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Let OK be a discrete valuation ring with perfect residue field. Consider a proper
smooth and geometrically connected curve XK over the field of fractions K of OK .
Let X be a regular, proper flat model of XK over OK . In this paper, we study and
establish an inequality (Theorem 1) between the conductor of the curve XK and
the length of the cokernel of the canonical map

(1) H0(X, ΩX/OK
) → H0(X, ωX/OK

).

Here Ω = ΩX/OK
denotes the sheaf of regular differentials and ω = ωX/OK

de-
notes the relative canonical sheaf det ΩX/OK

of X respectively. The map (1) is
an isomorphism on the generic fiber, hence its cokernel has finite length over OK .
Denote

Effcond(XK/K) := lengthOK
Coker(H0(X, Ω) → H0(X, ω)).

In [PS], this integer is called the efficient conductor (conducteur efficace) of X/OK .
It depends only on the generic fiber XK (Lemma 4). The main result of this paper
is the following :

Theorem 0. Assume that Xk is not a multiple fiber. Then

Effcond(XK/K) ≤ Art(XK/K)

where the right hand side is the Artin conductor of XK (see Theorem 1).

The main ingredients of the proof are the injectivity of the map (1) and a the-
orem of Bloch ([B], Theorem (2.3)) which computes Art(XK/K) in terms of the
characteristic of the complex Ω → ω. When XK is an elliptic curve, this inequality
is proved by Pesenti and Szpiro ([PS], Théorème 2.2) in equal characteristic case
using a different method. They also conjectured that this inequality is true in mixed
characteristic case (op.cit., Conjecture 2.3). The next corollary is a generalization
of an inequality of Szpiro ([Sz], page 8) for families of elliptic curves. In a talk at
the Japan-US Mathematical Institute conference in 1997 where the second author
attended, Szpiro presented Theorem 0 for elliptic curves (in equal characteristic)
as a mean of proving this corollary. This is done in [PS], Théorème 0.2. The result
was announced in [GS], Theorem 3.
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Corollary 0. Let C be a geometrically connected projective smooth curve over a
perfect field k of characteristic p ≥ 0. Let f : E → C be a non-isotrivial elliptic
fibration (with a section). Let ∆E/C and Art(E/C) ∈ Pic(C) be respectively the
minimal discriminant and conductor divisors of E → C. Then

deg ∆E/C ≤ 6pe(2g(C)− 2 + deg Art(E/C))

where pe is the modular inseparability degree of E → C.

The proof of Corollary 0 (see Corollary 4) is exactly as in [Sz] if e = 0. When
e > 0, our proof is different from (and in some sense orthogonal to) that of [PS].
Finally we end the paper by giving a lower bound of Effcond(XK/K) (Propositions
2 and 3).

The second author appreciated the hospitalities of the Johns Hopkins University
and Université Bordeaux 1 where this work is done. We would like to thank Min-
hyong Kim and Jérôme Pesenti for interesting comments on a first version of this
paper.

1. Vanishing of H0(X, (ΩX/OK
)tors).

Throughout this paper, π denotes a prime element of K and k = OK/πOK is
the residue field of K.

To simplify notations, and when no confusion is possible, we denote Ω = ΩX/OK
,

ω = ωX/OK
. Assume that X is a curve over OK , then we have a canonical map

Ω → ω. Let Ωtors be the submodule of Ω consisting in the OX -torsion elements.
Since ω is invertible, Ωtors is also the kernel of Ω → ω. In this section, we prove
the vanishing of the global sections of Ωtors under a certain mild condition. Before
stating the main result of this section, we collect some technical results on the sheaf
ΩX/OK

.

Lemma 1. Let X be a connected regular n-dimensional scheme, flat and of finite
type over OK , with smooth generic fiber XK . Denote by Ω = ΩX/OK

, and by
ω = ωX/OK

the dualizing sheaf. Let D = V (Ann(Ωtors)). Then we have the
following properties :

(1) Let x ∈ X. Then in some neighborhood of x, X is a divisor V (f) in a
smooth scheme P over OK .

(2) Consider the natural map from Ωn−1 := Ωn−1
X/OK

to ω. Let x ∈ Xk be a
closed point and let π, z1, . . . , zn be a system of coordinates of P at x. Then
the image of Ωn−1

x in ωx is (a1, . . . , an)ωx, where ai is the image of ∂f/∂zi

in OX,x.
(3) The closed subscheme D is a divisor on X, and Ωtors is an invertible OD-

module. The image of Ωn−1 in ω is contained in ω(−D), and the cokernel
Coker(Ωn−1 → ω(−D)) has support in codimension ≥ 2.

(4) Let C be an irreducible component of Xk of multiplicity r. Let νC(D) denote
the coefficient of C in D. Then νC(D) ≥ r − 1, and the equality holds if
and only if r is prime to p := char k.

