Table des matières

I. Algèbre linéaire	1
I.1. Sur les endomorphismes diagonalisables	1
I.1.1. Endomorphismes diagonalisables et sous-espaces stables	1
I.1.2. Matrices circulantes diagonalisables	2
I.2. Quelques comptages	6
I.2.1. Comptage des endomorphismes (resp. automorphismes) diagonalisables	6
I.2.2. Comptage des matrices de rang r de $M_{n,m}(\mathbb{F}_q)$	8
I.2.3. Comptage des matrices nilpotentes de $M_n(\mathbb{F}_q)$ qui sont	10
de rang $n-1$	
I.3. Sur la réduction des endomorphismes	11
I.3.1. La décomposition en composantes monogènes ou	11
décomposition de Frobenius	
I.3.2. Sur les sous-espaces stables par un endomorphisme qui	18
admettent un supplémentaire stable	
I.3.3. L'équation $C=AX-XB$	22
I.3.4. Conjugaisons et conjugaisons résiduelles de matrices	24
I.4. Actions de groupes sur des espaces de matrices	27
I.4.1. La décomposition LDU	28
I.4.2. Matrices symétriques et décomposition LDU	37
I.4.3. La décomposition LDU générique et deux	41
homéomorphismes	
I.4.4. La décomposition de Bruhat	43

vi Table des matières

I.5. Les commutants	45
I.5.1. Sur la dimension du commutant d'une matrice	45
I.5.2. Sur les commutants	46
I.5.3. Matrices décomposées en blocs et commutant	51
I.6. Sur le groupe linéaire	53
I.6.1. Sur les sous-groupes cycliques de $G\ell_n(\mathbb{F}_q)$ d'ordre q^n-1	53
I.6.2. L'adhérence dans $M_n(\mathbb{C})$ de l'ensemble des éléments de	58
torsion de $G\ell_n(\mathbb{C})$	
I.6.3. Les groupes linéaires en exception	59
I.6.4. Sur l'isomorphisme entre $G\ell_n(K)$ et $G\ell_m(K)$ et entre	63
$S\ell_n(K)$ et $S\ell_m(K)$	
I.7. Quelques décompositions	66
I.7.1. Décomposition en produit d'involutions	66
I.7.2. Un théorème de Botha sur la décomposition d'une	71
application linéaire en produit d'idempotents	
I.8. Sous-espaces vectoriels de $M_n(K)$ constitués d'inversibles	80
I.9. Sur l'équation $X^2 + Y^2 = M$ dans $M_n(K)$	85
I.10. Sur les sous-espaces rationnels	92
II. Espaces quadratiques	97
II.1. Une signature de forme bilinéaire symétrique	97
II.2. Espace vectoriel de formes bilinéaires symétriques réelles	98
II.3. Points sur les quadriques	99
II.4. Un isomorphisme exceptionnel, $\frac{SU_2(\mathbb{C})}{\{\pm I_2\}}{\simeq}SO_3(\mathbb{R})$, via le corps	101
des quaternions	
II.5. La structure du groupe $O_{p,q}(\mathbb{R})$	105
II.6. Sur le commutant d'une matrice orthogonale	108
II.7. Exemple d'action de groupes sur les matrices symétriques en caractéristique 2	111
II.8. Sur les inégalités de Weyl	113
II.9. Matrices de Hadamard	115
II.10. L'enveloppe convexe de $O_n(\mathbb{R})$ dans $M_n(\mathbb{R})$ et ses points	118
extrémaux	3

