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§1. Introduction.

We are concerned with diophantine approximation and continued
fractions in function fields. The rôles of Z, Q, and R in the classical theory
are played by K[T ], K(T ) and K((T−1)), where K is an arbitrary given
field. An element of the field K((T−1)) of power series will be denoted by
α = akT k +ak−1T

k−1 + .... where k ∈ Z, ai ∈ K and ak 6= 0. The rational
k is called the degree of α, denoted by deg α. An ultrametric absolute
value is defined by |α| = |T |deg α and |0| = 0, where |T | is a fixed real
number greater than 1. Thus the field K((T−1)) should be viewed as a
completion of the field K(T ) for this absolute value.

We are considering the case when the base field K is finite. Let
p be a prime number and q a positive power of p. Let K be a field
of characteristic p. We consider the following algebraic equation with
coefficients A, B, C and D in K[T ] and ∆ = AD − BC 6= 0

x =
Axq + B

Cxq + D
. (1)

If α is an irrational solution in K((T−1)) of such an equation, we say
that α is algebraic of class I. The subset of algebraic elements of class I
has different important properties concerning diophantine approximation.
One of these properties, proved by Voloch [11] and de Mathan [7], implies
the following :

If α is algebraic of class I, and P/Q ∈ K(T ), either we have

lim inf
|Q|→∞

|Q|2|α − P/Q| > 0 (2)

or there exists a real number µ > 2 such that

lim inf
|Q|→∞

|Q|µ|α − P/Q| < ∞. (3)

Notice that there exist in K((T−1)) algebraic elements over K(T ) which
satisfy none of these two conditions and thus are not of class I . For
such an algebraic element α we have lim inf|Q|→∞ |Q|2|α − P/Q| = 0 and
lim inf |Q|→∞ |Q|µ|α − P/Q| = ∞ for all µ > 2. An example of such an
algebraic element is given in [3].

We will now use of the continued fractions in the field K((T−1)).
The reader is referred to [9] for a good study on this subject. If α ∈
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K((T−1)) we write α = [a0, a1, a2, .....] for its continued fraction expansion,
where the ai ∈ K[T ] are the partial quotients and deg ai > 0 for i > 0.
We denote by (pn/qn)n≥0 the sequence of the convergents to α, such that
pn/qn = [a0, a1, a2, .....an] for n ≥ 0. We have the following important
equation

|α − pn/qn| = |an+1|
−1|qn|

−2 for n ≥ 0.

Then the two conditions above can be translated into the following :

(2) The sequence of partial quotients in the continued fraction expansion
for α is bounded, i. e . lim supn |an| < ∞.

(3) The sequence of partial quotients in the continued fraction expansion
for α is unbounded and moreover there exists a positive real number µ′

such that lim supn |an+1||qn|
−µ′

> 0.

If an element in K((T−1)) of class I satisfies condition (2) we will say that
it is an element of class Ib and if it satisfies condition (3) we will say that
it is of class Iub.

It is easy to remark that an element in K((T−1)) which is algebraic
over K(T ) of degree equal to or less than 3 is of class I. By Liouville’s
theorem [6] we know that the quadratic elements in K((T−1)) are of class
Ib. Moreover the continued fraction for quadratic power series has been
studied [9] and it is periodic when the base field K is finite. This is another
argument to see that a quadratic element in K((T−1)) is of class Ib.

Most of the elements of class I are of class Iub. Actually it is possible
to show that if an element is of class Ib then the degree of its partial
quotients is bounded by deg ∆/(q−1), except for the first ones [4] and [8].
Consequently, (1) if q > 1+deg ∆ in equation (1), then the corresponding
solution is of class Iub. Of course, this condition is only sufficient. The
case where ∆ ∈ K∗ is special and has been studied [9]. In this case the
above condition, i.e. q > 1 + deg ∆, is true for all p and q, thus such an
element is always of class Iub. Moreover the continued fraction expansion
for these elements can be explicitly described [9] and [10].

