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Abstract : In this paper, we continue the study of the Raman amplification
in plasmas that we initiated in [7] and [8]. We point out that the Raman
instability gives rise to three components. The first one is collinear to the
incident laser pulse and counter propagates. In 2-D, the two other ones make a
non-zero angle with the initial pulse and propagate forward. Furthermore they
are symmetric with respect to the direction of propagation of the incident pulse.
We construct a non-linear system taking into account all these components and
perform some 2-D numerical simulations.

1 Introduction

1.1 Presentation and statement of the results.

The interaction of powerful laser pulse with a plasma gives rise to several com-
plex multiscale phenomena. It is of great interest since it occurs in the labo-
ratory simulations of nuclear fusion (NIF, Laser Mega Joule). One of the key
mechanism is the Raman instability that can be coupled with Landau damping
(see [1]). In [7] and [8], we have initiated a systematic mathematical study of
the Raman amplification process in plasma by justifying nonlinear models in
1-D and 2-D. There is a huge physical literature dedicated to the subject, see
for example [3], [9] and [12]. A lot of conclusions and qualitative results are ob-
tained. From the mathematical point of view, no real multi-D coupled system
(i.e. involving coupled several directions of propagation) is available since the
paraxial approximation is always used. The aim of this paper is to construct
(as rigorously as possible) such a quasiliear system. There exists other works
related to propagation of beams in transverse directions see [14, 15] for example.
In [13], the authors elaborate a formalism for continuous spectrum related to
Raman amplification. At the time being, we are not able to use this formalism
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in the present work. In this paper, we focus on the 2D problem. The 3D one
seems to be more difficult to handle since it envolves a cone of diffraction that
would have to be treated by the formalism of [13], but we are not able to embed
a model in this framework. Finally, we refer to [11] for the mathematical theory
of quasilinear Schrödinger equations.

These models rely on the propagation of three kind of waves : the initial
laser pulse (K0, ω0), the Raman component (KR, ωR) and the electron-plasma
wave (K1, ωpe + ω1) where K and ω stand respectively for the wave vector and
the frequency and ωpe is the electron-plasma frequency. In order to be efficient,
the interaction has to be a three waves mixing that is the data must satisfy the
following relationships :
• The dispersion relation for electromagnetic waves

ω2
0 = ω2

pe + c2|K0|2, (1.1)

ω2
R = ω2

pe + c2|KR|2, (1.2)

where c is the velocity of light in the vacuum.
• The dispersion relation for electron-plasma waves

(ωpe + ω1)2 = ω2
pe + v2th|K1|2, (1.3)

where vth denotes the thermal velocity of the electrons (see section 2.1 for its
value).
• The three waves resonance conditions

ω0 = ωpe + ωR + ω1, (1.4)

K0 = KR +K1. (1.5)

Note that ω0, ωR, c vth and K0 are fixed. Therefore, we have 4 unknowns for
4 Equations (1.2)-(1.5). Even in 2-D, one can find solutions of this system such
that K1, KR and K0 are collinear. This corresponds to the solution used in
[7], [8]. The aim of this paper is to provide a more general study in order to
understand the influence of the geometry. We solve (1.1)−(1.5) numerically and
show that there exists infinitely many solutions in the plane. We compute the
amplification rates associated to these solutions and show that the backward so-
lution has a maximum amplification rate when it is collinear to the initial pulse,
while the most two amplified forward directions make a non-zero angle with the
laser pulse and are symmetric with respect to the direction of propagation of
the incident pulse (see Section 2 and Section 3).

In Section 4, we introduce a non-linear model taking into account both di-
rection of propagations. First, denote by A0 the incident laser field, K0 and
ω0 the associated wave vector and frequency, AR1

the backscattered Raman
component, KR1 and ωR1 the associated wave vector and frequency, AR2 the
forward Raman component, KR2 and ωR2 the associated wave vector and fre-
quency, and finally ARs

2
the second forward Raman component, KRs

2
and ωRs

2

the associated wave vector and frequency. We denote by E|| the longitudinal
part of the electric field (see (2.16)). We assume that K0 is collinear to the
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x−axis and then KR2 and KRs
2

are symmetric with respect to the x−axis. p is
the low-frequency variation of the density of electrons. Furthermore, we put

K0 =

(
k0
0

)
, KR1 =

(
kR1

`R1

)
, KR2 =

(
kR2

`R2

)
, KRs

2
=

(
kRs

2

`Rs
2

)
,

θ1,1 = K1,1 ·X − ω1,1t, θ1,2 = K1,2 ·X − ω1,2t, θ1,2s = K1,2s ·X − ω1,2st.

The variables θ1,1, θ1,2 and θ1,2s represent the phase mismatch between the
electron-plasma waves and the three Raman components. They are defined
precisely in (4.1). Using as usual 1

k0
(resp. 1

ω0
) as length (resp. time) scale, the

system reads in a nondimensional form

i
(
∂t +

c2k20
ω2
0

∂x

)
A0 +

(c2k20
2ω2

0

∆− c4k40
2ω4

0

∂2x

)
A0 =

ω2
pe

2ω2
0

pA0 (1.6)

−∇ · E||
(
AR1

e−iθ1,1
kR1

|KR1
|

+ α
(
AR2

e−iθ1,2 +ARs
2
e−iθ1,2s

) kR2

|KR2
|

)
,

i
(
∂t +

c2k0
ωR1ω0

KR1
· ∇
)
AR1

+
1

2ωR1ω0

(
c2k20∆− c4k20

ω2
R1

(
KR1

· ∇
)2)

AR1

=
ω2
pe

2ω0ωR1

pAR1
−∇ · E∗||A0e

iθ1,1
kR1

|KR1 |
, (1.7)

i
(
∂t +

c2k0
ωR2ω0

KR2
· ∇
)
AR2

+
1

2ωR2ω0

(
c2k20∆− c4k20

ω2
R2

(
KR2

· ∇
)2)

AR2

=
ω2
pe

2ω0ωR2

pAR2 − α∇ · E∗||A0e
iθ1,2

kR2

|KR2 |
, (1.8)

i
(
∂t +

c2k0
ωR2ω0

KRs
2
· ∇
)
ARs

2
+

1

2ωR2ω0

(
c2k20∆− c4k20

ω2
R2

(
KRs

2
· ∇
)2)

