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§1. Introduction.

Let p be a prime number and q = ps where s is a positive integer.
Let Fq be the finite field with q elements. We consider the ring of polyno-
mials Fq[T ], and the field of rational functions Fq(T ), in an indeterminate
T with coefficients in Fq. There is an ultrametric absolute value defined
on Fq(T ) by |0| = 0 and |P/Q| = |T |degP−degQ where |T | is a fixed real
number greater than one. The field obtained by completion from Fq(T ),
for this absolute value, is usually denoted Fq((T−1)). A non-zero element
of this field is represented by a power series in the following way

Θ =
∑
k≤k0

θkT
k where k0 ∈ Z, θk ∈ Fq and θk0

6= 0.

The absolute value extended to this field is then defined by |Θ| = |T |k0 .

This construction, which can be done with an arbitrary base field
instead of Fq, is an analogue of the construction of the field of real numbers
from the ring of the rational integers. The field of power series with a finite
base field has many interesting properties which have analogues in the real
number case. Because of this analogy and to simplify the terminology, this
field will be shortly denoted F(q) and we call its elements “formal numbers”
over Fq.

We are concerned with the continued fraction algorithm in this field
F(q). For a survey on this subject see [Sch]. It is known, by applying an
analogue of Liouville’s theorem in fields of power series, that the quadratic
power series over the field of rational functions are badly approximable by
rationals. This terminology (first introduced by L. Baum and M. Sweet,
see [BS2]) means that if Θ ∈ F(q) is quadratic over Fq(T ) there is a positive
real number C such that

|Θ− P/Q| ≥ C|Q|−2 for all P,Q ∈ Fq[T ] with Q 6= 0.

It is equivalent to say that the partial quotients in the continued fraction
expansion for Θ are polynomials of bounded degree. Indeed if d is the up-
per bound for these degrees then in the above formula we have C = |T |−d.
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The existence of badly approximable non-quadratic algebraic elements in
F(q) is known. This fact was observed first by L. Baum and M. Sweet (
see [BS1] and [BS2], where q = 2 ). Later W. Mills and D. Robbins [MR]
have given an example for all q = p ≥ 3 with d = 1. In a recent work
[L2] the first named author has given a family of examples for q = 3 and
d = 1. In this paper we develop a similar but deeper approach in the most
general setting.

§2. Flat power series over Fq.

Let us consider the subset of Fq[T ]N defined by

A(q) = {A = (ai)i≥1 : ai ∈ Fq[T ] and deg ai = 1 for i ≥ 1}.

Then we consider the map Φ from A(q) into F(q) such that if A ∈ A(q)
then Φ(A) = Θ where Θ is defined by its continued fraction expansion in
F(q) : Θ = [0, a1, a2, . . . , an, . . . ]. We denote E(q) = Φ

(
A(q)

)
.

Now for A ∈ A(q) we define two sequences X(A) = (xi)i≥−1 and
Y (A) = (yi)i≥−1 of elements of Fq[T ] by the following recursion{

x−1 = 1, x0 = 0 and xn = anxn−1 + xn−2 n ≥ 1

y−1 = 0, y0 = 1 and yn = anyn−1 + yn−2 n ≥ 1
(1)

It follows from these definitions that (xi/yi)i≥0 is the sequence of the
convergents to Φ(A) and that we have xi/yi = [0, a1, a2, . . . , ai] for i ≥ 1.

We can now state the following proposition.

Proposition A. Let p be a prime number and let s and t be two positive
integers. We put q = ps and r = pt. Let A ∈ A(q), X(A), Y (A) and Φ(A)
be defined as above. Let k be a non-negative integer. The two following
conditions are equivalent :

(I) There is ε ∈ F∗q such that Φ(A) is a root of the algebraic equation

ykX
r+1 − xkXr + εyk+rX − εxk+r = 0.

