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Abstract. In this paper, we consider asymptotic models for miscible flows
in microchannels. The characteristics of the flows in microfluidics imply that
usually the Hele-Shaw approximation is valid. We present asymptotic models

in the Hele-Shaw regime for flows of miscible fluids in a channel in the case
where the bottom and the top of the channels have been modified in two differ-
ent ways. The first case concerns a flat bottom with slip boundary conditions
obtained by chemical patterning. The second one is a non-flat bottom with a
non-slipping surface. We derive in both cases 2.5D and 2D asymptotic models.
We prove global well-posedness of the 2D model. We also prove that both ap-
proaches are asymptotically equivalent in the Hele-Shaw regime and we present
direct 3D simulations showing that for passive mixing strategy, the Hele-Shaw
approximation is not valid anymore.

1. Introduction.

1.1. Mixing in microchannels. Microfluidics is a set of technics used to study
complex fluids or biological fluids. It consists in performing experiments of fluids
flows in webs of microchannels. Microchannels are typically 1 cm long and the
section is roughly 100µm×100µm. The velocity that are involved are typicaly less
than 1cm.s−1. Therefore the Reynolds numbers are small and the flows are laminar.
In order to use microfluidics technics for chemistry, one has to be able to obtain
fluid mixing. This is therefore an issue in this field.
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The aim of this paper is to study asymptotic models and their validity for mixing
in microchannels. Many approaches have been considered in order to enhance fluid
mixing. Active mixing seems to be the most efficient approach but very difficult
to handle for practical applications since one needs to build sophisticated devices.
Devices for passive mixing are easier to obtain but the efficiency of such process is
not clear. In this paper, we propose to investigate numerically some passive mixing
strategies in the Hele-Shaw limit. We consider fluid flows that are driven only by the
pressure gradient and no external constraint on the system are taken into account.
Two kinds of mixing strategies are considered. Both involve modification of the
surface of the top and the bottom of the microchannels. The first one uses a flat
bottom channel with slip boundary conditions obtained from chemical patterning
([13], [14]); the second one uses a non-flat bottom channel with a non-slipping
surface ([21], [22]). It is almost impossible to compare these mixing strategies by
making direct 3D numerical computations. We propose here another approach
relying on the Hele-Shaw approximation. It is an asymptotic process in which the
flow is finally governed by the Reynolds equation (that is similar to Darcy’s law
for flows in porous media), see for example [1]. We show that, in this limit, it is
possible to compare the efficiency of the mixing for both strategies: in this particular
regime, they are equivalent in the sense that, given a non-flat bottom, one can find
a patterning that leads to an equivalent asymptotic model. Nevertheless, we also
present some numerical experiments proving that this result cannot be extrapolated
to general flows in microchannels (that is, outside the range of validity of the Hele-
Shaw approximation). More precisely, we show by a direct 3D computation that in
the case of a non-flat bottom, the shapes of the Hele-Shaw solution and the 3D flow
are very different and therefore, the asymptotic regimes are no longer valid. Note
that we are not in the configuration where the Hele-Shaw approximation is used to
study Saffman-Taylor fingering like in [18]. Indeed, in our case, the fluids are both
injected at the inlet of the channel as shown on Figure (1).

Figure 1. Example of a channel containing two fluids.

Moreover, the microfluidic flows considered in this paper are characterized by:
i) the jump of viscosity coefficient,
ii) the effect of confinement,
iii) the influence of the ratio of the flow-rates (pressure driven flows),
iv) the absence of gravity effects,
v) the effective mixing properties.
Therefore, some phenomena like instability due to gravity (see [7]) or shape

interfaces and viscous fingering (see [15]) are not present in our case. Moreover,
we are not concerned by lubricant effects due to roughness as studied in [4] where
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the coupling between the size of the roughness and the thickness of the channel is
investigated. One can see [9] for rigorous results concerning rough boundaries.

1.2. The basic equations. Usually, the flow dynamics in channels are governed
by the Navier-Stokes equations. Nevertheless, the small dimensions involved in
microfluidic applications lead to consider flows at low Reynolds numbers. As a
consequence, the inertia terms in the Navier-Stokes model can be neglected in a
first approximation. In this context, the velocity of the fluid is therefore given by
the Stokes equations:

{

∇ · [ηD(U)] = ∇P,

∇ · U = 0,
(1.1)

where U denotes the velocity of the fluid flow, P the pressure, D(U) is the strain

rate tensor given by D(U) =
1

2
(∇U + ∇U t).

In order to describe a mixing of two fluids, we introduce an order parameter ϕ
(see for example [11]), which describes locally the volume fraction of each fluid in the
mixture. It satisfies ϕ ∈ [0, 1], ϕ = 1 in the fluid 1, ϕ = 0 in the fluid 2. Equipped
with this parameter, it is possible to write a one fluid formulation for the mixing
by using ( 1.1). The viscosity η is given as a function of η1,η2 (each fluid viscosity)
and depends on ϕ. There are many different ways to describe η(ϕ) (linear, cubic,
tangential, non-monotonic [19]). In this paper we consider the linear approach:
η(ϕ) = η1ϕ + η2(1 − ϕ). The evolution of ϕ is given by a convection-diffusion
equation:

∂tϕ+ U · ∇ϕ−∇ · [D(ϕ)∇ϕ] = 0, (1.2)

where D(ϕ) is the diffusion coefficient from one fluid into the other one.
In order to close the system given by ( 1.1) and ( 1.2), we need to introduce

suitable boundary conditions. Let us first present the geometry of the channel we
consider here:

-
6�

6

?

h

-�
L

�

	

l

X

Y Z

Figure 2. Schematic view of a microchannel and its characterisic dimensions.

h is the height of the channel, and for a non-constant height, we denote by h̄ the
maximum height and δh the amplitude of the variations. l denotes the width of the
channel and L its length (see Figure 2). For the Stokes equations ( 1.1), we impose
a Dirichlet boundary condition U = U0(y, z) at the inlet of the channel and U = 0
on the lateral walls; at the outlet we force the pressure to be P = 0. On the top and
the bottom of the microchannel, we use various boundary conditions based upon the
different approaches studied for mixing. We consider two types of channels. One is
a flat bottom channel with slip boundary conditions and the other one is a non-flat
bottom with a non-slipping surface (see Section 2 for a complete description). For
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the convection-diffusion equation, we consider a Dirichlet boundary condition at

the inlet ϕ = ϕ0(y, z) and
∂ϕ

∂ν
= 0 everywhere else where ν denotes the outward

normal of the domain.
One of our motivations is to introduce a reliable model in order to perform

quick numerical simulations, using finite volume method. To this end, since the
full 3D Stokes system is expensive in terms of computations, we present reduced
models, based on the Hele-Shaw approximation. It consists in introducing two
different scales in space by assuming that the variations in the vertical direction are
much more rapid than that in the horizontal plane. Therefore, the integration of
the Stokes equations ( 1.1) with respect to z (height) leads, after transformations,
to a 2-D equation on the pressure P. The velocity is recovered by a Darcy law.
The convection-diffusion Equation ( 1.2) is writing respectively in 3-D and 2-D
providing two different models: the first one is called the 2.5 D model while the
second one is a complete 2-D model. In this paper, the validity of the 2D system is
discussed for various situations. We consider first viscous displacements involving
simple geometry with no surface modification on the microchannel. The second case
concerns different mixing strategies involving boundary conditions already studied
in literature.

1.3. Outline of the paper and main results. In Section 2, we perform explicetly
the Hele-Shaw approximation in the case of a flat channel with chemical patterning
and in the case of a non-flat bottom. We first introduce 2.5D models. In both cases,
the limit system is given as follows. The pressure P (t, x, y) satisfies a 2D elliptic
equation

∇xy ·
(

K2D
j (ϕ)∇xyP (x, y)

)

= 0,

with j = n or p (the index n stands for the case of a non-flat bottom while p stands
for the case of a flat bottom with chemical patterning), see ( 2.25) or ( 2.33), where
K2D

n (ϕ) orK2D
p (ϕ) are functions of (t, x, y) constructed from ϕ(t, x, y) (see Section 2

for the formulas). From this pressure field, one first build the horizontal components
u(t, x, y, z) and v(t, x, y, z) of the velocity by

(

u
v

)

= K3D
j (ϕ)∇xyP,

for j = n, p, see ( 2.26) or ( 2.34) where K3D
j (ϕ) are functions of (t, x, y, z). The

vertical component of the velocity is recovered finally through the incompressibility
condition by

w = −

∫ z

0

∇xy ·

(

u
v

)

(t, x, y, σ)dσ,

see ( 2.27) and ( 2.35).
In both cases, the order parameter ϕ solves the 3D convection-diffusion equation

∂tϕ+





u
v
w



 · ∇xyzϕ−∇xyz

(

D(ϕ)∇xyzϕ
)

= 0,

see ( 2.24) and ( 2.32). The model is said to be 2.5D since the velocity field and the
order parameter ϕ are 3D but the velocity is derived from the pressure field P (t, x, y)
that solves a 2D equation. The 2D model is obtained at the end of Section 2 by
investigating responses for which ∂zϕ ∼ 0. One then obtains two different models,
see Systems ( 2.37)-( 2.39) and ( 2.40)-( 2.42).
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In Section 3, we propose some numerical computations. We first describe the
numerical scheme that is used and then we perform some simulations in order to
explain co-flow displacements and viscous fingering. Using the coefficients K2D

n and
K2D

p , we show in what sense the two mixing strategies are equivalent and we explain
how one can construct a patterning that leads to the same mixing than a given flat
bottom in the Hele-Shaw regime. Then, in order to investigate the validity of the
Hele-Shaw approximation, we compare numerically the 2.5D model with a full 3D
computation in the case of a staggered herringbone micromixer. We show that, in
this case, the Hele-Shaw approximation is not valid, therefore 3D computations are
needed.