ARs
2

=
ω2
pe

2ω0ωR2

pARs
2
− α∇ · E∗||A0e

iθ1,2s
kRs

2

|KRs
2
|
, (1.9)

i∂tE|| +
v2thk

2
0

2ωpeω0
∆E|| =

ωpe
2ω0

pE|| +∇
(
A0A

∗
R1
eiθ1,1

kR1

|KR1
|

+ α
(
A0A

∗
R2
eiθ1,2 +A0A

∗
Rs

2
eiθ1,2s

) kR2

|KR2
|

)
, (1.10)

(
∂2t − c2s∆

)
p =

4me

mi

ω0ωR1

ω2
pe

∆
(
|E|||2 +

ωpe
ω0
|A0|2 +

ωpe
ωR1

|AR1 |2

+
ωpe
ωR2

(
|AR2 |2 + |ARs

2
|2
))
, (1.11)
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where α =
√

ωR1

ωR2
. It will be shown later that kRs

2
= kR2

and |KRs
2
| = |KR2

|.
The constants c, cs, me and mi are respectively the velocity of light in vacuum,
the acoustic velocity, the electron’s and ion’s mass. Note that we could con-
sider separately the systems involving respectively the backward and forward
scattered waves. But since they are coupled through (1.6)-(1.11), we have to
consider the whole system for a complete description of the phenomena. The
methods of [7] applies and one gets the following result.

Existence result : Let s > d
2 + 3, (a0, aR1

, aR2
, aRs

2
, e0) ∈

(
Hs+2(Rd)

)5d
,

p0 ∈ Hs+1(Rd) and p1 ∈ Hs(Rd). There exists T > 0 and a unique maximal
solution (A0, AR1

, AR2
, ARs

2
, E||, p) to (1.6)− (1.11) such that

(A0, AR1 , AR2 , A
s
R2
, E||) ∈

(
C([0, T [;Hs+2)

)5d
,

p ∈ C([0, T [;Hs+1) ∩ C1([0, T [;Hs),

with initial value

(A0, AR1 , AR2 , ARs
2
, E||)(0) = (a0, aR1 , aR2 , aRs

2
, e0)

p(0) = p0, ∂tp(0) = p1.

In Section 5, we perform some numerical simulations in order to illustrate
the phenomena and to emphazise the new directions of propagation.

1.2 The method.

As said before, the Raman amplification is essentially a three waves mixing
phenomena. As a consequence, we introduce three waves vectors K0, KR and
K1 and three frequencies ω0, ωR and ω1 satisfying{

K0 = KR +K1, (1.12)

ω0 = ωR + (ωpe + ω1), (1.13)

such that (K0, ω0), (KR, ωR) satisfy the dispersion relation for electromagnetic
waves (2.15) namely ω2 = ω2

pe + c2|K|2 and (K1, ω1 + ωpe) satisfies that for
electron-plasma waves ω2 = ω2

pe + v2th|K|2. We choose the form (K1, ω1 + ωpe)
for the electron-plasma waves because of the relative shapes of the two curves
represented in Figure 1.
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Figure 1: Plot of the first part of the dispersion relations (2.14) (dashed line)
and (2.15) (solid line) with ω2

pe = 1, c2 = 1 and v2th = 0.01. The plot corresponds
to ω as a function of |K|.

Indeed, whatever the value of (K0, ω0), ω1 + ωpe will be close to ωpe so that
ω1 << ωpe. However, in this configuration, K1 can take a continuous range of
values.

The weakly non-linear theory consists in decomposing the different fields F
into three components

F = F0e
i(K0·X−ω0t) + FRe

i(KR·X−ωRt) + Fee
−iωet +c.c.

We then plug this decomposition into Maxwell’s system and collect the different
coefficients of the oscillatory terms in e−iω0t, e−iωRt and e−iωpet. We deal only
with the oscillations in time (which is not the case when one has to derive the
paraxial approximation in optics for example) since, as we emphasized before,
K1 can take a continuous range of values. This lead to the following result :

1) For the linear part, each of the component satisfies a Schrödinger-type
equation with the suitable group velocity and dispersion terms.

2) For the non-linear part, we keep only the resonant terms (with respect
to the time oscillations). Therefore, some phase mismatch terms appear under

the form ei
(
K1·X−ω1t

)
. These terms describe two phenomena: the first one

is the fact that K1 can take a continuous range of values and the second one
corresponds to the fact that the relationship ω0 = ωR + ωpe is not true and
that one has to add a corrective term ω1 << ωpe in order to obtain the exact
relationship (1.13).

We have used this strategy in [7], [8]. We would like to emphasize that it
is a non-standard method and that it is not clear which framework could be
used from the mathematical point of view in order to justify rigorously this
expansion. For example, the work by Texier (see [16]) can not be adapted in
this case because precisely of this three wave mixing phenomena.

The main contribution of this paper is to deal with the 2D situation. The
equations describing the three-wave mixing have two curves of solutions. One
of these curve corresponds to a backward solution, the other one to a forward
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solution. The question is : how can we select two particular solutions (one
backward, one forward)? The answer that we propose here is the following one.
We derive a non-linear system starting from bifluid Euler-Maxwell system that
describes the three wave interaction for any prescribed solution of the three wave
mixing equations. From this system, as in [8], we compute an amplification
rate thanks to a semi-classical analysis. At the begining of the phenomena,
the Raman components is growing exponentially before to reach a non-linear
saturation regime. Therefore, only the solutions corresponding to the maximal
amplification rate has a significant effect. Since two directions of propagation
are involved (backward and forward), we look separately to both cases. The
conclusion is the following one :
• for the backward component, the amplification rate reaches its maximum

when this wave is collinear to the incident laser field,
• for the forward component, the situation is different since the amplification

rate is maximum when the Raman component has a non-zero prescribed angle
(depending on the different constants involved in the system). One has therefore
to consider two components that are symmetric with respect to the direction of
propagation of the incident laser field.

Note that in each situation, the amplification rate exhibits only one maxi-
mum. We then generalize the construction of the non-linear system to the case
where several directions of propagation are involved. By non-linear effects, all
these waves are coupled and this leads to System (1.6)-(1.11).

