

ANNEE UNIVERSITAIRE 2012/2013 SESSION 2 PRINTEMPS

Licence de Mathématiques Examen de Systèmes dynamiques (K1MA6021)

Date: 25/06/2013 Heure: 14h00 Durée: 3h00

Documents : Non autorisés. Calculette homologuée : autorisée

Epreuve de Mr : Bessières. Longueur du sujet : 2 pages

Exercice 1. (Autour du cours)

- (1) Soit $A \in M_n(\mathbb{R})$ et $B = P^{-1}AP$ où P est une matrice inversible.
 - (a) Quelle relation y a t'il entre les solutions du système X'=AX et celles du système X'=BX ?
 - (b) Démontrer là.
- (2) Soit $A \in M_2(\mathbb{R})$ admettant une valeur propre complexe λ associé à un vecteur propre complexe W.
 - (a) Démontrer que $Z(t)=e^{\lambda t}W$ est une solution (à valeurs complexes) du système X'=AX.
 - (b) Déduire de Z(t) deux solutions réelles du système X' = AX.

Exercice 2. Soit $\phi: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 telle que $\phi(0) = 0$ et

$$\forall t \in \mathbb{R}, \quad |\phi'(t)| \le C + M|\phi(t)|$$

où C,M>0 sont des constantes données. On veut démontrer le résultat suivant (une version du lemme de Gronwall) :

$$\forall t \in \mathbb{R}, \quad |\phi(t)| \le \frac{C}{M} \left(e^{Mt} - 1 \right)$$
 (2.1)

- (1) Soit $t \geq 0$, montrer que $|\phi(t)| \leq U(t)$ où $U(t) = Ct + M \int_0^t |\phi(s)| \ ds$.
- (2) En utilisant la fonction f, définie par $f(t)=e^{-Mt}U(t)$ pour $t\geq 0$, montrer que (2.1) est vraie pour tout $t\geq 0$.
- (3) Montrer que (2.1) est vraie pour tout $t \leq 0$.

Exercice 3. On considère les matrices

(a)
$$A = \begin{pmatrix} 3 & 5 \\ -2 & -2 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 3 & -2 \\ 5 & -3 \end{pmatrix}$, (c) $A = \begin{pmatrix} -1 & -3 \\ 0 & 2 \end{pmatrix}$.

Pour chaque système X' = AX associé,

- i. Déterminez les valeurs propres et les vecteurs propres de A (éventuellement complexes).
- ii. Déterminez une matrice P telle que $P^{-1}AP$ soit de Jordan.
- iii. Déterminez le portrait de phase de $Y'=P^{-1}APY$ puis de X'=AX, en précisant soigneusement les axes utilisés.

Exercice 4. On considère le système différentiel dans \mathbb{R}^3 :

$$\begin{cases} x' = 2y(z-1) \\ y' = -x(z-1) \\ z' = -z^3 \end{cases}$$

qu'on écrit X' = f(X).

- (1) Montrer que $X_* = (0,0,0)$ est l'unique point d'équilibre du système.
- (2) (a) Calculer le linéarisé du système en X_* .
 - (b) Déterminer les valeurs propres du linéarisé et dresser succintement son portrait de phase.
 - (c) Que peut-on en déduire quand au type du point d'équilibre X_* pour le système X'=f(X) ?
- (3) On pose $V(x, y, z) = ax^2 + by^2 + cz^2$, où a, b, c > 0 sont des constantes.
 - (a) Montrer qu'il existe des valeurs a,b,c pour lesquelles V est une fonction de Lyapounov de X'=f(X) en $X_{st}.$
 - (b) En déduire la nature du point d'équilibre X_* .