When K = F2, Baum and Sweet [1] were the first to prove that
the class Ib is larger than the class of the quadratic elements. They gave
a famous example of a cubic power series with partial quotients of degree
equal to or less than two. Their approach has been generalised and so we
have obtained other examples when the base field is F2 [4]. Furthermore,
Baum and Sweet [2] have also described the power series in F2((T

−1))
which have all the partial quotients of degree one in their continued fraction
expansion. We have given a different characterization of these elements [5].
It follows from this new characterization that if an algebraic element in
F2((T

−1)) is not quadratic and has all its partial quotients of degree one,
then it is not an element of class I. Thakur [10] has also given examples
of non-quadratic elements of class Ib when the base field K is a finite
extension of F2.
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In characteristic p ≥ 3 less examples are known. Nevertheless Mills
and Robbins [8] have described an algorithm to compute the continued
fraction expansion for elements of class I. This enabled them to give an
example of a non-quadratic element of class Ib with all the partial quotients
of degree one when the base field is Fp for all prime p ≥ 3.

As was first observed by Baum and Sweet [1] and [2], each of the
three classes I, Ib and Iub, is stable under a Moebius transformation, un-
der the Frobenius isomorphism and also under the substitution of T into a
polynomial in T. These two last transformations induce an evident trans-
formation on the corresponding continued fractions. But it is not easy to
say in general what the partial quotients become after a Moebius transfor-
mation. Nevertheless, the case when the determinant of this application is
in the base field K is special and in this situation the element and its im-
age have almost the same expansion [9]. It is interesting to notice too that
each of these three transformations preserves the degree of an algebraic
element.

§2. The case K = F3 and q = p = 3.

We have investigated the case when the base field is F3. The non-
quadratic elements of class Ib seem to be rare in class I. We have searched
for examples with partial quotients all of degree one. According to what we
have said above, if an element in F3((T

−1)) is of class Ib and if deg ∆ = 2
then all its partial quotients are of degree one, except for a finite number.
Thus we have checked up all the possible equations (1) having a unique so-
lution α in F3((T

−1)) with |α| = |T |−1 and where the polynomials A, B, C
and D ∈ F3[T ] are taken of low degree satisfying deg(AD − BC) = 2.
From the results obtained by computer, we think that after some of the
transformations mentioned above – i.e. a Moebius transformation of de-
terminant in F∗

3 and the change of T into uT + v – the non-quadratic
elements of class Ib that have all the partial quotients of degree one reduce
to a set of exceptional cases . These elements have a very peculiar con-
tinued fraction expansion and this is what we want to illustrate with the
following theorem.

Theorem. Let k be a non-negative integer. We define the sequence of
integers (un)n≥0 by

u0 = k and un+1 = 3un + 4 for n ≥ 0.

If a ∈ F3[T ] and n ≥ 0 is an integer, a[n] denotes the sequence a, a, ...., a
where a is repeated n times and a[0] is the empty sequence. Then we define
a finite sequence Hn(T ) of elements of F3[T ], for n ≥ 0, by

Hn(T ) = T + 1, T [un], T + 1.

Let H∞(k) be the infinite sequence defined by juxtaposition

H∞(k) = H0(T ), H1(−T ), H2(T ), ...., Hn((−1)nT ), .....
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Let ω(k) be the element of F3((T
−1)) defined by its continued fraction

expansion

ω(k) = [0, H∞(k)].

Let (pn)n≥0 and (qn)n≥0 be the usual sequences for the numerators and
the denominators of the convergents of ω(k).
Then ω(k) is the unique solution in F3((T

−1)) of the irreducible quartic
equation

x =
pkx3 + pk+3

qkx3 + qk+3
. (1)

Remark. For example, if k = 0 then

ω(0) = [0, T +1, T +1,−T +1,−T [4],−T +1, T +1, T [16], T +1,−T +1, ...]

and this element satisfies the algebraic equation

x =
T 2 + 1

T 3 + T 2 − T − x3
.

Besides, it is easy to show that equation (1) has a unique solution in
F3((T

−1)). Therefore if we prove that this solution is ω(k), since its con-
tinued fraction expansion is neither finite nor periodic, it will follow that
ω(k) is algebraic of degree 4 over F3(T ).

