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1. INTRODUCTION

This note answers a question which arose in [JP], Remark (2.5.11). The
question is the following:

Let X be a connected one-dimensional and separated rigid space over some
complete, non-archimedean valued field k. Does X have an admissible covering by
affinoid subsets { X;}, such that each X; meets only finitely many X;?

In the terminology of [JP], such a covering is called locally finite and an X
having such a covering is called paracompact. We note that if X is connected
and has a locally finite admissible covering by affinoids, then this covering is at
most countable.

The analogue of the question over the field of complex numbers is the theo-
rem of Radon which states that a connected Riemann surface is a countable
union of open subsets isomorphic to the open unit disk in C. We will prove that
the question above has an affirmative answer and we will show the following
stronger statement:

There exists an admissible formal scheme X over the valuation ring R of k, (i.e.
X is flat over R and locally topologically of finite type) which is separated, such
that X has a locally finite covering by affine subsets and such that its ‘generic fibre’
X ® k coincides with X.
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Special cases of the statement above have already been proved in [FP], p. 34,
[L], Corollary 2.1.1 and [R], 3.2.3(1). In Section 3, after proving a Mittag- Leffler
decomposition theorem, we show that X is a quasi-Stein space if no irreducible
component of X is complete. Counterexamples for higher dimensional rigid
spaces complete this note.

2. ONE-DIMENSIONAL SPACES OF COUNTABLE TYPE

A rigid space X is called of countable type if X has a countable (or finite)
admissible covering by affinoids. The main step in proving structure theorems
for connected, separated one-dimensional spaces X is to show that such an X is
of countable type. This is done in the present section.

Theorem 2.1. If X is a connected, separated one-dimensional rigid space then X is
of countable type.

Proof. The proof has many ingredients. In particular we will need the notion of
relatively completeness.

Definition 2.2. Let V' be an affinoid space of dimension 1, let U be an affinoid
open subset of V. We call U relatively complete in V if there is a reduction
r: V — ¥V such that U = r~!(U) for some open subset U of ¥ and no con-
nected component of ¥\ U is complete

This property doesn’t depend on the chosen reduction r : ¥ — V such that U
is the preimage of some open subset of V.

For example, if U is relatively compact in V, then U is relatively complete in
V. But the converse is false.

Let X be a one-dimensional separated connected rigid space over k. We will
say that an affinoid open subset U of X is relatively complete in X if U is rela-
tively complete in every affinoid ¥ C X containing U.

The proof of (2.1) starts by a reduction step.

Reduction to the case of an algebraically closed ground field

Let K denote the completion of a separable algebraic closure of k. It is well
known that K is algebraically closed. In other words, K is also the completion
of the algebraic closure of k. Consider a connected, separated one-dimensional
rigid space X over k. We want to show that X is of countable type by comparing
X with X ®; K. By assumption every connected component of the space
X ®; K is of countable type. The next lemma asserts implies that X & K is also
of countable type and so X ®; K has a countable admissible affinoid covering
{Z,}. Let {X;},., denote an admissible affinoid covering of X. Then every Z, is
contained in finitely many X; ®; K. This implies the existence of a subset J C I
which is at most countable and satisfies {X; &« K}, ; is an admissible affinoid
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covering of X ®; K. It is easily seen that {X;}jc, is a countable admissible
covering of X.

Lemma 2.3. The number of connected components of X & K is finite.

Proof. Let !/ be a finite normal extension of k, contained in K, such that X (/) #
(. Let /* denote the separable closure of k in I. The Galois group Gal(/*/k) acts
transitively on the connected components of X ®; {°. Since X ®; 1 — X ® [°is
a homeomorphism, X ®, / has finitely many connected components and each
one of them has a rational point over /. This reduces the proof of (2.3) to the
case X (k) # 0.

Let p € X (k). The family of the open connected affinoid subsets U with p €
U is an admissible covering of X. It suffices to show that for such a U the
affinoid space V := U & K is connected.

