)). (4.7)

We say that g( · ) has curvature pinched toward positive if it has curvature pinched
toward positive at each t ∈ I.
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Remark 4.4.4. If we set X := max{0, |ν(x, t)|}, equation (4.7) is equivalent to1

R(x, t) � 2X (lnX + ln(1 + t)− 3) . (4.8)

The content of the Hamilton–Ivey theorem, which is proved using a time-
dependent version of the maximum principle, is that curvature pinching toward
positive propagates forward under Ricci flow:

Proposition 4.4.5 ([Ham99], [Ive93]). Let a, b be two real numbers such that
0 � a < b. Let {g(t)}t∈[a,b] be a Ricci flow solution on M such that g( · ) has
curvature pinched toward positive at time a. Then g( · ) has curvature pinched
toward positive.

The following lemmas will be useful.

Lemma 4.4.6. (i) φt(s) = φ0((1+t)s)
1+t .

(ii) φt(s)
s decreases to 0 as s tends to +∞.

(iii) φ0(s)
s = 1

4 if s = 4e5.

Proof. (i) is left to the reader. For (ii), we have

0 <
φ0(s)
s

= u⇔ φ0(s) = su⇔ s = 2(su)[ln(su)− 3]⇔ ψ(u) = s =
1
u
e3+

1
2u.

Now, since ψ′(u) < 0, ψ and s → φ(s)/s are decreasing. Finally ψ(1/4) = 4e5

proves (iii).

Property (ii) will ensure that limits of suitably rescaled evolving metrics with
curvature pinched toward positive will have nonnegative curvature operator (see
Proposition 6.1.6). Set s̄ := 4e5.

Lemma 4.4.7 (Pinching lemma). Assume g( · ) has curvature pinched toward
positive and let t � 0, r > 0 be such that (1 + t)r−2 � s̄. If R(x, t) � r−2 then
|Rm(x, t)| � r−2.

Proof. By assumption, we have at (x, t),

Rm � −φt(R) = −φ0((1 + t)R)
1 + t

� −φ0((1 + t)r−2)
1 + t

= −φ0((1 + t)r−2)
(1 + t)r−2 r−2 � −1

4
r−2

by Lemma 4.4.6. On the other hand

Rm � λ =
R

2
− ν − μ � r−2

2
+ 2
(
r−2

4

)
= r−2.

1 The factor 2 comes from our choices or normalisation of the curvature operator Rm
(cf. [Ham99]).
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Remarks 4.4.8. This lemma will be used in two kinds of settings:

(i) r−2 � s̄. For example, if R(x, t) � Q = r−2 where, say, Q � 106, then
|Rm| � Q. Hence if the scalar curvature is large, it bounds the curvature
operator.

(ii) tr−2 � s̄, which is equivalent to r ∈ (0, r̄
√
t] if one sets r̄ = s̄−1/2. This

will be used in the study of the long-time behaviour of the Ricci flow with
bubbling-off.

Notes

Except for the Hamilton–Ivey pinching ([Ham99], [Ive93]), most of the material
of this chapter comes from Perelman [Per02], [Per03b]. There are slightly dif-
ferent definitions of canonical neighbourhoods in the literature. Ours is closest
to the one in Morgan–Tian’s book [MT07]. Our definition is more restrictive be-
cause we exclude spherical manifolds and some ε-caps diffeomorphic to RP 3\{pt}.
This is consistent with the topological hypotheses put on the manifold throughout
the book. It allows us to slightly simplify the exposition. In the proof of the
strengthening lemma (Lemma 4.3.5) we use the Chen–Zhu uniqueness theorem for
simplicity only.
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Chapter 5

Ricci flow with
(r, δ, κ)-bubbling-off

In this chapter we assume that M is a closed, orientable, irreducible 3-manifold.
We also assume that M is not spherical. (cf. discussion at the beginning of Sec-
tion 1.2.2).

In particular, M is RP 2-free, and not diffeomorphic to S3 or S2×S1. Moreover,
any manifold obtained from a sequence of Riemannian metrics on M by taking
a pointed limit automatically has the same properties (except compactness and
irreducibility, of course).

We introduce a version with parameters of Ricci flow with bubbling-off, which
we call Ricci flow with (r, δ, κ)-bubbling-off. The bulk of the definition consists of
a canonical neighourhood property at a scale r, and a metric surgery governed by
surgery parameters r, δ and other ones computed with them, e.g. the curvature
threshold used to launch the surgery process. Metric surgery and the associated
cutoff parameters are precisely defined in Section 5.2. With this in hand, we state
the main finite-time existence theorem of the book (Theorem 5.3.1), which asserts
the existence, given any normalised initial data and finite interval [0, T ], of a Ricci
flow with (r, δ, κ)-bubbling-off on [0, T ] with such initial data. We reduce the
proof of this result to three independent propositions, called A, B and C, whose
demonstrations occupy all Part II of the book. Finally, we give in Section 5.4 a
long-time existence theorem, obtained more or less by iteration of the first one.

5.1 Let the constants be fixed

Recall that ε0 has been fixed in Chapter 3 (cf. Definition 3.2.1).

Definition 5.1.1. Let β0 := β(ε0) be the parameter given by Lemma 4.3.5.
Finally, set

C0 := max{100ε0−1, 2Csol(ε0/2), 2Cst(β0ε0/2)},

47
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where Csol is defined by Theorem 4.2.11, and Cst by Proposition 4.3.4.

Definition 5.1.2. Let r > 0. An evolving metric {g(t)}t∈I on M has property
(CN)r if for all (x, t) ∈ M × I, if R(x, t) � r−2, then (x, t) admits an (ε0, C0)-
canonical neighbourhood.

Definition 5.1.3. Let κ > 0. An evolving metric {g(t)}t∈I on M has property
(NC)κ if {g(t)} is κ-noncollapsed on all scales less than or equal to 1.

Remark 5.1.4. If (NC)κ is satisfied on some time interval (a, b), it is also satisfied
on (a, b]. This follows immediately from Lemma 4.1.4.

Definition 5.1.5. A metric g on M is normalised if tr Rm2 � 1 and each ball
of radius 1 has volume at least half of the volume of the unit ball in Euclidean
3-space.

Remark 5.1.6. If g(0) is normalised then |Rm| � 1. This in turn implies that
g( · ) has curvature pinched toward positive at time 0. Indeed, R(x, 0) � −6 and
Rm(x, 0) � −1 � −φ0(R(x, 0)), for all x ∈M .

Remark 5.1.7. Since M is closed, any metric on M can be normalised by scaling.

Proposition 5.1.8. There exists a constant κnorm > 0 such that if g0 is a nor-
malised metric on M , then the maximal Ricci flow solution g( · ) with initial con-
dition g0 is defined at least on [0, 1/16], and on this interval it satisfies

(i) |Rm| � 2,

(ii) (NC)κnorm , and

(iii) g( · ) has curvature pinched toward positive.

Proof. Inequality (i) follows from (tr Rm2)1/2 � 2, which is the doubling time
estimate given in Lemma 6.1 of [CLN06]. The property (ii) follows from the fact
that on the time interval [0, 1/16] the metrics are uniformly bi-Lipschitz because
of the previous curvature bound. An explicit expression for the constant κnorm
may be given. Finally, (iii) is a consequence of Proposition 4.4.5 and the fact that
if g(0) is normalised then it has curvature pinched toward positive at time 0.

Remark 5.1.9. Conclusion (i) implies R � 12, hence (CN)r is vacuously true for
r < (2

√
3)−1.

Definition 5.1.10. We set κ0 := min(κnorm, κsol/2, κst/2).

5.2 Metric surgery and cutoff parameters

Recall from Section 4.3 that we denote by §0 the standard initial metric and p0 its
centre of symmetry (see Section 7.1 for the precise definition of §0).



5.2. METRIC SURGERY AND CUTOFF PARAMETERS 49

Definition 5.2.1. Let δ, δ′ be positive numbers. Let g be a Riemannian metric on
M . Let (U, V, p, y) be a 4-tuple such that U is an open subset of M , V is a compact
subset of U , p ∈ IntV , y ∈ ∂V . Then (U, V, p, y) is called a marked (δ, δ′)-almost
standard cap if there exists a δ′-isometry ψ : B(p0, 5 + δ−1)→ (U,R(y)g), sending
B(p0, 5) to IntV and p0 to p. One calls V the core and p the tip (see Figure 5.1).

U

55 + δ−1

p

p0

standard initial metric

δ′-isometry

Vy

Figure 5.1: An almost standard cap.

Theorem 5.2.2 (Metric surgery). There exist δ0 > 0 and a function δ′ : (0, δ0] �
δ �→ δ′(δ) ∈ (0, ε0/10] tending to zero as δ → 0, with the following property:

Let φ be a nondecreasing, nonnegative function, let δ � δ0, let g be a Rieman-
nian metric on M with φ-almost nonnegative curvature, and N ⊂ M be a δ-neck
whose middle sphere bounds a 3-ball B ⊂M .

Then there exists a Riemannian metric g+ on M such that the following holds:

1. g+ = g on M \ IntB and g+ < g on IntB.

2. There exist p ∈ IntB and y ∈ ∂B such that (N ∪ B,B, p, y) is a marked
(δ, δ′(δ))-almost standard cap with respect to g+.

3. g+ has φ-almost nonnegative curvature.

This is proved in Chapter 7. Figure 5.2 summarizes the construction.

Definition 5.2.3. In the sequel we fix a function δ′ : (0, δ0]→ (0, ε0/10] with the
above properties. A marked (δ, δ′(δ))-almost standard cap will be simply called a
δ-almost standard cap. An open subset U of M is called a δ-almost standard cap
if there exist V , p and y such that (U, V, p, y) is a δ-almost standard cap.

Theorem 5.2.4 (Cutoff parameters). For all r, δ > 0, there exist h ∈ (0, δr) and
D > 10 such that if g( · ) is a Ricci flow with bubbling-off on M defined on an
interval [a, b], with curvature pinched toward positive and satisfying (CN)r, then
the following holds:
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(M, g)

(M, g+)

δ-neck N

∂B B
p

g+ = g g+ < g

(δ, δ′)-almost standard cap

p

Figure 5.2: The metric surgery.

Suppose that x, y, z ∈ M and t ∈ [a, b] are such that R(x, t) � 2r−2, R(y, t) =
h−2, R(z, t) � Dh−2, and y lies on a g(t)-geodesic segment connecting x to z.
Then (y, t) is the centre of a strong δ-neck.

This will be proved in Chapter 6. In the sequel we fix functions (r, δ) �→ h(r, δ)
and (r, δ) �→ D(r, δ) with the above property. We set Θ(r, δ) := 2D(r, δ)h(r, δ)−2.
This number will be used as a curvature threshold for the surgery process, as
sketched in Section 1.2.

Definition 5.2.5. We say that two real numbers r, δ are surgery parameters if
0 < r < 10−3 and 0 < δ < min(ε0, δ0). The associated cutoff parameters are
h := h(r, δ) and Θ := 2Dh−2.

Remark 5.2.6. The convention r < 10−3 implies that g( · ) satisfies (CN)r vacu-
ously on [0, 1/16] if g(0) is normalised. See Remark 5.1.9.

Definition 5.2.7. Fix surgery parameters r, δ and let h, Θ be the associated cutoff
parameters. Let {g(t)}t∈I be an evolving metric on M . Let g+ be a Riemannian
metric on M and t0 ∈ I. We say that g+ is obtained from g( · ) by (r, δ)-surgery
at time t0 if the following conditions are satisfied:

(i) For all x ∈M , if g+(x) �= g(x, t0), then there exists a δ-almost standard cap
(U, V, p, y) with respect to g+ such that

(a) x ∈ IntV ;
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(b) R(y, t0) = h−2;

(c) (y, t0) is the centre of a strong δ-neck;

(d) g+ < g(t0) on IntV .

(ii) Rmax(g(t0)) = Θ and Rmax(g+) � Θ/2.

We will refer to h as the scale of the δ-almost standard cap.

Definition 5.2.8. Fix surgery parameters r, δ and let h, D, Θ be the associated
cutoff parameters. Let I ⊂ [0,∞) be an interval and {g(t)}t∈I be a Ricci flow with
bubbling-off on M . We say that {g(t)}t∈I is a Ricci flow with (r, δ)-bubbling-off
if it has the following properties:

(i) g( · ) has curvature pinched toward positive and satisfies R(x, t) � Θ for all
(x, t) ∈M × I.

(ii) For every singular time t0 ∈ I, the metric g+(t0) is obtained from g( · ) by
(r, δ)-surgery at time t0.

(iii) Condition (CN)r holds.

Let κ > 0. A Ricci flow with (r, δ)-bubbling-off which in addition satisfies
Condition (NC)κ will be called an Ricci flow with (r, δ, κ)-bubbling-off.

The following lemma is easy, but extremely important. It gives an estimate
that bounds from below the elapsed time between two singular times.

Lemma 5.2.9 (Elapsed time between surgeries). Let r, δ be surgery parameters.
Let {g(t)}t∈I be a Ricci flow with (r, δ)-bubbling-off on M . Let t1 < t2 be two
singular times. Then t2 − t1 � (C0Θ)−1.

Proof. One can suppose that g( · ) is smooth on (t1, t2]. Let x ∈ M such that
R(x, t2) = Rmax(t2) = Θ. As Rmax(g+(t1)) � Θ/2, there exists t+ ∈ [t1, t2]
maximal such that limt→t+,t>t+ R(x, t) = Θ/2. In particular, (x, t) is the centre
of an (ε0, C0)-canonical neighbourhood for all t ∈ (t+, t2]. Integrating inequality
(4.5) of p. 40 on (t+, t2] gives

− 1
R(x, t2)

+ lim
t→t+,t>t+

1
R(x, t)

� C0(t2 − t+) � C0(t2 − t1).

Hence t2 − t1 � 1
C0

(− 1
Θ + 2

Θ

)
= (C0Θ)−1.

5.3 Finite-time existence theorem for Ricci flow
with (r, δ, κ)-bubbling-off
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5.3.1 The statements

Recall that we are assuming that M is a closed, orientable, irreducible 3-manifold,
and that M is not spherical .

In this case, Theorem 1.2.3 asserts that for any T > 0 and any metric g0 on
M , there exists a Ricci flow with bubbling-off g( · ) on M , defined on [0, T ], with
initial condition g(0) = g0. This follows immediately from the following technical
result:

Theorem 5.3.1. For every T > 0, there exist r, δ, κ > 0 such that for any nor-
malised metric g0 on M , there exists a Ricci flow with (r, δ, κ)-bubbling-off defined
on [0, T ] with initial condition g0.

Since any metric on M can be normalised by scaling, Theorem 5.3.1 implies The-
orem 1.2.3.

Our next aim is to reduce Theorem 5.3.1 to three results, called Propositions A,
B, C, which are independent of one another.

Proposition A below essentially says that if in a Ricci flow with bubbling-off,
Rmax reaches the threshold value Θ, then one can perform the (r, δ)-surgery and
get a new metric g+, which in particular satisfies Rmax(g+) � Θ/2. Its proof
consists in putting together the cutoff parameters theorem and the metric surgery
theorem, as well as some elementary topological arguments which are needed in
order to find the collection of cutoff δ-necks.

Proposition A. There exists a universal constant δ̄A ∈ (0, δ0) having the follow-
ing property: let r, δ be surgery parameters, a, b be positive numbers with a < b,
and {g(t)}t∈(a,b] be a Ricci flow with (r, δ)-bubbling-off on M . Suppose that δ � δ̄A,
and Rmax(b) = Θ.

Then M admits a metric g+ which is obtained from g( · ) by (r, δ)-surgery at
time b, and in addition satisfies

1. g+ has φb-almost nonnegative curvature;

2. Rmin(g+) � Rmin(g(b)).

In the next proposition, we show that the canonical neighbourhood property
is closed in time, for a suitable choice of parameters.

Proposition B. For all κ > 0 there exist r(κ) ∈ (0, 10−3) and δ̄B = δ̄B(κ) ∈
(0, δ0) with the following property: let δ � δ̄B, b > 0 and g( · ) be a Ricci flow
with bubbling-off defined on [0, b] with normalised initial condition. Assume that
the restriction of g( · ) to the half-open interval [0, b) is a Ricci flow with (r, δ, κ)-
bubbling-off. Then it satisfies (CN)r on all of [0, b].

The last proposition is a version of Perelman’s noncollapsing theorem for Ricci
flow with bubbling-off.

Proposition C. For all T > 0 there exists κ = κ(T ) ∈ (0, κ0) such that for all
r ∈ (0, 10−3) there exists δ̄C = δ̄C(T, r) ∈ (0, δ0) with the following property.

For all 0 < δ � δ̄C and 0 < b � T , every Ricci flow with (r, δ)-bubbling-off
defined on [0, b) and having normalised initial condition satisfies (NC)κ.
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5.3.2 Proof of the finite-time existence theorem, assuming
Propositions A, B, and C

We now prove Theorem 5.3.1, assuming the three propositions A, B and C.
Let T > 0. Proposition C gives a constant κ = κ(T ). Proposition B gives

constants r, δ̄B depending on κ. Then apply Proposition C again to get a constant
δ̄C . Set δ := min(δ̄A, δ̄B , δ̄C , C

−3/2
0 /10).

From r, δ we get the associated cutoff parameters h,Θ.
Let g0 be a normalised metric on M . We denote by X the set of ordered

pairs (T ′, {g(t)}t∈[0,T ′)) consisting of a number T ′ ∈ (0, T ] and a Ricci flow with
(r, δ, κ)-bubbling-off {g(t)}t∈[0,T ′) such that g(0) = g0. By Proposition 5.1.8, X
is nonempty. It has a partial ordering, defined by (T ′

1, {g1(t)}) � (T ′
2, {g2(t)}) if

T ′
1 � T ′

2 and g2( · ) is an extension of g1( · ).
We want to use Zorn’s lemma to prove existence of a maximal element in X .

In order to do this, we consider an infinite chain, that is an infinite sequence of
numbers 0 < T1 < T2 < · · ·Tn < · · · < T and of Ricci flows with (r, δ, κ)-bubbling-
off defined on the intervals [0, Tn), and which extend one another. In this way we
get an evolving metric g( · ) defined on [0, T∞), where T∞ is the supremum of the
Tn’s. By Lemma 5.2.9, the set of singular times is a discrete subset of R, so g( · )
is a Ricci flow with (r, δ, κ)-bubbling-off.

Hence we can apply Zorn’s lemma. Let (T ′, g( · )) ∈ X be a maximal element.
Its scalar curvature lies between −6 and Θ, hence it is bounded. Its curvature
is pinched toward positive so the sectional curvature is also bounded. Hence by
Proposition C.1.2 we may extend g( · ) to a Ricci flow with bubbling-off on [0, T ′],
with Rmax(T ′) � Θ. By Proposition B, Property (CN)r is satisfied on [0, T ′]. By
Lemma 4.1.4 the same holds true for (NC)κ (cf. Remark 5.1.4). Hence we have
obtained a Ricci flow with (r, δ, κ)-bubbling-off on the closed interval [0, T ′].

To conclude, we prove by contradiction that T ′ = T . Assume that T ′ < T and
consider the following two cases.

Case 1. Rmax(T ′) < Θ. Applying the short-time existence theorem for Ricci
flow (Theorem C.1.1) with initial metric g(T ′), we extend g( · ) to a Ricci flow
with bubbling-off defined on an interval [0, T ′ + α) for some α > 0. We choose α
sufficiently small so that we still have Rmax(t) < Θ on [0, T ′ + α). There are no
singular times in [T ′, T ′ +α), and by Proposition 4.4.5 the extension has curvature
pinched toward positive.

Lemma 5.3.2. There exists an α′ ∈ (0, α] such that Condition (CN)r holds for
{g(t)}t∈[0,T ′+α′).

Proof. Arguing by contradiction, we assume that there exist sequences xk ∈ M
and tk → T ′ such that R(xk, tk) � r−2, but (xk, tk) does not have an (ε0, C0)-
canonical neighbourhood. Since M is compact, we may assume that the sequence
xk converges and call x its limit.

We have R(x, T ′) � r−2, so (x, T ′) has an (ε0, C0)-canonical neighbourhood.
First consider the case where (x, T ′) is the centre of an (ε0, C0)-cap U . We use
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Remark 4.2.9 (iv). Since being the centre of an (ε0, C0)-cap is an open property in
the C[ε−1

0 ]+1-topology, U is still an (ε0, C0)-cap with respect to g(tk), with centre
xk, for sufficiently large k. This is a contradiction.

Suppose now that (x, T ′) is the centre of a strong ε0-neck N . Let ψ be a
parametrisation of N . By definition, there exists a parabolic rescaling ḡ of g with
factor Q at time T ′ such that

sup
t∈[−1,0]

‖ψ∗(ḡ(t))− gcyl(t)‖C[ε−1
0 ]+1 < ε0.

Note that the inequality is strict. Let ḡk( · ) be the parabolic rescaling of g
with factor Q at time tk. Since tk → T ′, the same inequality holds with ḡ( · )
replaced by ḡk( · ), for sufficiently large k. Hence (x, tk) is the centre of a strong
ε0-neck. We conclude using the already remarked fact that being the centre of
strong ε0-neck is an open property.

It follows that {g(t)}t∈[0,T ′+α′) is a Ricci flow with (r, δ)-bubbling-off. By
Proposition C, it is a Ricci flow with (r, δ, κ)-bubbling-off. This contradicts maxi-
mality of T ′.
Case 2. Rmax(T ′) = Θ. Proposition A yields a metric g+, which has curvature
pinched toward positive at time T ′. Applying Theorem C.1.1 with initial metric
g+, we obtain a positive number α and an evolving metric {g(t)}t∈(T ′,T ′+α) whose
limit from the right as t tends to T ′ is equal to g+. We also may assume that
Rmax remains bounded above by Θ. By Proposition 4.4.5 it has curvature pinched
toward positive. Hence the resulting evolving metric {g(t)}t∈[0,T ′+α) satisfies the
first two properties of the definition of Ricci flow with (r, δ)-bubbling-off.

Lemma 5.3.3. There exists an α′ ∈ (0, α] such that Condition (CN)r holds for
{g(t)}t∈[0,T ′+α′).

Proof. Arguing as in the proof of Lemma 5.3.2, consider sequences xk → x ∈ M
and tk → T ′ such that for each k, R(xk, tk) � r−2 but (xk, tk) does not have a
canonical neighbourhood. Set g̃ := h−2g+(T ′). We will distinguish several cases
according to the distance between x and the set

ΣT ′ := {x ∈M | g+(x, T ′) �= g(x, T ′)}.
By definition of (r, δ)-surgery, this set is a union of 3-balls which are cores of
δ-almost standard caps of g+(T ′).
Case (a). dg̃(x,ΣT ′) > (2C0)3/2.

Claim. The point (x, T ′) has an (ε0, C0)-canonical neighbourhood U ′ such that
U ′ ∩ ΣT ′ = ∅.

Once the claim is proved, Case (a) follows by the arguments used to prove
Lemma 5.3.2.

Let us prove the claim: since t �→ g(t) is smooth on [T ′, T ′ + α) in a neigh-
bourhood of x we have R(x, T ′) = limR(xk, tk) � r−2. Hence (x, T ′) has an
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(ε0, C0)-canonical neighbourhood U ′. Suppose that U ′ ∩ ΣT ′ �= ∅. Pick a point
z′ ∈ U ′ ∩ΣT ′ �= ∅. Since g+(T ′) is obtained from g( · ) by (r, δ)-surgery, there is a
δ-almost standard cap U whose core V contains z′.

Let z be a point of U ′ ∩ ∂V . We have (see Section 3.2)

1− f3(δ′) � h−2

R(z, T ′)
� 1 + f3(δ′).

Besides, we have R(z, T ′) < C0R(x, T ′), thus

R(x, T ′)− 1
2 < R(z, T ′)− 1

2 · (2C0)
1
2 .

It follows that
dg(T ′)(x, z) � 2C0R(x, T ′)− 1

2 � (2C0)
3
2h.

We conclude that dg̃(x,ΣT ′) � (2C0)
3
2 , contradicting our hypothesis.

Case (b). dg̃(x,ΣT ′) � (2C0)3/2.
In this case, there exists a δ-almost standard cap U with core V and tip p

such that dg̃(x, V ) � (2C0)3/2. In particular, Bg̃(x, 2ε−1
0 ) ⊂ U by choice of δ. If

Bg̃(x, 2ε−1
0 )∩V = ∅, then (x, T ′) is the centre of a strong ε0-neck disjoint from ΣT ′ ,

and we can apply the argument used in the proof of Lemma 5.3.2. Hence we assume
that Bg̃(x, 2ε−1

0 )∩V �= ∅. Choose an ε0-neck N in U at distance, say 5ε0−1 from p.
Then U ′ := Bg̃(p, 6ε−1

0 )∪N is an (ε0, C0)-cap in (M, g+(T ′)), with core U ′\N and
centre x. As g( · ) is smooth of (T ′, T ′ +α) and g+(T ′) = limt→T ′,t>T ′ g(t), we can
conclude as in Lemma 5.3.2.

Hence {g(t)}t∈[0,T ′+α′) is a Ricci flow with (r, δ)-bubbling-off. By Proposi-
tion C, it is a Ricci flow with (r, δ, κ)-bubbling-off. Again this contradicts the
assumption that T ′ should be maximal.

�

5.4 Long-time existence of Ricci flow with
bubbling-off

This section is not needed for the Poincaré Conjecture and can be skipped on first
reading.

By iteration, Theorem 1.2.3 immediately extends to an existence theorem for
Ricci flow with bubbling-off defined on [0,+∞) on our nonspherical manifold M .
However, we need to extend the particular construction of Ricci flow with (r, δ, κ)-
bubbling-off. More precisely, we need the following statement:

Theorem 5.4.1 (Long-time existence). There exist decreasing sequences of pos-
itive numbers ri, κi and, for every continuous positive function t �→ δ̄(t), a de-
creasing sequence of positive numbers δi with δi < mini<t�i+1 δ̄(t) such that the
following holds: for every normalised metric g0 on M , there exists a Ricci flow
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with bubbling-off g( · ) defined on [0,+∞) such that g(0) = g0 and for all i, g( · )
is a Ricci flow with (ri, δi, κi)-bubbling-off on (i, (i+ 1)].

Remark 5.4.2. The presence of the function δ̄( · ) allows us to choose δ small
compared to r. This will be used in the proof of the thin-thick decomposition
theorem (Theorem 1.3.4), in Part III of this book. In order to get estimates for
the long-time behaviour of Ricci flow with bubbling-off, we will need to refine the
choice of the parameters.

Theorem 5.4.1 will follow from a version of Theorem 5.3.1 suited for iteration.
Before giving the statement, we need a definition.

Definition 5.4.3. Let Q > 0. One says that a Riemannian manifold (M, g) is
Q-normalised if

1. (tr Rm2)1/2 � Q on M ,

2. volB(x, 1) � Q−1

2 υ0(1) for all x ∈M , where υ0(1) denotes the volume of the
unit Euclidean ball.

By compactness, any metric g is Q-normalised for some constant Q > 0. More-
over we have:

Assertion 5.4.4. Let g( · ) be a Ricci flow with (r, δ, κ)-bubbling-off on some in-
terval [a, b]. Then for any t ∈ [a, b], g(t) is Q-normalised for some constant
Q = Q(r, δ, κ).

Proof. Recall that R � Θ = 2Dh−2 where D and h are functions of (r, δ), hence
|Rm| � Θ by Pinching Lemma 4.4.7. It follows that (tr Rm2)1/2 �

√
3Θ. On

the other hand, setting s = Θ−1/2, one has |Rm| � s−2 on P (x, t, s,−s2) for all
(x, t) ∈M × [a, b]. As g( · ) is κ-noncollapsed at scales � 1, we deduce that

volB(x, t, 1) � volB(x, t, s) � κs3 =
2κΘ−3/2

υ0(1)
υ0(1)

2
.

Thus

Q = max
{√

3Θ,
υ0(1)

2κΘ−3/2

}
fits.

We then have a Q-normalised version of the finite-time existence theorem:

Theorem 5.4.5 (Finite-time existence for Q-normalised manifolds). For all Q >
0, 0 � TA < TΩ, there exists κ > 0, such that for all r̄ ∈ (0, 10−3) there exists
r ∈ (0, r̄), for all δ̄ there exists δ ∈ (0, δ̄) and Q′ > 0 with the following property.
Let g be a Riemannian metric on M such that (M, g) is Q-normalised and has
curvature pinched toward positive at time TA. Then there exists a Ricci flow with
(r, δ, κ)-bubbling-off g( · ) defined on [TA, TΩ], such that g(TA) = g, and such that
g( · ) is Q′-normalised.
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We leave it to the reader check that a proof of this theorem can be deduced, as
the proof of Theorem 5.3.1 in Section 5.3.2, of Proposition A and the two following
propositions.

Proposition BB. For all Q, κ > 0 there exist r(Q, κ) ∈ (0, 10−3), δ̄B = δ̄B(Q, κ) ∈
(0, δ0) with the following property: let δ � δ̄B, 0 � a < b and {g(t)} be a Ricci
flow with bubbling-off defined on [a, b], such that g(a) is Q-normalised. Assume
that the restriction of g( · ) to the half-open interval [a, b) is a Ricci flow with
(r, δ, κ)-bubbling-off. Then it satisfies (CN)r on all of [a, b].

Proposition CC. For all Q,T > 0 there exists κ = κ(Q,T ) ∈ (0, κ0) such that for
all r ∈ (0, 10−3) there exists δ̄C = δ̄C(Q,T, r) ∈ (0, δ0) with the following property.
For all 0 < δ � δ̄C and 0 � a < b � T , every Ricci flow with (r, δ)-bubbling-off
defined on [a, b), such that g(a) is Q-normalised, satisfies (NC)κ.

Applying inductively Theorem 5.4.5 proves the long-time existence theorem.

Definition 5.4.6. In order to simplify the notation, given decreasing sequences ri
and δi we introduce step functions t �→ r(t), t �→ δ(t), whose values are respectively
ri and δi on (i, i + 1]. We will say that a Ricci flow with bubbling-off defined on
some interval I ⊂ R is a Ricci flow with r( · ), δ( · )-bubbling-off if, in restriction to
I ∩ (i, i+ 1] it is a Ricci flow with (ri, δi)-bubbling-off. .

Ricci flows with r( · ), δ( · )-bubbling-off will appear in Theorems 8.1.2 and
10.4.1 of Part II, which are needed in Part III where the function r( · ) given
by Theorem 5.4.1 will be fixed. The choice of δ( · ) should be refined to obtain
better estimates for the Ricci flow with r( · ), δ( · )-bubbling-off.

Definition 5.4.7. For simplicity we shall let h(t) := h(r(t), δ(t)),D(t) =D(r(t), δ(t))
and Θ(t) = D(t)h−2(t) denote the associated cutoff parameters.

Remark 5.4.8. The functions r( · ), δ( · ) given by Theorem 5.4.1, and hence h( · ),
are nonincreasing and go to zero as t → ∞. The functions D( · ) and Θ( · ) are
nondecreasing and go to +∞ as t→∞.

Notes

The concept of metric surgery for Ricci flows is due to Hamilton [Ham86]. The
cutoff parameter theorem (Theorem 5.2.4) is a variant of a result of Perelman
([Per03b], Lemma 4.3).

Propositions A, B, C correspond roughly to Section 4, Section 5.4 and Lemma
5.2 of [Per03b], respectively.

Lemma 5.2.9 is new. It is not expected to hold in Perelman’s construction. A
similar estimate holds for the Huisken–Sinestrari surgically modified mean curva-
ture flow (see [HS09])

Theorem 5.4.1 is similar to [Per03b], Proposition 5.1.
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Part II

Ricci flow with bubbling-off:
existence

59
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In this part we prove the three main propositions A, B and C. Let us be more
precise. Chapter 6 is devoted to presenting some technical material. We prove the
Curvature-Distance Theorem (Theorem 6.1.1) which asserts that the curvature on
a given ball is comparable to the curvature at the centre provided that we have
the canonical neighbourhood property and that the curvature at the centre is large
enough. From this we deduce the Cutoff Parameters Theorem 5.2.4.

In Chapter 7 we state a precise definition for the standard solution and de-
scribe our version of the metric surgery, proving Theorem 5.2.2. From that we
prove Proposition A which shows that we can perform the (r, δ)-surgery when the
threshold for the scalar curvature is attained. It is shown to preserve the curvature
pinched toward positive assumption.

Chapter 8 is a technical chapter. The main result is the so-called persistence
theorem. It shows that near the added almost-standard cap the evolving metric
looks like the standard solution for an amount of time close to 1, after rescaling.
This is used to show that the canonical neighbourhood property persists after
surgery.

In Chapter 9 we prove Proposition B. It shows that the canonical neighbour-
hood property is a closed condition in time; that is, if it is satisfied on an interval
open in the future, it is also true on the closure, again if the parameters are well
chosen.

Finally Chapter 10 is devoted to the proof of Proposition C. We prove sev-
eral versions of the κ-non-collapsing result. We give an n-dimensional version for
smooth Ricci flow. We also prove a version on a given interval for the Ricci flow
with bubbling-off in dimension 3. Finally we give a useful version adapted to the
long-time study of the flow which is used in Part III. It applies in particular in
the description of the thick part.
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Chapter 6

Choosing cutoff parameters

The main goal of this chapter is to prove the Cutoff Parameters Theorem 5.2.4
which allows us to get h, D, and therefore Θ, from r, δ. Let us recall that Θ is
the scalar curvature threshold used to trigger the surgery process (cf. Definitions
5.2.5 and 5.2.7). The surgeries are made in strong δ-necks centred at points of
scalar curvature ≈ h−2. Theorem 5.2.4 proves existence of such δ-necks on any
geodesic joining a point of scalar curvature � 2r−2 to a point of scalar curvature
� Dh−2 = Θ/2.

Along the way we prove another crucial result, the Curvature-Distance Theo-
rem 6.1.1. Essentially, this theorem says that points at bounded distance from a
base point have scalar curvature comparable to that of the base point, provided
this latter is large enough. This will be used repeatedly in order to have curvature
bounds on balls of rescaled Ricci flows with bubbling-off, which is the first condi-
tion to apply the Compactness Theorem C.3.1. This technique will appear as the
first step of numerous arguments by contradiction used in this book.

The results on the structure of sets obtained by gluing together ε-necks, de-
scribed in Chapter 3, will be used in the proofs of Theorems 5.2.4 and 6.1.1.

6.1 Bounded curvature at bounded distance

In this section we prove the following theorem. Let us recall that the constant ε0
has been fixed in Chapter 3 so that the topology of the intersection of two ε0-necks
is understood.

Theorem 6.1.1 (Curvature-distance). For all A,C1 > 0 and all ε1 ∈ (0, 2ε0],
there exists Q = Q(A, ε1, C1) > 0 and Λ = Λ(A, ε1, C1) > 0 with the follow-
ing property. Let I ⊂ [0,+∞) be an interval and {g(t)}t∈I be a Ricci flow with
bubbling-off with curvature pinched toward positive. Let (x0, t0) ∈ M × I be such
that the following holds:

(i) (1 + t0)R(x0, t0) � Q.

63
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(ii) For each point y ∈ B(x0, t0, AR(x0, t0)−1/2), if R(y, t0) � 2R(x0, t0), then
(y, t0) has an (ε1, C1)-canonical neighbourhood.

Then for all y ∈ B(x0, t0, AR(x0, t0)−1/2), we have

R(y, t0)
R(x0, t0)

� Λ.

We emphasize that we do not require the Ricci flow with bubbling-off to satisfy
the (CN)r assumption. In particular, the centre (x0, t0) may have no canonical
neighbourhood, even if its scalar curvature is large. Instead, we assume only that
points at bounded distance from the centre with curvature at least twice its cur-
vature have canonical neighbourhoods. This particular situation appears, after
a point-picking argument, in the proof of the canonical neighbourhood theorem
([Per02], Theorem 12.1) and in the proof of Proposition B in this book (cf. Lemma
9.2.3). In these proofs, the goal is to show that the centre has a canonical neigh-
bourhood.

6.1.1 Preliminaries

Let us explain how to obtain local curvature estimates in spacetime. If a point has
a neighbourhood where the local derivative estimates (4.2), (4.5) (see p. 40) hold,
it suffices to integrate them. This happens in particular if the point is the centre
of an (ε, C)-canonical neighbourhood. In fact, it is sufficient that these derivative
estimates are satisfied above some curvature threshold, as shown in the lemmas
below.

Lemma 6.1.2 (Local curvature-distance lemma). Let (U, g) be a Riemannian
manifold. Let Q � 1, C > 0, x, y ∈ U and set Qx = |R(x)|+Q. Assume that [xy]

is a geodesic segment of length � Q−1/2
x

2C , on which

|∇R| < CR3/2 (6.1)

holds at any point of scalar curvature � Q. Then R(y) < 2Qx.

Proof. We can assume that R(y) � Qx and hence that there exists a maximal
segment [x′y] ⊂ [xy] such that R � Qx on [x′y]. In particular R(x′) � Qx.
Integrating Inequality (6.1) on [x′y′], we find

|R−1/2(x′)−R−1/2(y)| < 1
2
Cd(x′, y) � 1

4
Q−1/2
x .

Hence

R−1/2(y) > R−1/2(x′)− 1
4
Q−1/2
x � Qx

−1/2 − 1
4
Q−1/2
x =

3
4
Q−1/2
x .

Therefore R(y) < 16
9 Qx < 2Qx.
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Lemma 6.1.3 (Local curvature-time lemma). Let (U, g( · )) be a Ricci flow defined
on [t1, t2]. Let Q � 1, C > 0, x ∈ U and set Qx = |R(x, t2)|+Q. Assume that on
[t2 − (2CQx)−1, t2], the inequality ∣∣∣∣∂R∂t

∣∣∣∣ < CR2 (6.2)

holds at (x, t) if R(x, t) � Q. Then R(x, ·) < 2Qx on [t2 − (2CQx)−1, t2].

Proof. Let t ∈ [t1, t2]. We can assume that R(x, t) � Q and define t+ ∈ [t, t2]
maximal such that R(x, ·) � Q on [t, t+]. Note that R(x, t+) � Qx. Integrating
(6.2) on {x} × [t, t+] gives

|R(x, t+)−1 −R(x, t)−1| < C(t+ − t) � (2Qx)−1.

hence R(x, t)−1 > R(x, t+)−1 − (2Qx)−1 = Qx
−1 − (2Qx)−1 = (2Qx)−1. We

conclude that R(x, t) < 2Qx.

Lemma 6.1.4 (Local curvature-control lemma). Let Q > 0, C > 0, ε ∈ (0, 2ε0],
and {g(t)}t∈I be a Ricci flow with bubbling-off on M . Let (x0, t0) ∈ M × I and
set Q0 = |R(x0, t0)|+Q. Suppose that P = P (x0, t0,

1
2C

√
Q0
,− 1

8CQ0
) is unscathed

and that each (x, t) ∈ P with R(x, t) � Q has an (ε, C)-canonical neighbourhood.
Then for all (x, t) ∈ P ,

R(x, t) � 4Q0.

Proof. First we note that R(x, t0) � 2Q0. This follows from the local curvature-
distance lemma (Lemma 6.1.2). Indeed, any point of B(x0, t0,

1
2C

√
Q0

) of scalar
curvature larger than Q is the centre of an (ε, C)-canonical neighbourhood, hence
the hypothesis (6.1) of Lemma 6.1.2 is satisfied. Let us show that R(x, t) � 4Q0.
If R(x, t) � Q we are done. Otherwise, let t+ ∈ [t, t0] be maximal such that
R(x, s) � Q for all s ∈ [t, t+]. Observe that R(x, t+) = Q � 2Q0 or t+ = t0 and
R(x, t0) � 2Q0. As above, integrating |∂R/∂t| � C1R

2 on [t, t+], we obtain

R(x, t) � (R(x, t+)−1 − C1(t+ − t))−1

� ((2Q0)−1 − (8Q0)−1)−1 � 8
3
Q0 � 4Q0. �

Remark 6.1.5. In particular, this lemma applies to any Ricci flow with bubbling-
off satisfying (CN)r, setting Q = r−2.

We shall use repeatedly the following property:

Proposition 6.1.6. Let (Uk, gk( · ), ∗k) be a sequence of pointed evolving met-
rics defined on intervals Ik ⊂ R+, and having curvature pinched toward posi-
tive. Set (xk, tk) ∈ Uk × Ik be such that (1 + tk)R(xk, tk) goes to +∞. Let
ḡk(t) := R(xk, tk)gk(tk + t

R(xk,tk) ). Then we have the following:

(i) Rmin(ḡk( · )) tends to 0 as k → +∞.
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(ii) If (Uk, ḡk( · ), ∗k) converges in the pointed C2 sense, then the limit has non-
negative curvature operator.

Proof. (i) Set Qk := R(xk, tk) and pick t ∈ R such that t′k := tk + tQk
−1 ∈ Ik.

Then we have

Rmin(ḡk(t)) = Qk
−1Rmin(gk(t′k))

� −6
(4t′k + 1)Qk

=
−6

4tkQk + 4t+Qk

� −6
(1 + tk)Qk

→ 0

uniformly in t.
(ii) Let us call (U∞, g∞( · ), ∗∞) the limit. Let y∞ ∈ U∞ be the limit of yk ∈ Uk.

Since the convergence is C2, we now have

Rm(y∞, t)) = lim
k→∞

Rmḡk
(yk, t)

= lim
k→∞

Qk
−1 Rmgk

(yk, t′k)

� −φt
′
k
(R(yk, t′k))
Qk

= −φ0((1 + t′k)R(yk, t′k))
(1 + t′k)Qk

.

Note that (1 + t′k)Qk = (1 + tk)Qk + t → +∞. If, up to extracting a subse-
quence, (1 + t′k)R(yk, t′k) < C for some constant C, then the above expression is
bounded from below by − φ0(C)

(1+t′k)Qk
, which goes to 0 as k tends to +∞. Now if

(1 + t′k)R(yk, t′k)→∞, the expression above is bounded below by

−φ0((1 + t′k)R(yk, t′k))
(1 + t′k)R(yk, t′k)

R(yk, t′k)
Qk

,

which tends to 0 by Lemma 4.4.6 (ii), since by assumption, R(yk,t
′
k)

Qk
converges to

R(y∞, t) ∈ R.

To conclude the proof of Theorem 6.1.1, we shall also use Lemma C.5.1 stated
in Appendix C.

6.1.2 Proof of Curvature-Distance Theorem 6.1.1

The proof is done by contradiction. Assume that there exist constants A,C1 > 0,
ε1 ∈ (0, 2ε0], sequences Qk → +∞, Λk → +∞, and a sequence (gk( · ), (xk, tk))
of pointed Ricci flows with bubbling-off with curvature pinched toward positive,
such that the following is satisfied:
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(i) (1 + tk)R(xk, tk) � Qk;

(ii) for all y ∈ B(xk, tk, AR(xk, tk)−1/2), if R(y, tk) � 2R(xk, tk), then y has an
(ε1, C1)-canonical neighbourhood;

(iii) for each k there exists a point zk such that

R(zk, tk)
R(xk, tk)

� Λk and dtk(xk, zk) � AR(xk, tk)−1/2.

For every k we let

ḡk( · ) := R(xk, tk)gk

(
tk +

·
R(xk, tk)

)
be the Ricci flow with bubbling-off resulting from gk( · ) by parabolic rescaling at
time tk with factor R(xk, tk).

We shall use the following notation: when computing geometric quantities at
x ∈M with the rescaled metrics, the point will be denoted by x̄. For example, the
points above satisfy R(x̄k, 0) = 1, R(z̄k, 0) � Λk and d0(x̄k, z̄k) � A. Observe that
points of B(x̄k, 0, A) of scalar curvature greater than or equal to 2 have (ε1, C1)-
canonical neighbourhoods.

Step 1. There exists ρ > 0 such that the sequence (B(x̄k, 0, ρ), ḡk(0), x̄k) subcon-
verges in the C1,α topology to (M∞, ḡ∞, x̄∞), where M∞ is a smooth 3-manifold
and ḡ∞ is an incomplete C1,α-smooth Riemannian metric.

Proof. This will follow from Gromov’s compactness theorem (Theorem B.1.4, see
also Remark B.1.5). To apply this result, we have to show that, maybe for a
subsequence,

1) there exists ρ > 0 such that for all s ∈ (0, ρ), sectional curvatures of ḡk(0)
are bounded in absolute value on B(x̄k, 0, s), independently of k,

2) the injectivity radius of ḡk(0) at xk is positively bounded below indepen-
dently of k.

Define

ρ := sup
{
s > 0 | ∃C(s) > 0, ∀k ∈ N, ∀ȳ ∈ B(x̄k, 0, s), R(ȳ, 0) � C(s)

}
.

First note that ρ is well defined. Indeed, Curvature-Distance Lemma 6.1.2,
applied with Q = 2 and C = C1, gives R � 6 on B(x̄k, 0, 3−1/2

2C1
). This shows that

ρ � 3−1/2

2C1
. On the other hand, ρ � A by assumption. Since gk( · ) has curvature

pinched toward positive, we can apply Pinching Lemma 4.4.7. Let 0 < s < ρ
and ȳ ∈ B(x̄k, 0, s). One has R(y, tk) � R(xk, tk)C(s), and we can assume that
(1 + tk)R(xk, tk)C(s) � s̄ for all k ∈ N (let C(s) � 1 and Qk � s̄). Pinch-
ing Lemma 4.4.7 then implies that |Rm(y, tk)| � R(xk, tk)C(s). It follows that
|Rm(ȳ, 0)| � C(s) on B(x̄k, 0, s) for all k ∈ N.

Now we bound from below the injectivity radius at (x̄k, 0).
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First note that, up to extracting a subsequence, there exists ȳk ∈ B(x̄k, 0, ρ)
such that

R(ȳk, 0) −−−−−→
k→+∞

+∞ and d0(x̄k, ȳk) −−−−−→
k→+∞

ρ.

Indeed, if the scalar curvature stays below C on B(x̄k, 0, ρ), then Lemma 6.1.2
implies that it is below 2(C + 2) on B(x̄k, 0, ρ+ (C+2)−1/2

2C1
). This contradicts the

definition of ρ.
Fix k ∈ N, and consider a ball B(x̄k, 0, s) of maximal radius such that R(ȳ, 0) �

2 for all ȳ ∈ B(x̄k, 0, s). It follows from the curvature-distance lemma that R �
8 on B(x̄k, 0, s + (4C1)−1). On the other hand, let x ∈ ∂B(x̄k, 0, s) such that
R(x̄, 0) = 2. By assumption (ii) (x, tk) is the centre of an (ε1, C1)-canonical
neighbourhood U , not necessarily contained in B(x̄k, 0, s + (4C1)−1). On this
neighbourhood the scalar curvature, hence |Rm|, is bounded by 2C1 for the metric
ḡk(0). Then the ball B(x̄, 0, (4C1)−1) ⊂ U satisfies inequality (4.1). We deduce
a positive lower bound for volB(x̄k, 0, s+ (4C1)−1) independent of k. Using that
|Rm| � 8 on this ball, the local injectivity radius estimate (see Theorem B.1.2)
gives a positive bound from below for the injectivity radius at (x̄k, 0).

This allows us to apply Gromov’s compactness theorem (Theorem B.1.4, see
Remark B.1.5).

Then there is a convergent subsequence in the pointed C1,α topology to a
Riemannian manifold (M∞, ḡ∞(0), x̄∞), where M∞ = B(x∞, ρ) is incomplete.

Up to extracting a subsequence, we may assume that the sequence [x̄kȳk] con-
verges to some geodesic γ∞ : [0, ρ)→M∞ such that γ∞(0) = x̄∞.

We now show that the end of γ is contained in a horn (see Definition 3.2.7 and
Figure 6.2 below), that the metric is smooth there and is the final time slice of a
partial Ricci flow (see Definition 2.2.3 ).

Step 2. There exists a ∈ [0, ρ) and an open set U∞ ⊂M such that U∞ ⊃ γ([a, ρ)),
and such that (U∞, g∞(0)) is a union of 2ε1-necks and is the final time slice
U∞ × {0} of a partial Ricci flow with nonnegative curvature operator.

Proof. This will follow from the local compactness theorem for flows, Theorem C.3.3,
applied to a suitable covering of a subset of [x̄kȳk] by strong necks.

For k large enough we pick points x̄′
k, ȳ

′
k such that R(x̄′

k, 0) = 2C1, R(ȳ′
k, 0) =

R(ȳk, 0)/2C1, and [x̄′
kȳ

′
k] ⊂ [x̄kȳk] is a maximal subsegment on which

2C1 � R( · , 0) � R(ȳk, 0)
2C1

,

with x̄′
k closest to x̄k (see Figure 6.1 below). This is possible as soon as R(ȳk, 0) �

4C2
1 , which holds if k is large enough. Note that R(ȳ′

k, 0) = R(ȳk,0)
2C1

goes to +∞,
so d(x̄k, ȳ′

k)→ ρ as k →∞. Since R � 2 on [x̄′
kȳ

′
k], each point of this segment has

an (ε1, C1)-canonical neighbourhood.
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Let us show that each of them is a strong ε1-neck. Let z̄ ∈ [x̄′
kȳ

′
k] and U(z̄) be

an (ε1, C1)-canonical neighbourhood centred at z̄. Since R(z̄, 0) ∈ [2C1,
R(ȳk,0)

2C1
],

the scalar curvature on U(z̄) lies in [2, R(ȳk,0)
2 ], by Property (ii) of an (ε1, C1)-

canonical neighbourhood (Definition 4.2.10). It follows that neither x̄k nor ȳk
belong to U(z̄) (Figure 6.1). By Corollary 3.3.3, U(z̄) cannot be a cap. Hence it
is a strong ε1-neck.

U(z̄)

x̄k
ȳk

ȳ′
kx̄′

k
z̄

ρ

Figure 6.1: [x′
ky

′
k] in necks.

For each z̄ ∈ [x̄′
kȳ

′
k] we pick a strong ε1-neck U(z̄) centred at (z̄, 0). Let Uk

be the union of the U(z̄)’s. For each 0 < s < ρ, we have a uniform upper bound
on the scalar curvature on Uk ∩B(x̄k, 0, s). This implies a uniform bound for the
curvature operator on (Uk ∩B(x̄k, 0, s)× [−τs, 0]), for some τs > 0.

Besides, d0(x̄′
k, ȳ

′
k) � (ε1

√
2C1)−1 for k large enough, hence d0(x̄k, x̄′

k) �
ρ − (ε1

√
2C1)−1. This implies that x̄′

k tends to some point x̄′
∞ ∈ M∞. Up to an

extraction, the sequence [x̄kȳk] converges to a geodesic segment γ∞ : [0, ρ)→M∞
such that γ∞(0) = x̄∞, and x̄′

∞ = γ∞(a) for a ∈ (0, ρ). On the other hand, Theo-
rem C.3.3 implies that (Uk, ḡk( · )), with the appropriate base points, subconverges
smoothly to a partial Ricci flow (U∞, g∞( · )) (Figure 6.2 below). In particular,
g∞(0) is smooth on U∞. By Proposition 6.1.6 (ii), g∞( · ) has nonnegative curva-
ture operator on U∞. The final time slice U∞ × {0} ⊂ M∞ is a union of strong
2ε1-necks which covers γ([a, ρ)). Moreover R(γ∞(s), 0) → +∞ as s → ρ. By
Lemma 3.2.8, U∞ is a 20ε1-horn.

Note that for each z ∈ U∞, the evolving metric g∞(z, ·) is defined at least on[− R(z,0)−1

2 , 0
]
.
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x̄′∞

x̄∞

ρ

U∞

Figure 6.2: γ in a horn.

The horn U∞ is diffeomorphic to, say, S2× (a, ρ). We do a local completion of
U∞ at ρ by identifying S2 × {ρ} to a single point, called y∞. Let us call (Û∞, d̂)
the resulting metric space.