The 3-D case is completely open. Indeed, the same analysis can be performed
concerning the amplification rate. Again the backward solution has a maximum
amplification rate when it is aligned with the incident laser field. However, due
to the invariance by rotations in the plane that is transverse to the direction of
propagation of the laser, a continuous curve of solutions have the same maximal
amplification rate for the forward component. Therefore, we would have to deal
with a continuous familly of component and to our knowledge, no mathematical
framework is available in order to deal with the phase mismatch description
in this context. In the work by Barrailh and Lannes ([13]) where the notion
of continuous spectrum is introduced, the non-linear interactions are basically
killed by the analysis except under very special geometrical assumptions on the
dispersion relation that are not satisfied in our case.

2 Obtaining a 2-D Raman amplification system

2.1 The Euler-Maxwell system

As noticed in the introduction, the main drawback of the model developped in
[7] is the fact that the Raman component and the incident laser field are collinear
in the sense that the wave vectors are proportional (in opposite direction). The
aim of this section is to get rid of this hypothesis. We will only sketch the
computations that are very close to the ones done in [7]. We start from the
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bifluid Euler-Maxwell system. The Euler equations are

(n0 + ne) (∂tve + ve · ∇ve) = −γeTe
me
∇ne −

e(n0 + ne)

me
(E +

1

c
ve ×B), (2.1)

(n0 + ni) (∂tvi + vi · ∇vi) = −γiTi
mi
∇ni +

e(n0 + ni)

mi
(E +

1

c
vi ×B), (2.2)

∂tne +∇ · ((n0 + ne)ve) = 0, (2.3)

∂tni +∇ · ((n0 + ni)vi) = 0. (2.4)

The Maxwell system is written in terms of the electronic-magnetic fields for the
study of the electron-plasma waves (Langmuir waves)

∂tB + c∇× E = 0, (2.5)

∂tE − c∇×B = 4πe
(
(n0 + ne)ve − Z(n0 + ni)vi

)
, (2.6)

while the formulation with magnetic potential, electric potential and electric
field in the Lorentz gauge is used for the study of the electromagnetic waves
(light)

∂tψ = c∇ ·A, (2.7)

∂tA+ cE = c∇ψ, (2.8)

∂tE − c∇×∇×A = 4πe
(
(n0 + ne)ve − Z(n0 + ni)vi

)
, (2.9)

where Z is the atomic number of the ions. We first perform a linear analysis of
system (2.1) − (2.9) and compute the dispersion relations as well as the polar-
ization conditions. Then using the time enveloppe approximation, we derive a
quasilinear system describing the interaction.

2.2 Dispersion relations and polarization conditions.

Since the mass of the ions is much larger than that of the electrons (a ratio
of at least 103), the velocity of the ions is smaller than that of the electrons.
Therefore we can neglect the contribution of the ions in the current in (2.6) or
(2.9). We then linearize System (2.1)− (2.9) around the steady state solution 0
and one gets

n0∂tve = −γeTe
me
∇ne −

en0
me

E, (2.10)

∂tne + n0∇ · ve = 0, (2.11)

∂tB + c∇× E = 0, (2.12)

∂tE − c∇×B = 4πen0ve. (2.13)

Note that the acoustic part concerning the ions is decoupled from the high-
frequency part concerning the electrons and will be considered below. We look
for plane wave solutions to (2.10)− (2.11) of the form ei(K·X−ωt)

(
ve, ne, B,E

)
.

Two kind of waves can propagate :

7



i) Longitudinal waves for which K is parallel to E (electron-plasma wave).
They satisfy the dispersion relation

ω2 = ω2
pe + v2th|K|2, (2.14)

with

ω2
pe =

4πe2n0
me

, v2th =

√
γeTe
me

.

ii) Transverse waves for which K is orthogonal to E (electromagnetic waves).
They obey the dispersion relation

ω2 = ω2
pe + c2|K|2. (2.15)

Since for our applications, vth � c, the shape of the graph of (2.14) or (2.15)
are very different. Indeed, (2.14) is very flat near the origin compared to (2.15)
(see Figure 1). Therefore, even if a precise couple (K0, ω0) is imposed for the
incident laser field, we have to consider only the frequency ωpe for the electron-
plasma wave with a continuous rangeK of wave vectors. Therefore, the complete
solution reads

B
E
ve
ne

 =


B||
E||
ve||
ne||

 e−iωpet +

k∑
j=1


Bj⊥
Ej⊥
vje⊥
0

 ei(Kj ·X−ωjt) + c.c. (2.16)

where || corresponds to the longitudinal part and ⊥ coresponds to the tranverse
part. Furthermore, for all 1 ≤ j ≤ k,

ω2
j = ω2

pe + c2|Kj |2. (2.17)

As usual
(
B||, E||, ve||, ne||

)
and

(
Bj⊥, E

j
⊥, v

j
e⊥
)

satisfy some polarization condi-
tions that are obtained like in [7] by plugging plane waves in (2.10)− (2.13),

ve|| = −i ωpe
4πen0

E||, B|| = 0, ne|| = − 1

4πe
∇ · E||.

For the transverse part, one writes B⊥ = ∇×A⊥ and using the Maxwell system
in the Lorentz gauge we get

− iωjAj⊥ + cEj⊥ = 0, (2.18)

− iωjEj⊥ + cKj ×Kj ×Aj⊥ = 4πn0ve⊥, (2.19)

− iωjvje⊥ = − e

me
Ej⊥. (2.20)

Using (2.19) and (2.20), one obtains

−iωjEj⊥ + cKj ×Kj ×Aj⊥ = −i4πe
2n0

meωj
Ej⊥.
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It follows that Ej⊥ is orthogonal to Kj and therefore so do Aj⊥ and vje⊥. In a

2-D geometry, this leads to look for Ej⊥, Aj⊥ and vje⊥ under the form

(
Ej⊥, A

j
⊥, v

j
e⊥
)K⊥j
|Kj |

, (2.21)

where
(
Ej⊥, A

j
⊥, v

j
e⊥
)

denote now scalar functions. Note that K⊥j is orthogonal
to Kj in the plane defined by (K0,KR). We do not deal with s-polarized waves.
The polarization relations on these scalar fields read

vje⊥ =
e

mec
Aj⊥, Ej⊥ = i

ωj
c
Aj⊥. (2.22)

2.3 The weakly nonlinear theory.

We restrict ourself to the 2D case. Since we are interested in the Raman insta-
bility, we take k = 2 in (2.16) and write

B
E
ve
ne

 =


0
E||
ve||
ne||

 e−iωpet +


B0

E0

ve0
0

 ei(K0·X−ω0t)

+


BR
ER
veR
0

 ei(KR·X−ωRt) + c.c., (2.23)

where the subscript 0 stands for the incident laser field and R for the Raman
component. The purpose of the weakly non-linear theory is to propose a non-
linear system that describes the three wave mixing phenomena. We recall here
our general strategy explained in the introduction for the derivation of the
coupled non-linear system. To this end, we introduce three wave vectors K0,
KR and K1 and three frequencies ω0, ωR and ω1 satisfying{

K0 = KR +K1, (2.24)

ω0 = ωR + (ωpe + ω1), (2.25)

such that (K0, ω0), (KR, ωR) satisfy the dispersion relation for electromagnetic
waves (2.15) namely ω2 = ω2

pe + c2|K|2 and (K1, ω1 + ωpe) satisfies that for
electron-plasma waves ω2 = ω2

pe + v2th|K|2. The weakly non-linear theory con-
sists in decomposing the different fields F into three components

F = F0e
i(K0·X−ω0t) + FRe

i(KR·X−ωRt) + Fee
−iωet +c.c.