Any connected component of V' is already defined over a finite Galois ex-
tension / of k, contained in K. Indeed, such fields are dense in K. The Galois
group Gal(l//k) acts transitively on the connected components of U ®; /. Since
U(k) # 0, it follows that U @, / and also ¥ is connected. 0O

The case of an algebraically closed base field k

We start again with a reduction step. The field & is supposed to be algebrai-
cally closed and X is a connected, separated rigid space over k of dimension
one. Let {X;},., denote the set of irreducible components of X. Letn: X' — X
denote the normalization of X. Then X' is the disjoint union of the normal-
izations X} of the X;. Let S denote the set of singular points of X. This set is
discrete in the sense that the intersection of S with any affinoid subset of X is
finite. The preimage S’ of S under n is also discrete. Suppose that we have
shown that each X has a countable admissible covering by affinoids. Then
S’ N X/ is at most countable. It follows that X; meets at most countably many
of the X;. Since X is connected it follows that I is at most countable. X; as
image of the space X/ of countable type is also of countable type. Therefore we
have reduced the general case to the case where X is connected and non-
singular over the algebraically closed base field k. We may suppose moreover
that X is not quasi-compact.

Let x be a point of X and consider the family F of all connected affinoid
subspaces of X containing x. This family is an admissible affinoid covering of
X (see [L], Proposition 1.2). The family F is in general not countable and we
will replace F by a smaller subfamily F.

Consider an U in F and a reduction r: U — U. Let U denote the complete
curve over k, the residue field of k, containing U such that U\ U consists of a
finite number of regular points. (This set does not depend on the chosen re-
duction.) We will call this set H(U).
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One can easily show that U Cc V C W; U, V, W € F, U relatively complete
in V and V relatively complete in W implies that U is relatively complete in W.
If U is not relatively complete in X then: there isa U C V € F, a reduction
r:V — T, an open U C T with preimage U and a connected component C of
T\ U which is complete. Define U’ to be the preimage under r of U U C. Then
clearly the cardinal of H(U') is less than the one of H(U). After a finite number
of steps of this kind one finds a connected affinoid U” containing U which is
relatively complete in X. Let F; denote the set of elements of F which are rel-
atively complete in X. Then F is an admissible affinoid covering of X.

We will use in the sequel that every connected, non-singular one-dimensional
affinoid space U has a unique stable reduction U* and that every semi-stable
reduction of U is obtained from U*' by a sequence of ‘blowing-ups’ of points.
The statements above follow easily from the existence and uniqueness of a
stable reduction of any complete non-singular curve over the algebraically
closed field & (see [BL1] or [P2]).

Consider finitely many elements U,,..., U,, V of F| such that all U; C V.
There is a unique reduction r : ¥ — T having the following properties:

1. T is semi-stable.

2. For every i there exists an open subset Z; of T such that U; = r ' Z;.

3. r is minimal in the sense that: if L is an irreducible component of T, iso-
morphic to the projective line over k, meeting the other components of 7 in less
than three points, then there exists an i such that LN Z; # 0, L.

This reduction r will be called the stable reduction of (Uy,...,U,, V). Let
r: ¥V — T be the stable reduction of (U, V') and let Z be the open subset of 7'
with r~1Z = U. Then the map Z — T is injective. Let Z*! denote the Zariski-
closure of Z in T. Then one can identify Z“\Z with a subset of H(U). Let a
‘new’ irreducible component L of T be given (i.e. L is not a component of Z¢).
Then either LNZ% =0 or LNZ" #$ and LN Z< is a finite subset B of
ZN\Z c H(U).

In the latter case one calls B a V-bridge. Further B is called a stable V-bridge
if the component L of T with B = LN Z¢ satisfies one of the following prop-
erties:

1. The arithmetic genus of L is > 0.

2. #(L\L) + #{the intersection of L with the other components of 7'} > 3.

Using that U is relatively complete in ¥ one sees that the following holds:
If B does not satisfy one of the conditions above then L must be A % and L meets
the other components of 7" only in B and B consists of one point.

If B is a stable V-bridge then B is also a stable W-bridge for every W € F,
with V' C W. Indeed, the conditions (1) or (2) imply that the component ‘L’ in
the stable reduction for (U, ¥, W) is not contracted in the stable reduction for
(U, W). Further ‘L’ has still B as intersection with Z.
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One calls B C H(U) a stable bridge if B is a stable V-bridge for some V € F.

A subset B of H(U) is called an unstable bridge if B is a W-bridge for some
W € Fiandsuchthatforevery V € Fy with U C W C V, Bremainsa V-bridge
but is not a stable F-bridge. In other words, for V' > W, V € F, the irreducible
component L of T with T N Z< = B satisfies:

(@ LA}

(b) L meets the other components of T only in B and B consists of one point.