Step 3. The pointed metric space (Û∞, d̂, y∞) is a locally complete Alexandrov
space with nonnegative curvature. Its tangent cone at y∞ admits outside the
origin a partial Ricci flow whose curvature operator is nonnegative and equal to
zero in the radial direction. Furthermore it is not identically zero.

For the definition of an Alexandrov space and of its tangent cone, see Ap-
pendix D.

Proof. It is easy to check that (Û∞, d̂, y∞) is locally geodesic (see [BBI01]). Pick
three points a, b, c ∈ Û∞.

Suppose that a, b, c are all different from y∞, and that c is closest to y∞ among
all three. Let S be the middle sphere of a neck centred at c. Choose a transverse
sphere S′ such that d(c, S′) = 4 diam(S) and which separates the convex hull
of the triangle Δabc from y∞. Then the proof of the Toponogov theorem in
the Riemannian setting shows that Δabc is thicker than its comparison triangle
in Euclidean space. The case where c = y∞ follows by considering a sequence
ci → c, ci �= c. This shows that (Û∞, d̂, y∞) is an Alexandrov space of nonnegative
curvature.

Let C∞ be the tangent cone of Û∞ at y∞. By definition we have

(C∞, d, 0) = lim
λ→∞

(Û∞, λd̂, y∞),
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Ricci flow

x̄∞ y∞

tangent cone at y∞

Figure 6.3: A Ricci flow on the tangent cone at y∞.

where the limit is taken in the Gromov–Hausdorff topology (see Appendix A).

Lemma 6.1.7. (C∞, d) is a nonnegatively curved metric cone. It is smooth outside
0 and not flat. Moreover C∞ \ {0} is the final time slice of some partial Ricci flow
with nonnegative curvature, and every point is the centre of a 3ε1-neck.

Proof. Recall that a cone has a family of homotheties of positive ratio. Let z be
a point of C∞ \ {0}. Without loss of generality, we can assume that d(0, z) = 1.
With the obvious notation, we have

B

(
z,

1
2

)
= lim
G−H

Bid̂

(
zi,

1
2i

)
,

where i ∈ N, zi ∈ Û∞, and d̂(y∞, zi) = 1
i , by definition of the tangent cone.

z
1
2

0

Figure 6.4:

Let us show that the curvature of i2g∞ is bounded in Bid̂(zi,
1
2i ). More pre-

cisely, there exist A,B > 0, such that

0 < A � R∞(zi)d̂2(zi, y∞) � B.
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1) We know that zi is the centre of a 2ε1-neck of length (2ε1
√
R∞(zi))−1. This

neck does not contain y∞, hence

d̂(zi, y∞) � (2ε1
√
R∞(zi) )−1,

which gives the lower bound, with A := (4ε12)−1.
2) Fix i0 ∈ N	 and two points p, q on the middle sphere at zi0 maximally

distant from one another. By closeness with the standard 2ε1-neck we have

d̂(pi0 , qi0) = diam(S(zi0)) � (1− 2ε1)π
√

2(R∞(zi0))
−1/2.

Let pi, qi be the respective intersection points of the middle sphere S(zi) with
minimising geodesics from pi0 and qi0 to y∞.

zi

qi0

pi0

zi0

qi

pi

y∞

Figure 6.5: Geodesic triangle Δy∞pi0qi0 .

The triangle inequality gives:

1
i0
− (1 + 2ε1)π

√
2√

R(zi0)
� d̂(pi0 , y∞) � 1

i0
+

(1 + 2ε1)π
√

2√
R(zi0)

.

Let Δȳ∞p̄i0 q̄i0 ⊂ R2 be a comparison triangle for Δy∞pi0qi0 .

q̄′
i

q̄i0

p̄i0

ȳ∞

q̄i

p̄i

q̄′
i0

Figure 6.6: Comparison triangle Δȳ∞p̄i0 q̄i0 .

Pick points p̄i, q̄i in this triangle such that |p̄iȳ∞| = d̂(pi, y∞) and |q̄iȳ∞| =
d̂(qi, y∞). For simplicity assume that d̂(pi, y∞) � d̂(qi, y∞) and d̂(pi0 , y∞) �
d̂(qi0 , y∞), the other cases being analogous.

Let q′
i0

(resp. q̄′
i0

) be the point of [y∞qi0 ] (resp. [ȳ∞q̄i0 ]) such that

d̂(q′
i0 , y∞) = d̂(pi0 , y∞) (resp. |q̄′

i0 ȳ∞| = |p̄i0 ȳ∞|),
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and define similarly points q′
i, q̄

′
i. By construction,

|p̄iq̄i| � |p̄iq̄′
i|.

Then one has

|p̄iq̄′
i| � |p̄i0 q̄′

i0 |
|ȳ∞p̄i|
|ȳ∞p̄i0 |

.

Now |p̄i0 q̄′
i0
|

|p̄i0 q̄i0 |
= C > 0.

Hence

d̂(pi, qi) = |p̄iq̄i| � |p̄iq̄′
i| = |p̄i0 q̄′

i0 |
|ȳ∞p̄i|
|ȳ∞p̄i0 |

= C|p̄i0 q̄i0 |
|ȳ∞p̄i|
|ȳ∞p̄i0 |

= C|p̄i0 q̄i0 |
d̂(y∞pi)

d̂(y∞, pi0)
.

That is,

d̂(pi, qi) � C
(1− 2ε1)π

√
2√

R∞(zi0)
1/i(1− π√2(1 + 2ε1)i(R∞(zi))−1/2

1/i0(1 + π
√

2(1 + 2ε1)i0(R∞(zi0))−1/2
.

Step 1 shows that i � 2ε1
√
R∞(zi). Recall that ε1 � 1/100. Hence

d̂(pi, qi) � C

i
> 0.

for some constant C > 0 depending only of the curvature at zi0 . As a consequence,
we have

idiam(S(zi)) � C > 0,

hence
(1 + 2ε1)(R∞(zi))−1/2πi

√
2 � C,

therefore
d̂(zi, y∞)

√
R∞(zi) � B.

Remark 6.1.8. The above argument works for all z such that d̂(z, y∞) > 1/i0.

This shows that all strong 2ε1-necks centred at zi, henceforth denoted by U(zi),
which have curvature roughly R∞(zi) also have bounded curvature after rescaling
by i2. By the Local Compactness Theorem C.3.3 we deduce that the rescaled
strong necks Ū(zi) subconverge smoothly to some strong 3ε1-necks, centred at
z and denoted by U∞(z). Furthermore, these necks have nonnegative curvature
operator by Proposition 6.1.6, and they are not flat. We can adapt the above
arguments by taking z at arbitrary distance from 0. It then follows that C∞ \ {0}
has a partial Ricci flow as stated.
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This finishes Step 3.

The above work contradicts Lemma C.5.1. This concludes the proof of Curvature-
Distance Theorem 6.1.1.

6.2 Existence of cutoff parameters

For the convenience of the reader, we restate Theorem 5.2.4.

Theorem 6.2.1 (Cutoff parameters). For all r, δ > 0, there exist h ∈ (0, δr) and
D > 10 such that if g( · ) is a Ricci flow with bubbling-off on M defined on an
interval [a, b], with curvature pinched toward positive and satisfying (CN)r, then
the following holds:

Suppose that x, y, z ∈ M and t ∈ [a, b] are such that R(x, t) � 2r−2, R(y, t) =
h−2, R(z, t) � Dh−2, and y lies on a g(t)-geodesic segment connecting x to z.
Then (y, t) is the centre of a strong δ-neck.

Proof. We again argue by contradiction. Fix constants r > 0, δ > 0, sequences
hk → 0, Dk → +∞, and Ricci flows with bubbling-off (Mk, gk( · )) satisfying the
above hypotheses. Let xk, yk, zk ∈ Mk, tk > 0 and γk ⊂ Mk a gk(tk)-geodesic
segment connecting xk to zk, containing yk and such that R(xk, tk) � 2r−2,
R(zk, tk) � Dkh

−2
k , and R(yk, tk) = h−2

k but (yk, tk) is not the centre of any
strong δ-neck.

Consider the sequence (Mk, ḡk( · )) defined by the following parabolic rescaling

ḡk(t) = h−2
k gk(tk + th2

k).

Let us recall that we shall put a bar on the points when they are involved in
geometric quantities computed with respect to the metric ḡk. Note that R(ȳk, 0) =
1. The contradiction will come from extracting a converging subsequence of the
pointed sequence (Mk, ḡk( · ), (ȳk, 0)) and showing that the limit is the standard
flow on S2 × R, which implies that for k large enough, yk is the centre of some
strong δ-neck, contrary to the hypothesis.

Step 1. (Mk, ḡk(0), ȳk) subconverges in the pointed Cp topology, for large p, to
(S2×R, ḡ∞, ȳ∞) where ḡ∞ is a product metric of nonnegative curvature operator
and scalar curvature close to 1.

Note that it is not asserted at this stage that the metric on the S2 factor is
round.

Proof. We first control the curvature on balls around ȳk. Since R(yk, tk) goes to
+∞, Theorem 6.1.1 implies that for all ρ > 0, there exists Λ(ρ) > 0 and k0(ρ) > 0
such that ḡk(0) has scalar curvature bounded above by Λ(ρ) on B(ȳk, 0, ρ) for
k � k0(ρ). Since (yk, tk) has an (ε0, C0)-canonical neighbourhood, ḡk(0) satisfies
the volume estimate (4.1) at ȳk. As before, we deduce by Theorem B.1.2 a uniform
positive lower bound for the injectivity radius at ȳk. By Gromov’s compactness



6.2. EXISTENCE OF CUTOFF PARAMETERS 75

theorem (Theorem B.1.4), the sequence (Mk, ḡk(0), ȳk) subconverges in the C1,α
topology to a complete Riemannian manifold (M∞, ḡ∞, ȳ∞).

Let us show that for all sufficiently large k, the ball B(ȳk, 0, ρ) is covered by
(ε0, C0)-canonical neighbourhoods. Each metric gk(tk) satisfies

|∇R| < C0R
3/2

at points of scalar curvature � r−2. Choose a point y such that R(y, tk) � 3r−2

and integrate the previous inequality on the portion of [yky] where R � 3r−2. An
easy computation yields

d(ȳ, ȳk) � 1
hk

2
C0

(
r√
3
− hk
)
, (6.3)

which goes to∞ with k. As a consequence, for all ρ > 0 there exists k1(ρ) � k0(ρ)
such that for every integer k � k1(ρ), the scalar curvature of gk(tk) is above 3r−2

on B(yk, 0, ρ). Hence the ball is covered by (ε0, C0)-canonical neighbourhoods for
large k.

Note that d(ȳk, x̄k) goes to +∞. Likewise, d(ȳk, z̄k) goes to +∞, because
R(z̄k, 0) = h2

kR(zk, tk) � Dk � Λ(ρ) for large k. In particular, for each ρ > 0, there
exists k2(ρ) � k1(ρ) such that for every integer k � k2(ρ) we have R(z̄k, 0) > Λ(ρ).

3
r2 � R � Λ(ρ)

h2

ρ

ȳkx̄k

z̄k

R(z̄k, 0) → +∞

y

R(y, tk) � 3
r2

Figure 6.7: Covering B(ȳk, 0, ρ) by canonical neighbourhoods.

As a result of Corollary 3.3.3, each canonical neighbourhood U centred on
[x̄kz̄k]∩B(ȳk, 0, ρ) is a strong ε0-neck. It follows from Proposition 3.2.3 that Uρ,k
is a tube, which contains B(ȳk, 0, ρ).

When k � k0(ρ), the scalar curvature on B(ȳk, 0, ρ) is less than Λ(ρ). It
follows that on each strong ε0-neck U of Uk,ρ, ḡk(t) is smoothly defined at least on
[− 1

2Λ(ρ) , 0], and has curvature bounded above by 2Λ(ρ). Hence for each ρ > 0, the
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Uρ,k

ȳk
x̄k

z̄k

ρ

Figure 6.8: Covering B(ȳk, 0, ρ) by necks.

parabolic balls P (ȳk, 0, ρ,− 1
2Λ(ρ) ) are unscathed, with scalar curvature bounded

above by 2Λ(ρ) for all k � k1(ρ). Since gk( · ) has curvature pinched toward
positive, this implies a control on the curvature operator there, which is uniform
in k, but depends on ρ.

R � 2Λ(ρ)

ȳk
ρ′

ρ
Mk

1
2Λ(ρ)

Figure 6.9: Ricci flow on strong necks.

We can then apply the local compactness theorem (Theorem C.3.3). Up to
extraction, (Mk, ḡk(0), ȳk) converges smoothly to some complete pointed Rieman-
nian 3-manifold (M∞, ḡ∞, ȳ∞). By Proposition 6.1.6 the limit has nonnegative
curvature operator.

Passing to the limit we get a covering of M∞ by 2ε0-necks. Then Proposi-
tion 3.2.9 shows that M∞ is diffeomorphic to S2 × R. In particular, it has two
ends, so it contains a line, and Toponogov’s theorem implies that it is the metric
product of some (possibly nonround) metric on S2 with R.

As a consequence, the spherical factor of this product must be 2ε0-close to the
round metric on S2 with scalar curvature 1. Hence the scalar curvature is close to
1 everywhere. This finishes the proof of Step 1.

Henceforth we take a subsequence (Mk, ḡk(0), ȳk) satisfying the conclusion of
Step 1. At this stage we can conclude, using the closeness to the limit and prop-
erties of strong necks, that there exists k2(ρ) ∈ N for each ρ > 0, such that for
k � k2(ρ), the parabolic neighbourhoods P (ȳk, 0, ρ,−(2Λ(ρ))−1) are unscathed
and satisfy 1

2 � R � 2.
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Step 2. The sequence of pointed evolving metrics (Mk, ḡk( · ), (yk, 0)) converges
smoothly to the cylindrical flow on S2 × R.

Proof. The Local Compactness Theorem C.3.3 implies that (Mk, ḡk( · ), (ȳk, 0))
converges to some complete Ricci flow ḡ∞( · ) on M∞. This flow is defined on
(− 1

2 , 0], it satisfies R � 2, and also Rm � 0 by Proposition 6.1.6. For each t ∈
( 1
2 , 0], the metric ḡ∞(t) is also a product. We now have to extend the convergence

to (−∞, 0]. Set

τ0 := sup{τ > 0 | ∀ρ > 0 ,∃C(ρ, τ) > 0,∃k(ρ) ,∀k � k(ρ) , P (ȳk, 0, ρ,−τ)
is unscathed and C(ρ, τ)−1 � R � C(ρ, τ) there }.

By the above argument, τ0 � 1/2. Let us show that τ0 = +∞.
The convergence extends and gives a flow ḡ∞( · ) defined on (−τ0, 0], with each

time-slice being a split nonnegatively curved metric. Let (p, s) ∈ M∞ × (−τ0, 0].
We shall prove that ∂R∞

∂t (p, s) > 0. Here R∞ denotes the scalar curvature of ḡ∞.
With this goal in mind, let ρ > 0 and τ ∈ (0, τ0) such that (p, s) ∈ P (ȳ∞, 0, ρ,−τ ].

Pick a sequence (p̄k, sk) ∈ P (ȳk, 0, ρ, τ) whose limit is (p̄, s). Set uk := tk +
skh

2
k. Since h2

kR(pk, uk) goes to R∞(p̄, s) ∈ [C(ρ, τ)−1, C(ρ, τ)], it follows that
R(pk, uk) → +∞ with k. Let us recall that here pk is the point p̄k but con-
sidered on the manifold Mk endowed with the unscaled metric gk; similarly, uk
corresponds, after rescaling, to the time sk. Hence (p̄k, sk) has a canonical neigh-
bourhood, which can only be a strong neck because (p̄k, sk) tends to (p̄, s). Denote
by g̃k( · ) the parabolic rescaling of gk( · ) with factor R(pk, uk) at time uk and R̃
its scalar curvature. Then

∂R̃

∂t
(pk, 0) ∼ 1,

which is the time zero value on the cylindrical flow. An easy computation shows
that

∂R∞
∂s

(p̄, s) = R∞(p̄, s)2 lim
k→∞

∂R̃

∂t
(pk, 0) > 0.

Therefore, the scalar curvature of ḡ∞ is bounded above by 1.5 onM∞×(−τ0, 0].
It follows that for every ρ > 0 and every τ ∈ (0, τ0), there exists k(ρ, τ) ∈ N such
that for all k � k(ρ, τ), the scalar curvature stays below 2 on P (ȳk, 0, ρ,−τ).

For every point (p̄, t) ∈ P (ȳk, 0, ρ,−τ), the strong ε0-neck centred in (p̄, t) has
then a Ricci flow defined at least on [t− 1/3, t], with scalar curvature in [C

−1

3 , 3].
If τ0 < +∞, we can consider τ = τ0 + 1/6 and t = −τ . Then for all ρ > 0, for
k � k(ρ, τ) the parabolic neighbourhoods P (ȳk, 0, ρ,−τ0−1/6) are then unscathed
with scalar curvature in [C

−1

3 , 3] (see Figure 6.10). This contradicts the definition
of τ0.

Hence τ0 = +∞. Our limit is a κ-solution which splits at time 0. The classi-
fication of complete non-compact nonnegatively curved 3-dimensional Ricci flows,
given by W. X. Shi (see [Shi89a]), shows that ḡ∞(t) is the product of R with
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C(ρ, τ)−1 � R � 2

ȳk
ρ

τ0 τ

Mk

C(ρ, τ)−1/3 � R � 3

(p̄, t)

Figure 6.10: Extending the flow on (−∞, 0].

a positively curved Ricci flow on a surface. Since ḡ∞(t) is a κ-solution the 2-
dimensional flow is also a κ-solution. We conclude the proof of Step 2 by quoting
Theorem 4.2.4, that is the 2-dimensional κ-solution is the round sphere.

The conclusion of Step 2 implies that for k large enough, the point (yk, tk) is in
fact centre of a strong δ-neck. This contradiction brings the proof of Theorem 5.2.4
to an end.

Remark 6.2.2. In the proof of the result above, we have used the crucial assump-
tion that canonical neighbourhoods which are ε-necks are in fact strong ε-necks.
This has been used to extend the flow backward.

Notes

The results of Section 6.1 are close to Claim 2 in [Per02], Theorem 12.1, and to
[Per03b], Section 4.2.

For the proof of the Cutoff Parameters Theorem 6.2.1 we follow closely Perel-
man (see [Per03b], Lemma 4.3). For the third step in the proof of Theorem 6.1.1
a more explicit treatment can be found in R. Bamler’s Diploma thesis [Bam07].

A version of the Curvature-Distance Theorem 6.1.1, stated as an independent
result, first appeared in [MT07] (Theorem 10.2). Our proof follows [KL08].



Chapter 7

Metric surgery and proof of
Proposition A

The goal of this chapter is to prove the metric surgery theorem (Theorem 5.2.2)
and Proposition A. This is done in Sections 7.2 and 7.3. The operation we call
‘metric surgery’ should not be confused with the topological concept of surgery:
the manifold M does not change, only its metric g is modified. There is a 3-
ball B ⊂ M where the metric is decreased, and made close to a metric ball in
some standard model, the so-called standard solution, which we already discussed
in Section 4.3. One important feature of this operation is that it preserves the
property of having curvature pinched toward positive.

In the actual surgery operation, this theorem is applied on a finite collection
of suitably chosen distinct 3-balls. This is the content of Proposition A. The
main point here is that the new metric g+ satisfies Rmax(g+) � Rmax(g)/2. This
allows us to prevent singularities in Ricci flow from appearing, while preserving the
estimates coming from the maximum principle. The fact that the metric decreases
is only used to control the variation of the Colding–Minicozzi width, as explained
in Section 1.2.

The fact that after surgery, the part that has changed is close to some model
is used in several ways: first it is used to show that surgery does not disrupt the
canonical neighbourhood property and the κ-noncollapsing property. It is also
useful to control the behaviour of Ricci flow for a short time afterwards in this
region (cf. Chapter 8).

The first thing we need to do is give a precise definition of the standard solution.
This is done in Section 7.1 below.

7.1 The standard solution II

Let r0 := π
√

2
2 be the radius of the hemisphere of sectional curvature 1/2. Note

that r0 < 3.

79
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Fact. There exists a number α ∈ (0, 10−2) and a smooth function u : [0,+∞) →
[0,
√

2] such that⎧⎪⎨⎪⎩
u(r) =

√
2 sin( r√

2
) if r � r0 − α,

0 < u′ < 10−1, − 1√
2
− α < u′′ < 0 if r0 − α � r < r0,

u(r) =
√

2 if r0 � r.

r

√
2√

2 sin( r√
2
)

u(r)

r0 − α r0

In the sequel, we fix α, u satisfying the above conclusion. We also choose a
smooth function χ0 : [0,+∞)→ [0, 1] such that⎧⎪⎨⎪⎩

χ0 ≡ 1 on [0, α],
χ′

0 < 0 on (α, 2α),
χ0 ≡ 0 on [2α,+∞).

For all Λ > 0, let fΛ : [0,+∞) → [0,+∞) be the smooth function defined by the
formula {

fΛ(r) := χ0(r)e− Λ
5−α + (1− χ0(r))e− Λ

5−r if r � 5,
fΛ(r) := 0 if r � 5.

α 2α 5

e− Λ
5−α

e− Λ
5−r

fΛ(r)

r

In particular, we have f ′
Λ < 0 on (α, 2α], and f ′′

Λ > 0 on [2α, 5).
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Fact. For all 0 < β < 1, there exists Λ(β) > 0 such that for all Λ � Λ(β), the
function fΛ satisfies the following estimates:

• On [0,∞), |fΛ|C2 < β, and | f ′
Λu

′

u | � β.

• On [0,∞), |1− e−2fΛ | � β|f ′′
Λ|.

• On [2α,+∞), max(|f ′
Λ|, |f ′

Λ|2) � β|f ′′
Λ|.

The proofs are left to the reader. We set once and for all Λ0 := Λ( α
500 ) and

f := fΛ0 . For notational convenience we set β := α
500 and Λ := Λ0.

Let dθ2 denote the round metric of sectional curvature 1 on S2.

Definition 7.1.1. The standard initial metric is the Riemannian manifold §0 :=
(R3, ḡ0), where the metric ḡ0 is given in polar coordinates by

ḡ0 := e−2f(r)gu,

where
gu = dr2 + u2(r)dθ2.

The origin of R3, which is also the centre of spherical symmetry, will be denoted
by p0.

r = 5Cylinder

p0

Standard initial metric

Lemma 7.1.2. For all r ∈ [0, 5), all sectional curvatures of ḡ0 lie in (0, 1].

Proof. Let {e1, e2, e3} be a gu-orthonormal basis such that e1 = ∂/∂r. Since gu is
a warped product, the Bishop–O’Neil formulas [Sak96] give sectional curvatures

K12 = K13 = −u
′′

u
,

which is positive on [0, r0) and vanishes on [r0,+∞), and

K23 =
1− u′2

u2 ,
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which is greater than or equal to 1−10−2

2 on [0,+∞).
We deduce the Ricci curvatures with similar notation:

Ricgu(e1, e1) = K12 +K13 = −2u′′

u
,

Ricgu(e2, e2) = Ricgu(e3, e3) = −u
′′

u
+

1− u′2

u2 .

We now compute the curvatures of ḡ0 = e−2fgu using the formulas given on p. 59
of [Bes87] (where f should be replaced by −f),

Ricḡ0 = Ricgu
−Δfgu + (n− 2)(Ddf + df ◦ df − |df |2gu),

the right-hand side quantities being computed using gu.
To fix convention, here Δ = −traceDd. It is easily checked that

Ddf

(
∂

∂r
,
∂

∂r

)
= f ′′(r),

and

Ddf(X,X) =
f ′u′

u
gu(X,X)

if X ⊥ ∂/∂r. It follows that

Ricḡ0(e1, e1) = Ricgu(e1, e1) + f ′′ + 2
f ′u′

u
+ f ′′,

and

Ricḡ0(ē1, ē1) = e2f
(

Ricgu
(e1, e1) + 2f ′′ + 2

f ′u′

u

)
,

where ē1 = efe1. For i = 2, 3 we get, with similar notation,

Ricḡ0(ēi, ēi) = e2f
(

Ricgu(ei, ei) + f ′′ + 3
f ′u′

u
− f ′2

)
.

We deduce the values of the sectional curvatures of ḡ0, with the obvious nota-
tion:

K̄12 = K̄13 = e2f
(
K12 + f ′′ +

f ′u′

u

)
.

By choice of f and u, we have for all r ∈ [0, r0 − α]:

K̄12 = K̄13 � e2f
(

1
2
− 2β
)
> 0.

Let r ∈ [r0 − α, 5). Since 2α � r0 − α, f ′′ > 0, we get

K̄12 = K̄13 � e2f (K12 + (1− β)f ′′) � e2f (1− β)f ′′ > 0.
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Similarly, it is easily checked that

K̄23 = e2f
(
K23 +

1
2

(
4
f ′u′

u
− 2f ′2

))
= e2f

(
K23 + 2

f ′u′

u
− f ′2

)
� e2f

(
0.99
2
− 3β
)
> 0.

Observe that there is a constant K0 > 0 such that for all r ∈ [3, 4] and all
i �= j,

K̄ij � K0 > 0. (7.1)

To conclude, notice that the maximum of the sectional curvature is close to 1/2,
hence less than 1 by choice of the constants.

7.2 Proof of the metric surgery theorem

We recall that if φ is a nonnegative function, then a Riemannian manifold (N, g)
is said to have φ-almost nonnegative curvature if it satisfies Rm � −φ(R). This is
trivially true at points where ν � 0, i.e., all sectional curvatures are nonnegative.
For convenience we restate the metric surgery theorem:

Theorem 7.2.1. There exists δ0 > 0 and a function δ′ : (0, δ0] � δ �→ δ′(δ) ∈
(0, ε0/10] tending to zero as δ → 0, with the following property:

Let φ be a nondecreasing, nonnegative function, let δ � δ0, let (M, g) be a
Riemannian 3-manifold with φ-almost nonnegative curvature, and U ⊂ M be a
δ-neck whose middle sphere bounds a 3-ball B ⊂M .

Then there exists a Riemannian metric g+ on M with the following properties:

1. g+ = g on M \ IntB and g+ < g on IntB;

2. U ∪B is a (δ, δ′(δ))-almost standard cap with respect to g+ and B is a core
thereof;

3. g+ has φ-almost nonnegative curvature.

First we introduce some notation. For 0 � r1 � r2, we let C[r1, r2] denote the
annular region of R3 defined by the inequalities r1 � r � r2 in polar coordinates.
Define §u = (R3, gu). Observe that for all 3 � r1 < r2, the restriction of gu to
C[r1, r2] is isometric to the cylinder S2× [r1, r2] with scalar curvature 1. We recall
that the origin of R3, which is the centre of spherical symmetry of gu and ḡ0, is
denoted by p0.

Summary of the proof

Let φ be a nondecreasing nonnegative function, δ be a positive number, U ⊂M be
a δ-neck whose middle sphere S bounds a 3-ball B ⊂M (see Figure 7.1, p. 85). Let
y be a point of S. Our first task is to construct a (1+ δ)-Lipschitz diffeomorphism

ψ : (B,R(y)g)→ B(p0, 5) ⊂ §u
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which is almost an isometry near C[3, 5]. With this we push forward R(y)g in a
metric ḡ on B(p0, 5). Then we interpolate the metrics e−2f ḡ and e−2fgu = ḡ0 to
get a metric ḡ+ on B(p0, 5). The conformal factor will guarantee that the resulting
metric has φ-almost nonnegative curvature; we will then explain how to choose δ
small enough so that ḡ+ < ḡ on B(p0, 5), and finally pull back R(y)−1ḡ+ to IntB
using ψ. To do the interpolation we shall use the following.

Choose a smooth function χ : [0, 5]→ [0, 1] such that⎧⎪⎨⎪⎩
χ ≡ 1 on [0, 3],
χ′ < 0 on (3, 4),
χ ≡ 0 on [4, 5].

Proposition 7.2.2. There exists δ1 > 0 and a function δ′ : (0, δ1] → (0, ε010 ] with
limit zero at zero, having the following property: let φ be a nondecreasing posi-
tive function, 0 < δ � δ1 and ḡ be a metric on B(p0, 5) ⊂ R3, with φ-almost
nonnegative curvature, such that ‖ḡ − gu‖C[δ−1] < δ on C(3, 5). Then the metric

ḡ+ = e−2f (χgu + (1− χ)ḡ)

has φ-almost nonnegative curvature, and is δ′(δ)-close to ḡ0 on B(p0, 5).

Proof of Theorem 7.2.1 assuming Proposition 7.2.2. Set δ2 := e2e
−Λ −1 and δ0 :=

min(δ1, δ2). We begin with the construction of the (1+δ)-Lipschitz diffeomorphism
from B ⊂M to B(p0, 5) ⊂ §u.
Lemma 7.2.3. There exists a diffeomorphism ψ : B → B(p0, 5) such that the
metric ḡ := R(y)ψ∗g satisfies gu � (1 + δ)ḡ on B(p0, 5) and ‖ḡ − gu‖[δ−1] � δ on
C[3, 5].

Proof. By definition of the δ-neck U there exists a diffeomorphism ψU : U → S2×
(−δ−1, δ−1) such that ψU (S) = S2×{0} and ‖R(y)ψU ∗g− gcyl‖[δ−1] � δ. We may
assume that U ∩B is sent to S2 × [0, δ−1). Set U[0,5] := ψU

−1(S2 × [0, 5]) and let
ψ[0,5] be the restriction of ψU to U[0,5]. Let s be the map

s : S2 × [0, 5]→ S2 × [3, 8], (θ, z) �→ (θ, 8− z).

Let i be the map that identifies S2 × [3, 8] with C[3, 8] ⊂ §u via polar coordi-
nates. Define a map ψ̄[0,5] : U[0,5] → C[3, 8] ⊂ §u by setting ψ̄[0,5] := i ◦ s ◦ ψ[0,5].
Observe that ψ̄[0,5] maps S onto S2 × {8}. Using a theorem of Smale [Sma59] we
extend ψ̄[0,5] to a diffeomorphism ψ̄B : B → B(p0, 8) ⊂ §u.

Clearly, on U[0,5] we still have

‖R(y)ψ̄B∗g − gu‖C[δ−1] � δ,

since this involves only the cylindrical part of gu. Besides, by compactness, there is
a constant C > 0 such that ψ̄B : (B \U[0,5], R(y)g)→ (B(p0, 3), gu) is C-Lipschitz.
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p0

S

r = ηr = 5

U

r = 3

S2 × {5}S2 × {0}

U[0,5]
B

ψ[0,5]

i ◦ s

T

r = 8 r = 3§u

§u

ψ̄B

ψ

p0

Figure 7.1: (1 + δ)-Lipschitz diffeomorphism from B to B(p0, 5).

Let η > 0 be small enough so that sup0<r�3
u( ηr

6 )
u(r) � 1

C and η
6 � 1

C . Define

a map T : B(p0, 8) → B(p0, 5) in polar coordinates by T (θ, r) := (θ, t(r)), where
t : [0, 8]→ [0, 5] is a smooth function satisfying⎧⎪⎨⎪⎩

t(r) = η
6 r on [0, 3],

0 < t′ < 1 on [3, 3 + η],
t(r) = r − 3 on [3 + η, 8].

In particular, T is 1
C -Lipschitz on (B(p0, 3), gu). Indeed, the dilatation in

the radial direction is η
6 while in the orthoradial directions it is u(ηr6 )/u(r). On

(C[3, 6], gu), T is 1-Lipschitz since u is nondecreasing. Lastly, T restricts to an
isometry from C[6, 8] onto C[3, 5] endowed with gu.

Define a map ψ := T◦ψ̄B fromB ontoB(p0, 5). For the metric ḡ = R(y)ψ∗g, we
have by composition gu � (1+δ)ḡ on B(p0, 3). On C[3, 5] we have ‖ḡ−gu‖[δ−1] � δ,
and the proof of Lemma 7.2.3 is complete.

We turn to the proof of assertion (i) of Theorem 7.2.1: on M \ IntB, set
g+ := g. Then apply Proposition 7.2.2 to the metric ḡ = R(y)ψ∗g on B(p0, 5)
and the rescaled pinching function φ̄( · ) := R(y)−1φ(R(y)·). Observe that ḡ is
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φ̄-pinched. We get a φ̄-pinched metric ḡ+, and the metric g+ := R(y)−1ψ∗ḡ+ is φ-
pinched on IntB. The property g+ < g on this set is a consequence of the following
lemma and of the inequality δ � δ0 � δ2, since we have chosen δ2 = e2e

−Λ − 1.

Lemma 7.2.4. Let ḡ be a metric on B(p0, 5) ⊂ R3 such that gu � (1+δ2)ḡ. Then
the metric ḡ+ := e−2f (χgu + (1− χ)ḡ) satisfies ḡ+ < ḡ on B(p0, 5).

Proof. On C[4, 5) we have ḡ+ = e−2f ḡ < ḡ. On [0, 4), we argue as follows:

ḡ+ = e−2f (χgu + (1− χ)ḡ) � e−2f (χ(1 + δ2)ḡ + (1− χ)ḡ) � e−2f (1 + δ2)ḡ.

Now on C[0, 4), we have f > e−Λ; hence e−2f < e−2e−Λ
. The conclusion follows

by choice of δ2.

Let us now prove assertions (ii) and (iii). Assertion (iii) follows from Proposi-
tion 7.2.2 applied to ḡ = R(y)ψ∗g. To prove assertion (ii), it suffices to combine
the δ′(δ)-proximity of (B(p0, 5), ḡ+) with (B(p0, 5), ḡ0) and that of the half δ-neck
(U \ IntB,R(y)g+ = R(y)g) with S2 × [5, 1

δ + 5).
This completes the proof of Theorem 7.2.1 assuming Proposition 7.2.2.

There remains to prove Proposition 7.2.2.

Proof of Proposition 7.2.2. The delicate part is the φ-almost nonnegativity. Set
g̃ := e−2f ḡ. Let a � b � c be the eigenvalues of Ricḡ and {e1, e2, e3} be a ḡ-
orthonormal basis consisting of eigenvectors of Ricḡ. Remark that a is close to 0,
whereas b, c are close to 1/2 on C(3, 5). Let Di denote the covariant derivative
along ei with respect to ḡ.

Assertion 7.2.5. There exists δ′
1 > 0 such that for all 0 < δ < δ′

1 and on C(3, 5),

|D1r − 1| � β,

|Dir| � β for i = 2, 3,
|DiDjr| � β for i, j = 1, 2, 3.

This follows immediately from the fact that ḡ is δ-close to the cylindrical metric,
for which the corresponding quantities are D1r = 1, D2r = D3r = 0.

Assertion 7.2.6. For all 0 < δ < δ′
1 we have

|Dif | � 2βf ′′,
|DiDjf | � 3βf ′′ if i, j �= 1,

|D1D1f − f ′′| � 5βf ′′.

Proof. We have Dif = ∂f
∂rDir = f ′Dir, so

|Dif | � βf ′′|Dir| � βf ′′(1 + β) � 2βf ′′.
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The first inequality comes from the properties of f and the second one from As-
sertion 7.2.5. Furthermore,

DiDjf = f ′′DirDjr + f ′DiDjr.

For i, j �= 1, we derive

|DiDjf | � f ′′β(1 + β) + βf ′′β � 3βf ′′ � 3βf ′′.

On the other hand,

D1D1f = D1(f ′D1r) = f ′′(D1r)2 + f ′D1D1r.

Therefore,

|D1D1f − f ′′| � f ′′|(D1r)2 − 1|+ f ′|D1D1r|
� f ′′|D1r − 1||D1r + 1|+ f ′|D1D1r|
� f ′′β(2 + β) + βf ′′(1 + β)
� 5βf ′′,

which proves the claim.

For simplicity we denote by R̃ic the Ricci tensor of g̃ = e−2f ḡ, and ã � b̃ � c̃
its eigenvalues.

Assertion 7.2.7. For all 0 < δ < δ′
1, we have

|ã− e2f (a+ 2D1D1f)| � αD1D1f,

|b̃− e2f (b+D1D1f)| � αD1D1f,

|c̃− e2f (c+D1D1f)| � αD1D1f.

Proof. Set β′ := 5β and ẽi := efei. The basis {ẽ1, ẽ2, ẽ3} is g̃-orthonormal. Let Ã
be the matrix of R̃ic in this basis. First we show that the eigenvalues of R̃ic are
close to the diagonal terms Ãii of the matrix Ã. By [Bes87], p. 59 (applied with
−f instead of f), we have

R̃ic = Ric−Δfḡ + (n− 2)(Ddf + df ◦ df − |df |2ḡ),
where the right-hand side operators are those of ḡ. Evaluating this formula on a
pair (ẽi, ẽj) for i �= j, we get

Ãij = e2f (DiDjf +DifDjf),

so

|Ãij | � 2(β′f ′′ + β′2f ′′2) � 4β′f ′′ � 4β′ 1
1− 5β′D1D1f � 8β′D1D1f.

Using the following elementary lemma, whose proof is left to the reader, we get
an upper bound on the distance between the Ãii’s and the eigenvalues of Ã by
24β′D1D1f � α

2D1D1f .
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Lemma 7.2.8. Let A,B be symmetric n× n matrices, of eigenvalues a1 � a2 �
· · · � an and b1 � b2 � · · · � bn respectively. Define ‖M‖ = supi,j |mij |. Then for
all i = 1, . . . , n, we have

|ai − bi| � n‖B −A‖.
There remains to show that for i = 1, 2, 3, we have

|Ã11 − e2f (a+ 2D1D1f)| � α

2
D1D1f,

|Ã22 − e2f (b+D1D1f)| � α

2
D1D1f,

|Ã33 − e2f (c+D1D1f)| � α

2
D1D1f.

We deduce

Ã11 = R̃ic(ẽ1, ẽ1)

= e2f (a−Δf +D1D1f +D1fD1f − |df |2)
= e2f (a+ 2D1D1f +D2D2f +D3D3f + (D1f)2 − |df |2),

hence

|Ã11 − e2f (a+ 2D1D1f)| � e2f (β′f ′ + β′f ′′ + 2(βf ′′)2)

� 2(4β′f ′′) � 16β′D1D1f � α

2
D1D1f.

Now

Ã22 = e2f (b−Δf +D2D2f +D2fD2f − |Df |2)
= e2f (b+D1D1f + 2D2D2f +D3D3f − (D1f)2 − (D3f)2),

thus

|Ã22 − e2f (b+D1D1f)| � e2f (3β′f ′′ + 2(β′f ′′)2)

� 10β′f ′′ � 20β′D1D1f � α

2
D1D1f.

The proof of the third term is similar.

Assertion 7.2.9. For all 0 < δ � δ′
1, on C(4, 5) we have

(i) ã � a, b̃ � b, c̃ � c and R̃ � R, where R̃ (resp. R) is the scalar curvature of
g̃ (resp. ḡ),

(ii) ḡ+ = g̃ has φ-almost nonnegative curvature.

Proof. By Assertion 7.2.7,

ã � e2f (a+ 2D1D1f)− αD1D1f � a+ (2− α)D1D1f � a+ (2− α)(1− α)f ′′.
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Now on [4, 5], f is convex, so ã � a. We can argue similarly for b and c. The result
on the scalar curvature then follows from the formula R = a+ b+ c.

Let λ � μ � ν be the eigenvalues of the curvature operator of ḡ and λ̃ � μ̃ � ν̃
those of the curvature operator of g̃. Recall that

ν =
a+ b− c

2
, μ =

a+ c− b
2

, λ =
b+ c− a

2

and similarly for g̃. By 7.2.7,

|ν̃ − e2f (ν +D1D1f)| � 3α
2
D1D1f � 1

2
D1D1f.

In particular,

ν̃ � e2f (ν +D1D1f)− 1
2
D1D1f � ν +

1
2
D1D1f � ν +

1
2
(1− α)f ′′ � ν.

Since the metric ḡ has φ-almost nonnegative curvature, and φ is nondecreasing,
we deduce:

ν̃ � ν � −φ(R) � −φ(R̃).

Hence in this interval, ḡ+, which coincides with g̃, has φ-almost nonnegative cur-
vature.

Recall that on C(3, 4), the metric ḡ+ is obtained by blending ḡ0 = e−2fgu and
g̃ = e−2f ḡ. We show that if δ is sufficiently small, this metric has positive (hence
a fortiori φ-almost nonnegative) curvature.

Assertion 7.2.10. There exists δ′′
1 > 0 such that for δ � δ′′

1 , the metric ḡ+ has
positive curvature on C(3, 4).

Proof. Recall that
ḡ+ = χḡ0 + (1− χ)g̃.

By hypothesis ḡ is δ-close to gu on C(3, 5). The metric ḡ+ = e−2f (χgu + (1−
χ)ḡ) is therefore δ′(δ)-close to ḡ0 on C(3, 5) for some δ′(δ) depending on f and on
χ, and tending to 0 when δ does.

Since on C(3, 4), the metric ḡ0 has sectional curvatures bounded from below
by K0 > 0 (see inequality (7.1) on p. 83). We can choose δ′′

1 sufficiently small so
that ḡ+ has positive curvature on C(3, 4) provided δ � δ′′

1 .

On B(p0, 3) we have ḡ+ = ḡ0, which also has positive curvature. Moreover,
ḡ+ is δ′(δ)-close to ḡ0 on B(p0, 5). Proposition 7.2.2 is proven by setting δ1 :=
min(δ′

1, δ
′′
1 ).
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7.3 Proof of Proposition A

Let us first recall the statement of this proposition.

Proposition A. There exists a universal constant δ̄A > 0 having the following
property: let r, δ be surgery parameters, a, b be positive numbers with a < b, and
{g(t)}t∈(a,b] be a Ricci flow with (r, δ)-bubbling-off on M . Suppose that δ � δ̄A,
and Rmax(b) = Θ.

Then M admits a metric g+ which is obtained from g( · ) by (r, δ)-surgery at
time b, and in addition satisfies that

(i) g+ has φb-almost nonnegative curvature;

(ii) Rmin(g+) � Rmin(g(b)).

Throughout this section we shall work in the Riemannian manifold (M, g(b)).
In particular all curvatures and distances are taken with respect to this metric.
Let G (resp. O, resp. R) be the set of points of M of scalar curvature less than
2r−2, (resp. ∈ [2r−2,Θ/2), resp. � Θ/2).

Step 1. There exists a compact submanifold Y ⊂ G such that every component
of ∂Y is a 2-sphere that bounds a 3-ball disjoint from the interior of Y .

Proof. Let X ⊂ M be a compact submanifold containing O ∪ R and such that
every point of X has scalar curvature at least, say 3

2r
−2. Then every point of X

is the centre of an ε0-neck or an ε0-cap, so we can apply Corollary 3.2.6. Since M
is irreducible and not spherical, we get a finite collection N1, . . . , Np of 10ε0-caps
and 10ε0-tubes which cover X and have disjoint closures.

Then N :=
⋃
iNi is a compact submanifold of M whose complement is con-

tained in G. Since each component of ∂N is a sphere and M is irreducible and not
diffeomorphic to S3, it follows that there is exactly one component Y of M \ IntN
having the required property.

Note that M is the union of Y and the 3-balls bounded by its boundary com-
ponents. In particular, the ‘bad’ set R is contained in a union of 3-balls. Our next
goal is to find δ-necks separating R from Y . For technical convenience, we first
choose a compact submanifold R̃ ⊂ M containing R, and such that every point
of R̃ has curvature at least 1

2Dh
−2 = Θ/4. In particular, R̃ has finitely many

connected components, which we denote by R1, . . . , Rp. We also assume that each
component of R̃ contains a point of R.

Step 2. For every i, there exists a point yi ∈ O of scalar curvature h−2, and a
strong δ-neck Ui centred at yi whose middle sphere Si separates Ri from Y .

Proof. Let xi be a point of the component of ∂Y closest to Ri. Let zi ∈ Ri ∩ R
be an arbitrary point. Choose a geodesic segment [xizi] and a point yi ∈ [xizi]
of curvature h−2. By hypothesis R(xi) � 2r−2 and R(zi) � Dh−2. Applying the
Cutoff Parameters Theorem 5.2.4, we obtain a strong δ-neck Ui centred at yi. Call



7.3. PROOF OF PROPOSITION A 91

Si its middle sphere. Since M is irreducible, Si is separating in M . Together with
the fact that Ui is traversed by a geodesic from xi to zi, Lemma 3.3.2 implies that
Si separates xi from zi, and therefore Y from Ri.

For each i, the sphere Si is contained in a unique component B′
i of M \ IntY .

Since B′
i is a 3-ball, by Alexander’s theorem, Si bounds a 3-ball Bi ⊂ B′

i. The
fact that Si separates Ri from Y implies that Ri ⊂ Bi.
Step 3. There exists a set of indices 1 � i1, . . . , iq � p such that the 3-balls
Bi1 , . . . , Biq are disjoint and their union contains R.

Proof. First remove among the Bi’s those which are not maximal for inclusion.
The only problem left is that some of the Si’s might intersect each other. Now if
there exist two distinct indices i, j such that Si ∩ Sj �= ∅, then Sj is contained in
Ui and isotopic to Si there. Hence Rj is also separated from Y by Si, and we may
safely remove Bj . After finitely many of these operations, we are left with a finite
subcollection Bi1 , . . . , Biq which has the desired properties.

To conclude, it suffices to apply Theorem 5.2.2 finitely many times, replacing
at each step the cap Bik by a δ-almost standard cap. Call g+ the resulting metric.
Since all points in a δ-almost standard cap have scalar curvature comparable to
h−2, we have Rmax(g+) � Dh−2 = Θ/2. Hence g+ is obtained from g( · ) by (r, δ)-
surgery, and satisfies the pinching assumption. Moreover, note that Rmin(g+) is
attained in M\⋃Bi = Y ′, where g+ = g(b). Indeed, Y ′ ⊃ G where R � 2r−2,
and on

⋃
Bi, R is comparable to h−2. Hence

Rmin(g+) = Rmin|Y ′(g+) = Rmin|Y ′(g(b)) � Rmin(g(b)).

Thus the proof of Proposition A is complete.
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Chapter 8

Persistence

In this chapter, we show that the behaviour of almost standard caps which have
been added by surgery is modelled on the standard solution for some time after
surgery (Theorem 8.1.2 below). We call this phenomenon ‘persistence’ of the
closeness to some model solution. Recall that the standard solution is defined on
[0, 1). Duration of the persistence, denoted by θ, can be fixed arbitrarily close to
1. In order to have persistence for this time length, it is then needed to choose the
parameter δ small enough. Similarly, the size A of the part of the almost standard
cap which persists can also be chosen arbitrarily large. Again persistence occurs
on this part if δ is small enough.

This persistence theorem is crucial in two parts of the proof of the existence
of Ricci flows with (r, δ)-bubbling-off, namely in the proofs of Proposition B and
Proposition C. In the proof of Proposition B, the goal is to extend in time the
canonical neighbourhood property (CN)r. The parts of the flow that “persist” are
modelled on the standard solution, and hence inherit canonical neighbourhoods
by closeness. One can then consider parts of space-time far away from surgeries.

In the proof of Proposition C, the goal is to extend in time the noncollapsing
property (NC)κ. Here the persistence theorem is used in the core of a technical
argument to compute a kind of energy for curves that approach the singularities
(Section 10.3.2).

In order to clarify the proof of the persistence theorem, we have split it into
several parts. One of them is an n-dimensional persistence result for Ricci flows
with bounded curvature (Theorem 8.1.3 below).

Finally, let us emphasize that persistence of almost standard caps should not
be confused with persistence of hyperbolic limits for large time as in Hamilton’s
article [Ham99].

8.1 Introduction

First we need a few technical definitions:

93
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Definition 8.1.1. If g( · ) is a piecewise C1 evolving metric on some interval I ⊂ R
and [a, b] ⊂ I, one calls restriction of g to [a, b] the map

t �→
{
g+(a) if t = a,

g(t) if t ∈ (a, b].

We shall still denote by g( · ) the restriction.

If (U, {g(t)}t∈I) is a Ricci flow, then for all (x, t) ∈ U × I, r > 0 and Δt > 0
we define the forward parabolic neighbourhood P (x, t, r,Δt) as the set B(x, t, r)×
[t, t + Δt] ⊂ U × I. When we consider g( · ) is restricted to some [a, b] ⊂ I, note
that P (x, a, r,Δt) is defined using Bg+(x, a, r).

Given two Ricci flows (U, g( · )) and (U0, g0( · )), we say that a parabolic neigh-
bourhood P (x, t, r,Δt) of (U, g( · )) is ε-close to a parabolic neighbourhood
P (x0, t, r0,Δt) of (U0, g0( · )) if (B(x, t, r), g( · )) is ε-close to (B(x0, t, r0), g0( · ))
on [t, t + Δt]. We say that P (x, t, r,Δt) is ε-homothetic to P (x0, t0, r0, λΔt) if it
is ε-close after a parabolic rescaling by λ.

Here is the main theorem of this chapter:

Theorem 8.1.2 (Persistence of almost standard caps). For all A > 0, θ ∈ [0, 1)
and r̂ > 0, there exists δ̄ = δ̄per(A, θ, r̂) with the following property. Let g( · )
be a Ricci flow with bubbling-off on M defined on some interval [a, b], which is
a Ricci flow with r( · ), δ( · )-bubbling-off on [a, b), where r( · ) � r̂ and δ( · ) � δ̄.
Let t0 ∈ [a, b) be a singular time and consider the restriction g( · ) to [t0, b]. Let
p ∈ (M, g(t0)) be the tip of some δ-almost standard cap of scale h. Let t1 �
min{b, t0 +θh2} be maximal subject to this inequality such that P (p, t0, Ah, t1− t0)
is unscathed. Then the following holds:

1. The parabolic neighbourhood P (p, t0, Ah, t1 − t0) is A−1-homothetic to
P (p0, 0, A, (t1 − t0)h−2).

2. If t1 < min{b, t0 + θh2}, then B(p, t0, Ah) is contained in the singular set at
time t1.

Let T0 be a positive real number and M0 = (X0, g0( · ), p0) (the ‘model’) be
a complete n-dimensional pointed Ricci flow defined on [0, T0]. Assume that the
quantity

ΛN := ‖Rm(g0( · ))‖N,X0×[0,T0],g0( · )

is finite for all N ∈ N. The norm here is the one defined on p. 28.

Theorem 8.1.3 (Persistence under bounded curvature). For all A,Λ > 0, there
exists ρ = ρ(M0, A,Λ) > A with the following property. Let U be an open subset
of X0 and T ∈ (0, T0]. Let g( · ) be a Ricci flow defined on U × [0, T ], such that the
ball B(p0, 0, ρ) ⊂ U is relatively compact. We assume that

(i) ‖Rm(g( · ))‖0,U×[0,T ],g( · ) � Λ,
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(ii) g(0) is ρ−1-close to g0(0) on B(p0, 0, ρ).

Then g( · ) is A−1-close to g0( · ) on B(p0, 0, A)× [0, T ].

Remark 8.1.4. This result fails for T0 = ∞. Indeed, one can approximate an
arbitrary large metric ball in the standard cylinder by an almost cylindrical ball
in the cigar soliton.

Remark 8.1.5. Notice also that ρ may have to be much larger than A. One can
think for example of a flat disk in a sphere. It cannot remain almost flat for a very
long time, unless it is contained at time zero in a much larger almost flat disk.

8.2 Persistence of a model

In this section we prove Theorem 8.1.3 and a few corollaries. We begin with a
‘local’ persistence result.

Lemma 8.2.1 (Local persistence). For all α,K > 0, there exist Tloc = Tloc(α,K) >
0 and δloc = δloc(α,K) > 0 with the following property. Let U be an n-manifold,
and T ∈ (0, Tloc). Let g0( · ) and g1( · ) be two Ricci flows defined on U × [0, T ].
Suppose that

(a) ‖Rm(gi( · ))‖[α−1],U×[0,T ],gi( · ) � K for i = 0, 1;

(b) g1(0) is δ-close to g0(0) on U .

