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Abstract

In this paper, we study the existence of L2-constraint minimiz-
ers for the planar nonlinear Schrödinger-Newton system and the pla-
nar nonlinear Schrödinger-Poisson system with a harmonic trapping
potential. Especially, we are interested in the correspondence be-
tween minimizers and ground state solutions. For the planar nonlinear
Schrödinger-Newton system, we are able to completely give this corre-
spondence. We also investigate the asymptotic behavior of minimizers
when the harmonic trapping potential vanishes.
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1 Introduction

In this paper, we consider the following planar elliptic system:{
−∆u+ ωu+ κ|x|2u± eφu = |u|p−1u
−∆φ = e

2
|u|2

in R2, (P±)

where e > 0, κ ∈ (0, 1], p > 1 and ω ∈ R. Although both (P−) and
(P+) are sometimes denominated by the same name, to make the difference
clearer, we call (P−) the nonlinear Schrödinger-Newton system (NLSN) and
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(P+) the nonlinear Schrödinger-Poisson system (NLSP) respectively. We are
interested in the existence of L2-constraint minimizers associated with (P±),
which plays an important role in the study of the stability of standing waves.
In this case, the constant ω appears as a Lagrange multiplier.

It is known that the Schrödinger-Newton system and the Schrödinger-
Poisson system appear in various fields of physics, such as black holes in
gravitation, quantum mechanics, plasma physics and semi-conductor theory;
see e.g. [21, 24, 30, 32, 33, 37]. The constant e represents the strength of the
interaction and (P±) reduces to the nonlinear Schrödinger equation if e = 0.

In the last two decades, special attention has been paid to systems NLSN
and NLSP in R3. We refer to [3, 5, 6, 9, 22, 29, 36, 37, 39, 41, 42] and refer-
ences therein. A first study using numerical analysis on the 2D Schrödinger-
Newton system was made in [40]. After a pioneer work [13], the planar NLSN
and NLSP has been widely studied in [1, 2, 8, 10, 11, 12, 19, 20, 28, 38].
Especially, NLSN and NLSP with the harmonic potential κ|x|2 or with gen-
eral unbounded potentials were considered in [29, 42] for 3D case and in
[1, 2, 20, 38] for 2D case respectively. It is important to mention that so-
lutions of 2D NLSN and NLSP can be obtained as a reduction of those of
the 3D problem, which is referred as adiabatic approximation; see [7, 34].
When carrying out this process, the presence of the harmonic potential plays
a fundamental role. On one hand, from this point of view, it is not unnatural
to consider (P±) which includes κ|x|2. This strong trapping potential makes
easier the existence of L2-constraint minimizers of (P±). On the other hand,
from a scaling point of view, fibering maps associated with L2-invariant scal-
ing becomes more complex to use. Therefore, the presence of the harmonic
potential brings new difficulties when one wants to determine qualitative
properties of minimizers. We also refer to [31] for the solvability of Cauchy
problem of the corresponding time-evolution NLSP in 2D.

As most relevant to this paper, the existence of solutions with prescribed
L2-norm (normalized solutions) of (P±) without the harmonic potential κ|x|2
was addressed in [12]. Especially, in the case κ = 0 and 1 < p < 3 (L2-
subcritical), it was shown that (P−) has a L2-constraint minimizer. Further-
more, regarding (P+) with κ = 0, the existence of two normalized solutions
was obtained. (See also [38] for the case κ = 1.) However, qualitative
properties of minimizers are not mentioned in [12, 38], and in particular the
relationship between minimizers and ground state solutions is unknown for
(P±). The correspondence between minimizers and ground state solutions is
expected to be useful to carry out further investigations on the stability of
standing waves.

To state our main results, let us introduce the variational formulation of
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(P±). In the 2D case, one can solve the Poisson equation as follows:

φ(x) =
e

2
(−∆)−1|u(x)|2 = − e

4π

∫
R2

log |x− y||u(y)|2 dy =: eS(u)(x).

Then (P±) can be rewritten as the following nonlocal elliptic equation:

−∆u+ ωu+ κ|x|2u± e2S(u)u = |u|p−1u in R2. (1.1)

We define the function spaces X0 and X by

X0 :=

{
u ∈ H1(R2,C) |

∫
R2

log(1 + |x|)|u|2 dx < +∞
}
,

X :=

{
u ∈ H1(R2,C) |

∫
R2

|x|2|u|2 dx < +∞
}
.

It is clear that X ⊂ X0. Let us also introduce the functionals V0 : X0 → R
and V : X → R defined by

V0(u) :=

∫
R2

log(1 + |x|)|u|2 dx and V (u) :=

∫
R2

|x|2|u|2 dx.

The energy functional associated with (P±) is given by

Eκ,±(u) := E0,±(u)+
κ

2
V (u), E0,±(u) :=

1

2

∫
R2

|∇u|2 dx− 1

p+ 1

∫
R2

|u|p+1 dx±e2A(u),

A(u) =
1

4

∫
R2

S(u)|u|2 dx = − 1

16π

∫
R2

∫
R2

log |x− y||u(x)|2|u(y)|2 dx dy.

We can see that E0,± is well-defined in X0, while Eκ,± is well-defined only on
X . It is important to point out that E0,± is translation invariant, although a
natural norm ‖u‖2X0

:= ‖u‖2H1+V0(u) on X0 is not invariant under translation.
Let us consider the following minimization problem:

cκ,±(µ) := inf
u∈Bµ∩X

Eκ,±(u),

where µ > 0 and Bµ :=
{
u ∈ H1(R2,C) | ‖u‖2L2(R2) = µ

}
. For simplicity,

except when one wants to emphasize the dependence of κ, we denote Eκ,±(u)
and cκ,±(µ) by E±(u) and c±(µ) respectively. We also define the action
functional corresponding to (1.1) by

I±(u) := E±(u) +
ω

2

∫
R2

|u|2 dx.
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A solution w of (1.1) is said to be a ground state solution, if w satisfies

I±(w) = inf{I±(u) | u ∈ X and u is a nontrivial solution of (1.1)}.

First we consider the nonlocal elliptic problem:

−∆u+ ωu+ κ|x|2u− e2S(u)u = |u|p−1u in R2, (1.2)

which corresponds to the nonlinear Schrödinger-Newton system. Our main
results are summarized as follows.

Theorem 1.1 (Existence of minimizers and positivity of Lagrange multi-
plier).

(i) Suppose that 1 < p < 3 and κ ∈ (0, 1]. Then for any µ > 0, c−(µ)
admits a minimizer u− ∈ Bµ ∩ X .

(ii) Suppose that 2 ≤ p < 3 and κ ∈ (0, 1]. Then there exists µ− > 0 such
that the Lagrange multiplier ω− associated with c−(µ) is positive.

Theorem 1.2 (Correspondence of minimizers and ground state solutions).
Suppose that 2 ≤ p < 3, κ ∈ (0, 1] and assume that µ > µ−.

(i) Any minimizer u− ∈ Bµ ∩ X for c−(µ) is a ground state solution of
(1.2) with ω = ω−.

(ii) Let us denote by Ω−(µ) the set of Lagrange multipliers associated with
minimizers for c−(µ), that is,

Ω−(µ) :=
{
ω− > 0 | ω− is a Lagrange multiplier corresponding to c−(µ)}.

Any ground state solution wµ of (1.2) with ω = ω− ∈ Ω−(µ) is a
minimizer for c−(µ).