(5) Let x ∈ Xk. Let C1, . . . , Cm be the irreducible components of Xk passing
through x and let rj denote the multiplicity of Cj in Xk.
(5.1) The image of Ωn−1

x in ωx is contained in
∑

j ωx(−Xk + Cj).
Assume that Xk,red is a simple normal crossings divisor at x.
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(5.2) If exactly one of the rj’s, say r1, is prime to p, then νC1(D) = r1− 1,
νCj

(D) = rj for j 6= 1, and the image of Ωn−1
x in ωx is ωx(−D).

(5.3) If m = 2, n = 2 and r1, r2 are prime to p, then the image of Ωx in ωx

is mX,xωx(−D).

Proof. (1). One can embed locally X in a smooth scheme P over OK . Assume that
dimx P > dimx X + 1, then dimk(x) TPk,x = dimx P − 1 > dimx X ≥ dimk(x) TXk,x.
It is easy to see that there exists f ∈ Ker(OP,x → OX,x)\(πOP,x+m2

P,x), where mP,x

is the maximal ideal of OP,x. Replacing P by V (f), we get a local embedding of X
in a smooth scheme of dimension dimx P − 1. Repeating this process if necessary,
we get a local embedding of X at x in a smooth scheme P of dimension dimx X +1,
and statement (1) is proved

(2). For simplicity, we denote by dzi the image of dzi ∈ ΩP,x in ΩX,x. Then Ωx

is generated by the dzi’s with one relation df = 0. For any i ≤ r, put

δi = dz1 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn ∈ Ωn−1
x .

Then (−1)iaiδj = (−1)jajδi for all i, j. Denote by δ̃i the canonical image of δi in
Ωn−1

K(X)/K . Then ωx, considered as a subgroup of Ωn−1
K(X)/K , is generated over OX,x

by the rational differential a−1
i δ̃i for any ai 6= 0. On the other hand, if aj = 0,

then δj = 0. Since Ωn−1
x is generated by the δi’s, the image of Ωn−1

x in ωx is
(a1, . . . , an)ωx.

(3). The property is local on X, and it is enough to consider closed points x ∈ Xk.
Then it is easy to check that Ann(Ωtors)x = Ann(Ωtors,x) is generated by c :=
gcd(a1, . . . , an), and Ωtors,x is generated by

∑
i(c

−1ai)dzi. This implies that Ωtors

is an invertible OD-module. Further, the image of Ωn−1
x in ωx is (a1, . . . , an)ωx ⊆

c · ωx = ωx(−D). Since the elements c−1ai have no g.c.d in OX,x, they generated
an ideal of height at least 2. This proves the assertion on Coker(Ωn−1 → ω(−D)).

(4). Let x be a closed point of C smooth in (Xk)red. It is enough to compute
Ann(Ωtors,x). If r = 1, then νC(D) = 0 = r − 1. Otherwise, up to a multiplicative
factor inO∗P,x, we can write f as f = uhr−π, with u ∈ O∗P,x and h = z1 is an element
of a system of coordinates of P at x. Now the statement follows immediately from
the calculation of ∂f/∂zi and the description of Ann(Ωtors,x) as above.

(5). We can assume that x is closed and
∑

j rj ≥ 2. Let hj ∈ OP,x whose image
in OX,x is a local equation of Cj at x. Then up to a multiplicative factor in O∗P,x,
f has the form f = u

∏
j h

rj

j − π with u ∈ O∗P,x. Moreover, if (Xk)red has strict
normal crossings at x, we can find a system of coordinates π, z1, . . . , zn of P at x
such that zj = hj for all 1 ≤ j ≤ m. Now the statements follow easily from the
calculation of ∂f/∂zi.

Proposition 1. Let X be a proper regular flat curve over OK with smooth and
geometrically connected generic fiber XK . We write Xk =

∑
i riCi as Cartier

divisors, where the Ci’s are the irreducible components of Xk. Assume that the
greatest common divisor d of the multiplicities ri is equal to 1. Then we have

H0(X, Ωtors) = 0(1)

H1(X, Coker(Ω → ω)) = 0.(2)
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Proof. (1). Let D be the closed subscheme of X defined by the annihilator ideal
Ann(Ωtors). It is a divisor on X (Lemma 1 (2)). The vanishing will be deduced
from the following two facts.

(A) Ωtors is “numerically isomorphic” to OD(D).
(B) D does not contain an effective divisor proportional to the closed fiber Xk.

For a divisor D supported on the closed fiber, invertible OD-modules L and M
are said to be numerically isomorphic if deg(L|C) = deg(M |C) for all irreducible
components C of D. A divisor D satisfies the condition (B) if and only if D 6≥ 1

dXk

where d denotes the greatest common divisor of the multiplicities of the closed fiber
Xk. The following lemma shows that the conditions (A) and (B) imply the first
vanishing in Proposition 1.