Then g1( · ) is α-close to g0( · ) on U × [0, Tloc].

Proof. First we replace time-dependent norms by one involving g0(0), covariant
derivatives being still taken with respect to g0(t). Let p be an integer in [0, [α−1]]
representing the order of derivative of Rm. For i = 0, 1 the bound a) for p = 0
implies:

e−2(n−1)Ktgi(0) � gi(t) � e2(n−1)Ktgi(0), (8.1)

for all x ∈ U . In the sequel we omit reference to x. Hence we have, at order 0:

|g1(t)− g0(t)|g0(t) � e2(n−1)Kt|g1(t)− g0(t)|g0(0),

and likewise

|∇pg0(t)g1(t)|g0(t) � e(p+2)(n−1)Kt|∇pg0(t)g1(t)|g0(0).

To estimate |∇pg0(t)g1(t)|g0(0) we shall show the existence of Λp > 0, for all p �
[α−1], such that

d

dt
|∇pg0(t)g1(t)|g0(0) � Λp.
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Indeed, it suffices to integrate and use closeness of the metrics at time 0 to obtain
closeness at time t > 0. We have for p > 0:

d

dt
|g1(t)− g0(t)|g0(0) �

∣∣∣∣ ddt (g1(t)− g0(t))
∣∣∣∣
g0(0)

,

and
d

dt
|∇pg0(t)g1(t)|g0(0) �

∣∣∣∣ ddt∇pg0(t)g1(t)
∣∣∣∣
g0(0)

.

To simplify the exposition, we only do the cases p = 0 and 1 and leave the general
case to the reader. Note that

| d
dt

(g1(t)− g0(t))|g0(0) = 2|Ric(g1(t))− Ric(g0(t))|g0(0)
� 2|Ric(g1(t))|g0(0) + 2|Ric(g0(t))|g0(0).

Closeness of g0(0) and g1(0), the estimate (8.1) and Hypothesis (a) together imply
that

|Ric(gi(t))|g0(0) � (1 + δ)|Ric(gi(t))|gi(0)

� (1 + δ)e2(n−1)Kt|Ric(gi(t))|gi(t)

� (n− 1)K(1 + δ)e2(n−1)Kt.

We deduce that∣∣∣∣ ddt (g1(t)− g0(t))
∣∣∣∣
g0(0)

� 4(n− 1)K(1 + δ)e2(n−1)Kt,

and by integration,

|g1(t)− g0(t)|g0(0) � |g1(0)− g0(0)|g0(0) + 4(n− 1)K(1 + δ)e2(n−1)Ktt

� δ + 4(n− 1)K(1 + δ)e2(n−1)Ktt.

For p = 1 we have

d

dt
∇g0(t)g1(t) =

d

dt

[
(∇g0(t) −∇g1(t))g1(t)

]
= (∇̇g0(t) − ∇̇g1(t))g1(t)− 2(∇g0(t) −∇g1(t)) Ric(g1(t))

(8.2)

where ∇̇g0(t) (resp. ∇̇g1(t)) denotes the time-derivative of the Levi-Civita connec-
tion of g0(t) (resp. g1(t)). Recall that if T is a 2-tensor and X1, X2, X3 are vector
fields, then

∇X1T (X2, X3) = X1 · T (X2, X3)− T (∇X1X2, X3)− T (X2,∇X1X3).

The difference of two connections is a 1-form with values in the Lie algebra of
GL(n,R); in particular ∇g0−∇g1 , when applied to a tensor, does not differentiate
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it. The same holds for ∇̇g0(t) − ∇̇g1(t). The formula (8.2) shows that it is enough
to control the norms of the 1-forms ∇g0(t) −∇g1(t) and ∇̇g0(t) − ∇̇g1(t). Now

|∇̇g0(t) − ∇̇g1(t)|g0(0) � C0|∇̇g0(t)|g0(t) + C1|∇̇g1(t)|g1(t),
where as before, C0, C1 depend on K, δ, t; Formula (18.3) from [KL08] gives

2〈∇̇X1X2, X3〉 = −2(∇X1 Ric)(X2, X3)−2(∇X2 Ric)(X1, X3)+2(∇X3 Ric)(X1, X2).

Hence we can estimate |∇̇gi(t)|gi(t) from above by |∇gi(t) Ricgi(t) |gi(t) (up to a
constant). In the sequel, we denote by Λ a generic constant which may change
from line to line. We conclude that

|∇̇g0(t) − ∇̇g1(t)|g0(0) � Λ(δ,K, t),

and, integrating with respect to t,

|∇g0(t) −∇g1(t)|g0(0) � |∇g0(0) −∇g1(0)|g0(0) + Λ(δ,K, t).

Proximity of the metrics at time 0 yields

|∇g0(t) −∇g1(t)|g0(0) � Λ(δ,K, t),

and, using (8.2),
d

dt
|∇g0(t)g1(t)|g0(0) � Λ(δ,K, t).

Generalising to arbitrary p � 1, one can show that there exist 0 < Λp = Λp(δ,K, T )
such that, for all t � T ,

d

dt
|∇pg0(t)g1(t)|g0(0) � Λp.

By integration and proximity at time 0, we get

|∇pg0(t)g1(t)|g0(0) � δ + Λpt,

and
|∇pg0(t)g1(t)|g0(t) � e(p+2)(n−1)Kt(δ + Λpt).

Summing up all terms, we conclude that

sup
x∈U

{∑[α−1]
p=1 |∇pg0g1|2g0(x) + |g1 − g0|2g0(x) < α2

}
,

if δ, t are small enough.

Proof of Theorem 8.1.3. We argue by contradiction. Let us fix A > 0 and Λ > 0
and assume that there exist a sequence of Ricci flows gk( · ) defined on Uk× [0, Tk]
(Tk � T0), a sequence ρk → +∞ when k → ∞, such that Bk(p0, 0, ρk) ⊂ Uk are
relatively compact, and
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(i) |Rmgk(t)|gk(t) � Λ on Uk × [0, Tk],

(ii) gk(0) is ρ−1
k -close to g0(0) on B(p0, 0, ρk).

Furthermore there exists tk ∈ [0, Tk] such that gk(tk) is not A−1-close to g0(tk).
We may assume that tk is minimal for this property.

Set N := [A]. By closeness at time 0, the quantities |∇p Rmgk(0) |, for p ∈
{0, . . . , N}, are bounded independently of k, say by 2ΛN , on B(pk, 0, ρk). Then,
by the local Shi estimates, there exists TShi > 0 and ΛShi > 0 such that if ρk � A+1
the inequalities |∇p Rmgk(t) |g(t) � ΛShi hold on B(pk, 0, ρk−1)×[0,min{tk, TShi}].

Indeed, let us consider a ballB(x, 0, 1) ⊂ B(pk, 0, ρk) and setK := max{Λ, 2ΛN}.
By Theorem 3.28 of [MT07] applied with TShi = K−1 and C ′

p := C ′
p(K, 1, 1, n) for

p ∈ {1, . . . , N}, one has for all y ∈ B(x, 0, 1/2) and t ∈ [0,min{TShi, Tk}],
|∇p Rmgk(t)(y, t)|gk(t) � C ′

p.

This proves the above fact with ΛShi = sup{K,C ′
p | 0 � p � N}. Now the local

persistence lemma, applied with α = A−1 and ΛShi, gives numbers Tloc(A−1,ΛShi)
and δloc(A−1,ΛShi) such that B(pk, 0, ρ−1

k )× [0,min{Tk, TShi, Tloc}] is A−1-close to
B(p0, 0, ρ−1

k )× [0,min{Tk, TShi, Tloc}], for all k large enough such that ρ−1
k < δloc.

In particular tk � min{TShi, Tloc} for k large enough.
Up to taking a subsequence of the tk’s we may assume that it converges; we then

define t∞ := limk→∞ tk � min{TShi, Tloc} > 0. By assumption, when k goes to
infinity, gk(0) is arbitrarily close to g0(0) on balls of arbitrarily large radius. This
implies the closeness of curvatures, Jacobi fields, lengths and exponential maps
and hence the injectivity radius. This shows that the metrics gk(0) have a uni-
form positive lower bound for their injectivity radius at pk. Applying Hamilton’s
compactness theorem with extra curvature bounds ([Ham95a], Theorem 2.3, see
[HH97], Theorem 13, for the local version) and arguing as in [Ham95a], Section 2,
one obtains that

(B(p0, 0, ρk), gk( · ), p0)× [0, t∞)→ (X∞, g∞( · ), p∞)× [0, t∞)

when k goes to infinity. Here the right-hand side is a complete Ricci flow with
bounded curvature. As gk(0) − g0(0) is going to zero on arbitrarily large balls,
it follows from the proof of the compactness theorem that the diffeomorphism
involved in the convergence above can be taken as the identity map. This implies
that X∞ = X0 and g∞(0) = g0(0). By Chen–Zhu uniqueness theorem [CZ06c],
we get that

(X∞, g∞( · ), p∞) = (X0, g0( · ), p0).

Let σ > 0 to be chosen later. For k big enough tk > t∞−σ and P (pk, 0, A+1, t∞−
σ) converges towards P (p0, 0, A + 1, t∞ − σ); in particular, |∇p Rm | � 2ΛN for
p ∈ {1, . . . , N} on B(pk, 0, A+ 1) at time t∞ − σ. Now, on [t∞ − σ, tk], |Rm| � Λ
by hypothesis. Then, by Shi’s Theorem there exists T ′

Shi > 0 and Λ′
Shi > 0 such

that
|∇p Rm | � Λ′

Shi on P (pk, 0, A,min{tk, t∞ − σ + T ′
Shi)}).
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We choose 2σ < T ′
Shi, then tk � t∞ − σ + T ′

Shi. Indeed, for k big enough, we have
tk − (t∞ − σ) � 2σ.

Now, we can apply the local persistence lemma on B(pk, 0, A) between t∞− σ
and min(tk, t∞− σ+ T ′

loc) where T ′
loc = Tloc(A−1,Λ′

Shi). If we furthermore choose
σ � T ′

loc/2, this gives a contradiction since it shows that the persistence holds up
to tk for k big enough.

From Theorem 8.1.3 we deduce the two following corollaries, one in dimension
n and the second one specific to dimension 3.

Corollary 8.2.2 (Persistence under curvature estimate). Let A > 0 and C > 0,
there exists ρ = ρ(M0, A, C) > A with the following property. Let X be an n-
manifold, U be an open subset of X, p ∈ U and T ∈ (0, T0]. Let g( · ) be a Ricci
flow defined on U × [0, T ], such that the ball B(p, 0, ρ) ⊂ U is relatively compact.
We assume that

(i′) | ∂∂t Rmg(t)(x)|g(t) � C|Rmg(t)|2g(t)(x) when |Rm(x)|g(t) � C,

(ii) B(p, 0, ρ) is ρ−1-close to B(p0, 0, ρ).

Then P (p, 0, A, t) is A−1-close to P (p0, 0, A, t).

Remark 8.2.3. Notice that inequality (i′) is the n-dimensional analogous of (4.5).

Proof of Corollary 8.2.2. First we define, for some A1 > 0 to be determined later,
ρ = ρ(M0, A1, 4Λ0) given by Theorem 8.1.3. We set g1( · ) = ψ∗g( · ), where
ψ : B(p0, 0, ρ)→ B(p, 0, ρ) is a diffeomorphism given by the assumption that g(0)
is ρ−1-close to g0(0). By closeness again, |Rmg1(0)| � 2Λ0 on B(p0, 0, ρ). By
integrating the inequality (i′) we get |Rm| � 4Λ0 on B(p0, 0, ρ) × [0, T×2], where
T×2 = (4Λ0C)−1 is the doubling time (we may assume Λ � C). Applying The-
orem 8.1.3 gives that g1( · ) is ρ−1

1 -close to g0( · ) on B(p0, 0, A1) × [0, T×2] and,
in particular, |Rm| � 2Λ0 on this set (if ρ1 is big enough). We now can make
the same argument with A1 = ρ(M0, A2, 4Λ0) and A2 to be chosen later. Then
g1( · ) is A−1

2 -close to g0( · ) on B(p, 0, A2)× [0, 2T×2]. One iterates this procedure,
defining inductively Ai = ρ(M0, Ai+1, 4Λ0) up to Am = ρ(M0, A, 4Λ0), where
m ≈ T/T×2 � T0/T×2.

ρ

T×2A1

| Rm | � 4Λ
| Rm | � 2Λ

T×2

T×2

p0

A2

| Rm | � 4Λ
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For the next corollary we suppose that the model X0 is 3-dimensional. We
assume as usual that M is a closed, irreducible, nonspherical 3-manifold. For
applications to sub-intervals of a given Ricci flow with bubbling-off, we use a
property which could be given by the (CN)r assumption (see equation 4.5).

Corollary 8.2.4 (Persistence in a Ricci flow with bubbling-off). Let A > 0, there
exists ρ = ρ(M0, A) > A with the following property. Let {g(t)}t∈[0,T ] be a Ricci
flow with bubbling-off on M with T � T0 < +∞. Suppose that

(a) g( · ) has curvature pinched toward positive,

(b) | ∂∂tR(x, t)| � C0R
2 if R(x, t) � 1.

Let (p, t) ∈M × (0, T ] such that

(c) B(p, 0, ρ) is ρ−1-close to B(p0, 0, ρ) ⊂ X0,

(d) P (p, 0, ρ, t) is unscathed.

Then P (p, 0, A, t) is A−1-close to P (p0, 0, A, t).

Proof of Corollary 8.2.4. The idea is the same as for the proof of Corollary 8.2.2.
To estimate the doubling time for Rm, one now uses the derivative estimate on
the scalar curvature (4.5) and the curvature pinched toward positive assumption.

8.3 Application: persistence of almost standard
caps

In this section, we prove Theorem 8.1.2.

Proof of Theorem 8.1.2. We now consider as our model, M0 = (S0, g0( · ), p0),
which is the standard solution restricted to [0, θ]. Let us assume for simplicity
that b � t0 + θh2, so that t1 � t0 + θh2. For any nonnegative integer N , we now
set

ΛN := max
S0×[0,θ]

{|∇p Rm |, |R|; 0 � p � N}.

In the sequel we consider the restriction of g( · ) to [t0, b] and we define

ḡ(t) := h−2g(t0 + th2) for t ∈ [0, θ].

Note that ḡ( · ) satisfies assumptions (a) and (b) of Corollary 8.2.4. Indeed, if g( · )
satisfies (CN)r on [a, b), it follows easily by a continuity argument that any (x, b)
with R(x, b) � 2r(b)−2 satisfies the estimate |∂R∂t | � C0R

2 at (x, b). After rescaling
by h(b)−2 � 8r−2, this property holds at points with scalar curvature above 1/4.

Let us choose A > 0 and, for some ρ1 > A to be defined later, let ρ :=
4ρ(M0, ρ1)� C be the parameter given by Corollary 8.2.4. Assume that P (p, 0, A, t)
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is unscathed for some t ∈ [0, θ]. By assumption we can choose δ � 1 such that
B(p, 0, δ−1) is δ′(δ)-close to B(p0, 0, δ−1) ⊂ S0. In order to apply Corollary 8.2.4
we need to show that P (p, 0, ρ, t) is unscathed.

Let T×2 = min(θ, 4Λ−1
0 C−1

0 ).

Claim. P (p, 0, ρ, T×2) is unscathed or B(p, 0, ρ) ⊂ Σt′ for some t′ ∈ [0, T×2).

Proof of the claim. As usual we argue by contradiction. If P (p, 0, ρ, t) is scathed
then P (p, 0, ρ, t)∩Σt′ �= ∅ for some t′ ∈ [0, T×2). If B(p, 0, ρ) � Σt′ then B(p, 0, ρ)
intersects the middle sphere S of some δ-neck N for g(t′). Let s : N → R denote
the radial coordinate of the neck. We shall prove that p ∈ s−1((−δ−1/10, δ−1/10)).

By closeness at time 0 with g0(0), we have that the scalar curvature of ḡ(0)
satisfies

Rḡ ∈ [1/2, 2Λ0] (8.3)

on Bḡ(0)(p, 0, δ−1). Now using the derivative estimate (∂R/∂t < C0R
2) on the

unscathed neighbourhood P (p, 0, ρ, t′) and the definition of T×2 we get that Rḡ ∈
[1/4, 4Λ0] on P (p, 0, ρ, t′). From the curvature pinched toward positive property
we then have (cf. Remark 4.4.2) that |Rm| � 2Λ0 + 2φ0(4Λ0) on this set. Hence
on Bḡ(p, 0, ρ) and for t ∈ [0, t′],

1
2C

� ḡ(t)
ḡ(0)

� 2C,

for some constant C := C(Λ0) = C(θ). From that we deduce diamḡ(t)Bḡ(p, 0, ρ) �
4ρC.

This implies that for x ∈ Bḡ(p, 0, ρ) ∩ S, Bḡ(p, 0, ρ) ⊂ Bḡ(x, t′, 8Cρ).
Furthermore, if δ is small enough,

δ−1

10
Rḡ(x, t′)−1/2 � δ−1

10

(
1

4Λ0

)1/2

> 8Cρ,

then Bḡ(x, t′8Cρ) ⊂ s−1((−δ−1/10, δ−1/10)), and so s(p) ∈ (−δ−1/10, δ−1/10).
We define S′ to be the transversal sphere of the neck s−1(s(p)) that contains p.
Note that the diameter of S′ for the metric ḡ(t′) is approximately Rḡ(x, t′)−1/2 � 4.
On the other hand, by the distance distortion

dt′(p, ∂B(p, 0, ρ/2)) � ρ

4C
.

It then follows that S′ ⊂ Bḡ(p, 0, ρ/2). Now a geodesic segment for ḡ(t′), γ,
which traverses the neck N must intersect S′, hence it must also traverse twice
the cylinder Bḡ(p, 0, ρ) \Bḡ(p, 0, ρ/2). Now the estimates

diamt′ ∂B(p, 0, ρ) � 4C

and
dt′(∂B(p, 0, ρ), ∂B(p, 0, ρ/2)) � ρ

4C
.

prove that γ cannot be minimising.
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Note that if Bḡ(p, 0, ρ) ⊂ Σt′ then B(p, 0, A) ⊂ Σt′ . From the assumptions
this cannot happen if t′ < t0. Then for t̄ = min(t, T×2), we have that P (p, 0, ρ, t̄)
is unscathed. Applying Corollary 8.2.4 it follows that B(p, 0, ρ1, t̄) is A′-close to
P (p0, 0, ρ1, t̄) ⊂ S0 × [0, θ]. In particular (8.3) holds on B(p0, 0, ρ1) at time t̄. We
can make the same argument on [t̄, t̄+ T×2] with ρ1 := ρ(M0, 4ρ2), where ρ2 > 0
is yet to be defined. We iterate this procedure which stops at a finite number of
steps.

Notes

Theorem 8.1.2 is similar to [Per03b], Lemma 4.5.
The local persistence lemma (Lemma 8.2.1) seems to be new, although there

are similar results in the literature. Theorem 8.1.3 is new, and relies in an essential
way on the Chen–Zhu uniqueness theorem, which was not available to Perelman.



Chapter 9

Canonical neighbourhoods
and the proof of
Proposition B

This chapter is about extending the canonical neighbourhoods property (CN)r
forward in time. The definition of this property was formulated so as to make it
easy to prove that it is open in time (cf. Lemmas 5.3.2 and 5.3.3). There remains
to show that it is closed, provided the surgery parameters are small enough. This
is the content of Proposition B, whose statement we now recall:

Proposition B. For all κ > 0 there exist r = r(κ) ∈ (0, 10−3) and δ̄B = δ̄B(κ) ∈
(0, δ0) with the following property: let 0 < δ � δ̄B, b > 0 and g( · ) be a Ricci flow
with bubbling-off defined on [0, b] with normalised initial condition. Assume that
the restriction of g( · ) to the half-open interval [0, b) is a Ricci flow with (r, δ, κ)-
bubbling-off. Then it satisfies (CN)r on all of [0, b].

The proof is by contradiction, considering a sequence of pointed Ricci flows
with bubbling-off such that the basepoint does not have an (ε0, C0)-canonical
neighbourhood. By a continuity argument, it does have a canonical neighbourhood
with slightly different parameters. This argument is performed in Section 9.1 as a
preliminary lemma. The argument by contradiction itself follows the same outline
as the proof of the cutoff parameters theorem, i.e., backward extension using the
compactness theorem for Ricci flows. It is harder because of possible surgeries
occurring in the near past of the basepoint. This is where the persistence theorem
is used. Another key ingredient is Hamilton’s Harnack type inequality, which is
used for backward extension of curvature bounds.

We remark that the parameter κ is fixed throughout the proof. This is essential
in order to apply the compactness theorem. The (even harder) work needed to
propagate the κ-noncollapsing property forward in time will be done in the next
chapter.

103
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We begin gently, in Section 9.1 below, showing by a continuity argument that
a limit of ε0-strong necks is a 2ε0-strong neck (see also Lemma 9.2.3).

9.1 Warming up

Lemma 9.1.1. Let ε ∈ (0, ε0). Let g( · ) be a Ricci flow with bubbling-off and let
x be a point of M such that R(x, 0) > 0 and there exists a sequence of negative
numbers ti tending to 0 such that for every i, (x, ti) is the centre of a strong ε-neck.
Then (x, 0) is the centre of a strong 2ε-neck.

Proof. For each i, we fix a strong ε-neck Ni centred at (x, ti), a parametrisation
ψi : S2×(−ε−1, ε−1)→ Ni and a scaling factor Qi. We set ḡi(t) := Qig(ti+tQ−1

i ).
By definition, we have

sup
t∈[−1,0]

‖ψ∗
i ḡi(t)− gcyl(t)‖[ε−1],S2×(−ε−1,ε−1),gcyl(t) < ε. (9.1)

By choice of ε0, we have |QiR(x, ti) − 1| � 10−1. Now the sequence R(x, ti)
converges to the positive number R(x, 0). Hence up to extracting a subsequence,
we can assume that Qi converges to some positive number Q. Set ḡ(t) := Qg(t/Q).
This is defined for at least t/Q � ti−Q−1

i , hence for t > −1 since tiQ−Q/Qi → −1.
Hence ḡ is defined on (−1, 0].

For all t ∈ (−1, 0] we have ḡ(t) = lim ḡi(t) in the C[ε−1] topology. Hence we
have a uniform upper bound for the C[ε−1]+1-norm of ψi computed with respect
to the fixed metrics gcyl, ḡ(0).

After passing to a subsequence, we get a map ψ : S2 × (−ε−1, ε−1)→M such
that ψi → ψ in the C[ε−1] sense. For all y, y′ ∈ S2 × (−2ε−1/3, 2ε−1/3) we have

(1− ε)dgcyl(y, y
′) � dḡi(0)(ψi(y), ψi(y

′)) � (1 + ε)dgcyl(y, y
′). (9.2)

Passing to the limit, we obtain:

(1− ε)dgcyl(y, y
′) � dḡ(0)(ψ(y), ψ(y′)) � (1 + ε)dgcyl(y, y

′). (9.3)

Hence the restriction of ψ to S2 × (−2ε−1/3, 2ε−1/3) is injective. From in-
equality (9.1) we derive

‖ψ∗ḡ(t)− gcyl(t)‖C[ε−1]−1,gcyl
� ε

for all t ∈ (−1, 0]. Hence the restriction of ψ to S2 × (−2ε−1/3, 2ε−1/3) is a
C[ε−1]-diffeomorphism onto its image.

Pick λ > 1 close enough to 1 such that the metric g̃(t) := λḡ(t/λ) satisfies

‖ψ∗g̃(t)− gcyl(t)‖[ε−1]−1,S2×(−2ε−1/3,2ε−1/3),gcyl(t) � 3
2ε < 2ε

on (−λ, 0] ⊃ [−1, 0]. Then ψ(S2 × (−(2ε)−1, (2ε)−1)) is a strong 2ε-neck.
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9.2 The proof

We argue by contradiction. Suppose that some fixed number κ > 0 has the
property that for all r ∈ (0, r0) and δ̄B > 0 there exist counterexamples. Then we
can consider sequences rk → 0, δk → 0, bk > 0, and a sequence of Ricci flows with
bubbling-off gk( · ) on [0, bk], which are Ricci flows with (rk, δk, κ)-bubbling-off on
[0, bk), but such that (CN)rk

fails at bk. This last assertion means that there exists
xk ∈Mk such that

R(xk, bk) � r−2
k ,

and yet xk does not have any (ε0, C0)-canonical neighbourhood.
Without loss of generality, we assume that

δk � δ̄per

(
k, 1− 1

k
, rk

)
,

the right-hand side being the parameter given by Persistence Theorem 8.1.2.
By hypothesis, {gk(t)}t∈[0,bk) is κ-noncollapsed on scales less than 1. The

same is true on the closed interval [0, bk] by Lemma 4.1.4. The hypothesis that
{gk(t)}t∈[0,bk) has curvature pinched toward positive implies that any blow-up limit
(provided it exists) will have nonnegative curvature operator by Proposition 6.1.6.

We shall work with the rescaled evolving metric

ḡk(t) = R(xk, bk)gk

(
bk +

t

R(xk, bk)

)
,

which is defined on [−R(xk, bk)bk, 0].
As in Chapter 6, we put a bar on the points when they are involved in geometric

quantities computed with respect to the metric ḡk. By the Remark 5.1.9 and the
hypothesis that gk(0) is normalised, we have bk � 1/16 for all k. This implies that
R(xk, bk)bk tends to +∞ as k tends to ∞.

Let us begin with two preliminary lemmas. Set ρ0 := 4Cst(β0ε0/2), where
Cst(β0ε0/2) is the constant fixed in Definition 5.1.1.

Lemma 9.2.1 (Parabolic balls of bounded curvature are unscathed). For all
K, τ > 0 and ρ � ρ0, there exists k0 := k0(K, ρ, τ) ∈ N such that, if |Rm| � K on
B(x̄k, 0, ρ)× (−τ, 0] then P (x̄k, 0, ρ,−τ) is unscathed for all k � k0.

Remark 9.2.2. Note that B(x̄k, 0, ρ)× [−τ, 0] is unscathed when the conclusion
holds.

Proof. We prove the lemma by contradiction. Let us fix k and assume that there
exist zk ∈ B(x̄k, 0, ρ) and sk ∈ [−τ, 0) such that ḡk,+(zk, sk) �= ḡk(zk, sk). We
can take sk maximal satisfying this property, i.e., the set B(x̄k, 0, ρ) × (sk, 0] is
unscathed. In the sequel we consider the restriction of ḡk( · ) to [s, 0], in the sense
of Definition 8.1.1. We drop indices for simplicity.

By definition of the (r, δ)-surgery, there exists a marked δ-almost standard cap
(U, V, p, y) (see Definition 5.2.3) such that (U,R(ȳ, s)ḡ(s)) is δ′-close to B(p0, 5 +
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δ−1) ⊂ S0. Set g̃(s) := R(ȳ, s)ḡ(s). We shall put a tilde on the points when they
are involved in geometric quantities computed with respect to the metric g̃. We
now show that d(x̃, p̃) is bounded independently of k (if k is large enough).

V

δ−1

x̃ ỹ

z̃
p̃

� 5

Figure 9.1: Almost standard cap.

As B(x̄, 0, ρ) × (s, 0] is unscathed with |Rm| � K, by the Distance-Distortion
Lemma 2.2.7 we have on B(x̄, 0, ρ):

e−4Kτ � ḡ(0)
ḡ(s)

� e4Kτ .

The point ȳ may not be in B(x̄, 0, ρ) but its scalar curvature is comparable to
z̄ ∈ B(x̄, 0, ρ), hence R(ȳ, s) � 7K. This implies that d(x̃, z̃) �

√
7Ke2Kτρ, hence

(see Figure 9.2)

d(x̃, p̃) �
√

7Ke2Kτρ+ 5 = ρ′(K, ρ, τ) =: ρ′.

The Persistence Theorem 8.1.2 implies that the set

P̃ := B(p̃, A)× [0,min{θ, |s|R(ȳ, s)}),
endowed with the rescaled flow

g̃(t) := R(ȳ, s)ḡ(s+ t(R(ȳ, s))−1),

is A−1-close to P (p0, 0, A,min{θ, |s|R(ȳ, s)}). Indeed, the second alternative of the
persistence theorem does not occur since in this case, we would have B(p̃, 0, A) ⊂
Σt+ for some t+ ∈ (−s, 0]. As x ∈ B(p̃, 0, A), this would imply (x, t+) is in the
singular set for t+ > s, contradicting the choice of s.

We now choose A = k and θ = 1− 1/k.

Claim. We have s+ θR(ȳ, s)−1 > 0 for large k.

Proof of the claim. We have s � −τ and θ � 1/2. If R(ȳ, s) > 2τ , then

s+ θRḡ(y, s)−1 � −τ +
1
2
R(ȳ, s)−1 > 0.

Suppose now that R(ȳ, s) � 2τ . We argue by contradiction. Assume that s1 :=
s + θR(ȳ, s)−1 � 0 and apply the Persistence Theorem 8.1.2 up to this time. By
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Proposition 4.3.4, Rmin(t) � constst(1 − t)−1 on the standard solution, hence we
have, by closeness

R(x̄, s1) � 1
2
R(ȳ, s)constst(1− θ)−1 � constst(4τ(1− θ))−1 =

k · constst
4τ

.

On the other hand, R(x̄, s1) � 6K, this is a contradiction for sufficiently large k.
This proves the claim.

By the conclusion of the Persistence Theorem 8.1.2, there exists a diffeo-
morphism ψ : B(p0, 0, A) → B(p̃, 0, A) such that ψ∗g̃( · ) is A−1-close to g0( · )
on B(p0, 0, A) × [0,min{θ, |s|R(ȳ, s)}]. By the above claim, min{θ, |s|R(ȳ, s)} =
|s|R(ȳ, s) =: s′. Let x′ = ψ−1(x), the point (x, 0) corresponds to (x′, s′) by the
diffeomorphism. By Proposition 4.3.4, for all ε > 0, there exists Cst(ε) such that
any point (x′, t) of the standard solution has an (ε, Cst(ε))-canonical neighbour-
hood or t < 3/4 and x′ /∈ B(p0, 0, ε−1). Let us choose ε = ε0β0/2� ε0, where β0
is the parameter fixed in Definition 5.1.1. Let us denote Cst = Cst(ε). There are
again two possibilities.

Case 1. The point (x′, s′) has an (ε, Cst)-canonical neighbourhood,

U ′ ⊂ B(x′, s′, 2CstR(x′, s′)−1/2).

Here R(x′, s′) is the scalar curvature of the standard solution at (x′, s′). The
A−1-proximity between g0(s′) and ψ∗g̃(s′) gives

R(x′, s′) � R(x̃, s′) = R(ȳ, s)−1R(x̄, 0) = R(ȳ, s)−1.

On the other hand, we have

ρ

2
R(ȳ, s)1/2 � ρ

2
R(x′, s′)−1/2 > 2CstR(x′, s′)−1/2,

which implies

U ′ ⊂ B
(
x′, s′,

ρ

2
R(ȳ, s)1/2

)
⊂ ψ−1(B(x̄, 0, ρ)).

Hence ψ(U ′) is a canonical neighbourhood at (x, 0) of parameters (2ε, 2Cst),
hence an (ε0, C0)-canonical neighbourhood by the choices made in Section 5.1.

Case 2. The point (x′, s′) has no (ε, Cst)-canonical neighbourhood. Then
s′ � 3/4 and x′ /∈ B(p0, 0, ε−1). Hence we have

d′
s(x̃, p̃) � 9

10
ε−1 � 3

2
(ε0β0)−1 > (ε0β0)−1 + 5.

We infer that (x,−s′) is the centre of an (ε0β0)-neck, coming from the strong δ-neck
that was there at the singular time. We now apply the neck strengthening lemma
(Lemma 4.3.5) which asserts that (x, 0) has a strong ε0-neck. Indeed the proximity
with the standard solution ensures that P (x̄,−s′, (ε0β0)−1, s′) ⊂ P (x̄,−s′, A, s′)
is unscathed and has |Rm| � 2Kst. This proves Lemma 9.2.1.
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Lemma 9.2.3. Each point (x, bk) of scalar curvature at least 2r−2
k for gk(bk) has

a (2ε0, 2C0)-canonical neighbourhood.

Proof. For each t < bk close to bk, R(x, t) > r−2
k hence (x, t) has an (ε0, C0)-

canonical neighbourhood. If there is a sequence of strong ε0-necks at times ti → bk,
the conclusion follows from Lemma 9.1.1. Otherwise it is easy to see that (x, bk)
is the centre of a (2ε0, 2C0)-cap.

Now we continue the proof of Proposition B.

Step 1. The sequence (Mk, ḡk(0), x̄k) subconverges to some complete pointed
Riemannian manifold (M∞, g∞, x∞) of nonnegative curvature operator.

Proof. We have to show that the sequence satisfies the hypothesis of the Local
Compactness Theorem C.3.3. First we wish to apply the Curvature-Distance
Theorem 6.1.1 to obtain uniform bounds on balls B(x̄k, 0, ρ), for all ρ > 0.
Fix some ρ > ρ0, where ρ0 is the radius which appears in Lemma 9.2.1. Let
us check that the hypothesis of the Curvature-Distance Theorem 6.1.1 are sat-
isfied on B(x̄k, 0, ρ) for k large enough. Lemma 9.2.3 implies that each point
x ∈Mk with R(x, bk) � 2R(xk, bk) has a (2ε0, 2C0)-canonical neighbourhood. Let
Q(ρ) := Q(ρ, 2ε0, 2C0) and Λ(ρ) := Λ(ρ, 2ε0, 2C0) be the parameters given by
Theorem 6.1.1. Let k(ρ) ∈ N be such that R(xk, bk) � Q(ρ) for k � (ρ). Then
Theorem 6.1.1 applies for k � k(ρ) and implies that the scalar curvature of ḡk(0) is
bounded above on B(x̄k, 0, ρ) by Λ(ρ). Next we obtain similar bounds on parabolic
balls P (x̄k, 0, ρ,−τ(ρ)) for some τ(ρ) > 0, and deduce that they are unscathed.

In order to apply the Curvature-Time Lemma 6.1.3, we set C(ρ) := Λ(ρ) + 2
and K(ρ) := 2C(ρ). Define k1(ρ) := max{k0(K(ρ), ρ, (2C0C(ρ))−1), k(ρ)}, where
k0 is the parameter given by Lemma 9.2.1.

Claim. If k � k1(ρ), then the set P (x̄k, 0, ρ,−(2C0C(ρ))−1) is unscathed and
satisfies |Rm| � K(ρ).

Proof. Let sk ∈ [−(2C0C(ρ))−1, 0] be minimal such that B(x̄k, 0, ρ)× (sk, 0] is un-
scathed. By the Curvature-Time Lemma 6.1.3, we have R � K(ρ) on this set. This
implies |Rm| � K(ρ) by Pinching Lemma 4.4.7. By Lemma 9.2.1, P (x̄k, 0, ρ, sk)
is unscathed. By the minimality of sk we then have sk = −(2C0C(ρ))−1.

By hypothesis, the solutions gk( · ) are κ-noncollapsed on scales less than 1.
Hence ḡk(0) is κ-noncollapsed on scales less than

√
R(xk, bk). This, together with

the curvature bound implies a positive lower bound for the injectivity radius at
(x̄k, 0)
(Theorem B.1.2). Therefore, Compactness Theorem C.3.3 applies to the sequence
(Mk, ḡk( · ), (xk, 0)). In particular, it implies that the sequence subconverges to
(M∞, g∞( · ), (x∞, 0)), where M∞ is a smooth manifold, g∞(0) is complete and
g∞( · ) is defined on B(x∞, 0, ρ)× (−(2C0C(ρ))−1, 0] for each ρ > 0.

Lastly, since the metrics gk( · ) are pinched toward positive and the scaling
factor R(xk, bk) goes to +∞, the metric g∞(0) has nonnegative curvature operator
by Proposition 6.1.6. This argument completes the proof of Step 1.
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We remark that M∞ must be noncompact: indeed, if it were compact, it would
be diffeomorphic to Mk for large k; this would imply that Mk carries a nonflat
metric of nonnegative sectional curvature. By the classification of closed manifolds
on nonnegative curvature B.2.5, this is incompatible with our assumption that Mk

is irreducible and not spherical.
By the Soul Theorem B.2.1, M∞ is diffeomorphic to R3, S1 × R2, or a line

bundle over RP 2 or S2. In particular, every smoothly embedded 2-sphere in M∞
is separating.

Step 2. The Riemannian manifold (M∞, g∞(0)) has bounded curvature.

Proof. By passing to the limit, we see that every point p ∈M∞ of scalar curvature
at least 3 is the centre of a (3ε0, 3C0)-cap or a (not necessarily strong) 3ε0-neck.
In the sequel, we refer to this fact by saying that the limiting partial flow g∞( · )
satisfies the weak canonical neighbourhood property.

We argue by contradiction. Let pk ∈ M∞ be such that R∞(pk, 0) → +∞ as
k → +∞; in particular, d0(pk, x∞) → +∞. Consider segments [x∞pk] which,
after passing to a subsequence, converge to a geodesic ray c starting at x∞.

Pick a point on [x∞pk] qk such that R(qk, 0) = R(pk,0)
4C0

. For sufficiently large
k, the point (qk, 0) is the centre of a weak (3ε0, 3C0)-canonical neighbourhood Uk.
Then the scalar curvatures on Uk belong to the closed interval [(3C0)−1R(qk, 0),
3C0R(qk, 0)]. As a consequence, x∞ and pk do not belong to Uk, and Uk is
traversed by [x∞pk]. By Corollary 3.3.3 this neighbourhood is a 3ε0-neck.

x∞

p1 p2

pk

c

q2

Uk

qk

Figure 9.2: Necks in (M∞, g∞(0)).

Lemma 9.2.4. For k large enough, c traverses Uk.

Proof. Assume it does not. Recall that g∞(0) is nonnegatively curved. Consider
a geodesic triangle Δx∞qkc(t) for t � 10C0. Choose k large enough so that the
angle at x∞, denoted by �(pkx∞c(t)) is less than π/100. Let S− (resp. S+) be
the component of ∂Uk which is closest to (resp. farthest from) x∞. By comparison
with a Euclidean triangle Δx̄∞q̄k c̄(t), we see that lim inft→∞ �(x∞qkc(t)) = π.

Fix t large enough so that this angle is greater than 0.98π. Then [qkc(t)]
intersects S+. The loop γ obtained by concatenating [x∞qk], [qkc(t)] and [c(t)x∞]
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α � ᾱ � 98
100π

x∞

qk

c(t)

M∞

R
2

x̄

q̄

c̄

α

ᾱ

S−
S+

has an odd intersection number with S+. This implies that S+ is nonseparating.
This contradiction proves Lemma 9.2.4.

We proceed with the proof of Step 2. Pick k0 large enough so that Uk0 is
traversed by c for all k � k0. Let S0 be the middle sphere of Uk0 . Let a0, a

′
0 ∈

S0 be two points maximally distant from each other. Call ak, a′
k the respective

intersections of the segments [a0c(t)] and [a′
0c(t)] with the middle sphere Sk of Uk,

where t is large enough so that d0(a0, c(t))� d0(S0, Sk).

c(t)

a0

a′
0

ak

a′
k

c

S0
Sk

By comparison with Euclidian triangles and Thales theorem, the distance be-
tween ak and a′

k is greater than 1
2d∞(a0, a

′
0). Thus we have

diam(Sk) � d0(ak, a′
k) � 1

2
d0(a0, a

′
0) =

1
2

diam(S0).

Now the diameter of Sk is close to π
√

2R∞(qk, 0)−1 and tends to 0 by hypothesis,
which gives a contradiction. This completes the proof of Step 2.

Applying again Lemma 9.2.1 and the Curvature-Time Lemma 6.1.3, there ex-
ists τ > 0 such that (Mk, ḡk( · ), (x̄k, 0)) converges to some Ricci flow on M∞ ×
[−τ, 0]. Define

τ0 := sup{τ � 0 | ∃K(τ),∀ρ > 0,∃k(ρ, τ) such that B(x̄k, 0, ρ)× [−τ, 0] is
unscathed and has curvature bounded by K(τ) for k � k(ρ, τ)}.

We already know that τ0 > 0 and the Compactness Theorem C.3.1 enables us to
construct a Ricci flow g∞( · ) on M∞× (−τ0, 0], which is a limit of (Mk, ḡk( · )) for
the pointed convergence of flows. Moreover, the curvature of g∞ is bounded by
K(τ) on (−τ, 0] by passing to the limit, for all τ ∈ [0, τ0).
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Step 3. There exists Q > 0 such that the curvature of g∞(t) is bounded above
by Q for all t ∈ (−τ0, 0].

Proof. We know that g∞(t) is nonnegatively curved and has the above-mentioned
weak canonical neighbourhood property. Let us show that the conclusion of the
curvature-distance theorem holds on M∞, at points of scalar curvature > 2. For
this, let p ∈ M∞ and t ∈ (−τ0, 0] be such that R∞(p, t) > 2. Then there exists a
sequence (p̄k, t), where p̄k ∈Mk, converging to (p, t) and such thatR(p̄k, tk) � 2 for
k large enough. As a consequence, they satisfy the hypotheses of the curvature-
distance theorem as explained in the proof of Step 1. Passing to the limit, we
deduce that for every A > 0, there exists Λ(A) > 0 such that for all q ∈M∞,

R(q, t)
R(p, t)

� Λ(dt(p, q)R(p, t)−1/2). (9.4)

Let us estimate the variation of curvatures and distances on M∞ × (−τ0, 0].
We recall the Harnack inequality for the scalar curvature (see Corollary C.4.2 in
the Appendix)

∂R

∂t
+

R

t+ τ0
� 0,

Note that when τ0 = +∞, this boils down to ∂R∞
∂t � 0. In this case, R( · , t) is

pointwise nondecreasing, hence R( · , t) � K(0) for all t � 0.
Assume now that τ0 < +∞. Then

R( · , t) � K(0)
τ0

t+ τ0
.

The Ricci curvature, which is positive, satisfies a similar estimate, which implies

const.
(

τ0
t+ τ0

)
g∞ � ∂g∞

∂t
� 0,

thus

const.
√

τ0
t+ τ0

� ∂dt(x, y)
∂t

� 0.

By integration we obtain

|dt(x, y)− d0(x, y)| � C.

where C = C(τ0). Since (M∞, g∞(0)) is noncompact and nonnegatively curved, it
is asymptotically conical (see [BGS85], p. 58–59, and [KL08], Appendix B). Hence
there exists D > 0 such that for all y ∈ M∞, if d0(x∞, y) > D, then there exists
z ∈M∞ such that

d0(y, z) = d0(x∞, y) and d0(x∞, z) � 1.99d0(x, y) (9.5)

i.e., the points x∞, y, z are almost aligned.
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D

x∞

y

z

Figure 9.3: Every y /∈ B(x∞, 0, D) is almost the middle of a segment.

By comparison with Euclidean space, if D is large enough we have π−1/100 �
�(x∞yz) � π for any such y and z. Observe that since |dt( · , ·) − d0( · , ·)| < C
uniformly in t, we can choose D � C large enough so that, for all t ∈ (−τ0, 0], we
have

|dt(y, z)− dt(x∞, y)| < 2C and dt(x∞, z) � 1.98dt(x∞, y),

thus �t(x∞yz) � π − 1/50.
Let us show that the scalar curvature of g∞(t) is uniformly bounded above on

M∞\B(x∞, 0, 2D). We argue by contradiction. Suppose that there exists (yi, ti)
such that d0(x∞, yi) > 2D and such that R(yi, ti) → +∞ as i tends to ∞. Each
(yi, ti) has a weak (3ε0, 3C0)-canonical neighbourhood. If this neighbourhood is
a (3ε0, C0)-cap, we let y′

i be a centre of its 3ε0-neck. Since the diameter for g(ti)
of the cap is small (less than 12C0R(yi, ti)−1/2 < C for large i), we still have (for
large i):

d0(x∞, y′
i) � dti(x∞, y′

i)− C � dti(x∞, yi)− 2C � d0(x∞, yi)− 3C > D.

Furthermore, the curvature R(y′
i, ti) � 1

3C0
R(yi, ti) tends to +∞. Up to re-

placing yi by y′
i, we may assume that there exists a sequence (yi, ti) such that

d0(x∞, yi) > D, R(yi, ti)→ +∞ and (yi, ti) is the centre of a 3ε0-neck Ui. For each
i ∈ N, pick zi ∈M∞ satisfying (9.5). By the above remark, �ti(x∞yizi) � π− 1

50 .
The points x∞ and zi being outside Ui, we deduce that [x∞yi] and [yizi] each

intersect some component ∂Ui. Let Si be the middle sphere of Ui. It separates
M∞ into two connected components, one containing x∞, the other zi.

Now diam(Si, ti) → 0 since R(yi, ti) → +∞. Since g∞(t) is nonnegatively
curved, distances are nonincreasing in t. As a consequence, diam(Si, 0)→ 0 with i.
At time 0 the curvature bounds and the hypothesis of κ-noncollapsing implies a
uniform lower bound on the injectivity radius. Then for large i, the diameter of Si
is less than the injectivity radius of g∞(0). This implies that Si bounds a 3-ball
of radius less than the injectivity radius. Since x∞ and zi are far from Si, this is
a contradiction.
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This implies that the curvature is bounded outside the g∞(0)-ball of radius 2D
around x∞. We deduce a uniform curvature bound on (−τ0, 0] in the ball using
equation (9.4) (see p. 111).

Step 4. τ0 = +∞.

Proof. Consider a subsequence (Mk × (−τ0, 0], ḡk(t), (xk, 0)) that converges to
(M∞ × (−τ0, 0], g∞(t), (x∞, 0)). Since the limit has scalar curvature bounded
above by Q we deduce that (up to replacing Q by Q + 1), for all 0 < τ < τ0, for
all ρ > 0, there exists k′(τ, ρ) ∈ N such that for all k � k′(τ, ρ), the parabolic
neighbourhood P (x̄k, 0, ρ,−τ) is unscathed and has scalar curvature � Q.

Suppose that τ0 < +∞ and let 0 < σ < (4C0(Q + 2))−1. Then up to ex-
tracting a subsequence, for every K > 0, there exists ρ = ρ(σ,K) such that
Pk := P (x̄k, 0, ρ,−(τ0 + σ)) is scathed or does not have curvature bounded above
by K.

Set K := 2(Q + 2) and ρ := ρ(σ,K). If k � k′(τ0 − σ, ρ), then Pk is scathed.
Indeed, if k � k′(τ0 − σ, ρ), we have R � Q on Pḡk

(xk, 0, ρ,−τ0 + σ)). If Pk is
unscathed, the Curvature-Time Lemma 6.1.3 applied between −τ0+σ and −τ0−σ
(since 2σ � (2C0(Q+ 2))−1) implies that R � 2(Q+ 2) on Pk, which excludes the
second alternative.

Thus there exists x′
k ∈ B(xk, 0, ρ), and tk ∈ [−τ0 − σ,−τ0 + σ], assumed to be

maximal, such that ḡk(tk) �= ḡk+(tk) at x′
k. Since B(x̄k, 0, ρ)× (tk, 0] is unscathed,

the above argument shows that R � 2(Q+ 2) on this set, for all sufficiently large
k. This implies an upper bound on the Riemann tensor on this set and hence
by Lemma 9.2.1 the parabolic neighbourhood P (x̄k, 0, ρ, tk) is unscathed. This
contradicts the definition of tk.

We can now finish the proof of Proposition B: since τ0 = +∞, the Ricci flow
(M∞, g∞( · )) is defined on (−∞, 0], and has bounded, nonnegative curvature op-
erator. Moreover, the rescaled evolving metric ḡk( · ) is κ-noncollapsed on scales
less than

√
R(xk, bk), so passing to the limit we see that g∞( · ) is κ-noncollapsed

on all scales. The metric g∞( · ) is not flat since it has scalar curvature 1 at the
point (x∞, 0).

This shows that (M∞, g∞( · )) is a κ-solution. By Theorem 4.2.11 and the
choice of constants in Section 5.1, every point of M∞ has a ( ε02 ,

C0
2 )-canonical

neighbourhood. Hence for sufficiently large k, (x̄k, 0) has an (ε0, C0)-canonical
neighbourhood. This is the final contradiction.

Notes

Our proof of Proposition B is inspired by [Per03b], Section 5.4, and [KL08], Sec-
tion 80. It also uses arguments from [Per02], Theorem 12.1, and [KL08], Section 52.
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Chapter 10

κ-noncollapsing and the
proof of Proposition C

The goal of this chapter is to prove Proposition C, whose statement we now recall:

Proposition C. For all T > 0 there exists κ = κ(T ) such that for all r ∈ (0, 10−3)
there exists δ̄C = δ̄C(T, r) ∈ (0, δ0) such that the following holds.

For all δ � δ̄C , any Ricci flow with (r, δ)-bubbling-off defined on [0, b] with
b � T and having normalised initial condition satisfies (NC)κ.

This statement is part of what one can calls the κ-noncollapsing theory of Ricci
flow. This notion is defined in all dimensions as follows:

Definition 10.0.1. Let X be a smooth n-dimensional manifold, {g(t)}t∈I be a
Ricci flow on X and ρ be a positive number. We say that g( · ) is κ-noncollapsed
on the scale ρ if for all (x, t) ∈ X × I, if |Rm| � ρ−2 on P (x, t, ρ,−ρ2), then
volB(x, t, ρ) � κρn.

We extend the definition of a normalised metric to all dimensions in the obvious
way:

Definition 10.0.2. LetX be a smooth n-manifold. A metric g onX is normalised
if tr Rm2 � 1 and each ball of radius one has volume at least half of the volume
of the unit ball in Euclidean n-space.

A general κ-noncollapsing result for Ricci flows is the following:

Theorem 10.0.3 (κ-noncollapsing). For every T > 0 there exists κ = κ(T ) > 0
such that if X is a smooth manifold and {g(t)}t∈[0,T ] is a complete Ricci flow
of bounded sectional curvature with normalised initial condition on X, then it is
κ-noncollapsed on all scales less than or equal to 1.

The proof relies on the monotonicity of a functional on space-time, Perelman’s
reduced volume Ṽ . The necessary background is reviewed in Section 10.1.

115
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For the long-time study of Ricci flow with bubbling-off (Part III), we shall need
a refined version of the κ-noncollapsing result where κ does not depend on t, but
depends on the distance to the thick part (cf. Theorem 10.4.1).

This chapter is organised as follows. Section 10.1 is devoted to some prelim-
inaries. We prove Theorem 10.0.3 in Section 10.2. In Section 10.3, we modify
this proof to deduce Proposition C. More precisely, we prove a slightly more gen-
eral version of this proposition, Proposition C′, which will be useful later. In
Section 10.4, we prove the long-time κ-noncollapsing result 10.4.1.

10.1 Preliminaries

10.1.1 Basic facts on κ-noncollapsing

Let υnk (ρ) denote the volume of a ball of radius ρ in the model space of curvature k
and dimension n. When the superscript n is dropped, it is understood that n = 3.

Definition 10.1.1. Let κ > 0. One says that a metric ballB(x, ρ) is κ-noncollapsed
if |Rm| � ρ−2 on B(x, ρ) and if volB(x, ρ) � κρn. Similarly, a parabolic ball
P (x, t, ρ,−ρ−2) is κ-noncollapsed if |Rm| � ρ−2 on P (x, t, ρ,−ρ−2) and if
volB(x, t, ρ) � κρn.

Lemma 10.1.2. The following properties always hold:

(i) If B(x, ρ) is κ-noncollapsed, then for all ρ′ ∈ (0, ρ), B(x, ρ′) is cnκ-noncol-
lapsed, where

cn :=
υn0 (1)
υn−1(1)

.

The same property holds for P (x, t, ρ′,−ρ′2) ⊂ P (x, t, ρ,−ρ2).