(II) There is a sequence (εn)n≥0 of elements of F∗q with ε0 = 1 such
that for n ≥ 1 we have{

εn+1x(n+1)r+k = arnεnxnr+k + εn−1x(n−1)r+k

εn+1y(n+1)r+k = arnεnynr+k + εn−1y(n−1)r+k

Proof: We first show that (I) implies (II). We put Θ = Φ(A) and we have

Θ =
xkΘr + εxk+r

ykΘr + εyk+r
= f(Θr) (2)
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According to a basic property of the continued fraction algorithm, we recall
that we have

|Θ− xn/yn| = |an+1|−1|yn|−2 = |T |−1|yn|−2 for n ≥ 0. (3)

For n ≥ 0, we set {
un = xkx

r
n + εxk+ry

r
n

vn = ykx
r
n + εyk+ry

r
n

(4)

Thus we have for n ≥ 0

un
vn

= f

((xn
yn

)r)
. (5)

Now if a, b ∈ F(q), by straightforward calculation and using the Frobenius
homomorphism, we obtain

f(ar)− f(br) =
ε(yk+rxk − xk+ryk)(a− b)r

(ykar + εyk+r)(ykbr + εyk+r)
. (6)

Assume that |a| ≤ |T |−1 and |b| ≤ |T |−1. Since |yk+r| > |yk|, we have
|ykar + εyk+r| = |ykbr + εyk+r| = |yk+r|. The absolute value being ultra-
metric, we also have

|xk+r/yk+r − xk/yk| = |Θ− xk/yk| = |T |−1|yk|−2.

Thus |yk+rxk − xk+ryk| = |T |−1|yk|−1|yk+r|. Finally (6) implies

|f(ar)− f(br)| = |T |−1|yk|−1|yk+r|−1|a− b|r. (7)

As |Θ| = |xn/yn| = |T |−1 for all n ≥ 0, from (2), (5) and (7) we can write

|Θ− un/vn| = |f(Θr)− f
(
(xn/yn)r

)
| = |T |−1|yk|−1|yk+r|−1|Θ− xn/yn|r

and using (3) we obtain

|Θ− un/vn| = |T |−(r+1)|yk|−1|yk+r|−1|yn|−2r.

Since |an| = |T | for n ≥ 1, it is clear that |yn| = |T |n for all n ≥ 1. By (4)
we have |vn| = |yn|r|yk+r|. Thus we get

|Θ− un/vn| = |T |−1|vn|−2.

Consequently we have |vn|2|Θ−un/vn| < 1, and this proves that un/vn is
a convergent to Θ. Put un/vn = xm/ym. As |Θ− xm/ym| = |T |−1|ym|−2,
we obtain |vn| = |ym|, |un| = |xm| and so that gcd(un, vn) ∈ F∗q . Since

|ym| = |T |m and |vn| = |T |rn+k+r, we get m = r(n + 1) + k and thus
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un/vn = xr(n+1)+k/yr(n+1)+k. This proves that there exists εn+1 ∈ F∗q ,
for n ≥ 0, such that{

εn+1x(n+1)r+k = εxk+ry
r
n + xkx

r
n

εn+1y(n+1)r+k = εyk+ry
r
n + ykx

r
n

(8)

Observe that (8) is also true for n = −1 setting ε0 = 1. Now we assume
that n ≥ 1, and using the property (1) of the sequence (xn)n≥−1, we can
write

εn+1x(n+1)r+k = εxk+r(anyn−1 + yn−2)r + xk(anxn−1 + xn−2)r

which becomes using the Frobenius homomorphism

εn+1x(n+1)r+k = arn(εxk+ry
r
n−1 + xkx

r
n−1) + εxk+ry

r
n−2 + xkx

r
n−2.

Finally applying (8) for n− 1 and n− 2 we obtain the desired formula

εn+1x(n+1)r+k = arnεnxnr+k + εn−1x(n−1)r+k.

It is clear, by the same arguments, that the same holds with y in place of
x. Thus condition (II) is fulfilled.

We now prove that (II) implies (I). Let Θ = Φ(A) = [0, a1, a2, . . . ].
First we observe that

εn+1x(n+1)r+k = ε1xk+ry
r
n + xkx

r
n (9)

is true for n = −1 and n = 0. Now we use induction on n and we assume
it is true for all integers less than n. From (II), we have

εn+2x(n+2)r+k = arn+1εn+1x(n+1)r+k + εnxnr+k

which gives, using (9) for n and n− 1

εn+2x(n+2)r+k = arn+1(ε1xk+ry
r
n + xkx

r
n) + ε1xk+ry

r
n−1 + xkx

r
n−1.