Proof: Let k be a non-negative integer. Let ω(k) ∈ F3((T
−1)) be defined

by the continued fraction expansion described in the theorem. We write
ω(k) = [a0, a1, a2, .....] where the ai ∈ F3[T ] are the partial quotients. We
recall that if (pn/qn)n≥0 is the sequence of the convergents to ω(k) defined
by pn/qn = [a0, a1, a2, .....an], we have

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2 (2)

for n ≥ 0 with p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0. Since a0 = 0 and
|an| = |T | for n ≥ 1, it is clear that |qn| = |T |n for n ≥ 0. Moreover we
have

|ω(k) − pn/qn| = |an+1|
−1|qn|

−2 = |T |−1|qn|
−2 for n ≥ 0. (3)

The first step will be to prove that the theorem is equivalent to a
property satisfied by the two sequences (pn)n≥0 and (qn)n≥0. Let fk be
the Moebius transformation involved in equation (1), such that (1) can be
written x = fk(x3). Hence we must prove that ω(k) = fk(ω(k)3).
We put

{

An = pkp3
n + pk+3q

3
n

Bn = qkp3
n + qk+3q

3
n

(4)
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for n ≥ 0. Thus we have

An

Bn

= fk((
pn

qn

)3).

Suppose now that ω(k) = fk(ω(k)3). Then we have

|ω(k)− An/Bn| = |fk(ω(k)3) − fk((pn/qn)3)|. (5)

By straight forward calculation we obtain

fk(ω(k)3) − fk((pn/qn)3) =
(qk+3pk − pk+3qk)(ω(k) − pn/qn)3

(qkω(k)3 + qk+3)(qk(pn/qn)3 + qk+3)
. (6)

Since |pn/qn| = |ω(k)| = |T |−1, we have

|qkω(k)3 + qk+3| = |qk(pn/qn)3 + qk+3| = |qk+3|. (7)

By (5), (6) and (7), we can write

|ω(k)− An/Bn| = |qk+3pk − pk+3qk||qk+3|
−2|ω(k) − pn/qn|

3. (8)

Now we have

|pk+3/qk+3 − pk/qk| = |ω(k) − pk/qk| = |T |−1|qk|
−2

and, since |qn| = |T |n for n ≥ 0, we get

|qk+3pk − pk+3qk| = |T |−1|qk|
−1|qk+3| = |T |2.

Finally, using (3) and observing that |Bn| = |qk+3q
3
n|, (8) becomes

|ω(k) − An/Bn| = |T |−1||Bn|
−2. (9)

Consequently, by (9) we have |Bn|
2|ω(k) − An/Bn| < 1, and this proves

that An/Bn is a convergent to ω(k). Put An/Bn = pm/qm. Com-
paring equality (3) for n = m to (9) we obtain |Bn| = |qm|. Since
|qm| = |T |m and |Bn| = |T |3n+k+3, we get m = 3n + k + 3 and thus
An/Bn = p3n+k+3/q3n+k+3.
Conversely, if An/Bn = p3n+k+3/q3n+k+3, then it follows from (4) that
p3n+k+3/q3n+k+3 = fk((pn/qn)3) for n ≥ 0. Letting now n go to infinity,
we obtain ω(k) = fk(ω(k)3).

This shows that the theorem is equivalent to the following :
There exists ǫn ∈ F∗

3, for n ≥ 0, such that

{

p3n+k+3 = ǫn(pkp3
n + pk+3q

3
n)

q3n+k+3 = ǫn(qkp3
n + qk+3q

3
n).

(10)
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We now introduce the following notation: for a ∈ F3[T ], we denote
by ǫ(a) the leading coefficient of the polynomial a. Then ǫ(a) = ±1. By
(2), we have ǫ(qn) = ǫ(an)ǫ(qn−1) for n ≥ 1. Thus ǫ(qn) =

∏

1≤i≤n ǫ(ai).

This allows us to determine ǫn, assuming that (10) holds. We see indeed
that

ǫ(q3n+k+3) = ǫnǫ(qkp3
n + qk+3q

3
n) = ǫnǫ(qk+3q

3
n) = ǫnǫ(qk+3)ǫ(qn).