(ii) Let r, δ be surgery parameters and g( · ) be a Ricci flow with (r, δ)-bubbling-
off. Assume that P0 = P (x0, t0, ρ0,−ρ2

0) is a scathed parabolic neighbourhood
such that |Rm| � ρ−2

0 on P0. Then P0 is e−12κst/2-noncollapsed.

Remark 10.1.3. (1) The constant κst is defined in Proposition 4.3.3. A con-
sequence of (ii) is that in order to prove κ-noncollapsing for a Ricci flow with
(r, δ)-bubbling-off, it is sufficient to consider unscathed parabolic neighbourhoods.

(2) If some ball B(y, ρ) is contained in some (ε0, C0)-canonical neighbourhood
and satisfies |Rm| � ρ−2, then B(y, ρ) is C−1

0 -noncollapsed on the scale ρ by
equation (4.1), p. 40.

Proof of Lemma 10.1.2. Let us prove assertion (i): since ρ−2 � ρ′−2, we have
|Rm| � ρ′−2 on B(x, ρ′) ⊂ B(x, ρ). We are left to check that volB(x, ρ′) � cnκρ

′n.
The function υn−k2 satisfies υn−k2(ρ) = k−nυn−1(kρ) for k > 0. Since the sec-

tional curvature is greater than or equal to −ρ−2 on B(x, ρ), the Bishop–Gromov
inequality (Theorem B.1.1) gives

volB(x, ρ′)
volB(x, ρ)

�
υn−ρ−2(ρ′)

υn−ρ−2(ρ)
=
υn−1(ρ

′/ρ)
υn−1(1)

� υn0 (ρ′/ρ)
υn−1(1)

=
υn0 (1)
υn−1(1)

(
ρ′

ρ

)n
.
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Using again the assumption that B(x, ρ) is κ-noncollapsed, we get

volB(x, ρ′) � υn0 (1)
υn−1(1)

κρ′n.

This proves assertion (i).
We now turn to the proof of assertion (ii). Let us recall that we are now working

in dimension 3. Let (x, t) be a point in P0 where g+ �= g. Assume that t is maximal
such that there exists x with this property. Let us consider the restriction of g( · )
to [t, t0], in the sense of Definition 8.1.1. From the definition of Ricci flow with
(r, δ)-bubbling-off there exists a δ-almost standard cap U with respect to g(t) such
that x ∈ U . The scalar curvature of g(t) at x is then comparable to h−2 (where h
is the cutoff parameter).

(x0, t0)

| Rm | � ρ−2
0

R � 6ρ−2
0

(y, t)

Since |Rm| � ρ−2
0 on P0 ⊃ B(x0, t0, ρ0)× [t, t0], we get, taking the limit:

h−2

2
� R(x, t) � 6ρ−2

0 ⇒ ρ0 < 4h.

Since B(x0, t0, ρ0) × [t, t0] is unscathed, we get, using the distance-distortion
lemma (Lemma 2.2.7), the following estimate on B(x0, t0, ρ0),

e−4g(t) � g(t0) � e4g(t),

hence
B(x0, t, e

−2ρ0) ⊂ B(x0, t0, ρ0),

and
dt(x0, x) � e2dt0(x0, x) < e2ρ0.
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It follows from the definition of an almost standard cap that (U, h−2g(t)) is
δ′(δ)-close to B(p0, 5+δ−1) ⊂ §0. Let p be the tip of U , so that U ⊃ B(p, t, hδ−1).
We have

dt(x0, p) � dt(x0, x) + dt(x, p) � e2ρ0 + 5h � (4e2 + 5)h,

which implies

B(x0, t, e
−2ρ0) ⊂ B(p, t, (4e−2 + 4e2 + 5)h) ⊂ U,

since δ−1 � 4e−2 + 4e2 + 5.
By δ′-closeness of (U, h−2g(t)) with B(p0, 5 + δ−1) ⊂ §0, which is κst-noncol-

lapsed on all scales by Proposition 4.3.3, we get:

volg(t)B(x0, t, e
−2ρ0) � κst

2
(e−2ρ0)3.

Indeed, volg(t)B(x0, t, e
−2ρ0)(h3 volg0 B(p0, e

−2h−1ρ0))−1 is close to 1. Moreover
r := e−2h−1ρ0 � 4e−2 � 1. Hence the curvature condition is satisfied on B(p0, r),
since |Rm| � 1 � r−2 on §0. Let us now estimate the g(t0)-volume of B(x0, t0, ρ0).
Since B(x0, t, e

−2ρ0) ⊂ B(x0, t0, ρ0), we derive:

volg(t0)B(x0, t0, ρ0) � volg(t0)B(x0, t, e
−2ρ0)

� (e−2)3 volg(t)B(x0, t, e
−2ρ0)

� e−12κst

2
ρ3
0.

This completes the proof of assertion (ii).

10.1.2 Perelman’s L-length

Let X be a smooth n-manifold, and g( · ) be an evolving metric on X.

Definition 10.1.4 ([Per02]). Let τ0 be a positive number and γ : [0, τ0] → X be
a piecewise smooth curve. The Lτ0-length of γ is defined by the following formula

Lτ0(γ) :=
∫ τ0

0

√
τ(R(γ(τ)) + |γ̇(τ)|2)dτ,

where the scalar curvature as well as the norm are computed using the evolving
metric g(τ).

We now consider a Ricci flow g( · ) on X defined on a compact interval [0, T ]
and set τ(t) := T − t, so that g(τ) = g(T − t). Let us fix p ∈ M , and τ > 0. We
denote by L(q, τ̄) the minimum of the Lτ -length of curves γ going from (p, 0) to
(q, τ), i.e., such that γ(0) = p and γ(τ) = q.

As in classical Riemannian geometry, there is a notion of minimizing Lτ -
geodesics and hence one can define an Lτ -exponential map. More precisely, for
v ∈ TpM , Lτ exp(v) := γ(τ), where γ is an Lτ -geodesic starting at (p, 0) such that√
sγ̇(s) −→

s→0
v. We denote by J(v, τ) the Jacobian at v of the map v → Lτ exp(v).

We then have the following definitions.
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Definition 10.1.5. (i) The reduced length is

�(q, τ0) :=
1

2
√
τ0
L(q, τ0).

(ii) We call reduced volume the quantity

Ṽ (τ) =
∫
M

τ−n/2 exp
(− �(q, τ))dvg(τ)(q).

We now list some fundamental results about these quantities for later use (see
[Ye08a], [Ye08b]).

Theorem 10.1.6 (Monotonicity of reduced length). For any L-geodesic the map

τ → τ−n/2 exp(−�(γ(τ), τ))J(τ)

is nonincreasing.

Corollary 10.1.7 (Monotonicity of reduced volume). The reduced volume is a
nonincreasing function of τ .

Here are a few useful estimates (see [KL08], Sections 16, 26).

Lemma 10.1.8. (i) Assume that |Rm| � (ρ0)−2 on P (p, T, ρ0,−ρ2
0) and let γ ⊂

P (p, T, ρ0/2,−ρ2
0/2) be an L-geodesic issued from p. Then∣∣∣∣ d

d(τ/ρ2
0)
√
τ |γ̇|
∣∣∣∣ � C(

√
τ |γ̇|+ (τ/ρ2

0)
1/2), (10.1)

for γ an L-geodesic satisfying limτ→0
√
τ γ̇(τ) = v. The constant C(n) is a generic

constant depending only on n.
(ii) If limτ→0

√
τ γ̇(τ) = v, then

lim
τ→0

τ−n/2 exp(−�(v, τ))J(v, τ) = 2ne−|v|2g(t0) . (10.2)

The following lemma will also be essential (see [KL08], Lemma 24.3).

Lemma 10.1.9. For all τ ∈ [0, τ0), there exists a point q ∈ X such that

�(q, τ) � n/2. (10.3)

10.2 Proof of Theorem 10.0.3

Fix an n-manifold X, a number T > 0 and a complete Ricci flow g( · ) of bounded
sectional curvature on X defined on [0, T ] such that g(0) is normalised. Let (x0, t0)
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be a point in spacetime. Pick ρ0 ∈ (0, 1] and consider the parabolic ball P0 :=
P (x0, t0, ρ0,−ρ2

0). Suppose that |Rm| � ρ0
−2 on P0. Set B0 := B(x0, t0, ρ0) and

κ :=
volB(x0, t0, ρ0)

ρn0
=

volg(t0)(B0)
ρn0

.

Our task is to give a lower bound for κ which depends only on T .
By the doubling time estimate C.1.1, we have |Rm| � 2 on [0, 1/16]. This

implies by standard comparison arguments a uniform bound from below for κ on
[0, 1/16]. (cf. Proposition 5.1.8). Hence we can assume t0 > 1/16.

Set τ0 := κ1/nρ0
2 � κ1/n and assume that κ <

( 1
16

)n, which implies t0−τ0 > 0.
By Corollary 10.1.7, we have Ṽ (t0) � Ṽ (τ0). We shall now bound Ṽ (τ0) from

above by C
√
κ and Ṽ (t0) from below by Ct−n/20 . This will give the required lower

bound on κ.

Bounding Ṽ (τ0) from above

We use the Lτ0-exponential map to write Ṽ (τ0) as an integral on Tx0X endowed
with the metric g(x0, t0). We then cut Tx0X in two parts.

First step: cutting Tx0X. First we show that the vectors v ∈ Tx0X of norm
less than (10κ1/2n)−1 generate L-geodesics which stay in B0 if κ is small enough.
More precisely, Inequality 10.1 gives∣∣∣∣ d

d(τ/τ0)
(
κ1/2n√τ |γ̇|)∣∣∣∣ � Cκ1/n(κ1/2n√τ |γ̇|+ κ1/n(τ/τ0)1/2).

We limit ourselves to 0 � τ/τ0 � 1 and limτ→0 κ
1/2n√τ |γ̇(τ)| = κ1/2n|v| �

1/10. We then set f(τ/τ0) = κ1/2n√τ |γ̇(τ)|; the function f defined on [0, 1]
satisfies the differential inequality

|f ′(x)| � Cκ1/n(f(x) + κ1/n√x) � Cκ1/n(f(x) + 1).

By Gronwall’s lemma, there exists κ(n) such that if κ � κ(n), then κ1/2n√τ |γ̇(τ)| �
1
9 for all τ ∈ [0, τ0]. Thus∫ τ0

0
|γ̇(τ)|g(t0−τ)dτ = κ−1/2n

∫ τ0

0
κ1/2n√τ |γ̇(τ)| dτ√

τ
� 2

9
ρ0.

On P (x0, t0, ρ0,−κ1/nρ0
2) the curvature bound implies

∣∣∂g
∂t

∣∣ � Cρ0
−2, so for all

t1, t2 ∈ [t0−κ1/nρ0
2, t0] = [t0− τ0, t0], the metrics g(t1), g(t2) are eCρ0

−2κ1/nρ0
2

=
eCκ

1/n

-bi-Lipschitz in that neighbourhood. As long as γ stays in this neighbour-
hood, its g(t0)-length is less than eCκ

1/n 2
9ρ0 � 1

3ρ0 if κ is small enough. In conclu-
sion, the image by the Lτ0-exponential map of {v ∈ Tx0X | |v|g(t0) � 1

10κ
−1/2n} is

contained in B0 for κ � κ(n).
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Second step: computing the reduced volume on Tx0X. From the previous
paragraph we deduce

I :=
∫

|v|g(t0)� 1
10κ

−1/2n

τ
−n/2
0 e−�(v,τ0)J(v, τ0)dv �

∫
B0

τ
−n/2
0 e−�(q,τ0)dq,

where dq is the volume form of g(t0 − τ0).
We now bound �(q, τ0) from below for q ∈ B0. Let γ : [0, τ0] → X be an Lτ0-

geodesic such that γ(0) = x0 and γ(τ0) = q and which stays in B0. Then we
have

Lτ0(γ) �
∫ τ0

0

√
τR(γ(τ))dτ � −n(n− 1)ρ0

−2
∫ τ0

0

√
τdτ = −2

3
n(n− 1)ρ0

−2τ
3/2
0 ,

and, if γ is minimising,

�(q, τ0) =
Lτ0(γ)
2
√
τ0

=
Lτ0(γ)
2
√
τ0

� −n(n− 1)
3

τ0ρ0
−2 = −n(n− 1)

3
κ1/n.

Thus,

I � e
n(n−1)

3 κ1/n

τ
−n/2
0

∫
B0

dq � e
n(n−1)

3 κ1/n

τ
−n/2
0 volg(t0−τ0)(B0),

and
I � e

n(n−1)
3 κ1/n

τ
−n/2
0 eCκ

1/n

volg(t0)(B0) � eCκ
1/n√

κ.

Define

I ′ :=
∫

|v|g(t0)� 1
10κ

−1/2n

τ
−n/2
0 e−�(v,τ0)J(v, τ0)dv.

The integrand is nondecreasing in τ (10.1.6). In particular it is smaller than its
limit at τ = 0. Therefore, from (10.2) we deduce

I ′ � 2n
∫

|v|g(t0)� 1
10κ

−1/2n

e−|v|2g(t)dv � e− 1
10κ

−1/2n

if κ � κ(n).
In conclusion,

Ṽ (τ0) � eCκ
1/n

κ1/2 + e− 1
10κ

−1/2n � Cκ1/2, (10.4)

for some universal κ � κ(n).

Bounding Ṽ (t0) from below

We need to bound �(q, t0) from above on a ball of controlled volume.
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t = 1/16, τ = t0 − 1/16q0

q ∈ B(q0, 0, 1)

t0, τ = 0
x0

t = 0, τ = t0

Figure 10.1: Concatenating an L-geodesic with g(0)-geodesics.

We apply Lemma 10.1.9 to obtain a point q0 ∈ X such that Inequality (10.3)
holds. For q ∈ X,

�(q, t0) =
L(q, t0)
2
√
t0

=
1

2
√
t0

inf
α
{Lt0(α)}

where α is a curve parametrised by τ such that α(0) = x0 and α(t0) = q. For
q ∈ B(q0, 0, 1), let γ be such a curve, obtained by concatenating a minimising
Lt0−1/16-geodesic between x0 and q0, and a minimising g(0)-geodesic connecting
q0 to q (see Figure 10.1). Then

�(q, t0) =
L(q, t0)
2
√
t0

� 1
2
√
t0
L(q0, t0 − 1/16)

+
1

2
√
t0

∫ t0

t0−1/16

√
τ(Rg(t0−τ) + |γ̇(τ)|2g(t0−τ))dτ,

which leads to

�(q, t0) �

√
t0 − 1/16

t0
�(q0, t0 − 1/16) +

1
2

(
2n(n− 1)

16
+ 16C(n)d2

0(q, q0)
)

since for t ∈ [0, 1/16] (i.e., τ ∈ [t0−1/16, t0]) all metrics g(t) satisfy R � 2n(n−1)
and are C(n)-Lipschitz equivalent for some universal constant C(n). This comes
from the fact that |Rm| � 2 on this interval. It follows that for all q ∈ B(q0, 0, 1)
and t0 � 1/16, we have

�(q, t0) � n/2 + C(n).

By integration we get∫
X

τ−n/2e−�(q,t0)dq �
∫
B(q0,0,1)

t
−n/2
0 e−�(q,t0)dq � t

−n/2
0 C volB(q0, 0, 1).
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Recall that infx∈X volB(x, 0, 1) � 1
2υ0(1). Thus

Ṽ (t0) =
∫
X

t0
−n/2e−�(q,t0)dq � C

2t0n/2
υ0(1),

and from (10.4) and the monotonicity of the reduced volume we deduce

κ � C

t0
n � C

Tn
,

if κ � κ(n). �

10.3 κ-noncollapsing of Ricci flow with bubbling-
off: proof of Proposition C

We now turn to the proof of Proposition C, which deals with κ-noncollapsing
properties for Ricci flows with (r, δ)-bubbling-off. In fact, we shall prove a stronger
result, which applies to Ricci flows with r( · ), δ( · )-bubbling-off (see Definition
5.4.6). Indeed, in Part III we shall need another κ-noncollapsing result, where κ is
independent of time (see Theorem 11.1.3a)). The proof of this stronger theorem,
which is given in Section 10.4 below, uses the same arguments as for Proposition
C, with some modifications due to the variation of the parameters. To avoid
redundancy, we prove directly Proposition C in the context of Ricci flow with
r( · ), δ( · )-bubbling-off. More precisely, we have the

Proposition C′. For any T � 0 there exists κ := κ(T ), such that for any r̂ ∈
(0, 10−3), there exists δ̄C′ := δ̄C′(T, r̂) ∈ (0, δ0) with the following property. Let
g( · ) be a Ricci flow with r( · ), δ( · )-bubbling-off, with normalised initial condition,
defined on some interval [0, b). Assume that r̂ � r( · ) � 10−3, 0 < δ( · ) � δ̄C′ and
b � T . Then g( · ) satisfies (NC)κ.

Note that letting r( · ) ≡ r and δ( · ) ≡ δ gives Proposition C.
Before we start the proof of Proposition C′, we prove a lemma, which we state

in a slightly more general setting for later reference.

Lemma 10.3.1 (Scathed curves have large L-length). Let r̂ ∈ (0, 10−3) and Δ,Λ
be positive numbers. Then there exists δ̄ = δ̄(r̂,Δ,Λ) ∈ (0, δ0) with the following
property. Let g( · ) be a (r(·), δ(·))-Ricci flow with bubbling-off defined on an inter-
val I = [a, a+Δ], where a � 0, δ(t) � δ̄ and r(t) � r̂ on I. Let (x0, t0) ∈M×I and
ρ0 � r̂ be such that P0 := P (x0, t0, ρ0,−ρ2

0) ⊂M × I is unscathed and |Rm| � ρ−2
0

on P0.
Let t1 ∈ [0, t0] and γ : [t1, t0] → M be such that γ(t0) = x0 and γ is scathed,

that is, there exists t ∈ [t1, t0) such that γ(t) ∈ Σt. Then

L(t0−t1)(γ) � Λ.
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Proof. Without loss of generality we assume Λ > 1. First note that R � −6 by
the curvature pinched toward positive assumption. One then has∫ t0

t1

√
t0 − tR(γ(t), t) dt � −4[τ3/2]τ10 � −4Δ3/2.

Hence it is sufficient to prove one of the two inequalities∫ t0

t1

√
t0 − tR(γ(t), t) dt � Λ, (10.5)∫ t0

t1

√
t0 − t1 |γ̇(t)|2g(t) dt � Λ + 4Δ3/2 =: Λ′. (10.6)

Intuitively, those two conditions mean that a curve has large L-length if it stays
for a sufficiently long amount of time in an area of large scalar curvature, or it has
large energy (which is the case if it moves very fast or goes a very long way).

By hypothesis, there exists t ∈ [t1, t0) such that γ(t) ∈ Σt. In particular, γ(t)
lies outside P0. We shall make a first dichotomy according to whether γ goes out
very fast or not.

Set

α :=
(

r̂

4Λ′

)2

∈ (0, 10−6).

Case 1. There exists t′ ∈ [t0 − αρ2
0, t0) such that γ(t′) �∈ B0.

x0

t0

t0 − αρ2
0

t0 − ρ2
0

γ

ρ0

P0

γ(t′)

Choose t′ maximal with this property. Let us recall that τ = t0 − t. By abuse
of language, we consider γ as a function of τ . We then have∫ t0−t′

0
|γ̇| dτ �

(∫ t0−t′

0

√
τ |γ̇|2 dτ

)1/2(∫ t0−t′

0

1√
τ
dτ

)1/2

,

so∫ t0−t1

0

√
τ |γ̇|2 dτ �

∫ t0−t′

0

√
τ |γ̇|2 dτ �

(∫ t0−t′

0
|γ̇| dτ

)2(∫ t0−t′

0

1√
τ
dτ

)−1

.
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When t ∈ (t′, t0], we have γ(t) ∈ B0. Since P0 is unscathed, we have on B0×(t′, t0]

g(t0)e−4ρ−2
0 (t0−t′) � g(t) � g(t0)e4ρ

−2
0 (t0−t′),

hence
1
2
g(t0) � e−4αg(t0) � g(t) � e4αg(t0) � 2g(t0).

Since γ(t′) �∈ B0,∫ t0−t′

0
|γ̇|g(t0−τ)dτ � 1√

2

∫ t0−t′

0
|γ̇|g(t0)dτ � ρ0√

2
,

so ∫ t0−t′

0
|γ̇|2√τdτ � ρ2

0

2
(
[2
√
τ ]t0−t′

0

)−1 � ρ0

4
√
α

� r̂

4
√
α
.

By choice of α, this last quantity is bounded from below by Λ′. This shows that
γ satisfies (10.6).

Remark 10.3.2. In this case, there is no constraint on δ.

Case 2. For all t ∈ [t0 − αρ2
0, t0], γ(t) ∈ B0.

By assumption there exists (x̄, t̄) such that γ(t̄) = x̄ ∈ Σt̄. Since P0 is un-
scathed, we have t̄ < t0 − αρ2

0. Assume that t̄ is maximal for this property. We
consider the restriction of g( · ) to [t̄, t0] (in the sense of Definition 8.1.1). Let us
choose x̄ such that R(x̄, t̄) � h−2(t)/2. Since h(t) < δ(t)r(t) � δ̄10−3, we may
choose δ̄ small enough (depending on r̂) so that

h−2(t)/2 > 106δ̄−2/2 � 12r̂−2 � 12ρ−2
0 .

We then have R(x̄, t̄) > 12ρ−2
0 . For the sake of simplicity we set h := h(t̄).

x0

t0

t0 − αρ2
0

t0 − ρ2
0

γ

(x̄, t̄)P0

For constants θ ∈ [0, 1) and A� 1 to be chosen later, we set

P := P (x̄, t̄, Ah, θh2)
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and take δ̄ � δ̄per(A, θ, r̂), so that the Persistence Theorem 8.1.2 applies. In
particular, we have

R � 1
2
h−2 > 6ρ−2

0

on P . This implies that P0 ∩ P = ∅, since on P0, |R| � 6|Rm| � 6ρ−2
0 .

Ah

(x0, t0)

P0

P

(x̄, t̄)

t̄+ θh2

Let θ := θ(r̂,Δ,Λ) ∈ (0, 1) be such that

−constst

√
αr̂

2
ln(1− θ) � Λ′,

where constst is defined in Proposition 4.3.4. We again distinguish two subcases,
according to the position of γ as described in the above picture.
Subcase (i). γ([t̄, t̄+ θh2]) ⊂ B(x̄, t̄, Ah).

Then by Theorem 8.1.2, P is unscathed. Indeed, otherwise B(x̄, t̄, Ah) ⊂ Σt′
for some t′ ∈ (t̄, t̄+θh2), and in particular γ(t′) ∈ Σt′ , which contradicts our choice
of t̄.

t̄

Ah

γ(t̄+ θh2)

x̄ = γ(t̄)

t̄+ θh2

Moreover,
t̄+ θh2 � t0 − αρ2

0,
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which implies that t0 − t � αρ2
0 for all t ∈ [t̄, t̄ + θh2]. The closeness part of

Theorem 8.1.2, and Proposition 4.3.4 imply

t̄+θh2∫
t̄

√
t0 − tR(γ(t), t) dt � constst

2

t̄+θh2∫
t̄

√
t0 − t h−2

1− (t− t̄)h−2 dt

� constst

√
αρ2

0

2

t̄+θh2∫
t̄

h−2

1− (t− t̄)h−2 dt

= constst

√
αρ2

0

2

θ∫
0

1
1− u du

� −constst

√
αr̂

2
ln(1− θ) � Λ′,

by the choice of θ.
From these inequalities we deduce∫ t̄

t1

√
t0 − tR dt+

∫ t0

t1

√
t0 − tR dt

=
∫ t̄+θh2

t̄

√
t0 − tR dt+

∫ t0

t̄+θh2

√
t0 − tR dt

� Λ′ − 4Δ3/2 = Λ.

Hence (10.5) holds.
Subcase (ii). There exists t′ ∈ [t̄, t̄+ θh2] such that γ(t′) �∈ B(x̄, t̄, Ah).

γ(t′)

Ah

x̄ = γ(t̄)

t̄+ θh2

t̄

We assume that t′ is minimal with this property.
By the same argument as before, P ′ := P (x̄, t̄, Ah, t′) is unscathed, and A−1-

close to the standard solution by the persistence theorem. As before, this implies
that for all s, s′ ∈ [t̄, t′], we have on P ′,

g(s) � e
C

1−θ g(s′),
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where C is a universal constant. We thus have∫ t′

t̄

√
τ |γ̇|2g(t)dt � e

−C
1−θ

(∫ t′

t̄

|γ̇|g(t̄)dt
)2(∫ t0−t̄

t0−t′
1√
τ
dτ

)−1

.

Since t′ � t0 − αρ2
0 we can bound τ from below by αρ2

0 on [t̄, t′], so∫ t′

t̄

√
τ |γ̇|2dt � e

−C
1−θ (Ah)2

√
αρ2

0(t
′ − t̄)−1

� e
−C
1−θ (Ah)2

r̂

10
√
α

1
θh2 = e

−C
1−θ

r̂A2

10θ
√
α.

Choosing A large enough, (10.6) holds.

A consequence of the previous lemma is the following result (for more details,
see [KL08], Lemmas 78.3 and 78.6). We shall not give the proof of this statement
since in the next section a local version, in the spirit of 8.2 of [Per02], will be
sketched.

Lemma 10.3.3. Let r̂ ∈ (0, 10−3) and let Δ,Λ be positive numbers. There exists
δ̄ := δ̄(r̂,Δ,Λ) ∈ (0, δ0) with the following property. Let g( · ) be a Ricci flow
with r( · ), δ( · )-bubbling-off defined on [a, a + Δ] where a � 0, r̂ � r( · ) < 10−3

and δ( · ) � δ̄. Let (x0, t0) and ρ0 � r̂ be such that P0 := P (x0, t0, ρ0,−ρ2
0) ⊂

M × [a, a+Δ] is unscathed and |Rm| � ρ−2
0 on P0. Then the following statements

are true:

(i) For all (q, s) ∈M × [a, a+ Δ], if �(q, t0 − s) < Λ, then there is an unscathed
minimising L-geodesic γ connecting (x0, t0) to (q, s).

(ii) For all τ > 0, minq �(q, τ) � 3/2 and is attained.

We now turn to the proof of Proposition C′. Let us fix T > 0, r̂ ∈ (0, 10−3), a
Ricci flow g( · ) with r( · ), δ( · )-bubbling-off on [0, b] where b � T , r̂ � r( · ) < 10−3

and δ( · ) � δ̄, where δ̄ is a constant to be defined later.
Let (x0, t0) be a point in spacetime. Thanks to Lemma 10.1.2 we restrict atten-

tion to the maximal scale ρ0 � 1 such that |Rm| � ρ−2
0 on P0 := P (x0, t0, ρ0,−ρ2

0),
and we assume that P0 is unscathed (see Remark 10.1.3). Hence either ρ0 = 1, or
ρ0 < 1 and the upper curvature bound is attained on P̄0. We shall treat the two
cases ρ0 < r̂ and ρ0 � r̂ separately. As before we set B0 := B(x0, t0, ρ0).

10.3.1 The case ρ0 < r̂

In this case ρ0 is below the scale of the canonical neighbourhood for all t in
the interval. Thus any point (y, t) with scalar curvature greater than ρ−2

0 has
a canonical neighbourhood. At such a point, the noncollapsing property follows
from geometric properties of this neighbourhood. Of course (y, t) need not be
equal to (x0, t0), so we have to ‘propagate’ the κ-noncollapsing property using the
curvature bound on P̄0. This case follows from the following assertion:
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Assertion 10.3.4. vol(B0) � C−1
0 e−18ρ3

0.

Let us prove Assertion 10.3.4. Since ρ0 < r̂ < 1, there exists (y, t) ∈ P̄0 such
that |Rm(y, t)| = ρ−2

0 > r̂−2. By Pinching Lemma 4.4.7, if R(y, t) � r̂−2 then
|Rm(y, t)| � r̂−2. Hence

R(y, t) > r̂−2 � r(t)−2,

and (y, t) is the centre of an (ε0, C0)-canonical neighbourhood U .

(x0, t0)

(y, t)
of (y, t)
Canonical neighbourhood U

Our next task is to show that B(x0, t, e
−2ρ0) ⊂ U . By the curvature bounds on

P̄0 we have dt(x0, y) � e2ρ0 and B(x0, t, e
−2ρ0) ⊂ B(x0, t0, ρ0). If U is a ε0-neck,

then dt(y, ∂Ū) � (2ε0)−1R(y, t)−1/2. Since R(y, t) � 6ρ−2
0 , we get

dt(y, ∂Ū) � (2
√

6ε0)−1ρ0 � (e2 + e−2)ρ0,

hence
dt(x0, ∂Ū) � dt(y, ∂Ū)− dt(x0, y) � e−2ρ0,

and B(x0, t, e
−2ρ0) ⊂ U .

If U is an (ε0, C0)-cap, then U = V ∪W where V is a core and W is a ε0-neck.
Let γ : [0, 1]→ B̄0 be a minimising g(t0)-geodesic connecting y to x0. Let us recall
that y ∈ V ; if x0 /∈ V , let s ∈ [0, 1] be maximal such that γ(s) ∈ ∂V . Since γ(s) ∈
B0, we have R(γ(s), t) � 6ρ−2

0 and we deduce that dt(γ(s), ∂Ū) � (
√

6ε0)−1ρ0.
Since dt(γ(s), x0) � e2ρ0 we get as above, that B(x0, t, e

−2ρ0) ⊂ U .
By the noncollapsing property of the canonical neighbourhoods ( (4.1), p. 40),

we get that
volg(t)B(x0, t, e

−2ρ0) � C−1
0 (e−2ρ0)3.

By estimating the distortion of distances and volume as in the proof of Lemma 10.1.2,
we conclude that

volg(t0)(B0) � C−1
0 e−18ρ3

0.

10.3.2 The case ρ0 � r̂

Recall that P0 is unscathed, and satisfies |Rm| � ρ−2
0 . Let us recall that Σt,

the singular set at time t, is the closure of {x ∈ M, g(x, t) �= g+(x, t)}. Let
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γ : [a, b]→M be a curve. Given v ∈ Tx0M at time t0, we set, for τ = t0 − t
γv(τ) = Lτ expx0,t0(v).

It is straightforward to check that the monotonicity of reduced length (see Lem-
ma 10.1.6) is also valid along any minimising L-geodesics which is unscathed. In
particular, if γv(τ) is minimising and unscathed on [0, τ0], then

τ−3/2e−�(v,τ)J(v, τ)

is nonincreasing on [0, τ0].
Set

Y (τ) := {v ∈ Tx0M | γv is minimising and unscathed on [0, τ)}.
It is easy to check that τ � τ ′ ⇒ Y (τ) ⊃ Y (τ ′). Then we set

Ṽreg(τ) :=
∫
Y (τ)

τ−3/2e−�(v,τ)J(v, τ) dv.

Thus this function is nondecreasing on [0, t0]. We shall adapt the proof of κ-non-
collapsing in the smooth case, replacing Ṽ by Ṽreg. Set

κ :=
volg(t0)(B0)

ρ3
0

, τ0 = κ1/3ρ2
0.

Upper bound on Ṽreg(τ0)

As in the smooth case, we get

Lτ exp({v ∈ Y (τ) | |v| � 1
10κ

−1/6}) ⊂ B0.

Thus

I :=
∫

{v∈Y (τ);|v|� 1
10κ

−1/6}
τ−3/2e−�(v,τ)J(v, τ)dv � eCκ

1/6√
κ

and

I ′ :=
∫

{v∈Y (τ);|v|� 1
10κ

−1/6}

τ−3/2e−�(v,τ)J(v, τ)dv

�
∫

{v∈Y (τ);|v|� 1
10κ

−1/6}
lim
τ→0

(τ−3/2e−�(v,τ)J(v, τ)) dv

� e− 1
10κ

−1/6
.

In conclusion,
I + I ′ � eCκ

1/3√
κ+ e− 1

10κ
−1/6 � C

√
κ

for κ � κ(3) and some universal C.
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Lower bound for Ṽreg(t0)

Monotonicity of Ṽreg(τ0) implies

Ṽreg(τ0) � Ṽreg(t0).

We are going to bound Ṽreg(t0) from below as a function of volB(q0, 0, 1), where
q0 ∈M .

Set Λ = 21 and apply Lemma 10.3.3 with parameter δ̄(r̂, T,Λ). There exists
q0 ∈M such that �(q0, t0 − 1

16 ) � 3
2 and the first part of Lemma 10.3.3 gives us a

minimising curve γ connecting x0 to q0 realising the minimum �(q0, t0−1/16). Let
q ∈ B(q0, 0, 1). Consider a curve γ obtained by concatenating some g(0)-geodesic
from (q, 0) to (q0, 1/16) with some minimising L-geodesic between (q0, 1/16) and
(x0, t0). We have

�(q, t0) =
L(q, t0)
2
√
t0

� 1
2
√
t0
L(q0, t0 − 1/16)

+
1

2
√
t0

∫ t0

t0−1/16

√
τ(Rg(t0−τ) + |γ̇(τ)|2g(t0−τ))dτ,

(10.7)

which leads to

�(q, t0) � 3
2

+
1
2

∫ t0

t0−1/16
(12 + e1/2|γ̇(τ)|2g(0))dτ,

since for s ∈ [0, 1/16] (i.e., τ ∈ [t0 − 1/16, t0]) the metrics g(s) satisfy Rm � 2,
hence R � 12, and are 1/2-Lipschitz equivalent. We obtain

�(q, t0) � 3
2

+
1
2

(
1
16

12 + 16e1/2d2
g(0)(q, q0)

)
� 20.

Hence �(q, t0) < Λ, and Lemma 10.3.3 (i) gives again an unscathed minimising
L-geodesic γ̃ connecting x0 to q. Hence q = γ̃(t0) = Lt0 exp(ṽ) for ṽ ∈ Y (t0). This
shows that Lt0 exp(Y (t0)) ⊃ B(q, 0, 1).

Moreover, we have {ṽ ∈ Y (t0) | Lt0 exp(ṽ) ∈ B(q, 0, 1)}, � � 10, which implies

Ṽreg(t0) =
∫
Y (t0)

t
−3/2
0 e−�(v,t0)J(v, t0) dv

�
∫
B(q0,0,1)

t
−3/2
0 e−20dvg(0)

� T−3/2e−20 volg(0)B(q0, 0, 1).

This completes the proof of Proposition C′.
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10.4 κ-noncollapsing at bounded distance of the
thick part

In what follows the canonical neighbourhood scale r(t) is assumed to be nonin-
creasing.

Theorem 10.4.1. For all A > 0, there exists κ = κ(A) > 0 such that for any
t0 > 0, there exists δ̄ := δ̄(t0) ∈ (0, δ0) decreasing in t0, with the following property.
Let g( · ) be a Ricci flow with r( · ), δ( · )-bubbling-off on M defined on [0,+∞) such
that δ(t) � δ̄ for t ∈ [t0/2, t0]; if the parabolic neighbourhood P (x0, t0, ρ0,−ρ2

0),
where 2ρ2

0 < t0, is unscathed and the solution satisfies |Rm| � ρ−2
0 there, and if

volB(x0, t0, ρ0) � A−1ρ3
0,

then the solution is κ-noncollapsed on the scales less than ρ0 in the ball B(x0, t0, Aρ0).

Proof. We shall assume that ρ0 � r(t0). To justify this, note that for ρ0 < r(t0)
we can copy the proof of Proposition C′ in the case where ρ0 < r̂, replacing r̂ by
r(t0). (This is where we use that r( · ) is nonincreasing.)

Since the noncollapsing property is unsensitive to homothety we can do a
parabolic rescaling so that ρ0 = 1 and t0 = 1. More precisely we shall work
with the flow,

ḡ(t) =
1
ρ2
0
g(t0 − ρ2

0 + tρ2
0).

From now on, unless otherwise stated, we work with the flow ḡ( · ). For simplic-
ity we shall not “overline” the geometric quantities related to this metric unless it
is necessary.

Let x ∈ B(x0, 1, A) and ρ ∈ (0, 1] be such that |Rm| � ρ−2 on P (x, 1, ρ,−ρ−2).
As before, we set

κ :=
volB(x, 1, ρ)

ρ3 ,

and assume that κ � κ(3), where κ(n) appears in Section 10.2. We wish to show
that there exists C = C(A) > 0 such that κ � C(A). We shall consider space-time
curves starting from x. As before, we set

Ṽreg(τ) :=
∫
Y (τ)

τ−3/2e−�(v,τ)J(v, τ)dv,

for τ = 1− t ∈ [0, 1], and where

Y (τ) := {v ∈ Tx0M | L exp(v) : [0, τ ]→M is minimising and unscathed}.

The function Ṽreg is nonincreasing in τ . The same computation as before yields
the upper bound

Ṽreg(κ1/3ρ2) � C
√
κ
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for some universal C > 0. Now the monotonicity of Ṽreg gives

Ṽreg(1) � Ṽreg(κ1/3ρ2) � C
√
κ.

We thus have to estimate Ṽreg(1) from below.

10.4.1 A formal computation

By the curvature pinched toward positive assumption we have, before rescaling,

R � − 6
4t+ 1

� − 3
2t
,

hence, after rescaling,

R � −3
2

ρ2
0

t0 − ρ2
0 + tρ2

0
� −3

2
ρ2
0

t0 − ρ2
0 + 1

2ρ
2
0

for t ∈ [1/2, 1]. Recall that t0 � 2ρ2
0. Thus

R � −3
2

ρ2
0

2ρ2
0 − 1

2ρ
2
0

= −1.

Hence, using that τ = 1− t,

L̄(y, τ) := 2
√
τL(y, τ) � −2

√
τ

∫ τ

0

√
s ds = −4

3
τ2

(here we have neglected the energy of the curve in the definition of L). We now
define L̂(y, τ) := L̄(y, τ) + 2

√
τ . Then, for τ ∈ (0, 1/2],

L̂(y, τ) � −4
3
τ2 + 2

√
τ �
(
−4

3
+ 2
)√

τ > 0.

Define h(y, τ) := ψ(d̂t(x0, y))L̂(y, τ), where d̂t(x0, y) = dt(x0, y)−A(2t−1), and ψ
is a cutoff function equal to 1 on (−∞, 1/20], to +∞ on [1/10,+∞), nondecreasing
and smooth where defined. We now follow the computation in [Per02], 8.2 (p. 21)
and use the operator

� :=
∂

∂t
−Δg(t);

it yields

�h � −(L̄+ 2
√
τ)C(A)ψ − 6ψ − 1√

τ
ψ = −C(A)h−

(
6 +

1√
τ

)
ψ ◦ d̂t, (10.8)

where C(A) is a constant depending on A only. At the spatial minimum point,
with τ fixed, Δh � 0. Let us define h0(τ) = minh( · , τ). We then have

d

dτ

(
log
(
h0(τ)√

τ

))
= h−1

0
dh0

dτ
− 1

2τ
� C(A) +

6
√
τ + 1√

τL̄+ 2τ
− 1

2τ
.
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As L̄ � − 4
3τ

2,
d

dτ

(
log
(
h0(τ)√

τ

))
� C(A) +

50√
τ
.

By integration we get,

log
(
h0(τ)√

τ

)
− lim
s→0

log
(
h0(s)√

s

)
� C(A)τ + 100

√
τ .

Now for s small,

L̂ = L̄+ 2
√
s = 2

√
sL+ 2

√
s > 0 and h = ψL̂ � 2,

2 <
h0(s)√

s
= min{ψ(2L+ 2)} � 2L(x, s) + 2

since ψ ≡ 1 near x when s is small. Indeed, dt(x0, x) < A and ψ ≡ 1 on B(x0, 0,
1
20 +A).

Now, using a curve which is constant equal to x, we have that

L(x, s) �
∫ s

0

√
sRds −→

s→0
0

and hence
h0(s)√

s
−→
s→0

2,

which gives
h0(τ) � 2

√
τ exp(C(A)τ + 100

√
τ).

10.4.2 Justification of the formal computations

We now apply Lemma 10.3.1 with the unscaled metric g(t) and with the constant

Λ = 3 exp(C(A) + 100)

√
t0
2

and r̂ � r(t0), Δ = t0/2. This gives a δ̄ = δ̄(A, t0) such that every scathed
curve γ(τ) starting at x (in particular, γ exits the set P (x, t0, ρ,−ρ2)) satisfies the
unnormalised inequality

Lg(γ) � Λ.

This implies that
Lḡ(γ) � Λ′ = Λ/

√
t0/2.

From now on all geometric quantities refer to the normalised metric ḡ(t). In
particular if

L(y, τ) < 3 exp(C(A)τ + 100
√
τ) � 3 exp(C(A) + 100) = Λ′,
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the L-geodesics joining x to a neighbourhood of y are unscathed. Moreover, near
such a point, the formal calculations (10.8) with the function h are valid in the
barrier sense.

Let us define β0(τ) = log
(h0(τ)√

τ

)−C(A)τ −100
√
τ − log 3. From the preceding

argument limτ→0 β0(τ) = log 2 − log 3 < 0. We now follow the proof given in
[KL08], Lemma 78.6. The arguments developed there apply to show that β0 is
continuous on (0, τ1), where

τ1 = sup{τ > 0; β0(τ) < 0}.
Similarly the previous computation shows that the upper right derivative of β0 on
(0, τ1) is nonpositive. This implies that β0(τ1) < 0 by the same argument as in
[KL08], Lemma 78.6, and hence that τ1 = 1. This shows that for each τ > 0, there
exists y such that L̄(y, τ) � L̂(y, τ) � 3

√
τ exp(C(A)τ + 100

√
τ). Henceforth, for

τ = 1/2 there exists y ∈ B(x0, 1/2, 1/10) such that

L(y, 1/2) < Λ′ and �(y, 1/2) < Λ′/
√

2 = Λ/
√
t0.

Let us come back to the proof of noncollapsing. We now know that there
exists y ∈ B(x0, 1/2, 10−1) such that �(y, 1/2) is small (see Figure 10.2 below).
By distance comparison and the fact that |Rm| � 1 on P (x0, 0, 1,−1) for the
normalised metric, we get that on this set,

1
10
d1 � d0 � 10d1.

Hence, B(x0, 1, 10−2) ⊂ B(x0, 0, 10−1) ⊂ B(x0, 1, 1) and then

volḡ(0)B(x0, 0, 10−1) � volḡ(0)B(x0, 1, 10−2)

� 10−3/2 volḡ(1)B(x0, 1, 10−2)

� 10−3/2 υ−1(10−2)
υ−1(1)

volḡ(1)B(x0, 1, 1)

� 10−3/2A−1 υ−1(10−2)
υ−1(1)

.

The third inequality comes from the Bishop–Gromov inequality and the last one
from the hypothesis. Now, as before, in order to estimate �(z, 1) for z ∈ B(x0, 0, 1/10)
we shall concatenate curves from (x, 1) to (y, 1/2) with curves from (y, 1/2) to
(z, 0).

From (x, 1) to (y, 1/2) we take a minimising L-geodesic. From (y, 1/2) to (z, 0)
we take a minimising ḡ(1)-geodesic from y to x0 and a minimising ḡ(1)-geodesic
from x0 to z; the curve thereby obtained is contained in B(x0, 1, 1), on which the
scalar curvature is bounded from above by 6. The proof given in the previous
section now shows that

�(z, 1) � C(A) for all z ∈ B(x0, 0, 10−1).



136 CHAPTER 10. κ-NONCOLLAPSING AND PROOF

t = 1/2

| Rm | � 1

vol � A−1c

x0 x

x0

t = 1

t = 0
z

y

A

10−1

10−1

1

Figure 10.2: Concatenation of L geodesics with g(1)-geodesics.

Finally,

Ṽreg(1) =
∫
Y (1)

1−3/2e−�(z,1)J(z, 1)dv

�
∫
B(x0,0,10−1)

e−C(A)dvḡ(0)

� e−C(A) volḡ(0)B(x0, 0, 10−1)

� e−C(A)10−3/2A−1 υ−1(10−2)
υ−1(1)

.

We recall that τ = 1 corresponds to t = 0 and the parameter in the metric ḡ is
the time t whereas the parameter in the reduced volume is τ . This is the desired
inequality.

Notes

This chapter corresponds to [Per03b], Lemma 5.2. Our treatment follows closely
[KL08], except for the fact that we use the canonical neighbourhood property in
the first case. For this, we use the fact that M is not spherical.

For the analytic properties of the L-functional, the papers of Ye [Ye08b],
[Ye08a] are a good reference. The reader may also look at Chapters 7 and 8
in the book [CCG+07], where most of the details are treated.



Part III

Long-time behaviour of
Ricci flow with bubbling-off
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The goal of Part III is to prove the Thin-Thick Decomposition Theorem 1.3.4. To
do this, we use the Ricci flow with r( · ), δ( · )-bubbling-off provided by the long-time
existence theorem (Theorem 5.4.1). We shall need to choose the time-dependent
parameters r( · ) and δ( · ) carefully in order to have the necessary estimates.

In Chapter 11 we first state the corresponding refined results on the long-
time behaviour of Ricci flow with bubbling-off. These results, which correspond
to [Per03b], Section 6, in Perelman’s work, are the most technical theorems proved
in this book. We then prove the thin-thick decomposition theorem assuming these
technical results.

Finally, the technical theorems are proved in Chapter 12. One of them gives
versions of the κ-noncollapsing, curvature-distance estimates and the canonical
neighbourhood property at space-time points where the time multiplied by the
curvature is large. The second one essentially shows that certain parabolic neigh-
bourhoods in the thick part are unscathed and with bounded geometry. This is
used to show that on the thick part the rescaled metric converges towards the
hyperbolic metric.
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Chapter 11

The thin-thick
decomposition theorem

In this chapter, we fix a closed orientable, irreducible, nonspherical 3-manifold M .
Our goal is to prove the Thin-Thick Decomposition Theorem 1.3.4 whose state-

ment is recalled below (Theorem 11.1.1). This theorem asserts the existence of a
Ricci flow with bubbling-off on M , defined on [0,+∞), with the following extra
properties. When t→∞, the rescaled metric t−1g(t), given any sequence of base-
points (xn, tn) in the thick part, subconverges in the pointed smooth topology to
a complete hyperbolic manifold of finite volume. Moreover, there are local esti-
mates on the curvature tensor and its first covariant derivative, a property we call
‘locally controlled curvature in the sense of Perelman’. In Section 11.1 below, we
outline the proof of the thin-thick decomposition theorem, splitting it into several
technical results. The proof of the theorem, assuming these technical results, is
given in Section 11.2. The proof of the technical results is postponed to the next
chapter.

11.1 Introduction: main statements

Let (X, g) be a Riemannian manifold and ε be a positive real number. We define
the ε-thin part of (X, g) to be the subset X−(ε) of points x ∈ X for which there
exists 0 < ρ � 1 such that the ball B(x, ρ) has sectional curvature � −ρ−2 and
volume < ερ3. Its complement is called the ε-thick part and denoted by X+(ε).

Below we recall the statement of Theorem 1.3.4. For convenience, this state-
ment has been slightly rephrased. In particular, the metric is rescaled by t instead
of 4t, producing ‘hyperbolic’ limits of sectional curvatures −1

4 instead of −1:

Theorem 11.1.1 (Thin-thick decomposition). Let g0 be a normalised metric on
M . There exists a Ricci flow with bubbling-off g( · ) on [0,+∞) with g0 as initial
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condition, and such that the following is true:

1. There exists C > 0 such that vol(g(t)) � Ct3/2.

2. Let w > 0, xn ∈ M and tn → +∞. If xn is in the w-thick part of
(M, 1

tn
g(tn)) for every n, then the sequence of pointed manifolds (M, 1

tn
g(tn), xn)

subconverges in the C∞ sense to a complete pointed 3-manifold of finite vol-
ume with all sectional curvatures equal to −1/4.

3. For all w′ > 0 there exists r̄ > 0, K0,K1 > 0 and t0 < ∞ depending only
on w′ such that for all x ∈ M and t > t0,, for all r ∈ (0, r̄), if the ball
B(x, r) ⊂ (M, t−1g(t)) satisfies Rm � −r−2 and volB(x, r) � w′r3, then
|Rm(x)| � K0r

−2 and |∇Rm(x)| � K1r
−3.

Remark 11.1.2. The third assertion in the conclusion implies that if tn is any
sequence tending to infinity, then the sequence (tn)−1g(tn) has locally controlled
curvature in the sense of Perelman (cf. Definition 13.1.1). Of course, the sequence
(4tn)−1g(tn) has the same properties for slightly different constants.

Let us outline the proof of this theorem. Since we assume M to be non-
spherical, the Long-Time Existence Theorem 5.4.1 yields a nonincreasing positive
function r( · ), and for any positive function δ̄( · ), a nonincreasing function δ( · ) �
δ̄( · ) such that a Ricci flow with r( · ), δ( · )-bubbling-off exists on [0,+∞) for any
normalised initial condition. The given function r( · ) is now fixed forever. However
we have the freedom of choosing δ(t) going to zero when t goes to infinity as steeply
as we need. This we will use to obtain better estimates than those of Part II.

The main difficulty is to obtain a local upper bound for the sectional curva-
ture on the thick part. This bound will be used in order to apply a compactness
theorem to prove subconvergence of rescalings of g( · ) when the basepoint belongs
to the thick part. Then the fact that the time slices of the limit flow have con-
stant sectional curvature will follow from a comparatively easy maximum principle
argument. For this argument to work, however, it is essential to consider limits
of evolving metrics, although we are ultimately only interested in sequences of
metrics.

As a first step toward the required curvature bound, we shall prove the fol-
lowing result, which says that under hypotheses similar to that of belonging to
the thick part, we have κ-noncollapsing, canonical neighbourhoods and an upper
scalar curvature bound at the appropriate scales:

Theorem 11.1.3. For all A ∈ (0,∞) there exist positive numbers κ, K̄, K̄ ′, r̄ and a
nonincreasing function t �→ δ̄A(t) depending only on A with the following property.
Let g( · ) be a Ricci flow with r( · ), δ( · )-bubbling-off on M with normalised initial
condition, and let (x, t, ρ) have the following properties. Assume that 0 < ρ <√
t/2, 0 < δ( · ) < δ̄A(t) on [t/2, t], and that

(i) P (x, t, ρ,−ρ2) is unscathed,

(ii) |Rm| � ρ−2 there,
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(iii) volB(x, t, ρ) � A−1ρ3.

Then the following assertions hold:

(a) The solution is κ-noncollapsed on scales less than ρ in B(x, t, Aρ).

(b) Every point of B(x, t, Aρ) of scalar curvature at least K̄ρ−2 admits a canon-
ical neighbourhood.

(c) If ρ � r̄
√
t, then R � K̄ ′ρ−2 in B(x, t, Aρ).

An important point in part (a) is that κ does not depend on time. This is
crucial since we will use this result to obtain convergence of parabolic rescalings
of g( · ) at basepoints (xn, tn) with tn going to infinity. Also note that the scale ρ
may be much larger than 1.

Note that part (a) has been stated and proved in Section 10.4. Before stat-
ing the theorem giving the curvature estimates in the thick part, we define the
appropriate function δ̄( · ).
Definition 11.1.4. With the function δ̄A( · ) as above, set

δ̄(t) := min
{
δ̄2t(2t), η(t)

r(4t)
r(t)

}
, (11.1)

where η : [0,∞) → (0, 1] is some fixed decreasing function such that η(t) → 0 as
t→ +∞.

Remark 11.1.5. Inequality δ̄(t) � δ̄2t(2t) ensures that any Ricci flow with
r( · ), δ( · )-bubbling-off with δ( · ) � δ̄( · ) satisfies the conclusions of Theorem 11.1.3
at time t for all A � t.

We shall then prove a stronger version of Theorem 11.1.3, where the property
of having an unscathed parabolic neighbourhood is deduced from the hypotheses
rather than included in them.