Finally, using the property (1) of the sequence (xn)n≥−1 and the Frobenius
homomorphism, we obtain

εn+2x(n+2)r+k = ε1xk+ry
r
n+1 + xkx

r
n+1.

Thus (9) holds for all n ≥ 0. For the same reasons we also have for n ≥ 0

εn+1y(n+1)r+k = ε1yk+ry
r
n + ykx

r
n. (10)

Now, from (9) and (10), we get by dividing

x(n+1)r+k

y(n+1)r+k
=
ε1xk+r + xk(xn/yn)r

ε1yk+r + yk(xn/yn)r
(11)

and letting n go to infinity we obtain the desired equation in (I)

Θ =
ε1xk+r + xkΘr

ε1yk+r + ykΘr

with ε = ε1. So the proof of the proposition is complete.
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We will denote by F t
k(q) the subset of elements in E(q) which satisfy

the two equivalent conditions of the proposition. Further we define F t(q) =⋃
k≥0 F t

k(q) and F(q) =
⋃

t≥1 F t(q). We call F(q) the set of “flat formal

numbers” over Fq. We observe that F t(q) is a set of algebraic elements
over Fq(T ) of degree less or equal to r + 1. We will first show that F t

k(q)
is not empty for all k ≥ 0, q = ps and r = pt.

Let us consider the special element, in E(q) for all q = ps, defined
by

e = [0, T, T, . . . , T, . . . ]. (12)

Here A is a constant sequence with ai = T for i ≥ 1. If X(A) and Y (A)
are the sequences defined above, it is easy to see that xn = yn−1 for n ≥ 0.
This element e is quadratic over Fq(T ) and satisfies, according to (12),
e = 1/(T + e), i.e.

e2 + Te− 1 = 0. (13)

Let k and r be two integers with k ≥ 0 and r ≥ 2. We consider the
polynomial

g(X) = (X2 + TX − 1)
( ∑
0≤i≤r−1

(−1)iyk+iX
r−1−i

)
. (14)

Now we will show that g(X) can be written in another way. Developing
the product in (14), the right side is

∑
0≤i≤r−1

(
(−1)iyk+iX

r+1−i + (−1)iTyk+iX
r−i − (−1)iyk+iX

r−1−i
)

and this becomes by ordering the powers of X

ykX
r+1−ωk+1X

r+Y +(−1)r−1(Tyk+r−1+yk+r−2)X+(−1)ryk+r−1 (15)

where ωk+1 = (yk+1 − Tyk), Y = 0 if r = 2 and else

Y =
∑

0≤i≤r−3

(−1)i(yk+i+2 − Tyk+i+1 − yk+i)X
r−1−i.

From the definition of the sequences X(A) and Y (A), we have

yk+1 − Tyk = yk−1 = xk,

yk+i+2 − Tyk+i+1 − yk+i = 0 for 0 ≤ i ≤ r − 3 ( if r ≥ 3),

T yk+r−1 + yk+r−2 = yk+r and yk+r−1 = xk+r.

Consequently, for k ≥ 0 and r ≥ 2, we have Y = 0 and so (15) becomes

g(X) = ykX
r+1 − xkXr + (−1)r−1yk+rX − (−1)r−1xk+r. (16)
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By (13) and (14) we have g(e) = 0, thus (16) implies for k ≥ 0 and r ≥ 2

yker+1 − xker + (−1)r−1yk+re− (−1)r−1xk+r = 0.

This shows that e ∈ F t
k(q) for all k ≥ 0, q = ps and r = pt.