It is worth mentioning that Theorem 1.1 and Theorem 1.2 hold even for
κ = 0. The correspondence between minimizers and ground state solutions,
provided for example by Theorem 1.2, are of great interest; see [15, 16, 17,
18, 23]. However, up to authors’ knowledge, there is no such result for the
planar nonlinear Schrödinger-Newton system. Therefore, we emphasize that
Theorem 1.2 is new even for the case κ = 0. As we will see later, in the
process of the proof of Theorem 1.2, the positivity of the Lagrange multiplier
ω− established in Theorem 1.1 (ii) plays an essential role. Moreover, the
positivity of ω− can be shown by combining the Nehari identity, the Pohozaev
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identity and the fact c−(µ) < 0 for µ > µ−. For the 3D Shrödinger-Poisson
system, as done in [5, 9, 15, 39], the negativity of the minimum of the energy
can be obtained by scaling and continuity arguments. In the 2D case, since
the nonlocal term A has a bad scaling property, the negativity of c−(µ) cannot
be derived by such simple arguments. Instead, we construct a suitable test
function with appropriate parameters.

Next we make more precise the asymptotic behavior of minimizers as
κ→ 0.

Theorem 1.3 (Asymptotic behavior of minimizers as κ→ 0).
Suppose that 2 ≤ p < 3, κ ∈ (0, 1] and assume that µ > µ−. Let uκ,− ∈

Bµ ∩ X be a minimizer for cκ,−(µ). Then there exist κj → 0, {yj} ⊂ R2 and
u0 ∈ Bµ ∩ X0 such that

uκj(· − yj)→ u0 in X0.

Moreover u0 is a minimizer for c0,−(µ).

Note that, since {uκj}j∈N can be shown to be bounded in X0, it converges
weakly in X0. Moreover, standard arguments provide the convergence of
the minimum energy cκ,−(µ) to c0,−(µ) as κ → 0, as well as the strong
convergence uκj → u0 in H1. However, it is not trivial to obtain the strong
convergence of {uκj}j∈N in the stronger topology X0. It requires a mutual
estimate between the nonlocal term A and the functional V0. It should
be mentioned that we are able to obtain a similar result for 3D problem,
leading to the strong convergence but only in H1. In other words, the strong
convergence in X0 is a 2D-specific result.

Next we introduce our main result for the nonlocal elliptic problem:

−∆u+ ωu+ κ|x|2u+ e2S(u)u = |u|p−1u in R2, (1.3)

which corresponds to the nonlinear Schrödinger-Poisson system. In this case,
we obtain the following result.

Theorem 1.4.

(i) Suppose that 1 < p < 3 and κ ∈ (0, 1]. Then for any µ > 0, c+(µ)
admits a minimizer u+ ∈ Bµ ∩ X .

(ii) Suppose that 1 < p < 3 and let µ > 0 be given. Then there exists
κ+ = κ+(e, µ) ∈ (0, 1) such that for 0 < κ < κ+,

e2µ2

8π
log κ ≤ c+(µ) ≤ e2µ2

64π
log κ.
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Theorem 1.4 (ii) means that we cannot expect a similar result as in The-
orem 1.3 for minimizers of (1.3). Moreover since we cannot determine the
sign of the Lagrange multiplier, it is not possible to prove a similar result as
in Theorem 1.2. See Remark 4.9 below for more details.

We also mention that the restriction of κ ≤ 1 in Theorems 1.1 and 1.2 is
not essential, while so it is in Theorem 1.4.

This paper is organized as follows. In Section 2, we introduce basic prop-
erties of the function space X0 and the nonlocal term A. Although most
of them are already known, we need to investigate the dependence of esti-
mates on X with respect to κ precisely. In Section 3, we study the nonlinear
Schrödinger-Newton system. First, the existence of L2-constraint minimiz-
ers and their properties are established. Next, we consider the link between
minimizers and ground state solutions of (1.2). The asymptotic behavior
of minimizers as κ → 0 will be studied in the last subsection. Finally, we
consider the nonlinear Schrödinger-Poisson system and prove Theorem 1.4
in Section 4.

Hereafter in this paper, unless otherwise specified, we write ‖u‖Lp(R2) =
‖u‖p. We also denote by B(y,R) the 2-dimensional ball of radius R centered
at a point y ∈ R2.

2 Preliminaries

In this section, we collect some basic properties of the function space X0 and
the nonlocal term A(u). First we begin with the embedding theorem of X0.
Since the weight function log(1 + |x|) is unbounded at infinity, the following
compact embedding lemma holds. (See e.g. [4, 35] for the proof.)

Lemma 2.1 (Compact embedding). X0 ↪→ Lq(R2) is compact for all q ∈
[2,∞).

Next we prepare a scaling property of the nonlocal term A(u).

Lemma 2.2 (Scaling property). Let u ∈ X0, λ > 0, (a, b) ∈ R2 and define
uλ(x) = λau(λbx). Then it follows that

S(uλ)(x) = λ2a−2b
(b log λ

4π
‖u‖22 + S(u)(λbx)

)
,

A(uλ) = λ4a−4b
(b log λ

16π
‖u‖42 + A(u)

)
.
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Proof. Let us introduce the change of variable z = λby. Then we can compute
as follows.

S(uλ)(x) = −λ
2a

4π

∫
R2

log |x− y||u(λby)|2 dy = −λ
2a−2b

4π

∫
R2

log |x− λ−bz||u(z)|2 dz

= −λ
2a−2b

4π

∫
R2

log |λ−b(λbx− z)||u(z)|2 dz

= −λ
2a−2b

4π

∫
R2

{
− b log λ+ log |λbx− z|

}
|u(z)|2 dz

= λ2a−2b
(b log λ

4π
‖u‖22 + S(u)(λbx)

)
.

This also yields that

A(uλ) =
1

4

∫
R2

S(uλ)|uλ|2 dx =
λ4a−2b

4

∫
R2

{
b log λ

4π
‖u‖22|u(λbx)|2 + S(u)(λbx)|u(λbx)|2

}
dx

=
λ4a−4b

4

∫
R2

{
b log λ

4π
‖u‖22|u(y)|2 + S(u)(y)|u(y)|2

}
dy

= λ4a−4b
(b log λ

16π
‖u‖42 + A(u)

)
,

from which we conclude.

Now we state several estimates for nonlocal terms.

Lemma 2.3 (Estimates for nonlocal terms).

(i) For any u ∈ X0, it follows that

−A1(u) ≤ A(u) ≤ A2(u),

where

A1(u) :=
1

16π

∫
R2

∫
R2

log(1 + |x− y|)|u(x)|2|u(y)|2 dx dy,

A2(u) :=
1

16π

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
|u(x)|2|u(y)|2 dx dy.

(ii) For any u ∈ X0, it holds that

0 ≤ A1(u) ≤ 1

8π
‖u‖22V0(u),

0 ≤ A2(u) ≤ C‖u‖48
3
≤ C‖∇u‖2‖u‖32

for some C > 0.
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(iii) Let Cκ := − log κ
2

+ κ
1
2 − 1 for κ ∈ (0, 1]. For any u ∈ X , it follows that

0 ≤ A1(u) ≤ 1

8π
‖u‖22

(
Cκ‖u‖22 + κ

1
2‖u‖2V (u)

1
2

)
.

(iv) A1 is weakly lower semi-continuous on X0 and A2 is continuous on

L
8
3 (R2). Moreover, the functional A is of the class C1 on X0.

Proof. (i) First we observe that for any (x, y) ∈ R2 × R2,

log |x− y| = log(1 + |x− y|)− log(1 + |x− y|) + log |x− y|

= log(1 + |x− y|)− log

(
1 +

1

|x− y|

)
.

