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DIOPHANTINE APPROXIMATION

AND CONTINUED FRACTION EXPANSIONS

OF ALGEBRAIC POWER SERIES

IN POSITIVE CHARACTERISTIC

Abstract. In a recent paper [2], M. Buck and D. Robbins have given the continued

fraction expansion of an algebraic power series when the base field is F3. We study
its rational approximation property in relation with Roth’s theorem, and we show

that this element has an analog for each power of an odd prime number. At last we
give the explicit continued fraction expansion of another classical example.

§1. Introduction.

Let K be a field. We denote K((T−1)) the set of formal Laurent series with
coefficients in K. If α =

∑
k≤k0

akT
k is an element of K((T−1)), with ak0

6= 0, we

introduce the absolute value |α| = |T |k0 and |0| = 0, with |T | > 1. It is well known
that Roth’s theorem ( if α is an element of K((T−1)), irrational algebraic over
K(T ), then for all real ǫ > 0 we have |α − P/Q| > |Q|−(2+ǫ) for all P/Q) ∈ K(T )
with |Q| large enough ) fails if K has a positive characteristic p. In this case, which
is the one we consider here, Liouville’s theorem ( there is a real positive constant
C such that |α− P/Q| ≥ C|Q|−n for all P/Q ∈ K(T ) , where n is the degree of α
over K(T ) ) holds and is optimal.

Many examples can be studied. A special case is the one where α satisfies an
equation of the form α = (Aαps

+B)/(Cαps

+D) where A,B,C,D belong to K[T ],
with AD−BC 6= 0, and s is a positive integer. Those elements have been studied by
Baum and Sweet, Mills and Robbins, Voloch, de Mathan ( [1],[5],[6],[7]). To simplify
we will say that such an irrational algebraic element is an element of class I. It is also
possible to study some particular rational functions, with coefficients in K[T ], of
an element of class I (This was done by Voloch in [8]). For such simple examples, if
d is a real number such that, for every ǫ > 0, we have |α−P/Q| > |Q|−(d+ǫ) for |Q|
large enough, then there is a real positive constant C such that |α−P/Q| ≥ C|Q|−d,
for all P/Q. But all these examples seem to be exceptions. It seems that , except
for “particular” elements, Roth’s theorem holds, and for an irrational algebraic
element , for all ǫ > 0, we have |α − P/Q| > |Q|−(2+ǫ), for |Q| large enough but
not |α − P/Q| ≥ C|Q|−2 for all P/Q. Nevertheless, no algebraic element α, for
which this result could be established, was known. It has only been proved that if
α is an algebraic element of degree n, not of class I, then Thue’s theorem holds, i.e.
|α− P/Q| > |Q|−([n/2]+ǫ), for |Q| large enough ([3]).
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M. Buck and D. Robbins have given the continued fraction expansion of a
particular algebraic element of F3((T

−1)) ([2]). What is very curious in this example
is that it does not belong to the set of exceptions already known. Indeed this
element satisfies, for |Q| large enough, |α− P/Q| > |Q|−(2+ǫ) but not |α− P/Q| ≥
C|Q|−2, for all P/Q. Actually there are two real positive constants λ1 and λ2

such that, for some rationals P/Q with |Q| arbitrary large, we have |α − P/Q| ≤
|Q|−(2+λ1/

√
log|Q|), and for all rationals P/Q with |Q| > 1, we have |α − P/Q| ≥

|Q|−(2+λ2/
√

log|Q|) .

We have observed that α(T ) = β2(
√
T ) where β satisfies β = 1/(T + β3),

that is to say β2 is a rational function of an element of class I, but not such that
it can be studied by the method mentioned above. This new approach allows us
to give another proof of the result due to M. Buck and D. Robbins. Let α be an
irrational element of K((T−1)). Then it may be expanded uniquely as a continued
fraction. We write this continued fraction expansion as α = [a0, a1, a2, ...., an, ...],
where ak ∈ K[T ] for k ≥ 0 and deg ak > 0 for k > 0. With these notations, we will
prove that, in F3((T

−1)), we have

[T, T 3, ....., T 3n

, .....]2 = [lim
n

Ωn]

where (Ωn)n≥0 is a sequence of elements of F3[T ], defined inductively by

Ω0 = ∅, Ω1 = T 2, Ωn = Ωn−1, 2T
2,Ω

(3)
n−2, 2T

2,Ωn−1 for n ≥ 2

and limn Ωn denotes the sequence begining by Ωn for all n ≥ 0. This has been
obtained by studying a general case. Let q be a power of an odd prime num-
ber p, then we have considered, in Fp((T

−1)), the continued fraction expansion of

[T, T q, ..., T qn

, ...](q+1)/2. We have not been able to describe it entirely for q > 3,
but we show that it has an interesting structure which implies the above result,
for q = 3. The possibility of describing completely the general case, or even of
improving the description given in this paper, is an open question.

At last we give the continued fraction expansion of a classical example of
algebraic element, first introduced by K. Mahler.

§2.A badly approximable element .

In [2], M. Buck et D. Robbins have given the continued fraction expansion
of an element of F3((T

−1)). If K = F3, they show that the algebraic equation

(1) x4 + x2 − Tx+ 1 = 0

has a unique solution in K((T−1)), the continued fraction expansion of which can
be totally described. Indeed , they define recursively the following polynomial
sequences :

(2) Ω0 = ∅, Ω1 = T, Ωn = Ωn−1,−T,Ω
(3)
n−2,−T,Ωn−1 for n ≥ 2

( Here Ω
(3)
k denotes the sequence obtained by cubing each element of Ωk and commas

indicate juxtaposition of sequences), then they prove that [0,Ωn] is the begining
for all n > 0 of the continued fraction expansion of this solution. Using this result
we can prove:
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Theorem A. Let α be the unique root of (1) in F3((T
−1)). Then there exist

explicit positive real constants λ1 and λ2 such that for some rationals P/Q with |Q|
arbitrary large, we have

(3) |α− P/Q| ≤ |Q|−(2+λ1/
√
degQ)

and, for all rationals P/Q with |Q| sufficiently large, we have

(4) |α− P/Q| ≥ |Q|−(2+λ2/
√
degQ)

( We can take λ1 = 2/
√
3 and λ2 > 2/

√
3.)

