FEUILLE D'EXERCICES nº 5

Extensions de corps

Exercice 1 – Montrer que l'ensemble des nombres réels algébriques est dénombrable. En déduire que les nombres transcendants forment une partie non dénombrable de \mathbb{R} .

Exercice 2 – On appelle nombre de Liouville un réel x tel que pour tout $n \in \mathbb{N}$ il existe un rationnel $p_n/q_n \in \mathbb{Q}$, où $p_n, q_n \in \mathbb{Z}$ et $q_n > 1$, vérifiant

$$0 < |x - p_n/q_n| < 1/q_n^n$$
.

On se propose de démontrer qu'un nombre de Liouville est transcendant.

- 1) Soit $\alpha \in \mathbb{R}$ un nombre algébrique.
- a) Montrer qu'il existe un polynôme $P(X) \in \mathbb{Z}[X]$ de degré $d \geqslant 1$ tel que $P(\alpha) = 0$.
- b) Établir que quels que soient $a, b \in \mathbb{Z}$ vérifiant b > 0 et $P(a/b) \neq 0$, on a $|P(a/b)| \geq 1/b^d$.
- c) Soit $\varepsilon > 0$ tel que α soit la seule racine de P(X) dans $[\alpha \varepsilon, \alpha + \varepsilon]$. Prouver qu'il existe K > 0 tel que $|P(x)| \leq K|x \alpha|$ pour tout $x \in [\alpha \varepsilon, \alpha + \varepsilon]$.
- d) En déduire qu'il existe C > 0 tel que $|\alpha a/b| \ge C/b^d$ pour tout $a, b \in \mathbb{Z}$ vérifiant b > 0 et $a/b \ne \alpha$.
- 2) Montrer qu'un nombre de Liouville est transcendant.
- 3) Soient $b \in \mathbb{N}$, $b \ge 2$, et une suite $(a_n)_{n \ge 1}$ d'entiers vérifiant $1 \le a_n \le b-1$. Montrer que

$$x = \sum_{k=1}^{\infty} a_k / b^{k!}$$

est transcendant. Exemple (premier transcendant connu):

Exercice 3 – Soient L/K une extension et $x \in L$.

- 1) Montrer que x est algébrique sur K si et seulement si x^2 est algébrique sur K.
- **2)** Montrer que si x est algébrique sur K et si [K(x):K] est impair, alors $K(x^2) = K(x)$.
- 3) Est-ce encore vrai si [K(x):K] est pair?
- 4) Montrer que si x est transcendant sur K, alors $K(x^2) \subsetneq K(x)$.

Exercice 4 -

- 1) Que vaut $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}]$? Donner une base de $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ vu comme \mathbb{Q} -espace vectoriel.
- 2) Quel est le polynôme minimal de $\sqrt{2} + \sqrt{3}$ sur \mathbb{Q} ?
- 3) En déduire que $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Exercice 5 – Soient K un corps de caractéristique différente de 2 et $P(X) \in K[X]$ unitaire de degré 2. Soit L/K une extension de degré 2.

- 1) Montrer qu'il existe $a, b \in K$ tels que $P(X) = (X a)^2 b$.
- 2) Montrer qu'il existe $x \in L \setminus \{0\}$ tel que $x^2 \in K$ et L = K(x).
- 3) Soit $y \in L$ tel que $y^2 \in K$ et L = K(y). Montrer que $y/x \in K$.
- 4) Soient p et q deux nombres premiers distincts. Que vaut $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}]$?
- 5) Soit $z \in \mathbb{Q}(\sqrt{p}, \sqrt{q})$ tel que $z^2 \in \mathbb{Q}$. Montrer que l'un des quatre éléments suivants appartient à $\mathbb{Q}: z, z/\sqrt{p}, z/\sqrt{q}, z/\sqrt{pq}$.
- 6) En déduire la liste des extensions de \mathbb{Q} incluses dans $\mathbb{Q}(\sqrt{p}, \sqrt{q})$.
- 7) Quelles sont les extensions de \mathbb{Q} incluses dans $\mathbb{Q}(\sqrt{2} + \sqrt{3})$?

Exercice 6 – Soit a une racine de $X^3 + X + 1$ dans \mathbb{C} . Quel est le degré d de l'extension $\mathbb{Q}(a)/\mathbb{Q}$? Soit $b = a^5 + a^2 + 1$. Montrer que b est non nul et exprimer son inverse sous la forme $b^{-1} = P(a)$, où $P(X) \in \mathbb{Q}[X]$ est de degré au plus d-1.