This yields that

A(u) = − 1

16π

∫
R2

∫
R2

log(1 + |x− y|)|u(x)|2|u(y)|2 dx dy

+
1

16π

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
|u(x)|2|u(y)|2 dx dy

and henceA(u) = −A1(u)+A2(u). Since log(1+|x−y|) ≥ 0 and log
(

1 + 1
|x−y|

)
≥

0 on R2 × R2, we obtain (i).
(ii) By the triangular inequality, it follows that

log(1 + |x− y|) ≤ log(1 + |x|+ |y|) ≤ log(1 + |x|) + log(1 + |y|).

As a consequence, one has

A1(u) =
1

16π

∫
R2

∫
R2

log(1 + |x− y|)|u(x)|2|u(y)|2 dx dy

≤ 1

16π

∫
R2

∫
R2

log(1 + |x|)|u(x)|2|u(y)|2 dx dy +
1

16π

∫
R2

∫
R2

log(1 + |y|)|u(x)|2|u(y)|2 dx dy

=
1

8π
‖u‖22

∫
R2

log(1 + |x|)|u(x)|2 dx =
1

8π
‖u‖22V0(u).

Next by the inequality log
(
1 + 1

s

)
≤ 1

s
for s ≥ 0 and the Hardy-Littlewood

Inequality [25], we find that

A2(u) =
1

16π

∫
R2

∫
R2

log

(
1 +

1

|x− y|

)
|u(x)|2|u(y)|2 dx dy

≤ 1

16π

∫
R2

∫
R2

|u(x)|2|u(y)|2

|x− y|
dx dy

≤ C
∥∥|u|2∥∥24

3

= C‖u‖48
3
.
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Then applying the interpolation inequality and the Gagliardo-Nirenberg in-
equality, we get the last estimate.

(iii) An elementary calculation shows that the function f(s) := κ
1
2 s −

log(1 + s) takes its global minimum at s = κ−
1
2 − 1 and f(κ−

1
2 − 1) =

log κ
2
− κ

1
2 + 1 = −Cκ < 0. Then by the Cauchy-Schwarz inequality, one

deduces that

V0(u) =

∫
R2

log(1 + |x|)|u|2 dx ≤
∫
R2

(Cκ + κ
1
2 |x|)|u|2 dx

= Cκ‖u‖22 + κ
1
2

∫
R2

|x||u|2 dx ≤ Cκ‖u‖22 + κ
1
2‖u‖2V (u)

1
2 .

Thus from (ii), we conclude.
(iv) We refer to [13, Lemma 2.2] for the proof.

By Lemma 2.3 (iv), it follows that the functionals E± and I± are of the
class C1 on X . Next we prepare the following compactness result.

Lemma 2.4. Let {un} ⊂ X0 be a sequence satisfying

‖un‖22 = µ and A1(un) ≤M for all n ∈ N and some M > 0. (2.1)

Then there exist a sequence nj → ∞, {yj} ⊂ R2 and u0 ∈ L2(R2,C) such
that

unj(· − yj)→ u0 in L2(R2).

Especially it holds that ‖u0‖22 = µ.

Proof. Although the same result has been established in [12, Lemma 2.5 and
Lemma 2.6], we give the proof for the sake of completeness.

Step 1: We claim that under the assumption (2.1), for all j ≥ 1, there exist
nj →∞, Rj > 0 and {yj} ⊂ R2 such that∫

B(yj ,Rj)

|unj(x)|2 dx > µ− 1

j
. (2.2)

Suppose by contradiction that (2.2) does not hold. Then there exists ε0 ∈
(0, µ) such that

lim inf
n→∞

sup
y∈R2

∫
B(y,R)

|un(x)|2 dx ≤ µ− ε0 for all R > 0.

Let us put

εn := sup
y∈R2

∫
B(y,R)

|un(x)|2 dx
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Up to a subsequence, we may assume that limn→∞ εn ≤ µ−ε0. Then we find
that

16πA1(un) ≥
∫∫
|x−y|≥R

log(1 + |x− y|)|un(x)|2|un(y)|2 dx dy

≥ log(1 +R)

{
µ2 −

∫∫
|x−y|≤R

|un(x)|2|un(y)|2 dx dy
}
.

Moreover one has∫∫
|x−y|≤R

|un(x)|2|un(y)|2 dx dy ≤
∫
R2

|un(y)|2
(∫

B(y,R)

|un(x)|2 dx
)
dy ≤ µεn,

from which we deduce that

16πA1(un) ≥ log(1+R)µ(µ−εn) ≥ 1

2
log(1+R)µε0 for sufficiently large n ∈ N.

Since R > 0 is arbitrary, letting R → ∞, this contradicts (2.1) and hence
(2.2) holds.

Step 2: Now we put vj(x) := unj(x+ yj). From (2.2), it follows that∫
B(0,Rj)

|vj(x)|2 dx > µ− 1

j
. (2.3)

Since ‖vj‖22 = ‖uj‖22 = µ, passing to a subsequence, we may assume that
vj ⇀ u0 in L2(R2) for some u0 ∈ L2(R2,C). From (2.3) and the concentration
compactness principle [26, 27], we conclude that vj → u0 in L2(R2).

Next by Lemma 2.3 (ii), we know that A1(u) is controlled by V0(u).
Conversely, we have the following result.

Lemma 2.5. Let u ∈ X0 and assume that there exist δ0 > 0, R0 > 0 and a
measurable subset A0 ⊂ B(0, R0) such that

|u(x)|2 ≥ δ0 for all x ∈ A0. (2.4)

Then it follows that
V0(u) ≤ C

(
A1(u) + ‖u‖22

)
for some C > 0.

Proof. We argue as in [13, Lemma 2.1]. For R > 0, we first observe that

1 + |x− y| ≥ 1 +
|y|
2
≥
√
|1 + |y| for x ∈ B(0, R) and y ∈ R2 \B(0, 2R).
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Then from (2.4), one finds that

16πA1(u) ≥
∫
R2\B(0,2R0)

∫
A0

log(1 + |x− y|)|u(x)|2|u(y)|2 dx dy

≥ δ0|A0|
2

∫
R2\B(0,2R0)

log(1 + |y|)|u(y)|2 dy

≥ δ0|A0|
2

(
V0(u)−

∫
B(0,2R0)

log(1 + |y|)|u(y)|2
)

≥ δ0|A0|
2

(
V0(u)− log(1 + 2R0)‖u‖22

)
,

from which we conclude.

Next we define a symmetric bilinear form:

B1(u, v) := Re

∫
R2

∫
R2

log(1 + |x− y|)u(x)v(y) dx dy.

Then the following properties hold.

Proposition 2.6.

(i) Let {un}, {vn}, {wn} ⊂ X0 be bounded sequences and assume that
un ⇀ u in X0. Then for any φ ∈ X0, it holds that

B1

(
vnwn, φ(un − u)

)
→ 0 as n→∞.

(ii) Let {un} ⊂ L2(R2) be a sequence which satisfies un → u a.e. in R2 for
some u ∈ L2(R2,C) \ {0}. Moreover let {vn} ⊂ L2(R2) be a bounded
sequence such that

B1(|un|2, |vn|2)→ 0 and ‖vn‖2 → 0 as n→∞.

Then it holds that V0(vn)→ 0 as n→∞.

For the proof, we refer to [13, Lemma 2.1 and Lemma 2.6]. Finally we
introduce the following result, whose proof can be found in [13, Proposition
2.3].