Proof: We write α = [a0, a1, a2, ..., an, ...]. For k > 0, we put dk = deg ak and
Pk/Qk = [a0, ..., ak].
It results, from the inductive definition (2), that all partial quotients are monomials,
and all have a power of 3 as degree.
For i ≥ 1, we define ki = inf{k ≥ 1/ dk = 3i}. If ki ≤ k < ki+1, we have
dk ≤ dki

= 3i. For each n ≥ 0, let us define the sequence Ω∗
n of the degrees of the

elements of Ωn. We get :

Ω∗
0 = ∅, Ω∗

1 = 1, Ω∗
2 = 1111, Ω∗

3 = 11111311111

From the recursive definition (2), we see, by induction on k, that

supΩ∗
2k+2 = supΩ∗

2k+1 = 3k for k ≥ 0

therefore , for k ≥ 0, 2k + 1 is the smallest integer n such that 3k belongs to Ω∗
n.

Again, from (2) and by induction on k, we see that Ω∗
2k+1 has an odd number of

terms, has 3k as central term and is reversible. All of this leads to

(5)
∑

ak∈Ω2i+1

dk = 3i + 2
∑

k<ki

dk

Now we put ωn =
∑

ak∈Ωn
dk. From (2), we obtain

(6) ω0 = 0, ω1 = 1, ωn = 2ωn−1 + 3ωn−2 + 2 for n ≥ 2

It is easy to check that the sequence ((3n−1)/2)n≥0 is the one satisfying (6). Hence
by (5), we have

(7) deg Qki−1 =
∑

k<ki

dk = (ω2i+1 − 3i)/2 = (32i+1 − 2.3i − 1)/4

Thus 3i ≥ (2/
√
3)
√

deg Qki−1, which gives |T |−3i ≤ |Qki−1|−2/
√

3deg Qki−1 .
Also we have, for i ≥ 1

|α− Pki−1/Qki−1| = |T |−3i |Qki−1|−2
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this shows that (3) holds for P/Q = Pki−1/Qki−1 and for i ≥ 1, with λ1 = 2/
√
3.

On the other hand we see that deg Qki−1 ≤ deg Qk < deg Qki+1−1 im-

plies |α − Pk/Qk| = |T |dk+1 |Qk|−2 ≥ |T |−3i |Qk|−2. As, by (7), the sequence

(3i/
√
deg Qki−1)i≥1 converges to 2/

√
3, then, if λ2 > 2/

√
3, we can write 3i <

λ2

√
deg Qki−1 ≤ λ2

√
deg Qk, for i large enough. It follows that (4) holds for

Pk/Qk with k large enough. Since the convergents are the best rational approx-
imations, this is also true for all P/Q with |Q| large enough. So the theorem is
proved.

Remark. The fact that for this element and for all ǫ > 0, we have |α − P/Q| >
|Q|−(2+ǫ), for |Q| large enough but not |α − P/Q| ≥ C|Q|−2 for all P/Q, implies
that it is not of class I, according to the theorem proved in [5] or [7].
In the same paper [2], the authors have considered the unique solution, inK((T−1)),
of the algebraic equation (1), when the base field is K = F13. In that situation the
solution is actually of class I. After some calculation, it can be seen that (1) implies
x = (Ax13 + B)/(Cx13 +D) with A = T 2 + 1, B = T 5 + 2T 3 + 2T , C = 9T and
D = T 6 + T 4 + 11T 2 + 1.
( We can observe that the conjecture made by the authors, ([6], p.404), implies dn =
(13w9(4n−1)+2)/3 where w9(k) is the greatest power of 9 dividing k. Using notations
as above and as in [5], it is possible to compute the approximation exponent of this
solution, called α. We have ν(α) = 1 + lim supk≥1 deg ak+1/ deg Qk = 5/3. It

can be seen that |α− P/Q| ≥ |T |−1|Q|−8/3 for all (P,Q) ∈ K[T ]×K[T ]\{0}.)

§3. A power of a simple element of class I.

Here we come back to the element of F3((T
−1)), mentioned above, first

introduced by W. Mills and D. Robbins in [6], satisfying

(1) x4 + x2 − Tx+ 1 = 0

Let p be an odd prime number, q a power of p, and let K = Fp. We consider
the element αq of K((T−1)) defined by its continued fraction expansion:

(2) αq = [0, T, T q, ...., T qn

, ...]

This element is of class I, being the unique root, in K((T−1)), of the algebraic
equation

(3) xq+1 + Tx− 1 = 0

We put r = (q + 1)/2 and we consider the element θq, of K((T−1)), defined by
θq = αr

q. We observe that (3) implies αq = (1/T )(1 − α2r
q ) which leads to θq =

(1/T r)(1− θ2q)
r. So θq is a solution of the algebraic equation

(4) x = (1/T r)(1− x2)r

If x is a solution of (4), in K((T−1)), we must have |x| ≤ 1. Since otherwise |x| > 1
gives |(1− x2)r| = |x|2r, and by (4), |T |r = |x|q which is impossible. We consider
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the set E = {x ∈ K((T−1))/ |x| ≤ 1}, and the map f of E into itself defined by
f(x) = (1/T r)(1 − x2)r. Then we can see that f is a contraction mapping, E is
complete, and therefore f(x) = x has a unique solution in E. So θq is the unique
root of (4) in K((T−1)). Also, the coefficients of this equation are elements of
K(T r), thus its solution θq is an element of K((T−r)). Then we can introduce the
element θ∗q of K((T−1)), defined by θq(T ) = θ∗q (T

r). So θ∗q is the unique solution,

in K((T−1)), of the algebraic equation

(5) x = (1/T )(1− x2)r

Now we see that, if q = 3, we have θ∗3 = (1/T )(1−(θ∗3)
2)2 = (1/T )(1+(θ∗3)

2+(θ∗3)
4),

so that θ∗3 is the root of (1) in F3((T
−1)).