The main combinatorial statement about ‘bridges’ is the following:

Lemma 2.4.

1. Let BC H(U) be a stable bridge. There exists a unique minimal V € F,
such that U C V and B is a stable V-bridge.

2. Let B C H(U) be an unstable bridge. There exists a sequence of elements V,
( finite or infinite) in F\ such that:

(@) UcCV,CV,, foreveryn.

(b) Bisa V,-bridge and the stable reduction of (U, V,) is the union of Z with an
affine line (i.e. isomorphic to A) over the residue field kof k.

(c) Every V € Fy containing U, such that B is a V-bridge and such that the
stable reduction of the pair (U, V') consists of Z and an affine line over the residue
field of k, is contained in some V,.

Proof. 1. Consider S:={V € F;|U C V and Bis a V-stable bridge}.

1(a) We will show first that any element ¥ € S contains a minimal element
of S. Consider the stable reduction r: ¥V — T for (U, ¥) with open subset
Z C T such that r!Z = U. Let L denote the irreducible component of T with
LN Z = B. Suppose that there is a new irreducible component M # L of T
which is not complete. Let 7’ denote the connected component of T\ M which
contains Z and let V' = r~!T’. Then V' is connected and relatively complete in
V. It follows that V' € Sand V' # V.

After finitely many steps of this type we may suppose that every new irre-
ducible component M # L of T is complete. It follows that 7\ Z has precisely
one connected component and that L is the only non-complete irreducible
component of 7\ Z. We claim now that ' is a minimal element of S.

Let W C V and W € S. After ‘blowing-up’ some points in the stable reduc-
tion r: ¥V — T for (U,V) one obtains the stable reduction r; : V' — Ty for
(U, W, V). Let O D Z denote the open subset with r; 'O = W. Since W is rel-
atively complete in ¥, T1\O is a disjoint union of non-complete connected
components. The reasoning above implies that L is the only new irreducible
component of 77 which is not complete. Since B is W-stable, O must contain L.
It follows that 7\O = @ and so W = V. This proves 1(a).

1(b) We will show that S has a unique minimal element.
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Let Vi, V; be minimal elements of S. Consider V O V;, ¥V, with ¥ € S and
the stable reductionr : V — T for (U, V1, V>, V). Let Z, Oy, O, denote the open
subsets of T with r 1Z = U, r~10y = V1, r 10, = V. Let L denote the irre-
ducible component of T with LN Z¢/ = B. According to 1(a) one knows that O,
satisfies: 01\ Z has only one connected component and has only one non-com-
plete irreducible component which is a Zariski-open subset of L. This de-
termines O; as open subset of T. Hence O; = O, and V| = V5.

2. Let B = {p} be an unstable bridge.

Put S:={V € F1|UCV and B is the only V-bridge}. According to the
definition of ‘B unstable’, one has that the stable reductionr: V — T of (U, V)
has the form ZU Lwith L= A}, r'Z=U and LN Z = {p}.

Consider two elements V1, V, € S. Choose a V' € F| containing both V| and
V,. Let r: ¥V — T denote the stable reduction for (U, V1, V3, V), let Z, 0y, O,
denote the open subsets of 7 with r 1Z = U, r 10, = V1, r 10, = V,. Let L
denote the irreducible component of T with LN Z¢ = B = { p}. Since B is not
a stable V-bridge one has the following possibilities:

(a) L= A% and L meets the other components of T only at p. This implies
easily that V| = V>.

(b) L= P% and L meets the other components of 7 in p and ¢. Then
0, N0, O L\{q}. If also O; N O, D L, then L can be contracted in the reduc-
tion for (U, V), V2, V). So we may assume that g ¢ 0. It follows that
01 = Z U (L\{q}) and that Oy C O,. Hence V| C V>. We have shown that the
set S is totally ordered by inclusion.

Fix a V7 € § and consider a V' € .8 with V; C V and V # V. The stable
reduction r: V— T for (U, V), V) with open subsets Z C O; satisfying
r~1Z = U, r~'0, = V, has according to the reasoning above two new irre-
ducible components L, M. Hence L = P and L meets the other components of
T in the points p and ¢g. Further M =~ 4 % and meets the other components in gq.
It follows that T\ Z is the union of two affine lines over k meeting (normally) at
one point. It is well known that the preimage of this set under r is isomorphic to
a ring domain {z € k | 1 < |z{ < p} for a unique p > 1, p € |k*|. We associate to
every V € S, containing ¥ as a proper subset, this real number p = p(¥"). One
easily shows that for V, V' € §, properly containing ¥, one has:

p(V) =p(V')ifand only if V = V.

p(V) < p(V')ifand onlyif V C V.