Proposition 2.7. Suppose that 1 < p < 3 and ω > 0. Let u ∈ X0 be a
nontrivial solution of

−∆u+ ωu− e2S(u)u = |u|p−1u in R2.

Then u decays exponentially at infinity.
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3 L2-constraint Minimizer for the nonlinear

Schrödinger-Newton system

In this section, we consider the existence of a L2-constraint minimizer of the
following nonlocal elliptic problem:

−∆u+ ωu+ κ|x|2u− e2S(u)u = |u|p−1u in R2, (3.1)

which corresponds to the nonlinear Schrödinger-Newton system. We will
show that the L2-constraint minimizer is actually a ground state solution of
(3.1). We will also investigate the asymptotic behavior of the minimizer as
κ→ 0.

3.1 Existence of a minimizer and its properties

In this subsection, we establish that c−(µ) has a minimizer for all µ > 0.
First we begin with the following result.

Lemma 3.1. Suppose that 1 < p < 3, κ ∈ (0, 1] and let µ > 0 be given.
Then E− is bounded from below on Bµ ∩ X .

Proof. First by the Gagliardo-Nirenberg inequality and the Young inequality,
one has

‖u‖p+1
p+1 ≤ C‖∇u‖p−12 ‖u‖22 ≤

p+ 1

4
‖∇u‖22 + Cµ

2
3−p

for some C > 0. Then from Lemma 2.3 (i) and (ii), one finds that

E−(u) ≥ 1

4
‖∇u‖22 +

κ

2
V (u)− Cµ

2
3−p − e2A2(u)

≥ 1

8
‖∇u‖22 +

κ

2
V (u)− Cµ

2
3−p − Ce4µ3, (3.2)

for any u ∈ Bµ ∩ X . Thus implies that E− is bounded from below on
Bµ ∩ X .

The next lemma deals with the compactness of any minimizing sequences
for c−(µ).

Lemma 3.2. Suppose that 1 < p < 3, κ ∈ (0, 1] and let µ > 0 be given.
Let {uj} ⊂ X be a sequence satisfying ‖uj‖22 → µ and E−(uj) → c−(µ).

Then there exist a subsequence of {uj} which is still denoted by the same and
u− ∈ X such that uj → u− in H1(R3,C) and E−(u−) = c−(µ).

12



Proof. First by replacing uj by
√
µ

‖uj‖2uj, we may assume that {uj} is a mini-

mizing sequence of c−(µ). Moreover from (3.2), we find that {uj} is bounded
in X . Thus there exists u− ∈ X such that uj ⇀ u− in X for some u− ∈ X .

Now by Lemma 2.1, it follows that

uj → u− in Lq(R2) for all q ∈ [2,∞). (3.3)

Especially one has ‖u−‖22 = µ. By the weak lower semi-continuity of ‖∇ · ‖2,
we also have

lim inf
j→∞

‖∇uj‖22 ≥ ‖∇u−‖22, (3.4)

while Fatou’s Lemma implies that

lim inf
j→∞

V (uj) ≥ V (u−). (3.5)

Next by symmetry, we have the following estimate∣∣A(uj)− A(u−)
∣∣ =

∣∣∣ ∫
R2

∫
R2

log |x− y|
(
|uj(x)|2|uj(y)|2 − |u−(x)|2|u−(y)|2

)
dx dy

∣∣∣
≤
∫
R2

∫
R2

(|x|+ |y|)
∣∣|uj(x)|2|uj(y)|2 − |u−(x)|2|u−(y)|2

∣∣ dx dy
= 2

∫
R2

∫
R2

|x|
∣∣|uj(x)|2|uj(y)|2 − |u−(x)|2|u−(y)|2

∣∣ dx dy.
Observing that

|uj(x)|2|uj(y)|2−|u−(x)|2|u−(y)|2 = |uj(x)|2
(
|uj(y)|2−|u−(y)|2

)
+|u−(y)|2

(
|uj(x)|2−|u−(x)|2

)
,

we deduce that∣∣A(uj)− A(u−)
∣∣ ≤ 2

∫
R2

∫
R2

|x||uj(x)|2
∣∣|uj(y)|2 − |u−(y)|2

∣∣ dx dy
+ 2

∫
R2

∫
R2

|x||u−(y)|2
∣∣|uj(x)|2 − |u−(x)|2

∣∣ dx dy
=: A1

j +A2
j .

Moreover we can rewrite A1
j as follows

A1
j = 2

(∫
R2

|x||uj(x)|2 dx
)(∫

R2

∣∣|uj(y)|2 − |u−(y)|2
∣∣ dy) .

By the Cauchy-Schwarz inequality, one has∫
R2

|x||uj(x)|2 dx ≤
(∫

R2

|x|2|uj(x)|2 dx
) 1

2
(∫

R2

|uj(x)|2 dx
) 1

2

,∫
R2

∣∣|uj(y)|2 − |u−(y)|2
∣∣ dy ≤ (∫

R2

(
|uj(y)|+ |u−(y)|

)2
dy

) 1
2
(∫

R2

(
|uj(y)| − |u−(y)|

)2
dy

) 1
2

.

13



Since uj → u− in L2(R2), we deduce that

A1
j ≤ C‖uj − u−‖2 → 0. (3.6)

Similarly, one finds that
lim
j→∞
A2
j = 0. (3.7)

From (3.3)-(3.7), we finally obtain

c−(µ) = lim inf
j→∞

E−(uj) ≥ E−(u−) ≥ c−(µ). (3.8)

(3.8) implies that the sequence uj converges to u− strongly in H1(R2), which
ends the proof.

By Lemma 3.1 and Lemma 3.2, we are able to obtain the following exis-
tence result.

Proposition 3.3. Suppose that 1 < p < 3, κ ∈ (0, 1] and let µ > 0 be
arbitrarily given. Then c−(µ) admits a minimizer u− ∈ Bµ ∩ X .

Next we investigate some properties of the minimizer u−. First we prepare
the Nehari identity and the Pohozaev identity associated with (3.1).

Lemma 3.4. Let u ∈ X be a solution of (3.1). Then u satisfies the following
identities:

0 = N−(u) := ‖∇u‖22 + ω‖u‖22 + κV (u)− 4e2A(u)− ‖u‖p+1
p+1, (3.9)

0 = P−(u) := ω‖u‖22 + 2κV (u)− 4e2A(u) +
e2

16π
‖u‖42 −

2

p+ 1
‖u‖p+1

p+1.

(3.10)

Proof. To obtain (3.9), we just multiply (4.1) by u and integrate over R2.
The proof of (3.10) is more delicate, since the function x · ∇S(u)|u|2 may
not belong to L1(R2). To overcome this difficulty, we adopt the method used
in [14]. Let ψ ∈ D(R2) be such that ψ ≥ 0, suppψ ⊂ B(0, 2) and ψ ≡ 1
on B(0, 1). For all n ∈ N, we set ψn(x) = ψ(x

n
). We then multiply (3.1)

by ψnx · ∇u, and take the real part of the resulting equation. The only
non-straightforward term is the following one.