We then plug this decomposition into Maxwell system and collect the different
coefficients of the oscillatory terms in e−iω0t, e−iωRt and e−iωpet. We deal only
with the oscillations. As explained above, this leads to the following result :
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the linear behavior of the waves is governed by Schrödinger-type equations. For
the non-linear part, we perform a Fourier analysis in time keeping only the
resonant terms. This analysis induces the presence of phase mismatch terms of

the form ei
(
K1·X−ω1t

)
that come from the fact that a continuous range of values

of K1 are admissible and that the relationship ω0 = ωR + ωpe is not exact but
approximative in the way that ω1 << ωpe (see (2.25)).

From now on, when we deal with a generic vector field, we use the bold
character A whereas the notation A denotes a scalar field.
• Equation on A0 and AR. The equations satisfied by each of the electro-

magnetic fields
(
B0,E0,ve0

)
and

(
BR,ER,veR

)
are, using the vector potential

A (A=A0 or AR)

∂2tA− c2∆A = −4πec(n0 + ne)ve.

We now write

A = A0e
i
(
K0·X−ω0t

)
+ ARe

i
(
KR·X−ωRt

)
+c.c,

and introduce the scalar components A0 and AR of A0 and AR with respect to
K⊥0 and K⊥R ,

A0 = PK⊥0 A0, AR = PK⊥RAR,

where PK⊥0 and PK⊥R are the orthogonal projector onto K⊥0 and K⊥R . Collecting

the terms depending on ei
(
K0·X−ω0t

)
(resp. ei

(
KR·X−ωRt

)
) and applying PK⊥0

(resp. PK⊥R ) leads to, as in [7], the following equations

i
(
∂t +

c2

ω0
K0 · ∇

)
A0 +

1

2ω0

(
c2∆− c4

ω2
0

(
K0 · ∇

)2)
A0

=
2πe2

ω0me
pA0 −

e

2ω0me

(
∇ · E||

)
ARe

−iθ1 K0 ·KR

|K0||KR|
, (2.26)

i
(
∂t +

c2

ωR
KR · ∇

)
AR +

1

2ωR

(
c2∆− c4

ω2
R

(
KR · ∇

)2)
AR

=
2πe2

ωRme
pAR −

e

2ωRme

(
∇ · E∗||

)
A0e

iθ1
K0 ·KR

|K0||KR|
. (2.27)

We recall here that p denotes the low-frequency variation of the density of
electrons.
• Equation on E||. The electron-plasma part is very similar to that of [7].
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We describe briefly the procedure. Using (2.1), (2.5) and (2.6), one has

∂2tE + c2∇×∇×E = 4πe∂t

(
(n0 + ne)ve

)
= 4πe

(
(n0 + ne)∂tve + ve∂tne

)
= 4πe

(
− (n0 + ne)ve · ∇ve −

γeTe
me
∇ne

− e(n0 + ne)

me

(
E +

1

c
ve ×B

)
− ve∇ ·

(
(n0 + ne)ve

))
.

Keeping only at most quadratic terms gives

∂2tE + c2∇×∇×E = 4πe
(
− n0ve · ∇ve −

γeTe
me
∇ne

− e(n0 + ne)

me
E− en0

cme
ve ×B− n0ve∇ · ve

)
.

Using

E = E0e
i
(
K0·X−ω0t

)
+ ERe

i
(
KR·X−ωRt

)
+ E||e

−iωpet +c.c.,

and collecting the e−iωpet terms leads to

∂2tE|| − 2iωpe∂tE|| + c2∇×∇×E|| − ω2
peE|| +

4πeγeTe
me

∇ne

=
〈

4πe
(
− n0ve · ∇ve −

e(n0 + ne)

me
E− en0

cme
ve ×B− n0ve∇ · ve

)〉
ωpe

,

where
〈
·
〉
ωpe

denotes the coefficient of e−iωpet in the expansion. Using the

polarization condition

ne|| = − 1

4πe
∇ ·E||,

and noticing that

ω2
peE|| =

〈
4πe

en0
me

E
〉
ωpe

,

we obtain

∂2tE|| − 2iωpe∂tE|| + c2∇×∇×E|| − v2th∇∇ ·E||

=
〈

4πe
(
− n0ve · ∇ve −

ene
me

E− en0
cme

ve ×B− n0ve∇ · ve

)〉
ωpe

.

The nonlinear resonant terms are given by〈
ve · ∇ve

〉
ωpe

=
(
v0 · ∇v∗R + v∗R · ∇v0

)
eiθ1 + v0 · v∗R∇eiθ1 ,〈

neE
〉
ωpe

= pE||,〈
ve ×B

〉
ωpe

=
(
v0 ×B∗R + v∗R ×B0

)
eiθ1 ,
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〈
ve∇ · ve

〉
ωpe

=
(
v0∇ · v∗R + v∗R∇ · v0

)
eiθ1 ,

since v0 and v∗R are orthogonal. But

B0 = ∇×A0, v0 =
e

mec
A0,

BR = ∇×AR, vR =
e

mec
AR,

then, it follows that〈
− n0ve · ∇ve −

en0
cme

ve ×B− n0ve∇ · ve

〉
ωpe

= − e
2n0
m2
ec

2

(
A0 · ∇A∗R + A∗R · ∇A0 + A0 ·A∗R∇(iθ1)

+ A0 ×∇×A∗R + A∗R ×∇×A0 + A0∇ ·A∗R + A∗R∇ ·A0

)
eiθ1

≈ − e
2n0
m2
ec

2
∇
(
A0 ·A∗Reiθ1

)
,

since at first order, one has ∇ · A0 = 0 and ∇ · A∗R = 0 and therefore for a
weakly nonlinear analysis A0∇ ·A∗R +A∗R∇ ·A0 can be neglected. Computing

A0 ·A∗R = A0A
∗
R

K0 ·KR

|K0||KR|
,

and using the time envelope approximation ∂2tE|| << ωpe∂tE||, it follows that

− 2iωpe∂tE|| + c2∇×∇×E|| − v2th∇∇ ·E||

= −4πe2

me
pE|| −

4πe3n0
m2
ec

2
∇
(
A0A

∗
Re

iθ1
K0 ·KR

|K0||KR|

)
.