The appendix is devoted to the construction of a global, weak solution to the 2D
model and to local in time strong solutions. The difficulty relies on the particular
boundary conditions considered in this paper and for example, one has to prove
that for any regular solution of the system, the velocity at the outlet of the channel
is directed toward the exterior of the channel, which is not surprising from the
physical point of view (see Lemma 5.2).

Notations: As usual, for a bounded domain Ω of Rd, we denote by Lp(Ω) the
Lebesgue space

Lp(Ω) =
{

u ∈ S
′

(Ω) / ||u||p < +∞
}

where

||u||p =

(
∫

Ω

|u(x)|pdx

)
1

p

if 1 ≤ p < +∞

and

||u||∞ = ess.sup {|u(x)|;x ∈ Ω} .

We define the Sobolev space Hm(Ω) as follows

Hm(Ω) =
{

u ∈ L2(Ω) / ∀α ∈ N
d, |α| ≤ m, ∂αu ∈ L2(Ω)

}

.

The corresponding norm is denoted || · ||Hm . Let X be a Banach space. We denote

by Lp
(

0, T ;X
)

(1 ≤ p ≤ +∞) the space of functions m : (0, T ) −→ X such that

m is measurable and

‖m‖
Lp

(

0,T ;X
) =

(

∫ T

0

‖m(t)‖pXdt

)
1

p

< +∞ if 1 ≤ p < +∞,

‖m‖
L∞

(

0,T ;X
) = sup

t∈[0,T ]

‖m(t)‖X < +∞ if p = +∞.

Different positive constants might be denoted by the same letter C.

2. Obtention of the different models. The Hele-Shaw approximation relies on
the hypothesis that the characteristic vertical length is smaller than the horizon-
tal ones. The aim of this section is to construct some models derived from this
approximation starting from ( 1.1)-( 1.2). Our strategy is somehow classical and
we can refer to [11] for general theory of mixture as well as for the stability of an
interface in a Hele-Shaw cell. Here the context is quite different: the gravity can be
neglected and we are in a situation where the interface is stable. Our derivation of
the models is classical, but we need the precise values of the coefficients and for the
sake of completeness, we give the computations. In order to take into account that
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the velocity variations in the vertical direction are very rapid compared to the hor-
izontal ones, we introduce two different space scales, one for the vertical direction z
and the other one for the horizontal variables (x, y). Recalling that a microfluidic
channel is a simple rectangular domain, we assume that h≪ ℓ≪ L (see Figure 2).
It is then natural to perform the change of variable

z → εz, (2.3)

where ε is a small parameter describing the ratio between the height h and the
others dimensions (L, ℓ) of the channel. We plug ( 2.3) into ( 1.1) and ( 1.2). The
incompressibility condition ( 1.1) on the velocity U = (u, v, w) gives

∂xu+ ∂yv +
1

ε
∂zw = 0. (2.4)

Equation ( 2.4) implies that the third component of the velocity w has to be of
order ε. We hence need to perform the following change of unknown:

w → εw. (2.5)

Using ( 2.3) and ( 2.5) we can rewrite the Stokes equation ( 1.1). First, recall that
the strain rate tensor D(U) is defined by

D(U) =
∇U + ∇U t

2
=

1

2





2∂xu ∂yu+ ∂xv ∂zu+ ∂xw
∂yu+ ∂xv 2∂yv ∂zv + ∂yw
∂zu+ ∂xw ∂zv + ∂yw 2∂zw



 .

Hence, the stationary Stokes system ( 1.1) can be written as











−∂xP + ∂x(η(ϕ)2∂x)u+ ∂y(η(ϕ)(∂yu+ ∂xv)) + ∂z(η(ϕ)(∂zu+ ∂xw)) = 0,

−∂yP + ∂x(η(ϕ)(∂yu+ ∂xv)) + ∂y(η(ϕ)2∂yv) + ∂z(η(ϕ)(∂zv + ∂yw)) = 0,(2.6)

−∂zP + ∂x(η(ϕ)(∂zu+ ∂xw)) + ∂y(η(ϕ)(∂zv + ∂yw)) + ∂z(η(ϕ)2∂zw) = 0.

In view of ( 2.3) and ( 2.5), the system ( 2.6) becomes



























−∂xP + ∂x(2η∂xu) + ∂y(η∂yu) + ∂y(η∂xv) +
1

ε2
∂z(η∂zu) + ∂z(η∂xw) = 0, (2.7)

−∂yP + ∂x(η∂yu) + ∂x(η∂xv) + ∂y(2η∂yv) +
1

ε2
∂z(η∂zv) +

1

ε
∂z(η∂yw) = 0, (2.8)

−
1

ε
∂zP +

1

ε
∂x(η∂zu) + ε∂x(η∂xw) +

1

ε
∂y(η∂zv) + ε∂y(η∂yw) +

1

ε
∂z(2η∂zw) = 0.(2.9)

2.1. The 2.5D equations. At this step, we have no information on the order of

magnitude of ∇P . Since ε ≪ 1, in ( 2.7) and ( 2.8) the terms involving
1

ε2
are

at least one order of magnitude bigger than the other ones. Since we consider

pressure driven flows, we have to prescribe the balance between pressure and
1

ε2
terms in ( 2.7) - ( 2.8). For this purpose, one scales the pressure by

P →
1

ε2
P.

At first order ( 2.7), ( 2.8) and ( 2.9) give










−∂xP + ∂z(η∂zu) = 0, (2.10)

−∂yP + ∂z(η∂zv) = 0, (2.11)

∂zP = 0. (2.12)
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Then Equations ( 2.10) and ( 2.11) can be rewritten as:

∂z

[

η∂z

(

u
v

)]

= ∇xyP.

According to ( 2.12), P is independent of z. Then, integrating along the z direction,
we get:

∂z

(

u
v

)

= ∇xyP
(z

η
+
A(x, y)

η

)

, (2.13)

where A is a scalar function of (x, y) generated by the integration along z. In the
general case, η depends on the local composition ϕ(t, x, y, z) of the mixing and
Equation ( 2.13) becomes

∂z

(

u
v

)

= ∇xyP
( z

η(ϕ)
+
A(x, y)

η(ϕ)

)

. (2.14)

Integrating again Equation ( 2.14) along the z direction, we obtain
(

u
v

)

(t, x, y, z) = ∇xyP
(

∫ z

0

σ

η(ϕ)
dσ +A(x, y)

∫ z

0

1

η(ϕ)
dσ +B(x, y)

)

, (2.15)

where B is a function of (x, y) generated by the integration along z. Equation ( 2.15)
can be understood as a Darcy law. As already mentioned, in this paper, for practical
applications, we consider two different cases. The first one deals with a non-flat
bottom with no-slip boundary conditions. The second one deals with a flat bottom
with a chemical patterning of the surface inducing slip for the flow. We now derive
the complete system in both cases.

• Non-flat bottom with no-slip boundary conditions. In this case, the boundary
conditions for the velocity read





u
v
w



 (x, y, 0) =





u
v
w



 (x, y, h) = 0. (2.16)

This provides B(x, y) = 0, by taking z = 0 in Equation ( 2.15). Taking now z = h,
we obtain

A(x, y) = −

∫ h

0

σ

η(ϕ)
dσ

∫ h

0

1

η(ϕ)
dσ

. (2.17)

Denoting by

K3D
n (ϕ) =

∫ z

0

σ

η(ϕ)
dσ −

∫ h

0

σ

η(ϕ)
dσ

∫ h

0

1

η(ϕ)
dσ

∫ z

0

1

η(ϕ)
dσ, (2.18)

we rewrite Equation ( 2.15) as
(

u
v

)

(x, y, z) = K3D
n (ϕ)∇xyP. (2.19)
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Rewriting the incompressibility condition ( 1.1), and taking ( 2.15) into account,
we obtain

∂zw = −∇xy ·

(

u
v

)

,

= −∇xy ·
(

K3D
n (ϕ)∇xyP

)

.

(2.20)

By integrating ( 2.20) from 0 to h we get
∫ h

0

∇xy ·
(

K3D
n (ϕ(x, y, σ))∇xyP (x, y)

)

dσ = 0,

which provides denoting by

K2D
n (ϕ) =

∫ h

0

K3D
n (ϕ(x, y, σ))dσ, (2.21)

the following equation on P

∇xy ·
(

K2D
n (ϕ)∇x,yP (x, y)

)

= 0. (2.22)

The vertical velocity w(x, y, z) is recovered by integrating ( 2.20) from 0 to z

w(x, y, z) = −

∫ z

0

∇xy ·

(

u
v

)

(x, y, σ)dσ. (2.23)

By performing the change of variables ( 2.3) in the 3D convection-diffusion Equa-
tion ( 1.2), one gets:

∂tϕ+





u
v
w



 · ∇ϕ−∇x,y · (D(ϕ)∇x,yϕ) −
1

ε2
∂z(D(ϕ)∂zϕ) = 0.