Theorem 11.1.6 (Curvature estimate in the thick part). For all w > 0, there
exist positive numbers θ̂, r̂, T̂ , τ̂ , K̂ depending only on w with the following prop-
erty. Assume that g( · ) is a Ricci flow with r( · ), δ( · )-bubbling-off on [0,∞), with
normalised initial condition and δ( · ) � δ̄( · ). Let x ∈M , t � T̂ , r > 0 such that

(i) θ̂−1h � r � r̂
√
t, where h is the maximal surgery radius on [t/2, t],

(ii) Rm � −r−2 on B(x, t, r),

(iii) volB(x, t, r) � wr3.

Then P (x, t, r,−τ̂ r2) is unscathed and |Rm| < K̂r−2 there.

We return to the thin-thick decomposition theorem. DenoteMn = (M, t−1
n g(tn)),

and assume that xn ∈M+
n (w) for all n. Once we have obtained the required cur-

vature estimates, it remains to show that (Mn, xn) sub-converges to a complete
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hyperbolic manifold (see Section 11.2.2), proving part (ii) of the thin-thick de-
composition theorem. The locally controlled curvature in the sense of Perelman
property, i.e., part (iii), is obtained from the local curvature estimates and Shi’s
derivative estimates. (cf. Subsection 11.2.3).

The functions r( · ) and δ̄( · ) being fixed as above, Theorem 11.1.1 then reduces
to the Long-Time Existence Theorem 5.4.1 and the following result:

Theorem 11.1.7 (Thin-thick decomposition reduced). Let g( · ) be a Ricci flow
with r( · ), δ( · )-bubbling-off on M defined on [0,∞), with normalised initial con-
dition, and such that δ( · ) � δ̄( · ). Then g( · ) satisfies assertions (i)–(iii) of the
conclusion of Theorem 11.1.1.

This theorem is proved in Section 11.2 below, assuming Theorems 11.1.3 and
11.1.6. The proof of these results occupies Chapter 12.

11.2 Proof of the thin-thick decomposition theo-
rem

In this section, we consider a Ricci flow with r( · ), δ( · )-bubbling-off g( · ) on M ×
[0,+∞), with normalised initial condition, such that δ( · ) � δ̄( · ), where δ̄( · ) is
the function fixed in Definition 11.1.4. The goal is to prove assertions (i)–(iii) of
the conclusion of Theorem 11.1.1.

11.2.1 Rescaled volume is bounded and limits are hyper-
bolic

The main results of this subsection are Proposition 11.2.1, which immediately
implies assertion (i), and Proposition 11.2.3.

We first recall some definitions introduced in Section 1.3.1. We let R̂(g) =
Rmin(g)V (g)2/3. Recall that our assumption that M is not spherical implies that
Rmin(g) � 0 for any metric g on M . By Proposition 1.3.1, t �→ R̂(g(t)) is then
nondecreasing along any Ricci flow with bubbling-off (at singular times, Rmin can
only go up and V go down).

Proposition 11.2.1. V (t)(t+ 1
4 )− 3

2 is nonincreasing.

Proof. From (C.1) of Corollary C.2.2 and (1.3) on p. 11, we get at any regular
time t:

V ′

V
� −Rmin � 6

4t+ 1
, (11.2)

hence

(V (t)(4t+ 1)− 3
2 )′ = V ′(4t+ 1)− 3

2 − V 6(4t+ 1)− 5
2

= (4t+ 1)− 3
2

(
V ′ − 6V

4t+ 1

)
� 0.
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It follows that V (t)t−
3
2 is also bounded as t → ∞. This proves part (i) of

Theorem 11.1.7.
Next we will show that whenever local limits exist (as t → +∞), they are

hyperbolic. Along the way, we prove a few other useful facts.
Set R̄ := lim R̂(t) and V̄ := limV (t)(t+ 1

4 )− 3
2 where the limits are taken when

t→∞.

Lemma 11.2.2. If V̄ > 0 then R̄V̄ − 2
3 = − 3

2 and Rmin(t) ∼ − 3
2t .

Proof. We have

R̄V̄ − 2
3 = lim

t→∞ Rmin(t)V (t)
2
3

(
V (t)(t+ 1

4 )− 3
2

)− 2
3

= lim
t→∞ Rmin(t)(t+ 1

4 ) � −3
2
,

(11.3)

by the right inequality of (11.2).
Assume that R̄V̄ − 2

3 = c > − 3
2 . Then Rmin(t)(t+ 1

4 ) � − 3
2 + μ for some μ > 0

and t > t0. From V ′(t)V (t)−1 � −Rmin,we have

V ′(t)
V (t)

�
(

3
2
− μ
)(

t+
1
4

)−1

,

hence

V (t) � V (t0)
(
t+

1
4

) 3
2 −μ

.

Then

V (t)
(
t+

1
4

)− 3
2

� V (t0)
(
t+

1
4

)−μ
→ 0,

contradicting the assumption V̄ > 0. Finally, it follows from equality in (11.3)
that Rmin(t) ∼ − 3

2t .

Proposition 11.2.3 (Limits are hyperbolic). Let 0 < r < 1 and P (xk, tk, r
√
tk,

−r2tk) be a sequence of parabolic neighbourhoods which, after parabolic rescaling
by 1/tk, converge to a Ricci flow on P (x∞, 1, r,−r2). Then all sectional curvatures
of the limit are equal to −1

4t , for all t ∈ [1− r2, 1].

Proof. Let us prove first that under the previous assumptions, V̄ > 0. Denote by
ḡk(t) the rescaled Ricci flow tk

−1g(ttk). Then

V (tk)(tk +
1
4
)− 3

2 ∼ vol(ḡk(1)) � volB(x̄k, 1, r)→ volB(x∞, 1, r) > 0.

Lemma 11.2.4. R is spatially constant on P (x∞, 1, r,−r2).
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Proof. If R( · , s0) is not constant for some s0 ∈ [1 − r2, 1], then there exist c > 0
and μ > 0 such that

∀s ∈ [s0 − μ, s0 + μ],
∫
B(x∞,s,r)

Rmin∞
∗(s)−R(x, s) dvg∞ < −c,

where Rmin∞
∗(s) = min{R∞(x, s) | x ∈ B(x∞, s, r)}. Hence for large k,∫
B(xk,stk,r

√
tk)
Rmin

∗(stk)−R(x, stk) dvg(stk) <
−c
2
√
tk,

where now Rmin
∗(stk) = min{R(x, stk) | x ∈ B(xk, stk, r

√
tk)} � Rmin(stk).

Thus, ∫
B(xk,stk,r

√
tk)
Rmin(stk)−R(x, stk) dvg(stk) <

−c
2
√
tk, (11.4)

After passing to a subsequence, we can suppose

tk+1

tk
>
s0 + μ

s0 − μ,

that is tk+1(s0 − μ) > tk(s0 + μ). Then, using Corollary C.2.2 of the Appendix,

R̄− R̂(0)

=
∫ ∞

0

dR̂

dt
dt �

∞∑
k=0

∫ tk(s0+μ)

tk(s0−μ)

dR̂

dt
dt

�
∞∑
k=0

∫ tk(s0+μ)

tk(s0−μ)

2
3 R̂(t)V −1(t)

∫
M

(Rmin(t)−R(x, t)) dvg(t) dt

=
∞∑
k=0

∫ s0+μ

s0−μ
2
3 R̂(stk)V −1(stk)

∫
M

tk(Rmin(stk)−R(x, stk)) dvg(stk) ds

�
∞∑
k=0

tk

∫ s0+μ

s0−μ
2
3 R̂(stk)V −1(stk)

∫
B(xk,stk,r

√
tk)

(Rmin(stk)−R(x, stk)) dvds

� 2
3

∞∑
k=0

tk

∫ s0+μ

s0−μ
R̂(stk)V −1(stk)

−c
2
√
tk ds

=
−c
3

∞∑
k=0

∫ s0+μ

s0−μ
R̂(stk)V −1(stk)t

3
2
k ds.

Using
R̂(stk) −−−−→

k→∞
R̄,

and
V −1(stk)t

3
2
k = V −1(stk)(stk)

3
2 s− 3

2 −−−−→
k→∞

V̄ −1s− 3
2 ,
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and −c R̂(stk) � 0, we find that for some large k0 ∈ N,

R̄− R̂(0) � −c R̄ V̄
−1

4

∞∑
k=k0

∫ s0+μ

s0−μ
s− 3

2 ds = +∞,

which gives the contradiction.

We continue the proof of Proposition 11.2.3, the scalar curvature on the limit
space being denoted by R(t). Since Rmin(t) ∼ − 3

2t in (M, g(t)) by Lemma 11.2.2,
it follows that R(t) � − 3

2t on P (x∞, 1, r,−r2). Indeed, for y ∈ B(x∞, 1, r),

R(t) = R(y, t) = lim tkR(yk, ttk) � limRmin(ḡk(t))

= lim tkRmin(g(ttk)) ∼
k→∞

tk
−3
2tkt

= − 3
2t
.

If there exists s0 ∈ [1 − r2, 1] such that R(s0) > 3
2s0

, we can argue as above
replacing Rmin(stk) by 3

2s0
in (11.4) to get a contradiction.

Hence R(t) = − 3
2t on P (x∞, 1, r,−r2). Putting this in (ii) of Proposition C.2.1,

we get
3

2t2
= 2|Ric0 |2 +

2
3

(
− 3

2t

)2

hence |Ric0 |2 = 0 on P (x∞, 1, r,−r2). It follows that Ric = R
3 g = − 1

2tg, finishing
the proof of Proposition 11.2.3.

11.2.2 Hyperbolic limits exist: proof of part (ii)

We continue the proof of Theorem 11.1.7, showing that smoothly convergent sub-
sequences exist for each sequence xn ∈ Mn

+(w), i.e., g( · ) satisfies part (ii). We
introduce a new definition:

Definition 11.2.5. If ξ > 0, we say that g( · ) is ξ-almost hyperbolic at (x, t) if
|2tRic(x) + g(x, t)|g(t) < ξ.

Remark 11.2.6.

|2tRic(x) + g(x, t)|g(t) = 2
∣∣∣∣Ric(x) +

t−1g(x, t)
2

∣∣∣∣
t−1g(t)

,

so ξ-almost hyperbolicity implies that the sectional curvatures of t−1g(t) are ξ/2-
close to −1

4t .

Proposition 11.2.7. For all positive numbers w, r, ξ, A there exist positive num-
bers Λ, τ and T with the following property. Let x ∈M and t � T be such that

(i) volB(x, t, r
√
t) � w(r

√
t)3,

(ii) Rm � −(r
√
t)−2 on B(x, t, r

√
t).
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Then

(a) P (x, t, Ar
√
t,−τ(r√t)2) is unscathed and |Rm| < Λ(r

√
t)−2 there, and

(b) g( · ) is ξ-almost hyperbolic at every point of B(x, t, Ar
√
t).

Proof of Proposition 11.2.7. We start by proving a weaker version of this proposi-
tion, Lemma 11.2.8 below. For w′ > 0, let θ̂′ := θ̂(w′), T̂ ′ := T̂ (w′), K̂ ′ := K̂(w′),
τ̂ ′ := τ̂(w′), and r̂′ := r̂(w′) denote the parameters given by Theorem 11.1.6.

Lemma 11.2.8. For all w′ > 0, r ∈ (0, r̂′) and ξ > 0, there exists T ′ = T ′(w′, r, ξ)
with the following property. Let x ∈M and t � T ′ be such that

(i) volB(x, t, r
√
t) � w′(r

√
t)3,

(ii) Rm � −(r
√
t)−2 on B(x, t, r

√
t).

Then

(a) P (x, t, r
√
t,−τ̂ ′(r

√
t)2) is unscathed and |Rm| < K̂ ′(r

√
t)−2 there, and

(b) g( · ) is ξ-almost hyperbolic at (x, t).

Proof of Lemma 11.2.8. We apply Theorem 11.1.6 with w = w′. For r < r̂′ we
have r

√
t < r̂′√t. By taking t sufficiently large, we can ensure that θ̂′−1h � r

√
t

(cf. Remark 5.4.8). Part (a) is then given by the conclusion of Theorem 11.1.6.
Assume now that part (b) is false. Then there exists tk → +∞ and xk ∈ M

such that B(xk, tk, r
√
tk) satisfy (i) and (ii) but (M, gk(tk)) is not ξ-almost hyper-

bolic at (xk, tk). By part a), the neighbourhoods P (xk, tk, r
√
tk,−τ̂ ′(r

√
tk)2) are

unscathed and |Rm| � K̂ ′(r
√
tk)−2 there for large k. Consider the parabolic rescal-

ings ḡk( · ) = tk
−1g(tk·). The sequence of parabolic neighbourhoods P (x̄k, 1, r,−τ̂ ′r2)

then satisfies the assumptions of the Local Compactness Theorem C.3.3. Hence it
subconverges towards a Ricci flow g∞( · ) defined on a neighbourhood P (x∞, 1,−r,
−τ̂ ′r2).

Proposition 11.2.3 applies to a smaller neighbourhood P (xk, 1, r′,−r′2) con-
verging to P (x∞, 1, r′,−r′2) and shows that g∞(t) has constant sectional curva-
ture equal to − 1

4t there. We get a contradiction at (xk, tk) for k large enough,
finishing the proof of Lemma 11.2.8.

We go back to the proof of Proposition 11.2.7. We begin by extending the con-
clusion of Lemma 11.2.8 to any radius r (allowing r > r̂′). We use Lemma 10.1.2.
For w > 0, we set w′ = c3w, where c3 is the constant given by that lemma.
For r > 0 we define r′ = min{r, r̂′}. For any ξ > 0, Lemma 11.2.8 applies to
B(x, t, r′√t) if t � T ′(w′, r′, ξ) = T1. Hence P (x, t, r′√t,−τ̂ ′(r′√t)2) is unscathed,
we have |Rm| � K̂ ′(r′√t)−2 there, and g( · ) is ξ-almost hyperbolic at (x, t).

Our next goal is to enlarge the ball where the conclusion holds to beB(x, t, Ar
√
t),

where A > 0 is the given constant. Define

B := min{K̂ ′− 1
2 , τ̂ ′ 12 } � 1,

ρ := B r′√t.
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By Lemma 11.2.8, P (x, t, ρ,−ρ2) is unscathed and |Rm| � ρ−2 there. Clearly
ρ <
√
t/2. Define

A′ := max{3AB−1rr′−1, w′−1} � 1,

which gives
A′ρ � 3Ar

√
t and volB(x, t, ρ) � A′−1ρ3.

Recall that by choice of δ̄( · ) (see Remark 11.1.5), Theorem 11.1.3 applies to
constant A′ > 0 for all t � A′. Define T2 := max{A′, T1} and assume t � T2.

Setting K̄ := max{K̄(A′), 10}, we obtain by Theorem 11.1.3 (b) that any
(y, t) ∈ B(x, t, A′ρ) where R(y, t) � K̄ρ−2 =: Q is the centre of an (ε0, C0)-
canonical neighbourhood. Define

B′ := C0
− 1

2 K̄− 1
2 ,

r′′ := min{B′Br′, r̂(C0
−1)},

T3 := max{T ′(C0
−1, r′′, 10−1), T2},

where T ′ is the parameter defined in Lemma 11.2.8.

Claim. R < Q on B(x, t, A′ρ) if t � T3.

Proof of the claim. We argue by contradiction: since R(x, t) � 6ρ−2 < Q, if the
claim does not hold, then there exists y ∈ B(x, t, A′ρ) such that R(y, t) = Q.
By definition of Q, (y, t) is the centre of an (ε0, C0)-canonical neighbourhood U ⊃
B(y, t, C−1

0 Q−1/2), and R( · , t) ∈ [C−1
0 Q,C0Q] on U . From Pinching Lemma 4.4.7,

|Rm| � C0Q on U . Define ρ′ := r′′√t � B′ρ, and note that Rm � −C0Q �
−ρ′−2 on B(y, t, ρ′). Moreover, by properties of the canonical neighbourhoods,
volB(y, t, ρ′) � C0

−1ρ′3. As t � T3, Lemma 11.2.8 applies on B(y, t, ρ′) and says
that g( · ) is 10−1-almost hyperbolic at (y, t). But this is not possible in a canonical
neighbourhood. This proves the claim.

By Pinching Lemma 4.4.7, we have Rm � −Q = −K̄ρ−2 on B(x, t, A′ρ). Set
σ := K̄− 1

2 ρ, so that Rm � −σ−2, and pick a point y ∈ B(x, t, A
′ρ
3 ). By the

Bishop–Gromov inequality we have

volB(y, t, σ)
volB(y, t, 2A′ρ

3 )
� υ−σ−2(σ)
υ−σ−2( 2A′ρ

3 )

=
υ−1(1)

υ−1( 2A′ρ
3 σ−1)

� υ−1(1)
υ−1( 2A′

3 K̄1/2)
=: E.

Since B(y, t, 2A′ρ
3 ) ⊃ B(x, t, A

′ρ
3 ) ⊃ B(x, t, ρ), we deduce

volB
(
y, t, 2A′ρ

3

)
� volB(x, t, ρ) � w′ρ3,
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hence
volB(y, t, σ) � Ew′ρ3 = Ew′K̄

3
2σ3.

It follows that for any σ′ ∈ (0, σ), we have

volB(y, t, σ′) � c3Ew
′K̄

3
2σ′3 = w′′σ′3.

Define

r̂′′ := r̂(w′′),

r′′ := min{K̄− 1
2Br, r̂′′},

T4 := max{T ′(w′′, r′′, ξ), T3},
K̂ ′′ := K̂(w′′),
τ̂ ′′ := τ̂(w′′).

For σ′ = r′′√t � σ, Lemma 11.2.8 can be applied to B(y, t, r′′√t) and gives that
P (y, t, r′′√t,−τ̂ ′′(r′′√t)2) is unscathed and |Rm| � K̂ ′′(r′′√t)−2 there, and that
g( · ) is ξ-almost hyperbolic at (y, t). Thus, if one sets

τ := τ̂ ′′
(
r′′

r

)2

, Λ := K̂ ′′
(
r′′

r

)−2

, and T := T4,

and one recalls that (y, t) is an arbitrary point of B
(
x, t, A

′ρ
3

) ⊃ B(x, t, Ar
√
t), it is

clear now that the conclusion of Proposition 11.2.7 holds on P (x, t, Ar
√
t,−τ(r√t)2),

with parameter Λ for t � T4.

Lemma 11.2.9 (Lower curvature bound in thick part). For all w > 0 there exists
ρ̄ ∈ (0, 1] and T̄ ∈ (0,+∞) such that for any t � T̄ and x in the w-thick part of
(M, t−1g(t)), then B(x, ρ̄) ⊂ (M, t−1g(t)) satisfies Rm � −(ρ̄)−2.

Remark 11.2.10. By definition of the w-thick part, this implies volB(x, ρ̄) �
w(ρ̄)3.

Proof of Lemma 11.2.9. We argue by contradiction. Suppose there exists ρk → 0,
tk → +∞ and points xk in the w-thick part of (M, tk

−1g(tk)) such that sectional
curvature is not bounded below by−(ρk)−2 on the ballB(xk, ρk) ⊂ (M, tk

−1g(tk)).
Let ρ′

k ∈ (0, ρk) be such that inf{Rm(y) | y ∈ B(xk, ρ′
k)} = −(ρ′

k)
−2, and let

yk ∈ B(xk, ρ′
k) be a point where the minimum is achieved. We define rk := ρ′

k

√
tk,

and note that tkrk−2 = ρ′
k

−2 →∞. It follows from the curvature pinched toward
positive assumption, and more precisely from (4.8) p. 44, that (for the unscaled
metric):

R(yk, tk)
rk−2 � 1

2
(
log((1 + tk)rk−2)− 3

)→ +∞. (11.5)

We shall apply Theorem 11.1.6, showing first that rk � θ−1(w)hk, where hk =
h(tk/2) is the maximum of the surgery radii on [tk/2, tk]. Recall that h(tk/2) �
δ(tk/2)r(tk/2) � η(tk/2)r(tk) by Definition 11.1.4, hence h(tk/2)� r(tk) for large
k. It then suffices to show the following:
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Assertion 11.2.11. rk � r(tk) for large k.

Proof of Assertion 11.2.11. We argue by contradiction. Up to extracting a subse-
quence, assume that rk < r(tk) for all k. Let us show that

inf{R(x′, tk)rk2 | x′ ∈ B(xk, tk, rk)} → +∞.

If this is not true, then let c ∈ (1,+∞) and x′
k ∈ B(xk, tk, rk) be such that

R(x′
k, tk) < crk

−2. Consider a point zk on the segment [ykx′
k] such that R(zk, tk) =

crk
−2. We apply the Curvature-Distance Theorem 6.1.1 at (zk, tk) with A =

2c1/2. Since every point of scalar curvature greater than R(zk, tk), hence greater
than r(tk)−2, has an (ε0, C0)-canonical neighbourhood, when (1 + tk)R(zk, tk) �
Q(A, ε0, C0), we get the upper bound R � Λ(A, ε0, C0)R(zk, tk) on the ball
B(zk, tk, AR(zk, tk)−1/2) = B(zk, tk, 2rk). In particular R(yk, tk) � Λcrk−2 which
is a contradiction. Hence inf{R(x′, tk)rk2 | x′ ∈ B(xk, tk, rk)} → +∞.

From that we deduce that for k large enough, the scalar curvature onB(xk, tk, rk)
is much greater than rk−2. This implies that each point of the ball is the centre of
an (ε0, C0)-canonical neighbourhood, of size much smaller than rk. We now recall
that xk is in the w-thick part of (M, tk

−1g(tk)) and hence that volB(xk, tk, rk) �
wrk

3 by the very definition of rk. The sub-ball lemma (Lemma D.1.6) applied to
the ball of radius rk/2 yields a ball B(yk, tk, θ0(w)rk/2) ⊂ B(xk, tk, rk) all of whose
sub-balls B(z, r) ⊂ B(yk, tk, θ0(w)rk/2) have (1 − ε0)-almost Euclidean volume.
However consider a sub-ball B(z, r) in an ε0-neck included in B(yk, tk, θ0(w)rk/2)
with r = ε0

−1R(z, tk) being the radius of the ε0-neck. We obtain that volB(z, r) ≈
ε0

−12r is much less than r3. This gives a contradiction, proving the assertion.

We now finish the proof of Lemma 11.2.9. Since ρ′
k → 0, we have

θ−1(w)hk � rk = ρ′
k

√
tk � r̄(w′)

√
tk.

From Theorem 11.1.6, P (xk, tk, rk,−τ̂ rk2) is unscathed and |Rm| � K̂rk
−2 there.

Hence R � 6Krk−2, contradicting (11.5).

At last we can prove assertion (ii) of Theorem 11.1.7: fix w > 0, a sequence
tn →∞ and a sequence of points xn such that for each n, xn belongs to the w-thick
part of (M, (tn)−1g(tn)). Set r equal to the parameter ρ̄ given by Lemma 11.2.9
and choose sequences ξn → 0 and An → ∞. Applying Proposition 11.2.7 and
Hamilton’s Compactness Theorem C.3.1, we obtain a subsequence converging to
some complete pointed 3-manifold of sectional curvature constant equal to −1/4.
By the already proved part (i), the limit has finite volume.

11.2.3 Locally controlled curvature: proof of part (iii)

In this subsection we prove that g( · ) has locally controlled curvature in the sense
of Perelman, which is part (iii) of Theorem 11.1.7. Precisely, we check that for
every w′ > 0 there exists r̄ > 0,K0,K1 > 0 and t0 ∈ (0,+∞) such that for x ∈M
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and t > t0, for all r ∈ (0, r̄], if B(x, r) ⊂ (M, t−1g(t)) satisfies Rm � −r−2 and
volB(x, r) � w′r3, then |Rm(x)| � K0r

−2 and |∇Rm(x)| � K1r
−3.

We shall apply Theorem 11.1.6, with parameters r̂, T̂ , θ̂, K̂ and τ̂ depending
on w′. Set r̄ := r̂ and consider, for r ∈ (0, r̄] and t � T̂ , a ball B(x, r) ⊂
(M, t−1g(t)) as above. Denote by h the maximum of the function h( · ) on [t/2, t],
i.e., h = h(t/2). If r

√
t > θ̂−1h, then Theorem 11.1.6 applies and says that the

neighbourhood (for the unscaled metric) P (x, t, r
√
t,−τ̂(r√t)2) is unscathed and

|Rm| < K̂(r
√
t)−2 there. The bound on the covariant derivative is then obtained

from Shi’s estimate (see [MT07], Theorem 3.29). The conclusion for the rescaled
metric t−1g(t) follows.

In the sequel we then argue by contradiction, assuming r
√
t � θ−1h. Let

xk ∈ Mk, tk → +∞ and hk = h(tk/2), rk → 0 such that rk
√
tk � θ−1hk, be

sequences such that B(xk, rk) ⊂ (M, tk
−1g(tk)) is a counterexample. Up to taking

a subsequence there are two cases.
Case 1. rk

√
tk � θ−1hk and R(xk, tk) � r(tk)−2.

We then have that (xk, tk) is the centre of a canonical neighbourhood. Prop-
erty (4.4), p. 40, leads to |∇Rm | < C0|Rm|3/2 on this neighbourhood, and
in particular at (xk, tk). Thus it suffices to estimate from above |Rm(xk, tk)|
by const. (rk

√
tk)−2, and for this to show that R(xk, tk) is bounded above by

c(rk
√
tk)−2, where c depends on w′ only. Pinching Lemma 4.4.7 then allows us to

conclude. We argue by contradiction and assume that

R(xk, tk)(rk
√
tk)2 → +∞,

possibly after taking a subsequence. Then we can repeat the proof of Lemma
11.2.9, starting at equation (11.5). Indeed, the Distance-Curvature Theorem 6.1.1
implies that the infimum of R( · , tk)(rk

√
tk)2 on B(xk, tk, rk

√
tk) goes to +∞. As

(rk
√
tk)−2 � θ2hk

−2 � r(tk)−2 for all k large enough, the ball B(xk, tk, rk
√
tk)

is totally covered by canonical neighbourhoods of very small size compared to rk.
We then take a ball B(yk, tk, θ0(w′)(rk

√
tk)) ⊂ B(xk, tk, rk

√
tk) given by Sub-

Ball Lemma D.1.6, all of whose sub-balls have (1− ε0)-almost Euclidean volume.
Considering an ε0-neck included in one of these sub-balls, whose volume is not
almost Euclidean, gives the contradiction.

Case 2. rk
√
tk � θ−1hk and R(xk, tk) < r(tk)−2.

We note (using Definition 11.1.4) that

Qk := |R(xk, tk)|+ r(tk)−2 < 2r(tk)−2 � hk
−2 � 2(rk

√
tk)−2θ−2.

If P (xk, tk, (2C0
√
Qk)−1,−(8C0Qk)−1) is unscathed, then the Curvature-Distance

Lemma 6.1.2 shows that R � 4Qk � (rk
√
tk)−2 on this neighbourhood. Pinching

Lemma 4.4.7 implies that |Rm| � (rk
√
tk)−2 on the same neighbourhood. The

lifetime of the flow being greater than (16C0)−1(rk
√
tk)2, we obtain from Shi’s es-

timate [MT07], Theorem 3.29, the upper bound |∇Rm | � c(rk
√
tk)−3 at (xk, tk),

where c is independent of k, reaching a contradiction.
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Now the estimate R � 4Qk � 8r(tk)−2 holds on B(xk, tk, (2C0
√
Qk)−1) ×

(−τ, 0], if τ ∈ [0, (8C0Qk)−1] and if this set is unscathed. As 8r(tk)−2 � hk
−2,

which is below the curvature scale of surgeries on [tk/2, tk], this proves that
P (xk, tk, (2C0

√
Qk)−1,−(8C0Qk)−1) are in fact unscathed, and finishes the proof

of Theorem 11.1.7.

Notes

Theorem 11.1.3 corresponds to Proposition 6.3 in [Per03b]. Theorem 11.1.6 to
Corollary 6.8 of [Per03b].

Arguments of this chapter corresponds to [Per03b], Section 7.1, [KL08], Sec-
tions 86–87, Lemma 92.13.

Remark 11.2.12. In Corollary 6.8 of [Per03b], the conclusion is that R < K̂r−2

on P (x, t, r/4,−τ̂ r2). The extension to |Rm| follows from Pinching Lemma 4.4.7.
The extension to the parabolic ball of radius r follows from part (c) of Theo-
rem 11.1.3. The setting above is made for later convenience.
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Chapter 12

Refined estimates for
long-time behaviour

In this chapter, we prove the technical Theorems 11.1.3 and 11.1.6, stated and
used in the previous chapter to prove the thin-thick decomposition theorem. Sec-
tion 12.1 is devoted to Theorem 11.1.3. The proof of Theorem 11.1.6 is given in
Section 12.2.

We assume throughout that M is a closed, orientable, irreducible, nonspherical
3-manifold.

12.1 Spatial extension of local estimates: proof of
Theorem 11.1.3

For convenience we recall the statement of this theorem:

Theorem 12.1.1 (Theorem 11.1.3). For every positive number A there exist posi-
tive numbers κ, K̄, K̄ ′, r̄ and a nonincreasing function t �→ δ̄A(t) with the following
property. Let g( · ) be a Ricci flow with r( · ), δ( · )-bubbling-off on M with nor-
malised initial condition, and let (x, t, ρ) have the following properties. Assume
that 0 < ρ <

√
t/2, that δ( · ) < δ̄A(t) on [t/2, t], and that

(i) P (x, t, ρ,−ρ2) is unscathed,

(ii) |Rm| � ρ−2 there,

(iii) volB(x, t, ρ) � A−1ρ3.

Then the following assertions hold true:

(a) The solution is κ-noncollapsed on scales less than ρ in B(x, t, Aρ).

(b) Every point of B(x, t, Aρ) of scalar curvature at least K̄ρ−2 admits a canon-
ical neighbourhood.

155
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(c) If ρ � r̄
√
t, then R � K̄ ′ρ−2 on B(x, t, Aρ).

Recall that part (a) has been proved in Section 10.4. Parts (b) and (c) are
tackled in Sections 12.1.1 and 12.1.2 respectively.

12.1.1 Canonical neighbourhoods: proof of part (b)

As usual we argue by contradiction. As in the proof of Proposition B, the goal
is to prove that a sequence of counterexamples subconverges, after rescaling, to a
κ-solution for some κ > 0.

We fix A > 0, a sequence K̄α → +∞, and δ̄α( · ) be a sequence of nonincreasing
functions going to zero. We assume that δ̄α( · ) � δ̄A′( · ) where

A′ = max
{

υ−1(1)
υ−1(10−2)

10−3/2A, 20A
}
,

and δ̄A′( · ) is the function given by part (a) of Theorem 12.1.1. We assume also
that

δ̄α(t) � δ̄per

(
t, 1− 1

t
, r(t)
)
,

which is the parameter given by Persistence Theorem 8.1.2.
For each α, we assume there exists a counterexample. Let tα ∈ [0,+∞) and

gα( · ) be a Ricci flow with r( · ), δα( · )-bubbling-off on Mα, such that δα(t) �
δ̄α(tα) for t ∈ [tα/2, tα], and assume that there exists

• ρα ∈ (0,
√
tα/2] and xα ∈ Mα such that P (xα, tα, ρα,−(ρα)2) is unscathed

and has curvature |Rm| � (ρα)−2 and volB(xα, tα, ρα) � A−1(ρα)3;

• yα ∈ B(xα, tα, Aρα) such that R(yα, tα) � K̄α(ρα)−2 and that (yα, tα) is
not the centre of an (ε0, C0)-canonical neighbourhood.

We observe that R(yα, tα) < r(tα)−2, and hence that K̄α(ρα)−2 < r(tα)−2. It
follows that 2K̄α < tαr(tα)−2. Since t r(t)−2 is bounded on finite intervals, tα →
+∞.

We first refine the choice of ‘bad’ points (xα, tα) using a standard point picking
argument.

In the sequel, for the sake of simplicity, we shall suppress the indices α.

Lemma 12.1.2 (Point picking). For all α large enough, there exist t̄ ∈ [t−ρ/2, t]
and x̄ ∈ B(x, t̄, 2Aρ) such that Q̄ := R(x̄, t̄) � K̄ρ−2, (x̄, t̄) is not the centre of an
(ε0, C0)-canonical neighbourhood but every (x′, t′) such that

t̄− 1
4
K̄Q̄−1 � t′ � t̄, dt′(x′, x) < dt̄(x, x̄) + K̄1/2Q̄−1/2,

and R(x′, t′) � 2Q̄, is centre of an (ε, C0)-canonical neighbourhood.
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ρ
t

x x̄

t̄
x̄

K̄Q̄−1

4

s

ds(·, x) � dt̄(x̄, x) + K̄1/2Q̄−1/2

Q̄ = R(x̄, t̄)

2Aρ

Proof of Lemma 12.1.2. Starting with (y, t), we inductively define (yi, ti) as fol-
lows. We set Qi = R(yi, ti). If there exists (y′, t′) such that ti− 1

4K̄Qi
−1 � t′ � ti,

dt′(y′, x) < dti(x, yi) + K̄1/2Qi
−1/2, R(y′, t′) � 2Qi, and (y′, t′) is not centre of an

(ε0, C0)-canonical neighbourhood, then we set (yi+1, ti+1) := (y′, t′). Otherwise,
(x̄, t̄) := (yi, ti) satisfies the requirement. We observe that as long as the sequence
is not stationary, we have

Qi = R(yi, ti) � 2Qi−1 � 2iQ0 � 2iK̄ρ−2,

and Qi < r(ti)−2 � r(t)−2 < +∞ (α is fixed here). The sequence thus becomes
stationary for i large enough. Since ti+1 ∈ [ti − 1

4K̄Qi
−1, ti], we have ti − ti+1 �

1
4K̄Qi

−1 � 1
42−iρ2, from which we deduce

t− ti+1 �
i∑

j=0

tj − tj+1 � 1
4

∞∑
j=0

2−jρ2 = ρ2/2.

On the other hand

dti+1(yi+1, x) < dti(yi, x) + K̄1/2Qi
−1/2

< Aρ+
i∑

j=0

K̄1/2Qj
−1/2 < Aρ+

∞∑
j=0

(
√

2)−jρ < 2Aρ

since one may assume, without loss of generality, that A >
∑∞
j=0(
√

2)−j .

Lemma 12.1.3. There exists κ′ = κ′(A) > 0 such that for all α large enough,
g( · ) is κ′-noncollapsed on scales less than ρ on B(x, t̄, 2Aρ).
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Proof. We shall apply part (a) of Theorem 12.1.1 to the ball B(x, t̄, 10−1ρ), with
the constantA′ which satisfiesA′10−1ρ � 2Aρ. Let us check the assumptions of the
theorem at (x, t̄). We first remark that 10−1ρ �

√
t̄/2 as t̄ � t− ρ2/2 � t/2 � ρ2.

Since |Rm| � ρ−2 on P (x, t, ρ,−ρ2) and t̄ � t − ρ2/2, it follows from the
distance-distortion lemma (Lemma 2.2.7) that

10−1 � g(t)
g(t̄)

� e4ρ
−2(ρ2/2) = e2 � 10,

and
B(x, t, 10−2ρ) ⊂ B(x, t̄, 10−1ρ) ⊂ B(x, t, ρ).

The neighbourhood P (x, t̄, 10−1ρ,−10−2ρ2) is thus unscathed and satisfies the
required curvature bound. Moreover, using the Bishop–Gromov inequality:

volg(t̄)B(x, t̄, 10−1ρ) � 10−3/2 volg(t)B(x, t̄, 10−1ρ)

� 10−3/2 volg(t)B(x, t, 10−2ρ)

� 10−3/2 υ−ρ−2(10−2ρ)

υ−ρ−2(ρ)
volg(t)B(x, t, ρ)

� 10−3/2 υ−1(10−2)
υ−1(1)

A−1ρ3

� A′−1(10−1ρ)3.

Recall that δ̄α( · ) < δ̄A′( · ). Part (a) of Theorem 12.1.1 yields a constant
κ = κ(A′) such that g( · ) is κ-noncollapsed on B(x, t̄, A′10−1ρ) on scales less
than 10−1ρ. We deduce that g( · ) is 10−3κ′-noncollapsed at scales less than ρ, on
B(x, t̄, A′10−1ρ) ⊃ B(x, t̄, 2Aρ). Thus Lemma 12.1.3 is proved by setting κ′ :=
10−3κ.

We now consider the parabolic rescalings

ḡ( · ) = R(x̄, t̄)g
(
t̄+

·
R(x̄, t̄)

)
,

and we argue as in the proof of Proposition B in order to extract a subsequence con-
verging towards a κ-solution. Using Theorem 4.2.11 and Definition 5.1.1, this will
give a contradiction for α large enough. Unless otherwise stated we work with these
rescaled metrics. We note that (x̄, 0) does not have an (ε0, C0)-canonical neigh-
bourhood, but all points (x′, t′) such that t′ ∈ [−K̄/4, 0], dt′(x′, x) < d0(x̄, x) +
K̄1/2 and R(x′, t′) � 2 do have such neighbourhoods. In the sequel, we set1

P̃ := {(x′, t′) | t′ ∈ [−K̄/4, 0], dt′(x′, x) < d0(x̄, x) + K̄1/2}.
Since δα( · ) goes to 0, one can check that Lemma 9.2.1 is still valid, although

δα( · ) is now a function. For convenience we give this modified statement:
1Note that this is not a parabolic neighbourhood. This entails some complications.
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Lemma 12.1.4. For all positive numbers K, Ā, τ , there exists α0 = α0(K, Ā, τ) ∈
N such that for all α � α0, if |Rm| � K on B(x̄, 0, Ā)×(−τ, 0], then P (x̄, 0, Ā,−τ)
is unscathed.

Step 1. The sequence (M, ḡ( · ), x̄)α subconverges towards a partial Ricci flow
(M∞, g∞( · ), x∞), where g∞(0) is complete and g∞(t) has nonnegative curvature
operator.

Proof of Step 1. Let us check that arbitrarily large (in space) parabolic neigh-
bourhoods are unscathed with bounded curvature. From the Curvature-Distance
Theorem 6.1.1, for all Ā > 0, there exist Q = Q(Ā) > 0 and Λ = Λ(Ā) > 0 such
that if (x′, t′) satisfies

(i) (1 + t′)R(x′, t′) � Q,

(ii) every y ∈ B(x′, t′, ĀR(x′, t′)−1/2) such that R(y, t′) � 2R(x′, t′) has an
(ε0, C0)-canonical neighbourhood,

then R(z, t′) � ΛR(x′, t′) for all z ∈ B(x′, t′, ĀR(x′, t′)−1/2).
Assumption (ii) is satisfied at (x̄, t̄) by definition, as soon as K̄1/2 � Ā since

then B(x′, t′, ĀR(x′, t′)−1/2) ⊂ P̃ . Assumption (i) is also verified for α large
enough, since

(1 + t̄)R(x̄, t̄) � t̄K̄ρ−2 � 2K̄.

We conclude that the evolving metrics ḡ( · ) satisfy R( · , 0)�Λ(Ā) on B(x̄, 0, Ā)
for all α large enough. In order to be able to use the local compactness theorem
for flows, Theorem C.3.3, let us show that there exists τ(Ā) > 0 such that
P (x̄, 0, Ā,−τ(Ā)) is unscathed and has bounded curvature, for all α large enough.
Precisely, we now intend to exhibit an honest parabolic neighbourhood contained
in P̃ . We set K = K(Ā) := 2(Λ(Ā) + 2). We may assume this number to be large
enough so that, by Pinching Lemma 4.4.7, if R � K then |Rm | � K. We define
α1(Ā) � α0(K, Ā, (C0K)−1), where α0 is the parameter given by Lemma 12.1.4,
large enough such that for α � α1, K̄1/2 > 100Ā.

Lemma 12.1.5. For all α � α1, P (x̄, 0, Ā,−(C0K)−1) is contained in P̃ , is
unscathed and satisfies |Rm| � K(Ā).

Proof. Let us consider s ∈ [−(C0K)−1, 0], and minimal (for α fixed) such that
B(x̄, 0, Ā)× (s, 0] ⊂ P̄ and is unscathed.

As R( · , 0) � K/2 on B(x̄, 0, Ā) and every point in B(x̄, 0, Ā)×(s, 0] with scalar
curvature not smaller than 2 is the centre of an (ε0, C0)-canonical neighbourhood,
the curvature-time lemma (Lemma 6.1.3) shows that R � K on this set. It follows
that |Rm| � K and hence by Lemma 12.1.4, P (x̄, 0, Ā, s) is unscathed. We now
claim that if s > −(C0K)−1, then there exists σ > 0 such that P (x̄, 0, Ā, s−σ) ⊂ P̃ .
Recall that (x′, t′) ∈ P̃ if (for the rescaled evolving metric ḡ( · )) dt′(x′, x) <
d0(x, x̄) + K̄1/2. We shall show that if x′ ∈ B(x̄, 0, Ā), then ds(x′, x) < d0(x, x̄) +
K̄1/2/2, which suffices to prove the claim, by continuity. Let x′ ∈ B(x̄, 0, Ā), then
we have ds(x′, x) � ds(x′, x̄)+ds(x̄, x). As |Rm| � K on P (x̄, 0, Ā, s), by the usual
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t′

dt′ (·, x) � d0(x̄, x) + K̄1/2

x̄

x̄

P̃

K̄1/2

Ā

x

t = 0

s

distance distortion estimate (Lemma 2.2.7), for t′ ∈ [s, 0],

e−4C−1
0 � ḡ(0)

ḡ(s)
� e4C

−1
0 .

In particular,
ds(x′, x̄) � 10d0(x′, x̄) < 10Ā. (12.1)

In order to estimate ds(x̄, x) we shall use the additive distance-distortion,
Lemma 2.2.10, which gives a better estimate for large distances. Set r1 :=
K−1/2 � 1 (hence r−2

1 = K). For t′ ∈ [s, 0], we have |Rm| � K on B(x, t′, r1) ∪
B(x̄, t′, r1). Indeed, we have |Rm| � Q̄−1ρ−2 � K̄−1 � 1 on B(x, t′, Q̄1/2ρ/10) ⊃
B(x, t′, K̄1/2/10) ⊃ B(x, t′, r1), on the one hand. Similarly, sinceB(x̄, t′, 10−1Ā) ⊂
B(x̄, 0, Ā) by the above estimate for all t′ ∈ [s, 0], we get |Rm| � K on B(x̄, t′, r1).
Lemma 2.2.10 gives

d

dt′
dt′(x, x̄) � −4( 2

3Kr1 + r−1
1 ) � −10r−1

1 .

Integrating between s � −(C0K)−1 and t = 0 we obtain

d0(x, x̄)− ds(x, x̄) � −10C−1
0 r1 � −1.

Thus
ds(x, x̄) � d0(x, x̄) + 1.

Combining this with (12.1) and the definition of α1, we obtain

ds(x′, x) � 10Ā+ d0(x, x̄) + 1 < d0(x, x̄) + K̄1/2/2.

This finishes the proof of Lemma 12.1.5
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It follows from Lemma 12.1.3 that ḡ( · ) is κ′-noncollapsed at (x̄, 0) on scales less
than Q̄1/2ρ, hence on scales less than K̄1/2. Combined with the curvature bound
given by Lemma 12.1.5, Theorem B.1.2 shows that the injectivity radius of the
metrics ḡ(0) is bounded from below independently of α. By Theorem C.3.3, the
sequence (M, ḡ( · ), x̄)α subconverges towards a partial Ricci flow (M∞, g∞( · ), x∞)
where g∞(0) is complete. Moreover, the curvature operator of g∞(t) is nonnegative
by Proposition 6.1.6. This finishes the proof of Step 1.

Step 2. The manifold (M∞, g∞(0)) has bounded curvature.

The proof of this step is identical to the corresponding one in the proof of
Proposition B. Since the points in P (x̄, 0, Ā,−τ(A)) with scalar curvature larger
than 2 are centres of (ε0, C0)-canonical neighbourhoods for all α large enough, we
get by taking limits that each point of (M∞, g∞(0)) with scalar curvature larger
than 3 is the centre of a (2ε0, 2C0)-weak canonical neighbourhood. We conclude
in the same way that the scalar curvature of g∞(0) is bounded above by some
constant Q0.

From that we deduce that the constant K(Ā) used in Lemma 12.1.5 can be
chosen independently of Ā. From this we see that

τ0 := sup{τ > 0 | ∃K(τ) > 0,∀Ā > 0,∃α(Ā, τ),∀α � α(Ā, τ),

P (x̄, 0, Ā,−τ) ⊂ P̃ , is unscathed and |Rm| � K(τ) there}
is positive.

Step 3. There exists Q > 0 such that the scalar curvature of g∞(t) is bounded
above by Q, for all t ∈ (−τ0, 0].

The proof is identical to the one done for Proposition B, using the nonnegativity
of the curvature and the canonical neighbourhoods property.

Step 4. τ0 = +∞.

We argue as in the proof of Proposition B. We deduce from Step 3 that for all
τ ∈ (0, τ0), for all Ā > 0, for all α large enough P (x̄, 0, Ā,−τ) ⊂ P̃ , is unscathed
and with sectional curvature bounded by a constant K independent of Ā and of
α. Let us assume that τ0 < +∞. We now need to extend the above property
beyond −τ0. Let us consider τ close enough to τ0 so that τ − τ0 < 1

2 (2C0(K +
2))−1. Let s ∈ [−τ0 − 1

2 (2C0(K + 2))−1,−τ ] be minimal (depending on α) such
that B(x̄, 0, Ā) × (s, 0] is contained in P̄ and is unscathed. We can also use the
Curvature-Time Lemma 6.1.3 in order to show that B(x̄, 0, Ā) × (s, 0] has scalar
curvature (hence sectional curvatures) bounded by 2(K + 2). Lemma 12.1.4 then
shows that P (x̄, 0, Ā, s) is unscathed for α large enough depending only on Ā and
K. Let us show that P (x̄, 0, Ā, s−σ) ⊂ P̃ for σ > 0. We do the same computations
as in Step 1.

Let x′ ∈ B(x̄, 0, Ā). We set K ′ := 2(K + 2). On B(x̄, 0, Ā), we have

e−4K′|s| � ḡ(0)
ḡ(s)

� e4K
′|s| � c21,
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for some constant c1 > 0 independent from Ā and α. Thus ds(x′, x̄) � c1Ā.
As before, set r1 := K ′−1/2. Integrating inequality (2.2) given by Lemma

2.2.10 between s and 0 we find

d0(x, x̄)− ds(x, x̄) � −10r−1
1 s � −c2,

for some constant c2 > 0 independent of Ā and α. Hence

ds(x′, x) � d0(x, x̄) + c1Ā+ c2 < d0(x, x̄) + K̄1/2/2,

for α large enough depending only on Ā and τ0. By continuity, we have ds−σ(x′, x) �
d0(x, x̄) + K̄1/2 for all x′ ∈ B(x̄, 0, Ā), for σ > 0 small enough. It follows that
P (x̄, 0, Ā,−τ0 − 1

2 (2C0(K + 2))−1) ⊂ P̄ is unscathed and with curvature bounded
by K ′ for α large enough depending on Ā and on τ0. This contradicts the definition
of τ0.

It follows that τ0 = +∞, and we can conclude, as in proof of Proposition B
that a subsequence of (M, ḡ( · ), x̄) converges to a κ′-solution. As explained before,
this finishes the proof of part (b).

12.1.2 Curvature-distance estimates: proof of part (c)

Fix A > 0. Applying parts (a) and (b) of Theorem 12.1.1 with A replaced by 2A,
we obtain a constant K̄ = K̄(2A)� 1 and a function δ̄(t) = δ̄2A(t). Let Q( · , · , · )
and Λ( · , · , · ) be given by Theorem 6.1.1. Define

A′ := AK̄1/2,

Q := Q(A′, ε0, C0),
Λ := Λ(A′, ε0, C0),
K̄ ′ := K̄Λ,

r̄ := K̄
1
2Q− 1

2 .

Let us fix t > 0 and ρ ∈ (0, r̄
√
t]. We note that for all y ∈ B(x, t, 2Aρ), if

R(y, t) � K̄ρ−2 then (y, t) has an (ε0, C0)-canonical neighbourhood.
Let us show that assertion (c) holds with K̄ ′ := K̄Λ, that is R( · , t) � K̄Λρ−2

on B(x, t, Aρ). If not, there exists x′ ∈ B(x, t, Aρ) such that R(x′, t) > K̄Λρ−2.
Since R(x, t) � 6ρ−2, we can find y ∈ [xx′] such that R(y, t) = K̄ρ−2. Then

(1 + t)R(y, t) � tρ−2K̄ � r̄−2K̄ = Q,

and every point of

B(y, t, A′R(y, t)−1/2) = B(y, t, Aρ) ⊂ B(x, t, 2Aρ)

with scalar curvature not less than R(y, t) is centre of an (ε0, C0)-canonical neigh-
bourhood.
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x

2Aρ Aρ

y x′

A′R(y, t)−1/2

R � ΛR(y, t)

R(y, t) = K̄ρ−2

Theorem 6.1.1 thus shows that

R( · , t) � ΛR(y, t) = ΛK̄ρ−2

onB(y, t, A′R(y, t)−1/2) = B(y, t, Aρ). It is in particular true at x′ since dt(x′, y) <
Aρ.

This ends the proof of Theorem 12.1.1.
To conclude this section, we give a corollary to Theorem 11.1.3 which will be

useful to prove Theorem 12.2.1.

Corollary 12.1.6. For all A,w > 0 there exist positive numbers r̄1 ∈ (0, 10−3), θ̄1,
K̄1, τ̄1 and T̄1 with the following property. Let g( · ) be a Ricci flow with r( · ), δ( · )-
bubbling-off on [0,∞[, with normalised initial condition and δ( · ) � δ̄( · ). Let
x ∈M , t � T̄1, r > 0 such that

(i) θ̄−1
1 h � r � r̄1

√
t,

(ii) P (x, t, r,−r2) is unscathed,

(iii) |Rm| � r−2 there,

(iv) volB(x, t, r) � wr3.

Then P (x, t, Ar,−τ̄1r2) is unscathed and |Rm| < K̄1r
−2 there.
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Proof. Define

A′ := max
{

4A,
e3/2

8
υ−1(1)
υ−1(1/4)

w

}
,

T̄1 := 2A′

r̄1 := r̄(A′),
K̄1 := 4K̄ ′(A′),

θ̄1 := (2K1)−1/2,

τ̄1 := (4K1)−1,

where r̄ and K̄ ′ are parameters given by Theorem 12.1.1.
Let (x, t, r) be a triple that satisfies the assumptions. Set r′ := r

2 . By assump-
tions (ii) and (iii) and the multiplicative distortion lemma (Lemma 2.2.7),

4−1 � e−1 � g(t)
g(s)

� e � 4, (12.2)

for every s ∈ [t− r′2, t] = [t− r2

4 , t], hence

B

(
x, t,

r′

2

)
⊂ B(x, s, r′) ⊂ B(x, t, r)

for all such s. In particular P (x, s, r′,−r′2) ⊂ P (x, t, r,−r2). It follows that
P (x, s, r′,−r′2) is unscathed and |Rm| � r−2 � r′−2, satisfying assumptions (i)
and (ii) of Theorem 11.1.3. Moreover, by (12.2) and the above inclusion,

volg(s)B(x, s, r′) � volg(s)B
(
x, t,

r′

2

)
� e−3/2 volg(t)B

(
x, t,

r

4

)
� e−3/2 υ−1(1/4)

υ−1(1)
volg(t)B(x, t, r)

� e−3/2 υ−1(1/4)
υ−1(1)

wr3

= 8e−3/2 υ−1(1/4)
υ−1(1)

wr′3

� A′−1r′3.