The final equation reads

i∂tE|| +
v2th

2ωpe
∇∇ ·E|| −

c2

2ωpe
∇×∇×E||

=
ωpe
2n0

pE|| +
eωpe

2mec2
∇
(
A0A

∗
Re

iθ1
K0 ·KR

|K0||KR|

)
. (2.28)

• Equation on p. The acoustic part is the same as in [7]. It is obtained by
the usual procedure starting from (2.2)-(2.4) and reads(

∂2t − c2s∆
)
p =

1

4πmi
∆
(
|E|||2 +

ω2
pe

c2
(
|A0|2 + |AR|2

))
, (2.29)

where

c2s =
γiTi
mi

+
γeTe
me

.

System (2.26)− (2.29) is the 2-D Raman interaction system. Note that in this
case, the usual ponderomotive force in the right-hand-side of (2.29) is modified
compared to the usual one (see [17])

12



3 The amplification rates and the most ampli-
fied directions.

3.1 Semi-classical asymptotic.

As in [8], we introduce a semi-classical limit of System (2.26)−(2.29) in order to
obtain amplification rates. Following [8], we take p = 0 in order to focus on the
three waves mixing phenomena. We rewrite (2.26)− (2.28) under the following
way by introducing a small parameter ε that describes the order of magnitude
of the inverse of the frequency of the waves. Therefore, the phase θ1 can be
written

θ1 =
(K1 ·X − ω1t)

ε
,

where K1 and ω1 are dimensionless wave number and frequency. We perform a
semi-classical expansion in the spirit of [6] to obtain

i
(
∂t +

c2

ω0
K0 · ∇

)
A0 +

ε

2ω0

(
c2∆− c4

ω2
0

(
K0 · ∇

)2)
A0

= −ε e

2ω0me

(
∇ ·E||

)
ARe

−iθ1 K0 ·KR

|K0||KR|
, (3.1)

i
(
∂t +

c2

ωR
KR · ∇

)
AR +

ε

2ωR

(
c2∆− c4

ω2
R

(
KR · ∇

)2)
AR

= −ε e

2ωRme

(
∇ ·E∗||

)
A0e

iθ1
K0 ·KR

|K0||KR|
, (3.2)

i∂tE|| + ε
( v2th

2ωpe
∇∇ ·E|| −

c2

2ωpe
∇×∇×E||

)
= ε

eωpe
2mec2

∇
(
A0A

∗
Re

iθ1
K0 ·KR

|K0||KR|

)
. (3.3)

Note that, since the right-hand-side of (3.3) is a gradient, one has ∇×E|| = 0.
Then E|| is a gradient and then a straightforward calculation (see [7] for more
details) gives, after applying succesively the operators ∇· and ∇∆−1 on (3.3)

i∂tE|| + ε
v2th

2ωpe
∆E|| = ε

eωpe
2mec2

∇
(
A0A

∗
Re

iθ1
K0 ·KR

|K0||KR|

)
. (3.4)

Denoting E|| = Eei
(K1·X−ω1t)

ε we obtain

i
(
∂t +

c2

ω0
K0 · ∇

)
A0 +

ε

2ω0

(
c2∆− c4

ω2
0

(
K0 · ∇

)2)
A0

= −i e

2ω0me
K1 · EAR

K0 ·KR

|K0||KR|
− ε e

2ω0me

(
∇ · E

)
AR

K0 ·KR

|K0||KR|
, (3.5)
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i
(
∂t +

c2

ωR
KR · ∇

)
AR +

ε

2ωR

(
c2∆− c4

ω2
R

(
KR · ∇

)2)
AR

= i
e

2ωRme
K1 · E∗A0

K0 ·KR

|K0||KR|
− ε e

2ωRme

(
∇ · E∗

)
A0

K0 ·KR

|K0||KR|
, (3.6)

(
i∂t +

1

ε

(
ω1 −

v2th
2ωpe

|K1|2
)

+ i
v2th
ωpe

K1 · ∇
)
E + ε

v2th
2ωpe

∆E

= i
eωpe

2mec2

(
A0A

∗
R

K0 ·KR

|K0||KR|

)
K1 + ε

eωpe
2mec2

∇
(
A0A

∗
R

K0 ·KR

|K0||KR|

)
. (3.7)

Now recall that the third wave (ωpe + ω1,K1) satisfies the dispersion relation
(2.14)

(ωpe + ω1)2 = ω2
pe + v2th|K1|2,

and thus a direct expansion gives

ω1 ≈
v2th|K1|2

2ωpe
.

Then the equation (3.7) on E reads

i
(
∂t +

v2th
ωpe

K1 · ∇
)
E + ε∆E = i

eωpe
2mec2

(
A0A

∗
R

K0 ·KR

|K0||KR|

)
K1

+ ε
eωpe

2mec2
∇
(
A0A

∗
R

K0 ·KR

|K0||KR|

)
. (3.8)

Finally, denoting by

f0 =
ωpe
c
A0, fR =

ωpe
c
AR, f =

K1 · E
|K1|

,

Equations (3.5), (3.6) and (3.8) become at leading order with respect to ε(
∂t +

c2

ω0
K0 · ∇

)
f0 = − e|K1|

2ω0me
ffR cos(θ), (3.9)(

∂t +
c2

ωR
KR · ∇

)
fR =

e|K1|
2meωR

f∗f0 cos(θ), (3.10)(
∂t +

v2th
ωpe

K1 · ∇
)
f =

e|K1|
2meωpe

f0f
∗
R cos(θ), (3.11)

where θ denotes the angle between K0 and KR.