This implies that S has a countable or finite cofinal subset {V, |n=1,...}
and ends the proof of (2.4). O

Notations 2.5. Let B be a stable bridge for U, then Up is the unique element of
(2.4.1). If B is an unstable bridge for U then Ujg(n) is the chosen cofinal se-
quence in (2.4.2).

For UCV; U,V €F, and U # V, one considers the stable reduction
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r:V— T for (U,V). We will write d(U, V') denote the number of new irre-
ducible components of 7. If U = V, then d(U, V') is supposed to be 0.

Lemma 2.6. Given U C V; U,V € F,and U # V. There are two possibilities:
1. There exists a stable bridge B of U such that

UgUV e Fy and d(Ug, UgU V) <d(U,V).
2. There is an unstable bridge B of U and an integer n such that
d(Ug(n), Ug(n) U V) < d(U,V) and Ug(mUV e F,.

Proof. Letr: V — T and Z C T have the usual meaning for the stable reduc-
tion of (U,V). Let L be a new irreducible component of 7 such that
C := LN Z* is not empty. If C is contained in a stable bridge B of U then one
can verify that (1) holds. If C happens to be an unstable bridge then one can see
that (2) holds. O

Corollary 2.7. If X is a connected, separated non-singular one-dimensional rigid
space over the algebraically closed field k, then X is of countable type.

Proof. Fixa U € F,. For every V € F| we suppose that the at most countable
sets of new elements Vp and Vg(n) of F, is chosen. Let F, denote the smallest
subset of F; such that U € F, and such that for any V € F, all V3 and Vp(n)
belong to F». Clearly F» is countable. Using (2.6) one sees that every V € F is
contained in a finite union of elements of F,. Thus F; is a countable admissible
affinoid coveringof X. O

This ends the proof of (2.1). 0O

3. FORMAL SCHEMES AND QUASI-STEIN SPACES

Let X denote again a connected separated one-dimensional rigid space. As
we have shown X is of countable type. In case X is quasi-compact (i.e. a finite
union of affinoids) then it is known that (see [FM], Theorem 2, p. 176) every ir-
reducible component of X is either affinoid or the analytification of a projective
curve over k. In both cases there exists a separated formal scheme X over the
valuation ring R of k, which is flat over R and has as ‘generic fibre’ X’ @ ka rigid
space which is isomorphic to X. In the sequel we will suppose (without loss of
generality) that no irreducible component of X is quasi-compact.

Theorem 3.1. Let X be one-dimensional, separated, connected. Then:

1. Xis paracompact.

2. There exists a separated formal scheme X over R which is flat over R such
that its generic fibre is X.

Proof. Assuming that no irreducible component of X is the analytification of a
projective curve over k and using again [FM], corollary of Theorem 2, one finds
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that X has an admissible affinoid covering {X,}, . 5 such that X, C X, for all
n. Using the next lemma, one finds a sequence of formal schemes Z, such that:

1. 2, is separated, flat over R.

2. The generic fibre of Z, is X,,.

3. Z,is an open subscheme of Z, ;.

Let X denote the formal scheme obtained as the union of the Z,. Then X has
the properties stated in (3.1.2). Further, the topological space A has a locally
finite covering by affine open subsets A,. The corresponding affinoid subsets
A, = A, ®k of X form an admissible affinoid covering of locally finite type.
This proves (3.1.1). O

Lemma 3.2. Let A C B denote two (pure) one-dimensional affinoids and let a
separated formal scheme A, flat over R, be given with generic fibre A. Then there
exists a separated formal scheme B, flat over R, with generic fibre B such that Ais
an open formal subscheme of B.

Proof. Since B is affinoid there exists a formal scheme B”, flat over R, such that
B” ® k = B. According to [M], 4.3.8 or [BL2], Section 5, there are formal ad-
missible blowing-ups 7: A — A, p: B’ — B” and an open immersion
i: A — B’ such that i®k: 4 — B is the open immersion of 4 into B. The
support of the blowing-up = is a finite set F and so proper over R. Since 7 itself
is proper it follows that 7! F is proper and that i(x "' F) is closed in B’. One
can therefore glue A and B'\i(n~!F) over A\n~'F. The resulting formal
scheme B satisfies the conditions of the lemma. 0O

Corollary 3.3. If one assumes moreover that the field k is algebraically closed and
that X is non-singular, then there exists a separated admissible formal scheme X,
with generic fibre X, such that the special fibre of X has only ordinary double
points as singularities. We will call such a formal scheme semi-stable.