Lemma 2. Let X be a regular proper and flat curve over OK , let D be an effective
divisor of X supported on the closed fiber Xk. Suppose moreover that D does not
contain an effective divisor proportional to Xk. If L is an invertible OD-module
numerically isomorphic to OD(D), then we have

H0(D, L) = 0.

Proof. Write D =
∑

i miCi with Ci irreducible. We start by proving the existence
of an irreducible component C of D such that deg L|C < 0. It is enough to find a
component C satisfying D · C < 0. Actually, we have deg L|C = degOD(D)|C =
degOX(D)|C = D · C. Since D is not proportional to Xk, we have

∑
i miD · Ci =

D2 < 0 (SGA7 II, exposé XII, corollaire 1.8). This implies the existence of a
component C of D with D · C < 0.

Now we prove the vanishing by induction on m =
∑

i mi > 0. If m = 1, then
D is integral and deg L = D2 < 0, thus H0(D, L) = 0. Assume m > 1. Let
C be as above. We put D′ = D − C and define an invertible OD′ -module L′ by
the exact sequence 0 → L′ → L → L|C → 0. Then since deg L|C < 0, we have
H0(C, L|C) = 0 and H0(D,L) = H0(D′, L′). The pair D′ and L′ satisfies the
assumption of Lemma 2 since L′ ' L|D′ ⊗ OX(−C) is numerically isomorphic to
OD′(D − C) = OD′(D′). We have D′ < D, so by the assumption of induction, we
get H0(D, L) = H0(D, L′) = H0(D′, L′) = 0.

Continuing proof of Proposition 1. Now to prove the first part of Proposition 1,
it is enough to check that the conditions (A) and (B) are satisfied. Firstly, (A) is
essentially [B] Lemma (3.1) (cf. [Sa1] Proposition (3.1)). Let i : D → X denote
the closed immersion. The local resolution Ω ' Coker(OX → OXdz1 ⊕ OXdz2 :
1 7→ df) gives an isomorphism Ωtors ' L1i∗Ω(D) of invertible OD-modules. In fact,
writing the resolution as L → E → Ω, we get Ωtors = L(D)|D and L1i∗Ω = L|D. It
is easily checked that this gives a globally well-defined isomorphism. The invertible
OD-module L1i∗Ω is L∗⊗OZ OL for L in [B] loc.cit. and (A) is nothing other than
Lemma (3.1) loc.cit.

Finally let us check the condition (B). More precisely, let d denote the g.c.d of
the multiplicities of the closed fiber Xk, we will show that the condition d = 1 is
equivalent to D =

∑
i `iCi 6≥ 1

dXk (which is the condition (B)). If d = 1, then there
is a component Ci with p - ri. Hence `i = ri−1 by Lemma 1 (4) and D 6≥ Xk = 1

dXk.
If d > 1, then again by Lemma 1 (4), we have D ≥ Xk − 1

dXk ≥ 1
dXk.
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Proof of Proposition 1 (2). Using the exact sequence 0 → ω(−D) → ω → ω|D → 0
and Lemma 1 (3), we get a new exact sequence

0 → Coker(Ω → ω(−D)) → Coker(Ω → ω) → ω|D → 0.

Since the support of Coker(Ω → ω(−D)) consists of finite number of closed points,
we have H1(X, Coker(Ω → ω(−D))) = 0 and thus an isomorphism

H1(X, Coker(Ω → ω)) ' H1(D,ω|D).

By Grothendieck duality and the adjunction formula ωD = ω(D)|D, the cohomology
H1(D, ω|D) is the dual of H0(D,OD(D)) and the latter is 0 by Lemma 2.

We easily deduce the following from Proposition 1.

Corollary 1. Let X be as in Proposition 1. Then H0(X, Ω) → H0(X, ω) is injec-
tive and H1(X, Ω) → H1(X, ω) is surjective.

The following elementary fact will be used in the sequel.

Fact 1. Let X be a proper curve over OK . Let F be a coherent sheaf over X, flat
over OK . Then

(1) H1(X,F)⊗ k ' H1(Xk,F|Xk
).

(2) H1(X,F) is torsion free if and only if H0(X,F)⊗ k ' H0(Xk,F|Xk
).

For the kernel of the surjection H1(X, Ω) → H1(X, ω), we know the following
fact due to Raynaud.

Lemma 3 (cf. [R] Théorème (8.2.1)). Keep the assumptions of Proposition 1.
Then Ker(H1(X, Ω) → H1(X, ω)) is equal to the torsion part H1(X, Ω)tors.