3.2 Amplification rates.

In order to point out the amplification rates, we study the stability of the
trivial solution (f0, 0, 0) where f0 is a constant. Applying the Fourier transform
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in space on Equations (3.10) and (3.11), we obtain (we denote by f̂ the Fourier
transform of a function f)

∂tf̂R + i
c2

ωR
ξ ·KRf̂R =

e|K1|
2meωR

f0f̂∗cos(θ) (3.12)

∂tf̂∗ + i
v2th
ωpe

ξ ·K1f̂∗ =
e|K1|

2meωpe
f∗0 f̂Rcos(θ) (3.13)

In order to decouple Equations (3.12) and (3.13), we apply the operator ∂t +

i
v2th
ωpe

ξ ·K1 on (3.12) to derive, using (3.13)

∂2t f̂R + i
( v2th
ωpe

K1 +
c2

ωR
KR

)
· ξ∂tf̂R

−
( c2v2th
ωpeωR

(ξ ·K1)(ξ ·KR) +
e2|K1|2|f0|2cos2(θ)

4m2
eωRωpe

)
f̂R = 0. (3.14)

The discriminant associated with Equation (3.14) is then equal to

∆ = −
(( v2th
ωpe

K1 +
c2

ωR
KR

)
· ξ
)2

+ 4
( c2v2th
ωpeωR

(ξ ·K1)(ξ ·KR) +
e2|K1|2|f0|2cos2(θ)

4m2
eωRωpe

)
= 4

e2|K1|2|f0|2cos2(θ)

4m2
eωRωpe

−
(( v2th
ωpe

K1 −
c2

ωR
KR

)
· ξ
)2
. (3.15)

It is obvious that (3.15) reaches its maximum for

ξ ·
( v2th
ωpe

K1 −
c2

ωR
KR

)
= 0, (3.16)

which means that the growth rate of the solutions of Equations (3.12) and (3.13)
is maximal if ξ satisfies (3.16). The amplification rate is therefore proportional
to

β =
|K1|√
ωRωpe

|cos(θ)|.

Recall that the incident field propagates along the x−axis and that

K0 =

(
k0
0

)
, KR =

(
kR
`R

)
, K1 =

(
k1
`1

)
.

and remark that we have `R = −`1. The dispersion relation (2.14) and (2.15)
gives 

ω2
0 = ω2

pe + k20c
2,

ω2
R = ω2

pe + (k2R + `2R)c2,
(ωpe + ω1)2 = ω2

pe + v2th(k21 + `21).
(3.17)
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We take ωpe as unit for ω and
ωpe

c as unit for k. Introduce

ρ =
vth
c
<< 1,

then System (3.17) can be rewritten into ω2
0 = 1 + k20,
ω2
R = 1 + (k2R + `2R),

(1 + ω1)2 = 1 + ρ2(k21 + `21).
(3.18)

The amplification rate β is given by

β =

√
k21 + `21√

1 + k2R + `21

|kR|√
k2R + `21

. (3.19)

For given k0, ω0 satisfying ω2
0 = 1 + k20, we therefore need to find the maximum

of β(kR, k1, `1) subject to the constraints

ω2
R = 1 + (k2R + `2R), (1 + ω1)2 = 1 + ρ2(k21 + `21), k0 = kR + k1.

Replacing kR by k0 − k1 in (3.19) gives

β =

√
k21 + `21√

1 + (k0 − k1)2 + `21

|k0 − k1|√
(k0 − k1)2 + `21

, (3.20)

with √
1 + k20 =

√
1 + (k0 − k1)2 + `21 +

√
1 + ρ2(k21 + `21). (3.21)

Note that since ω0 = 1 + ωR + ω1 and ωR ≥ 0, ω1 ≥ 0, one has thanks to
(3.18), ωR ≥ 1 and therefore ω0 ≥ 2, which is the dimensionless version of
the well-known condition ωpe ≤ ω0

2 for the existence of the backward Raman
scattering.

3.3 Conclusions.

The above problem (3.20) − (3.21) is solved numerically. The conclusions are
the following ones. For the backscattered component (k < 0), the maximum is
reached for `1 = 0. This means that the most amplified direction corresponds
to the case where the Raman field is collinear to the incident laser field (see
Figure 2, left picture).
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Figure 2: β with respect to `1 with ρ = 0.01 and respectively, from left to right,
k < 0 and k > 0.

This model is used in [7]. For the forward component (k > 0), one can see in
Figure 2 (right picture) that the maximum of β is reached for `1 6= 0. Therefore,
the Raman field makes a non-zero angle with the incident laser pulse and gives
rise to new direction of propagation.

For the sake of completeness, we now present some curves representing the
amplification rate β with respect to `1 for different values of parameter ρ. In
Figure 3, we take ρ = 0.05 and in Figure 4, ρ = 0.001. One can observe in
Figure 3 and Figure 4 that the qualitative behaviour of β is the same than that
observed in Figure 2.
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Figure 3: β with respect to `1 with ρ = 0.05 and respectively, from left to right,
k < 0 and k > 0.
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Figure 4: β with respect to `1 with ρ = 0.001 and respectively, from left to
right, k < 0 and k > 0.

The next step is to take into account this new direction of propagation.

4 A complete model

4.1 Some basic tools

In order to describe the directions of propagation, one introduces the three wave
vectors for the Raman component given by problem (3.20)− (3.21)

KR1
=

(
kR1

`R1

)
, KR2

=

(
kR2

`R2

)
, KRs

2s
=

(
kRs

2

`Rs
2

)
,

satisfying
K0 = KR1 +K1,1 = KR2 +K1,2 = KRs

2
+K1,2s ,

that is (
k0
0

)
=

(
kR1

`R1

)
+

(
k1,1
`1,1

)
,

=

(
kR2

`R2

)
+

(
k1,2
`1,2

)
,

=

(
kRs

2

`Rs
2

)
+

(
k1,2s

`1,2s

)
.

We then intoduce the Raman frequencies ωR1 , ωR2 and ωRs
2

solution to

ω0 = ωpe + ωR1
+ ω1,1,

= ωpe + ωR2
+ ω1,2,

= ωpe + ωRs
2

+ ω1,2s .