Table des matières	vii
--------------------	-----

III. Groupes	121
III.1. Groupes abéliens finis	121
III.1.1. Le théorème de structure des groupes abéliens finis	121
III.1.2. Sur les sous-groupes d'un groupe abélien qui admettent un supplémentaire	128
III.1.3. Sous-groupes abéliens fini de $G\ell_n(\mathbb{C})$	130
III.2. Le groupe symétrique	132
III.2.1. Cycles, transpositions	132
III.2.2. L'homomorphisme signature, le groupe alterné	135
III.2.3. Sur la simplicité de \mathfrak{A}_n	137
III.2.4. Classes de conjugaison modulo \mathfrak{A}_n , modulo \mathfrak{S}_n et centralisateur d'un élément	140
III.2.5. Graphes simples et décomposition en produit de transpositions	143
III.2.6. Tout groupe simple d'ordre 60 est isomorphe à \mathfrak{A}_5	146
III.2.7. Les sous-groupes d'indice n de $\mathfrak{S}_n, \mathfrak{A}_n$	148
III.2.8. Les sous-groupes d'indice d de \mathfrak{S}_n et \mathfrak{A}_n	150
III.2.9. Les automorphismes du groupe symétrique et du groupe alterné	152
III.2.10. Permutations et matrices de permutations, un théorème de Brauer	161
III.3. Représentations linéaires de groupes finis	164
III.3.1. Représentations linéaires de sous-groupes du groupe symétrique	164
III.3.2. Sous-groupes distingués et représentations linéaires	166
III.3.3. Sur le degré d'une représentation irréductible	168
III.3.4. Les groupes d'ordre 12 et leurs représentations irréductibles	173
III.3.5. Sur le nombre de solutions d'une équation dans un groupe fini et application au nombre de sous-groupes d'un groupe isomorphes à \mathfrak{A}_5	177

viii Table des matières

III.3.6. Le théorème de Molien	180
III.3.7. Groupes opérant sur un ensemble et représentations	182
linéaires de groupes	
IV. Anneaux	189
IV.1. Sur le théorème des restes chinois généralisé	189
IV.2. Polynômes irréductibles	190
IV.2.1. Exemple 1	190
IV.2.2. Exemple 2	195
IV.3. Quelques anneaux principaux	197
IV.3.1. L'anneau principal $\mathbb{Z} \oplus \mathbb{Z} i\sqrt{2}$ et l'équation $x^2 + 2y^2 = n$	197
IV.3.2. L'anneau principal $\mathbb{Z}[\sqrt{2}]$ et l'équation $x^2 - 2y^2 = n$	203
IV.4. Quelques équations diophantiennes	211
IV.4.1. L'équation diophantienne $x^2+y^2=z^2$	211
IV.4.2. L'équation diophantienne $x^2 = y^4 - z^4$	212
IV.4.3. Un bel exemple de descente ; un théorème d'Euler	214
IV.5. Les polynômes symétriques	217
IV.6. Algèbre des séries formelles à une variable	223
IV.6.1. L'algèbre des séries formelles, ordre, propriété	223
universelle	
IV.6.2. Quelques séries formelles classiques en caractéristique	229
nulle	
IV.6.3. Quelques séries formelles classiques en caractéristique	233
positive	
IV.6.4. L'exemple des nombres de Catalan	234
IV.7. Sur le résultant	235
IV.7.1. Sur le résultant de deux polynômes	235
IV.7.2. Sur le degré du déterminant de Sylvester	241
IV.7.3. Sur la loi de réciprocité quadratique via les polynômes	243
cyclotomiques	

Table des	matières	v
I won wis	muures 12	,

IV.8. Sur les nombres complexes	246
IV.8.1. Le groupe des nombres complexes de module 1	246
IV.8.2. Sur les coefficients du polynôme cyclotomique	248
IV.9. Quelques exemples de corps	254
IV.9.1. Les corps extensions finies de \mathbb{R}	254
IV.9.2. Les sous-corps de $M_n(k)$, $M_n(\mathbb{R})$	257
IV.9.3. Les sous-corps de $K(T)$	260
IV.10. Sur l'impossibilité de résoudre une équation de degré 3 avec des radicaux réels	262
IV.11. Sur les classes de conjugaison de $M_2(\mathbb{Z})$ modulo $G\ell_2(\mathbb{Z})$	265
IV.12. Un cas particulier du Nullstellensatz	271
IV.13. Sur les polynômes cyclotomiques	275
IV.14. Quand le groupe des inversibles est fini	278
V. Géométrie	279
V.1. Géométrie euclidienne	279
V.1.1. Un convexe fermé de \mathbb{R}^n	279
V.1.2. Le théorème de Hahn-Banach	281
V.1.3. Sur les cercles qui ne se coupent pas et le porisme de Steiner	284
V.1.4. Interprétation des nombres de Catalan avec les diagonales et la triangulation d'un polygone convexe	289
V.1.5. Le théorème de Descartes sur quatre cercles tangents	296
V.2. Géométrie algébrique	300
V.2.1. Sur l'intersection de courbes algébriques planes	300
V.2.2. Une surface conique de base une courbe algébrique C et de sommet o	304
V.2.3. Le théorème de Bézout et multiplicité d'intersection	311
Bibliographie	319
Index des notations et des noms	322