Re

∫
R2

S(u)uψnx · ∇u dx

=

∫
R2

S(u)ψnx · ∇
(
|u|2

2

)
dx

= −
∫
R2

S(u)
|u|2

2
x · ∇ψn dx−

∫
R2

S(u)|u|2ψn dx−
∫
R2

|u|2

2
ψnx · ∇S(u) dx,

(3.11)

14



by integration by parts. Now, a direct computation furnishes for j = 1, 2,

∂S(u)

∂xj
= − 1

4π

∫
R2

xj − yj
|x− y|2

|u(y)|2 dy,

from which we deduce that

x · ∇S(u) = − 1

4π

∫
R2

|x|2 − x · y
|x− y|2

|u(y)|2 dy. (3.12)

We multiply (3.12) by ψn
|u(x)|2

2
and integrate again on R2 to obtain∫

R2

|u(x)|2

2
ψnx · ∇S(u) dx = − 1

8π

∫
R2

∫
R2

ψn
|x|2 − x · y
|x− y|2

|u(y)|2|u(x)|2 dy dx

= − 1

8π

∫
R2

∫
R2

ψn

(
1− |y|

2 − x · y
|x− y|2

)
|u(y)|2|u(x)|2 dy dx,

from which we deduce by Fubini’s theorem that∫
R2

|u(x)|2

2
ψnx · ∇S(u) dx = − 1

16π

∫
R2

∫
R2

ψn|u(y)|2|u(x)|2 dy dx. (3.13)

Collecting (3.11) and (3.13) and using the Lebesgue dominated convergence
theorem and the fact that ∇ψn(x) −→

n→+∞
0, we get the expected equality. We

also refer to [12, 19] for the derivation of the Pohozaev identity.

The next lemma is concerned with the sign of c−(µ).

Lemma 3.5. Suppose that 1 < p < 3 and κ ∈ (0, 1]. Then there exists
µ− = µ−(e, κ) > 0 such that c−(µ) < 0 for µ > µ−.

Proof. Let us choose u(x) =
√

µ
π
e−|x|

2
and put uλ(x) := λu(λx) for λ > 0.

Then it follows that ‖uλ‖22 = ‖u‖22 = µ for all λ > 0.
Now by Lemma 2.2, we have

E−(uλ) =
λ2

2
‖∇u‖22 +

κλ−2

2
V (u)− e2µ2

16π
log λ− e2A(u)− λp−1

p+ 1
‖u‖p+1

p+1.

Moreover by direct computations, one finds that ‖∇u‖22 = 4µ, V (u) = µ and

A(u) = − µ2

16π3

∫
R2

∫
R2

log |x− y|e−|x|2−|y|2 dx dy

x−y=
√
2s,x+y=

√
2t

= − µ2

16π3

∫
R2

∫
R2

log(
√

2|s|)e−|s|2−|t|2 ds dt

= − µ2

32π
(log 2− γ),
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where γ is the Euler constant. Thus it follows that

E−(uλ) = 2µλ2+
κµλ−2

2
−e

2µ2

16π
log λ+

e2µ2

32π
(log 2−γ)−µ

p+1
2 λp−1

p+ 1

∫
R2

e−(p+1)|x|2 dx.

Taking λ = µ
1
2 , we deduce that

c−(µ) ≤ E−(uλ) = 2µ2 +
κ

2
− e2µ2 log µ

32π
+
e2µ2

32π
(log 2− γ)− Cµp

≤ −µ2

(
e2

32π
(log µ− log 2 + γ)− 2

)
+
κ

2
→ −∞ as µ→∞.

(3.14)

Thus for every κ > 0, there exists µ− = µ−(e, κ) > 0 such that c−(µ) < 0 for
µ > µ−.

Remark 3.6. When κ = 0, we have from (3.14) that

c0,−(µ) ≤ −µ2

(
e2

32π
(log µ− log 2 + γ)− 2

)
, (3.15)

yielding that c0,−(µ) < 0 for µ > 2 exp
(
64π
e2
− γ
)
.

Using Lemma 3.5, we are able to obtain the positivity of the Lagrange
multiplier ω− which corresponds to the minimizer u−. It is worth mentioning
that the next lemma holds even if κ = 0.

Lemma 3.7. Suppose that 2 ≤ p < 3, κ ∈ [0, 1] and assume that µ > µ−,
where µ− > 0 is the constant in Lemma 3.5. Then the Lagrange multiplier
ω− = ω−(µ, κ) satisfies

ω− >
(3− p)e2µ
16π(p− 1)

> 0.

Proof. By Lemma 3.4, it follows that

1

p+ 1
‖u−‖p+1

p+1 =
1

p− 1
‖∇u−‖22 −

κ

p− 1
V (u−)− e2µ2

16π(p− 1)
,

e2A(u−) = − 1

2(p− 1)
‖∇u+‖22 −

ω−
4
µ+

pκ

2(p− 1)
V (u−) +

(p+ 1)e2µ2

64π(p− 1)
.

Thus by Lemma 3.5 and from 2 ≤ p < 3, we obtain

0 > c−(µ) =
1

2
‖∇u−‖22 +

κ

2
V (u−)− e2A(u−)− 1

p+ 1
‖u−‖p+1

p+1

=
p− 2

2(p− 1)
‖∇u−‖22 +

κ

2(p− 1)
V (u−)− ω−

4
µ+

(3− p)e2µ2

64π(p− 1)

> −ω−
4
µ+

(3− p)e2µ2

64π(p− 1)
.
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from which we conclude.

3.2 Link between L2-constraint minimizers and ground
state solutions

In this subsection, we investigate the link between minimizers for c−(µ)
and ground state solutions of (3.1). Indeed the positivity of ω− enables us
to establish the following result.

Proposition 3.8. Suppose that 2 ≤ p < 3, κ ∈ [0, 1] and assume that
µ > µ−. Then any minimizer u− ∈ Bµ ∩ X is a ground state solution of
(3.1) with ω = ω−.

To prove Proposition 3.8, let us define a functional:

J−(u) := 2N−(u)− P−(u)

= 2‖∇u‖22 + ω‖u‖22 − 4e2A(u)− e2

16π
‖u‖42 −

2p

p+ 1
‖u‖p+1

p+1.

By Lemma 3.4, we know that J−(u) = 0 for any nontrivial solution u ∈ X of
(3.1). Moreover we have the following lemma.

Lemma 3.9 (Energy inequality). Suppose that 1 < p < 3, κ ∈ [0, 1] and
ω > 0. Let u ∈ X be arbitrarily given and put uλ(x) := λ2u(λx) for λ > 0.
Then for all λ > 0, u satisfies

I−(u)− I−(uλ)− 1

4
(1− λ4)J−(u)

=
ω

4
‖u‖22(λ2 − 1)2 +

e2

64π
‖u‖42

(
4λ4 log λ− λ4 + 1

)
+

1

2(p+ 1)
‖u‖p+1

p+1

(
2λ2p − pλ4 + p− 2

)
.

Especially if 2 ≤ p < 3, it holds that

I−(u)− I−(uλ)− 1

4
(1− λ4)J−(u) ≥ ω

4
‖u‖22(λ2 − 1)2 for all λ > 0.

Proof. First by Lemma 2.2, we have

I−(uλ) =
λ4

2
‖∇u‖22+

ωλ2

2
‖u‖22+

κ

2
V (u)−e

2λ4 log λ

16π
‖u‖42−e2λ4A(u)− λ2p

p+ 1
‖u‖p+1

p+1.

Thus by a direct calculation, one deduces that

I−(u)− I−(uλ)− 1

4
(1− λ4)J−(u) =

ω

4
‖u‖22

(
λ4 − 2λ2 + 1

)
+

e2

64π
‖u‖42

(
4λ4 log λ− λ4 + 1

)
+

1

2(p+ 1)
‖u‖p+1

p+1

(
2λ2p − pλ4 + p− 2

)
.
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Moreover it is straightforward to see that 4λ4 log λ−λ4 + 1 ≥ 0 for all λ > 0.
When 2 ≤ p < 3, we also have 2λ2p − pλ4 + p − 2 ≥ 0 for any λ > 0, from
which we conclude.