Proof. Since H1(X, Ω) → H1(X, ω) is surjective and is an isomorphism over K,
the lemma is equivalent to say that H1(X, ω) is torsion free. Using Fact 1 and
Grothendieck duality, the latter is equivalent to H0(Xk,OXk

) = k. Here we give a
proof of this equality using Lemma 2 (see also [A-W], Lemma 2.6). Let C be an irre-
ducible component of Xk. It is enough to show that H0(Xk,OXk

) → H0(C,OC) is
injective. Actually, this will imply that H0(Xk,OXk

) is a finite separable extension
of k. Since Xk is geometrically connected, we will get H0(Xk,OXk

) = k.
Let D = Xk − C as divisor. We can assume that D 6= 0. Then we have the

following exact sequence

0 → OD(−C) → OXk
→ OC → 0

By assumption, the g.c.d of the multiplicities is 1, therefore D does not contain
an effective divisor proportional to Xk. Applying Lemma 2, and since OD(−C) '
OD(D), we get H0(D,OD(−C)) = 0, so H0(Xk,OXk

) → H0(C,OC) is injective.

Next we give an application of Proposition 1 to the computation of the Artin
conductor

Art(X/OK) = −χ(XK̄) + χ(Xk̄) + Sw H1(XK̄ ,Q`).

Here cohomology denotes the `-adic étale cohomology for a prime ` 6= p and Sw de-
notes the Swan conductor of the quasi-unipotent `-adic representation H1(XK̄ ,Q`)
of an inertia group I of K (See [B], page 297). Here we switch the usual sign of
Art(X/OK) to get a positive integer. This number is known to be independent of
the choice of the prime ` (SGA7 I, exposé IX, corollaire 4.6).
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Corollary 2. Let X be as in Proposition 1. Then

Art(X/OK) = Effcond(XK/K) + length H1(X, Ω)tors.

Proof. According to [B] Theorem (2.3), Art(X/OK) can be computed using the
two term complex Ω → ω :

Art(X/OK) = χ(H1(Ω → ω))− χ(H0(Ω → ω))

For simplicity we denote by Hq(F) the group Hq(X,F) for any sheaf F over X.
Then we have

Art(X/OK) = length Coker(H0(Ω) → H0(ω))− lengthKer(H0(Ω) → H0(ω))

− lengthCoker(H1(Ω) → H1(ω)) + length Ker(H1(Ω) → H1(ω)).

And the result follows from Corollary 1 and Lemma 3.

2. Inequality for conductor.

We keep the notation that XK is a proper smooth and geometrically connected
curve over K. We put

Art(XK/K) = dim H1(XK̄ ,Q`)− dim H1(XK̄ ,Q`)I + Sw H1(XK̄ ,Q`)

and call it the (Artin) conductor of XK . Here the superscript I denotes the fixed
part by an inertia group I of K. Let JK be the Jacobian of the curve XK . Then
Art(XK/K) is also the conductor of JK . Our main result in this paper is the
following inequality for the conductor Art(XK/K).

Theorem 1. Let OK be a discrete valuation ring with perfect residue field k. Let
X be a proper regular flat curve over OK with smooth and geometrically connected
generic fiber XK . Assume that the g.c.d of the multiplicities of the irreducible
components of Xk is 1. Then we have an inequality

Effcond(XK/K) ≤ Art(XK/K).

Furthermore, if X is semi-stable, we have an equality.

Proof. Since everything here commutes with étale base change, we may and do
assume that the residue field k is algebraically closed. Let C1, . . . , Cn be the irre-
ducible components of the closed fiber Xk. By [B] Lemma (1.2) (i) (or [L], Proposi-
tion 1 for a proof using Néron models), we have Art(XK/K) = Art(X/OK)−(n−1).
Hence by Corollary 2 of Proposition 1 it is enough to prove lengthH1(X, Ω)tors ≥
n− 1. Since

length H1(X, Ω)tors ≥ dim(H1(X, Ω)tors ⊗ k) = dim(H1(X, Ω)⊗ k)− 1

(the second equality comes from the fact H1(X, Ω)⊗K ' K), it is enough to show
that the canonical map H1(X, Ω) → ⊕

i H1(C̄i, Ω1
C̄i

) is surjective. Here C̄i denotes
the normalization of Ci. Note that H1(C̄i, Ω1

C̄i
) is a k-vector space of dimension 1.

Since the cokernel of Ω → ⊕
i Ω1

C̄i
is supported on finitely many closed points, the
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surjectivity follows from the fact that H1 is right exact and annihilates a skyscraper
sheaf. Thus the inequality is proved.

In the course of the proof of the inequality above, we saw that the equality holds
if and only if the following conditions (C) and (D) are satisfied.