We observe that ǫ(ai) = 1 for 1 ≤ i ≤ k + 2 and ǫ(ak+3) = −1. Hence
ǫ(qk+3) = −1 and ǫn = −ǫ(q3n+k+3)ǫ(qn). Consequently, we have

ǫn = −
∏

n+1≤i≤3n+k+3

ǫ(ai) for n ≥ 0. (11)

The last step will be to prove (10). For this we shall use induction
on n.
Clearly (10) is true for n = 0 with ǫ0 = 1. Next, it follows from (2) and
(4) that we can write

An = pkp3
n + pk+3q

3
n = pk(anpn−1 + pn−2)

3 + pk+3(anqn−1 + qn−2)
3.

Using the Frobenius isomorphism, this equality becomes

An = a3
nAn−1 + An−2 for n ≥ 2. (12)

Because of the same recursive definition for the two sequences (pn)n≥0

and (qn)n≥0, the same recurrence relation holds clearly for the sequence
(Bn)n≥0.
In order to prove (10) by induction, we will show that the sequences
(p3n+k+3)n≥0 and (q3n+k+3)n≥0 satisfy a recurrence relation similar to
(12). For this we shall first express pn in terms of pn−3, pn−5 and pn−6.
Applying (2) successively, we can write

pn = anpn−1 + pn−2 = an(an−1pn−2 + pn−3) + pn−2

pn = an[an−1(an−2pn−3 + pn−4) + pn−3] + an−2pn−3 + pn−4

pn = (anan−1an−2 + an + an−2)pn−3 + (anan−1 + 1)pn−4

for n ≥ 6. We will now introduce some new notations. Since ai and aj are
two polynomials of degree 1 for i, j ≥ 1, there exist λi,j ∈ F∗

3 and µi,j ∈ F3,
such that we can write ai = λi,jaj + µi,j . Thus we obtain

(anan−1 + 1)pn−4 = an(λn−1,n−3an−3 + µn−1,n−3)pn−4 + pn−4

= anλn−1,n−3(pn−3 − pn−5)+ (λn,n−3an−3 +µn,n−3)µn−1,n−3pn−4 + pn−4

= (anλn−1,n−3+λn,n−3µn−1,n−3)(pn−3−pn−5)+(1+µn,n−3µn−1,n−3)pn−4
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Finally, combining these equalities and using again pn−4 = an−4pn−5 +
pn−6, we can write

pn = xnpn−3 + ynpn−6 + znpn−5 (13)

for n ≥ 6 with










xn = anan−1an−2 + an(1 + λn−1,n−3) + an−2 + λn,n−3µn−1,n−3

yn = 1 + µn,n−3µn−1,n−3

zn = an−4(1 + µn,n−3µn−1,n−3) − λn−1,n−3an − λn,n−3µn−1,n−3

(14)

Once again, the same recursive definition for the two sequences (pn)n≥0

and (qn)n≥0 shows that (13) holds changing p into q.

We want to apply (13) replacing n by 3n + k + 3. Since (13) holds
for n ≥ 6, the same relation with 3n+k+3 instead of n will hold for n ≥ 1.
We need to express x3n+k+3, y3n+k+3 and z3n+k+3 for n ≥ 1. It is clear
that this will be possible if we know the five consecutive partial quotients
from a3n+k+3 to a3n+k−1. For this reason, we come back to the description
of the sequence of partial quotients (an)n≥0 given in the theorem.
We introduce the sequence of integers (πi)i≥0 in the following way. The
finite subsequence of partial quotients represented by Hi((−1)iT ) will be
denoted by

Hi((−1)iT ) = aπi
, aπi+1, ....., aπi+1−1.