REMARKS:

• It is well known that there is an exceptional subset of algebraic
elements in F(q). These elements have been studied by different authors
and have important properties of rational approximation (see [L1] for full
references). We call them algebraic elements of class I. An element in F(q)
is algebraic of class I if it is irrational and satisfies an algebraic equation of
the form X = (AXr+B)/(CXr+D) where A,B,C,D ∈ Fq[T ] and r = pt.
The set of algebraic irrationals satifying such an equation is denotedHt(q).
We define H(q) =

⋃
t≥1Ht(q). Considering the equation satisfied by an

element in F t(q), it is clear that F t(q) ⊂ Ht(q) and F(q) ⊂ H(q). This
subset H(q) contains among others all algebraic elements of degree less
or equal to three. Moreover its elements are either badly approximable
(the sequence of the degrees of the partial quotients is bounded) or well
approximable (the sequence of the degrees of the partial quotients in-
creases quickly). It has been proved that if r > 1 + deg(AD−BC) in the
above equation then the sequence of the degrees of the partial quotients
is unbounded. It is interesting to notice that for the equation in the first
condition of Proposition A we have r = 1 + deg(AD −BC).

Here it is interesting to come back to the analogy between the real
numbers and the formal numbers. If we think of an equation correspond-
ing to the one which defines the formal numbers in H(q), replacing the
Frobenius homomorphism by the identity, we obtain an algebraic equa-
tion defining the quadratic real numbers. Indeed it is this particular form
of the equation, where a quadratic real number appears as a fix point of a
Moebius transformation with integer coefficients, which allows to develop
an algorithm giving the continued fraction expansion of such a quadratic
real number. This expansion is of course known to be ultimately peri-
odic. It is important to recall that the same property is true for quadratic
formal numbers over a finite field ( see [Sch] ). Using the corresponding
equation for formal numbers with the Frobenius, Mills and Robbins [MR]
have shown that it is possible to develop another algorithm to obtain the
continued fraction expansion of an element in H(q). Unluckily this algo-
rithm is of difficult use and the expansion can be awfully complicated for
some elements in H(q).

• Baum and Sweet [BS2] have studied and described the set E(2).
If we denote Q(2) the set of quadratic formal numbers over F2, then it
results from this work and using an argument of differential algebra that
we have E(2)∩H(2) ⊂ Q(2) (see [L1] p. 225). This implies that F(2) can
only contain quadratic elements.

• Mills and Robbins [MR] have given a non quadratic example of
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an element in F1(p) for all prime numbers p ≥ 3. In [L2] we have an
example of a quartic element in F1

k (3) for all k ≥ 0.

§3. A special class of flat power series over Fq .

In this section we consider a simpler case where in the sequence
A ∈ A(q) all the polynomials ai are constant multiples of T . First we
establish the following proposition.

Proposition B. Let p be a prime number and let s and t be two positive
integers. We put q = ps and r = pt. Let A ∈ A(q), X(A) and Y (A) be
defined as above. We assume that ai = λiT for i ≥ 1. If there exists a
sequence (εi)i≥0 of elements of F∗q with ε0 = 1 such that the condition (II)
in Proposition A is satisfied then we have

ε1 = λ−r1

∏
r+k+1≤i≤2r+k

λi and ε2l = 1, ε2l+1 = ε1 for l ≥ 0.

Proof: According to what we have established during the proof of Propo-
sition A, we know that the equalities in condition (II) imply{

εn+1x(n+1)r+k = ε1xk+ry
r
n + xkx

r
n

εn+1y(n+1)r+k = ε1yk+ry
r
n + ykx

r
n

(1)

for n ≥ 0. We will now use the following notation: if a ∈ Fq[T ] and
a =

∑
0≤i≤m uiT

i then we set ε̄(a) = um and ε(a) = u0. Considering the

formulas defining the sequences X(A) and Y (A) and since ε(an) = 0 for
n ≥ 1, we observe that we have ε(xn) = ε(xn−2) and ε(yn) = ε(yn−2) for
n ≥ 1. Thus using the initial conditions, we obtain for l ≥ 0{

ε(x2l+1) = 1 and ε(x2l) = 0

ε(y2l+1) = 0 and ε(y2l) = 1.
(2)

From (1), we can write for n ≥ 0{
εn+1ε(x(n+1)r+k) = ε1ε(xr+k)ε(yn)r + ε(xk)ε(xn)r

εn+1ε(y(n+1)r+k) = ε1ε(yr+k)ε(yn)r + ε(yk)ε(xn)r.
(3)

Let l ≥ 1 be an integer. If 2rl + k is odd, the first equation in (3) gives,
replacing n by 2l − 1,

ε2lε(x2rl+k) = ε1ε(xr+k)ε(y2l−1)r + ε(xk)ε(x2l−1)r.