Here we shall see that the link between θq and αq is simple enough to give
a partial description of the continued fraction expansion of this element, this de-
scription being complete for q = 3. We start from the continued fraction expansion
of αq. Let us consider the usual two sequences of polynomials of K[T ], defined
inductively by

P0 = 0, P1 = 1, Q0 = 1, Q1 = T, Pn = T qn−1

Pn−1+Pn−2 Qn = T qn−1

Qn−1+Qn−2

for n ≥ 2. So (Pn/Qn)n≥0 is the sequence of the convergents to αq. By (2), for
n ≥ 1, we have

Pn/Qn = [0, T, T q, ...., T qn−1

] = 1/(T+[0, T, T q, ..., T qn−2

]q) = 1/(T+(Pn−1/Qn−1)
q)

Since Pn and Qn are coprime and both unitary, we obtain

(6)

{
P0 = 0 Pn = Qq

n−1

Q0 = 1 Qn = TQq
n−1 + P q

n−1 for n ≥ 1

Now let us consider the continued fraction expansion of θq. We set θq =
[a0, a1, ...., an, ....]. We observe that a0 = 0 from the definition of θq since |αq| <
1. Then we introduce the usual two sequences of polynomials of K[T ], defined
inductively by

U0 = 0, U1 = 1, V0 = 1, V1 = a1, Un = anUn−1 + Un−2 Vn = anVn−1 + Vn−2

for n ≥ 2. So (Un/Vn)n≥0 is the sequence of the convergents to θq.

First we are going to give some special sub-sequences of convergents to θq.

We use the following auxiliary results:

Lemma 1. For n ≥ 0, the polynomial an is an odd polynomial in the indeterminate
T r and the rational (Pn/Qn)

r is a convergent to θq.

Proof: We know that equation (5) has θ∗q as unique solution in K((T−1)). From
(5) we see that

θ∗q(−T ) = (−1/T )(1− (θ∗q(−T ))2)r thus − θ∗q(−T ) = (1/T )(1− (−θ∗q(−T ))2)r
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Therefore −θ∗q (−T ) is also solution of (5), and we have −θ∗q(−T ) = θ∗q(T ). That

is to say θ∗q is an odd element of K((T−1)), and by induction we see that the
partial quotients of the continued fraction expansion of θ∗q are odd polynomials of
K[T ]. If we write θ∗q = [a∗0(T ), a

∗
1(T ), ...., a

∗
n(T ), ....], then, because of the identity

θ∗q(T
r) = θq(T ), we have an(T ) = a∗n(T

r).

Now we show that (Pn/Qn)
r is a convergent to θq. Indeed, for n ≥ 0

|αr
q − (Pn/Qn)

r| = |αq − Pn/Qn| |
∑

0≤i≤r−1

αi
q(Pn/Qn)

r−1−i|

Since |αq| = |Pn/Qn| = |T |−1 , we have r terms in the sum , each with absolute
value |T |−r+1 and dominant coefficient 1. Therefore, as r and p are coprime, this
becomes

|αr
q − (Pn/Qn)

r| = |αq − Pn/Qn| |T |−r+1 = |QnQn+1|−1|T |−r+1

From (6) we get |Qn+1| = |Qn|q|T |, which gives

(7) |θq − (Pn/Qn)
r| = |Qr

n|−2|T |−r

This shows that (Pn/Qn)
r is a convergent to θq, and the Lemma is proved.

Lemma 2. Let P and Q be two polynomials of K[T ], with Q 6= 0, and n a positive
integer. If

(8) |Q| < |Qn|r and |PQr
n −QP r

n | <
|Qn|r
|Q|

then P/Q is a convergent to θq. Moreover, if P and Q are coprime and the con-
vergent P/Q is Uk/Vk, then we have

(9) |ak+1| = |PQr
n −QP r

n|−1|Q|−1|Qn|r

Proof: By (7) and (8), we have

|θq − (Pn/Qn)
r| =

1

|Qn|q+1|T |r <
1

|Qn|r|Q| ≤
|PQr

n −QP r
n |

|Qn|r|Q|
since |Q| < |Qn|r and (Pn, Qn) = 1 implies PQr

n −QP r
n 6= 0. Hence

|θq − (Pn/Qn)
r| < |P/Q− (Pn/Qn)

r|
Therefore

|θq − P/Q| = |θq − (Pn/Qn)
r + (Pn/Qn)

r − P/Q| = |P/Q− (Pn/Qn)
r|

and by (8)
|θq − P/Q| < |Q|−2

This shows that P/Q is a convergent to θq. Now if P and Q are coprime and
P/Q = Uk/Vk, we have |Q| = |Vk|. Besides, we know that

|θq − Uk/Vk| = |Vk|−2|ak+1|−1

Since
|θq − Uk/Vk| = |P/Q− (Pn/Qn)

r|
it is clear that (9) holds. So Lemma 2 is proved.
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Lemma 3. Let us consider the elements of K(T ), defined by

Θq(T ) =
T q

(T 2 + 1)r
and Θ′

q(T ) =
T q

(T 2 − 1)r

Then we have the following continued fraction expansions in K(T ):

(10) Θq(T ) = [0, T, 2T, 2T, ......, 2T, T ] (2T is repeated q − 1 times)

(11) Θ′
q(T ) = [0, T,−2T, 2T, ......,−2T, 2T,−T ] (−2T, 2T is repeated

q − 1

2
times)

Proof: Let (Rk)0≤k≤q+1 be the sequence of elements of K(T ), defined inductively
by:

(12)R0 = 0, R1 = 1, Rk = 2TRk−1 +Rk−2 for 2 ≤ k ≤ q, Rq+1 = TRq +Rq−1

Then , by the usual property of a linear recurrent sequence, we have

(12)′ Rk =
1

2
√
T 2 + 1

((T +
√

T 2 + 1)k − (T −
√

T 2 + 1)k) for 1 ≤ k ≤ q

Now we introduce the sequence (Sk)0≤k≤q+1 of elements of K[T ], defined induc-
tively by