Note that (K0, ω0), (KR1
, ωR1

), (KR2
, ωR2

) and (KRs
2
, ωRs

2
) satisfy the disper-

sion relation for electromagnetic waves (2.15) while (K1,1, ω1,1), (K1,2, ω1,2) and
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(K1,2s , ω1,2s) satisfy the one for electron-plasma waves (2.14). That means that
we have

ωR1
=
√
ω2
pe + c2(k2R1

+ `2R1
),

ωR2 =
√
ω2
pe + c2(k2R2

+ `2R2
),

ωRs
2

=
√
ω2
pe + c2(k2Rs

2
+ `2Rs

2
).

Since K2 and Ks
2 are symmetric with respect to K0, choosing K0 collinear to

the x−axis, we have kR2 = kRs
2

and `R2 = −`Rs
2
. Therefore, one has ωR2 = ωRs

2

and ω1,2 = ω1,2s . In the sequel, we replace ωRs
2

and ω1,2s by respectively ωR2

and ω1,2.

4.2 The equations.

As in Section 2, one gets the following set of equations, assuming that K0 is
collinear to the x−axis,

i
(
∂t +

c2

ω2
0

K0 · ∇
)
A0 +

(c2k20
2ω2

0

∆− c4

2ω4
0

(
K0 · ∇

)2)
A0 =

2πe2

meω0
pA0 (4.1)

− e

2meω0
∇ ·E||

(
AR1

e−iθ1,1
K0 ·KR1

|K0||KR1
|

+AR2
e−iθ1,2

K0 ·KR2

|K0||KR2
|

+ARs
2
e−iθ1,2s

K0 ·KRs
2

|K0||KRs
2
|

)
,

i
(
∂t +

c2

ωR1

KR1
· ∇
)
AR1

+
1

2ωR1

(
c2∆− c4

ω2
R1

(
KR1

· ∇
)2)

AR1

=
2πe2

meωR1

pAR1 −
e

2meωR1

∇ ·E∗||A0e
iθ1,1

K0 ·KR1

|K0]|KR1 |
, (4.2)

i
(
∂t +

c2

ωR2

KR2
· ∇
)
AR2

+
1

2ωR2

(
c2∆− c4

ω2
R2

(
KR2

· ∇
)2)

AR2

=
2πe2

meωR2

pAR2 −
e

2meωR2

∇ ·E∗||A0e
iθ1,2

K0 ·KR2

|K0||KR2 |
, (4.3)

i
(
∂t +

c2

ωR2

KRs
2
· ∇
)
ARs

2
+

1

2ωR2

(
c2∆− c4

ω2
R2

(
KRs

2
· ∇
)2)

ARs
2

=
2πe2

meωRs
2

pARs
2
− e

2meωR2

∇ ·E∗||A0e
iθ1,2s

K0 ·KRs
2

|K0||KRs
2
|
, (4.4)

i∂tE|| +
v2th

2ωpe
∆E|| =

ω2
pe

2
pE|| +

ωpee

2mec2
∇
(
A0A

∗
R1
eiθ1,1

K0 ·KR1

|K0||KR1
|

+A0A
∗
R2
eiθ1,2

K0 ·KR2

|K0||KR2
|

+A0ARs
2
eiθ1,2s

K0 ·KRs
2

|K0||KRs
2
|

)
, (4.5)
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(
∂2t − c2s∆

)
p =

1

4πmi
∆
(
|E|||2 +

ω2
pe

c2
(
|A0|2 + |AR1

|2 + |AR2
|2 + |ARs

2
|2
))
.

(4.6)

Note that since the Raman components are not resonant one another, one gets
two distinct equations without coupling terms like AR1

A∗R2
and the same pro-

cedure as in Section 2 can be used. A non-dimensional form can be obtained.
Using 1

ω0
as time scale, 1

|K0| as space scale and denoting

Ã0 =
√
ω0
ωpe
c

A0

γ
, ÃR1

=
√
ωR1

ωpe
c

AR1

γ
, ÃR2

=
√
ωR2

ωpe
c

AR2

γ
,

ÃRs
2

=
√
ωR2

ωpe
c

ARs
2

γ
, Ẽ|| =

√
ωpe

γ
E||,

with

γ =
2meω0

ek0

√
ω0ωpeωR1

,

we obtain (dropping the tildes) and recalling that

α =

√
ωR1

ωR2

,

i
(
∂t +

c2k20
ω2
0

∂x

)
A0 +

(c2k20
2ω2

0

∆− c4k40
2ω4

0

∂2x

)
A0 =

ω2
pe

2ω2
0

pA0 (4.7)

−∇ ·E||
(
AR1

e−iθ1,1
kR1

|KR1
|

+ α
(
AR2

e−iθ1,2 +ARs
2
e−iθ1,2s

) kR2

|KR2
|

)
,

i
(
∂t +

c2k0
ωR1ω0

KR1
· ∇
)
AR1

+
1

2ωR1ω0

(
c2k20∆− c4k20

ω2
R1

(
KR1

· ∇
)2)

AR1

=
ω2
pe

2ω0ωR1

pAR1
−∇ ·E||∗A0e

iθ1,1
kR1

|KR1 |
, (4.8)

i
(
∂t +

c2k0
ωR2

ω0
KR2

· ∇
)
AR2

+
1

2ωR2
ω0

(
c2k20∆− c4k20

ω2
R2

(
KR2

· ∇
)2)

AR2

=
ω2
pe

2ω0ωR2

pAR2
− α∇ ·E||∗A0e

iθ1,2
kR2

|KR2
|
, (4.9)

i
(
∂t +

c2k0
ωR2ω0

KRs
2
· ∇
)
ARs

2
+

1

2ωR2ω0

(
c2k20∆− c4k20

ω2
R2

(
KRs

2
· ∇
)2)

ARs
2

=
ω2
pe

2ω0ωR2

pARs
2
− α∇ ·E||∗A0e

iθ1,2s
kR2

|KR2 |
, (4.10)
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i∂tE|| +
v2thk

2
0

2ωpeω0
∆E|| =

ωpe
2ω0

pE|| +∇
(
A0A

∗
R1
eiθ1,1

kR1

|KR1
|

+ α
(
A0A

∗
R2
eiθ1,2 +A0A

∗
Rs

2
eiθ1,2s

) kR2

|KR2
|

)
, (4.11)

(
∂2t − c2s∆

)
p =

4me

mi

ω0ωR1

ω2
pe

∆
(
|E|||2 +

ωpe
ω0
|A0|2 +

ωpe
ωR1

|AR1
|2

+
ωpe
ωR2

(
|AR2

|2 + |ARs
2
|2
))
. (4.12)

Remark 4.1. Note that the only new coefficient is the ratio of the Raman
frequencies

ωR1

ωR2
.