Hence assumption (iii) of Theorem 11.1.3 is satisfied at (x, s, r′) for all s ∈ [t−r′2, t].
As r′ < r < r̄1

√
t � 10−3

√
t, we have r′2 � 10−6t hence s � t−r′2 � (1−10−6)t �

t/4, so r′ � 10−3
√
t � 10−32

√
s �
√
s/2. In addition,

r′ =
r

2
� r̄1

√
t

2
� r̄1
√
s,
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as required in part (c) of Theorem 11.1.3. Finally, s � t/2 � A′. Our choice
or δ̄( · ) in Definition 11.1.4 implies that Theorem 11.1.3 applies at time s for the
constant A′ (cf. Remark 11.1.5).

r2

x

r′2

P (x, s, r′,−r′2)

B(x, s,A′r′)

P (x, t, Ar,−τ̄1r2)

t

s

r′ = r/2 r

r′2

Then R < K̄ ′(A′)r′−2 = K̄1r
−2 on B(x, s,A′r′) ⊃ B(x, s, 2Ar). From θ̄−1

1 h �
r, we then have

R < K̄1θ̄
2
1h

−2 � h−2

2
� h−2(s)

2
,

hence the solution is unscathed on
⋃
s∈[t−r′2,t]B(x, s, 2Ar).

Moreover, by Lemma 4.4.7, |Rm| < K̄1r
−2 on this set. Then, using Lemma

2.2.7 as usual, we deduce that B(x, t, Ar) ⊂ B(x, s, 2Ar) for all s ∈ [t − τ̄1r2, t].
Hence

P (x, t, Ar,−τ̄1r2) ⊂
⋃

s∈[t−τ̄1r2,t]
B(x, s, 2Ar).

This completes the proof of Corollary 12.1.6.

12.2 Curvature estimates in the thick part: proof
of Theorem 11.1.6

Let us first recall the statement of Theorem 11.1.6:

Theorem 12.2.1. For all w > 0, there exist positive numbers θ̂, r̂, T̂ , τ̂ , K̂ with
the following property. Assume that g( · ) is a Ricci flow with r( · ), δ( · )-bubbling-
off on M defined on [0,∞), with normalised initial condition and δ( · ) � δ̄( · ). Let
x ∈M , t � T̂ , r > 0 be such that

(i) θ̂−1h � r � r̂
√
t, where h is the maximal surgery radius on [t/2, t],

(ii) Rm � −r−2 on B(x, t, r),
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(iii) volB(x, t, r) � wr3.

Then P (x, t, r,−τ̂ r2) is unscathed and |Rm| < K̂r−2 there.

The proof of Theorem 12.2.1 is quite involved. We shall deduce it from a
weaker statement, Theorem 12.2.3, and from Corollary 12.1.6. In the same way,
the proof of Theorem 12.2.3 is reduced to another result, Proposition 12.2.4, and
to Corollary 12.1.6. Finally, Proposition 12.2.4 is deduced from a core lemma
(Lemma 12.2.6), whose proof ends the section.

We begin the reduction by replacing assumption (iii) of Theorem 12.2.1, which
depends on w, by a stronger requirement. We need a definition:

Definition 12.2.2 (cf. Lemma D.1.6). We say that a metric ball B(x, r) has
(1− ε0)-almost Euclidian volume if volB(x, r) � (1− ε0)υ0(r).

Theorem 12.2.3. There exist positive numbers θ̂2, r̂2, τ̂2, K̂2 with the following
property. Assume that g( · ) is a Ricci flow with r( · ), δ( · )-bubbling-off on M de-
fined on [0,∞), with normalised initial condition and δ( · ) � δ̄( · ). Let (x, t, r)
satisfy

(i) θ̂−1
2 h � r � r̂2

√
t, where h is the maximal surgery radius on [t/2, t],

(ii) Rm � −r−2 on B(x, t, r),

(iii) every sub-ball of B(x, t, r) has (1− ε0)-almost Euclidean volume.

Then P (x, t, r,−τ̂2r2) is unscathed and |Rm| < K̂2r
−2 there.

The only difference to Theorem 12.2.1 is the stronger assumption on the volume
of B(x, t, r). We now deduce Theorem 12.2.1 from Theorem 12.2.3, postponing
the proof of 12.2.3.

Proof of Theorem 12.2.1 assuming Theorem 12.2.3. The idea is the following: Sub-
ball Lemma D.1.6 provides a sub-ball of B(x, t, r) all of whose sub-balls have
(1 − ε0)-almost Euclidean volume, on which we apply Theorem 12.2.3. Then we
obtain curvature bounds on the larger parabolic ball by Corollary 12.1.6.

The details are as follows. Fix w > 0 and let θ0 = θ0(w) be the parameter
given by Lemma D.1.6. Set

B := min{K̂− 1
2

2 , τ̂
1
2
2 }θ0.

Applying Corollary 12.1.6 with A = 2/B and w = (1 − ε0)υ0(1), we obtain
numbers r̄1, θ̄1, τ̄1, T̄1, K̄1. Define

θ̂ := min{Bθ̄1, θ0θ̂2},
r̂ := min{r̄1, r̂2},
T̂ := max{T̄1, T̂2},
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τ̂ := τ̄1B
2,

K̂ := K̄1B
−2.

Pick (x, t, r) satisfying the assumptions:

t � T̂ , θ̂−1h � r � r̂
√
t, Rm � −r−2 on B(x, t, r), volB(x, t, r) � wr3.

Set r′ := θ0r. By Lemma D.1.6 there exists B(x′, t, r′) ⊂ B(x, t, r) such that
every sub-ball of B(x′, t, r′) has (1− ε0)-almost Euclidean volume. Clearly Rm �
−r′−2on B(x′, t, r′). Moreover, t � T̂2 and

θ̂−1
2 h � θ̂−1θ0h � θ0r = r′ � r � r̂

√
t � r̂2

√
t,

hence Theorem 12.2.3 applies to (x′, t, r′). Therefore P (x′, t, r′,−τ̂2r′2) is un-
scathed and satisfies |Rm| < K̂2r

′−2. Set

r′′ := Br = min{K̂− 1
2

2 , τ̂
1
2
2 }r′.

This is precisely the choice such that K̂2r
′−2 � r′′−2 and τ̂2r

′2 � r′′2. Then
P (x′, t, r′′,−r′′2) is unscathed and |Rm| � r′′−2 there (see Figure 12.1).

P (x′, t, r′′,−r′′2)

x x′ rr′

P (x′, t, Ar′′,−τ̄1r′′2)
P (x′, t, r′,−τ̂2r′2)

Figure 12.1: Extending curvature bounds from a smaller ball.

We have t � T̄1 and

θ̄−1
1 h � θ̂−1Bh � Br = r′′ � r � r̂

√
t � r̄1

√
t.

Moreover, B(x′, t, r′′) ⊂ B(x′, t, r′), hence

volB(x′, t, r′′) � (1− ε0)υ0(r′′) = (1− ε0)υ0(1)r′′3.

Therefore Corollary 12.1.6 applies to the triple (x′, t, r′′) with parameters A and
(1 − ε0)υ0(1). It follows that P (x′, t, Ar′′,−τ̄1r′′2) is unscathed and |Rm| <
K̄1r

′′−2 = K̄1B
−2r−2 = K̂r−2. As Ar′′ = 2r and τ̄1r

′′2 = τ̄1B
2r2 � τ̂ r2, it

follows that P (x, t, r,−τ̂ r2) is unscathed and |Rm| < K̂r−2 there.

We now deduce Theorem 12.2.3 from Corollary 12.1.6 and the following propo-
sition, whose proof is postponed.

Proposition 12.2.4. There exist positive numbers θ̂3, r̂3, T̂3, τ̂3, K̂3 with the
following property. Assume that g( · ) is a Ricci flow with r( · ), δ( · )-bubbling-off
on [0,∞[, with normalised initial condition and δ( · ) � δ̄( · ). Let x ∈ M , t � T̂3,
and r > 0 satisfy
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(i) θ̂−1
3 h � r � r̂3

√
t, where h is the maximal surgery radius on [t/2, t],

(ii) Rm � −r−2 on B(x, t, r),

(iii) any sub-ball of B(x, t, r) has (1− ε0) almost Euclidean volume.

Then
⋃

[t−τ̂3r2,t]B(x, s, r/2) is unscathed and |Rm| < K̂3r
−2 there.

Remark 12.2.5. The proposition is weaker in the sense that it involves a union
of balls of radius r/2 rather than a parabolic ball of radius r.

Proof of Theorem 12.2.3 assuming Proposition 12.2.4. Set

τ := min
{
(4K̂3)− 1

2 , τ̂
1
2
3

}
,

B := min
{
τ− 1

2 , K̂
− 1

2
3 , 1

8

}
.

Let r̄1, θ̄1, τ̄1, T̄1, K̄1 be the parameters obtained by applying Corollary 12.1.6
with A = 1/B and w = (1− ε0)υ0(1). Define

θ̂2 := min{Bθ̄1, θ̂3},
r̂2 := min{r̄1, r̂3},
T2 := max{T̄1, T̂3},
τ̂2 := τ̄1B

2,

K̂2 := K̄1B
−2.

Choose (x, t, r) satisfying the assumptions of Theorem 12.2.3. Since t � T̂2 � T̂3
and

θ̂−1
3 h � θ̂−1

2 h � h � r̂2
√
t � r̂3

√
t,

we deduce that t and r satisfy assumption (i) of Proposition 12.2.4. Assumptions
(ii), (iii) are also satisfied, thus

⋃
[t−τ̂3r2,t]B(x, s, r/2) is unscathed and |Rm| <

K̂3r
−2 there. By the Multiplicative Distance-Distortion Lemma 2.2.7,

4−1 � g(t)
g(s)

� 4,

on B(x, t, r/4) if s ∈ [t− τr2, t]. Hence P (x, t, r/4,−τr2) ⊂ ⋃[t−τ̂3r2,t]B(x, s, r/2)
is unscathed and |Rm| < K̂3r

−2 there. Set r′ := Br. We have P (x, t, r′,−r′2) ⊂
P (x, t, r/4,−τr2) and |Rm| � r′−2. On the other hand, t � T̄1 and

θ̄−1
1 h � Bθ̂−1

2 h � Br = r′ � r̂2
√
t � r̄1

√
t.

Moreover, volB(x, t, r′) � (1 − ε0)υ0(r′) by assumption (iii). Hence the assump-
tions of Corollary 12.1.6 are satisfied for the constants A and (1− ε0)υ0(1). Then

P (x, t, Ar′,−τ̄1r′2) ⊃ P (x, t, r,−τ̂2r2)
is unscathed and |Rm| < K̄1r

′−2 = K̂2r
−2 there.
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We now turn to the proof of Proposition 12.2.4. The core of the argument
relies on the following lemma, whose proof is postponed again.

Lemma 12.2.6 (Core lemma). There exist positive numbers τ∗, K∗ such that
for any Ricci flow g( · ) on an open subset Ω ⊂ M (not necessarily complete),
τ ∈ [0, τ∗], and x ∈ Ω the following holds. Assume that

(i) for all t ∈ [−τ, 0], B(x, t, 1) ⊂ Ω is relatively compact,

(ii) g( · ) is smooth on
⋃

[−τ,0]B(x, t, 1) and Rm � −1 on this set,

(iii) volB(x, 0, 1) � (1− ε0)υ0(1).

Then

(a) R � K∗τ−1 on
⋃

[−τ/2,0]B(x, t, 1/2),

(b) volB(x,−τ, 1/4) � 1
10υ0(1/4).

Proof of Proposition 12.2.4 assuming Lemma 12.2.6. The proof will be by contra-
diction. We shall make another reduction, considering that the radius r is smaller
or greater than the scale r(t) of the canonical neighbourhoods. The case where
r � r(t), which is easier, will be tackled by the following lemma.

Lemma 12.2.7 (Small radius lemma). There exist positive numbers θ̂4, T̂4, τ̂4,
K̂4 with the following property. Assume that g( · ) is a Ricci flow with r( · ), δ( · )-
bubbling-off on M defined on [0,∞), with normalised initial condition and δ( · ) �
δ̄( · ). Let x ∈M, t � T̂4, r > 0 satisfy

(i) θ̂−1
4 h � r � r(t),

(ii) Rm � −r−2 on B(x, t, r),

(iii) any sub-ball of B(x, t, r) has (1− ε0)-almost Euclidean volume.

Then P (x, t, r,−τ̂4r2) is unscathed and |Rm| < K̂4r
−2 there.

Proof. Define

K0 := 32C2
0 ,

τ0 := (32C3
0 )−1,

B := min{K− 1
2

0 , τ
1
2
0 ,

1
4}.

Let r̄1, θ̄1, τ̄1, T̄1, K̄1 be the parameters given by Corollary 12.1.6 applied with
A = 1/B and w = (1− ε0)υ0(1). Then define

θ̂4 := min{Bθ̄1, (8C0)−1},
τ̂4 := τ̄1B

2,

K̂4 := K̄1B
−2,

T̂4 � T̄1 such that r(t) � r̄1
√
t if t � T̂4.
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Let (x, t, r) satisfy the assumptions of the small radius lemma. In particular
we have 8C0h � r � r(t).

Assertion 12.2.8. P (x, t, r/4,−τ0r2) is unscathed and R < K0r
−2 there.

Proof of Assertion 12.2.8. Let us prove first that R < 16C2
0r

−2 on B(x, t, r/4).
Assume that it is not true and pick x′ ∈ B(x, t, r/4) such that

R(x′, t) � 16C2
0r

−2 � 16C2
0r(t)

−2 � r(t)−2.

Then (x′, t) has an (ε0, C0)-canonical neighbourhood U , and B(x′, t, r′) ⊂ U ⊂
B(x, t0, 2r′), where r′ ∈ (C−1

0 R(x′, t)−1/2, C0R(x′, t)−1/2). In particular,

r′ � C0R(x′, t)−1/2 � r/4.

Hence 2r′ � r/2. We deduce that U ⊂ B(x′, t, r/2) ⊂ B(x, t, r). This con-
tradicts the assumption of almost Euclidean volume for sub-balls. Indeed, there
exists y ∈ U and s ≈ R(y, t)−1/2ε−1

0 � r such that B(y, t, s) is close to an ε0-neck
included in U , hence has volume

≈ R(y, t)−3/2 2
ε0

vol(S2) ≈ (sε0)3
2
ε0

vol(S2) = 2ε20 vol(S2)s3,

which is much less than (1− ε0)υ0(1)s3. Hence R < 16C2
0r

−2 on B(x, t, r/4).
Now consider s ∈ [t−τ0r2, t] minimal such that B(x, t, r/4)×(s, t] is unscathed.

By the same argument as in the proof of Lemma 6.1.3, R < 32C2
0r

−2 = K0r
−2 on

this set. On the other hand 8C0h � r hence

R < 32C2
0 (64)−1C−2

0 h−2 =
h−2

2
.

It follows that P (x, t, r/4, s − t) is unscathed and s = t − τ0r
2, proving Asser-

tion 12.2.8.

By Assertion 12.2.8, P (x, t, r/4,−τ0r2) is unscathed and R < K0r
−2 there.

Set r′ := Br. We have r′ � r/4 and r′2 = B2r2 � τ0r
2, hence P (x, t, r′,−r′2) ⊂

P (x, t, r/4,−τ0r2). Moreover, we have

θ̄−1
1 h � Bθ̂−1

4 h � Br = r′ � r � r(t) � r̄1
√
t.

In particular, Lemma 4.4.7 applies, giving |Rm| < K0r
−2 � r′−2 on P (x, t, r′,−r′2).

Recall that t � T̄1 and volB(x, t, r′) � (1 − ε0)υ0(r′). Hence the hypotheses of
Corollary 12.1.6 are satisfied for the constants A and (1 − ε0)υ0(1). Therefore
P (x, t, Ar′,−τ̄1r′2) is unscathed and

|Rm| < K̄1r
′−2 = K̄1B

−2r−2 = K̂4r
−2

there. Since P (x, t, r,−τ̂4r2) ⊂ P (x, t, Ar′,−τ̄1r′2), this proves Lemma 12.2.7
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We continue the proof of Proposition 12.2.4. We use Lemmas 12.2.6 and 12.2.7
to define the following parameters and constants:

θ̂3 := θ̂4,

T̂3 := T̂4,

τ̂3 := min
{τ∗

4
, (4K̂4)−1, τ̂4

}
,

K̂3 := max
{
K∗
τ∗
, K̂4

}
,

B :=
1
4
θ0

(
υ0(1)
10

)
,

B′ := min

{
τ̂

− 1
2

3√
2
,

(
K∗
τ̂3

)− 1
2

,
1
40

}
,

A := 4(BB′)−1.

Here θ0( · ) is the parameter given by Lemma D.1.6. Let r̄1, θ̄1, τ̄1, T̄1 and K̄1
be the parameters given by Corollary 12.1.6 applied to the above-defined A and
w = (1− ε0)υ0(1). Set

K := K̄1(BB′)−2,

σ := min
{
(4K)−1, τ̄1B

2B′2} .
Let us make an observation. For any triple (x, t, r) satisfying the assumptions

of Proposition 12.2.4, and moreover r � r(t), the conclusion of the proposition is
true. Indeed, in this case the small radius lemma (Lemma 12.2.7) applies, hence
P (x, t, r,−τ̂4r2) is unscathed and |Rm| < K̂4r

−2 there. By the multiplicative
distance-distortion lemma (Lemma 2.2.7), we get

B(x, s, r2 ) ⊂ B(x, t, r),

for all s ∈ [t−min{(4K̂4)−1, τ̂4}r2, t]. By definition of τ̂3, K̂3, this proves that the
conclusion of Proposition 12.2.4 is satisfied for such (x, t, r).

Thus, arguing by contradiction, all counterexamples to Proposition 12.2.4 sat-
isfy r � r(t). We hence assume that there exist a sequence r̂α → 0, Ricci flows
with r( · ), δα( · )-bubbling-off gα( · ) on Mα, defined on [0,+∞), with normalised
initial condition and δα( · ) � δ̄( · ), and counterexamples (xα, tα, rα), which satisfy
tα � T̂3 and

(i) θ̂−1
3 hα � rα � r̂α

√
tα, where hα is the maximal surgery radius on [tα/2, tα],

(i′) rα � r(tα),

(ii) Rm � −(rα)−2 on B(xα, tα, rα),

(iii) any sub-ball of B(xα, tα, rα) has (1− ε0)-almost Euclidean volume,
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but
⋃

[tα−τ̂3(rα)2,tα]B(xα, t, rα/2) is scathed or |Rm| < K̂3(rα)−2 is not true there.

The idea of the proof is the following. We want to consider the counterex-
amples B(x, t, r) of “smallest” radius. Then we shall apply the conclusion of
Proposition 12.2.4 to a sub-ball of much smaller, but controlled, radius, and then
extend to the previous one by Corollary 12.1.6, getting a contradiction.

For each α, define

rα0 := inf{r > 0 | a counterexample (x, t, r) exists with t � tα}.
Note that by the fact that r( · ) is nonincreasing, r � r(t) � r(tα). Hence
rα0 � r(tα) > 0. The infimum need not be attained, but clearly we can rede-
fine (xα, tα, rα) in such a way that

rα

rα0
−−−−−→
α→+∞ 1.

In particular no counterexample (x, t, r) now exists with r � rα/2 and t � tα. Let
us remark that tα → +∞. Indeed, from r(tα) � rα � r̂α

√
tα, we get

tαr(tα)−2 � (r̂α)−2 → +∞,
and the remark follows from the fact that t r(t)−2 is bounded on any finite interval
[0, T ]. Define

τα := sup

{
τ � 0 | ⋃

[tα−τ(rα)2,tα]
B(xα, t, rα) is unscathed and Rm � −(rα)−2 there

}
.

Remark 12.2.9. B(xα, tα, rα) is unscathed by definition of our surgery, and due
to the discreteness of the surgery times,

⋃
t∈[tα−τ(rα)2,tα]B(xα, t, rα) is unscathed

for some τ > 0. However, maybe τα = 0 if the curvature control is barely realised.

Lemma 12.2.10. For large α, τα > τ∗.

Proof of Lemma 12.2.10. By contradiction. Let us assume that τα � τ∗ for a
subsequence, which we consider thereafter as the sequence. Define η := σ(2τ∗)−1,
where σ has been defined on p. 171. Set τ ′α := (1− η)τα. Note that⋃

t∈[tα−τ ′α(rα)2,tα]

B(xα, t, rα)

is unscathed and Rm � −(rα)2 there.
From now on we sometimes drop the indices α. Define

t′ := t− τ ′r2 and r′ :=
1
4
θ0

(
υ0(1)
10

)
r = Br < r/2.

We claim that there exists B(x′, t′, r′) ⊂ B(x, t′, r/4), all of whose sub-balls have
(1− ε0)-almost Euclidean volume.
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x

x′

⋃
[t′,t] B(x, s, r)

r

r′

τ ′r2

τr2

P (x′, t′, r′,−τ̂3r′2)P (x′, t′, 2r,−τ̄ ′′2
1 )

t

t′

Figure 12.2: Finding a sub-ball of almost Euclidian volume.

Indeed, if t = t′ we can take x′ = x. If not, observe that τ ′ � τ∗, and that (up
to rescaling the metric by r−2), the hypotheses of Lemma 12.2.6 are satisfied on⋃

s∈[t−τ ′r2,t]

B(x, s, r).

Then by Lemma 12.2.6 (b) we have

volB
(
x, t′,

r

4

)
� 1

10
υ0

(r
4

)
=

1
10
υ0(1)

(r
4

)3
.

Then we apply Lemma D.1.6 to B(x, t′, r/4) (after rescaling by ( r4 )−2) to get a
ball

B

(
x′, t′, θ0

(
υ0(1)
10

)
r

4

)
⊂ B
(
x, t′,

r

4

)
,

satisfying the required assertion. Let us now check that the triple (x′, t′, r′) sat-
isfies the assumptions of Proposition 12.2.4 for large α (recall that we omit some
mentions to α). In particular we must have

θ̂−1
3 h′ � r′ � r̂α

√
t′,

where now h′ = max[t′/2,t′] h
α( · ).

Recall that h( · ) is nonincreasing and h( · ) � δ( · )r( · ). Clearly, [t′/2, t′] ⊂
[t/4, t], as

t′ = t− τ ′r2 � t− τ ′r̂2t � (1− 10−6)t.
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On the one hand, using the fact that η(tα) → 0 in Definition 11.1.4 of δ̄( · ),
for large α we have

r′ = Br � Br(t) � θ̂−1
3 r( t4 )δ̄( t4 ) � θ̂−1

3 r( t4 )δ( t4 ) � θ̂−1
3 h( t4 ) � θ̂−1

3 h( t
′
2 ) � θ̂−1

3 h′.

On the other hand,

r′ = Br � Br̂
√
t � r̂

√
t′B
√

t
t′ � r̂

√
t′. (12.3)

Finally recall that tα → ∞ hence t′α � tα/2 � T̂3 for large α. Assumption
(ii) of Proposition 12.2.4 is clearly true as r′ < r and (iii) holds by definition of
B(x′, t′, r′). Finally, as r′α < rα

2 and t′α � tα, the conclusion of Proposition 12.2.4
holds true by definition of rα and r0α. Then⋃

s∈[t′−τ̂3r′2,t′]

B(x′, s, r′/2)

is unscathed and |Rm| < K̂3r
′−2 there. We now need to extend the curvature

control to B(x, s, r) using Corollary 12.1.6. Before doing this we need better
curvature estimates. Note that on the set above, by the curvature pinched toward
positive property, we have (see Section 4.4)

Rm � −φs(R) � −φs(K̂3r
′−2) = −φ0((1 + s)K̂3r

′−2)
(1 + s)K̂3r′−2

K̂3 · r′−2 � −r′−2

for large α. Indeed, using (12.3) we get t′ − τ̂3r′2 � t′ − τ̂3r̂2t′ � t′/2, hence

(1 + s)K̂3r
′−2 � t′

2
r′−2 � r̂−2

2
→∞,

as α goes to +∞. Doing the parabolic rescaling by 4r′−2 at (x′, t′), one finds that⋃
[−4τ̂3,0]

B(x′, s, 1)

is unscathed and Rm � −1 there. Applying Lemma 12.2.6 (a) (note that 4τ̂3 � τ∗),
we obtain R < K∗

4τ̂3
on ⋃

[−2τ̂3,0]

B(x′, s, 1/2),

hence, unscaling and using Pinching Lemma 4.4.7, we get |Rm| < K∗
τ̂3
r′−2 on⋃

[t′− τ̂3
2 r

′2,t′]

B(x′, s, r′/2).

Set r′′ := B′r′, where B′ has been defined on p. 171. Then |Rm| < r′′−2 on the
set above. Using the multiplicative distance-distortion lemma (Lemma 2.2.7),

B(x′, t′, r′′) ⊂ B(x′, s, 10r′′) ⊂ B(x′, s, r
′
4 ),
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for s ∈ [t′ − r′′2, t′]. Then

P (x′, t′, r′′,−r′′2) ⊂
⋃

[t′− τ̂3
2 r

′2,t′]

B(x′, s, r
′
4 )

and hence it is unscathed. Let us check that the assumptions of Corollary 12.1.6
hold true at (x′, t′, r′′) for the constants A = 4(BB′)−1 and (1 − ε0)υ0(1). As
before, for large α we have

r′′ = BB′r � BB′r(t) � θ̄−1
1 r( t4 )δ̄( t4 ) � θ̄−1

1 h( t4 ) � θ̄−1
1 h′.

On the other hand, since t′ � (1− 10−6)t, we have

r′′ = BB′r � r̂α
√
tBB′ � r̄1

√
t′.

Finally, t′ � (1−10−6)t � T̄1 for large α. Then P (x′, t′, Ar′′,−τ̄1r′′2) is unscathed
and |Rm| < K̄1r

′′−2 = K̄1(BB′)r−2 = Kr−2 there by Corollary 12.1.6. Since
Ar′′ = 4r, we also have |Rm| < Kr−2 on P (x, t′, 2r,−τ̄1(BB′)2r2) (recall that
dt′(x, x′) < r/4). Using the distance-distortion lemma, we deduce that⋃

[t′−σr2,t′]
B(x, s, r) ⊂ P (x, t′, 2r,−τ̄1(BB′)2r2),

where σ has been defined at the beginning of the proof. By the same pinching
argument as before, we deduce that Rm � −r−2 on this set. We thus have obtained
that, for large α (see Figure 12.2),⋃

[t−(τ ′+σ)r2,t]

B(x, s, r)

is unscathed and Rm � −r−2 there. But

τ ′ + σ = (1− η)τ + 2ητ∗ � τ − ητ∗ + 2ητ∗ � τ + ητ∗

contradicting the definition of τα. This proves Lemma 12.2.10.

We now conclude the proof of Proposition 12.2.4. Having obtained that τα > τ∗
for large α, we get by definition of τα that⋃

[t−τ∗r2,t]

B(x, s, r)

is unscathed and Rm � −r−2 there. Recall that the sub-balls of B(x, t, r) have
(1− ε0)-almost Euclidean volume, and in particular B(x, t, r) itself. Hence we can
apply (after rescaling) Lemma 12.2.6 a) at (x, t, r) to get that R < K∗

τ∗
r−2 � K̂3r

−2

on ⋃
[t− τ∗

2 r
2,t]

B(x, s, r2 ) ⊃
⋃

[t−τ ′
2r

2,t]

B(x, s, r2 ).

This proves Proposition 12.2.4.
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It remains to prove Lemma 12.2.6.

Proof of Lemma 12.2.6. We begin with a time-dependent estimate, which will be
sufficient to prove part (a) of Lemma 12.2.6.

Sublemma 12.2.11. There exists L > 0, τ� > 0 such that under the assumptions
(i) and (ii) of Lemma 12.2.6, if τ ∈ [0, τ�] then the scalar curvature satisfies

R < L(t+ τ)−1 on
⋃

t∈[−τ,0]
B(x, t, 1

2 ).

Proof of Sublemma 12.2.11. We argue by contradiction. If the sublemma is not
true there exist τk → 0, Lk → +∞, gk( · ) Ricci flows on Ωk, smooth on Bk =⋃

[−τk,0]B(xk, t, 1
2 ) where xk ∈ Ωk. The sectional curvature is bounded below by

−1 on Bk and volB(xk, 0, 1) � (1 − ε0)υ0(1). Finally there exist points (x′′
k , t

′′
k)

such that x′′
k ∈
⋃

[−τk,0]B(xk, t, 1
2 ) and t′′k ∈ [−τk, 0], contradicting the conclusion,

that is
R(x′′

k , t
′′
k) � Lk(t′′k + τk)−1.

Define

C :=
υ−1(1/4)
4υ−1(1)

∈ (0, 10−1), (12.4)

tk := inf{t ∈ [−τk, 0] | volB(xk, t′, 1) � C(1− ε0)υ0(1) for all t′ ∈ [t, 0]}. (12.5)

By continuity tk < 0, and we can assume moreover that −1 � −τk � tk.
The first step of the proof is to obtain on [tk, 0] a curvature bound as in

Sublemma 12.2.11, −τk being replaced by tk. Then we have to prove that in fact,
tk = −τk, and this a contradiction. We begin with the curvature bound:

Assertion 12.2.12. There exists L′ such that, for k large enough,

R < L′(t− tk)−1 on
⋃

[tk,0]

B(xk, t, 1
2 ).

Proof of Assertion 12.2.12. If it is not true, then up to taking a subsequence, there
exists L′

k → +∞ and (x′
k, t

′
k) ∈
⋃

[tk,0]B(xk, t, 1/2)× [tk, 0] with

R(x′
k, t

′
k) � L′

k(t
′
k − tk)−1.

Now (x′
k, t

′
k) may not be the “best” point with this property; we have to choose a

point with almost maximal curvature. This is done in the following point-picking
claim, whose proof is postponed at the end of the section.

Let Ak := 1
25

√
L′
k and Hk := Ak

max( 1
5 ,9C(3)) where C(n) is the constant given by

Lemma 2.2.11. We may assume Ak � 2.
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Claim (Point-picking claim). There exists (x̄k, t̄k) with t̄k ∈ [tk, 0], such that Q̄k =
R(x̄k, t̄k) � L′

k(t̄k−tk)−1 and t̄k−HkQ̄
−1
k > tk, and such thatB(x̄k, t̄k, AkQ̄

−1/2
k ) ⊂

B(xk, t̄k, 2/3) and R < 2Q̄k on⋃
[t̄k−HkQ̄

−1
k ,t̄k]

B(x̄k, t, AkQ̄
−1/2
k ) ⊂

⋃
(tk,0]

B(xk, t, 1)

2/3

(x′
k, t

′
k)

(x̄k, t̄k)

tk

t = 0
xk

1

1

Figure 12.3: Point-picking: finding (x̄k, t̄k) with local curvature estimates.

Using the point-picking claim, we continue the proof of Assertion 12.2.12. After
rescaling by Q̄k at (x̄k, t̄k) we get a sequence ḡk( · ) satisfying

Rḡk
< 2 on

⋃
[Hk,0]

B(x̄k, t, Ak),

and Rm(ḡk( · )) � −Q̄−1
k → 0 as k →∞. Since t̄k ∈ (tk, 0] we have a lower bound

on the volume of B(x̄k, t̄k, AkQ̄
−1/2
k ). Indeed, on a Riemannian manifold whose

sectional curvature is not smaller than −1, any ball B(x, r) ⊂ B(x0, 2/3) satisfies

volB(x, r)
rn

� cn volB(x0, 1),

for a universal constant cn, by Bishop–Gromov’s comparison inequality. Applying
this to the unscaled metrics, we get

volB(x̄k, t̄k, AkQ̄
−1/2
k ) � c3 volB(x̄k, t̄k, 1)(AkQ̄

−1/2
k )3

� c3C(1− ε0)υ0(1)(AkQ̄
−1/2
k )3,

and, after rescaling,

volB(x̄k, 0, Ak) � c3C(1− ε0)υ0(1)A3
k.
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Since Ak →∞ and R(x, t) � 2 on this last ball, we have a positive lower bound
on the injectivity radius of ḡk(0) at x̄k by Theorem B.1.2. This allows us to apply
the local version of Hamilton’s Compactness Theorem C.3.3 to get a complete
limit Ricci flow ḡ∞( · ) defined on Ω∞× (−∞, 0], which has nonnegative curvature
operator, bounded sectional curvature and is ancient (recall that Hk → ∞) and
non flat.

Let us denote by V(t) the asymptotic volume of ḡ∞(t). Since Ak → ∞, the
above volume estimate shows that V(0) > 0. By Theorem 4.2.2, ḡ∞( · ) cannot be
a κ-solution.

This means that for each κ > 0 there exist xκ, tκ and rκ such that Rm∞ � r−2
κ

on B(xκ, tκ, rκ) and volB(xκ, tκ, rκ) < κr3κ. Recall that in nonnegative curvature,
r−n volB(x, r) is nonincreasing. It follows that V(tκ) < κ. On the other hand,
since the curvature is nonnegative, V(t) is also nonincreasing in t. Indeed, for
U ⊂ Ω∞

d vol(U)
dt

= −
∫
U

Rdvg∞ � 0.

Moreover, the additive distance-distortion lemma (Lemma 2.2.10) shows that
dt � d0 + c|t| for t < 0, where c denotes a generic constant. This implies that
B(xκ, 0, r) ⊂ B(xκ, tκ, r + c|tκ|). Consequently

volB(xκ, 0, r)
r3

�
volg∞(0)B(xκ, tκ, r + c|tκ|)

(r + c|tκ|)3
(r + c|tκ|

r

)3
�

volg∞(tκ)B(xκ, tκ, r + c|tκ|)
(r + c|tκ|)3

(r + c|tκ|
r

)3
,

which gives, by letting r go to infinity, V(0) � V(tκ) < κ. Hence V(0) � κ for all
κ > 0, a contradiction. This ends the proof of Assertion 12.2.12.

To conclude the proof of Sublemma 12.2.11, we need a last distance comparison
estimate. We recall that C(3) is the constant of Lemma 2.2.11.

Assertion 12.2.13. For any L � 1 and a ∈ (0, 1/2), there exists τ(L, a) > 0 with
the following property. Assume that for some τ ∈ [0, τ(L, a)],

Rm � −1 and R < L(t+ τ)−1, on
⋃

[−τ,0]
B(x, t, 1/2),

then
dt(x, ·) � d0(x, ·) + 4C(3)(L|t|) 1

2 on B(x, 0, a)× [−τ, 0].

Proof of Assertion 12.2.13. Define

η :=
1
3

(
1
2
− a
)
> 0,

τ(L, a) :=
(

η

4C(3)

)2

L−1.
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Let τ ∈ [0, τ(L, a)] and t′ ∈ [−τ, 0] be minimal such that B(x, 0, a) ⊂ B(x, t, 1
2 −η)

for all t ∈ [t′, 0]. Consider t ∈ [t′, 0] and x′ ∈ B(x, 0, a). Then B(x′, t, η) ⊂
B(x, t, 1/2). Indeed, if y ∈ B(x′, t, η) then

dt(x, t) � dt(x, x′) + dt(x′, y) < 1/2− η + η = 1/2.

By assumption Rm � −1 on B(x, t, 1/2), hence denoting ν � μ � λ its eigenvalues,

Rm � λ =
R

2
− μ− ν � L(t+ τ)−1

2
+ 2 � L(t+ τ)−1,

on this ball. Applying Lemma 2.2.11 at time t with constant K = 2L(t + τ)−1,
we get

d

dt
dt(x, x′) � −C(3)(2L)1/2(t+ τ)−1/2.

Integrating between t and 0 we get

d0(x, x′)− dt(x, x′) � −2C(3)(2L)1/2((t+ τ)1/2 − τ1/2) � −2C(3)(2L)1/2|t|1/2.

In particular,

dt′(x, x′) < d0(x, x′) + 4C(3)(L|t′|) 1
2 < d0(x, x′) + 4C(3)(Lτ)

1
2 < a+ η � 1

2
− 2η.

It follows that B(x, t′, a) ⊂ B(x, 0, 1
2 − 2η), hence that t′ = −τ . This proves

Assertion 12.2.13.

An immediate consequence of Assertion 12.2.13 is that

B(x, 0, a) ⊂ B(x, t, a+ 4C(3)(L|t|) 1
2 ) if t ∈ [−τ(L, a), 0].

Recall that by Assertion 12.2.12, we have for large k,

R < L′(t− tk)−1 on
⋃

[tk,0]

B(xk, t, 1/2).

Hence the assumptions of Assertion 12.2.13, with the constant L′ and a = 1
4 , are

satisfied on [tk, 0] when k is large enough so that tk ∈ [−τ(L′, 1
4 ), 0]. Since tk → 0,

Assertion 12.2.13 implies

B

(
xk, 0,

1
4

)
⊂ B
(
xk, tk,

1
4

+ 4C(3)(L′|tk|) 1
2

)
⊂ B(xk, tk, 1),

for k large enough. Then, using again the Bishop–Gromov inequality when Rm �
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−1, we have for k large enough,

volg(tk)B(xk, tk, 1) � volg(tk)B(xk, 0, 1
4 )

� e6tk volg(0)B(xk, 0, 1
4 )

� e6tk
υ−1( 1

4 )
υ−1(1)

volg(0)B(xk, 0, 1)

� e6tk
υ−1( 1

4 )
υ−1(1)

(1− ε0)υ0(1)

� 2C(1− ε0)υ0(1),

the last inequality using (12.4) on p. 176. If tk > −τk the above estimate con-
tradicts the definition (12.5) of tk. Indeed by continuity volg(tk)B(xk, t, 1) �
C(1− ε0)υ0(1) on [tk − σ, 0] for some σ > 0. We thus have proved that tk = −τk.
Then Assertion 12.2.12 contradicts the assumptions made at the beginning of the
proof of Sublemma 12.2.11 that we have no such scalar curvature bound on Bk.
This finishes the proof of Sublemma 12.2.11.

We set K∗ := 2L, where L is given by Sublemma 12.2.11, and

τ∗ := min

{
τ�, τ

(
L,

1
4

)
,

(
10−3

4C(3)

)2

L−1

}
,

where τ� is given by Sublemma 12.2.11, and τ(L, 1
4 ) is the parameter of Asser-

tion 12.2.13.

Then part (a) of Lemma 12.2.6 follows from Assertion 12.2.12, by noticing that

R < L(t+ τ)−1 <
2L
τ
, if t ∈ [−τ/2, 0].

Let us check that part (b) of Lemma 12.2.6 holds with the above choices. By
Sublemma 12.2.11 and Assertion 12.2.13, if τ ∈ [0, τ∗], then

B(x, 0, 1/4− 4C(3)(Lτ)
1
2 ) ⊂ B(x,−τ, 1/4).

Set ζ := 4C(3)(Lτ)
1
2 � 4C(3)(Lτ�)

1
2 � 10−3. Then using as in the computation



12.2. CURVATURE ESTIMATES IN THE THICK PART: PROOF 181

above that Rm � −1, we get

volg(−τ)B(x,−τ, 1
4 ) � volg(−τ)B(x, 0, ( 1

4 − ζ))
� (e−4τ )3/2 volg(0)B(x, 0, ( 1

4 − ζ))

� (e−4τ∗)3/2
υ−1( 1

4 − ζ)
υ−1(1)

volg(0)B(x, 0, 1)

� e−6τ∗ υ−1( 1
4 − ζ)

υ−1(1)
(1− ε0)υ0(1)

� e−6τ∗ υ−1( 1
4 − ζ)

υ−1(1)
43(1− ε0)υ0( 1

4 )

� 1
10
υ0( 1

4 )

as υ−1(1/5)
υ−1(1)

43 � 0.42.
This finishes the proof of Lemma 12.2.6.

We end this chapter by proving the point-picking claim of p. 177.

Proof of the Point-Picking Claim. Since we are working with a fixed Riemannian
manifold we may drop the index k. Recall that we assume that there exists

(x′, t′) ∈
⋃

s∈[t,0]

B(x, s, 1
2 )× [t, 0]

such that R(x′, t′) � L′(t′ − t)−1. We are looking for a ‘better’ point satisfying
this property. More precisely, the claim is that there exists (x̄, t̄) with t̄ ∈ [t, 0],
such that Q̄ = R(x̄, t̄) � L′(t̄− t)−1 and t̄−HQ̄−1 > t, and such that

B(x̄, t̄, AQ̄−1/2) ⊂ B(x, t̄, 2/3),

and R < 2Q̄ on ⋃
[t̄−HQ̄−1,t̄]

B(x̄, s, AQ̄−1/2) ⊂
⋃
(t,0]

B(x, s, 1).

We recall that A := 1
25

√
L′ and H := A

max( 1
5 ,9C(3)) .

We prove first that there exists (x̄, t̄) such that

1. R(y, s) < 2Q̄ = R(x̄, t̄) for all (y, s) such that s ∈ [t̄ −HQ̄−1, t̄], ds(y, x) <
dt̄(x̄, x) +AQ̄−1/2,

2. B(x̄, t̄, AQ̄−1/2) ⊂ B(x, t̄, 2/3).
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Let us start with a space-time point (x1, t1) such that x1 ∈ B(x, t1, 1/2),
t1 ∈ [t, 0] and Q1 = R(x1, t1) � L′(t1 − t)−1. The point (x1, t1) may satisfy
the curvature requirement, in which case we take (x̄, t̄) = (x1, t1). In that case

HQ−1
1 � HL′−1(t1 − t) � 1

4
(t1 − t)

(we may assume L′ � 1). If this is not the case, there exists (x2, t2) with t2 ∈
[t1 −HQ−1

1 , t1] ⊂ [t1 − 1
4 (t1 − t), t1] ⊂ [t, 0], such that

dt2(x2, x) < dt1(x1, x) +AQ
−1/2
1 <

1
2

+AQ
−1/2
1 ,

and Q2 = R(x2, t2) � 2R(x1, t1) = 2Q1. Let us notice that with our choices

t2 −HQ−1
2 � t2 − H

2
Q−1

1 � t2 − 1
8
(t1 − t) � t1 − 1

4
(t1 − t)− 1

8
(t1 − t).

Either (x2, t2) is the point that we are looking for or we iterate the procedure.
It has to stop after finitely many iterations. Indeed, if not one finds a sequence
(xn, tn) such that tn+1 ∈ [tn −HQ−1

n , tn],

dtn+1(xn+1, x) < dtn(xn, x) +AQ−1/2
n

and Qn+1 = R(xn+1, tn+1) � 2Qn. We thus get

(t1 − tn) � (t1 − t2) + · · ·+ (tn−1 − tn)
�
∑
n�1

HQ−1
n

� HQ−1
1

∑
n�0

2−n

= 2HQ−1
1 � 2

H

L′ (t1 − t) � 1
2
(t1 − t).

Similarly

dtn(xn, x) < dtn−1(xn−1, x) +AQ
−1/2
n−1

< dt1(x1, x) +A

n−1∑
k=1

Q
−1/2
k

< dt1(x1, x) +AQ
−1/2
1

∑
n�0

(
√

2)−n
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< dt1(x1, x) + 4AQ−1/2
1

<
1
2

+ 4
A√
L′ (t1 − t)

1/2

<
1
2

+ 4
A√
L′ .

(Recall we assume that t � 1.) Now with our choice of A we get 1/2+4A/
√
L′ <

2/3, that is
B(xn, tn, AQ−1/2

n ) ⊂ B(x, t, 2/3).

This yields the contradiction if the above sequence is not finite since thenR(xn, tn)→
+∞ and we are in a compact (part of) a smooth Ricci flow.

We now show that

B

(
x̄, s,

A

2
Q̄−1/2

)
⊂ B(x, s, dt̄(x̄, x) +AQ̄−1/2). (12.6)

Let s′ ∈ [t̄ −HQ̄−1, t̄] be minimal such that (12.6) holds on [s′, t̄]. We will show
that for t ∈ [t′, t̄],

B

(
x̄, t,

A

2
Q̄−1/2

)
⊂ B
(
x, t, dt̄(x̄, x) +

3A
4
Q̄−1/2

)
,

proving that s′ = t̄−HQ̄−1. We have to show that

ds(y, x̄) <
A

2
Q̄−1/2 implies ds(y, x) < dt̄(x̄, x) +

3A
4
Q̄−1/2.

By the triangle inequality we have for such y and s,

ds(y, x) < ds(y, x̄) + ds(x̄, x) <
A

2
Q̄−1/2 + ds(x̄, x).

Hence it suffices to show that

ds(x̄, x) < dt̄(x̄, x) +
A

4
Q̄−1/2.

This comes as before from Lemma 2.2.11,

d

ds
ds(x̄, x) � −C(3)K1/2,

where K > 0 bounds from above the Ricci curvature. As Rm � −1 and R < 2Q̄
we get Rm � Q̄+ 2 � 2Q̄ on B(x, s, dt̄(x̄, x) +AQ̄−1/2). Setting K = 4Q̄ we get

d

ds
ds(x̄, x) � −2C(3)Q̄

1
2 .

Integrating for s ∈ [s′, t] we obtain, as s′ ∈ [t̄−HQ̄−1, t̄ ],

dt̄ � ds′ − 2C(3)HQ̄− 1
2 .
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This yields

dt̄(x̄, x) � ds(x̄, x)− 2C(3)HQ̄− 1
2 > ds′(x̄, x)− A

4
Q̄− 1

2 .

This proves (12.6) for all s ∈ [t̄−HQ̄−1, t̄ ].
Now for each s ∈ [t̄−HQ̄−1, t̄ ], we have

B(x̄, s, AQ̄−1/2) ⊂ B
(
x, s, dt̄(x̄, x) +

3A
2
Q̄−1/2

)
⊂ B(x, s, 1)

as dt̄(x̄, x) < 2
3 and AQ̄−1/2 � AL′−1/2 = 1

25 .

Notes

Theorem 12.1.1 is similar to [Per03b], Proposition 6.3. Our proof follows [Per03b],
[KL08].

Theorem 12.2.1, Theorem 12.2.3 and Lemma 12.2.6 are similar to [Per03b],
Corollary 6.8, [Per03b], Proposition 6.4, and Lemma [Per03b], Lemma 6.5, re-
spectively. Our proof of Theorem 12.2.3 uses arguments of [Per03b], [KL08], but
slightly rearranged. Precisely we prove first the weaker version 12.2.4.
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Chapter 13

Collapsing, simplicial volume
and strategy of proof

13.1 Collapsing and weak collapsing

The phenomenon of collapsing has received much attention in all dimensions from
Riemannian geometers: a sequence of Riemannian metrics on a fixed manifold
collapses with bounded curvature if all the sectional curvatures remain bounded
while the injectivity radius goes uniformly everywhere to zero. For example, any
flat torus Tn admits such sequences, obtained by choosing a fixed metric g0 and
rescaling the metric on some of the S1 factors. More generally, any product of
a closed manifold by a closed flat manifold has a sequence which collapses with
bounded curvature.

J. Cheeger and M. Gromov [CG86], [CG90] show that a manifold M admits
a sequence of collapsing metrics with bounded curvature if and only if it carries
a so-called F-structure, which is a kind of generalised torus action. If M is a
closed, orientable 3-dimensional manifold, then the existence of an F -structure on
M implies that of a partition into orbits which are circles and tori, such that each
orbit has a saturated neighbourhood. It follows that 3-manifolds supporting an
F -structure are precisely the so-called graph manifolds. A compact, orientable 3-
manifold is called a graph manifold if it is a union of circle bundles glued together
along their boundaries. This important class of 3-manifolds first appeared in
D. Mumford’s seminal work on the topology of normal singularities of algebraic
surfaces in 1961 [Mum61]. Shortly thereafter, F. Waldhausen [Wal67] gave the
general definition of graph manifolds and classified them.

Another, more geometric, description of the class of graph manifolds is as
follows: M is a graph manifold if and only if all the summands in its Kneser
decomposition are graph manifolds; moreover, ifM is irreducible, then it is a graph
manifold if and only if all pieces in its JSJ decomposition are Seifert fibred. Hence
this class includes the class of compact Seifert manifolds discussed in Chapter 1.

187
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R. Hamilton, based on Theorem 1.2.2, suggested that Cheeger–Gromov theory
might be used in his Ricci flow program for proving the Geometrisation Conjec-
ture. However, it is still unknown as of this writing whether the sequences of
metrics which can be extracted from the long-time analysis of Ricci flow with
bubbling-off have bounded sectional curvature (compare Theorem 1.3.4). In order
to circumvent this difficulty, Perelman introduced a different notion of collapsing,
which fits better with the results he obtained about the long-time behaviour of
Ricci flow and where no global upper curvature bound is imposed.

Let us give some definitions, which are due to Perelman up to slight modi-
fications. Let (M, g) be a Riemannian 3-manifold and ε > 0 be a real number.
Recall from Chapter 1 that a point x ∈M is ε-thin with respect to g if there exists
0 < ρ � 1 such that on the ball B(x, ρ), the sectional curvature is greater than or
equal to −ρ−2 and the volume of this ball is less than ε ρ3.

Definition 13.1.1. Let M be a 3-manifold and gn be a sequence of Riemannian
metrics on M .

• We say that gn has locally controlled curvature in the sense of Perelman if
it has the following property: for all ε > 0 there exist r̄(ε) > 0, K0(ε) > 0,
K1(ε) > 0, such that for n large enough, if 0 < r � r̄(ε), x ∈ (M, gn) satisfies
volB(x, r)/r3 � ε, and if the sectional curvature on B(x, r) is greater than
or equal to −r−2, then |Rm(x)| < K0r

−2 and |∇Rm(x)| < K1r
−3.

• We say that gn collapses in the sense of Perelman if it has locally controlled
curvature in the sense of Perelman and there exists a sequence of positive
numbers εn going to zero such that for every n, each point of M is εn-thin
with respect to gn.

In [Per03b], Perelman stated a collapsing result without proof, a special case
of which is the following:

Theorem 13.1.2 (Perelman’s collapsing theorem, closed case, see also [MT08],
[CG09], [SY05], [KL10]). Let M be a closed, orientable 3-manifold. If M admits
a sequence of Riemannian metrics that collapses in the sense of Perelman, then
M is a graph manifold.

The main result of Part IV, Theorem 13.1.3 below, can be viewed as a weak
collapsing result in the sense that we allow the thick part to be nonempty, but
require a control on its volume. For sequences of metrics coming from the Ricci
flow, the thick part is not compatible with a global collapse [Ham99], but we do
not use this in our approach. In addition, Theorem 13.1.3 applies also to other
sequences of metrics.

Recall the definition of the topological invariant V0(M): a link in M is a
(possibly empty, possibly disconnected) closed 1-submanifold of M . A link is
hyperbolic if its complement is a hyperbolic 3-manifold (necessarily of finite volume,
as M is closed). The invariant V0(M) is defined as the infimum of the volumes
of all hyperbolic links in M . When M is closed, this quantity is finite because
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any closed 3-manifold contains a hyperbolic link [Mye82]. Since the set of volumes
of hyperbolic 3-manifolds is well-ordered, this infimum is always realised by some
hyperbolic 3-manifold H0; in particular, it is positive.

The following is a restatement of Theorem 1.3.13:

Theorem 13.1.3 (Weak collapsing). Let M be a non-simply connected, closed,
orientable, irreducible 3-manifold. Suppose that there exists a sequence gn of Rie-
mannian metrics on M satisfying the following:

(1) The sequence vol(gn) is bounded.

(2) For all ε > 0 and for every sequence xn ∈M so that xn is ε-thick with respect
to gn for each n, the sequence of pointed manifolds (M, gn, xn) subconverges
in the pointed C2-topology towards a hyperbolic pointed manifold with volume
strictly less than V0(M).

(3) The sequence gn has locally controlled curvature in the sense of Perelman.

Then M is a Seifert fibred manifold or contains an incompressible torus.

Remark 13.1.4. Since any irreducible graph manifold is Seifert or contains an
incompressible torus, the conclusion of Theorem 13.1.3 is logically equivalent to
saying that M is a graph manifold or contains an incompressible torus. In the
proof, we will in fact assume that M does not contain any incompressible torus,
and show that M is a graph manifold.