By (2), ε(x2rl+k) = ε(x2l−1) = 1 and ε(y2l−1) = 0, hence we get ε2l = 1. If
2rl + k is even, the second equation in (3) gives, replacing n by 2l − 1,

ε2lε(y2rl+k) = ε1ε(yr+k)ε(y2l−1)r + ε(yk)ε(x2l−1)r.
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By (2), ε(y2rl+k) = ε(x2l−1) = 1 and ε(y2l−1) = 0, hence we get ε2l = ε(yk)
and, since k must be even, we have again ε2l = 1. Consequently for all l ≥ 1
we have

ε2l = 1. (4)

The same type of arguments, using the equations in (3) and replacing n
by 2l, implies that for all l ≥ 1 we have

ε2l+1 = ε1. (5)

On the other hand, we can also deduce from the formulas defining the
sequences X(A) and Y (A) that for n ≥ 1 we have

ε̄(xn) =
∏

2≤i≤n

ε̄(ai) and ε̄(yn) =
∏

1≤i≤n

ε̄(ai) (6)

where as usual the empty product is equal to 1. Observe that the formulas
(6) are true without any particular assumption on the sequence A ∈ A(q).
Since ε1xk+ry

r
n is the term of highest degree in the right hand side of the

first equation in (1), we can write

εn+1ε̄(x(n+1)r+k) = ε1ε̄(xk+r)ε̄(yn)r.

Now, applying (6) with ε̄(ai) = λi, we obtain for n ≥ 1

εn+1

∏
r+k+1≤i≤(n+1)r+k

λi = ε1
∏

1≤i≤n

λri . (7)

Replacing n by 1 in this equality and recalling that ε2 = 1, we get

ε1 = λ−r1

∏
r+k+1≤i≤2r+k

λi.

This completes the proof of the proposition.

We will now use the following notations. If b1, b2, . . . , bl is a finite
sequence of elements in Fq[T ] and m ∈ N, we write (b1, b2, . . . , bl)

[m] for the
sequence obtained by repeating the sequence b1, b2, . . . , bl m times if m ≥ 1
and the empty sequence if m = 0. Further if b1, b2, . . . , bl and c1, c2, . . . , cm
are two such sequences we denote b1, b2, . . . , bl⊕c1, c2, . . . , cm the sequence
obtained by juxtaposition. We are now able to give the example of a family
of flat formal numbers over an arbitrary finite field. We prove the following
proposition.

Proposition C. Let p be a prime number. Let s and t be two positive
integers. We set q = ps and r = qt. Let α ∈ F∗q . If p 6= 2, we assume
that α 6= 2 and put β = 2 − α. Let k be a non-negative integer. Let
Θt

k(α) ∈ F(q) be defined by its continued fraction expansion

Θt
k(α) = [0, T [k],⊕i≥1(T, (αT, βT )[(r

i−1)/2])[k+1] ] if p 6= 2
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and
Θt

k(α) = [0, T [k],⊕i≥1(T, αT [ri−1])[k+1] ] if p = 2.

Then Θt
k(α) satisfies the algebraic equation

ykX
r+1 − xkXr + (αβ)(r−1)/2yk+rX − (αβ)(r−1)/2xk+r = 0 if p 6= 2

and
ykX

r+1 + xkX
r + yk+rX + xk+r = 0 if p = 2.

REMARK :

When s, t and k are fixed and α varies we obtain in F(q) q − 2
different elements Θt

k(α) if p 6= 2 and q − 1 if p = 2. When the base field
is F2 or F3 we only have the case when α = 1 and thus Θt

k(1) =e. If the
base field is larger, we also have non-quadratic elements. For instance, if
the base field is F4 = {0, 1, u, u2} with u2 + u + 1 = 0, taking k = 0 and
r = 4 we have the element

Θ1
0(u) = [0,⊕i≥1(T, uT [4i−1])] ∈ F(4)

which satisfies the algebraic equation

X5 + (T 4 + u2T 2 + 1)X + T 3 = 0.