H1(X, Ω)tors is annihilated by π.(C)

H1(X, Ω)⊗ k →
⊕

i

H1(C̄i, Ω1
C̄i

) is an isomorphism.(D)

Now let us prove that these conditions hold for semi-stable X. Let π be a prime
element of K. By an elementary local computation, we see that the sequence

0 −→ ω
×π−−→ Ω −→

⊕

i

Ω1
C̄i
−→ 0

is exact. It induces an exact sequence

H1(X,ω) ×π−−→ H1(X, Ω) −→
⊕

i

H1(C̄i, Ω1
C̄i

) −→ 0.

Since H1(X, ω) is torsion free (Lemma 3), πH1(X, ω) ∩ H1(X, Ω)tors = {0} as
subgroups of H1(X, Ω). Hence the above exact sequence implies (C). Further,
since the canonical map H1(X, Ω) → H1(X, ω) is surjective, we have πH1(X, ω) =
πH1(X, Ω) and (D) follows.

Theorem 1 has an immediate consequence over global fields.

Corollary 3. Let OK be the ring of integers of a number field K. Let X be a
regular, proper flat curve over OK such that XK is smooth and has a rational point
over K. Let f ⊆ OK be the ideal conductor of the Jacobian JK of XK . Then

card(H0(X, ωX/OK
)/H0(X, ΩX/OK

)) ≤ NormOK/Z(f).

Furthermore, if X → SpecOK is semi-stable then the equality holds.

Proof. Because XK(K) 6= ∅, XK is geometrically connected and, for any maximal
ideal p of OK , at least one irreducible component of the fiber Xp has multiplicity
1. So we can apply Theorem 1 to XOK,p → SpecOK,p.

Next we will give an application to Szpiro’s inequality between discriminant and
conductor of elliptic curves over a function field. Let f : E → C be an elliptic
fibration (i.e. f is a proper flat morphism of connected proper smooth varieties
over k, dim C = 1 and the generic fiber of f is an elliptic curve over K := k(C)).
Consider the morphism j : C → P1

k induced by the j-invariant of smooth fibers
of E → C. Then k(P1

k) is generated by j(EK) over k. Assume in the sequel that
E → C is not isotrivial. Then j is finite and decomposes into a purely inseparable
morphism C → C ′ followed by a finite separable morphism C ′ → P1

k. The degree
pe of C → C ′ is called the modular inseparability degree of E → C ([Sz2], Déf. 2).
By convention pe := 1 if p = 0. Note that since k is perfect, k(C ′) = k(C)pe

. In
particular, j(EK) ∈ k(C)pe

.
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Corollary 4. Let C be a geometrically connected projective smooth curve over a
perfect field k of characteristic p ≥ 0. Let f : E → C be a non-isotrivial elliptic
fibration. Let ∆E/C and Art(E/C) ∈ Pic(C) be respectively the minimal discrimi-
nant and conductor divisors of E → C. Then

deg ∆E/C ≤ 6pe(2g(C)− 2 + deg Art(E/C))

where pe is the modular inseparability degree of E → C.

Proof. Denote K = k(C). By assumption, EK has a rational point over K, hence
E → C has no multiple fiber. In the case e = 0, the proof of the corollary goes
exactly as in [Sz], page 8. One has just to remark that following Theorem 1,
f∗Ω1

E/C = f∗ωE/C(−S) where S is an effective divisor over C such that S ≤
Art(E/C).

Now assume that e > 0. Then j(EK) ∈ K is a pe-th power in K. Since E → C is
non-isotrivial, j(EK) /∈ k. In particular j(EK) 6= 0, 1728. Using explicit Weierstrass
equations of EK (as in [Sil], Appendix A), we see that there exists an elliptic curve
E′

K such that EK is the pull-back of E′
K by Frobe

K , where FrobK is the absolute
Frobenius of Spec K. Moreover, extending E′

K to an elliptic fibration E′ → C, it
is clear that

deg ∆E/C ≤ pe deg ∆E′/C .

On the other hand, the e-th power of the relative Frobenius of E over K is an
isogeny EK → E′

K , thus E → C and E′ → C have the same conductor:

Art(E/C) = Art(E′/C).

(This elegant argument is due to Minhyong Kim. Our original proof consists in the
following facts : (1) if K/F is a finite purely inseparable extension of a discrete
valuation field, then for any finite separable extension L/F , the tensor product
L⊗F K is a separable extension of K, the map Gal(L/F ) → Gal(L⊗F K/K) is an
isomorphism and induces isomorphisms on their respective ramification subgroups.
(2) Let F = Kpe

. Then EK = E′
F ×Spec F Spec K. One has Tl(E′

F ) = Tl(EK) and
this equality is compatible with the isomorphism Gal(F s/F ) ' Gal(Ks/K). Hence
Art(E′

F /F ) = Art(EK/K).) Therefore the corollary comes from the inequality for
the fibration E′ → C which has modular inseparable degree pe = 1.

