Feuille d'exercices n° 2

Exercice 1 Soit X un espace topologique.

- 1. Montrer que les composantes connexes de X sont fermées. Sont-elles ouvertes ? Qu'en est-il des composantes connexes par arcs ?
- 2. Montrer que si $U \subset X$ est connexe, ouverte, fermée et non vide, c'est une composante connexe.
- 3. Montrer que sont équivalents :
 - (a) Les composantes connexe par arcs sont ouvertes (et donc fermées).
 - (b) Chaque point de X a un voisinage connexe par arcs.
- 4. Montrer que (b) implique que composantes connexes et composantes connexes par arcs coincident.

Exercice 2 Soient X un espace topologique, \mathcal{R} une relation d'équivalence sur X et $\pi: X \to X/\mathcal{R}$ la projection sur l'espace quotient.

- 1. Montrer que si X est connexe, alors l'espace quotient X/\mathcal{R} est connexe.
- 2. Montrer que si X/\mathcal{R} est connexe et toute fibre $\pi^{-1}\pi(x)$ est connexe, alors X est connexe.

Exercice 3 Montrer qu'une variété topologique de dimension 0 est un espace topologique discret.

Exercice 4 (*Droite à double origine*) Soit $M = \mathbb{R}^* \cup \{a, b\}$ muni de la topologie engendrée par les parties $B \subset M$ telles que $B \subset \mathbb{R}^*$ est ouvert, $B = (] - \varepsilon, \varepsilon[-\{0\}) \cup \{a\}$ ou $B = (] - \varepsilon, \varepsilon[\setminus\{0\}) \cup \{b\}$, pour tout $\varepsilon > 0$.

- 1. Montrer que M est une variété topologique de dimension 1, connexe et non séparée.
- 2. Montre que M est homéomorphe au quotient $X = \mathbb{R} \times \{1,2\} / \sim$, où $\mathbb{R} \times \{1,2\}$ est l'espace produit et la relation d'équivalence est engendrée par $(x,1) \sim (x,2)$ pour $x \neq 0$.

Exercice 5 Montrer que si \mathbb{R}^n est homéomorphe à \mathbb{R} , alors n = 1.

Exercice 6 Soit $C \subset \mathbb{R}^n$ un convexe et soit $a \in \text{Int}C$.

- 1. Montrer que toute demi-droite issue de a rencontre le bord ∂C en au plus un point.
- 2. On suppose C borné. Montrer que ∂C est homéomorphe à \mathbf{S}^{n-1} . (Indication : on pourra supposer a=0 et considérer l'application $x\in\partial C\mapsto \frac{x}{||x||}\in\mathbf{S}^{n-1}$).
- 3. On suppose C compact. Montrer que C est homéomorphe à \mathbb{B}^n (on pourra montrer que C est homéomorphe à un cône sur ∂C)
- 4. En déduire que le simplexe standard Δ^n est homéomorphe à \mathbb{B}^n et que $\partial \Delta^n$ est homéomorphe à \mathbf{S}^{n-1} .

Exercice 7 Montrer que si $P^1(\mathbb{R})$ est homéomorphe au cercle S^1 .

Exercice 8 Soit $f: \{x_3 = -1\} \subset \mathbb{R}^3 \mapsto \mathbb{S}^2 \setminus \{(0,0,1)\}$ la réciproque de la projection stéréographique.

1. Donner une expression analytique de f.

2. Construire une application $g: \mathbb{C}^2 \setminus \{0\} \to \mathbf{S}^2$, dont la restriction à $\mathbb{C} \times \{1\}$ est l'application f, et invariante par l'action $(z_1, z_2) \mapsto (\lambda z_1, \lambda z_2)$, $\lambda \in \mathbb{C} \setminus \{0\}$. En déduire l'existence d'un homéomorphisme entre $P^1(\mathbb{C})$ et la sphère \mathbf{S}^2 .

Exercice 9

- 1. Montrer que $P^n(\mathbb{R})$ est homéomorphe à $\mathbf{S}^n/(x \sim \pm x)$.
- 2. Montrer que $P^n(\mathbb{R})$ est homéomorphe au quotient \mathbb{B}^n/\mathcal{R} de la boule unité fermée n-dimensionnelle par la relation d'équivalence \mathcal{R} définie par

$$\forall x, y \in \mathbb{B}^n$$
, $x \mathcal{R} y$ si $\begin{cases} x = y \text{, ou bien} \\ x = -y \in \mathbf{S}^{n-1}. \end{cases}$

3. Montrer que $P^n(\mathbb{C})$ est homéomorphe à $\mathbf{S}^{2n+1}/(x \sim e^{i\theta}x, \forall \theta)$.

Exercice 10 Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par

$$f(x,y) = \left(\left(1 + \frac{1}{2}\cos y\right)\cos x, \left(1 + \frac{1}{2}\cos y\right)\sin x, \frac{1}{2}\sin y\right)$$

et soit $M = f(\mathbb{R}^2) \subset \mathbb{R}^3$ muni de la topologie induite.

- 1. Montrer que M s'obtient par révolution autour de l'axe (Oz) d'un cercle de rayon 1/2.
- 2. Montrer que f induit un homéomorphisme entre le tore $\mathbb{R}^2/(2\pi\mathbb{Z})^2$ et M.
- 3. En déduire que M est une surface topologique, qu'on peut munir d'un atlas à trois cartes.

Exercice 11 (Groupes classiques)

- 1. Montrer que $GL(n,\mathbb{R}) = \{M \in M_n(\mathbb{R}) \text{ inversible}\}\$ est ouvert dans $M_n(\mathbb{R})$ et a deux composantes connexes.
- 2. Montrer que $O(n, \mathbb{R}) = \{M \in M_n(\mathbb{R}), M^tM = I_n\}$ est une variété compacte à deux composantes connexes, dont l'une est $SO(n, \mathbb{R}) = \{M \in O(n, \mathbb{R}), \det M = 1\}$. Indication : on pourra montrer que c'est une sous-variété.

Exercice 12 On définit une application $h: \mathbb{B}^3 \to SO(3, \mathbb{R})$ comme suit : h(0) est la matrice Identité, et si $x \neq 0$, h(x) désigne la rotation d'axe (0x), orientée de 0 vers x et d'angle $\pi||x||$. Déduire de h un homéomorphisme entre $P^3(\mathbb{R})$ et $SO(3, \mathbb{R})$.

Exercice 13 On note $T_1\mathbf{S}^2$ l'espace des vecteurs unitaires tangents à $\mathbf{S}^2 \subset \mathbb{R}^3$, c'est-à-dire

$$T_1 \mathbf{S}^2 = \{(x, v) \in \mathbf{S}^2 \times \mathbb{R}^3, \langle x, v \rangle = 0, ||v|| = 1\}.$$

Montrer que $T_1\mathbf{S}^2$ est homéomorphe à $SO(3,\mathbb{R})$.