5 Numerical simulations.

5.1 The scheme.

We adapt the scheme introduced in [8]. We consider a regular mesh in space.
The fields are approximated by Ai,j for i = 0, ..., Nx and j = 0, ..., Ny. We
use periodic boundary conditions that is for all j = 0, ..., Ny, A0,j = ANx,j . In
space, we consider centered finite difference discretization for each differential
operator. Introducing
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as new unknowns, the scheme reads
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are auxiliary functions. The equations of System (4.8) − (4.12) are discretized
in the following way
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The scheme is inspired from that of C. Besse [4] and B. Glassey [10].

5.2 The test case.

The values of the different parameters are the same as the ones used in [8] and
we refer to [8] for a complete description. In particular, v0, vR1 and vR2 denotes
respectively the propagation speeds of A0, AR1

and AR2
. We denote θ the angle

between the wave vectors A0 and AR2
and by θmax the angle corresponding to

the maximum amplification rate for the Raman component propagating in the
forward direction. We work on a system in dimensionless form. The unit of
lenght is 1

k0
and the unit in time is 1

ω0
. The spatial domain is x ∈ [0, 300] and

y ∈ [0, 200]. The number of discretization points in x is Nx = 300 and the one
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in y is Ny = 200. We compute on a time intervall [0, T ] with T = 200. The
number of time steps is Nt = 576. The initial data for A0 is of the form

A0(0, ·) = αe−βx(x−γx)2e−βy(y−γy)2 .

• Case 1: We consider a collision test case. We take θ = θmax. We define
α = 0.1, βx = 1

1250 , βy = 1
1800 . The initial data for AR1

and AR2
are localized

at different positions. Therefore, after some time, these components interact in
the middle of the computational box. More precisely, the interaction takes place
at the point x = 100, y = 100. Taking into account the propagation speed of
the different fields, we introduce the following parameters

LxR1
=
vR1

v0
∗ 50, LxR2

=
vR2

v0
∗ 50 ∗ cos(θ), LyR2

= 100− LxR2
∗ tan(θ).

We take 
A0(0, ·) = αe−βx∗(x−50)2e−βy∗(y−100)2 ,

A1
R = α

100e
−βx∗(x−(100+Lx

R1
))2e−βy∗(y−100)2 ,

A2
R = α

100e
−βx∗(x−(100−Lx

R2
))2e−βy∗(y−Ly

R2
)2 .

(5.7)

The initial conditions for E and p are equal to 0. This case corresponds to the
maximum amplification rate for the second Raman component that is θ = θmax.

• Case 2: We now let θ varying from 1
6θmax to 4

3θmax and we keep LyR2
=

100−LxR2
∗ tan(θ). The initial conditions are the same as the ones used for Case

1.
• Case 3 : We keep A0 as in Case 1 and we set the Raman components to

zero. We also take p0 = p1 = 0 and a non-zero initial value for E, for instance
Ex = Ey = A0.

5.3 Comments

For convenience, we have rescaled all the fields. For each component, the max-
imum of the modulus is equal to 100. In Figure 5, we can observe the very
begining of the interaction at time t = 50. The maximum of the amplitude of
A0 is still near its maximum whereas the ones for AR1

and AR2
are far from

their maximum. In Figure 6, we have reached the impact point. The support
of the different Gaussians are nearly equal and so the amplification process is
maximal. The two Raman components are growing exponentially whereas the
amplitude of the incident laser field is decreasing. It is of course in agreement
with the conservation law coming from System (4.7)− (4.12) and preserved by
our numerical scheme

d

dt

∫
Rn

(
2|A0|2 + |AR1

|2 + |AR2
|2 + |AsR2

|2 + |E|2
)
ds = 0.

In Figure 7, the interaction has stopped since the supports became disjoints.
One can observe the effects of the dispersion on the fields.
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In Figure 8, we have ploted the maximum of the fields AR1 and AR2 with
respect to the parameter γ = θ

θmax
. We can observe that the angle θ has no in-

fluence on the field AR1
. The influence on AR2

is of great interest. As expected,
the maximum for AR2

is achieved for γ = 1. Furthermore one can observe that
the process is much more efficient for γ = 1 than for example γ = 1

6 . Indeed,
the ratio between the two maximum of the amplitude is around 20 per cent,
which means that the gain is considerable.

Note that the shapes of the curves of Figure 2 and Figure 8 are not the same
although the maximum is reached at the same point. It is due to the fact that
Figure 2 comes from a very basic analysis while Figure 8 takes into account all
the complex phenomena involved in the Raman instability. For example the
influence of the fluctuation of the density of electrons is crucial and it is not
taken into account in the linear analysis developped in Section 3.2. However we
would like to emphasize that we obtain the right angle leading to the maximum
amplification rate. Moreover, the curve of Figure 8 is flat at the maximum. It
is due to the fact that the pulse is not monochromatic and therefore even if we
prescribe the angle at a value that is different from the one giving the maximum
amplification rate, a larger region is involved. Geometrically, the critical value is
also concerned and the amplification is larger than that predicted by the linear
theory.

In Figure 9, one can observe that, even if we start from a zero initial data
for the Raman components, AR1

and AR2
do not stay equal to zero. This is due

to the coupling quasilinear terms involved in Equations (4.2) and (4.3). Indeed,
A0 plays the role of a pump-wave in (4.2)-(4.3) and then excite the two Raman
components. In Figure 9, we do not have rescaled the fields. One can note
that the maxima of the modulus of the Raman fields are very small compare to
the one of the incident laser field. This is due to the fact that the interaction
time corresponding to the superposition of the support of the different gaussians
involved is very short.
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Figure 5: 2D-geometry, Case 1. Modulus of the rescaled fields at time t=50
with initial conditions (5.7). From left to right, first line A0 and AR1

, second
line AR2

.
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Figure 6: 2D-geometry, Case 1. Modulus of the rescaled fields at time t=66
with initial conditions (5.7). From left to right, first line A0 and AR1

, second
line AR2 .
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Figure 7: 2D-geometry, Case 1. Modulus of the rescaled fields at time t=150
with initial conditions (5.7). From left to right, first line A0 and AR1

, second
line AR2
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Figure 9: 2D-geometry, Case 3. Modulus of the fields at time t=75 with initial
conditions (5.7). From left to right, first line A0 and AR1 , second line AR2 .
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