Remark 1. After Szpiro’s work, Frey ([F], Proposition 2.3), Hindry and Silverman
([HS], Theorem 5.1) have proved Corollary 4 when k has characteristic zero by
applying Hurwitz formula to j : C → P1

k. Their inequality is slightly better in the
sense that Art(E/C) can be replaced by Art(E/C)−deg S, where S is the reduced
divisor on C supported by the closed points x ∈ C such that EK has additive and
potentially good reduction at x ∈ C.

Remark 2. There is an example where we have a strict inequality in Theorem 1.
See Remark 4.

Next we will show that Effcond(XK/K) is independent of the choice of a regular
model X and hence is an invariant of the generic fiber XK . More precisely, we have
the following :
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Lemma 4. Let φ : X ′ → X be a birational morphism between regular proper models
over OK of a proper smooth curve XK over K. Then the canonical morphisms

H0(X, Ω1
X/OK

) → H0(X ′, Ω1
X′/OK

), H0(X, ωX/OK
) → H0(X ′, ωX′/OK

)

are isomorphisms.

Proof. It is enough to prove the lemma assuming X ′ is the blowing up of X at a
closed point x. Let F be a quasi-coherent sheaf on X. Consider the canonical map
α : F → φ∗φ∗F . In a small affine neighborhood U of x, φ−1(U) is covered by two
affine open subsets V1, V2 of X ′. Since R1φ∗OX′ = 0, we have an exact sequence

0 → OX′(φ−1(U)) → OX′(V1)⊕OX′(V2) → OX′(V12) → 0.

Tensoring by F(U) over OX(U) and using the fact that φ∗OX′ = OX , we see that
α is surjective with kernel supported in {x}. Thus H0(X,F) → H0(X ′, φ∗F) is
surjective. If F = ωX/OK

, then Ker(α) = 0 since ω has no torsion. If F = Ω1
X/OK

,
then Ker(α) is contained in the torsion part of Ω1

X/OK
which is an invertible sheaf

on a divisor of X (Lemma 1), thus Ker(α) is again 0. So in both cases H0(X,F) =
H0(X ′, φ∗F).

Let E be the exceptional divisor. First we prove the assertion for Ω. By the
exact sequence 0 → φ∗Ω1

X/OK
→ Ω1

X′/OK
→ Ω1

E/k(x) → 0 (because X is regular)
and H0(E, Ω1

E/k(x)) = 0, the canonical map H0(X ′, φ∗Ω1
X/OK

) → H0(X ′, Ω1
X′/OK

)
is an isomorphism. The proof runs similarly for ω, by using the exact sequence

0 → φ∗ωX/OK
→ ωX′/OK

→ ωX′/OK
|E → 0

and the vanishing H0(E,ωX′/OK
|E) ' H1(E,OE(−1)) = 0.

Remark 3. In the situation of Lemma 4, it is easy to see that for any quasi-
coherent sheaf F on X, one has R1φ∗(φ∗F) = 0, and then

H1(X,F) ' H1(X ′, φ∗F).

Using the fact that Hq(X ′, ωX′/OK
|E) = 0 for q = 0, 1, one obtains an isomor-

phism H1(X, ωX/OK
) ' H1(X ′, ωX′/OK

). Similarly we see that H1(X, ΩX/OK
) →

H1(X ′,ΩX′/OK
) is injective, but is not surjective unless φ : X ′ → X is an isomor-

phism.

Let JK be the Jacobian of the proper smooth curve XK , let J be the Néron
model of JK over OK . Denote by a, t and u the dimension of the abelian part, the
toric part and of the unipotent part of the connected component of Jk respectively.
Then Art(XK/K) = t + 2u + δ, where δ ≥ 0 is the Swan conductor. Here we will
say that XK has tame reduction if the action of the wild ramification subgroup
P ⊂ I is trivial on H1(XK̄ ,Q`) (see also [Ser], §2.1). If XK has genus g ≥ 2, this
condition is equivalent to XK having semi-stable reduction over a tamely ramified
extension of K. Thus we have an inequality Art(XK/K) ≥ t + 2u and the equality
holds if and only if XK has tame reduction. In the next proposition, we prove a
similar inequality for Effcond(XK/K).
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Proposition 2. Let X be a proper flat and regular curve over OK with smooth
generic fiber. Assume that the g.c.d of the multiplicities of the components of Xk

is equal to 1. Then we have

Effcond(XK/K) ≥ t + u.

Moreover if Xk,red is a simple normal crossings divisor, then the equality holds if
and only if H0(X, Ω) = H0(X, E), where E is the subsheaf

∑
i ω(−Xk + Ci) of ω.

Proof. Using embedded resolution of singularities and Lemma 4, we may assume
that the irreducible components of Xk are regular. Following Lemma 1 (5.1), the
canonical map Ω → ω has image in E . Hence by Lemma 5 below we have

Effcond(XK/K) ≥ length(H0(X,ω)/H0(X, E)) = g − a′.