From the definition of the sequence (an)n≥0 it is easy to remark that we
have πi+1 − πi = ui + 2 for i ≥ 0 and therefore πi+1 − πi = 3ui−1 + 6 =
3(πi−πi−1 −2)+6 = 3(πi−πi−1) for i ≥ 1. Thus πi+1−3πi = πi−3πi−1,
and we obtain πi+1 − 3πi = π1 − 3π0 = (k + 3) − 3 = k for i ≥ 0. Thus
the sequence (πi)i≥0 is defined by

π0 = 1 and πi+1 = 3πi + k. (15)

We shall now use a partition of the set N∗ = N − {0} into three classes
defined by

E1 = {n ∈ N∗ : there exists i ≥ 0 such that n = πi}

E2 = {n ∈ N∗ : there exists i ≥ 1 such that n = πi − 1}

E3 = {n ∈ N∗ : there exists i ≥ 1 such that πi−1 < n < πi − 1}.

The expression of x3n+k+3, y3n+k+3 and z3n+k+3 will depend on the class
to which the integer n belongs.
• Assume that n ∈ E1. By (15), there is i ≥ 0 such that 3n + k = πi+1.
Therefore we have

a3n+k = (−1)i+1T + 1, a3n+k−1 = (−1)iT + 1

and
a3n+k+1 = a3n+k+2 = a3n+k+3 = (−1)i+1T.
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Hence

λ3n+k+2,3n+k = λ3n+k+3,3n+k = 1 and µ3n+k+3,3n+k = µ3n+k+2,3n+k = −1.

Then, by (14), a simple calculation shows that











x3n+k+3 = (−1)i+1T 3 − 1

y3n+k+3 = −1

z3n+k+3 = 0.

Furthermore, as n = πi we have an = (−1)iT + 1, and so (13) becomes

p3n+k+3 = −a3
np3n+k − p3n+k−3. (16)

• Assume that n ∈ E2. By (15), there is i ≥ 1 such that 3n+k+3 = πi+1.
Therefore we have

a3n+k+3 = (−1)i+1T + 1, a3n+k+2 = (−1)iT + 1

and

a3n+k+1 = a3n+k = a3n+k−1 = (−1)iT.

Hence

λ3n+k+2,3n+k = 1, λ3n+k+3,3n+k = −1 and µ3n+k+3,3n+k = µ3n+k+2,3n+k = 1.

Then, by (14), a simple calculation shows that











x3n+k+3 = (−1)i+1T 3 + 1

y3n+k+3 = −1

z3n+k+3 = 0.

Furthermore, as n = πi − 1 we have an = (−1)i−1T + 1, and so (13)
becomes

p3n+k+3 = a3
np3n+k − p3n+k−3. (17)

• Assume that n ∈ E3. By (15), there is i ≥ 1 such that πi < 3n + k <
πi+1−3. Since πi−k is a multiple of 3 for i ≥ 1, we have πi +3 ≤ 3n+k ≤
πi+1 −6. Therefore we have πi +2 ≤ 3n+k−1 and 3n+k +3 ≤ πi+1 −3.
Thus

a3n+k+3 = a3n+k+2 = a3n+k+1 = a3n+k = a3n+k−1 = (−1)iT

Hence

λ3n+k+2,3n+k = λ3n+k+3,3n+k = 1 and µ3n+k+3,3n+k = µ3n+k+2,3n+k = 0.
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Then, by (14), a simple calculation shows that











x3n+k+3 = (−1)iT 3

y3n+k+3 = 1

z3n+k+3 = 0.

Furthermore, as πi−1 < n < πi − 1 we have an = (−1)i−1T , and so (13)
becomes

p3n+k+3 = −a3
np3n+k + p3n+k−3. (18)

In conclusion we have shown that we can write

p3n+k+3 = θna3
np3n+k + θ′np3n+k−3 (19)

for n ≥ 1, where θn = ±1 and θ′n = ±1 are given in (16), (17) or (18). Of
course, for the reason given above, we also have the same relation changing
p into q. Now taking n = 1, as 1 ∈ E1 by (16), we have

pk+6 = −a3
1pk+3 − pk and qk+6 = −a3

1qk+3 − qk.