Proof. In the sequel we will use the following: If X is affinoid and if X is an
admissible formal scheme over R with generic fibre X then a certain blow-up of
X is semi-stable. This follows from the stable reduction theorem for algebraic
curves over k. One can now apply (3.2) and the method of (3.1) with formal
schemes which are semi-stable. O

In what follows, we want to show that X is a quasi-Stein space if no irre-
ducible component of X is complete.

Recall that a rigid analytic space X is a quasi-Stein space in the sense of Kiehl
[K] if there exists an admissible affinoid covering {X,},.y of X such that
X, € X, 41 and the restriction map Oy (X, 1) — Ox{(X,) is dense for all #. For
such a space, one has H9(X,F) = 0 for all ¢ > 1| and for every coherent sheaf
F ([K], Satz 2.4). The following proposition is previously known for spaces of
finite genus ([L], 2.1.1).
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Theorem 3.4. Let X be a one-dimensional separated and connected rigid space
without complete irreducible components. Then X is a quasi-Stein space.

The following lemma is a kind of Mittag-Leffler decomposition theorem.
The same result over a discrete valuation field has been proved by Raynaud [R],
3.5.2.

Lemma 3.5. Assume the base field k to be algebraically closed. Let C be a
projective smooth curve over k, let U be an affinoid open subset of X, analytifica-
tion of C.

(a) The space X\U has only finitely many connected components Dy, . .., D,,.
(b) Fix apoint p; € D; forall1 <i < m. Then the restriction map

Oc(C\{p1,---,Pm}) — Ox(U)
is dense.

Proof. (a) There is a reduction ry : X — Ty such that the canonical reduction
U* of U is a dense open subset of Ty. Then the connected components of X\ U
correspond to the points of To\U*.

(b) Letr: X — T be a semi-stable reduction such that U = r~!(U) for some
open subset U of T and p, := r(p;) is smooth for all i. Then D; is just the pre-
image of the connected component of 7\U containing p;. Let I" denote the
Zariski closure of U in T. We will make induction on the number d of irre-
ducible components of T\I".

First assume that T =T (i.e. d =0). Then T = U U {p,,...,p,}. Since p,
is smooth, there exists an affine open subset W; of T containing p; and
h; € O(r =1 (W,)) with { p;} as zero set. Using exactly the same construction as in
[FM], §1.3, Proposition 1, one gets a regular function F € Oc(C\{py,-..pm})
such that

U={x€X|F €Oy, and |[F(x)| <1}.

This implies obviously that Oc(C\{p1,...,Pm}) — Ox(U) has dense image.

Suppose now that T # I' and that the proposition is true for all couples
(U, Cp) such that the associated number dj is less than 4. It suffices to consider
the case T\I" connected (i.e. m = 1). Actually, put U; = X\D;. Then U =, U;
and the canonical map

O(Uy) & - -- & O(Up) — O(U)
is surjective. So if O(C\{p;}) — O(U;) is dense for all i, then
O(C\{plv s 7PM}) - O(U)

is dense. Note that the number of irreducible components of T\r(U;) is < d.
We suppose now that T\ I" is connected. Let Z be the irreducible component

of T containing p = p|, Z is not contained in I". Put S = Zariski closure of T\Z

in7 and ¥V = r~Y(T\Z) D U. There is a smooth projective curve E over k and a
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reduction s : E — E = S such that V = s~(T\Z) (see [P], Theorem 1.1). Fix
points qy, . ..,q, € E\V in the connected components of E\U. Since the num-
ber of irreducible components of S\I" is less than d, O(E\{q1,...,qa}) —
O(U) is dense. But V' C E\{q1,...,qn}, s0o O(V) — O(U) is dense. On the
other hand, put W = r~1(T\{p}), then by the first case (T = I'), we have that
O(C\{p}) — O(W) is dense. Finally, we are reduced to prove that O(W) —
O(V) is dense.