Now the assumption on the multiplicities implies that Pic0
Xk/k is isomorphic to the

connected component of Jk ([BLR], Theorem 9.5.4), hence g−a′ = (a+ t+u)−a =
t + u. The last assertion is then trivial.

Lemma 5. Let X be a proper flat and regular curve over OK as in Proposition 1.
Then we have the equality

length(H0(X, ω)/H0(X, E)) = g − a′,

where g = g(XK) and a′ =
∑

i dimk H1(Ci,OCi).

Proof. We have the inclusions πω ⊆ E ⊆ ω. Therefore

length(H0(X, ω)/H0(X, E)) = dimk H0(X,ω)⊗ k − dimk H0(X, E)/πH0(X,ω).

The dimension dimk H0(X, ω) ⊗ k is equal to g. Now it remains to compute the
dimension of H0(X, E)/πH0(X,ω). We have

(E) E/πω '
⊕

i

(ω(−Xk + Ci)/πω) '
⊕

i

ωCi .

Since H1(X, ω) is torsion free (see the beginning of the proof of Lemma 3), we then
have an exact sequence

(F) 0 −→ H0(X,ω) ×π−−→ H0(X, E) −→
⊕

i

H0(Ci, ωCi) −→ 0.

Thus dimk H0(X, E)/πH0(X,ω) = a′, and the lemma is proved.

One may suspect that we have an equality in Proposition 2 when the action of the
wild ramification subgroup P ⊂ I is trivial on H1(XK̄ ,Q`) similarly as for the con-
ductor Art(XK/K). Recall that under this tameness assumption, Art(XK/K) =
t + 2u. The authors do not know a counterexample. For a positive direction, we
give the following proposition.
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Proposition 3. Let X be a proper flat and regular curve over OK with smooth
generic fiber such that Xk,red is a simple normal crossings divisor. Assume that XK

has tame reduction and the g.c.d of the multiplicities of the irreducible components
of Xk is equal to 1. Then we have

Effcond(XK/K) ≥ length(H0(X, ω)/H0(X, Ω/Ωtors)) = t + u.

Proof. The first inequality is trivial. Let us prove the second equality. We exclude
the trivial case g(XK) = 0 since then H0(X,ω) = 0. Denote Ωd = Ω/Ωtors. As in
Proposition 2, we have length(H0(X, ω)/H0(X, Ωd)) ≥ t + u. Similarly as Lemma
4 we see that H0(X, Ωd) increases by blowing up, so length(H0(X, ω)/H0(X, Ωd))
decreases by the same operation. Thus it is enough to prove the proposition when X
is the minimal regular model such that Xk,red is a simple normal crossings divisor.
Again as in Proposition 2, the assertion is equivalent to the equality H0(X, Ωd) =
H0(X, E). The latter will be a consequence of the exact sequence

0 → Ωd → E →
⊕

C

ωC → 0

where
⊕

C ωC runs the rational irreducible components of Xk with multiplicity
divisible by p. Next we prove exactness of the sequence.

Since both members of the equality are invariant under étale base change, we
can assume that k is algebraically closed. Let x ∈ Xk. If the components of Xk

containing x have multiplicities prime to p, then using Lemma 1 (4)-(5) we see that
Ω → E is surjective at x. Now assume that x is contained in a component C of
multiplicity r divisible by p. By [Sa2], Theorem 3.11, C is a smooth rational curve,
it intersects only components with multiplicity prime to p and there are exactly
two intersection points x1, x2 in C. Following Lemma 1 (5.2), this implies that
νC(D) = r. Using the isomorphism (E) of the proof of Lemma 5, it is enough to
show that Ωx → ωx(−D) is surjective for all x ∈ C. This is already true for the
intersection points x1, x2 (Lemma 1 (5.2)).

Let Γ be the union of the (reduced) irreducible components of Xk different
from C. Let {Ui}i be a covering of X such that OX(−C)|Ui is generated by
a single function hi for all i. Let ui = πh−r

i ∈ OX(Ui) ∩ OX(Ui \ Γ)∗. Then
d log ui is a section of ΩX/OK

(log Γ)|Ui . Since Γ|C = x1 + x2, we get local sections
(d log ui)|Ui∩C ∈ H0(C ∩ Ui, ΩC(x1 + x2)). Using the fact that p divides r we see
that these sections glue together and give rise to a section sC ∈ H0(C, ΩC(x1 +x2))
(see also [Sa3], Def. 2.4). On the other hand, one checks easily that s has poles
of exact order 1 at x1 and x2. Since ΩC(x1 + x2) ' OC , this implies that s is a
generator of ΩC(x1 + x2). Let x ∈ C \ {x1, x2}, let Ui0 be an open containing x,
let h = hi0 , u = ui0 . Then sC = (d log u)|C is a generator of ΩC,x, and so is du|C .
Let z ∈ OX,x be a lifting of a local coordinate of C at x, then (∂u/∂z)|C ∈ O∗C,x,
hence ∂u/∂z ∈ O∗X,x. Using the relation uhr−π = 0 and Lemma 1 (2), we see that
Ωx → ωx(−D) is surjective.