Proof: First we observe that if α = 1, in both cases p = 2 or p 6= 2
and hence β = 1 also, then we have Θt

k(1)=e. In this case the result has
already been proved in §2. So we assume that α 6= 1.
Let A ∈ A(q) be the sequence such that Θt

k(α) = Φ(A). We will apply
Proposition A. It is enough to prove that there exists a sequence (εi)i≥0
of elements of F∗q with ε0 = 1 such that condition (II) is satisfied. Here all
the polynomials in A are linear and we put ai = λiT for i ≥ 1. Thus we
know, by Proposition B, that we must have

ε1 = λ−r1

∏
r+k+1≤i≤2r+k

λi and εn+1/εn = ε
(−1)n
1 for n ≥ 0. (8)

Consequently, by Proposition A, Θt
k(α) will satisfy the equation in (I) with

ε = ε1 if we have the two conditionsx(n+1)r+k − x(n−1)r+k = ε
(−1)n+1

1 arnxnr+k

y(n+1)r+k − y(n−1)r+k = ε
(−1)n+1

1 arnynr+k

(9)

for n ≥ 1. We first compute ε1. If p 6= 2, from the continued fraction
expansion defining Θt

k(α), we see that λr+k+1 = 1 and the following r− 1
coefficients λi are alternatively α and β. By (8) and since λ1 = 1, we
obtain

ε1 = (αβ)(r−1)/2. (10)
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If p = 2, from the second continued fraction expansion, we see again that
λr+k+1 = 1 and the following r− 1 coefficients λi are constantly α. Again
by (8), we obtain

ε1 = αr−1. (11)

We observe now that, since r = qt, we have ωr = ω for all ω ∈ Fq. Thus
if p = 2 we have ε1 = 1 and if p 6= 2 we have ε21 = 1. This shows that
the algebraic equation in (I) of Proposition A, in both cases p 6= 2 and
p = 2, is the one stated in Proposition C. Thus we only need to prove that
(9) holds for n ≥ 1 with the corresponding ε1 in each case. It is indeed
sufficient to prove the first equality in (9), the second one involving y can
be obtained in the same manner. Since ε−11 = ε1 in both cases, and since
arn = λrnT

r = λnT
r, this equality can be written

x(n+1)r+k − x(n−1)r+k = ε1λnT
rxnr+k. (12)

Starting from the defining recurrence relation for X(A), i.e.

xm+1 = am+1xm + xm−1 for m ≥ 0,

we see easily that there exists a double sequence bm,i ∈ Fq[T ] such that

xm = bm,ixm−i + bm,i−1xm−i−1 for m ≥ 1 and 0 ≤ i ≤ m, (13)

with {
bm,−1 = 0, bm,0 = 1

bm,i+1 = am−ibm,i + bm,i−1
(14)

In the same way there exists a double sequence cm,i ∈ Fq[T ] such that

xm = cm,ixm+i + cm,i−1xm+i+1 for m ≥ 1 and 0 ≤ i ≤ m, (15)

with {
cm,−1 = 0, cm,0 = 1

cm,i+1 = −am+i+2cm,i + cm,i−1
(16)

We turn now to the equation (12). Using the above notations we can write

x(n+1)r+k = b(n+1)r+k,r−1xnr+k+1 + b(n+1)r+k,r−2xnr+k

and
x(n−1)r+k = c(n−1)r+k,r−1xnr+k+1 + c(n−1)r+k,rxnr+k.