Let g be a rational function over 7" with a unique pole p and which vanishes
on Z N S (a such function exists according to Riemann—Roch). Then g liftsto a
holomorphic function g € O( W), and there is a py € k such that [g(x)| < |pe] < 1
for all x € V. For all p € k, let W, denote the union of the connected compo-
nents of {x € W ||g(x)| < |p|} which meet V. If t € SN Z, then one has an iso-
morphism ¢, : r (1) > {z € k||| < |z| < 1} for some m, € k. The isomor-
phism ¢, can be chosen so that the ‘boundary’ ¢, !({|z| = 1}) belongs to V.
Therefore, when |p| < 1 is close enough to 1, W, is the union of V" with the open
annulis {|7]] <|z| < 1}, 1 € SN Z, |n]| > |m|. Using the same process as above
(embedding W, in some curve), one sees that O(W,) — O(V') is dense. Since
O(W) — O(W,) is obviously dense, the lemma is proved. O

Corollary 3.6. Lemma (3.5) is valid for an arbitrary base field k.
Proof. The method of Lemma (3.8) can be applied. O

Lemma 3.7. Let U C V be one-dimensional affinoids. Then the property ‘U is
relatively complete in V'’ is preserved under normalization and base change
kC K=k,

Proof. Let r: V' — V be a reduction such that U =r~!(U) for some open
subset U of V. Let f : W — V denote the normalization of ¥ or the projection
V&K — V. Then f |,y : f(U) — U is the normalization of U or the
projection U ®x K — U. Furthermore, r induces a reductionr’ : W — W and a
finite integral morphism f : W — ¥ such that ro f = f or’. Since any con-
nected component of W\ f ~!(T) maps surjectively and finitely to a connected
component of P\ U, U is relatively complete in V' if and only if so is £ ~'(U) in
W. O

Lemma 3.8. Let U and V be as above. If U is relatively complete in V, then the
restriction map OQ(V') — O(U) is dense.

Proof. It suffices to prove that O(V)®; K — O(U) @K has a dense image.
This follows from the fact that one can approximate the restriction of the
valuation of X to every finite dimensional subspace E over k of K, by a norm
for which there is an orthogonal basis on E. According to Lemma (3.7), we may
now suppose that k is algebraically closed.

Let V' — V be the normalization of V. Since ¥’ is a smooth one-dimen-
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sional affinoid space over k, there exists a smooth projective curve C over k
such that V' is an affinoid open subset of X, the analytification of C ([P], The-
orem 1.1). Let U’ — U denote the normalization of U. Since U’ is relatively
complete in ¥’ (Lemma (3.7)), each connected component D; of X\ U’ contains
a point p; € X\ V' so that Oc(C\{p;},) is a subring of O(V’). Therefore, ac-
cording to Lemma (3.5), O(V') is dense in O(U’).

By Runge’s theorem, O(V') is dense in O(U) if and only if U is a Weierstrass
subset of V. Since the latter property depends only on the reduced structure
over V, one may assume that V" 1s reduced.

Let A denote the closure of O(¥) in O(U). Since dimy(O(V')}/O(V}) < 00
and O(V') is dense in O(U"), one has dim;(O(U)/A4) < 0. So A is an affinoid
algebra over k. Let w: U — Spm A4 (resp. ¢ : Spm A — V') be the morphism
corresponding to 4 C O(U) (resp. O(V) C A), then ¢ ow =i the canonical
open immersion of U in V. Furthermore « is surjective, so $(¢) C U. There-
fore, ¢ induces a morphism Spm 4 — U which the inverse of 7. So 4 = O(U)
and O(V)isdense in O(U). O

Proof of Theorem 3.4. As we have seen in Section 2, there is a countable affin-
oid admissible covering {U;}, of X. Enlarging if necessary U; one can assume
that U; is relatively complete in X. Since no irreducible component of X is
complete, any finite union of affinoids of X is still affinoid. So by taking finite
unions of U;’s, one gets an admissible affinoid covering { X,,}, . 5 of X such that
X, C X,+1 and X, is relatively complete in X (X, is then relatively complete in
Xy +1). Now the Lemma (3.8) says that Oy (X, +1) — Ox(X,) is dense and the
proof is finished. 0[O

Remark 3.9. Let X be as in Proposition (3.4), let X be an admissible formal
scheme with generic fibre X. It can be seen that X is a Stein space (i.e. there
exists an admissible affinoid covering {X,},.y of X such that X, C X, and
X, is relatively compact in X, for all n) if and only if all irreducible compo-
nents of the special fibre X; are complete.