Proof of Proposition 3.8. Let u− ∈ Bµ ∩X be a minimizer for c−(µ) and ω−
be the associated Lagrange multiplier. By Lemma 3.7, we know that ω− > 0.
Let v ∈ X be a nontrivial solution of (3.1) with ω = ω−. Then it suffices to
show that I−(u−) ≤ I−(v).

Now by Lemma 3.4, it follows that J−(v) = 0. Then Lemma 3.9 yields
that

I−(v)− I−(vλ) ≥ 1

4

(
1− λ4

)
J−(v) = 0 for all λ > 0. (3.16)

We choose λ = ‖u−‖2
‖v‖2 so that

‖vλ‖22 = λ2‖v‖22 = ‖u−‖22 = µ.

Since u− is a minimizer of c−(µ), it holds that E−(u−) ≤ E−(vλ). Then from
(3.16), we get

I−(u−) = E−(u−) +
ω−
2
‖u−‖22 ≤ E−(vλ) +

ω−
2
‖vλ‖22

= I−(vλ) ≤ I−(v).

This implies that u− is a ground state solution of (3.1) with ω = ω−.

We now investigate the link between ground state solutions of (3.1) and
energy minimizers. To this end, let us denote by Ω−(µ) the set of Lagrange
multipliers associated with minimizers for c−(µ), that is,

Ω−(µ) :=
{
ω−(µ) > 0 | ω−(µ) is a Lagrange multiplier

associated with a minimizer for c−(µ)
}
.

By Lemma 3.7, it follows that Ω−(µ) 6= ∅ for µ > µ−. Moreover for any
ω−(µ) ∈ Ω(µ), there exists a ground state solution wµ ∈ X of (3.1) with
ω = ω−(µ) by Proposition 3.8.

Proposition 3.10. Suppose that 2 ≤ p < 3, κ ∈ [0, 1] and assume that
µ > µ−. Then any ground state solution wµ ∈ X of (3.1) with ω = ω−(µ) ∈
Ω−(µ) is a minimizer for c−(µ). This means in particular that all ground
state solutions for ω ∈ Ω(µ) share the same L2-norm.
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Proof. First by Lemma 3.4 and Lemma 3.9, we infer that

I−(wµ)− I−
(
(wµ)λ

)
≥ 1− λ4

4
J−(wµ) +

ω−(µ)

4
‖wµ‖22

(
λ2 − 1

)2
=
ω−(µ)

4
‖wµ‖22

(
λ2 − 1

)2 ≥ 0 for all λ > 1. (3.17)

Let u− ∈ Bµ ∩ X be a minimizer for c−(µ) whose Lagrange multiplier
coincides with ω−(µ). Then it holds that

I−(wµ) ≤ I−(u−) and E−(u−) ≤ E−(u) for any u ∈ Bµ ∩ X . (3.18)

Putting λµ =
√
µ

‖wµ‖2 , we deduce that∥∥(wµ)λµ
∥∥2
2

= λ2µ‖wµ‖22 = µ = ‖u−‖22 (3.19)

and hence E−(u−) ≤ E−
(
(wµ)λµ

)
. Thus from (3.17)-(3.19), one finds that

I−(wµ) ≤ I−(u−) = E−(u−) +
ω−(µ)

2
‖u−‖22

≤ E−
(
(wµ)λµ

)
+
ω−(µ)

2

∥∥(wµ)λµ
∥∥2
2

= I−
(
(wµ)λµ

)
≤ I−(wµ),

(3.20)

yielding that I−(wµ) = I−
(
(wµ)λµ

)
. Going back to (3.17), we arrive at

0 ≥ ω−(µ)

4
‖wµ‖22

(
λ2µ − 1

)2 ≥ 0.

This implies that λµ = 1 and hence ‖wµ‖22 = µ. Then from (3.20), we get

E−(wµ) = E−(u−) = c−(µ),

which ends the proof.

Next we investigate the asymptotic behavior of the Lagrange multiplier
with respect to µ. In the case κ = 0, we have the following result.

Proposition 3.11. Suppose that 2 ≤ p < 3 and let ω0,−(µ) be the Lagrange
multiplier associated with a minimizer for c0,−(µ). Then it holds that

ω0,−(µ)→∞ as µ→∞ and ω0,−(µ)→ 0 as µ→ 0.
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Proof. First by Lemma 3.7, we readily see that ω0,−(µ) → ∞ as µ → ∞.
Let u0 ∈ Bµ ∩X0 be a minimizer for c0,−(µ). Then using the Nehari identity
and applying the Gagliardo-Nirenberg inequality as in Lemma 3.1, we deduce
that

0 = N−(u0) ≥ ‖∇u0‖22 + ω0,−(µ)‖u0‖22 − 4e2A2(u0)− ‖u0‖p+1
p+1

≥ ω0,−(µ)µ− Ce4µ3 − Cµ
2

3−p .

This implies that lim supµ→0 ω0,−(µ) ≤ 0.
Next by Lemma 3.4, we have

1

2
‖∇u0‖22 =

e2

32π
‖u0‖42 +

p− 1

2(p+ 1)
‖u0‖p+1

p+1,

e2A(u0) =
ω0,−(µ)

4
‖u0‖22 +

e2

64π
‖u0‖42 −

1

2(p+ 1)
‖u0‖p+1

p+1,

from which one finds that

c0,−(µ) =
1

2
‖∇u0‖22 − e2A(u0)−

1

p+ 1
‖u0‖p+1

p+1

= −ω0,−(µ)

4
‖u0‖22 +

e2

64π
‖u0‖42 +

p− 2

2(p+ 1)
‖u0‖p+1

p+1.

Thus we obtain

ω0,−(µ) ≥ −4c0,−(µ)

µ
+
e2µ

16π
. (3.21)

Furthermore by (3.15), it follows that

c0,−(µ)

µ
≤ − e2

32π
µ log µ+ (log 2− γ)µ+ 2µ→ 0 as µ→ 0.

Thus from (3.21), we infer that lim infµ→0 ω0,−(µ) ≥ 0 and hence limµ→0 ω0,−(µ) =
0.

Remark 3.12. (i) By Lemma 3.7, it holds that ω−(µ)→∞ as µ→∞ even
if 0 < κ ≤ 1.

(ii) By Proposition 3.11, it is natural to expect that the set of Lagrange
multipliers Ω0,−(µ) for c0,−(µ) satisfies⋃

µ>0

Ω0,−(µ) = (0,∞).

20



3.3 Asymptotic behavior of minimizers as κ→ 0

In this subsection, we study the asymptotic behavior of minimizers for
cκ,−(µ) as κ → 0. To emphasize the dependence with respect to κ, we
write E−(u) = Eκ,−(u) and c−(µ) = cκ,−(µ). Then we are able to prove the
following result.

Proposition 3.13. Suppose that 2 ≤ p < 3, κ ∈ (0, 1] and assume that
µ > µ−. Let uκ = uκ,− ∈ Bµ ∩ X be a minimizer for cκ,−(µ). Then there
exist κj → 0, {yj} ⊂ R2 and u0 ∈ Bµ ∩ X0 such that

uκj(· − yj)→ u0 in X0.

Moreover u0 is a minimizer for c0,−(µ).

In order to establish Proposition 3.13, we first prepare the following
asymptotic result for the minimum of the energy.

Lemma 3.14. Suppose that 2 ≤ p < 3 and assume that µ > µ−. Then it
holds that

lim
κ→0

cκ,−(µ) = c0,−(µ).