Since p1 = 1 and q1 = a1, this shows that (10) holds for n = 1 with
ǫ1 = −1. We can now begin our proof by induction. Let n ≥ 2 be an
integer. We assume that An−1 = ǫn−1p3n+k and An−2 = ǫn−2p3n+k−3.
Hence from (12) we can write

An = a3
nǫn−1p3n+k + ǫn−2p3n+k−3

and this becomes

An = ǫn−2θ
′
n(ǫn−1ǫn−2θ

′
na3

np3n+k + θ′np3n+k−3). (20)

Recall that the same relation holds with B instead of A and q instead of
p. Comparing (19) and (20), if we prove that

θn = ǫn−1ǫn−2θ
′
n (21)

for n ≥ 2, then we will have An = ǫn−2θ
′
np3n+k+3 and Bn = ǫn−2θ

′
nq3n+k+3.

Thus (10) will hold for all n ≥ 2 with ǫn = ǫn−2θ
′
n. By (11), which is true

by induction for n − 1 and n − 2, we easily obtain

ǫn−1ǫn−2 = ǫ(an−1)ǫ(a3n+k−2)ǫ(a3n+k−1)ǫ(a3n+k). (22)

Once again we distinguish three cases :
• Assume that n ∈ E1. By (16), θn = −1 and θ′n = −1. Furthermore,
by (15), there is i ≥ 1 such that n = πi and 3n + k = πi+1. This implies
an−1 = (−1)i−1T + 1 and

a3n+k = (−1)i+1T + 1, a3n+k−1 = (−1)iT + 1, a3n+k−2 = (−1)iT.
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Hence, by (22), we obtain

ǫn−1ǫn−2 = (−1)i−1.(−1)i.(−1)i.(−1)i+1 = 1.

Thus we see that (21) is satisfied.
• Assume that n ∈ E2. By (17), θn = 1 and θ′n = −1. Furthermore, by
(15), there is i ≥ 1 such that n = πi − 1 and 3n + k = πi+1 − 3. This
implies an−1 = (−1)i−1T and

a3n+k = a3n+k−1 = a3n+k−2 = (−1)iT.

Hence, by (22), we obtain

ǫn−1ǫn−2 = (−1)i−1.(−1)i.(−1)i.(−1)i = −1.

Thus we see that (21) is satisfied.
• Assume that n ∈ E3. By (18), θn = −1 and θ′n = 1. Furthermore, by
(15), there is i ≥ 1 such that πi−1 < n < πi − 1 and πi + 3 ≤ 3n + k ≤
πi+1 − 6. This implies ǫ(an−1) = (−1)i−1 and

a3n+k = a3n+k−1 = a3n+k−2 = (−1)iT.

Hence, by (22), we obtain

ǫn−1ǫn−2 = (−1)i−1.(−1)i.(−1)i.(−1)i = −1.

Thus we see again that (21) is satisfied.
In conclusion (21) is satisfied for all n ≥ 2, and so the proof of the theorem
is complete.

Before concluding, we would like to make a last remark. While
searching by computer for promising examples with all partial quotient of
degree one, we have observed other types of continued fraction expansions
than the one we have described in the theorem. These have a pattern which
is not very far from the previous one, but slightly more complicated. We
want to describe here one of these types.
Let k ≥ 0 and l ≥ 0 be two integers. Let (un)n≥0 and (vn)n≥0 be two
sequences of integers defined recursively by

u0 = k, un+1 = 3un + 4 and v0 = l, vn+1 = 3vn + 4.

Let Hn and Kn, for n ≥ 0, be two finite sequences of elements of F3[T ]
befined by

Hn = T + (−1)n, T [un], T + (−1)n+1

and
Kn = −T + (−1)n+1,−T [vn],−T + (−1)n+1.
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Let H∞(k, l) be the infinite sequence defined by juxtaposition

H∞(k, l) = H0, K0, H1, K1, H2, K2, H3, K3, .....

Let Ω(k, l) be the element of F3 defined by its continued fraction expansion

Ω(k, l) = [0, H∞(k, l)].

Then we conjecture that Ω(k, l) is an algebraic element of degree 4 over
F3(T ) and that it satisfies an equation of the form x = f(x3) where f is a
Moebius transformation with selected coefficients in F3[T ].
The case k = l = 1 corresponds to the example given by Mills and Robbins
[8].
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