4. COUNTEREXAMPLES IN HIGHER DIMENSION

One considers a subset A of R, the valuation ring of &, such that the restric-
tion of the residue map R — k to Ais injective. Let 4 denote the image of A. We
suppose that A and k\A are infinite sets. Let 7 denote an element of R with
0 < |r| < 1. For each X\ € A one considers the affinoid subset X, of the polydisk
{(s,1) € k*||s] < 1,|1} < 1} given by the inequality |s — M| < |x]. Let X, denote
the union of the X,.

Lemma 4.1. For every affinoid subset Z of X there is a finite subset A’ of A such
that is contained in X := J, c 4 X

Proof. Z can be written as the union of two affinoids Z; = {(s,7) € Z ||| < ||}
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and Z; = {(s,1) € Z | |t| > |n|}. The first set is contained in any X). On Z, we
consider the function f := s/¢. For each point z of Z;\Z, there is a A such that
z€ Xy and so |f(z) — A| < |n|/|t(z)| < 1. The corresponding map f : Z, —
A %, where Z, denotes the canonical reduction of Z,, has the property
f(Z\(Z) N Z3)) C A. Since this image is also a constructible subset of 47 it
is finite, say {\j,..., A, }. It follows that Z is contained in the union of the

{X/\i}i=],...,m' O
Remark 4.2. The same proof also yields a somewhat stronger result:

Letg:Z — {(s,1) € k2| |s| < 1,]t| < 1} be a morphism of affinoid spaces such
that the image of g is contained in X4, then the image of g is contained in X 5 for
some finite subset A’ of A.

The remark implies that X4 and the covering by the affinoids X), satisfies the
conditions of Proposition 2 on p. 914 of [BGR]. Hence X4 is an admissible open
subspace of the two-dimensional polydisk and {X,}, 4 is an admissible affin-
oid covering of X,. The structure of X4 as rigid space is induced by its embed-
ding in the polydisk.

Proposition 4.3.

1. X, is separated.

2. X, has no locally finite admissible covering by affinoid subsets.

3. If Ais not countable then X 4 has no countable admissible covering by affinoid
subsets.

Proof. 1. X, is a subspace of the unit polydisk and therefore separated.

2. Suppose that a locally finite admissible covering {4,;};.; by connected
affinoids of X4 exists. Then every affinoid subspace Z of X4 meets only finitely
many of the 4;. Let us take Z = {(s, £} | |s| < |n|,{#| < |x]}. If 4N Z = then
A; C X)\Z for some ). Indeed, one has supposed that 4; is connected and one
easily sees that the connected components of X,\Z are the X,\Z. Since A is
infinite there exists a Ay € A such that for every i € I with A;NZ # 0 the
affinoid A4; is contained in a finite union of X, with A # Ag. The restriction of
the admissible covering {4;} to X), consists of Z and affinoid subsets of X,,\Z.
Such an admissible covering does not exist.

3. Suppose that {Z,} is a countable admissible covering of X, by affinoid
subsets. Since each Z, is contained in finitely many X), we find a countable
subset A’ of A such that X, = X4. For A € A\A’ and A\’ € A’ one has that X, N
Xy = {(s,0) | |s| < [x|;|t] < |n|}. This shows that A = A" and that A is count-
able. O

Remarks 4.4. 1. The example X, supposes that the residue field k is infinite.
For finite residue fields k one can make an analogous construction. This uses

not only linear inequalities |s — Az| < || but also inequalities |P(s, 7)| < |n|*
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where P is a homogeneous polynomial of degree d with coefficients in the val-
uation ring R of k and such that its reduction is an irreducible form of degree d
over the residue field k. Since there are countably many homogeneous poly-
nomials of this type one can imitate the construction of X. In particular, for
any local field & there is a separated rigid open subspace X of the two-dimen-
stonal polydisk over &, such that X is of countable type but does not have a lo-
cally finite admissible covering.

2. The condition ‘separated’ for the result stated in the introduction is nec-
essary. Let us give an example of a one-dimensional quasi-separated space,
which is not separated. Let D denote the unit disk. Let 7 be any set and let
{D;},¢; denote a family of copies of D. The space X is made by glueing each D;
to D over their subdisks {z | |z| < ||}. The result X is quasi-separated and not
separated. If 7 is not countable then X is not of countable type.
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