(13)S0 = 1, S1 = T, Sk = 2TSk−1 + Sk−2 for 2 ≤ k ≤ q, Sq+1 = TSq + Sq−1

So (Rk/Sk)0≤k≤q+1 are the convergents to [0, T, 2T....2T, T ], and (10) will be proved
if we show that: (14) Rq+1 = T q and Sq+1 = (T 2 + 1)r

First we prove that (13)′ Sk = TRk+Rk−1 holds for 1 ≤ k ≤ q. By induction,
since Sk and Rk satisfy the same recursive relation, it suffices to see that (13)′ is
satisfied for k = 1 and k = 2.
Now we prove that: (15) Rq = (T 2 + 1)r−1 and Sq = T q

Indeed, by (12)′, we have

Rq =
1

2
√
T 2 + 1

((T q + (
√
T 2 + 1)q)− (T q − (

√
T 2 + 1)q)) = (T 2 + 1)r−1

Rq−1 =
1

2
√
T 2 + 1

(
T q + (

√
T 2 + 1)q

T +
√
T 2 + 1

− T q − (
√
T 2 + 1)q

T −
√
T 2 + 1

) = T q − T (T 2 + 1)r−1

Then, by (13)′, we get Sq = TRq +Rq−1 = T q.
By (12), we also get Rq+1 = TRq +Rq−1 = T q. Now we compute Sq+1. From the
classical identity Rq+1Sq −Sq+1Rq = −1, we obtain, with (14) and (15), Sq+1Rq =
T 2q + 1 = (T 2 + 1)q, hence Sq+1 = (T 2 + 1)r. So (10) is proved.

Now we show that (11) is a consequence of (10). Let u be a square root of
−1, eventually in an extension of K. We have

uΘq(uT ) =
u2rT q

(−T 2 + 1)r
=

T q

(T 2 − 1)r
= Θ′

q(T )
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From this identity and (10), it follows that

Θ′
q(T ) = u[0, uT, 2uT, 2uT, ...., 2uT, uT ]

Using the property of the multiplication of a continued fraction expansion by a
scalar, we have

Θ′
q(T ) = [0, T, 2u2T, 2T, ...., 2T, u2T ] = [0, T,−2T, 2T, ...., 2T,−T ]

So (11) is proved.

We observe, from (12)′ and (13)′, that the polynomial Ri has the opposite
parity to the integer i, and the polynomial Si has the same parity as the integer i.
For 0 ≤ i ≤ q + 1, we introduce the elements of K[T ], defined by

(16)

{
R′

i = Ri(uT ) and S′
i(T ) = −uSi(uT ) for i odd

R′
i = uRi(uT ) and S′

i(T ) = Si(uT ) for i even

Since we have u(Ri/Si)(uT ) = (R′
i/S

′
i)(T ), it is clear, by the same argument as

above, that R′
i/S

′
i are the convergents to Θ′

q(T ).

Lemma 4. For 1 ≤ i ≤ q, let Ri, Si, R
′
i and S′

i be the elements of K[T ] introduced
in Lemma 2. Notations being as above, for n ≥ 0, we put

Ri,n = P r
nRi(Q

r
n) and Si,n = Si(Q

r
n) for n odd

Ri,n = P r
nR

′
i(Q

r
n) and Si,n = S′

i(Q
r
n) for n even

Then, for n ≥ 0, Ri,n/Si,n is a convergent to θq. Further Ri,n and Si,n are coprime,
and if m(i, n) is the integer such that Um(i,n)/Vm(i,n) = Ri,n/Si,n, then am(i,n)+1 =
λi,nT

r, where λi,n is a non-zero element of K.

Moreover, for n ≥ 0, we have:

(17) R1,n/S1,n = P r
n/Q

r
n , Rq,n/Sq,n = Qr−1

n+1P
q
n/P

r
n+1

and the convergent preceding R1,n/S1,n is Rq,n−1/Sq,n−1, i.e.

(18) Rq,n−1/Sq,n−1 = Um(1,n)−1/Vm(1,n)−1 for all n ≥ 1

Proof: Let n and i be integers such that n ≥ 0 and 1 ≤ i ≤ q. We shall apply Lemma
2 with P = Ri,n and Q = Si,n. First, by (13) and (16), we have |Si| = |S′

i| = |T |i
hence we have |Si,n| = |Qn|ri. Then by (6), |Qn|i ≤ |Qn|q < |Qn+1|. Thus
we have |Si,n| < |Qn+1|r, which is the first part of condition (8). We put δi,n =
Ri,nQ

r
n+1 − Si,nP

r
n+1. For n odd , we have

δi,n = P r
nRi(Q

r
n)Q

r
n+1 − Si(Q

r
n)P

r
n+1

By (6), (14) and since we have Pn+1Qn − PnQn+1 = −1, we get
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δi,n = (Q2r
n + 1)rRi(Q

r
n)− Si(Q

r
n)Q

qr
n

δi,n = Sq+1(Q
r
n)Ri(Q

r
n)− Si(Q

r
n)Rq+1(Q

r
n)

δi,n = ∆i(Q
r
n) with ∆i = Sq+1Ri − SiRq+1

In the same way, for n even, by (6), (14) and since we have Pn+1Qn−PnQn+1 = 1,
we get

δi,n = (Q2r
n − 1)rR′

i(Q
r
n)− S′

i(Q
r
n)Q

qr
n

We observe, from (14) and (16), that R′
q+1 = (−1)rT q and S′

q+1 = (−T 2 + 1)r, so
we obtain

δi,n = (−1)r∆′
i(Q

r
n), with ∆′

i = S′
q+1R

′
i − S′

iR
′
q+1.