The complete model then reads






















































∂tϕ+





u
v
w



 · ∇ϕ−∇x,y · (D(ϕ)∇x,yϕ) −
1

ε2
∂z(D(ϕ)∂zϕ) = 0, (2.24)

∇xy ·
(

K2D
n (ϕ)∇x,yP (x, y)

)

= 0, (2.25)
(

u
v

)

= K3D
n (ϕ)∇xyP, (2.26)

w = −

∫ z

0

∇xy ·

(

u
v

)

(x, y, σ)dσ. (2.27)

• Slip patterned flat channel. We consider the case of a flat channel with a
chemical patterning on the top and the bottom. The classical slip condition reads
∂Uτ

∂~n
= −

1

L
Uτ , where Uτ represents the tangential velocity, and L a characteristic

length for the slip phenomenon. In our case, we define the top and bottom slip
length patterns Lt(x, y) and Lb(x, y). The tangential velocity at the top and the
bottom of a flat channel is the velocity along the (x, y) direction and the normal
derivative is the derivative along the z direction. The slip conditions are:

∂z

(

u
v

)

(x, y, 0) = −
1

Lb(x, y, ϕ(0))

(

u
v

)

(x, y, 0),

∂z

(

u
v

)

(x, y, h) =
1

Lt(x, y, ϕ(h))

(

u
v

)

(x, y, h).

(2.28)
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Taking respectively z = 0 and z = h in Equation ( 2.14) and ( 2.15), we have

A(x, y)

η(ϕ(x, y, 0))
= −

B(x, y)

Lb(x, y)
, (2.29)

A(x, y)

(

1

η(ϕ(x, y, h))
−

1

Lt(x, y)

∫ h

0

1

η(ϕ(x, y, σ)
dσ

)

−
B(x, y)

Lt(x, y)

=
1

Lt(x, y)

∫ h

0

σ

η(ϕ(x, y, σ))
dσ −

h

η(ϕ(x, y, h))
. (2.30)

From ( 2.29) and ( 2.30), one obtains

A(x, y) =

∫ h

0

σ

η(ϕ(x, y, σ))
dσ −

hLt(x, y)

η(ϕ(x, y, h))
(

Lt(x, y)

η(ϕ(x, y, h))
+

Lb(x, y)

η(ϕ(x, y, 0))

)

−

∫ h

0

1

η(ϕ(x, y, σ))
dσ

,

B(x, y) = −Lb(x, y)
A(x, y)

η(ϕ(0))
.

(2.31)

Introducing

K2D
p (φ) =

∫ h

0

(∫ z

0

σ

η(ϕ)
dσ +A(x, y)

∫ z

0

1

η(ϕ)
dσ +B(x, y)

)

dz,

K3D
p (φ) =

∫ z

0

σ

η(ϕ)
dσ +A(x, y)

∫ z

0

1

η(ϕ)
dσ +B(x, y),

the complete model reads






















































∂tϕ+





u
v
w



 · ∇ϕ−∇x,y · (D(ϕ)∇x,yϕ) −
1

ε2
∂z(D(ϕ)∂zϕ) = 0, (2.32)

∇xy ·
(

K2D
p (ϕ)∇x,yP (x, y)

)

= 0, (2.33)
(

u
v

)

= K3D
p (ϕ)∇xyP, (2.34)

w = −

∫ z

0

∇xy ·

(

u
v

)

(x, y, σ)dσ. (2.35)

2.2. Simplified 2D models. In this section, we introduced 2D simplified models
as follows. As ε → 0, Equation ( 2.32) leads to ∂zϕ = 0 at the first order, and
therefore, ϕ is independent of z. Averaging ( 2.32) over [0, h] and using ∂zϕ = 0 at
z = 0 and z = h gives

∂tϕ+

(

u
v

)

· ∇ϕ−∇x,y · (D(ϕ)∇x,yϕ) = 0,

where
(

u
v

)

=
1

h

∫ h

0

(

u
v

)

(t, x, y, z)dz.

We now explain how one can compute this averaged velocity in both cases.



10 MATHIEU COLIN, THIERRY COLIN AND JULIEN DAMBRINE

• 2D model for non-flat bottom. Since ϕ is independent of z, we obtain from ( 2.17)

A(x, y) = −
h(x, y)

2
,

B(x, y) = 0.
(2.36)

In this case, we need to compute

(

u
v

)

= K
3D

n (x, y)∇x,yP . Using ( 2.36) in ( 2.18)

and ( 2.21), one gets:

K2D
n (x, y) = −

h3(x, y)

12η(ϕ)
,

K
3D

n (x, y) = −
h2(x, y)

12η(ϕ)
.

From ( 2.24)-( 2.27), we get the following 2D model


























∇xy ·
[

K2D
n (x, y)∇xyP

]

= 0, (2.37)
(

u
v

)

(x, y) = K
3D

n (x, y)∇xyP , (2.38)

∂tϕ+

(

u
v

)

· ∇x,yϕ−∇x,y · (D(ϕ)∇x,yϕ) = 0. (2.39)

• 2D model for a slip patterned flat channel. Let us rewrite ( 2.31) assuming
that ϕ and therefore η is independent of z

A(x, y) =
h

2

(

h− 2Lt(x, y)

Lt(x, y) + Lb(x, y) − h

)

,

B(x, y) = −
Lb(x, y)

η(ϕ)
A(x, y).

In the same way as above, we obtain

K2D
p (x, y) =

1

η

(

h3

6
−
h2

4

(

h2 − 2h(Lb(x, y) + Lt(x, y)) + 4Lb(x, y)Lt(x, y)

h− Lt(x, y) − Lb(x, y)

))

,

K
3D

p (x, y) =
1

η

(

h2

6
−
h

4

(

h2 − 2h(Lb(x, y) + Lt(x, y)) + 4Lb(x, y)Lt(x, y)

h− Lt(x, y) − Lb(x, y)

))

,

which leads to the following model


























∇xy ·
[

K2D
p (x, y)∇xyP

]

= 0, (2.40)
(

u
v

)

(x, y) = K
3D

p (x, y)∇xyP , (2.41)

∂tϕ+

(

u
v

)

· ∇x,yϕ−∇x,y · (D(ϕ)∇x,yϕ) = 0. (2.42)

Remark 1. In addition, if we choose the same slip length patterns on the top and
bottom of the channel (i.e. Lt = Lb = L) we get much simpler expressions for the

permeability coefficients K2D
p (x, y) and K3D

p (x, y):

K2D
p (x, y) =

1

η

(

h3

6
−
h2

4

(

h− 2L(x, y)
)

)

,

K
3D

p (x, y) =
1

η

(

h2

6
−
h

4

(

h− 2L(x, y)
)

)

.

Of course we recover in this case the formulas given in [8] for example.
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3. Numerical methods. The aim of this section is to present an efficient numer-
ical scheme in 2D and 3D for the different systems introduced in Section 2. First
recall the general form of the system we deal with











∇ · [K(X,ϕ(t,X))∇P (t,X)] = 0, (3.43)

U(t,X) = F (ϕ(t,X),∇P (t,X)), (3.44)

∂tϕ(t,X) + U(t,X) · ∇ϕ(t,X) −∇ · (D(ϕ(t,X))∇ϕ(t,X)) = 0. (3.45)

Here U represents the fluid velocity, this quantity being respectively 2D as in Section
2.2, U = (u, v) or 3D as in Section 2.1, U = (u, v, w). X represents the space variable
( (x, y) in 2D or (x, y, z) in 3D). In the Darcy law ( 3.44), the function F depends on
the model we consider and more particularly on the geometry of the channel (slip
patterns or non flat bottom). We use a very simple discretization of the problem
that we present rapidly below.

3.1. Semi-discretization in time. Introducing tn = n∆t, we denote ϕn = ϕ(tn, X),
Un = U(tn, X), Pn = P (tn, X). Since Equations ( 3.43) and ( 3.44) are stationary,
their time discretizations are straightforward and reads

{

∇ · [K(X,ϕn∇Pn] = 0,

Un(X) = F (Pn, ϕn).

In Equation ( 3.45), we use a classical finite difference scheme

∂tϕ(X, tn+1/2) ∼
ϕn+1 − ϕn

∆t
.

The transport part is treated by an explicit scheme while a semi-implicit θ-scheme
is used for the diffusion part:

ϕn+1 − ϕn

∆t
+ Un · ∇ϕn −∇ · (D(ϕn)∇(θϕn + (1 − θ)ϕn+1) = 0.

Then, the semi-discretized system in time can be rewritten as:










∇ · [K(X,ϕn)∇Pn] = 0, (3.46)

Un = F (Pn, ϕn), (3.47)

[1 − ∆t(1 − θ) (∇ · (D(ϕn)∇)]ϕn+1 = ϕn − ∆t (Un · ∇ϕn + θ∇ · (D(ϕn)∇ϕn)) .(3.48)

3.2. Space discretization. In this section, we consider a regular cartesian mesh,
which is well-adapted when one deals with microfluidic flows, xi = i∆x, yj = j∆y
in 2D and zk = k∆z in 3D, where i = 1, ..., Nx, j = 1, ..., Ny, k = 1, ..., Nz. Nx,
Ny, Nz represent the mesh resolution. In general, for any variable V , we denote:
V (tn, xi, yj , zk) = V n

i,j,k and we use a staggered grid. More precisely, the velocity

nodes are placed in the following way (see Figure 3)

ui,j,k = u(xi− 1

2

, yj, zk),

vi,j,k = v(xi, yj− 1

2

, zk),

wi,j,k = w(xi, yj, zk),

whereas the pressure is computed on the nodes of the mesh Pi,j,k = P (xi, yj, zk).
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Figure 3. Placement of the unknowns on the staggered grid.

We now present briefly the essential point of our spatial discretization. We choose
a finite volume formulation. The unit cell is given by

Ωijk = [xi− 1

2

, xi+ 1

2

] × [yi− 1

2

, yi+ 1

2

] × [zi− 1

2

, zi+ 1

2

].

