Feuille d'exercices n° 1

Anneaux, idéaux, généralités

Tous les anneaux considérés sont supposés unitaires.

Exercice 1. On note $S^1 \subset \mathbb{C}$ l'ensemble des complexes de module 1, et \cdot la multiplication complexe.

- 1) Montrer que (S^1, \cdot) est un groupe commutatif.
- 2) Montrer que (S^1, \cdot) est isomorphe au groupe quotient $(\mathbb{R}/\mathbb{Z}, +)$. Indication : considérer l'application $\mathbb{R} \ni t \mapsto e^{2i\pi t} \in S^1$.

Exercice 2. Soient m et n deux entiers strictements positifs.

- 1) Montrer qu'il existe un morphisme d'anneaux de $\mathbb{Z}/n\mathbb{Z}$ dans $\mathbb{Z}/m\mathbb{Z}$ si et seulement si m divise n et que dans ce cas, ce morphisme est unique.
- 2) On suppose que m divise n. Calculer le noyau du morphisme ci-dessus et en déduire qu'il y a un isomorphisme $(\mathbb{Z}/n\mathbb{Z})/(m\mathbb{Z}/n\mathbb{Z}) \approx \mathbb{Z}/m\mathbb{Z}$.

Exercice 3. Soit $(A, +, \times)$ un anneau. Un élément x de A est dit *nilpotent* s'il existe un entier $n \ge 1$ tel que $x^n = 0_A$. Si $x \in A$ est nilpotent, le plus petit entier $n \ge 1$ tel que $x^n = 0_A$ est appelé l'*indice de nilpotence* de x.

- 1) Soient $a, b \in A$ tels que ab soit nilpotent d'indice de nilpotence n. Montrer que ba est nilpotent. Que peut-on dire de son indice de nilpotence m? Indication : on montrera que $|m-n| \le 1$ mais qu'on n'a pas forcément m=n.
- 2) Soient a et b deux éléments nilpotents de A. On suppose qu'ils commutent i.e. ab = ba. Montrer que a+b et ab sont nilpotents. Que peut-on dire de leurs indices de nilpotence (en fonction de ceux de a et b)? Indication: on montrera que si k et l sont les indices de nilpotence de a et b, celui de a + b est inférieur ou égal à k+l-1 et que l'on peut avoir égalité ou non. De même on montrera que celui de ab est inférieur ou égal à min(k,l) et qu'ici encore on peut avoir égalité ou non.
- 3) Le but de cette question est de montrer que si a et b ne commutent pas (donc si A est non commutatif), cette propriété peut être fausse. Trouver un anneau non commutatif A et deux éléments de A nilpotents dont la somme et le produit ne sont pas nilpotents.
- 4) Soit $a \in A$ nilpotent. Montrer que $1_A a$ est inversible et exprimer son inverse sous forme de polynôme en a.
- 5) Soient $a, b \in A$ tels que $1_A ab$ soit inversible. Montrer que $1_A ba$ est aussi inversible et exprimer son inverse en fonction de celui de $1_A ab$. Indication: on pourra commencer par supposer ab nilpotent.

Exercice 4.

- 1) Déterminer les morphismes d'anneaux de $(\mathbb{Z}, +, \times)$ dans lui-même.
- 2) Si $n \in \mathbb{N}$, $n \ge 2$, on pose $\mathbb{Z}[\sqrt{n}] = \{a + b\sqrt{n}; \ a, b \in \mathbb{Z}\}$. Montrer que $\mathbb{Z}[\sqrt{n}]$ est un sous-anneau de \mathbb{R} (muni des lois usuelles).
- 3) Quels sont les morphismes d'anneaux de $\mathbb{Z}[\sqrt{2}]$ dans lui-même? Sont-ce des automorphismes?
- 4) Existe-t-il des morphismes d'anneaux de $\mathbb{Z}[\sqrt{2}]$ dans $\mathbb{Z}[\sqrt{3}]$?
- 5) Soit f un morphisme de l'anneau $(\mathbb{R}, +, \times)$ dans lui-même.
 - (a) Montrer que pour tout x de \mathbb{Q} on a f(x) = x.
 - (b) Montrer que pour tout $x \ge 0$ on a $f(x) \ge 0$ et en déduire que f est croissante.
 - (c) Déterminer f.