Also we have |Rq+1/Sq+1 −Ri/Si| = 1/|Si+1Si| and therefore

|∆i| = |Sq+1Si| |Rq+1/Sq+1 −Ri/Si| = |Sq+1|/|Si+1|

By (12) and (13), we see that |Si| = |T |i and |Ri| = |T |i−1 , then we get
|∆i| = |T |q−i. In the same way, by (16) |Si| = |S′

i|, |Ri| = |R′
i|, so we obtain

|∆′
i| = |T |q−i. Thus, as |Si,n| = |Qn|ri, and by (6) |Qn+1| > |Qn|q, we get

|δi,n| = |Qn|r(q−i) < |Qn+1|r/|Si,n|

which is the second part of condition (8), and so by Lemma 2, Ri,n/Si,n is a
convergent to θq, for n ≥ 0 and 1 ≤ i ≤ q.

Now we prove that Ri,n and Si,n are coprime. First we show that ∆i and
Si are coprime (the same for ∆′

i and S′
i). We have ∆i + SiT

q = (T 2 + 1)rRi (
or ∆′

i + (−1)rS′
iT

q = (−T 2 + 1)rR′
i). Hence, since Ri and Si are coprime ( or R′

i

and S′
i are coprime), we see that if A is a prime common divisor of ∆i and Si (or

of ∆′
i and S′

i) , then it divides T 2 + 1 ( or T 2 − 1). Now if Si has such a divisor
then we have Si(u) = 0 or Si(−u) = 0, where u is a square root of −1. From (13)′

we deduce

S0(u) = 1 S1(u) = u Si(u) = 2uSi−1(u) + Si−2(u) for1 ≤ i ≤ q

and this implies Si(u) = ui for 1 ≤ i ≤ q. As Si is alternatively an odd or
even polynomial, we also have Si(−u) = (−1)iSi(u). Therefore Si(±u) 6= 0, and
consequently ∆i and Si are coprime. For ∆′

i and S′
i, the same proof holds. Here

we have to prove that S′
i(±1) 6= 0, and this is derived from (16), and the fact that

Si(±u) 6= 0. Hence there are polynomials E and F of K[T ] such that

E∆i + FSi = 1 wherefrom E(Qr
n)∆i(Q

r
n) + F (Qr

n)Si(Q
r
n) = 1

Thus ∆i(Q
r
n) and Si(Q

r
n) are coprime (the same for ∆′

i(Q
r
n) and S′

i(Q
r
n)). Now we

return to Ri,n and Si,n. If B is a common divisor of both of them, then B divides
Ri,nQ

r
n+1 −Si,nP

r
n+1 = ∆i(Q

r
n) and Si,n = Si(Q

r
n) (or (−1)r∆′

i(Q
r
n) and S′

i(Q
r
n) ),

and therefore divides 1. So we have the desired result.
Then Lemma 2 applies. By (9), we obtain

|am(i,n)+1| = |δi,n|−1|Si,n|−1|Qn+1|r = |Qn|−r(q−i)|Qn|−ri|Qn+1|r = |T |r
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since |Qn+1| = |T | |Qn|q. So by Lemma 1, am(i,n)+1 = λi,nT
r, where λi,n is a

non-zero element of K.

Now we explicit R1,n/S1,n and Rq,n/Sq,n. Since R1 = R′
1 = 1 and S1 =

S′
1 = T , the definition gives immediately the first part of (17) . By (15), we

have (Rq/Sq)(T ) = (T 2 + 1)r−1/T q. By (15) and (16), we obtain (R′
q/S

′
q)(T ) =

(T 2 − 1)r−1/T q. Therefore Rq,n/Sq,n = P r
n(Q

2r
n + (−1)n−1)r−1/Qrq

n . Moreover,
by (6), we have Qq

n = Pn+1 and then Qq+1
n − (−1)n = PnQn+1. So Rq,n/Sq,n =

P 2r−1
n Qr−1

n+1/P
r
n+1, and (17) is proved. Finally, we have

|Sq,n| = |Qn|qr = (|Qn+1|/|T |)r = |S1,n+1|/|T |r

Since the denominators of the convergents are polynomials of K[T r], Rq,n/Sq,n

must be the convergent preceding R1,n+1/S1,n+1. This is (18), and so Lemma 4 is
proved.

Now we can describe partially the continued fraction expansion of θq. With
the notations of Lemma 4, we can write Ri,n/Si,n = [0, a1, ......., am(i,n)], for
n ≥ 0 and for 1 ≤ i ≤ q. We put Ω1,n = a1, a2, ....., am(1,n), for all n ≥ 1.
We can give explicitly Ω1,1 and Ω1,2. By (17), we have R1,n/S1,n = [0,Ω1,n] =
(Pn/Qn)

r. By (6), we get R1,1/S1,1 = (P1/Q1)
r = 1/T r, so Ω1,1 = a1 = T r.

Further, by (6) and with the notations of Lemma 3, we have

R1,2/S1,2 = (P2/Q2)
r = T qr/(T q+1 + 1)r = Θq(T

r)

Therefore, by (10), we get

(19) Ω1,2 = T r, 2T r, 2T r, ...., 2T r, T r (q+1 terms)

We observe that, for n ≥ 1, we have m(1, n) < m(2, n) < ..... < m(q, n). Indeed
|Si+1,n| > |Si,n|, since |Si,n| = |Qn|ir and |Qn| > 1, for n ≥ 1. Then we put
Ω′

i,n = am(i−1,n)+1, ...., am(i,n), for n ≥ 1 and 2 ≤ i ≤ q. We define also Ωi,n by

Ω′
i,n = am(i−1,n)+1,Ωi,n and Ω′

1,n by Ω1,n = T r,Ω′
1,n.

If Ω = x1, x2, ..., xk is a sequence of polynomials, we denote Ω̃ the sequence

obtained by reversing the terms of Ω, i.e. Ω̃ = xk, xk−1, ..., x1. Also if ǫ is a non-

zero element of K we write ǫΩ for ǫx1, ǫ
−1x2, ...., ǫ

(−1)k−1

xk. Notice that if [Ω]
denotes the element of K(T ) which has Ω as continued fraction expansion, we have
ǫ[Ω] = [ǫΩ]. Now we can prove the following result.