The equation ( 3.48) include a transport term Un · ∇ which is approached with a
Weighted Essentially Non-Oscillatory scheme (WENO 5) which reduces numerical
diffusion for smooth enough solutions. This transport scheme is stable under the
CFL condition (see [16]):

∆t <
1

||u||∞
∆x

+
||v||∞

∆y
+

||w||∞
∆z

.

We still have to give the discretization of the elliptic parts of System ( 3.46)-( 3.48),
which can be written in the following form

αS −∇ ·
(

K∇S
)

= f,

where S = P , α = 0, K = K2D
n (ϕn) and f = 0 in ( 3.46) and S = ϕn+1, α = 1,

K = δtD(ϕn) and f = ϕn − δtV n · ∇ϕn in ( 3.48). Recall that the finite volume
methods consists in computing the circulation of K(x, y)∇xyP ·~n around each unit
cell Ωijk of the mesh, we obtain from Equation ( 3.46), denoting Γijk the boundary
of Ωijk

∫

Ωijk

∇ ·
(

K2D
n (ϕ)∇P

)

=

∫

Γijk

K2D
n (ϕ)∇P · ~n (3.49)

Pointing out that both P and ϕ are calculated in the middle of each unit cell, ∇P is
naturally evaluated on each part of Γijk while the coefficient K2D

n (ϕ) is computed
by interpolation. We propose here to use the harmonic mean value on each lattices
of the boundary, keeping in mind that this process conserves the flux continuity.
Then introducing:

Ki− 1

2
,j,k =

2Ki,j,kKi−1,j,k

Ki,j,k +Ki−1,j,k
,Ki+ 1

2
,j,k =

2Ki,j,kKi+1,j,k

Ki,j,k +Ki+1,j,k

Ki,j− 1

2
,k =

2Ki,j,kKi,j−1,k

Ki,j,k +Ki,j−1,k
,Ki,j+ 1

2
,k =

2Ki,j,kKi,j+1,k

Ki,j,k +Ki,j+1,k
,

Ki,j,k− 1

2

=
2Ki,j,kKi,j,k−1

Ki,j,k +Ki,j,k−1
,Ki,j,k+ 1

2

=
2Ki,j,kKi,j,k+1

Ki,j,k +Ki,j,k+1
,
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we then obtain from ( 3.49):
∫

Ωijk

∇ · (Ki,j∇Pi,j) ∼
∆y∆z

∆x
(Pi+1,j,k − Pi,j,k)Ki+ 1

2
,j,k −

∆y∆z

∆x
(Pi,j,k − Pi−1,j,k)Ki− 1

2
,j,k

+
∆x∆z

∆y
(Pi,j+1,k − Pi,j,k)Ki,j+ 1

2
,k −

∆x∆z

∆y
(Pi,j,k − Pi,j−1,k)Ki,j− 1

2
,k

+
∆x∆y

∆z
(Pi,j,k+1 − Pi,j,k)Ki,j,k+ 1

2

−
∆x∆y

∆z
(Pi,j,k − Pi,j,k−1)Ki,j,k− 1

2

.

The same procedure is applied on Equation ( 3.48). The discretization of the other
terms is classical and we refer to [5] for more details.

3.3. Viscous effects. The aim of this section is to investigate the validity of the
models introduced in Section 2 with two classical test case dealing with viscous
effects: the interface displacement and the viscous fingering.

3.3.1. Co-flow displacements. The firts test case concerns the mixing of two fluids
injected in a Y-shaped microchannel (Figure 4). Since we consider only the hori-
zontal displacements, we choose the 2D model ( 2.37)-( 2.39) equipped with a linear
viscosity law. We consider a flat geometry, that is h(x, y) is constant, and a no-slip
condition at the top and the bottom of the channel. The diffusion coefficient is also
supposed to be constant.

Figure 4. Schematic view of the experimental setup for the study
of two fluids interdiffusion.

It is usually accepted that the displacement of the interface is influenced by the
viscosity contrast defined in the following way

λ =
η1 − η2

min(η1, η2)
. (3.50)

Of course, since one deals with miscible fluids, it is not easy to characterize the
position of the interface since the notion of interface is not clear by itself! For
that reason, in order to measure the interface displacement along the cross section
direction we use a first order moment including the first order derivative with respect
to y of the local composition parameter ϕ

M1(x, t) =

∫ D

−D

y∂yϕ(x, y, t)dy.
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In the following simulations, we expect the most viscous fluid (the one with the
biggest hydraulic resistance) to be pushed by the less viscous fluid in the cross
direction of the channel. We also expect that the walls have an influence on this
displacement.
For a low viscosity contrasts (λ≪ 1) this influence should be neglectible, and hence
the interface displacement M1 should depend linearly on λ. On the other hand, if
we choose a larger viscosity contrast, the walls effects should be the most important

(
∂M1

∂λ
≪ 1). From the physical point of view, one can say that at the end of the

channel, where the viscous displacement process is over, the flow-rates in each fluid
are equal, i.e.

u1l1 = u2l2, (3.51)

where u1 and u2 are the horizontal components of the velocity in the fluids 1 and 2.
l1 and l2 represent the width occupied by the fluid 1 and 2 in the channel. These
lengths can be expressed as a function of the displacement of the interface M1:
l1 = l/2 +M1 and l2 = l/2 −M1 (see Fig 5).

?
6
−M1

6

?

l2

6
?l1

-
6

x

0

y

Interface position

Figure 5. Representation of the different lengths l1, l2, M1 in-
volved in the study of the displacement of the interface (thick
dashed line).

Thanks to the Darcy law ( 2.15), we have

u1 = −∂xP
h2

12η1
,

u2 = −∂xP
h2

12η2
.

(3.52)

Using ( 3.51) and ( 3.52) we get

− ∂xP
h2

12η1
l1 = −∂xP

h2

12η2
l2.

At the end of the displacement process, ∂xP is the same in each fluid. We hence
have

l1
η1

=
l2
η2
. (3.53)

Using the expressions of l1 and l2 and ( 3.53) we finally obtain

M1

l
=

η2 − η1
2(η2 + η1)

. (3.54)
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Setting f(η1, η2) =
η2 − η1

2(η2 + η1)
, and according to ( 3.54), the relative displacement

M1

l
of a fluid due to a viscous effect should be predicted by

M1

l
= f(η1, η2). This

assertion is checked in the following numerical simulations.

We use this particular channel geometry: length L = 1300µm, width W =
200µm. The characteristics of the two fluids are: same entry velocity U0 = 1.8 ∗
10−2m.s−1, same density ρ = 1.2 ∗ 103kg.m−3, we also keep the viscosity of the
fluid two constant η2 = 0.67Pa.s (glycerol viscosity). The other fluid viscosity vary
from η1 = 8.375.10−2Pa.s to η1 = 5.36Pa.s (i.e ε ∈ [−4, 4]).

Before presenting our simulations, we ensure the discretization error to be small
enough for the comparisons we wish to do. In order to find the mesh resolution
which would fit this criteria, we need to perform a convergence calculus. There-
fore, we compare the results given on the quantity M1(L, t) by simulations with the
physical conditions described above, for different mesh resolutions (Figure 6).
The convergence on M1 is rather quick. This is due to the fact that M1, which only
gives an information on the position of the middle of the interface, is not affected
by any numerical diffusion. As we can see on Figure 6, an eligible resolution in this
case would be 100 ∗ 80.
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Figure 6. Left: Numerical convergence on the displacement M1

as a function of time. Right: example of a map on the mixing
composition ϕ(x, y) in the channel.

As we can see on Figure 7 (left), as the contrast λ between the viscosities η1 and
η2 increases, the position of the interface M1(X,T ) gets closer to the borders. As
foreseen, if the viscosity contrast is big enough (λ ≫ 1), the displacement tends
to be independent of λ. Moreover, a linear behavior on M1 for little viscosity con-
trasts seems to appear. It means that for little displacements, the interface is not
influenced by presence of the walls. It seems that this behavior tends to disappear
when λ > 1 (i.e. viscosity variations greater than 100%).
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Figure 7. Left: displacement M1 of the interface in the channel as
a function of the viscosity contrast λ. Right: relative displacement
M1

l
of the interface in the channel as a function of f(η1, η2).

We can see on Figure 7 (right) that simulations for different values of f(η1, η2)
(squares) nicely fits the theoretical displacement as described in ( 3.54) (black line)
which validates the model in this case. Differences seem to occur as |f(η1, η2)|
grows. It can be related to the wall effect that can be noticed on Figure 6 (left) for
t ∼ 0.4.

All these results can hence lead us to think that the model used here works well
for the co-flow interdiffusion case, see [6] for comparison with the experiments.

3.3.2. Viscous fingering. In this section we study an other example of viscous dis-
placement that involves the z direction: the viscous fingering. The experiment is
the following (see Figure 8): a fluid 1 with a viscosity η1 is injected in a channel
containing a fluid 2 with a viscosity η2. In this study, we are interested in the profile
of the interface in the (~x, ~z) plane. The flow along the z direction is a Poiseuille
flow which tends to form finger shaped interfaces influenced by the viscosities η1
and η2.
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Figure 8. Schematic view of the experimental setup for the study
of the viscous fingering

The suitable 2.5D model fitted to this experiment is composed by Equations
( 2.24)-( 2.27) with a flat geometry and no-slip boundary conditions. The channel
geometry chosen here is L = 2000µm, W = 200µm, h = 80µm. The profiles
shown in Figure 9 correspond to two different viscosity gaps (η1 > η2 and η1 < η2).
Those profiles seem to be physically relevant, however, further validation from the
experimental point of view is needed in this case that can be done using advanced
imaging techniques such as confocal microscopy, as shown in [10].
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Figure 9. Map of ϕ(x, y, t = 0.06s), left: η1 = 2, η2 = 0.67, right:
η1 = 0.67, η2 = 2; initially filled with fluid 1

3.4. Classical passive mixing strategies involving both boundary condi-

tions.