Exercice 5. Soient A un anneau commutatif et I et J deux idéaux de A. On note I+J l'ensemble des i+j où $i \in I$ et $j \in J$, et IJ l'ensemble des sommes finies d'éléments de la forme ij où $i \in I$ et $j \in J$.

- 1) Montrer que I + J et IJ sont des idéaux de A.
- 2) Montrer que

$$I \cup J$$
 est un idéal de $A \Leftrightarrow I \subseteq J$ ou $J \subseteq I \Leftrightarrow I \cup J = I + J$.

- 3) Montrer que $IJ \subseteq I \cap J$ et donner un exemple dans lequel cette inclusion est stricte.
- 4) Montrer que si I + J = A alors $IJ = I \cap J$.
- 5) Supposons encore que I + J = A. Soient p_I et p_J les projections canoniques de A sur A/I et A/J. Soit $f: A \longrightarrow A/I \times A/J$ l'application qui à $x \in A$ associe $(p_I(x), p_J(x))$. Montrer que f est un morphisme d'anneaux qui induit un isomorphisme

$$\frac{A}{IJ} \simeq \frac{A}{I} \times \frac{A}{J}.$$

6) Ce résultat est une généralisation d'un théorème bien connu. Lequel? Énoncer une généralisation au produit de n idéaux $(n \ge 2)$ et la prouver.

Exercice 6. Soient A un anneau commutatif et $\mathcal{N}(A)$ l'ensemble de ses éléments nilpotents.

- 1) Montrer que $\mathcal{N}(A)$ est un idéal de A. On l'appelle le nilradical de A.
- 2) Soit I un idéal de A. On pose

$$\sqrt{I} = \left\{ x \in A; \ \exists \ n \in \mathbb{N} \setminus \{0\} \ \text{tel que } x^n \in I \right\}.$$

2

Montrer que \sqrt{I} est un idéal de A contenant I et $\mathcal{N}(A)$. On appelle \sqrt{I} le radical de I.

- 3) Soient I et J deux idéaux de A. Montrer :
 - (a) $\sqrt{A} = A \text{ et } \sqrt{\{0\}} = \mathcal{N}(A);$
 - (b) $I \subseteq J \Rightarrow \sqrt{I} \subseteq \sqrt{J}$;
 - (c) $\sqrt{\sqrt{I}} = \sqrt{I}$;

- (d) $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$;
- (e) $\sqrt{I} + \sqrt{J} \subseteq \sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$;
- (f) $\sqrt{\mathcal{N}(A)} = \mathcal{N}(A)$.
- 4) Soit p_I la projection canonique de A sur A/I. Montrer que $\mathcal{N}(A/I) = p_I(\sqrt{I})$ et en déduire que $\mathcal{N}(A/\mathcal{N}(A)) = \{0\}$.
- 5) Soit un entier n > 1. Déterminer $\sqrt{n\mathbb{Z}}$ et $\mathcal{N}(\mathbb{Z}/n\mathbb{Z})$.

Exercice 7. Soient A, B deux anneaux commutatifs, f un morphisme d'anneaux <u>surjectif</u> de A dans B et I un idéal de A.

- 1) Une proposition du cours montre que f(I) est un idéal de B. Trouver un exemple dans lequel f n'est pas surjectif et f(I) n'est pas un idéal de B.
- 2) Soit J un idéal de B. Une proposition du cours montre que $f^{-1}(J)$ est un idéal de A (vrai même si f n'est pas surjectif). Montrer que l'on a un isomorphisme d'anneaux

$$\frac{A}{f^{-1}(J)} \simeq \frac{B}{J}.$$

- 3) Soit p_I la projection canonique de A sur A/I. Montrer que les idéaux de A/I sont les $p_I(J)$ où J décrit l'ensemble des idéaux de A contenant I.
- 4) Montrer que si A est principal, les idéaux de A/I sont principaux.
- 5) Soient I et J deux idéaux de A vérifiant $I \subseteq J$. Montrer que $p_I(J)$ est un idéal de A/I et que $(A/I)/p_I(J)$ est isomorphe à A/J.

Exercice 8. Soit A un anneau commutatif. Montrer que les trois assertions suivantes sont équivalentes :

- (i) A est un corps;
- (ii) $A \neq \{0\}$ et les seuls idéaux de A sont $\{0\}$ et A;
- (iii) $A \neq \{0\}$ et tout morphisme d'anneaux de A dans un anneau non nul est injectif.