Lemma 5. There exists a sequence (ǫn)n≥1 of non-zero elements of K, such that

(20) am(1,n)−k = ǫ(−1)k

n ak+1 for each (k, n) with 0 ≤ k ≤ m(1, n)−1 and n ≥ 1

Further we have for n ≥ 2

(21)

{
Ωq,n = ǫ±1

n+1Ω̃
′
1,n Ωq−i,n = ǫ±1

n+1Ω̃i+1,n for 1 ≤ i ≤ r − 2

λq,n = ǫ±1
n+1 λq−i,n = ǫ±1

n+1λi,n for 1 ≤ i ≤ r − 1
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Proof. By (17) and (18), we can write

(22) Um(1,n) = ǫ′nP
r
n Vm(1,n) = ǫ′nQ

r
n

and
(23) Um(1,n)−1 = ǫ′′nP

q
n−1Q

r−1
n Vm(1,n)−1 = ǫ′′nP

r
n

where ǫ′n and ǫ′′n are non-zero elements of K. We write ǫn = ǫ′n/ǫ
′′
n.

From the definition of Vk, for each k ≥ 1, we have Vk/Vk−1 = [ak, ak−1, ..., a1], so
we can write Vm(1,n)/Vm(1,n)−1 = [am(1,n), am(1,n)−1, ..., a1].
On the other hand, by (22) and (23), we have

Vm(1,n)

Vm(1,n)−1
= ǫn.

Vm(1,n)

Um(1,n)
=

ǫn
[0, a1, ....am(1,n)]

= ǫn[a1, ...., am(1,n)]

therefore

[am(1,n), ..., a1] = ǫn[a1, ...., am(1,n)] = [ǫna1, ...., ǫ
(−1)i−1

n ai, ..., ǫ
(−1)m(1,n)−1

n am(1,n)]

This implies (20) and can be written Ω̃1,n = ǫnΩ1,n.

By Lemma 4 and (18), we have am(1,n+1) = am(q,n)+1 = λq,nT
r, so we can

write
Ω1,n+1 = Ω1,n,Ω

′
2,n, .....,Ω

′
q,n, λq,nT

r

since, we also have am(i,n)+1 = λi,nT
r, for 1 ≤ i ≤ q − 1, we obtain

(24) Ω1,n+1 = T r,Ω′
1,n, λ1,nT

r,Ω2,n, λ2,nT
r, .....,Ωq,n, λq,nT

r

For each finite sequence of non-zero polynomials, we define its degree as being the
sum of the degrees of its terms. We have deg Ω1,n = deg S1,n = rdegQn and, for 2 ≤
i ≤ q, deg Ω′

i,n = deg Si,n − deg Si−1,n = rdeg Qn. We put ωn = rqdeg Qn−1. As
deg Qn = qdeg Qn−1+1, we get deg Ω1,n = ωn+r and deg Ω′

1,n = ωn. Also, for 2 ≤
i ≤ q, deg Ω′

i,n = ωn+ r and deg Ωi,n = ωn. If we write the sequence of the degrees
of the components in the right side of (24), we obtain the sequence, of 2q+1 terms:

r, ωn, r, ωn, ....., r, ωn, r. As this sequence is reversible and Ω̃1,n+1 = ǫn+1Ω1,n+1, it

is clear that Ωq,n = ǫ±1
n+1Ω̃

′
1,n, Ωq−1,n = ǫ±1

n+1Ω̃2,n,....,Ωr+1,n = ǫ±1
n+1Ω̃r−1,n , and

also λq,nT
r = ǫ±1

n+1T
r, λq−1,nT

r = ǫ±1
n+1λ1,nT

r,.......,λr,nT
r = ǫ±1

n+1λr−1,nT
r. This

is (21). So Lemma 5 is proved.

We can observe that if ǫn = 1 then the sequence Ω1,n is reversible, i.e. Ω̃1,n = Ω1,n.
This is actually the case if m(1, n) is odd, say m(1, n) = 2l + 1, then by (20) we

have al+1 = ǫ
(−1)l

n al+1 and therefore ǫn = 1. Notice that we have ǫ1 = 1 and, since
Ω1,2 is reversible by (19), we also have ǫ2 = 1.

Now we consider the case q = 3, r = 2. Since K = F3, we have ǫ
±1
n = ǫn, and

(20) becomes (20)′ am(1,n)−k = ǫnak+1 for 0 ≤ k ≤ m(1, n) − 1 and for n ≥ 1.
Using Lemma 5, (24) becomes

(24)′ Ω1,n+1 = Ω1,n, λ1,nT
2,Ω2,n, ǫn+1λ1,nT

2, ǫn+1Ω̃1,n

In this case the continued fraction expansion of θ3 will be given explicitly below.
We prove the result already obtained by M. Buck and D. Robbins in [2].
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Theorem B. If q = 3, we have

(25) Ω1,n+1 = Ω1,n, 2T
2,Ω

(3)
1,n−1, 2T

2,Ω1,n for n ≥ 2

Here Ω
(3)
1,n−1 denotes the sequence obtained by cubing each element of Ω1,n−1.

Proof. Let n be an integer with n ≥ 2. First we are going to describe Ω2,n.
We have Um(1,n)/Vm(1,n) = [0,Ω1,n] , Um(1,n)+1/Vm(1,n)+1 = [0,Ω1,n, λ1,nT

2] and

Um(2,n)/Vm(2,n) = [0,Ω1,n, λ1,nT
2,Ω2,n] . If we denote x2,n, the element of K(T )

defined by [Ω2,n], then it is a classical fact that we have

(26)
Um(2,n)

Vm(2,n)
=

x2,nUm(1,n)+1 + Um(1,n)

x2,nVm(1,n)+1 + Vm(1,n)

We know that Um(2,n)/Vm(2,n) = R2,n/S2,n. We have R2(T ) = 2T , S2(T ) = 2T 2+1

and also R′
2(T ) = uR2(uT ) = −2T , S′

2(T ) = S2(uT ) = −2T 2 + 1. It follows that
R2,n/S2,n = P 2

nQ
2
n/(Q

4
n + (−1)n). We put

(27) P ′ = P 2
nQ

2
n and Q′ = Q4

n + (−1)n

Then formula (26) can be solved for x2,n, and by (22),we obtain

(26)′ x2,n = ǫ′n
P 2
nQ

′ −Q2
nP

′

Vm(1,n)+1P ′ − Um(1,n)+1Q′

We have to determine Um(1,n)+1/Vm(1,n)+1. We use Lemma 2, and the fact that
R3,n−1/S3,n−1 and R1,n/S1,n are, by Lemma 4, the two convergents preceding it.