Proof. Let u0 ∈ Bµ ∩ X0 be a minimizer for c0,−(µ). By Lemma 3.7, the
associated Lagrange multiplier ω0(µ) is positive. Then by Proposition 2.7, it
follows that u0 decays exponentially at infinity and hence u0 ∈ X . Thus one
finds that

cκ,−(µ) ≤ Eκ,−(u0) = E0,−(u0) +
κ

2
V (u0) = c0,−(µ) +

κ

2
V (u0)

and lim supκ→0 cκ,−(µ) ≤ c0,−(µ).
On the other hand since Eκ,−(u) ≥ E0,−(u) for any u ∈ Bµ ∩ X and

cκ,−(µ) admits a minimizer, we have cκ,−(µ) ≥ c0,−(µ). Thus we arrive at

c0,−(µ) ≤ lim inf
κ→0

cκ,−(µ) ≤ lim sup
κ→0

cκ,−(µ) ≤ c0,−(µ)

from which we conclude.

Now we are ready to prove Proposition 3.13.

Proof of Proposition 3.13. The proof consists of three steps.

Step 1: We prove that there exist κj → 0, {yj} ⊂ R2 and u0 ∈ Bµ ∩X0 such
that uκj(· − yj) ⇀ u0 in X0 as j →∞. First we observe that

Eκ,−(u) = E0,−(u)+
κ

2
V (u) ≤ E0,−(u)+

1

2
V (u) = E1,−(u) for all 0 < κ ≤ 1 and u ∈ X .
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Since cκ,−(µ) is attained by Proposition 3.3, it follows that cκ,−(µ) ≤ c1,−(µ)
for any 0 < κ ≤ 1 and µ > 0. Then by the Gagliardo-Nirenberg inequality,
one deduces that

1

8
‖∇uκ‖22+

κ

2
V (uκ)+e

2A1(uκ) ≤ cκ,−(µ)+C
(
e4µ3 + µ

2
3−p

)
≤ c1,−(µ)+C

(
e4µ3 + µ

2
3−p

)
,

from which we conclude that

‖uκ‖H1 and A1(uκ) are bounded.

Then by Lemma 2.4, there exist κj → 0, {yj} ⊂ R2 and u0 ∈ Bµ such that
vj := uκj(· − yj) → u0 in L2(R2). Moreover since ‖u0‖22 = µ, applying the
Egorov theorem, we infer that there exist j0 ∈ N, δ0 > 0, R0 > 0 and a
measurable subset A0 ⊂ B(0, R0) such that |vj(x)|2 ≥ δ0 for all x ∈ A0 and
j ≥ j0. Thus we are able to apply Lemma 2.5 to obtain

V0(vj) ≤ C
(
A1(vj) + ‖vj‖22

)
≤ C for j ≥ j0.

This implies that, passing to a subsequence if necessary, vj ⇀ u0 in X0 and
u0 ∈ Bµ ∩ X0.

Here we note that

vj → u0 in Lq(R2) for q ∈ [2,∞) (3.22)

by Lemma 2.1.

Step 2: We claim that u0 is a minimizer for c0,−(µ). By the weak lower semi-
continuity of ‖∇ · ‖2, (3.22), Lemma 2.3 (iv) and Lemma 3.14, we obtain

c0,−(µ) ≤ E0,−(u0) ≤ lim inf
j→∞

E0,−(vj) = lim inf
j→∞

E0,−(uκj)

≤ lim inf
j→∞

Eκj ,−(uκj) = lim inf
j→∞

cκj ,−(µ) = c0,−(µ)

and hence E0,−(u0) = c0,−(µ) as claimed.

Step 3: We show hat vj → u0 in X0 as j → ∞. First by Lemma 3.14, we
can see that

c0,−(µ) ≤ E0,−(uκj) ≤ E0,−(uκj)+
κj
2
V (uκj) = Eκj ,−(uκj) = cκj ,−(µ)→ c0,−(µ)

and hence

E0,−(vj) = E0,−(uκj)→ c0,−(µ) = E0,−(u0) and κjV (uκj)→ 0 as j →∞.
(3.23)
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By Lemma 3.4, one also has

0 = N−(uκj)− P−(uκj) = ‖∇uκj‖22 − κjV (uκj)−
e2

16π
‖uκj‖42 −

p− 1

p+ 1
‖uκj‖

p+1
p+1

= ‖∇vj‖22 − κjV (uκj)−
e2

16π
‖vj‖42 −

p+ 1

p+ 1
‖vj‖p+1

p+1.

(3.24)

Moreover since u0 is a minimizer for c0,−(µ), u0 is a nontrivial solution of

−∆u+ ω0,−(µ)u− e2S(u)u = |u|p−1u in R2,

where ω0,−(µ) is the corresponding Lagrange multiplier which is positive by
Lemma 3.7. Thus we are able to apply Lemma 3.4 to obtain

0 = ‖∇u0‖22 −
e2

16π
‖u0‖42 −

p− 1

p+ 1
‖u0‖p+1

p+1. (3.25)

Thus from (3.22), (3.23), (3.24) and (3.25), we infer that

∇vj → ∇u0 in L2(R2). (3.26)

Next by (3.22), (3.23) and (3.26), one finds that

E0,−(u0) + o(1) = E0,−(vj) =
1

2
‖∇vj‖22 − e2A(vj)−

1

p+ 1
‖vj‖p+1

p+1

=
1

2
‖∇vj‖22 + e2A1(vj)− e2A2(vj)−

1

p+ 1
‖vj‖p+1

p+1

=
1

2
‖∇u0‖22 + e2A1(vj)− e2A2(u0)−

1

p+ 1
‖u0‖p+1

p+1 + o(1)

= E0,−(u0) + e2A1(vj)− e2A1(u0) + o(1),

which yields that
A1(vj)→ A1(u0) as j →∞. (3.27)

Moreover since

A1(u) =
1

16π

∫
R2

∫
R2

log(1 + |x− y|)|u(x)|2|u(y)|2 dx dy = B1(|u|2, |u|2),

a direct calculation yields that

B1(|vj|2, |vj−u0|2) = A1(vj)−B1(|vj|2, |u0|2)+2B1

(
|vj|2, u0(u0−vj)

)
. (3.28)
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By Proposition 2.6 (i), we know that

B1

(
|vj|2, u0(u0 − vj)

)
→ 0 as j →∞. (3.29)

Furthermore by the Fatou lemma, one gets

lim inf
j→∞

B1(|vj|2, |u0|2) ≥ B1(|u0|2, |u0|2) = A1(u0).

Thus from (3.27), (3.28) and (3.29), we obtain

0 ≤ lim inf
j→∞

B1(|vj|2, |vj − u0|2) ≤ lim sup
j→∞

B1(|vj|2, |vj − u0|2)

≤ lim sup
j→∞

A1(vj)− lim inf
j→∞

B1(|vj|2, |u0|2)

≤ A1(u0)− A1(u0) = 0

and hence B1(|vj|2, |vj − u0|2)→ 0 as j →∞. Then by Proposition 2.6 (ii),
we conclude that V0(vj − u0)→ 0 and thus vj → u0 in X0.

4 L2-constraint minimizer for the nonlinear

Schrödinger-Poisson system

In this section, we study the existence of a L2-constraint minimizer of the
following nonlocal elliptic problem:

−∆u+ ωu+ κ|x|2u+ e2S(u)u = |u|p−1u in R2, (4.1)

which corresponds to the nonlinear Schrödinger-Poisson system.
First we begin with the following lemma, which shows that the presence

of the harmonic potential is essential for the existence of a L2-constraint
minimizer for (4.1).