Thus the left hand side of (12), x(n+1)r+k − x(n−1)r+k can be written

(b(n+1)r+k,r−1−c(n−1)r+k,r−1)xnr+k+1+(b(n+1)r+k,r−2−c(n−1)r+k,r)xnr+k.
(17)

We are now going to compute the coefficients b and c involved in the
expression (17). We need the following auxiliary result.
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Lemma. Let R be a ring with η, ρ ∈ R. Let (Un)n≥−1 be a sequence of
elements in R defined by the following recurrence relation :

U−1 = 0, U0 = 1 and ∀n ≥ −1, Un+2 = rn+2Un+1 + Un,

with rn = η if n = 2l + 1 and rn = ρ if n = 2l, for n ≥ 1. Then

Un =



l∑
j=0

(
2l − j
j

)
(ηρ)l−j if n = 2l, l ≥ 0

η
l∑

j=0

(
2l + 1− j

j

)
(ηρ)l−j if n = 2l + 1, l ≥ 0

The proof of this result is very easily obtained by induction and
so we omit it. Observe that we may have η = ρ and in that case Un =∑

0≤j≤bn/2c
(
n−j
j

)
ηn−2j for n ≥ 1.

We turn to the expansion defining Θt
k(α). We denote E the set of positive

integers n for which an = T . We observe that in both cases

n ∈ E ⇔ 1 ≤ n ≤ k or n = (k + 1)
∑

0≤i≤m1

ri +m2r
m1+1 (18)

where m1 and m2 are integers with m1 ≥ 0 and 0 ≤ m2 ≤ k. From this
relation we deduce that for n ≥ 1{

n ∈ E ⇔ nr + k + 1 ∈ E
n ∈ E ⇒ n ≡ k + 1 (mod r)

(19)

Observe that to compute bm,i we need to know the partial quotients aj for
m− i+ 1 ≤ j ≤ m. In the same way to compute cm,i we need to know the
partial quotients aj for m+ 2 ≤ j ≤ m+ i+ 1. First we want to compute
b(n+1)r+k,r−1 and c(n−1)r+k,r−1. For b(n+1)r+k,r−1 we have to know the
r − 1 partial quotients aj for (n + 1)r + k − r + 2 ≤ j ≤ (n + 1)r + k.
By (18), as none of the integers j is congruent to k + 1 modulo r, these
partial quotients are alternatively αT and βT (with possibly β = α). We
can then apply the above lemma in the ring Fq[T ] for the sequence bm,i.
We obtain

b(n+1)r+k,r−1 =

r−1
2∑

j=0

(
r − 1− j

j

)
(αβT 2)

r−1
2 −j if p 6= 2 (20)

and

b(n+1)r+k,r−1 =

b r−1
2 c∑

j=0

(
r − 1− j

j

)
(αT )r−1−2j if p = 2. (21)
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The same arguments show that the r − 1 partial quotients involved to
compute c(n−1)r+k,r−1 are alternatively αT and βT (with possibly β = α)
and thus we can apply the lemma again. Finally, since αβ = (−α)(−β),
we obtain the same formula as above in both cases, p 6= 2 and p = 2. For
n ≥ 1

b(n+1)r+k,r−1 = c(n−1)r+k,r−1. (22)

Consequently (17) becomes

(b(n+1)r+k,r−2 − c(n−1)r+k,r)xnr+k.

Therefore, comparing to (12), we have to prove that for n ≥ 1

b(n+1)r+k,r−2 − c(n−1)r+k,r = ε1λnT
r. (23)

We will now distinguish two cases. First case : p 6= 2.
To compute b(n+1)r+k,r−2 we need to know the r − 2 partial quotients aj
for (n + 1)r + k − r + 3 ≤ j ≤ (n + 1)r + k. According to (18) and (19)
these are alternatively αT and βT . As r is odd, and using the lemma, we
have

b(n+1)r+k,r−2 = λ(n+1)r+kT

r−3
2∑

j=0

(
r − 2− j

j

)
(αβT 2)

r−3
2 −j (24)

To compute c(n−1)r+k,r we use first the recurrence relation on the cm,i.
By (16), we can write

c(n−1)r+k,r = −anr+k+1c(n−1)r+k,r−1 + c(n−1)r+k,r−2. (25)

By (20) and (22), we know that

c(n−1)r+k,r−1 =

r−1
2∑

j=0

(
r − 1− j

j

)
(αβT 2)

r−1
2 −j .