By construction, if Art(XK/K) = t + 2u, then XK has tame reduction. We
can ask similarly whether the equality in Proposition 2 implies tameness. The next
lemma is a partial result in this direction. (See also the Remark 4).
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Lemma 6. Let X be a proper flat and regular curve over OK with smooth generic
fiber. Assume that the g.c.d of the multiplicities of the components of Xk is equal
to 1 and we have an equality

length(H0(X, ω)/H0(X, Ω/Ωtors)) = t + u.

Then any irreducible component of Xk with multiplicity divisible by p = char k is a
smooth rational curve over k.

Proof. Let C be a component with multiplicity r divisible by p, then νC(D) ≥ r
(Lemma 1 (4)). Thus ω(−D) ⊆ πω in an open dense subset of C. This implies that
the composition Ωd → E → ωC , where Ωd := Ω/Ωtors, is the 0-map. By Proposition
2 and the exact sequence (F), the map H0(X, Ωd) → H0(C,ωC) must be surjective.
Hence the assertion is proved.

Example. Let XK be an elliptic curve with reduction of type II. This means that
the special fiber Xk of the minimal regular model X has exactly one singular point
e (necessarily rational over k). We have a = t = 0 and u = 1. Denote for simplicity

F := Effcond(XK/K), f := Art(XK/K).

In this example, we will show that
{

F = [(f + 2)/3], if p 6= 2
[(f + 2)/4] ≤ F ≤ [f/2], if p = 2.

Note that when K varies, there is no upper bound for f if p = 2, 3.
We have Ωtors = 0 and ω/Ω is only supported at e. We then deduce an exact

sequence

0 → H0(X, Ω) → H0(X, ω) → ωe/Ωe → H1(X, Ω)tors → 0.

This implies that length(ωe/Ωe) = Art(X/OK) = f (Corollary 2), the second
equality holds because Xk is geometrically irreducible. In a neighborhood of e,
X is a divisor V (y2 − x3 + πu) in a smooth scheme P over OK such that x, y, π
is a system of coordinates of P at e and u is invertible. Dividing ω ' OX by a
generator, the injection H0(X, ω)/H0(X, Ω) ↪→ ωe/Ωe becomes

(G) OK/(πF ) ↪→ A := OP,e/(y2 − x3 + πu, 2y + πu′y, 3x2 − πu′x),

where u′y = ∂u/∂y and u′x = ∂u/∂x. Let m be the maximal ideal of A, let N be
the smallest integer such that mN = 0. Then

f = length A = 1 +
∑

1≤i≤N−1

dimk mi/mi+1.

For any element a ∈ OP,e, denote by ã its image in A. By the injection (G), we see
that F is the smallest integer such that π̃F = 0. From the relation ỹ2− x̃3 + π̃ũ = 0
we deduce that π̃ ∈ m2.

Assume that p 6= 2. From the relation 2ỹ + π̃ũ′x = 0 we get ỹ ∈ π̃A ⊆ m2 and
π̃A = x̃3A. Thus m = x̃A, and mi = x̃iA for all i ≥ 1. So length A = N and F is
the smallest integer such that x̃3F = 0. Hence F = [(N + 2)/3] = [(f + 2)/3].
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Now assume that p = 2. Similarly as above, it is easy to see that x̃2 ∈ π̃A and
π̃A = ỹ2A. Thus mi = (x̃ỹi−1, ỹi). So 1 ≤ dimk mi/mi+1 ≤ 2 and dimk m/m2 = 2.
This implies that N + 1 ≤ f ≤ 2N − 1, and (N − 1)/2 ≤ F ≤ (N + 1)/2. These
two inequalities imply that [(f + 2)/4] ≤ F ≤ [f/2].

Remark 4. In this example, when p = 2, 3, XK does not have tame reduction
([Sa2], loc. cit.), hence f ≥ 3. The equality in Proposition 2 holds if and only if
f = 3. For any p, the inequality in Theorem 1 is strict.
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[G] A. Grothendieck, Modèles de Néron et monodromie, SGA 7, Lect. Notes 288 (1972),
Springer-Verlag.

[HS] M. Hindry, J. Silverman, The canonical height and integral points on elliptic curves, In-
ventiones Math. 93 (1988), 419-450.

[L] Q. Liu, Conducteur et discriminant minimal de courbes de genre 2, Compositio Math. 94
(1994), 51-79.

[PS] J. Pesenti, L. Szpiro, Inégalité du discriminant pour les pinceaux elliptiques à réductions
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