So, we consider the polynomials P and Q of K[T ], defined by

(28) P = 2T 2P 2
n + P 3

n−1Qn and Q = 2T 2Q2
n + P 2

n

We apply Lemma 2, to show that P/Q is a convergent to θ3. First we have deg Q =
2degQn+2 and thus Q 6= 0. By (28) and (6), we have PQ2

n−QP 2
n = P 3

n−1Q
3
n−P 4

n =
P 3
n−1Q

3
n − P 3

nQ
3
n−1 = (−1)n, so that (P,Q) = 1 . Since 2deg Qn + 2 < 2deg Qn+1

for n ≥ 2, the first part of condition (8), i.e. |Q| < |Qn+1|2, is satisfied. Let us
show that |PQ2

n+1 −QP 2
n+1| < |Qn+1|2/|Q| , is also satisfied. We put

X1 = Q2
n+1P

2
n −Q2

nP
2
n+1 and X2 = P 3

n−1QnQ
2
n+1 − P 2

nP
2
n+1

By (28), we observe that PQ2
n+1−QP 2

n+1 = 2T 2X1+X2. As Pn+1Qn−Qn+1Pn =
(−1)n, and using (6), we have

X1 = (−1)n+1(2QnPn+1 + (−1)n+1) = (−1)n+1(2Q4
n + (−1)n+1) = (−1)nQ4

n + 1

then

X2 = Q2
n+1P

3
n−1Qn − P 2

n+1P
2
n = (Qn+1/Qn)

2((−1)n + P 4
n)− P 2

n+1P
2
n

X2 = (Qn+1/Qn)
2(−1)n + (Pn/Qn)

2X1
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X2 = ((Qn+1/Qn)
2 + (PnQn)

2)(−1)n + (Pn/Qn)
2

We put X = PQ2
n+1 −QP 2

n+1. As X = 2T 2X1 +X2, we have

X = 2T 2 + (−1)n(2T 2Q4
n + (Qn+1/Qn)

2 + (PnQn)
2 + (−1)n(Pn/Qn)

2)

X = 2T 2 + (−1)n(2T 2Q4
n + (TQ2

n + P 3
n/Qn)

2 + (Pn/Qn)
2(Q4

n + (−1)n))

As Q4
n − TPnQ

3
n − P 4

n = Pn+1Qn −Qn+1Pn = (−1)n, we get

X = 2T 2 + (−1)n(2TQnP
3
n + P 6

n/Q
2
n + (Pn/Qn)

2(2Q4
n − TPnQ

3
n − P 4

n))

X−2T 2 = (−1)n(TQnP
3
n+2P 2

nQ
2
n) = (−1)nP 2

nQn(TPn−Qn) = (−1)n+1P 2
nQnP

3
n−1

Since, for n ≥ 2, |P 3
n−1| < |Qn| and |Pn| < |Qn|, this equality implies

|X | < |Qn|4 =
|Qn+1|2
|Q|

so (8) is satisfied. Hence P/Q is a convergent to θ3, and , since deg Q =deg Vm(1,n)+

2 and θ3 ∈ F3((T
−2)), it is the next after Um(1,n)/Vm(1,n). Therefore we can write

(29) Um(1,n)+1 = ηnP and Vm(1,n)+1 = ηnQ

where ηn is an inversible element of F3. By (22), (23), (28), and ǫ−1 = ǫ for ǫ ∈ F
∗
3,

the first equality of (29) can be written

am(1,n)+1Um(1,n) + Um(1,n)−1 = ηnǫ
′
n2T

2Um(1,n) + ηnǫ
′′
nUm(1,n)−1

Since we have deg Um(1,n) >deg Um(1,n)−1, it follows that am(1,n)+1 = ηnǫ
′
n2T

2 and
ηnǫ

′′
n = 1 , i.e. ηn = ǫ′′n. Thus, since ǫ′nǫ

′′
n = ǫn, we obtain

(30) am(1,n)+1 = ǫn2T
2

Now we come back to (26)′. By (29), as ηn = ǫ′′n and ǫ′nǫ
′′
n = ǫn, (26)

′ implies

(31) x2,n = ǫn
P 2
nQ

′ −Q2
nP

′

QP ′ − PQ′

So we can compute x2,n. By (27) and (6),

P 2
nQ

′ −Q2
nP

′ = P 2
n(Q

4
n + (−1)n)−Q2

nP
2
nQ

2
n = (−1)nP 2

n = (−1)nQ6
n−1

By (27), (28), and (6),

QP ′ − PQ′ = P 2
nQ

2
n(2T

2Q2
n + P 2

n)− (Q4
n + (−1)n)(2T 2P 2

n + P 3
n−1Qn)

QP ′ − PQ′ = P 4
nQ

2
n −Q5

nP
3
n−1 − (−1)n(2T 2P 2

n + P 3
n−1Qn)

QP ′ − PQ′ = Q2
n(PnQn−1 −QnPn−1)

3 + (−1)n(T 2P 2
n −Q2

n + TQnPn)

QP ′ − PQ′ = (−1)n(T 2P 2
n +Q2

n + TQnPn)

QP ′ − PQ′ = (−1)n(Qn − TPn)
2 = (−1)nP 6

n−1
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Hence, by (31), we obtain (32) x2,n = ǫn(Qn−1/Pn−1)
6. Now we observe that

[a1, ...., am(1,n−1)] = 1/[0, a1, ...., am(1,n−1)] = 1/(Pn−1/Qn−1)
2 = (Qn−1/Pn−1)

2

and , since K = F3, we have

ǫn(Qn−1/Pn−1)
6 = [ǫna

3
1, ...., ǫna

3
m(1,n−1)]