3.4.1. Equivalence of the two models. In this section, we investigate the influence of
the boundary conditions in the process of mixing fluids. We consider two types of
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boundary conditions: the slip ones and the no-slip ones. For simplicity, we assume
that the viscosity η is constant and we limit our study to the 2D models presented
in Section 2.2. The main goal is to make a connection between the two approaches
used for mixing. Observe first that choosing h(x, y) = constant in ( 2.37)-( 2.39)
and Lt = Lb = 0 in ( 2.40)-( 2.42) leads to two strictly equivalent models. The
problem discussed here is the following: given a profile h(x, y), can we choose the
slip lengths Lt and Lb so that the two 2D models are very close.

Recall first that

K2D
n (x, y) = −

1

η

(

h(x, y)3

12

)

, K2D
p (x, y) =

1

η

(

h
3

6
−
h
2

4
(h− 2 L)

)

,

K3D
n (x, y) = −

1

η

(

h(x, y)2

12

)

, K3D
p (x, y) =

1

η

(

h
2

6
−
h

4
(h− 2 L)

)

.

(3.55)

In this particular case, we supposed that the slip lengths  L are the same at the top

and bottom of the channel for K2D
p and K3D

p . We denote by h the height of the
channel in the slip pattern model. The variable length in the no slip case shall be
expressed as a function of h. We set h(x, y) = h+ h̃(x, y). We want to find a couple

of h̃(x, y) and  L(x, y) that would make the results on the velocities Up and Un given
by the two different models as close as possible.

Assuming that h(x, y) is known, let us try to find L(x, y) such that

{

K2D
n (x, y) = K2D

p (x, y),

K3D
n (x, y) = K3D

p (x, y).

From ( 3.55) we have



















h
3

6
−
h
2

4
(h− 2 L(x, y)) = −

(h+ h̃(x, y))3

12
,

h
2

6
−
h

4
(h− 2 L(x, y)) = −

(h+ h̃(x, y))2

12
.

By multiplying the second equation by h and identifying the left hand side of each
equation, we get

(h+ h̃(x, y))3

12
=
h(h+ h̃(x, y))2

12
,

which implies h̃(x, y) = 0, which is not relevant for the application we have in mind.

However, there exists a choice of parameters h̃(x, y) and  L(x, y) such that, under

the constraint h̃ 6= 0, the results obtained by the two models are very close. Indeed,
assuming h̃(x, y) is known, let us minimize the norm of the following functional

Fx,y(L) =

(

K2D
n (x, y) −K2D

p (x, y)

h
(

K3D
n (x, y) −K3D

p (x, y)
)

)

.

From ( 3.55), we have
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Fx,y( L) =









h
3

6
−
h
2

4
(h− 2 L(x, y)) +

(h+ h̃(x, y))3

12
h
3

6
−
h
2

4
(h− 2 L(x, y)) +

h(h+ h̃(x, y))2

12









.

Denoting c1 =
h
3

12
−

(h+ h̃(x, y))3

12
and c2 =

h
3

12
−
h(h+ h̃(x, y))2

12
, Fx,y( L) reads

Fx,y( L) =









h
2

2
 L(x, y) − c1

h
2

2
 L(x, y) − c2









.

In each point of the domain, let us find  L(x, y) that minimizes ||Fx,y( L)||, where
||.|| denotes the euclidian norm. By denoting a(s) = ||Fx,y(s)||, we have

a(s) =

√

(
h
2

2
s− c1)2 + (

h
2

2
s− c2)2.

Since (
h
2

2
s− c1)

2 +(
h
2

2
s− c2)2 6= 0 for any acceptable s as seen above, it is possible

to compute the derivative of a

da

ds
(s) =

1

2

√

(
h
2

2
s− c1)2 + (

h
2

2
s− c2)2

(

h
4
s− h

2
c1 − h

2
c2

)

.

The optimum s∗ satisfies
da

ds
(s∗) = 0,

That gives

1

2

√

(
h
2

2
s∗ − c1)2 + (

h
2

2
s∗ − c2)2

(

h
4
s∗ − h

2
c1 − h

2
c2

)

= 0,

which leads to

s∗ =
c1 + c2

h
2 . (3.56)

From ( 3.56), the choice of  L that minimizes the error between the coefficients of
the two models in every point (x, y) of the domain is hence

 L(x, y) =
c1 + c2

h
2 =

1

12h
2 (2h

3
− (h+ h̃(x, y))3 − h(h+ h̃(x, y))2),

that gives

 L(x, y) = −
1

12h
2 (h̃3(x, y) + 4hh̃2(x, y) + 4h

2
h̃(x, y)). (3.57)

It is then possible to state the following proposition.

Proposition 1. Let h be the height of the channel. For a given function h(x, y) =

h+ h̃(x, y), there exists a slip length L(x, y) which minimizes the error between the
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coefficients of the two models ( 2.37)-( 2.39) and ( 2.40)-( 2.42). Furthermore, L is
given by

 L(x, y) = −
1

12h
2 (h̃3(x, y) + 4hh̃2(x, y) + 4h

2
h̃(x, y)).

Given a channel geometry h̃(x, y) (see Figure 10) and the choice of  L(x, y) de-
scribed in ( 3.57), we will measure the error on the results given by both models
through numerical simulations.
The channels geometries are:

• For the no-slip case.
Length L = 1300µm, width l = 200µm, maximum height h = 80µm. We
consider at the bottom of the channel a staggered herringbone geometry as
described in Figure 10 with Lc = 50µm, Lic = 100µm, α = 45◦, Gr = 50µm.
The height variations will vary from 0 to 50% of the total height.

Figure 10. Example of a herringbone micromixer geometry

• For the patterned case.
We use here the same geometry as described above, assuming h is constant.
The slip length pattern  L(x, y) is calculated as described in ( 3.57).

As said before, we consider only one fluid in the channel. The viscosity and entry

velocity are chosen such that Re =
ρUl

η
∼ 10−9.

The discretization steps are dx = 2.6µm and dy = 1µm which means 20 cells per
ridge in the non-planar geometry case. We ensured the discretization steps to be
small enough so that the numerical error is reasonable for the comparisons we wish
to do.

We define the error between the results of the two models as

Er(Up, Un) =
||Up − Un||L2

||Un||L2

.
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Let us also introduce β =
h̃

h
the normalized height variation. As we can see in

Figure 11, the results on the velocity given by the two models are fairly close for
the range of β we have chosen. At most, the error is around 20% for β = 0.5. In
practice we never use such height variations (1/2 of total height). In literature,
most of the time β ∼ 0.2 [21], which, here, generates an error lower than 10%.
We can reasonably say that under the Hele-Shaw approximation, the two classical
approaches for mixing enhancement studied are close.
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Figure 11. Error between the two models as a function of β

3.4.2. Comparison between the 2.5D Reynolds model and the Stokes model for a
non-flat bottom. In order to study the validity of the 2.5D model for non planar
geometry (Section 2), we compare numerical simulations performed on this model
with predictions given by the Stokes model. The geometry used here is a ridge-
shaped geometry, the height of the channel being given by

h(x, y) = hmax

(

1 −
1 + cos(6 π (x+ 2y))

5

)

,

where hmax is the maximum height of the channel. First, we quantify the influence
of hmax on the error between the original Stokes model ( 1.1) and the 2.5D Reynolds
model ( 2.25)-( 2.27) adapted to the non-flat bottom geometry.

The error is computed on the velocities given by numerical simulations performed
on both models on a Nx×Ny×Nz = 400×100×50 grid. The following dimensions
are taken for the channel length L = 2.5mm, width l = 500µm, and hmax varies
between 50µm and 200µm.

The Figure 12 shows the expected convergence of the two models as hmax tends
to 0. The rate of convergence shown here is 1/2.
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Figure 12. Error on the velocities given by the 2.5D Reynolds
model ( 2.25)-( 2.27) and the Stokes model ( 1.1), given as a func-
tion of the normalized maximum height of the channel.

The qualitative differences between the simulations performed on the two mod-
els are shown on Figure 13, by examining streamlines starting at the inlet of the
channel.
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Figure 13. Comparison on streamlines computed from both mod-
els for various values of hmax. a): hmax = 200µm , b): hmax =
150µm , c): hmax = 100µm , d): hmax = 50µm.

We notice that, for a sufficiently large hmax, the streamlines computed from the
Stokes model show a deviation of the flow from the main axis of the channel to the
left wall. This deviation is not seen on the Reynolds model, even though the non-flat
geometry is taken into account. This deviation phenomenon is a key mechanism in
fluid mixing improvement by means of microchannel geometry modification (see [17]
for a complete review on micromixers). As a consequence, the Reynolds model
studied in this paper is not appropriate for the study of microfluidic mixers based
on this approach.

4. Conclusion. In this article, we have shown that the Hele-Shaw approxima-
tion (Section 2) applied to a 3D Stokes model can lead to various reduced models
(Section 2.2). The main advantage of using such models is that numerical calcu-
lations are much quicker and simpler than for the full 3D Stokes model. More-
over, even though strong hypothesis are done on the microchannel geometry, these
models allow us to take into account complex boundary conditions such as slip-
patterned surfaces or non-planar geometries. Those kind of boundary conditions
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have already been involved in various studies of enhanced fluid mixing in microchan-
nels [21], [22] ,[13], [14]. For those reasons the reduced models developed here appear
to be very interesting in general for the numerical study of flows in microchannels.