Remark 13.1.5. A special case of Theorem 13.1.3 is when the sequence gn col-
lapses in the sense of Perelman. In a sense, this amounts to Condition (2) being
vacuously true. In this case, Hypothesis (1) is not used, so that we recover Perel-
man’s collapsing theorem for closed manifolds (Theorem 13.1.2) under some extra
(in fact unnecessary) topological hypotheses on M . This special case is sufficient
to complete the proof of the Geometrisation Conjecture provided one is willing to
apply some minimal surface arguments of Hamilton’s (cf. [Ham99]) to show that
in the case of sequences of metrics coming from Ricci flow with bubbling-off, the
tori appearing in the boundary of the thick part are incompressible. Namely, when
the irreducible manifold has infinite fundamental group, the flow runs for infinite
time and there are two possibilities: either there is a thick part and Hamilton’s
argument [Ham99] provides a hyperbolic piece in the geometric decomposition of
the manifold, or the manifold collapses and (since it is not simply connected) the
collapsing case in Theorem 13.1.3 applies. We will not use [Ham99] here, preferring
to deal with the incompressibility issue by an argument inspired by M. Anderson’s
approach to geometrisation [And02]. See also the comments in Section 13.4.

13.2 Simplicial volume

The purpose of this section is to review the notion of simplicial volume, sometimes
called Gromov’s norm, introduced by M. Gromov in [Gro82]. This is a key tool
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in the proof of Theorem 13.1.3. In particular, we need an additivity result for the
simplicial volume under gluing along incompressible tori (see [Gro82], [Kue03],
[Som81]) which implies that the simplicial volume of a 3-manifold admitting a ge-
ometric decomposition is proportional to the sum of the volumes of the hyperbolic
pieces. In particular, such a manifold has zero simplicial volume if and only if it
is a graph manifold. We also use in an essential way Gromov’s vanishing theorem,
recalled below as Theorem 13.2.6.

The main references for this section are [Gro82], [Iva85].

13.2.1 Definition and first examples

The simplicial volume of a compact, orientable n-manifold M (possibly with
boundary) is defined as

‖M‖ := inf

{∑k
i=1 |λi|

∣∣∣∣
∑k
i=1 λiσi is a cycle representing a fundamental

class in Hn(M,∂M ; R), where σi : Δn →M
is a singular simplex and λi ∈ R, i = 1, . . . , k.

}

It follows from the definition that if f : (M,∂M)→ (N, ∂N) is a proper map,
then

‖M‖ � |deg(f)| ‖N‖.
In particular, if a manifold admits a self-map of degree d with |d| > 1, then its
simplicial volume is zero. Hence, for the n-sphere and the n-torus, ‖Sn‖ = ‖Tn‖ =
0. The same formula implies that the simplicial volume of spherical or Euclidean
manifolds is zero. In general, the simplicial volume of a Seifert fibred manifold
vanishes, by the following result of [Yan82]:

Proposition 13.2.1 (Yano). The simplicial volume of a compact, connected,
smooth manifold M which admits a nontrivial smooth S1-action is zero.

The following is a non-vanishing result [Gro82], [Thu80]. We let vn denote the
volume of the regular ideal hyperbolic n-simplex.

Theorem 13.2.2 (Gromov–Thurston). If M is a hyperbolic n-manifold with torus
or empty boundary, then

‖M‖ =
1
vn

vol(M).

13.2.2 Simplicial volume and geometric decompositions

The following result is useful for computing the simplicial volume of a 3-manifold
from its geometric decomposition [Gro82], [Kue03], [Som81], provided it exists.
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Theorem 13.2.3 (Gromov). The simplicial volume of 3-manifolds is additive for
connected sums and gluing along incompressible tori.

Combining 13.2.1, 13.2.2 and 13.2.3, we get:

Corollary 13.2.4. If M is a closed, orientable 3-manifold admitting a geometric
decomposition, and H1, . . . , Hk are the hyperbolic pieces of this decomposition, then

‖M‖ =
1
v3

k∑
i=1

vol(Hi).

Remark 13.2.5. By applying this corollary, once we know thatM has a geometric
decomposition, then M is a (possibly reducible) graph manifold iff ‖M‖ = 0.

We will also use a vanishing theorem of Gromov. We say that a covering {Ui}i
by open sets of a topological space X has dimension at most k if every point of X
belongs to at most k+ 1 open sets of the covering. The dimension of the covering
is defined by taking a minimum of such k; it equals the dimension of the nerve of
the covering.

A connected subset U ⊂M is said to be amenable if the image of its fundamen-
tal group π1(U) → π1(M) is amenable. This definition extends to disconnected
subsets by requiring that all connected components should be amenable.

Theorem 13.2.6 (Gromov’s vanishing theorem). Let M be a closed and orientable
n-manifold. If M admits a covering of dimension at most n− 1 by amenable open
sets, then ‖M‖ = 0.

This theorem is proved in [Gro82], [Iva85] using bounded cohomology, a notion
dual to simplicial volume. Namely, [Gro82], §3.1, implies that the image of the
bounded cohomology of an n-dimensional manifold M in the usual cohomology
vanishes in dimension n. Thus the dual to the fundamental class in Hn(M ; R) is
not a bounded cohomology class. By duality this is equivalent to the vanishing of
the simplicial volume, cf. [Gro82], §1.1.

13.2.3 Simplicial volume and collapsing

Philosophically, the connection between collapsing and simplicial volume is that
any manifold which admits a collapsing sequence in any reasonable sense should
have zero simplicial volume. The model for such a result is Gromov’s isolation
theorem [Gro82], p. 14. His argument extends to collapsing in the sense of Perel-
man. Although we will not need this fact, we give a quick sketch, since it provides
an example of a covering argument, a technique essential to our proof of Theo-
rem 13.1.3.

Let M be a closed, orientable 3-manifold and gn be a sequence of Rieman-
nian metrics on M which collapses in the sense of Perelman. For n large enough,
thanks to the local control on the curvature, each point x ∈ M has a neigh-
bourhood Ux in (M, gn) which is close to a metric ball in some manifold of non-
negative sectional curvature, whose volume is small compared to the cube of the
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radius (cf. Proposition 14.2.1). These neighbourhoods will be called local mod-
els throughout Part IV. By Corollary B.2.6, they have virtually abelian, hence
amenable fundamental groups.

Adapting Gromov’s arguments, one can extract from this open cover a finite
cover U1, . . . , Up, of dimension at most 2. Since these open sets are essentially
small metrics balls, it is not difficult to obtain a 3-dimensional covering. The
crucial part in the argument is to go down from dimension 3 to dimension 2, using
the upper bound on the volumes of the Ui’s, which ultimately comes from the
collapsing hypothesis.

One concludes the argument by simply quoting Gromov’s vanishing theorem
(Theorem 13.2.6).

The argument sketched above makes plausible the idea that it should be possi-
ble to detect the geometry of a 3-manifold (i.e., graph vs. hyperbolic) from collaps-
ing via the simplicial volume. However, it is not sufficient to prove Theorem 13.1.3,
since we do not know (yet) that the manifold M has a geometric decomposition.
The trick to overcome this problem is explained in the next section. The strategy
will consist in transforming the original problem into one about irreducible mani-
folds with non-empty boundary, where Thurston’s geometrisation theorem can be
used, since these manifolds are Haken (cf. Theorem 1.1.5).

13.3 Sketch of proof of Theorem 13.1.3

13.3.1 The collapsing case

For simplicity, we first do the sketch under the extra assumption that the sequence
collapses in the sense of Perelman, i.e., the case treated in the paper [BBB+10].
Assumption (2) is then vacuous, and as we will see, Assumption (1) is not needed.

Let M be a 3-manifold satisfying the topological hypotheses of Theorem 13.1.3
and let gn be a sequence of Riemannian metrics on M which collapses in the sense
of Perelman.

We begin by covering M by local models as explained in the previous section.
The next step, Proposition 14.3.1, consists in finding a local model U such that
all connected components of M \ U are Haken. This requirement is equivalent
to irreducibility of each connected component of M \ U , because each connected
component of M \ U has nonempty boundary. Since M is irreducible, it suffices
to show that U is not contained in a 3-ball. This is in particular the case if U is
homotopically nontrivial, i.e., the homomorphism π1(U) → π1(M) has nontrivial
image.

The proof of the existence of a homotopically nontrivial local model U is done
by contradiction: assuming that all local models are homotopically trivial, we
construct a covering of M of dimension less than or equal to 2 by homotopically
trivial open sets (Assertion 14.3.2). By a result of J. C. Gómez-Larrañaga and
F. González-Acuña [GLGA92], corresponding to Corollary A.4.2 here, a closed
irreducible 3-manifold admitting such a covering must have trivial fundamental
group. This is where we use the hypothesis that M is not simply connected.
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The last step (Subsection 14.3.3) is again a covering argument, but done rel-
atively to some fixed homotopically nontrivial local model U . It shows that any
manifold obtained by Dehn filling on Y := M \ U has a covering of dimension
less than or equal to 2 by virtually abelian open sets, and therefore has vanishing
simplicial volume. We conclude using Proposition 14.0.1, which states that if Y is
a Haken manifold with boundary a collection of tori and such that the simplicial
volume of every Dehn filling on Y vanishes, then Y is a graph manifold.1

13.3.2 The general case

A few arguments are needed in order to carry over the previous arguments to the
general case: the thick part may now be non-empty, and needs to be taken care
of. As already mentioned, we will assume that M contains no incompressible tori,
and show that M is a graph manifold.

Let (M, gn) satisfy the hypotheses of Theorem 13.1.3. In the first step (Sec-
tion 14.1), we cover the thick part by submanifolds Hi

n approximating compact
cores of limiting hyperbolic manifolds. This is where Hypothesis (1) gets used,
via a Margulis constant, to control the number of such ‘quasi-hyperbolic’ pieces.
Their boundaries consist of tori, which by assumption are compressible.

We then cover the thin part by local models (Section 14.2) as explained be-
fore. The bulk of the proof is in Section 14.3: we consider the covering of M by
approximately hyperbolic submanifolds and local models of the thin part and per-
form two covering arguments: the first one (Assertion 14.3.2) proves the existence
of a local model homotopically nontrivial M ; the second one (Assertion 14.3.15)
is done relatively to this homotopically nontrivial subset and proves that M is a
graph manifold.

13.4 Comments

Theorem 13.1.3 is taken from the unpublished manuscript [BBB+07], which was
posted on arXiv in June 2007. A shortened version tackling only the collapsing
case appeared as [BBB+10]. The idea behind the notion of weak collapsing is
to combine the concept of collapsing Riemannian manifolds with that of volume
comparison, which can be traced back at least to early work of Thurston and
Gromov. Our direct sources of inspiration are, besides Perelman’s collapsing the-
orem [Per03b], Theorem 7.4, the argument for incompressibility of tori outlined
in [Per03b], §8, and the observation (which we learned from M. Gromov, and can
also be found in an earlier version of the Kleiner–Lott notes) that the scalar cur-
vature can be used in place of Perelman’s λ-invariant. For a detailed discussion of
this, and the relation with the σ-constant, see [KL08], [And05].

1As already mentioned in [BP01], [BLP05], Proposition 14.0.1 is a consequence of the geome-
trisation of Haken manifolds, additivity of the simplicial volume mentioned above, and Thurston’s
hyperbolic Dehn filling theorem.
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There is an abundant literature on collapsing in Riemannian geometry. In
particular, there are by now several texts on Perelman’s collapsing theorem or some
variant of it: an article by Shioya and Yamaguchi [SY05], the above-mentioned
paper by the authors of the present monograph [BBB+10], an arXiv preprint by
Morgan and Tian [MT08], and two more recent preprints by Cao and Ge [CG09],
and Kleiner and Lott [KL10].

We shall not attempt a detailed comparison between all versions of the theorem,
in particular various minor technical differences such as the restriction ρ � 1 in the
definition of the thin part (hence flat manifolds are not collapsed), or the number
of derivatives involved in the curvature control hypothesis. It is important to
note that the primary role of such a theorem is to be a step in a proof of the
Geometrisation Conjecture. Viewed a posteriori, i.e., after the Geometrisation
Conjecture has been established, the result(s) become easier to prove, and some of
the hypotheses appear to be unnatural and/or superfluous. More interesting is to
see which techniques are used or avoided in the proof of the collapsing theorem,
and in the deduction of the Geometrisation Conjecture from it.

Perelman’s statement (Theorem 7.4 of [Per03b]), allows the manifold to have
a nonempty boundary, imposing an ad hoc hypothesis on the geometry near the
boundary. This is essential if one wishes to prove the Geometrisation Conjecture
without using Thurston’s hyperbolisation theorem for Haken manifolds (Theo-
rem 1.1.5).

Shioya–Yamaguchi [SY05] and Cao–Ge [CG09] do not have the hypothesis of
curvature control in the sense of Perelman. In counterpart, they use deep results
on Alexandrov spaces, such as Perelman’s stability theorem [Per91] (see also the
paper by V. Kapovitch [Kap07]).

The Morgan–Tian’s proof is closest in spirit to Perelman’s and their statement
is nearly identical to [Per03b], Theorem 7.4. Thanks to the curvature control
hypothesis, they only need elementary facts about Alexandrov spaces. In our
treatment, Alexandrov spaces do not appear at all, although it should be clear to
the expert that they are lurking behind the scenes.

Unlike all other authors, we always assume that the manifold is irreducible.
This hypothesis is consistent with our choice of starting the proof of the Geometri-
sation Conjecture by quoting Kneser’s decomposition theorem (Theorem 1.1.3).
This simplifies the exposition quite a bit; however, we do not feel that mathe-
matically it makes such a great difference, because Kneser’s theorem is an ‘ele-
mentary’ result in 3-manifold topology, not significantly more difficult than Wald-
hausen’s classification of graph manifolds, which gets (at least implicitly) used
in the proof anyway. By contrast, Thurston’s hyperbolisation theorem is a deep
result, whose proof requires completely different techniques than those used by
Perelman’s (e.g. Teichmüller theory and Kleinian group theory). Hence it is nat-
ural to ask for a proof of the Geometrisation Conjecture which does not use this
theorem. This is Perelman’s original viewpoint which is developed in [KL08],
[MT08] or [CG09].

In Theorem 13.1.3, we assume that the manifold is not simply-connected. This
restriction is needed for our proof, but of course a posteriori unnecessary, since
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the only closed, simply-connected 3-manifold is S3, which is a graph manifold.
Logically, this is not a problem, since the Poincaré Conjecture follows from the
independent arguments expounded in Chapter 1 and Parts I and II. However, it
would be nice to extend the proof of Theorem 13.1.3 given in the next chapter to
cover the simply-connected case.

We believe weak collapsing to be interesting in its own right. In particular, it
leads to the refined invariant V ′

0(M) discussed in Chapter 15, which may have other
applications. It also permits us to embed the argument for incompressibility of the
boundary tori in the thick part into a general result about sequences of metrics,
independent of the Ricci flow part of the proof. Using Hamilton’s minimal surface
arguments would not make this possible, since his computation seems to be special
to Ricci flow.

To sum up, there are several results and techniques which can be used to good
effect in proving the Geometrisation Conjecture, but can also be avoided: Kneser’s
decomposition theorem, the Jaco–Shalen–Johannson splitting theorem, Thurston’s
hyperbolisation theorem, minimal surface theory, Alexandrov space theory... so
far, all authors (including us) purposefully avoid one or more of those, to the ex-
pense of making some or other part of the proof more complicated or convoluted.
If on the contrary one is willing to use all of them, one gets a more streamlined
and conceptually appealing proof. Here is a brief sketch of such a proof: first
use 3-manifold theory to reduce geometrisation to the irreducible, atoroidal case
(Theorem 1.1.6); construct Ricci flow with (r( · ), δ( · ), κ( · ))-bubbling-off. When
π1(M) is finite, use Colding–Minicozzi to show that M is spherical. When π1(M)
is infinite, prove a simplified thin-thick decomposition theorem (Theorem 1.3.4
without the condition of controlled curvature in the sense of Perelman). Then
consider the sequence gn := (4n)−1g(n). If this sequence collapses, show that
M is a graph manifold. Otherwise there is at least one hyperbolic limit. Fol-
lowing Hamilton [Ham99], prove persistence of a hyperbolic limit H. If H were
noncompact, then by Hamilton’s minimal surface argument, M would contain an
incompressible torus, contradicting the hypothesis that M is atoroidal. Hence H
is closed, and M is hyperbolic.
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Chapter 14

Proof of the weak collapsing
theorem

In this chapter we prove Theorem 13.1.3. Firstly, in Section 14.1 we investigate the
structure of the thick part. In Section 14.2 we construct local models for the thin
part. The core of the proof consists of the two covering arguments of Section 14.3.

Throughout this chapter, M is a 3-manifold satisfying the topological hypothe-
ses of Theorem 13.1.3, i.e., it is closed, orientable, irreducible and not simply con-
nected. We let gn be a sequence of Riemannian metrics satisfying Hypotheses
(1)–(3) of the same theorem. We further assume that M is atoroidal . Our
goal is to show that M is a graph manifold. As already mentioned in the previous
chapter, this implies that M is in fact Seifert fibred.

For general facts and notation about 3-manifolds, the reader is referred to
Appendix A.

We shall conclude the proof by applying the following consequence of Thurston’s
hyperbolic Dehn filling theorem (for the proof, see. [BLP05], Proposition 10.17, or
[BMP03], Proposition 9.36):

Proposition 14.0.1. Let Y be a Haken 3-manifold whose boundary is a union
of tori. Assume that any manifold obtained from Y by Dehn filling has vanishing
simplicial volume. Then Y is a graph manifold.

This proposition will be applied to the complement of a well-chosen submani-
fold V0 ⊂M , which is homeomorphic to S1×D2, T 2×I, orK2×̃I. In particular V0
is a circle bundle, so once we have proved that its complement is a graph manifold,
it follows that M itself is a graph manifold, which is the required conclusion.

For the sake of simplicity, we use the notation Mn := (M, gn). It is implicit
that any quantity depending on a point x ∈ Mn is computed with respect to the
metric gn, and thus depends also on n. For ε > 0, we denote by M−

n (ε) the ε-thin
part of Mn (i.e., the set of ε-thin points) and by M+

n (ε) its complement.

197
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14.1 Structure of the thick part

Proposition 14.1.1. Up to taking a subsequence of Mn, there exists a finite
(possibly empty) collection of pointed hyperbolic manifolds (H1, ∗1), . . . , (Hm, ∗m)
and for every 1 � i � m a sequence xin ∈Mn satisfying the following:

(i) lim
n→∞(Mn, x

i
n) = (Hi, ∗i) in the C2 topology.

(ii) For all sufficiently small ε > 0, there exist n0(ε) and C(ε) such that for all
n � n0(ε) one has M+

n (ε) ⊂ ⋃iB(xin, C(ε)).

Proof. By assumption, the sequence vol(Mn) is bounded above. Let μ0 > 0 be a
universal number such that any hyperbolic manifold has volume at least μ0.

If for all ε > 0 we haveM+
n (ε) = ∅ for n large enough, then Proposition 14.1.1 is

vacuously true, with m = 0. Otherwise, we use Hypothesis (2) of Theorem 13.1.3:
up to taking a subsequence of Mn, there exists ε1 > 0 and a sequence of points
x1
n ∈ M+

n (ε1) such that (Mn, x
1
n) converges to a pointed hyperbolic manifold

(H1, ∗1).
If for all ε > 0 there exists C(ε) such that, for n large enough, M+

n (ε) is included
in B(x1

n, C(ε)), then we are done. Otherwise there exists ε2 > 0 and a sequence
x2
n ∈ M+

n (ε2) such that d(x1
n, x

2
n)→∞. Again Hypothesis (2) of Theorem 13.1.3

ensures that, after taking a subsequence, the sequence (Mn, x
2
n) converges to a

pointed hyperbolic manifold (H2, ∗2). We iterate this construction.
Note that for each i, and for n sufficiently large, Mn contains a submanifold

C2-close to some compact core of Hi and whose volume is greater than or equal
to μ0/2. Moreover, for n fixed and large, these submanifolds are pairwise disjoint.
Since the volume of the manifolds Mn is uniformly bounded above this construc-
tion has to stop. Condition (ii) of the conclusion of Proposition 14.1.1 is then
satisfied for 0 < ε < min{ε1, . . . , εm}.

Remark 14.1.2. By Proposition 14.1.1, up to subsequence one can choose se-
quences εn → 0 and rn →∞ such that the ball B(xin, rn) is arbitrarily close to a
metric ball B(∗i, rn) ⊂ Hi, for i = 1, . . . ,m, and every point of Mn \

⋃
iB(xin, rn)

is εn-thin.

Let us fix a sequence of positive real numbers εn → 0. Let H1, . . . , Hm be
hyperbolic limits given by Proposition 14.1.1. For each i we choose a compact
core H̄i for Hi and for each n a submanifold H̄i

n ⊂ Mn and an approximation
φin : H̄i

n → H̄i. Up to renumbering, one can assume that for all n we have Mn \⋃
H̄i
n ⊂M−

n (εn), and that the H̄i
n’s are disjoint.

The hypothesis in Theorem 13.1.3 that the volume of each hyperbolic limit Hi

is less than V0 implies that for n sufficiently large no component H̄i
n is homeomor-

phic to the exterior of a link in M . Also, since we assume that M is atoroidal,
all boundary components of each H̄i

n are compressible. By classical 3-manifold
arguments based on the loop theorem and recalled in Appendix A, this implies
that each H̄i

n is contained in a 3-ball or a solid torus. Hence the thick part is
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‘topologically inessential’, which explains why we can hope to show that M is a
graph manifold.

More precisely, Lemma A.3.3 implies that for all sufficiently large n and each
i ∈ {1, . . . ,m}, there exists a connected submanifold Y in ⊂ Mn containing H̄i

n,
whose boundary is a boundary component of H̄i

n, and which is a solid torus, or
contained in a 3-ball and homeomorphic to the exterior of a knot in S3.

In the sequel we shall pass to a subsequence, so that this holds for all n.

Proposition 14.1.3. Either M is a lens space or there exists for each n a (possibly
empty) submanifold Wn ⊂Mn such that the following holds:

(i)
⋃
H̄i
n ⊂Wn.

(ii) Each connected component of Wn is a solid torus, or contained in a 3-ball
embedded in Mn and homeomorphic to the exterior of a knot in S3.

(iii) The boundary of each connected component of Wn is a connected component
of
⋃
i ∂H̄

i
n.

Proof. We take Wn to be the union of the Y in defined above. This readily implies
assertion (i). Note also that those manifolds have disjoint boundaries.

If there exist indices i, j such that Mn = Y in ∪ Y jn , then by Lemma A.4.3, M
is a lens space. Suppose this is not the case. Then for all i �= j, the submanifolds
Y in and Y jn are disjoint or one contains the other. Thus each connected component
of Wn is homeomorphic to one of the Y in’s. This yields assertions (ii) and (iii) of
Proposition 14.1.3.

14.2 Local structure of the thin part

Let us choose a sequence εn → 0 (see Remark 14.1.2). For all x ∈ M−
n (εn),

we choose a radius 0 < ρ(x) � 1, such that on the ball B(x, ρ(x)) the sectional
curvature is � −ρ−2(x) and the volume of this ball is < εnρ

3(x).
Let δ be a positive real number. Recall that a diffeomorphism f : X → Y is

(1 + δ)-bi-Lipschitz if both f and f−1 are (1 + δ)-Lipschitz. In this chapter, we
say that two Riemannian manifolds X,Y are δ-close if there exists a (1 + δ)-bi-
Lipschitz diffeomorphism between them. A (1+δ)-bi-Lipschitz embedding is a map
f : X → Y which is a (1 + δ)-bi-Lipschitz diffeomorphism onto its image.

In the following proposition we use the Cheeger–Gromoll soul theorem (Theo-
rem B.2.1).
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Proposition 14.2.1. For all D > 1 there exists n0(D) such that if n > n0(D),
then we have the following alternative. Either

(a) Mn is 1
D -close to some closed Riemannian 3-manifold of nonnegative sec-

tional curvature.

Or

(b) For all x ∈ M−
n (εn) there exists a radius ν(x) ∈ (0, ρ(x)) and a complete

open Riemannian 3-manifold Xx, with nonnegative sectional curvature and
soul Sx, such that the following properties are satisfied:

(1) B(x, ν(x)) is 1
D -close to a metric ball in Xx,

(2) there is a (1 + 1
D )-bi-Lipschitz embedding fx : B(x, ν(x)) → Xx such

that
max{d(f(x), Sx),diamSx} � ν(x)

D ,

(3) volB(x, ν(x)) � 1
Dν

3(x).

Remark 14.2.2. Since ν(x) < ρ(x), the sectional curvature on B(x, ν(x)) is
greater than or equal to − 1

ρ2(x) , which is in turn bounded below by − 1
ν2(x) .

Remark 14.2.3. By Theorem B.2.5, if Case (a) occurs, then M is a graph man-
ifold. In case (b) we can apply Corollary B.2.3. Since M is orientable and irre-
ducible, some cases are excluded. In fact the only possibilities for the soul are a
point, a circle, a 2-sphere, a 2-torus or a Klein bottle. Thus the ball B(x, ν(x)) is
homeomorphic to R3, S1 ×R2, S2 ×R, T 2 ×R or to the twisted R-bundle on the
Klein bottle.

Before starting the proof of this proposition, we prove the following lemma and
its consequence.

Lemma 14.2.4. There exists a small universal constant C > 0 such that for all
ε > 0, for all x ∈Mn, and for all r > 0, if the ball B(x, r) has volume � ε r3 and
sectional curvature � −r−2, then for all y ∈ B(x, 1

3r) and all 0 < r′ < 2
3r, the ball

B(y, r′) has volume � Cε(r′)3 and sectional curvature � −(r′)−2.

We use the function υ−κ2(r) to denote the volume of the ball of radius r in
the 3-dimensional hyperbolic space with curvature −κ2. Notice that υ−κ2(r) =
κ−3υ−1(κ r).

Proof. The lower bound on the curvature is a consequence of the monotonicity
of the function −r−2 with respect to r. In order to estimate from below the
normalised volume we apply Bishop–Gromov’s inequality (Theorem B.1.1) twice.
First, we apply it to the ball around y, increasing the radius r′ to 2

3r:

volB(y, r′) � volB(y, 2
3r)

υ−r−2(r′)
υ−r−2( 2

3r)
.
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Since υ−r−2(r′) = r3υ−1( r
′
r ) � r3( r

′
r )3C1 for C1 > 0 uniform, υ−r−2( 2

3r) =
r3υ−1( 2

3 ), and B(x, 1
3r) ⊂ B(y, 2

3r), we get

volB(y, r′) � volB(x, 1
3r)
(
r′
r

)3
C2.

Applying the Bishop–Gromov inequality again, we obtain

volB(x, 1
3r) � volB(x, r)

υ−r−2( 1
3r)

υ−r−2(r)
� r3ε

υ−1( 1
3 )

υ−1(1)
= r3εC3.

Hence volB(y, r′) � (r′)3 εC4.

The next corollary is similar to the condition of controlled curvature in the
sense of Perelman. The differences are that the conclusion is valid at each point of
some metric ball, not only the centre, and the constants may have changed. This
fact will be useful for technical purposes.

Corollary 14.2.5. For all ε > 0 there exist r̄′(ε) > 0, K ′
0(ε),K

′
1(ε) such that for

n large enough, if 0 < r � r̄′(ε), x ∈ Mn and the ball B(x, r) has volume � ε r3

and sectional curvatures � −r−2 then, for all y ∈ B(x, 1
3r), |Rm(y)| < K ′

0 r
−2

and |∇Rm(y)| < K ′
1 r

−3.

Proof. It suffices to apply Lemma 14.2.4, setting r̄′(ε) = r̄(Cε), K ′
0(ε) = K0(Cε)

and K ′
1(ε) = K1(Cε), so that we can apply the controlled curvature condition on

y ∈ B(x, 1
3r).

Proof of Proposition 14.2.1. Suppose that there existsD0 > 1 and, after re-indexing,
a sequence xn ∈Mn such that neither of the conclusions of Proposition 14.2.1 holds
with D = D0.

Set ε0 := υ0(1)
υ−1(1)

1
D0

. We shall rescale the metrics using the following radii:

Definition 14.2.6. For x ∈Mn, define

rad(x) = inf{r > 0 | volB(x, r)/r3 � ε0}.
Notice that rad(x) < ∞ because Mn has finite volume, and that rad(x) > 0,

because volB(x, r)/r3 → 4
3π when r → 0. In the following lemma, we gather some

properties which will be useful for the proof:

Lemma 14.2.7. (i) For n large enough and x ∈ M−
n (εn), one has 0 < rad(x) <

ρ(x).
(ii) For x ∈M−

n (εn), one has

volB(x, rad(x))
rad(x)3

= ε0.

(iii) For L > 1, there exists n0(L) such that for n > n0(L) and for x ∈M−
n (εn)

we have
L rad(x) � ρ(x).

In particular lim
n→∞ rad(xn) = lim

n→∞
rad(xn)
ρ(xn) = 0.
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Proof of Lemma 14.2.7. Property (i) holds as long as εn < ε0, since rad is defined
as an infimum.

Assertion (ii) is proved by continuity.
Let us prove (iii): for L > 1, we choose n0(L) so that εn < ε0

L3 for n > n0(L).
Then, for x ∈M−

n (εn) and n > n0(L),

volB(x, ρ(x)L )

(ρ(x)L )3
� L3 volB(x, ρ(x))

ρ(x)3
� L3εn � ε0.

This implies that ρ(x)/L is greater than or equal to rad(x).

Remark 14.2.8. For n large enough, from Lemma 14.2.7 (iii), we have rad(xn) <
r̄′(ε0), where r̄′(ε0) is the parameter from Corollary 14.2.5.

Corollary 14.2.9. There exists a constant C > 0 such that every sequence xn ∈
M−
n (εn) satisfies

inj(xn)
rad(xn)

� C

for n large enough.

Proof. Since rad(xn) < ρ(xn), the sectional curvatures on B(xn, rad(xn)) are
bounded from below by − 1

ρ(xn)2 > − 1
rad(xn)2 . Moreover, since rad(xn) < r̄′(ε0),

Corollary 14.2.5 implies that the sectional curvatures onB(xn,
rad(xn)

3 ) are bounded
from above by K ′

0(ε0)/rad(xn)2. This rescaled ball

1
rad(xn)

B(xn, 1
3 rad(xn))

has volume � ε0/27 (because volB(xn, 1
3 rad(xn)) � ε0(rad(xn)/3)3 by definition

of rad(xn)), radius 1/3 and curvatures with absolute value � K ′
0(ε0). Then the

local injectivity radius estimate in Theorem B.1.2 gives a uniform lower bound on
the injectivity radius at xn with this rescaled metric. This proves Corollary 14.2.9.

Having proved Lemma 14.2.7 and its corollary, we proceed with the proof of
Proposition 14.2.1. Let us consider the rescaled manifold M̄n = 1

rad(xn)Mn. We
look for a limit of the sequence (M̄n, x̄n), where x̄n is the image of xn. The ball
B(x̄n,

ρ(xn)
rad(xn) ) ⊂ M̄n has sectional curvature bounded below by −( rad(xn)

ρ(xn)

)2, which
goes to 0 when n→∞, as follows from assertion (iii) of Lemma 14.2.7.

Given L > 1, the ballB(x̄n, 3L) is obtained by rescaling the ballB(xn, 3L rad(xn)).
Since, for large n, 3L rad(xn) < ρ(xn), the sectional curvature onB(xn, 3L rad(xn))
is � − 1

ρ(xn)2 � − 1
(3L rad(xn))2 . Moreover, by Lemma 14.2.7 (ii), we have

volB(xn, 3L rad(xn))
(3L rad(xn))3

� volB(xn, rad(xn))
rad(xn)3

1
(3L)3

� ε0
(3L)3

.
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By applying Corollary 14.2.5 for n sufficiently large so that we have 3L rad(xn) �
r̄′( ε0

(3L)3 ), one gets that the curvature is locally controlled in the sense of Perelman
at each point of the ball B(xn, L rad(xn)). Therefore the curvature and its first
derivative can be bounded above on any ball B(x̄n, L) ⊂ M̄n with a given radius
L > 1.

Since the injectivity radius of the basepoint x̄n is bounded below along the
sequence, this upper bound on the curvature allows us to use Gromov’s com-
pactness theorem. By Theorem B.1.4 of the appendix, one obtains pointed C1,α-
convergence. Using the bound on |∇Rm |, this convergence is improved to C2 (see
[Ham95a], Theorem 2.3, or [Fuk90], Theorem 5.10). It follows that the pointed se-
quence (M̄n, x̄n) subconverges in the C2-topology towards a 3-dimensional smooth
manifold (X̄∞, x∞), with a complete Riemannian metric of class C2 with nonnega-
tive sectional curvature. This limit manifold cannot be closed, because that would
contradict the assumption that the conclusion of Proposition 14.2.1 does not hold.

Hence X̄∞ is open. By pointed convergence, assertion (b) (1) of Proposi-
tion 14.2.1 holds. Let S̄ be a soul of X̄∞. Let us set

ν(xn) := L rad(xn), where L � 2 diam(S̄ ∪ {x∞})D0.

For n large (to be specified later) we set

Xxn := rad(xn)X̄∞ and Sxn = rad(xn)S̄.

We then have

diam(Sxn) = rad(xn) diam(S̄) < ν(xn)/D0.

Suppose that f̄n : B(x̄n, L) → (X̄∞, x∞) is a (1 + δn)-bi-Lipschitz embedding
such that d(f̄n(x̄n), x∞) < δn, where δn is a sequence going to 0. After rescaling,
fn : B(xn, L rad(xn))→ Xxn is also a (1+δn)-bi-Lipschitz embedding. We deduce:

d(fn(xn), Sxn
) = rad(xn)d(f̄n(x̄n), S̄)

� rad(xn)(d(f̄n(x̄n), x∞) + d(x∞, S̄))

� rad(xn)δn +
ν(xn)
2D0

� ν(xn)
D0

.

This proves assertion (2) of Proposition 14.2.1 (b).

Using the facts that ν(xn) = L rad(xn) < ρ(xn), the curvature on B(xn, ν(xn))
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is � −1/ν(xn)2, L > 1 and the Bishop–Gromov inequality, we get

volB(xn, ν(xn))
υ− 1

ν2(xn)
(ν(xn))

� volB(xn, rad(xn))
υ− 1

ν2(xn)
(rad(xn))

= ε0
rad(xn)3

υ− 1
ν2(xn)

(rad(xn))

= ε0

(
rad(xn)
ν(xn)

)3 1

υ−1(
rad(xn)
ν(xn) )

= ε0
1
L3

1
υ−1( 1

L )
.

Since υ−1( 1
L ) � υ0( 1

L ) = υ0(1) 1
L3 , we find that

volB(xn, ν(xn)) � ε0
1
L3

υ−1(1)
υ−1( 1

L )
ν3(xn) � ε0

υ−1(1)
υ0(1)

ν3(xn) =
1
D0

ν3(xn),

where the last equality comes from the definition of ε0, see p. 201.
This provides the contradiction required to conclude the proof of Proposi-

tion 14.2.1.

14.3 Constructions of coverings

14.3.1 Embedding thick pieces in solid tori

Let us start by making some reductions.
If case (a) of Proposition 14.2.1 occurs for arbitrarily large D, then M is a

closed, orientable, irreducible 3-manifold admitting a metric of nonnegative sec-
tional curvature. By [Ham82], [Ham86], M is spherical or Euclidean, hence a
graph manifold. Therefore we may assume that all local models Xx produced by
Proposition 14.2.1 are noncompact.

For the same reasons, since lens spaces are graph manifolds, we can also assume
that M is not homeomorphic to a lens space, and in particular does not contain a
projective plane (cf. the beginning of Section 1.2.2).

Consider the submanifolds Wn given by Proposition 14.1.3. Assume that there
exists a component X of some Wn which is not a solid torus. From Proposi-
tion 14.1.3(ii), X is a knot exterior and contained in a 3-ball B ⊂ Mn. By
Lemma A.3.1, it is possible to replace X by a solid torus Y without changing the
global topology. Let us denote by M ′

n the manifold thus obtained. We can endow
M ′
n with a Riemannian metric g′

n, equal to gn away from Y and such that an
arbitrarily large collar neighbourhood of ∂Y in Y is isometric to a collar neigh-
bourhood ∂X in X, because the end of the interior of X is close to a hyperbolic
cusp. When n is large, this neighbourhood is thus almost isometric to a long piece
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of a hyperbolic cusp, and this geometric property will be sufficient for our covering
arguments.

Repeating this construction for each connected component of Wn which is
not a solid torus, we obtain a Riemannian manifold (M ′′

n , g
′′
n) together with a

submanifold W ′′
n satisfying the following properties:

(i) M ′′
n is homeomorphic to Mn.

(ii) M ′′
n \W ′′

n is equal to Mn \Wn and the metrics gn and g′′
n coincide on this

set.

(iii) M ′′
n \W ′′

n = Mn \Wn is εn-thin.

(iv) When n goes to infinity, there exists a collar neighbourhood of ∂W ′′
n in W ′′

n

of arbitrarily large diameter isometric to the corresponding neighbourhood
in Wn.

(v) Each component of W ′′
n is a solid torus.

For simplicity, we use the notation Mn, gn, Wn instead of M ′′
n , g′′

n, W
′′
n . This

amounts to assuming in the conclusion of Proposition 14.1.3 that all components
of Wn are solid tori.

14.3.2 Existence of a homotopically nontrivial open set

We say that a path-connected subset U ⊂ M is homotopically trivial (in M)
if the image of the homomorphism π1(U) → π1(M) is trivial. More generally,
we say that the subset U ⊂ M is homotopically trivial if all its path-connected
components have this property.

We recall that the dimension of a finite covering {Ui}i of M is the dimension
of its nerve, hence the dimension plus one equals the maximal number of Ui’s
containing any given point.

Proposition 14.3.1. There exists D0 > 1 such that for all D > D0, for every
n � n0(D) (where n0(D) is given by Proposition 14.2.1), one of the following
assertions is true:

(a) some connected component of Wn is not homotopically trivial, or

(b) there exists x ∈ Mn \Wn such that the image of π1(B(x, ν(x))) → π1(Mn)
is not homotopically trivial, where ν(x) is also given by Proposition 14.2.1.

In the proof of Proposition 14.3.1 we argue by contradiction using Corollary
A.4.2 and the fact that π1(M) is not trivial.

With the notation of Proposition 14.2.1, we may assume that for arbitrarily
large D there exists n � n0(D) such that the image of π1(B(x, ν(x))) → π1(Mn)
is trivial for all x ∈Mn \ Int(Wn) as well as for each connected component of Wn.
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Then for all x ∈Mn \ Int(Wn) we set

triv(x) = sup

⎧⎨⎩r
∣∣∣∣ π1(B(x, r))→ π1(Mn) is trivial and
B(x, r) is contained in B(x′, r′) with
curvature � − 1

(r′)2

⎫⎬⎭ .
Notice that triv(x) � ν(x), by Proposition 14.2.1 (cf. Remark 14.2.2).
The proof of Proposition 14.3.1 follows by contradiction with the following

assertion.

Assertion 14.3.2. There exists a covering of Mn by open sets U1, . . . , Up such
that the following is true:

• Each Ui is either contained in some B(xi, triv(xi)) or in a subset that defor-
mation retracts to a component of Int(Wn). In particular, Ui is homotopi-
cally trivial in M .

• The dimension of this covering is at most 2.

Since M is irreducible and non-simply connected, this contradicts Corollary
A.4.2.

To prove Assertion 14.3.2, for x ∈Mn \Wn we set

r(x) := min
{ 1

11 triv(x), 1
}
.

Lemma 14.3.3. (1) ν(x)
11 � r(x), where ν(x) < ρ(x) � 1 is given by Proposi-

tion 14.2.1.
(2) B(x, 11 r(x)) is contained in some ball B(x′, r′(x)) with curvature � − 1

(r′)2

and satisfying r(x) � 1
11 triv(x) � 2

11r
′(x).

Proof. Assertion (1) uses the assumption that B(x, ν(x)) is homotopically trivial
in Mn and the inequality ν(x) < ρ(x), because the curvature on B(x, ρ(x)) is
� −ρ(x)−2 � −ν(x)−2.

To prove (2), we shall show that B(x, triv(x)) is contained in some metric ball
B(x′, r′) with curvatures � − 1

(r′)2 and satisfying r′ � 1
2 triv(x). By definition,

there exists a sequence of radii rk ↗ triv(x) satisfying that π1(B(x, rk))→ π1(Mn)
is trivial and that B(x, rk) is contained in some B(x′

k, r
′
k) with curvature � − 1

(r′
k)2 .

Since π1(Mn) is nontrivial, Mn �⊂ B(x, rk), therefore there is a point yk ∈Mn such
that d(x, yk) = rk. By applying the triangle inequality to x, yk and x′

k, we get
rk � 2r′

k. Then the claim follows by taking a partial subsequence so that both x′
k

and r′
k converge, since we are working in a fixed Mn, that has bounded diameter.

Lemma 14.3.4. Let x, y ∈Mn \ int(Wn). If B(x, r(x)) ∩B(y, r(y)) �= ∅, then

(a) 3/4 ≤ r(x)/r(y) � 4/3;

(b) B(x, r(x)) ⊂ B(y, 4r(y)).
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Proof. To prove (a), we may assume that r(x) � r(y) and that r(x) = 1
11 triv(x) <

1. Since B(x, triv(y)− r(x)− r(y)) ⊂ B(y, triv(y)), we get

triv(x) � triv(y)− r(x)− r(y),
hence

11 r(x) = triv(x) � 11r(y)− r(x)− r(y) � 9r(y).

Thus 1 � r(x)/r(y) � 9/11 � 3/4, which proves assertion (a).
Assertion (b) follows because 2 r(x) + r(y) � ( 8

3 + 1)r(y) < 4r(y).

For n large enough, we pick points x1, . . . , xq ∈ ∂Wn in such a way that
a tubular neighbourhood of each connected component of the boundary of Wn

contains precisely one of the xj ’s and that the balls B(xj , 1) are disjoint, have
volume � 1

D and sectional curvature close to −1. Furthermore, we may assume
that B(xj , 1) is contained in some submanifold W ′

n which contains Wn and can be
retracted by deformation onto it. In particular, W ′

n and B(xj , 1) are homotopically
trivial, since we have assumed that Wn is. This implies that triv(xj) is close to 1.

Moreover, for n large enough, we may assume that B(xj , 2
3r(xj)) contains an

almost horospherical torus corresponding to a boundary component ofWn. We can
even arrange for both components of B(xj , r(xj)) \ B(xj , 2

3r(xj)) to also contain
a parallel almost horospherical torus (by going far enough into the cusp). This
allows us to retract Wn on the complement of B(xj , 2

3r(xj)).
We complete the previous finite sequence to a sequence of points x1, x2, . . . in

Mn\Int(Wn) such that the balls B(x1,
1
4r(x1)), B(x2,

1
4r(x2)), . . . are pairwise dis-

joint. Such a sequence is necessarily finite, since Mn is compact, and Lemma 14.3.4
implies a positive local lower bound for the function x �→ r(x). Let us choose a
maximal finite sequence x1, . . . , xp with this property.

Lemma 14.3.5. The balls B(x1,
2
3r(x1)), . . . , B(xp, 2

3r(xp)) cover Mn \ Int(Wn).

Proof. Let x ∈Mn \ Int(Wn) be an arbitrary point. By maximality, there exists a
point xj such that B(x, 1

4r(x))∩B(xj , 1
4r(xj)) �= ∅. From Lemma 14.3.4, we have

r(x) � 4
3r(xj) and d(x, xj) � 1

4 (r(x) + r(xj)) � 7
12r(xj), hence x ∈ B(xj , 2

3r(xj)).

Set ri := r(xi). If Wn,1, . . . ,Wn,q are the components of Wn, so that the almost
horospherical torus ∂Wn,i ⊂ B(xi, 2

3ri), for i = 1, . . . , q, we define

• Vi := B(xi, ri) ∪Wn,i, for i = 1, . . . , q;

• Vi := B(xi, ri), for i = q + 1, . . . , p.

Furthermore, each connected component of Wn,i can be retracted in order not to
intersect B(xj , 2

3rj) when j �= i.
Since ri � 1

11 triv(xi), the Vi’s are homotopically trivial. The construction of
the Vi’s and Lemma 14.3.5 imply the following:

Lemma 14.3.6. The open sets V1, . . . , Vp cover Mn.
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Let K be the nerve of the covering {Vi}. The following lemma shows that the
dimension of K is bounded above by a uniform constant.

Lemma 14.3.7. There exists a universal upper bound N on the number of open
sets Vi which intersect a given Vk.

Proof. Assume that Vi ∩ Vk �= ∅. Then B(xi, ri) ∩ B(xk, rk) �= ∅ and B(xi, ri) ⊂
B(xk, 2ri + rk) ⊆ B(xk, 4rk). On the other hand, for all i1 �= i2 such that Vi1
and Vi2 intersect Vk one has d(xi1 , xi2) � 1

4 (ri1 + ri2) � 3
8rk. Thus B(xi1 ,

3
16rk) ∩

B(xi2 ,
3
16rk) = ∅ and B(xi, 3

16rk) ⊂ B(xk, 4rk). This motivates the following
inequalities:

volB(xk, 4rk)
volB(xi, 3

16rk)
� volB(xi, 8rk)

volB(xi, 3
16rk)

� volB(xi, 11ri)
volB(xi, ri

8 )
.

Since B(xi, 11ri) is contained in some B(x′, r′) with curvatures ≥ − 1
(r′)2 , by the

Bishop–Gromov inequality this quotient is bounded from above by

υ− 1
(r′)2

(11ri)

υ− 1
(r′)2

( ri

8 )
=
υ−1( 11ri

r′ )
υ−1( ri

8r′ )
� N.

The existence of a uniform N uses r′ � 11
2 ri (Lemma 14.3.3).

Let Δp−1 ⊂ Rp denote the standard unit (p − 1)-simplex. Using 4
ri

-Lipschitz
test functions φi supported on the Vi’s, we obtain a Lipschitz map:

f :=
1∑
i φi

(φ1, . . . , φp) : Mn → Δp−1 ⊂ Rp.

Remark that the coordinate functions of f are a partition of unity subordinated
to (Vi).

We view K as a subcomplex of Δp−1, so that the range of f is contained in K.
Crucial for the following arguments is that the dimension of K is bounded from
above by the universal number N from Lemma 14.3.7.

We first show that if the φi’s are chosen properly, then the local Lipschitz
constant of f can be estimated from above:

Lemma 14.3.8. For an adequate choice of the φi’s, there is a uniform constant
L > 0 such that for each k, the restriction f |Vk

is L
rk

-Lipschitz.

Proof. Let τ : [0,+∞) → [0, 1] be an auxiliary function with Lipschitz constant
bounded by 4, which vanishes in a neighbourhood of 0 and satisfies τ |[ 13 ,+∞] ≡ 1.
Let us define φk := τ( 1

rk
d(∂Vk, ·)) on Vk and let us extend it trivially on Mn. Then

φk is 4
rk

-Lipschitz.
Let x ∈ Vk. The functions φi have Lipschitz constant � 4

3 · 4
rk

on Vk, and all
φi vanish at x except at most N + 1 of them. Since the functions

(y0, . . . , yN ) �→ yk∑N
i=0 yi
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are Lipschitz on{
y ∈ RN+1 | y0 � 0, . . . , yN � 0 and

∑N
i=0 yi � 1

}
,

and each x ∈ Mn belongs to some Vk with d(x, ∂Vk) � rk

3 by construction of the
Vk and Lemma 14.3.5, the conclusion follows.

We shall now inductively deform f by homotopy into the 3-skeleton K(3), while
keeping the local Lipschitz constant under control.

We recall that the open star of a vertex of K is the union of the interiors of all
simplices whose closure contains the given vertex.

Lemma 14.3.9. For all d � 4 and L > 0 there exists L′ = L′(d, L) > 0 such that
the following assertion holds.

Let g : Mn → K(d) be a map that is L
rk

-Lipschitz on Vk and such that the
pull-back of the open star of the vertex vVk

∈ K(0) is contained in Vk. Then g is
homotopic relative to K(d−1) to a map g̃ : Mn → K(d−1) which is L′

rk
-Lipschitz on

Vk and such that the pull-back of the open star of vVk
is still contained in Vk.

Proof. It suffices to find a constant θ = θ(d, L) > 0 such that each d-simplex
σ ⊂ K contains a point z whose distance to ∂σ and to the image of g is � θ.
In order to push g into the (d − 1)-skeleton, we compose it on σ with the radial
projection from z. This increases the Lipschitz constant by a multiplicative factor
bounded from above by a function of θ(d, L), and decreases the inverse image of
the open stars of the vertices.

If θ does not satisfy the required property for some d-simplex σ, then one can
tile an open subset of σ \ (θ− neighbourhood of ∂σ) with at least C ′(d) · 1

θd cubes
of length 2θ, and each cube contains a point of Im(g) in its interior. By choosing
one point of Im(g) inside each cube whose tiling coordinates are even, we find a
subset of cardinality at least C(d) · 1

θd of points in Im(g) ∩ Int(σ) whose pairwise
distances are � θ. Let A ⊂Mn be a set containing exactly one point of the inverse
image of each of these points. By hypothesis, A ⊂ Vk for some k corresponding to
a vertex of σ; we may assume that A∩Wn = ∅, hence A ⊂ B(xk, rk) for the same
k. As g is L

rk
-Lipschitz on Vk, the distance between any two distinct points in A

is bounded from below by 1
Lrkθ. In order to bound the cardinal of A, we use the

following inequality for y ∈ A:

volB(xk, rk)
volB(y, rkθ

2L )
� volB(y, 2 rk)

volB(y, rkθ
2L )

�
υ− 1

(r′)2
(2 rk)

υ− 1
(r′)2

( rkθ
2L )

=
υ−1(2 rk

r′ )
υ−1( θ

2L
rk

r′ )
� C

(
L

θ

)3

.

Since rk � 2
11r

′, such a uniform C exists. Thus the cardinal of A is at most
C(L/θ)3. Note that in order to apply Bishop–Gromov, we used the fact that
B(xk, 11rk) is contained in some metric ball of radius r′ with curvatures � −1/(r′)2.
The inequality C(d) · 1

θd � C · (Lθ )3 yields a positive lower bound θ0(d, L) for θ.
Consequently, any θ < θ0 has the desired property.
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Lemma 14.3.10. There exists a universal constant C such that the following
holds. Let D > 1 and n > n0(D) be as in Proposition 14.2.1. Then

volB(xi, ri) � C
1
D
r3i for all i.

Proof. We know that, by Proposition 14.2.1, volB(xi, ν(xi)) � 1
Dν(xi)

3. More-
over, ri � ν(xi)

11 , and B(xi, ri) is contained in some metric ball B(x′, r′) with
curvatures � − 1

r′2 . As r′ � 11
2 ri > ri, the curvatures on B(xi, ri) are at least

− 1
r2i

. The Bishop–Gromov inequality gives

volB
(
xi,

ν(xi)
11

)
υ− 1

r2
i

(ν(xi)
11 )

� volB(xi, ri)
υ− 1

r2
i

(ri)
.

Equivalently,

volB
(
xi,

ν(xi)
11

)
� volB(xi, ri)

υ−1(1)
υ−1

(
ν(xi)
11 ri

)
� volB(xi, ri)

1
C

(
ν(xi)
ri

)3

,

for some uniform C > 0. Hence, using Proposition 14.2.1 (b) (3), we get

volB(xi, ri) � C

(
ri

ν(xi)

)3

volB
(
xi,

ν(xi)
11

)
) � Cr3i

1
D
.

Finally we push f into the 2-skeleton.

Lemma 14.3.11. For a suitable choice of D > 1, there exists a map f (2) : Mn →
K(2) such that the following holds:

1. f (2) is homotopic to f relative to K(2).

2. The inverse image of the open star of each vertex vVk
∈ K(0) is contained in

Vk.

Proof. The inverse image by f of the open star of the vertex vVk
∈ K(0) is con-

tained in Vk. Using Lemma 14.3.9 several times, we find a map f (3) : Mn → K(3)

homotopic to f and a universal constant L̂ such that (f (3))−1(star(vVk
)) ⊂ Vk and

f
(3)
|Vk

is L̂
rk

-Lipschitz.