So, by (32) and x2,n = [Ω2,n], we obtain

(33) Ω2,n = ǫna
3
1, ...., ǫna

3
m(1,n−1)

According to (30) and (33), we can write (24)′ in the following way

(34) Ω1,n+1 = Ω1,n, ǫn2T
2, ǫna

3
1, ...., ǫna

3
m(1,n−1), ǫn+1ǫn2T

2, ǫn+1Ω̃1,n

So by Lemma 5 and (20)′ we have simultaneously ǫna
3
m(1,n−1) = ǫn+1ǫna

3
1, which

implies am(1,n−1) = ǫn+1a1 and am(1,n−1) = ǫn−1a1. Therefore ǫn+1 = ǫn−1 for all
n ≥ 2. Since ǫ2 = ǫ1 = 1, it follows that ǫn = 1 for all n ≥ 1. Finally, by (20)′, the

sequence Ω1,n is reversible for all n ≥ 1, and so Ω̃1,n = Ω1,n. So (34) becomes (25)
for n ≥ 2, and the theorem is proved.

Remark. We have observed the begining of the continued fraction expansion of θq
by computer, for q ≤ 27. In all cases and for the values of n that we could reach,
we had

ǫn = 1, λq,n = 1, λi,n = 2 for 1 ≤ i < q and Ωr,n = Ω
(q)
1,n−1

as it does happen for q = 3. So, for q > 3, we can conjecture that (24) becomes

Ω1,n+1 = Ω1,n, 2T
r,Ω2,n, ....,Ωr−1,n, 2T

r,Ω
(q)
1,n−1, 2T

r, Ω̃r−1,n, ..., Ω̃2,n, 2T
r,Ω1,n

For n ≥ 2, we denote Jn+1(q) = 2T r,Ω2,n, ....,Ωr−1,n, 2T
r and jn(q) the degree of

Jn(q), we have jn+1(q) = (r − 2)ωn + (r − 1)r = (r − 2)rqdeg Qn−1 + (r − 1)r.
We denote j′n(q) the highest degree in T r of the terms in Jn(q), then we have
j′n+1(q) ≤ ωn/r = qdeg Qn−1. Now we observe that if j′n(q) were not too large,
then the number of terms in Jn(q) would increase with n , because jn(q) does so.
In that direction, we have observed the following data about Jn(q) :

Table giving the number of terms of Jn(q) and (between brackets) the highest degree
(in T r )of those terms.

n:q 5 7 9 11 13
3 5(3) 13(3) 21(5) 35(5) 49(7)
4 22(3) 93(3) 154(9) 413(5) 754(7)
5 99(7) 599(7) 1239(15)
n:q 17 19 23 25 27
3 85(9) 111(9) 167(11) 193(13) 231(13)
4 1844(9) 2677(9)
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Of course we expect the element θq to satisfy Roth’s theorem for all power
q of an odd prime number p, as it does for q = 3. Using the same arguments as

the one developed in §2., this would result from the conjecture Ωr,n = Ω
(q)
1,n−1 and

j′2k+1(q) < qk, j′2k+2(q) ≤ qk (cf.Table ).

If we replace the element θq by the element αk
q , for 1 ≤ k ≤ r, we can see, as

we did for θq, that (Pn/Qn)
k is a convergent to αk

q , as soon as k and p are

coprime. Therefore, in that situation, the approximation exponent of αk
q is at least

(q + 1)/k − 1. We may suppose that this approximation exponent is indeed equal
to (q + 1)/k − 1 (i.e. there are no essentially better approximations to αk

q than

(Pn/Qn)
k, consequently θq satisfies Roth’s theorem). This is proved, in [8], for

(q + 1)/k sufficiently large. If it were true for all k, with (k, p) = 1 , we wonder
whether it could be established without the help of the continued fraction expansion
of αk

q .

§4. The continued fraction expansion of a classical example .

In this last section we would like to give a result which is indirectly connected
with the subject presented above. When we started our investigation from Buck
and Robbins paper ([2]), we studied the method they have used to be able to
describe the continued fraction expansion of θ∗3 . Their idea is to start from an
algebraic element, to observe the begining of its continued fraction expansion by
computer, to guess its pattern and then to show that the element defined by this
expansion satisfies the desired equation. We have tried to apply this approach to the
celebrated example given by Mahler in [4], and so we have succeeded in describing
entirely the continued fraction expansion of this element. Curiously this result does
not seem to be known, so we give it here. We will only give a brief survey of the
proof.

We have the following result:

Theorem C. Let p be a prime number, q = ps for s ∈ N−{0}, q > 2, and K = Fp.
Let α be the element of K((T−1)), defined by

(1) α = 1/T + αq and |α| = |T |−1

Let us define the sequence (Ωn)n>0 of finite sequences of elements of K[T ], recur-
sively by :

(R) Ω1 = T Ωn = Ωn−1,−T (q−2)qn−2

,−Ω̃n−1 for n ≥ 2

where Ω̃ = am, am−1, ...., a1 and −Ω = −a1,−a2, ....,−am, if Ω = a1, a2, ...., am .
Let Ω∞ be the infinite sequence begining by Ωn for all n ≥ 1 . Then the continued
fraction expansion of α is [0; Ω∞]

To prove this, we start from the element α = [0; Ω∞]. For n ≥ 1, we put

Ωn = a1, a2, ...., am(n) rn/sn = [0, a1, a2, ...., am(n)−1] tn/un = [0, a1, a2, ...., am(n)]
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Then we show, from the relation (R), that, for n ≥ 1, we have

rn = −unz
2
n sn = 1− unzn tn = 1 + unzn un = T qn−1

where zn =
∑

0≤k≤n−2 T
−qk

, for n ≥ 2, and z1 = 0. Now we define δn = rn/sn −
(rn/sn)

q−1(tn/un) − T−1. It is clear that δn tends to α − αq − T−1. At last we
show that limn δn = 0, and so the proof is complete.

In conclusion, the author wishes to express his indebtedness to Professor B.
de Mathan for his valuable suggestions during the preparation of this paper.
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