Lemma 4.1. Suppose that 1 < p < 3, κ ∈ (0, 1] and let µ > 0 be given.
Then E+ is bounded from below on Bµ ∩ X .

Proof. By Lemma 2.3 (i) and (iii), we have

A(u) ≥ −A1(u) ≥ − µ

8π

(
Cκµ+ κ

1
2µ

1
2V (u)

1
2

)
≥ −Cκ

8π
µ2− e2

64π2
µ3− κ

4e2
V (u).
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Thus by the Gagliardo-Nirenberg inequality and the Young inequality, we
find that

E+(u) =
1

2
‖∇u‖22 +

κ

2
V (u)− 1

p+ 1
‖u‖p+1

p+1 + e2A(u)

≥ 1

4
‖∇u‖22 +

κ

4
V (u)− Cµ

2
3−p − Cκe

2

8π
µ2 − e4

64π2
µ3 (4.2)

≥ −Cµ
2

3−p − Cκe
2

8π
µ2 − e4

64π2
µ3 for any u ∈ Bµ ∩ X .

This completes the proof.

Remark 4.2. If we work on Bµ ∩ X0, we can see that, for any µ > 0,

inf
u∈Bµ∩X0

E0,+(u) = −∞.

The next lemma can be shown similarly as Lemma 3.2.

Lemma 4.3. Suppose that 1 < p < 3, κ ∈ (0, 1] and let µ > 0 be given.
Let {uj} ⊂ X be a sequence satisfying ‖uj‖22 → µ and E+(uj) → c+(µ).

Then there exist a subsequence of {uj} which is still denoted by the same and
u+ ∈ X such that uj → u+ in H1(R3,C) and E+(u+) = c+(µ).

By Lemma 4.1 and Lemma 4.3, we are able to obtain the following result.

Proposition 4.4. Suppose that 1 < p < 3, κ ∈ (0, 1] and let µ > 0 be
arbitrarily given. Then c+(µ) admits a minimizer u+ ∈ Bµ ∩ X .

Next we present the Nehari identity and the Pohozaev identity associated
with (4.1). Since the proof of Lemma 4.5 is the same than that of Lemma
3.4, we omit it.

Lemma 4.5. Let u ∈ X be a solution of (4.1). Then u satisfies the following
identities:

0 = N+(u) := ‖∇u‖22 + ω‖u‖22 + κV (u) + 4e2A(u)− ‖u‖p+1
p+1,

0 = P+(u) := ω‖u‖22 + 2κV (u) + 4e2A(u)− e2

16π
‖u‖42 −

2

p+ 1
‖u‖p+1

p+1.

The following lemma is concerned with the sign of c+(µ). We are already
mentioned in Remark 4.2 that c0,+(µ) = −∞. The next lemma gives the
precise asymptotic behavior of cκ,+(µ) as κ→ 0.
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Lemma 4.6. Suppose that 1 < p < 3 and let µ > 0 be given. Then there
exists κ+ = κ+(e, µ) ∈ (0, 1) such that for 0 < κ < κ+,

e2µ2

8π
log κ ≤ c+(µ) ≤ e2µ2

64π
log κ

Especially c+(µ) < 0 for 0 < κ < κ+.

Proof. First since Cκ ≤ −1
2

log κ+ κ
1
2 , it follows from (4.2) that

c+(µ) ≥ −Cµ
2

3−p +
e2µ2

16π
log κ− e2µ2κ

1
2

8π
− e4µ3

64π2
,

and hence

c+(µ)

e2µ2 log κ
≤ 1

16π
− Cµ

2(p−2)
3−p

e2 log κ
− κ

1
2

8π log κ
− e2µ

64π2 log κ
,

→ 1

16π
as κ→ 0.

Thus we have c+(µ)
e2µ2 log κ

≤ 1
8π

for sufficiently small κ > 0.

To estimate c+(µ) from above, let us consider the test function u(x) =√
µ
π
e−|x|

2
and put uκ(x) :=

√
κu(
√
κx). Then one finds that ‖uκ‖22 = µ for

all κ ∈ (0, 1). Moreover we have

‖∇uκ‖22 = κ‖∇u‖22 = 4µκ, κV (uκ) = V (u) = µ,

A(uκ) =
log κ

32π
‖u‖42 + A(u) =

µ2

32π
log κ− µ2

32π
(log 2− γ),

where γ is the Euler constant. Thus it holds that

c+(µ) ≤ E+(uκ) =
1

2
‖∇uκ‖22 +

κ

2
V (uκ) + e2A(uκ)−

1

p+ 1
‖uκ‖p+1

p+1

= 2µκ+
µ

2
+
e2µ2

32π
log κ− e2µ2

32π
(log 2− γ)− µ

p+1
2 κ

p−1
2

p+ 1

∫
R2

e−(p+1)|x|2 dx,

(4.3)

c+(µ)

e2µ2 log κ
≥ 1

32π
+

2κ

e2µ log κ
+

1

2e2µ log κ
− log 2− γ

32π log κ
− µ−

3−p
2 κ

p−1
2

(p+ 1)e2 log κ

∫
R2

e−(p+1)|x|2 dx

→ 1

32π
as κ→ 0.

This yields that there exists κ+ = κ+(e, µ) ∈ (0, 1) such that c+(µ)
e2µ2 log κ

≥ 1
64π

for 0 < κ < κ+, completing the proof.
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Remark 4.7. Since log 2 − γ > 0, estimate (4.3) shows that for fixed κ ∈
(0, 1), there exists µ+ = µ+(e, κ) > 0 such that c+(µ) < 0 for µ > µ+.

Now let ω+ = ω+(µ, κ) be the Lagrange multiplier associated with the
minimizer u+ ∈ Bµ ∩ X obtained in Proposition 4.4.

Lemma 4.8. Suppose that 2 ≤ p < 3 and let µ > 0 be given. Assume that
0 < κ < κ+, where κ+ ∈ (0, 1) is the constant in Lemma 4.6. Then the
Lagrange multiplier ω+ satisfies

ω+ +
(3− p)e2µ
16π(p− 1)

> 0.

Proof. The proof is essentially same than that of Lemma 4.8. Indeed by
Lemma 4.5 and Lemma 4.6, we obtain

0 > c+(µ) =
1

2
‖∇u+‖22 +

κ

2
V (u+) + e2A(u+)− 1

p+ 1
‖u+‖p+1

p+1

=
p− 2

2(p− 1)
‖∇u+‖22 +

κ

2(p− 1)
V (u+)− ω+

4
µ− (3− p)e2µ2

64π(p− 1)

> −ω+

4
µ− (3− p)e2µ2

64π(p− 1)
,

from which we conclude.

Remark 4.9. We may expect that similar results as Proposition 3.8 and
Proposition 3.10 hold for the nonlinear Schrödinger-Poisson system (4.1).
As we have observed in the proof of these propositions, the key ingredients
are the energy inequality introduced in Lemma 3.9 and the positivity of the
Lagrange multiplier ω+.

If we compute I+(u) − I+(uλ) − 1
4
(1 − λ4)J+(u) as in Lemma 3.9, since

the sign of the nonlocal term is opposite, we find that the sign of ‖u‖42 be-
comes opposite and thus a competition occurs. Furthermore since the only
information we could know about the Lagrange multiplier ω+ is the estimate
obtained in Lemma 4.8, we do not know whether ω+ is positive or not.
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