This can be written again

c(n−1)r+k,r−1 =

r−1
2∑

j=1

(
r − 1− j

j

)
(αβT 2)

r−1
2 −j + (αβT 2)

r−1
2

and finally

c(n−1)r+k,r−1 =

r−3
2∑

l=0

(
r − 2− l
l + 1

)
(αβT 2)

r−3
2 −l + (αβ)

r−1
2 T r−1. (26)

To compute c(n−1)r+k,r−2 we need to know the r − 2 partial quotients aj
for (n − 1)r + k + 2 ≤ j ≤ (n − 1)r + k + r − 1. According to (18) these
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are alternatively αT and βT . As r is odd, using the lemma and since
αβ = (−α)(−β), we have

c(n−1)r+k,r−2 = −λnr+k−1T

r−3
2∑

j=0

(
r − 2− j

j

)
(αβT 2)

r−3
2 −j . (27)

By (26) and (27), the equality (25) becomes

c(n−1)r+k,r = −λnr+k+1(αβ)
r−1
2 T r−

T

r−3
2∑

j=0

(
λnr+k−1

(
r − 2− j

j

)
+ λnr+k+1

(
r − 2− j
j + 1

))
(αβT 2)

r−3
2 −j .

We observe that, for 0 ≤ j ≤ (r − 3)/2, we have 2
(
r−2−j

j

)
+
(
r−2−j
j+1

)
= 0

in Fq. Hence this becomes

c(n−1)r+k,r = −λnr+k+1(αβ)
r−1
2 T r−

(λnr+k−1 − 2λnr+k+1)T

r−3
2∑

j=0

(
r − 2− j

j

)
(αβT 2)

r−3
2 −j . (28)

Consequently, by (24) and (28) we obtain

b(n+1)r+k,r−2 − c(n−1)r+k,r = λnr+k+1(αβ)
r−1
2 T r+

(
λ(n+1)r+k + λnr+k−1 − 2λnr+k+1

)
T

r−3
2∑

j=0

(
r − 2− j

j

)
(αβT 2)

r−3
2 −j . (29)

We will now see that, for n ≥ 1, we have

λ(n+1)r+k + λnr+k−1 − 2λnr+k+1 = 0. (30)

This is implied by the property of the sequence (λi)i≥1 decribed in (18)
and (19). As r is odd we first notice that nr + k − 1, nr + k + 1 and
(n+ 1)r+k have same parity. Moreover by (19), the only integer between
nr + k − 1 and (n+ 1)r + k which could be in the set E is nr + k + 1. So
if λnr+k+1 6= 1 then λ(n+1)r+k = λnr+k−1 = λnr+k+1 and if λnr+k+1 = 1
then λ(n+1)r+k + λnr+k−1 = α+ β. This shows that (30) is fulfilled in all
cases. Hence, by (29), we have for n ≥ 1

b(n+1)r+k,r−2 − c(n−1)r+k,r = ε1λnr+k+1T
r. (31)

Now we consider the case p = 2. According to (21), we have

b(n+1)r+k,r−1 =

b r−1
2 c∑

j=0

(
r − 1− j

j

)
(αT )r−1−2j .
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Here, for 1 ≤ j ≤ b(r− 1)/2c, we have
(
r−1−j

j

)
= 0 in Fq. Thus we obtain

b(n+1)r+k,r−1 = αr−1T r−1 = T r−1. (32)

Further, by the recurrence relation (16) for cm,i, we can write

c(n−1)r+k,r = λnr+k+1Tc(n−1)r+k,r−1 + c(n−1)r+k,r−2. (33)

Using the same recurrence relation, i.e. Ui = αTUi−1 + Ui−2, with the
same initial conditions, we observe that

c(n−1)r+k,r−1 = b(n+1)r+k,r−1 and c(n−1)r+k,r−2 = b(n+1)r+k,r−2.

By (32) and (33), this implies again

b(n+1)r+k,r−2 − c(n−1)r+k,r = λnr+k+1T
r = ε1λnr+k+1T

r. (34)

Comparing (31) or (34) to (23), we see that (23) will be proved if we have
for n ≥ 1

λnr+k+1 = λn. (35)

From the definition of the sequence (λi)i≥1, i.e. using (18) and distin-
guishing the cases n ∈ E and n /∈ E, we see that (35) holds for all n ≥ 1.
So the proof of the proposition is complete.
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