Sublemma 14.3.12. Let σ be a 3-simplex of K. Then σ is not contained in the
image of f (3).

Proof. Arguing by contradiction, we consider a 3-simplex σ contained in the image
of f (3). The inverse image of Int(σ) by f (3) is a subset of the intersection of those
Vj ’s such that vVj

is a vertex of σ. Let Vk be one of them. Since vol(f (3)(Vk)) �
vol(f (3)(B(xk, rk))), Lemma 14.3.10 yields

vol(Im(f (3)) ∩ σ) � vol(f (3)(Vk)) �
(
L̂

rk

)3

volB(xk, rk) � CL̂3 1
D
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with uniform constants C and L̂. Thus we have vol(Im(f (3)) ∩ σ) < vol(σ) for
sufficiently large D.

Having proved Sublemma 14.3.12, we conclude the proof of Lemma 14.3.11 by
simply choosing in each 3-simplex of K a point which is not in the image of f (3),
and compose f (3) with central projections from those points. Note that here no
metric estimate is required in the conclusion.

The inverse images of the open stars of the vertices vk satisfy (f (2))−1(star(vVk
)) ⊂

Vk, and therefore (f (2))−1(star(vVk
)) is homotopically trivial in M . This proves

Assertion 14.3.2 and ends the proof by contradiction of Proposition 14.3.1.

14.3.3 End of the proof: covering by virtually abelian sub-
sets

The following is a consequence of Proposition 14.3.1, where the constants D0 and
n0(D) are provided by Propositions 14.3.1 and 14.2.1 respectively.

Corollary 14.3.13. There exists D0 > 0 such that if D > D0 and n � n0(D),
then there exists a compact submanifold V0 ⊂Mn with the following properties:

(i) V0 is either a connected component of Wn or 1
D -close to a tubular neighbour-

hood of a soul of the local model of some point x0 ∈Mn.

(ii) V0 is a solid torus, a thickened torus or the twisted I-bundle on the Klein
bottle.

(iii) V0 is homotopically non-trivial in Mn.

Proof. We recall that each connected component of Wn is a solid torus. If one
of them is homotopically non-trivial, then we choose it to be V0. Otherwise, by
Proposition 14.3.1, there exists a point x0 ∈ Mn such that B(x0, ν(x0)) is homo-
topically non-trivial; Remark 14.2.3 shows that B(x0, ν(x0)) is necessarily a solid
torus, a thickened torus or a twisted I-bundle over the Klein bottle. Indeed, the
soul S0 of the local model X0 can be neither a point nor a 2-sphere, otherwise
B(x0, ν(x0)) would be homeomorphic to B3 or S2 × I, which have trivial funda-
mental group. Let fx0 : B(x0, ν0)→ X0 denote the (1+ 1

D )-bi-Lipschitz embedding
provided by Proposition 14.2.1. We take V0 = f−1

x0
(Nδ(S0)), the inverse image of

the closed tubular neighbourhood of radius δ of S0, for some 0 < δ < ν0/D.

As V0 is not contained in any 3-ball, each connected component Y of its com-
plement is irreducible, hence a Haken manifold whose boundary is a union of tori
(possibly compressible). In particular, Y admits a geometric decomposition. As
remarked at the beginning of this chapter, in order to prove that Mn is a graph
manifold, it is sufficient to show that each connected component of Mn \ Int(V0)
is a graph manifold. By Proposition 14.0.1 and Remark 13.2.5, all we have to do
is prove the following proposition:
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Proposition 14.3.14. For n large enough, one can choose the submanifold V0 as
above such that every Dehn filling on each connected component Y of Mn \ Int(V0)
has vanishing simplicial volume.

We choose the set V0 as follows:

• If some component of Wn is homotopically non-trivial, then we choose it as
V0.

• If all components of Wn are homotopically trivial, then there exists a point
x ∈ Mn such that B(x, ν(x)) is homotopically non-trivial. We choose x0 ∈
Mn such that

ν0 = ν(x0) � 1
2

sup
x∈Mn

{ν(x) | π1(B(x, ν(x)))→ π1(Mn) is non-trivial}.

Let S0 be the soul of the local model X0 of B(x0, ν0), provided by Proposi-
tion 14.2.1. If fx0 : B(x0, ν0)→ X0 is a (1 + 1

D )-bi-Lipschitz embedding, we
choose

V0 = f−1
x0

(Nδ(S0))

where Nδ(S0) denotes the closed tubular neighbourhood of radius δ of S0,
with 0 < δ < ν0

D , where D > D0 is given by Corollary 14.3.13.

After possibly shrinking Wn, one has V0 ∩Wn = ∅, as ν0 � 1.

We say that a subset U ⊂Mn is virtually abelian relative to V0 if the image in
π1(Mn\V0) of the fundamental group of each connected component of U∩(Mn\V0)
is virtually abelian.

We set

ab(x) = sup

⎧⎨⎩r
∣∣∣∣ B(x, r) is virtually abelian relative to V0

and B(x, r) is contained in a ball B(x′, r′)
with curvature � − 1

(r′)2

⎫⎬⎭
and

r(x) = min
{

1
11

ab(x), 1
}
.

Since we may assume that Mn is not virtually abelian relative to V0, for every
x ∈ Mn, Mn �⊂ B(x, ab(x)). Therefore, by the same argument as Lemma 14.3.3,
r(x) < 2

11r
′, where B(x′, r′) contains B(x, ab(x)) and has curvature � − 1

(r′)2 .
We are now led to prove the following assertion:

Assertion 14.3.15. With this choice of V0, for n large enough, Mn can be covered
by a finite collection of open sets Ui such that the following holds:

• Each Ui is either contained in a component of Wn or a metric ball B(xi, r(xi))
for some xi ∈M−

n (εn). In particular, Ui is virtually abelian relative to V0.
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• The dimension of this covering is not greater than 2, and it is zero on V0
(equivalently V0 only intersects one open set of the covering).

Let us first show why this assertion implies Proposition 14.3.14. This implica-
tion is a direct consequence of Gromov’s vanishing theorem.

Proof. The covering described in the assertion naturally induces a covering on
every closed and orientable manifold Ŷ obtained by gluing solid tori to ∂Y . By
the second point of Assertion 14.3.15, it is a 2-dimensional covering of Ŷ by open
sets which are virtually abelian and thus amenable in Ŷ . Hence by Theorem 13.2.6,
Ŷ has zero simplicial volume.

We now prove Assertion 14.3.15. The argument for the construction of a 2-
dimensional covering by abelian open sets is similar to the one used in the proof
of Assertion 14.3.2, replacing everywhere the triviality radius triv by the virtual
abelianity radius ab. The construction of the covering takes care of V0, in partic-
ular we require Lemma 14.3.16. The direct analogues of Lemmas 14.3.4 to 14.3.11
apply here, with three small fixes. Firstly, the proof of Lemma 14.3.3 (2) needs to
be adapted in this setting (Lemma 14.3.17). Secondly, Lemma 14.3.3 (1) must be
replaced by a similar statement with different constants (Lemma 14.3.18). Finally,
the analogue of Lemma 14.3.5 also needs further discussion (Lemma 14.3.19).

We now make the details precise.
If V0 is a connected component of Wn, then for n large enough we choose points

x0, x1, . . . , xq ∈ ∂Wn, with x0 ∈ ∂V0, in the following way:

• Every boundary component of Wn contains exactly one of the xj ’s.

• The balls B(xj , 1) are pairwise disjoint.

• Every B(xj , 1) has normalised volume � 1
D and sectional curvature close to

−1.

• Every B(xj , 1) is contained in a thickened torus (which implies that this ball
is abelian).

Furthermore, going sufficiently far in the cusp and taking n large enough, one can
assume that B

(
xj ,

1
9r(xj)

)
contains an almost horospherical torus corresponding

to a boundary component of Wn. In this case the proof previously done applies
without any change, since the dimension of the original covering and all those
obtained by shrinking is zero on Wn (or on a set obtained by shrinking Wn).

From now on we shall assume that all connected components of Wn are homo-
topically trivial. We then choose x0 ∈ V0 ⊂ Mn \ Int(Wn) as above and points
x1, . . . , xq ∈ ∂Wn as before.

We complete the sequence x0, x1, . . . , xq to a maximal finite sequence

x0, x1, x2, . . . , xp

in Mn \ Int(Wn) such that the balls B
(
xi,

1
4r(xi)

)
are disjoint.

We set ri = r(xi), and, if Wn,1, . . .Wn,q are the connected components of Wn,
then we set
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• V0 := B(x0, r0),

• Vi := B(xi, ri) ∪Wn,i for i = 1, . . . , q,

• Vi := B(xi, ri) \ V0 for i = q + 1, . . . , p.

After possibly shrinking Wn, we have V0 ∩ B(xi, ri) = ∅ for i = 1, . . . , q, since
ri � 1 and V0 ∩Wn = ∅. It follows that V0 ∩ Vi = ∅ for i �= 0.

We first need the following result about V0.

Lemma 14.3.16. If n is large enough, then

V0 ⊂ B
(
x0,

4ν(x0)
D

)
⊂ B
(
x0,

r0
9

)
⊂ V0.

Proof. The first inclusion uses the properties of Proposition 14.2.1: diam(S0) < ν0
D ,

d(fx0(x0), S0) < ν0
D , the construction V0 = f−1

x0
(Nδ(S0)) with δ < ν0

D and the fact
that fx0 is a (1 + 1

D )-bi-Lipschitz embedding. The second inclusion follows from
r0 � 1

11ν(x0) by taking D � 4 · 9 · 11.

Then we have the proof of the following analogue of Lemma 14.3.3 (2).

Lemma 14.3.17. We can assume that, for every x ∈Mn \ Int(Wn), B(x, 11 r(x))
is contained in some ball B(x′, r′(x)) with curvature � − 1

(r′)2 and satisfying r(x) �
1
11 ab(x) � 2

11r
′(x).

Proof. If Mn is virtually abelian relative to V0, then Assertion 14.3.15 holds true
by taking a single open subset, the whole Mn. Hence we may assume that Mn

is not virtually abelian relative to V0, thus for every x ∈ Mn, Mn �⊂ B(x, ab(x)).
Therefore, by the same argument as in the proof of Lemma 14.3.3 applies.

The next lemma is the analogue of Lemma 14.3.3 (1), with a new constant c
that just entails a change of constant in the analogue of Lemma 14.3.10.

Lemma 14.3.18. There exists a universal c > 0 such that, if n is sufficiently
large, then ri � c ν(xi) for all i.

Proof. One has r0 � 1
11ν(x0) by construction. For all i > 0, ifB(xi, ν(xi))∩V0 = ∅,

then ab(xi) � ν(xi) so ri � 1
11ν(xi). Hence we assume B(xi, ν(xi)) ∩ V0 �= ∅, and

we claim that d(xi,V0) > c′ ν(xi) for a uniform c′ > 0.
We also assume from now on that ri = 1

11 ab(xi) < 1 (otherwise (ri = 1 �
ρ(xi) > ν(xi) and we are done). Since V0 ⊂ B(x0,

1
9r0):

ri � 1
11
d(xi,V0) � 1

11

(
d(xi, x0)− 1

9
r0

)
�

1
4r0 − 1

9r0

11
>
r0
88

� 1
1000

ν(x0).

(14.1)
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We distinguish two cases, according to whether V0 is contained in B(xi, ν(xi)) or
not.

If V0 ⊂ B(xi, ν(xi)), then the image of π1(B(xi, ν(xi))) → π1(Mn) cannot be
trivial, since the image of π1(V0)→ π1(Mn) is not. In addition,

ν(xi) � 2 ν(x0), (14.2)

by the choice of x0 and ν(x0). Equations (14.1) and (14.2) give ri > ν(xi)/2000.
If V0 �⊂ B(xi, ν(xi)), then since V0 ∩ B(xi, ν(xi)) �= ∅ and V0 ⊂ B

(
x0,

r0
9

)
, we

have
11ri = ab(xi) � d(xi, x0)− r0/9, ν(xi) � d(xi, x0) + r0/9.

Since d(xi, x0) � 1
4r0, this yields ri

ν(xi)
� 1

11 · 1/4−1/9
1/4+1/9 � 1

30 .

Finally the analogues of Lemmas 14.3.4 to 14.3.11 apply with no changes,
except for Lemma 14.3.5 in the context of the new boundary created by V0,
and it is used in the control of the Lipschitz constant of the characteristic map,
Lemma 14.3.8.

Lemma 14.3.19. Each x ∈Mn belongs to some Vk such that d(x, ∂Vk) � 1
3rk.

Proof of Lemma 14.3.19. If x ∈ B(x0,
2
3r0) we may choose k = 0. Let us then

assume that x �∈ B
(
x0,

2
3r0
)
. There exists k such that x ∈ B

(
xk,

2
3rk
)
, by the

analogue of Lemma 14.3.5. If B(xk, rk) and V0 are disjoint, then B(xk, rk)∩V0 = ∅
and we are done. Hence we assume that B(xk, rk) ∩ V0 �= ∅. By Lemma 14.3.16
and the analogue of Lemma 14.3.4, one has:

d(x,V0) � d(x, x0)− 1
9
r0 � 2

3
r0 − 1

9
r0 � 3

4
· 5
9
rk >

1
3
rk.

This implies that d(x, ∂Vk) � 1
3rk.
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Chapter 15

A rough classification of
3-manifolds

In this final chapter, which is not part of our proof of the Geometrisation Con-
jecture, we prove the refined Theorem 1.3.12 using an invariant V ′

0(M) which is
closely related to V0(M).

For a closed 3-manifold M , let V ′
0(M) denote the minimum of the volumes of

all hyperbolic submanifolds H ⊂M having the property that either H is the com-
plement of a link in M or ∂H has at least one component which is incompressible
in M .

By definition, we always have 0 < V ′
0(M) � V0(M). If M is orientable and

irreducible, then it admits a metric of positive scalar curvature if and only if
it is spherical. If this is not the case (which amounts to saying that π1(M) is
infinite), then the invariant V̄ (M) can be defined as the infimum of V̂ taken on
all Riemannian metrics (see (1.5), p. 14) and may be zero.

Here is the main result of this chapter. It characterises hyperbolic mani-
folds and graph manifolds among irreducible 3-manifolds with infinite fundamental
group.

Theorem 15.1.1. Let M be a closed, orientable, irreducible 3-manifold with in-
finite fundamental group. Then, one of the following occurs:

(i) 0 < V̄ (M) = V ′
0(M) = V0(M) if M is hyperbolic.

(ii) 0 < V ′
0(M) � V̄ (M) < V0(M) if M contains an incompressible torus and

has some hyperbolic pieces in the JSJ decomposition.

(iii) 0 = V̄ (M) < V ′
0(M) � V0(M) if M is a graph manifold.

Before giving the proof, we note the following variant of Theorem 13.1.3, where
V0 is replaced by V ′

0 , and the conclusion is changed to ‘M is a graph manifold’:

217
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Theorem 15.1.2. Let M be a closed, orientable, non-simply connected, irreducible
3-manifold. Let gn be a sequence of Riemannian metrics satisfying the following
conditions:

(1) The sequence vol(gn) is bounded.

(2) For all ε > 0, if xn ∈M is a sequence such that for all n, xn is in the ε-thick
part of (M, gn), then (M, gn, xn) subconverges in the C2 topology to a pointed
hyperbolic manifold with volume strictly less than V ′

0(M).

(3) The sequence (M, gn) has locally controlled curvature in the sense of Perel-
man.

Then M is a graph manifold.

Proof. Let H1, . . . , Hm be hyperbolic limits given by Proposition 14.1.1 and let
εn → 0 be a sequence chosen as in the remark after Proposition 14.1.1, or in the
beginning of Section 14.2 to describe the local structure of the thin part. As in
the proof of Theorem 13.1.3, for each i we fix a compact core H̄i of Hi and for
each n a submanifold H̄i

n and an approximation φin : H̄i
n → H̄i. The fact that the

volume of each hyperbolic manifold Hi is less than V ′
0(M) implies the following

result:

Lemma 15.1.3. Up to taking a subsequence of Mn, for all i ∈ {1, . . . ,m} each
connected component of ∂H̄i

n is compressible in M for all n.

Proof. Indeed, if the conclusion of Lemma 15.1.3 does not hold, then up to ex-
tracting a subsequence we may assume that there exists an integer i0 ∈ {1, . . . ,m}
such that ∂H̄i0

n contains an incompressible torus for all n. From the definition of
V ′

0(M) this would contradict the inequality vol(Hi0) < V ′
0(M).

From this lemma on, the proof of Theorem 15.1.2 is identical to the proof of
Theorem 13.1.3.

Remark 15.1.4. In fact, Theorem 15.1.2 is also true if M is simply-connected,
since this implies that M is diffeomorphic to S3, which is a graph manifold.

Proof of Theorem 15.1.1. (i) IfM is hyperbolic, thenM is atoroidal, hence V ′
0(M) =

V0(M). We already saw that V̄ (M) = V0(M) in this case, so there is nothing to
prove.

(iii) If M is a graph manifold, then by Cheeger–Gromov [CG86], one can con-
struct Riemannian metrics on M with sectional curvature pinched between −1
and 1 whose volume is arbitrarily small. In particular, V̄ (M) = 0.

(ii) Let us suppose that M is neither a hyperbolic manifold nor a graph man-
ifold. We already know that V̄ (M) < V0(M), because M is not hyperbolic. We
show that V ′

0(M) � V̄ (M) by contradiction. If V ′
0(M) > V̄ (M) then M ad-

mits a Riemannian metric g0 such that V̂ (g0) < V ′
0(M). Using Corollary 1.3.7
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with initial condition g0, we find a sequence gn satisfying the hypotheses of The-
orem 15.1.2. This theorem implies that M is a graph manifold, contrary to the
hypothesis.
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Appendix A

3-manifold topology

General references for this appendix are [Hem76], [Jac80] and [Hat00].

A.1 General notation

For n � 1, we let Sn (resp. Tn, resp. Bn, resp. RPn) denote the n-dimensional
sphere (resp. torus, resp. ball, resp. real projective space). By abuse of language,
we say that S is a (smoothly embedded) 2-sphere in a 3-manifold M if S is a
smooth submanifold of M which is diffeomorphic to S2. Similar terminology is
used for 2-tori, 3-balls, RP 2’s etc.

We let I denote the real interval [0, 1] (which for a topologist is the same as
B1). Consequently, S2 × I and T 2 × I are compact, orientable 3-manifolds (with
nonempty boundary), sometimes called the thickened sphere and the thickened
torus respectively. We let K2 denote the Klein bottle. If S is a surface, then we
let S ×̃ I denote the twisted I-bundle over S. This manifold is orientable if and
only if S is nonorientable; thus we shall be interested only in RP 2 ×̃ I and K2 ×̃ I.

We let Int(M) denote the interior of a manifold M with boundary.

A.2 Alexander’s theorem and consequences

Let M be a 3-manifold. Two closed, embedded surfaces F1, F2 ⊂ M are parallel
if they cobound a submanifold diffeomorphic to F1 × I.
Theorem A.2.1 (Alexander, see e.g. [Hat00]). Let S be a smoothly embedded 2-
sphere in B3. Then S bounds a 3-ball B. Furthermore, the complement of IntB
is diffeomorphic to S2 × I.
Corollary A.2.2. Let S be a smoothly embedded 2-sphere in S2 × I.

1. If S is null-homologous, then it bounds a 3-ball.

221
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2. Otherwise, it is isotopic to S2 × {0}.
Proof. Capping-off S2 × {0} by a 3-ball B, we obtain a 3-manifold B′ which is
also diffeomorphic to B3. By Theorem A.2.1, S bounds a 3-ball B′′ ⊂ B′. Then
either B′′ ⊂ S2 × I, or B ⊂ B′′ and S cobounds with S2 × {0} a submanifold X
such that B′′ = X ∪B.

If S is null-homologous in S2×I the former case must happen. This proves the
first part of Corollary A.2.2. If not, then the latter case must happen. By Theo-
rem A.2.1 again, X is diffeomorphic to S2 × I. This proves the second assertion.

A similar argument gives:

Corollary A.2.3. Let S1, S2 be two smoothly embedded 2-spheres in S2 × I.
Assume that S1, S2 are isotopic to each other, disjoint, and not null-homologous.
Then they are parallel.

A.3 Submanifolds with compressible boundary

Let X be an orientable, irreducible 3-manifold and T be a compressible torus
embedded in X. The loop theorem shows the existence of a compression disc D
for T , that is, a disc D embedded in M such that D ∩ T = ∂D and the curve
∂D is not null homotopic in T . By cutting open T along an open small regular
neighbourhood ofD and gluing two parallel copies ofD along the boundary curves,
one constructs an embedded 2-sphere S in X. We say that S is obtained by
compressing T along D.

Since X is assumed to be irreducible, S bounds a 3-ball B. There are two
possible situations depending on whether B contains T or not. The following
lemma collects some standard results that we shall need.

Lemma A.3.1. Let X be an orientable, irreducible 3-manifold and T be a com-
pressible torus embedded in X. Let D be a compression disc for T , S be a sphere
obtained by compressing T along D, and B a ball bounded by S. Then the following
holds:

(i) X \T has two connected components U, V , and D is contained in the closure
of one of them, say U .

(ii) If B does not contain T , then B is contained in Ū , and Ū is a solid torus.

(iii) If B contains T , then B contains V , and V̄ is homeomorphic to the exterior
of a knot in S3. In this case, there exists a homeomorphism f from the
boundary of S1×D2 into T such that the manifold obtained by gluing S1×D2

to Ū along f is homeomorphic to X.

Remark A.3.2. If T is a component of ∂X and T is a compressible torus, the
same argument shows that X is a solid torus.
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To understand the situation in Lemma A.3.1 (iii), one has to think of the
connected sum of any manifold with a solid torus S1 ×D2, which is glued to any
knot exterior in S3.

Lemma A.3.3. Let X be a closed, orientable, irreducible 3-manifold. Let H̄ ⊂ X
be a connected, compact, orientable, irreducible submanifold of X whose boundary
is a collection of compressible tori. If H̄ is not homeomorphic to the exterior of
a (possibly empty) link in X, then H̄ is included in a connected submanifold Y
whose boundary is one of the tori of ∂H̄ and which satisfies one of the following
properties:

(i) Y is a solid torus, or

(ii) Y is homeomorphic to the exterior of a knot in S3 and contained in a ball
B ⊂ X.

Proof. By hypothesis the boundary of H̄ is not empty. We denote by T1, . . . , Tm
the components of ∂H̄. If one of them bounds a solid torus containing H̄, then we
can choose this solid torus as Y . Henceforth we assume that this is not the case.

Each Tj being compressible, it separates and thus bounds a submanifold Vj
not containing H̄. Up to renumbering the boundary components of H̄, we may
assume that V1, . . . , Vk are disjoint solid tori, but Vk+1, . . . , Vm are not solid tori.
At least one of the Vj ’s is not a solid torus, otherwise H̄ would be homeomorphic
to the exterior of a link in X.

For the same reason, at least one Vj , for some j > k, is not contained in the
3-ball bounded by the sphere obtained after compressing Tj . Otherwise each of the
Vk+1, . . . , Vm is homeomorphic to the exterior of a knot in S3, by Lemma A.3.1,
and one could then replace each Vj , k + 1 � j � m by a solid torus without
changing the topological type of X. Hence H̄ would be homeomorphic to the
exterior of a link in X.

Pick a Vj , for j > k, which is not contained in a ball. Then compressing surgery
on the torus Tj = ∂Vj yields a sphere S bounding a ball B in X, which contains H̄
by the choice of Vj . This shows that conclusion (ii) is satisfied with Y = X \ intVj .

A.4 Covering 3-manifolds by abelian subsets

In [GLGA92] J. C. Gómez-Larrañaga and F. González-Acuña have computed the
1-dimensional Lusternik–Schnirelmann category of a closed 3-manifold. One step
of their proof gives the following proposition (cf. [GLGA92], Proof of Proposition
2.1):

Proposition A.4.1. Let X be a closed, connected 3-manifold. If X has a covering
of dimension 2 by open subsets which are homotopically trivial in X, then there is
a connected 2-dimensional complex K and a continuous map f : X → K such that
the induced homomorphism f	 : π1(X)→ π1(K) is an isomorphism.
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Standard homological arguments show the following, cf. [GLGA92], §3:

Corollary A.4.2. Let X be a closed, connected, orientable, irreducible 3-manifold.
If X has a covering of dimension 2 by open subsets which are homotopically trivial
in X, then X is simply connected.

Proof. Following Proposition A.4.1, let f : X → K be a continuous map from
X to a connected 2-dimensional complex K, such that the induced homomor-
phism f	 : π1(X) → π1(K) is an isomorphism. Let Z be a K(π1(X), 1) space.
Let φ : X → Z be a map from X to Z realising the identity homomorphism on
π1(X) and let ψ : K → Z be the map from K to Z realising the isomorphism
f−1
	 : π1(K) → π1(X). Then φ is homotopic to ψ ◦ f and the induced homo-

morphism φ∗ : H3(X; Z) → H3(Z; Z) factors through ψ∗ : H3(K; Z) → H3(Z; Z).
Since H3(K; Z) = {0}, the homomorphism φ∗ must be trivial.

X

f

��

φ �� Z

K

ψ

���������

If π1(X) is infinite, then X is aspherical and φ∗ : H3(X; Z) → H3(Z; Z) is an
isomorphism. Therefore π1(X) is finite.

If π1(X) is finite of order d > 1, then let X̃ be the universal covering of X.
The covering map p : X̃ → X induces an isomorphism between the homotopy
groups πk(X̃) and πk(X) for k � 2. Since π2(X) = {0}, π2(X̃) = {0}, and by
the Hurewicz theorem, the canonical homomorphism π3(X̃) → H3(X̃; Z) = Z is
an isomorphism. It follows that the canonical map π3(X) = Z → H3(X; Z) = Z
is the multiplication by the degree d > 1 of the covering p : X̃ → X. It is well
known that one can construct a K(π1(X), 1) space Z by adding a 4-cell to kill
the generator of π3(X) = Z, and adding further cells of dimension � 5 to kill the
higher homotopy groups. Then the inclusion φ : X → Z induces the identity on
π1(X) and a surjection φ∗ : H3(X; Z) = Z → H3(Z; Z) = Z/dZ. Therefore, since
φ∗ vanishes, X must be simply connected.

Finally, we need the following fact:

Lemma A.4.3. Let X be a closed, orientable, irreducible 3-manifold. Assume
that X is the union of two submanifolds X1, X2 which are solid tori or 3-balls.
Then X is a lens space.

Proof. When X1 and X2 are both solid tori, this is proved in [GLGAH04]. Other-
wise X is covered by three 3-balls and thus homeomorphic to the 3-sphere S3 by
[HM69] (see also [GLGAH07]).
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Comparison geometry

Let us recall the fundamental comparison theorem below due to M. Gromov. It is
used extensively in Perelman’s work as well as in this book.

B.1 Comparison and compactness theorems

Theorem B.1.1 (Bishop–Gromov inequality [Gro99]). Let (M, g) be a Rieman-
nian manifold satisfying Ricg � (n − 1)kg, where k ∈ R. Let υnk (r) denote the
volume of an r-ball in the simply connected n-space of constant sectional curvature
equal to k. Then for all 0 < r � R, for all x ∈M ,

volg B(x, r)
volg B(x,R)

� υnk (r)
υnk (R)

.

From [CGT82], Theorem 4.3, one has the following local version of Cheeger’s
injectivity radius estimate [Che70]:

Theorem B.1.2. For any K, v,D > 0 and any integer n � 2, there exists
C = C(K, v,D, n) > 0 with the following property. Suppose that (M, g) is a Rie-
mannian n-manifold, and let B(x,D) ⊂M be a geodesic ball of radius D compactly
embedded in M . Suppose also that |Rm| � K on B(x,D) and that volB(x,D) � v.
Then the injectivity radius at x of (M, g) satisfies inj(M, g, x) � C.

Proof. Bounding the injectivity radius at x is equivalent to bounding two quanti-
ties: on the one hand, the distance l1 between x and the closest conjugate point
(if any); on the other hand, the length l2 of the shortest geodesic loop based at x.

By the Rauch comparison theorem, l1 is at least min(π/
√
K,D). Note that this

only uses the upper bound on the curvature along geodesic segments starting at
x. To estimate l2 from below, we use Cheeger–Gromov–Taylor [CGT82]. Indeed,
Theorem 4.3 from [CGT82] applies here because it only requires a bound of the
curvature on the ball. More precisely, taking r = min(π/

√
K,D) (and r0 = s =

225
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r/4 in the notation of [CGT82]) by [CGT82], Inequality 4.22, we have

l2 � r/8
1 + υ−K(r/2)/ volB(x, r/4)

.

In addition, by the Bishop–Gromov inequality applied to the balls of radius r/4
and D centred at x,

volB(x, r/4) � υ−K(r/4)
υ−K(D)

v.

The combination of both inequalities gives the required lower bound for l2. See
[BBB+10], Appendix A, for more details.

We shall now state Gromov’s compactness theorem. Before we need to define
the notion of Lipschitz convergence.

Definition B.1.3. Let M1 and M2 be two metric spaces we define

dL(M1,M2) = inf{| ln(dil(f))|+ | ln(dil(f−1))|} ,

where the infimum is taken over the bi-Lipschitz homeomorphisms f between M1
andM2 (possibly dL(M1,M2) = +∞). Now, a sequence (Mk, xk) of pointed metric
spaces is said to converge in pointed Lipschitz topology towards (M∞, x∞) if for
all R > 0, dL(B(x∞, R), B(xk, R)) goes to zero as k goes to infinity.

We next state the main compactness theorem, whose proof follows from [Gro99],
[Pet87], [GW88].

Theorem B.1.4. Let 0 < α < 1. Let (Mk, gk, xk) be a sequence of pointed smooth
n-dimensional complete Riemannian manifolds such that

(a) for all R > 0, there exists Λ(R) > 0 such that the sectional curvature is
bounded in absolute value by Λ(R) on B(xk, R) for all k,

(b) there exists V > 0 such that volB(xk, 1) � V for all k.

Then, there exists a subsequence which converges in the pointed Lipschitz topology
to a smooth n-dimensional complete Riemannian manifold (M∞, g∞, x∞) where
the Riemannian metric g∞ is of class C1,α.
Remarks B.1.5. (i) From [GW88], the convergence takes place in the C1,α norm.
More precisely, there exist diffeomorphisms fk from B(x∞, R) to B(xk, R) such
that (fk)∗gk converges to g∞ in the C1,α norm (cf. [GW88], p. 139–140).

(ii) If the manifoldsMk have uniformly bounded diameter, thenM∞ is compact
and diffeomorphic to Mk for k large enough.

(iii) If assumption (a) is weakened to “For some R > 0, there exists Λ > 0
such that...”, one obtains sub-convergence of (B(xk, R), gk, xk) to a (possibly non
complete) smooth n-dimensional Riemannian manifold (M∞, g∞, x∞).
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B.2 Manifolds with nonnegative curvature

Next we describe the Cheeger–Gromoll soul theorem and some of its consequences.
Let M be a Riemannian n-manifold. A subset S ⊂ M is totally convex if every
(possibly nonminimising) geodesic segment M with endpoints in S is contained in
S. This is stronger than being totally geodesic. We say that S is a soul of M if S
is a closed, totally convex submanifold of M .

Theorem B.2.1 ([CG72]). Every Riemannian manifold M of nonnegative sec-
tional curvature has a soul S.

If M is closed, then it turns out that S = M . In the open case, Theorem B.2.1
has strong topological consequences thanks to the following lemma:

Lemma B.2.2 ([CG72]). Let M be an open Riemannian manifold of nonnegative
sectional curvature, and let S ⊂ M be a soul. Then M is diffeomorphic to the
normal bundle of S in M . In addition, for every r > 0, the tubular neighbourhood

Nr(S) = {x ∈M | d(x, S) < r}

is diffeomorphic to the disc subbundle of the normal bundle.

This lemma is proved by constructing a vector field that averages all directions
between a point and S. Since S is totally convex, this average is nonzero and the
vector field is well defined, it is in fact an almost gradient vector field for minus the
distance function to S. The integral curves of this field correspond to the fibres of
the normal bundle.

Since the soul S is itself a closed manifold of nonnegative curvature, we easily
classify the diffeomorphism type of low-dimensional manifolds with nonnegative
curvature, [CG72]:

Corollary B.2.3 (Classification of open 3-manifolds of nonnegative curvature).
Let M be an open, orientable 3-manifold M of nonnegative sectional curvature.
Then exactly one of the following conclusions holds:

1. If dimS = 0, then S is a point, and M ∼= R3.

2. If dimS = 1, then S is a circle, and M ∼= S1 × R2.

3. If dimS = 2, then S is diffeomorphic to S2, T 2, RP 2, or K2. Thus M is
diffeomorphic to S2 × R, T 2 × R, RP 2 ×̃ R, or K2 ×̃ R, respectively.

Remark B.2.4. All these manifolds are irreducible except S2 ×R and RP 2 ×̃R.
This follows from Alexander’s theorem (Theorem A.2.1) and the elementary fact
that if M is a 3-manifold whose universal cover is irreducible, then M itself is
irreducible.

In the closed 3-dimensional case, the classification has been obtained by R. Hamil-
ton using Ricci flow [Ham82], [Ham86]:
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Theorem B.2.5 (Classification of closed 3-manifolds of nonnegative curvature).
Every closed, orientable 3-manifold of nonnegative sectional curvature is spherical,
Euclidean, or diffeomorphic to S2 × S1 or RP 3 # RP 3. In particular, any such
manifold is a graph manifold.

Next we discuss the consequences of the classification for the fundamental
group. We say that a group is virtually abelian if it contains an abelian subgroup
of finite index.

Corollary B.2.6. Let M be an orientable 3-manifold of nonnegative sectional
curvature. Then π1(M) is virtually abelian.

Proof. If M is noncompact, then we apply Corollary B.2.3. By elementary compu-
tations, π1(M) is isomorphic to the trivial group, Z, Z/2Z, Z2 or the Klein bottle
group. The latter has a subgroup of index 2 isomorphic to Z2.

If M is compact, apply Theorem B.2.5. Thus π1(M) is finite, virtually Z3, or
virtually Z.

Remark B.2.7. This corollary is in fact also true ifM is nonorientable, by passing
to the orientation cover.
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Ricci flow

C.1 Existence and basic properties

Theorem C.1.1 ([Ham82], [Shi89b], [CK04], [CZ06c]). Let (M, g0) be a complete
Riemannian manifold such that |Rm| � Λ for some Λ < +∞. Then there exists a
unique complete Ricci flow g( · ) of bounded curvature defined on M × [0, (16Λ)−1],
such that g(0) = g0. Moreover, we have |Rm| � 2Λ everywhere.

Proposition C.1.2. Let (M, {g(t)}t∈[0,b)) be an n-dimensional Ricci flow. If the
interval of definition [0, b) is maximal, then sup(x,t) |Rm(x, t)| = +∞.

C.2 Consequences of the maximum principle

We recall some basic formulas (cf. [CK04]):

Proposition C.2.1. For a Ricci flow, the quantities R(x, t) and V (t) satisfy

1.
dV

dt
= −
∫
M

RdV,

2.
dR

dt
= ΔR+ 2|Ric0 |2 +

2
3
R2.

Corollary C.2.2.

dV

dt
� −RminV, (C.1)

dRmin

dt
� 2

3
R2

min, (C.2)

dR̂

dt
� 2

3
R̂V −1

∫
M

(Rmin −R) dV. (C.3)
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Proof.

d

dt
V (t) =

d

dt

∫
M

dvg(t)

=
∫

1
2

trg(dgdt ) dvg(t)

=
∫
−R dv

� −RminV (t).

Equation (C.2) follows from Proposition C.2.1 (ii) and the maximum principle.

d

dt
R̂ = R′

minV
2
3 +

2
3
Rmin

∫
−R dvV − 1

3

� 2
3
R2

minV
2
3 +

2
3
Rmin

∫
−R dvV − 1

3

=
2
3
RminV

2
3

(
RminV

−1
∫
M

dv +
∫
−R dvV −1

)
=

2
3
RminV

2
3V −1

(∫
M

(Rmin −R) dv
)

=
2
3
R̂(g)V −1

(∫
M

(Rmin −R) dv
)

�

C.3 Compactness

A pointed evolving metric is a triple (M, {g(t)}t∈I , (x0, t0)) where M is a manifold,
g( · ) is an evolving metric on M , and (x0, t0) belongs to M × I. We say that a se-
quence of pointed evolving metrics (Mk, {gk(t)}t∈I , (xk, t0)) converges smoothly to
a pointed evolving metric (M∞, {g∞(t)}t∈I , (x∞, t0)) if there exists an exhaustion
of M by open sets Uk, such that x ∈ Uk for all k, and smooth maps ψk : Uk →Mk,
diffeomorphic onto their images, sending x to xk, such that ψ∗

kgk( · ) − g( · ) and
all its derivatives converge to zero uniformly on compact subsets of M × I.
Theorem C.3.1 (Hamilton’s compactness). Let (Mk, {gk(t)}t∈(a,b], (xk, t0)) be a
sequence of complete pointed Ricci flows of the same dimension. Assume that

1. for all ρ > 0, supk∈N supB(xk,t0,ρ)×(a,b] |Rm| < +∞, and

2. infk∈N inj(Mk, gk(t0), xk) > 0.

Then (Mk, {gk(t)}t∈(a,b], (xk, t0)) subconverges smoothly to a complete Ricci flow
of the same dimension, defined on (a, b].

Remark C.3.2. If g(t) is defined on [a, b], one can take t0 = a if one has also
uniform bounds on the derivatives of the curvature operator at time t0, that is:
for any ρ > 0, for any integer p, supk∈N supB(xk,t0,ρ)×{t0} |∇p Rm | < +∞.
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An inspection of the proof of Theorem C.3.1 shows that the following natural
extension holds. The definition of a partial Ricci flow is given in Section 2.2.

Theorem C.3.3 (Local compactness for flows). Let (Uk, {gk(t)}t∈(a,0], (xk, 0)) be
a sequence of pointed Ricci flows of the same dimension. Suppose that for some
ρ0 ∈ (0,+∞], all the balls B(xk, 0, ρ) of radius ρ < ρ0 are relatively compact in
Uk and that the following holds:

1. For any ρ ∈ (0, ρ0), there exists Λ(ρ) < +∞ and τ(ρ) > 0 such that |Rm| <
Λ(ρ) on all P (xk, 0, ρ,−τ(ρ)).

2.
inf
k∈N

inj(Uk, gk(0), xk) > 0.

Then there is a Riemannian ball B(x∞, ρ0) of the same dimension such that the
pointed sequence (B(xk, 0, ρ0), gk( · ), xk) subconverges smoothly to a partial Ricci
flow g∞( · ) defined on

⋃
ρ<ρ0

(B(x∞, ρ)× (−τ(ρ), 0]). Moreover, if ρ0 = +∞ then
for any t ∈ [supρ−τ(ρ), 0], g∞(t) is complete.

C.4 Harnack inequalities for the Ricci Flow

We state first the matrix Harnack inequality. Consider the following tensors P
and M associated to the curvature:

Pabc = ∇aRbc −∇bRac,
Mab = ΔRab − 1

2
∇a∇bR+RabcdRcd −RacRbc.

For a 2-form U and 1-form W , Hamilton defines:

Z(U,W ) = MabWaWb + 2PabcUabWc +RabcdUabUcd.

Theorem C.4.1 (Hamilton’s matrix Harnack inequality [Ham93]). Suppose we
have a Ricci flow on t ∈ [0, T ] such that every time slice is complete with bounded
curvature. If Rm � 0 then, for every 2-form U and 1-form W ,

Z(U,W ) � 0.

Given two vector fields X, Y , taking U = X� ∧ Y � and W = Y �, and tracing
over Y , with the same hypothesis as in Theorem C.4.1, we obtain Hamilton’s trace
Harnack inequality:

∂R

∂t
+

1
t
R+ 2g(t)(∇R,X) + 2 Ric(X,X) � 0.

In particular for X = 0 and reparametrizing the time, we get:
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Corollary C.4.2 ([Ham93]). Suppose we have a Ricci flow for t ∈ [t0, T ] such
that every time slice is complete with bounded curvature. If Rm � 0, then

∂R

∂t
+

1
t− t0R � 0.

If in addition the flow is ancient (t0 = −∞), then

∂R

∂t
� 0.

C.5 Ricci Flow on cones

The following lemma is used in Section 4 for the proof of Theorem 6.1.1. It
rests on Hamilton’s strong maximum principle (cf. [KL08], Theorem 41.2, [MT07],
Proposition 4.22):

Lemma C.5.1. Let (C, g0, p) be a Riemannian cone with base point p, such that
the curvature operator of g0 is nonnegative and nonzero. Let U ⊂ C \p be an open
subset and g( · ) be a Ricci flow on U × [−τ, 0], for some τ > 0, with final time
slice g(0) equal to g0. Then g( · ) cannot have nonnegative curvature operator.



Appendix D

Alexandrov spaces

We recall a few facts about Alexandrov spaces that are used in this book. General
references are [BBI01], [BGP92].

Definition D.1.2 ([BGP92], 2.3, [BBI01], 10.1.1). A locally complete length space
M is called an Alexandrov space of nonnegative curvature if in some neighbourhood
Up of any point p ∈M the following condition is satisfied:

For any four (distinct) points (a, b, c, d) in Up we have the inequality

�̃(bac) + �̃(bad) + �̃(cad) � 2π.

Remarks D.1.3. 1) Here �̃ denotes the comparison angle in R2. For a precise
definition see the cited references.

2) For spaces in which locally, any two points are joined by a geodesic, the
condition can be replaced by: For any triangle Δ(pqr) with vertices in Up and any
s ∈ [qr], one has |ps| ≥ |p̃s̃|, where s̃ is a point on [q̃r̃], side of the comparison
triangle Δ̃(pqr) such that |qs| = |q̃s̃| and |rs| = |r̃s̃|. We will say that Δ(pqr) is
thicker than Δ̃(pqr). This definition applies in Section 6.1.2.

We recall that given a metric space (X, d) and x ∈ X, one calls a tangent cone
of X at x, a pointed Gromov–Hausdorff limit, if it exists, of (X,λid, x), where λi
is a sequence of real numbers going to +∞.

In Section 6.1.2 we consider finite-dimensional Alexandrov spaces of nonnega-
tive curvature, for which we have:

Theorem D.1.4 ([BBI01], p. 391). Let X be a finite-dimensional Alexandrov
space of nonnegative curvature and x ∈ X. Then the tangent cone of X at x exists
and is isometric to the cone on the space of directions at x.

Remark D.1.5. In fact, Theorem D.1.4 is stated in [BBI01] for complete spaces,
but as observed in the beginning of [BBI01], Chapter 10, local results hold for
locally complete spaces. Hence this theorem applies in our situation.

233
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Lemma D.1.6 (Sub-ball lemma). For all w > 0, there exists θ0 = θ0(w) > 0,
such that if B(x, 1) is a ball with volume at least w, which is relatively compact
in a manifold without boundary whose sectional curvature is bounded below by −1,
then, there exists a B(y, θ0) ⊂ B(x, 1), such that every sub-ball B(z, r) ⊂ B(y, θ0)
of any radius r > 0 has volume bounded below by (1 − ε0) times the volume of a
Euclidean ball of the same radius.

In such a context, we will say that B(z, r) has (1−ε0)-almost Euclidean volume.



Appendix E

A sufficient condition for
hyperbolicity

Below we give a proof of Proposition 1.3.10 which we recall here.

Proposition E.1.7. Let M be a closed and orientable 3-manifold. Suppose that
the inequality V̄ (M) � V0(M) holds. Then equality holds, M is hyperbolic, and
the hyperbolic metric realises V̄ (M).

Proof. Let H0 be a hyperbolic manifold homeomorphic to the complement of a
link L0 in M and whose volume realises V0(M). To prove Proposition E.1.7, it is
sufficient to show that L0 is empty. Let us assume that it is not true and prove that
M carries a metric gε such that vol(gε) < V0(M) and Rmin(gε) � −6. This can
be done by a direct construction as in [And02]. We give here a different argument
relying on Thurston’s hyperbolic Dehn filling theorem.

If L0 �= ∅, then we consider the orbifold O with underlying space M , singular
locus L0 local group Z/nZ with n > 1 sufficiently large so that the orbifold carries
a hyperbolic structure, by the hyperbolic Dehn filling theorem [Thu80] (cf. [BP01],
Appendix B). We then desingularise the conical metric on M corresponding to the
orbifold structure, in a tubular neighbourhood of L0:

Lemma E.1.8 (Salgueiro [Sal09]). For each ε > 0 there exists a Riemannian
metric gε on M with sectional curvature bounded below by −1 and such that
vol(M, gε) < (1 + ε) vol(O).

For completeness we give the proof of this lemma, following [Sal09], Chapter 3.

Proof. Let g be the hyperbolic cone metric on M induced by the hyperbolic orb-
ifold O. Let N ⊂ O be a tubular neighbourhood of radius r0 > 0 around the
singular locus L0. In N the local expression of the singular metric g in cylindrical
coordinates (r, θ, h) is:

ds2 = dr2 +
(

1
n

sinh(r)
)2

dθ2 + cosh2(r)dh2,
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where r ∈ (0, r0) is the distance to L0, h is the linear coordinate of the projection
to L0, and θ ∈ (0, 2π) is the rescaled angle parameter.

The deformation depends only on the parameter r and consists in replacing N
with the metric g by a smaller cylinder N ′ with smooth metric g′ of the form

ds2 = dr2 + φ2(r)dθ2 + ψ2(r)dh2,

where for some δ = δ(ε) > 0 sufficiently small the functions

φ, ψ : [0, r0 − δ]→ [0,+∞)

are smooth and satisfy the following properties:

(1) In a neighbourhood of 0, φ(r) = r and ψ(r) is constant.

(2) In a neighbourhood of r0 − δ, φ(r) = 1
n sinh(r + δ) and ψ(r) = cosh(r + δ).

(3) ∀r ∈ (0, r0 − δ), φ
′′(r)
φ(r) � 1 + ε, ψ′′(r)

ψ(r) � 1 + ε and φ′(r)ψ′(r)
φ(r)ψ(r) � 1 + ε.

The new metric is Euclidean near L0 (hence non-singular) by (1), it matches the
previous one away from N by (2) and has sectional curvature � −1− ε by (3).

We first deal with the construction of ψ, satisfying

• on [0, η], ψ is constant, where η2 = δ,

• on [η, r0 − δ], ψ � cosh(r + δ), ψ′ � sinh(r + δ), ψ′′ � cosh(r + δ)(1 + ε).

We start with a function fδ = ψ′ which vanishes in [0, η], fδ = sinh(r + δ) on a
neighbourhood of r0 − δ, and satisfies fδ � sinh(r + δ), f ′

δ � cosh(r + δ)(1 + ε).
This fδ can be achieved by a suitable deformation of f0(r) = sinh(r), because
f ′
0(r) < cosh(r)(1 + ε). Then ψ is just the primitive of f that equals cosh(r + δ)

at r = r0 − δ.
Next we deal with the construction of φ. Let r1 = r1(δ) > 0 be the smallest

positive real number satisfying r1 = 1
n sinh(r1 +δ). Consider the piecewise smooth

function

r �→
{
r on [0, r1],
1
n sinh(r + δ) on [r1, r0 − δ].

Then, since r1 ∼ 1
n−1δ � η, φ can be chosen as a smooth modification of this

function satisfying

• on [0, r1], φ � r/(1 + ε), φ′′ � 0,

• on [r1, η], φ � 1
n sinh(r + δ) 1

1+ε , φ
′′ � 1

n sinh(r + δ),

• on [η, r0 − δ], φ = 1
n sinh(r + δ).
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As δ → 0, vol(M, g′)→ vol(O), since φ→ 1
n sinh(r) and ψ → cosh2(r). Hence,

given ε > 0, for a choice of δ sufficiently small, one obtains a smooth Riemannian
metric g′ on M with sectional curvature � −1 − ε and volume vol(M, g′) � (1 +
ε) vol(O). Then the rescaled metric gε =

√
1 + ε g′ on M has sectional curvature

� −1 and volume vol(M, gε) � (1 + ε)
5
2 vol(O).

As vol(O) < vol(H0) [Thu80], [Hod86], [NZ85], for ε > 0 sufficiently small we
obtain a Riemannian metric on M such that vol(M, gε) < vol(H0) and Rmin(gε) �
−6. In particular

V̄ � vol(M, gε) < vol(H0) = V0(M),

which contradicts the hypothesis. The link L0 is thus empty and we have M = H0.
This proves Proposition E.1.7
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[Hak62] W. Haken, Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I.
Math. Z. 80 (1962), 89–120. 16

[Ham82] R. S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differen-
tial Geom. 17 (1982), 255–306. 5, 6, 204, 227, 229

[Ham86] R. S. Hamilton, Four-manifolds with positive curvature operator. J. Differ-
ential Geom. 24 (1986), 153–179. 6, 57, 204, 227

[Ham93] R. S. Hamilton, The Harnack estimate for the Ricci flow. J. Differential
Geom. 37 (1993), 225–243. 6, 231, 232

[Ham95a] R. S. Hamilton, A compactness property for solutions of the Ricci flow.
Amer. J. Math. 117 (1995), 545–572. 98, 203

[Ham95b] R. S. Hamilton, The formation of singularities in the Ricci flow. In Surveys
in differential geometry (Cambridge, MA, 1993), Vol. II, Internat. Press,
Cambridge, MA, 1995, 7–136. 6, 7, 29, 30

[Ham97] R. S. Hamilton, Four-manifolds with positive isotropic curvature. Comm.
Anal. Geom. 1 (1997), 1–92. 5, 10, 30

[Ham99] R. S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds.
Comm. Anal. Geom. 7 (1999), 695–729. 6, 21, 44, 45, 93, 188, 189, 195

[Hat00] A. Hatcher, Notes on basic 3-manifold topology. Cornell University, Ithaca,
NY, 2000. http://www.math.cornell.edu/ hatcher/3M/3Mdownloads.html
221

[Hem76] J. Hempel, 3-manifolds. Ann. of Math. Stud. 86, Princeton University Press,
Princeton 1976. 221

http://www.math.cornell.edu/~hatcher/3M/3Mdownloads.html


BIBLIOGRAPHY 243

[Hem79] G. Hemion, On the classification of homeomorphisms of 2-manifolds and
the classification of 3-manifolds. Acta Math. 142 (1979), 123–155. 16

[HH97] E. Hebey and M. Herzlich, Harmonic coordinates, harmonic radius and
convergence of Riemannian manifolds. Rend. Mat. Appl. (7) 17 (1997), 569–
605 (1998). 98

[Hil87] J. A. Hillman, Three-dimensional Poincaré duality groups which are exten-
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Spectr. Géom. 25, Universit Grenoble I, St. Martin d’Hres 2008, 121–148.
http://tsg.cedram.org/cedram-bin/article/TSG 2006-2007 25 121 0.pdf vi,
10

[Mai09] S. Maillot, Ricci flow, scalar curvature and the Poincaré conjecture. In Ge-
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spective. Preprint 2006. arXiv:math/0610903 vi

[Tho84] C. B. Thomas, Splitting theorems for certain PD3-groups. Math. Z. 186
(1984), 201–209. 20

[Tho94] A. Thompson, Thin position and the recognition problem for S3. Math. Res.
Lett. 1 (1994), 613–630.

[Thu80] W. P. Thurston, The geometry and topology of three-manifolds. Lecture
Notes, Princeton University, Princeton 1980.
http://www.msri.org/communications/books/gt3m 190, 235, 237

[TS31] W. Threlfall and H. Seifert, Topologische Untersuchung der Diskon-
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[Wal04] C. T. C. Wall, Poincaré duality in dimension 3. In Proceedings of the Casson
Fest, Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry 2004, 1–26.
20

[Yam96] T. Yamaguchi, A convergence theorem in the geometry of Alexandrov
spaces. In Actes de la table ronde de géométrie différentielle (Luminy, 1992),
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