We also have shown that through this model, simulating a flow in a channel
whith a complex geometry and simulating a flow in a channel patterned with hy-
drophilic/hydrophobic surfaces are almost equivalent (section (3.4.1)). We have seen
by comparing calculations on the Hele-Shaw model with previous works [21], [22]
that it doesn’t describes correctly the flux deviation in the channel generated by a
ridge-like shaped wall. These arguments lead us to think that chaotic mixing ap-
proaches involving a modification on the boundary conditions cannot be described
using such an asymptotic reduction. A full 3D Stokes approach is needed for that.

5. Appendix: Existence results. In this appendix, we consider System ( 2.37)-
( 2.39), that is we study the case of a non-flat bottom with no-slip boundary con-
ditions in 2D. The aim is to prove the existence of weak and strong solutions to
this system. The results are in the spirit of [2]. Our aim is to show how one can
handle physical boundary data using maximum principle technics and extension of
functions in order to prove that this kind of models gives a physically reasonable be-
havior of the fluid at the outlet. Our proof is not very original and the same strategy
can be found in a lot of papers in the literature. The proof of existence with periodic
boundary conditions or on the whole space are straightforward. The interest relies
here on the boundary conditions that correspond to the physical setting: the fluids
are moving because of the pressure gradient. One speaks on pressure-driven flows
(see [12]).

5.1. Existence of weak solutions. In this section, we deal with weak solutions.
The 2D bounded rectangular domain [0, L]× [0, ℓ] is denoted by Ω and its boundary
is decomposed into Γ = Γe ∪ Γs ∪ ΓL where Γe is the inlet, Γs is the outlet and ΓL

represents the lateral walls. The outward normals of the domain are denoted by ν.
We first recall the boundary conditions associated with System ( 2.37)-( 2.39)






















on Γe, we prescribe the velocity u = u0(y) and the order parameter ϕ = ϕ1(y),

on Γs, we impose P = 0 and
∂ϕ

∂ν
= 0,

on ΓL, we assume v = 0 and
∂ϕ

∂ν
= 0.

We also add the following initial condition on ϕ

ϕ(0, x, y) = ϕ0(x, y),

where ϕ0 is a given regular function. We also recall that, in this configuration, the

coefficients K2D
n and K

3D

n read, dropping the index n for simplicity,

K2D(ϕ) = −
h3(x, y)

12η(ϕ)
, K

3D
(ϕ) = −

h2(x, y)

12η(ϕ)
,

where η(s) = η1s + η2(1 − s) for all s ∈ [0, 1]. As a consequence, there exists two
positive constants K1 and K2 such that

∀s ∈ [0, 1], K1 ≤
∣

∣K2D(s)
∣

∣ ≤ K2, K1 ≤
∣

∣K
3D

(s)
∣

∣ ≤ K2, K1 ≤
∣

∣K
′2D(s)

∣

∣ ≤ K2, K1 ≤
∣

∣K
′3D(s)

∣

∣

∣
≤ K2,

(5.58)
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where K
′2D and K

′3D denote the derivative of K2D and K3D. We now can state
the following theorem.

Theorem 5.1. Assume that D(ϕ) is constant, ϕ1(y) ∈ H2(0, ℓ), ∂ϕ1

∂ν = 0 on

ΓL, u0(y) ∈ L2(0, ℓ), u0 ≥ 0 and ϕ0 ∈ L2(Ω) such that 0 ≤ ϕ0 ≤ 1. Then
there exists a global weak solution (P, u, v, ϕ) to System ( 2.37)-( 2.39) such that
ϕ(0, x, y) = ϕ0(x, y) and

P ∈ L2
loc

(

R+;H1(Ω)
)

,

(u, v) ∈
[

L2
loc

(

R+;H1(Ω)
)]2

,

ϕ ∈ L∞
loc

(

R+;L2(Ω)
)

∩ L2
loc

(

R+;H1(Ω)
)

,

Proof. The proof is based on a Galerkin method. To this end, we first get rid
of the inhomogeneous Dirichlet boundary condition ϕ1 at the inlet by introducing
the following change of unknow φ = ϕ−ϕ1. Since coefficient D is constant, System
( 2.37)-( 2.39) is transformed into



























∇xy ·
(

K2D(ϕ1 + φ)∇x,yP (x, y)
)

= 0, (5.59)
(

u
v

)

= K
3D

(ϕ1 + φ)∇xyP, (5.60)

∂tφ+

(

u
v

)

· ∇φ−D∆x,yφ = −v∂yϕ1 +D∂2yϕ1. (5.61)

Note that φ satisfies the homogeneous Neumann boundary condition

∂φ

∂ν
= 0

at the outlet and on the lateral walls provided that the compatibility condition

∂ϕ1

∂ν
= 0

holds on lateral walls. The boundary conditions for (P, u, v, φ) then read























on Γe, u = u0(y), φ = 0,

on Γs, P = 0 and
∂φ

∂ν
= 0, (5.62)

on ΓL, v = 0 and
∂φ

∂ν
= 0.

We now introduce the Galerkin basis associated with the eigenfunctions of the
Laplacian operator on Ω with the boundary conditions satisfied by φ, namely

∀(i, j) ∈ N
2, eij(x, y) = sin

(

(i+
1

2
)
πx

L

)

cos
(

j
πy

l

)

.

We first reorganized the sequence
(

eij

)

i,j∈N2

to obtain
(

en

)

N∈N

and introduce

the finite dimensional space Vn spanned by
(

ek

)

0≤k≤n
. The approximate solution
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(

Pn, un, vn, φn

)

is given by φn ∈ Vn and



























∇xy ·
(

K2D(ϕ1 + φn)∇x,yPn(x, y)
)

= 0, (5.63)
(

un
vn

)

= K
3D

(ϕ1 + φn)∇xyPn, (5.64)

∀0 ≤ k ≤ n,

∫

Ω

∂tφnek +

∫

Ω

(

un
vn

)

· ∇φnek −D

∫

Ω

∆x,yφnek =

∫

Ω

(

− vn∂yϕ1 +D∂2yϕ1

)

ek.(5.65)

It is clear that System of ODE’s ( 5.63)-( 5.65) admits a unique solution
(

Pn, un, vn, φn

)

on a time intervall [0, Tn[, with Tn > 0. To conclude the proof of Theorem 5.1, it re-
mains to show that Tn = +∞ and to perform the limit n→ +∞ into ( 5.63)-( 5.64).

To this end, we need a priori estimates on
(

Pn, un, vn, φn

)

. Let us write

∀t ∈ [0, Tn[, φn(t) =

n
∑

k=0

αk(t)ek,

and multiply Equation ( 5.65) by αk to obtain , after summation,
∫

Ω

∂tφnφn +

∫

Ω

(

un
vn

)

· ∇φnφn −D

∫

Ω

∆x,yφnφn =

∫

Ω

(

− vn∂yϕ1 +D∂2yϕ1

)

φn

(5.66)

An integration by parts gives, recalling that

∇ ·

(

un
vn

)

= 0, (5.67)

1

2
∂t

∫

Ω

φ2n +
1

2

∫

Γ

(

un
vn

)

· ~ν φ2n +D

∫

ω

|∇φn|
2 −

∫

Γ

∇φn · ~ν φn =

∫

Ω

(

− vn∂yϕ1 +D∂2yϕ1

)

φn.

(5.68)

Using ( 5.62), we have
∫

Γ

∇φn · ~ν φn = 0,

∫

Γ

(

un
vn

)

· ~ν φ2n =

∫

Γs

un(L) φ2n. (5.69)

We then need the following lemma.

Lemma 5.2. The solution un to Equation ( 5.64) satisfies un(t, L, y) ≥ 0, for all
t ∈ [0, Tn[ and y ∈ [0, ℓ].

Proof. We begin with the positivity of Pn in the domain Ω. We decompose Pn

in the following way Pn = P+
n +P−

n where P+
n (resp. P−

n ) denotes the positive part
(resp. the negative part) of Pn. Multiply Equation ( 5.63) by P−

n , we obtain

−

∫

Ω

K2D(ϕ1 + φn)|∇P−
n |2 +

∫

Γ

K2D(ϕ1 + φn)
∂Pn

∂ν
P−
n = 0.

Using ( 5.62) and Equation ( 5.64), we then derive

−

∫

Ω

K2D(ϕ1 + φn)|∇P−
n |2 −

∫

Γe

K2D(ϕ1)
u0(y)

K
3D

(ϕ1(y))
P−
n = 0.
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Since K
2D

(ϕ1(y)) ≤ 0, K
3D

(ϕ1(y)) ≤ 0, and u0(y) ≥ 0, one can see that
∫

Γe

K2D(ϕ1)
u0(y)

K
3D

(ϕ1(y))
P−
n ≤ 0,

which implies that
∫

Ω

K2D(ϕ1 + φn)|∇P−
n |2 = 0.

It follows that |∇P−
n | = 0 and then P−

n = 0. As a consequence, Pn ≥ 0 in the
domain Ω. Furthermore, since on Γs, one has Pn = 0, one deduces that on Γs

∂Pn

∂x
≤ 0.

Recalling that, according to equation ( 5.64), on Γs, one has

un(L, y) = K
3D

(ϕ1 + φn)
∂Pn

∂x
,

the result follows from the fact that K
3D

(ϕ1 + φn) ≤ 0. �

Remark 2. Lemma 5.2 states that for any smooth solution to ( 5.59)-( 5.61), the
velocity is directed toward the exterior of the channel at the outlet.

Equipped with Lemma 5.2, we are also able to derive the following maximum
principle for φn.

Lemma 5.3. Let φn be the solution to Equation ( 5.66). Then φn satisfies 0 ≤
φn ≤ 1 on Ω.

Proof. We use the notation of Lemma 5.2 and decompose φn = φ+n +φ−n . We mul-
tiply Equation ( 5.66) by φ−n and we integrate over Ω. A straightforward integration
by parts gives

1

2
∂t

∫

Ω

(

φ−n
)2

+
1

2

∫

Γ

(

un
vn

)

· ~ν
(

φ−n
)2

+D

∫

Ω

|∇φ−n |
2 −D

∫

Γ

∇φ−n · ~ν φ−n = 0.

(5.70)

Using the boundary conditions ( 5.62) on φ and Lemma 5.2, we derive
∫

Γ

∇φ−n · ~ν φ−n = 0,

∫

Γ

(

un
vn

)

· ~ν
(

φ−n
)2

=

∫

Γe

un(L)
(

φ−n
)2

≥ 0.

Then ( 5.70) provides

∂t

∫

Ω

(

φ−n
)2

≤ 0.

We thus obtain φ−n = 0 since at t = 0, φn ≥ 0, which implies that φn ≥ 0 on Ω.
In order to conclude the proof of Lemma 5.3, it remains to prove that φ ≤ 1 on Ω
which is done by performing the same computation with φ̃ = 1 − φ. �

We are now able to end the proof of Theorem 5.1. From ( 5.68), we derive, using
Lemma 5.2, ( 5.69) and Cauchy-Schwarz inequality

1

2
∂t

∫

Ω

φ2n +D

∫

ω

|∇φn|
2 ≤ C1

(

||vn||2 + 1
)

||φn||2, (5.71)
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where the constant C1 depends on ||ϕ1||H2(0,D). Using ( 5.58), a priori estimates
on Equations ( 5.63) and ( 5.64) are straightforward and leads to the existence of a
constant C2 such that

||Pn(t)||L2(0,Tn;H1(Ω)) + ||(u, v)||L2(0,Tn;L2(Ω)) ≤ C2. (5.72)

Then by Gronwall Lemma’s, we deduce from ( 5.71) that φn is bounded in L∞
loc

(

R+;L2(Ω)
)

∩

L2
loc

(

R+;H1(Ω)
)

and that Tn = +∞. It remains to perform the limit n→ +∞ in

the weak formulation ( 5.63)-( 5.65) which is done by using

∇ ·

(

un
vn

)

= 0,

and the Aubin-Simon compactness lemma (see [20]) which provides a strong con-

vergence of
(

φn

)

n∈N

in L∞
(

0, T ;L2(Ω)
)

for all T > 0. �

5.2. Existence of strong solutions. In this section, we prove the existence of
strong solutions to System ( 2.37)-( 2.39). The main result presented here reads

Theorem 5.4. Assume that D(φ) is constant, ϕ1(y) ∈ H3(0, ℓ), ∂ϕ1

∂ν = 0 on Γ,

u0(y) ∈ H1(0, ℓ), u0 ≥ 0, ∂yu0 = 0 on lateral walls and ϕ0 ∈ H1(Ω) such that
ϕ0 = ϕ1 on Γe and 0 ≤ ϕ0 ≤ 1. Then there exists a time T > 0 and a unique
solution (P, u, v, ϕ) to System ( 2.24)-( 2.27) such that ϕ(0) = ϕ0 and

P ∈ L∞
(

0, T ;H2(Ω)
)

, (u, v) ∈
(

L∞
(

0, T ;H1(Ω)
))2

ϕ ∈ L∞
(

0, T ;H1(Ω)
)

∩ L2
(

0, T ;H2(Ω)
)

.

Proof. As in the proof of Theorem 5.1, we first perform the change of unknown
ϕ = ϕ1 + φ to obtain System ( 5.59)-( 5.61) with boundary conditions ( 5.62). The
proof is based on the Galerkin method used in Section 5.1. For that reason, we
give here a sketch of the proof by performing only the a priori estimates on φ (see
Section 5.1 for more details). From now on, for simplicity, we drop the index n
in the different unknowns. We first recall the following inequality stated when the
space dimension is equal to 2

∃ C > 0, ∀ψ ∈ H1(Ω), ||ψ||4 ≤ C||ψ||
1

2

2 ||ψ||
1

2

H1 . (5.73)

Repeating the computation of Section 5.1, we first obtain a bound for φ in L∞
(

0, T ;L2(Ω)
)

∩

L2
(

0, T ;H1(Ω)
)

, for P in L∞
(

0, T ;H1(Ω)
)

and (u, v) in L2
(

0, T ;L2(Ω)
)

. In order

to estimate ∇φ, we introduce the equations satisfied by ∂xφ and ∂yφ

∂t
(

∂xφ
)

+

(

u
v

)

· ∇
(

∂xφ
)

−D∆
(

∂xφ
)

+ ∂x

(

u
v

)

· ∇φ = −∂xv∂yϕ1, (5.74)

∂t
(

∂yφ
)

+

(

u
v

)

· ∇
(

∂yφ
)

−D∆
(

∂yφ
)

+ ∂y

(

u
v

)

· ∇φ = −∂yv∂yϕ1 − v∂2yϕ1 +D∂3yϕ1.

(5.75)
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We multiply Equations ( 5.74) and ( 5.75) by respectively ∂xφ and ∂yφ and integrate
over Ω the resulting equations to get

1

2
∂t

∫

Ω

|∂xφ|
2 +

1

2

∫

Γ

|∂xφ|
2

(

u
v

)

· ν +D

∫

Ω

|∇∂xφ|
2 −D

∫

Γ

∂ν(∂xφ) ∂xφ+

∫

Ω

∂x

(

u
v

)

· ∇φ ∂xφ = −

∫

Ω

∂xv∂yϕ1∂

(5.76)

1

2
∂t

∫

Ω

|∂yφ|
2 +

1

2

∫

Γ

|∂yφ|
2

(

u
v

)

· ν +D

∫

Ω

|∇∂yφ|
2 −D

∫

Γ

∂ν
(

∂yφ
)

∂yφ+

∫

Ω

∂y

(

u
v

)

· ∇φ ∂yφ

= −

∫

Ω

∂yv∂yϕ1∂yφ.+

∫

Ω

(

− v∂2yϕ1 +D∂3yϕ1

)

∂yφ, (5.77)

Using ( 5.62) and the fact that since φ ∈ Vn, one has ∂2xφ = 0 on Γe, we have
∫

Γ

∂ν(∂xφ) ∂xφ = 0, (5.78)

and
∫

Γ

|∂xφ|
2

(

u
v

)

· ν = −

∫

Γe

|∂xφ|
2u0(y). (5.79)

Plugging ( 5.78) and ( 5.79) into ( 5.76), we get

1

2
∂t

∫

Ω

|∂xφ|
2 +D

∫

Ω

|∇∂xφ|
2 ≤ ||∂x(u, v)||2||∇φ||4||∂xφ||4 + C||∂xv||2||∂xφ||2 + C||∂xφ||2||∇∂xφ||2,

(5.80)

where the constant C depends only on ϕ1 and u0. Again, dealing with ( 5.77), the
boundary conditions ( 5.62) provides

∫

Γ

∂ν(∂yφ) ∂yφ = 0,

∫

Γ

|∂yφ|
2

(

u
v

)

· ν =

∫

Γs

|∂yφ|
2u0(L),

which leads to

1

2
∂t

∫

Ω

|∂yφ|
2 +

1

2

∫

Γs

|∂yφ|
2u(L) +D

∫

Ω

|∇∂yφ|
2

≤ ||∂y(u, v)||2||∇φ||4||∂yφ||4 + C||∂yv||2||∂yφ||2 + C
(

||v||2 + 1
)

||∂yφ||2, (5.81)

where the constant C depends only on ϕ1. By Lemma 5.2, one has u(L) ≥ 0 on Γs,
then summing Inequalities ( 5.80) and ( 5.81) leads to

1

2
∂t

∫

Ω

|∇φ|2 +D

∫

Ω

(

|∇∂xφ|
2 + |∇∂yφ|

2
)

≤ 2||∇(u, v)||2||∇φ||
2
4 + C

(

1 + ||v||2 + ||∇v||2

)

||∇φ||2 + C||∇φ||2||∇∂xφ||2.

(5.82)

Using ( 5.73), we then obtain

1

2
∂t

∫

Ω

|∇φ|2 +D

∫

Ω

(

|∇∂xφ|
2 + |∇∂yφ|

2
)

≤ C||∇(u, v)||2||∇φ||2||φ||H2 + C
(

1 + ||v||H1

)

||∇φ||2 + C||φ||H1 ||φ||H2 , (5.83)
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where the constant C depends only on u0 and ϕ1. It remains to control ∇u and ∇v
in L2(Ω) and this is done in the following lemma.

Lemma 5.5. There exists a constant C depending only on ϕ1, u0 such that

||u||H1 + ||v||H1 ≤ C
(

1 + (1 + ||φ||H1 )||φ||H2

)

.

Proof. We proceed in two steps.
• Step 1: Estimates on P . We first recall that multiplying Equation ( 5.59) by

P , integrating by parts and using ( 5.58) and ( 5.62), we obtain an H1-bound on
P which reads as follows

∀t ∈ [0, T ], ||P (t)||H1 ≤ C, (5.84)

where the constant C depends only on u0. We apply ∂y on Equation ( 5.59) to get

∇ ·
(

K
′2D(ϕ1 + φ)∂y(ϕ1 + ϕ)∇P

)

+ ∇ ·
(

K2D(ϕ1 + φ)∇∂yP
)

= 0. (5.85)

Multiplying Equation ( 5.85) by ∂yP leads to, after integration over Ω:
∫

Ω

K
′2D(ϕ1 + φ)∂y(ϕ1 + ϕ)∇P · ∇

(

∂yP
)

−

∫

Γ

K
′2D(ϕ1 + φ)∂y(ϕ1 + ϕ)∇P · ν ∂yP

+

∫

Ω

K2D(ϕ1 + φ)|∇∂yP |
2 −

∫

Γ

K2D(ϕ1 + φ)∇
(

∂yP
)

· ν ∂yP = 0.

(5.86)

Using ( 5.62) and Equation ( 5.59), recalling in particular that φ = 0 on Γe, one
can write
∫

Γ

K
′2D(ϕ1 + φ)∂y(ϕ1 + ϕ)∇P · ν ∂yP = −

∫

Γe

K
′2D(ϕ1)∂yϕ1

u0(y)

K
3D

(ϕ1)
∂yP

(5.87)

∫

Γ

K2D(ϕ1 + φ)∇
(

∂yP
)

· ν ∂yP = −

∫

Γe

K2D(ϕ1)∂y

(

u0(y)

K
3D

(ϕ1)

)

∂yP. (5.88)

Using ( 5.87), ( 5.88) and Cauchy-Schwarz inequality, we then obtain from ( 5.86)
∫

Ω

K2D(ϕ1 + φ)|∇∂yP |
2 ≤C (||∂yφ||4 + 1) ||∇P ||4||∇∂yP ||2 +

∫

Γe

∣

∣

∣

∣

∣

K
′2D(ϕ1) ∂yϕ1

u0(y)

K
3D

(ϕ1)
∂yP

∣

∣

∣

∣

∣

+

∫

Γe

∣

∣

∣

∣

∣

K2D(ϕ1)∂y

(

u0(y)

K
3D

(ϕ1)

)

∂yP

∣

∣

∣

∣

∣

, (5.89)

where C depends only on ϕ1. Using ( 5.58), ( 5.73) in ( 5.89), the trace Theorem
and the H1-bound ( 5.84) on P , we get
∫

Ω

|∇∂yP |
2 ≤ C||φ||

1

2

H1 ||φ||
1

2

H2 ||P ||
1

2

H1 ||P ||
3

2

H2 + C||P ||
1

2

H1 ||P ||
3

2

H2 ,+C||P ||
1

2

H1 ||P ||
1

2

H2

≤ C||φ||
1

2

H1 ||φ||
1

2

H2 ||P ||
3

2

H2 + C
(

||P ||
3

2

H2 + ||P ||
1

2

H2

)

, (5.90)

where the constant C depends only on u0 and ϕ1.
Applying ∂x on Equation ( 5.59), we derive, recalling that ϕ1 does not depend

on x

∇ ·
(

K2D(ϕ1 + φ)∇∂xP
)

+ ∇ ·
(

K
′2D(ϕ1 + φ)∂xφ∇P

)

= 0. (5.91)
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Note that at the inlet, we don’t have any information on ∂xφ. To overcome this
difficulty, we introduce an extension of P in the following sense. Denote

Q = P −
1

K
3D

(ϕ1 + φ)
u0f(x), (5.92)

where f is a smooth function satisfying f(0) = f(L) = f
′

(L) = f
′′

(L) = 0 and

f
′

(0) = 1. Then, there exists a constant C > 0 depending on ϕ1, u0 and f such
that

||P ||H2 ≤ C||φ||H2 + ||Q||H2 , ||Q||H2 ≤ C||φ||H2 + ||P ||H2 . (5.93)

The equation for Q is

∇ ·
(

K2D(ϕ1 + φ)∇∂xQ
)

+ ∇ ·

(

K2D(ϕ1 + φ)∇∂x(
1

K
3D

(ϕ1 + φ)
u0f(x))

)

+∇ ·
(

K
′2D(ϕ1 + φ)∂xφ∇P

)

= 0. (5.94)

The energy estimate on Equation ( 5.94) reads

−

∫

Ω

K2D(ϕ1 + φ)|∇∂xQ|2 −

∫

Ω

K2D(ϕ1 + φ)
(

∇∂x(
1

K
3D

(ϕ1 + φ)
u0f(x)

)

· ∇∂xQ

−

∫

Ω

K
′2D(ϕ1 + φ)∂xφ∇P · ∇∂xQ+

∫

Γ

K2D(ϕ1 + φ)(∇∂xQ) · ~ν ∂xQ

+

∫

Γ

K2D(ϕ1 + φ)
(

∇∂x(
1

K
3D

(ϕ1 + φ)
u0f(x)

)

· ~ν ∂xQ+

∫

Γ

K
′2D(ϕ1 + φ)∂xφ∇P · ~ν ∂xQ = 0.(5.95)

Here, the boundary terms have to be computed separetly and carefully. The bound-
ary conditions on Q are the following ones. On the lateral walls, we have ∂yP = 0.
This implies ∂x∂yP = 0 since ∂x is a tangential derivative on ΓL. We then need the
compatibility condition

∂y

( 1

K
3D

(ϕ1 + φ)
u0f(x)

)

= 0, (5.96)

at the boundary, which is satisfied since on lateral walls ∂yφ = 0, ∂yϕ1 = 0 and
∂yu0 = 0 by hypothesis (see Theorem 5.4). This yields, on ΓL,

∂yQ = 0, ∂x∂yQ = 0.

At the inlet Γe, one can write using Equation ( 5.60) and ( 5.62),

∂xP =
1

K
3D

(ϕ1)
u0,

which provides

∂xQ =
1

K
3D

(ϕ1)
u0(y) −

1

K
3D

(ϕ1)
u0(y)f

′

(0) − ∂x

( 1

K
3D

(ϕ1)

)

u0(y)f(x) = 0,

since f(0) = 0 and f
′

(0) = 1. At the outlet, P = 0 implies that ∂yP = ∂2yP = 0.
By Equation ( 5.59), we deduce

K2D(ϕ1 + φ)∆P +K
′2D(ϕ1 + φ)∇(ϕ1 + φ) · ∇P = 0.

Since, on Γs, ∂x(ϕ1 + φ) = 0 and K2D(ϕ1 + φ) 6= 0, we have

∂2xP = −∂2yP = 0.
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Then

∂2xQ = −∂2x

( 1

K
3D

(ϕ1 + φ)
u0(y)f(x)

)

,

= −∂2x

( 1

K
3D

(ϕ1 + φ)

)

u0(y)f(x) − 2∂x

( 1

K
3D

(ϕ1 + φ)

)

u0(y)f
′

(x) −
1

K
3D

(ϕ1 + φ)
u0(y)f

′′

(x).

Taking x = L in the last equality and since f(L) = f
′

(L) = f
′′

(L) = 0, one
concludes that ∂2xQ = 0 on Γs. As a consequence, we deduce, using also ( 5.62),
that

∫

Γ

K2D(ϕ1 + φ)(∇∂xQ) · ~ν ∂xQ = 0, (5.97)

∫

Γ

K2D(ϕ1 + φ)
(

∇∂x
( 1

K
3D

(ϕ1 + φ)
u0f(x)

)

)

· ~ν ∂xQ = 0, (5.98)

∫

Γ

K
′2D(ϕ1 + φ)∂xφ∇P · ~ν ∂xQ = 0. (5.99)

Collecting ( 5.97), ( 5.98) and ( 5.99), we obtain from ( 5.95)

−

∫

Ω

K2D(ϕ1 + φ)|∇∂xQ|2 −

∫

Ω

K2D(ϕ1 + φ)
(

∇∂x
( 1

K
3D

(ϕ1 + φ)
u0f(x)

)

)

· ∇∂xQ

−

∫

Ω

K
′2D(ϕ1 + φ)∂xφ∇P · ∇∂xQ = 0,

(5.100)

which leads, by Cauchy-Schwarz inequality and using ( 5.58), to
∫

Ω

|∇∂xQ|2 ≤ C||φ||H2 ||∇∂xQ||2 + C||∂xφ||4||∇P ||4||∇∂xQ||2 (5.101)

≤ C||φ||H2 ||Q||H2 + C||φ||
1

2

H1 ||φ||
1

2

H2 ||P ||
1

2

H1 ||P ||
1

2

H2 ||Q||H2 , (5.102)

thanks to Inequality ( 5.73). Then, by ( 5.84) and ( 5.93), there exists a constant
C depending only on ϕ1, u0 and f and a small constant α such that

∫

Ω

|∇∂xP |
2 ≤ α||P ||2H2 + C

(

1 +
(

1 + ||φ||2H1

)

||φ||2H2

)

)

. (5.103)

Collecting ( 5.90) and ( 5.103), we conclude by Hölder inequality that

||P ||2H2 ≤ C
(

1 +
(

1 + ||φ||2H1

)

||φ||2H2

)

. (5.104)

• Step 2: Conclusion. Back to Equation ( 5.60), we prove directly using ( 5.58)
that there exists a constant C = C(ϕ1, u0, f) such that

||u||H1 + ||v||H1 ≤ C
(

1 + (1 + ||φ||H1 )||φ||H2

)

. (5.105)

�

From estimate ( 5.83), we obtain using Lemma 5.5 and recalling that φ is bounded

in L∞
(

0, T ;L2(Ω)
)

∩ L2
(

0, T ;H1(Ω)
)

1

2
∂t

∫

Ω

|∇φ|2 +D

∫

Ω

(

|∇∂xφ|
2 + |∇∂yφ|

2
)

≤ C
(

1 + ||φ||H2 + ||φ||2H2

)

. (5.106)
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We conclude by Gronwall’s lemma that φ is bounded in L∞
(

0, T ;H1(Ω)
)

∩L2
(

0, T ;H2(Ω)
)

,

which concludes the proof of Theorem 5.4. �
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