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§1. Introduction.

This paper continues the study, initiated in [DJMR], [D], of the behavior of high frequency
solutions of nonlinear hyperbolic equations for time scales at which diffractive effects and
nonlinear effects are both present in the leading term of approximate solutions. By diffrac-
tive effects we mean that the leading term in the asymptotic expansion has support which
extends beyond the region reached by the rays of geometric optics. Our expansions are for
problems where the time scale for nonlinear interaction is comparable to the time scale for
the onset of diffractive effects. The key innovation is the analysis of rectification effects,
that is the interaction of the nonoscillatory local mean field with the rapidly oscillating
fields. On the long time scales associated with diffraction, these nonoscillatory fields tend
to behave very differently from the oscillating fields. One of our main conclusions is that for
oscillatory fields associated with wave vectors on curved parts of the characteristic variety,
the interaction is negligible to leading order. For wave vector on flat parts of the variety,
and in particular problems for problems in one dimensional space, the interaction cannot
be ignored and is spelled out in detail. In all cases the leading term in an approximation
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is rigorously justified, the correctors are o(1) as the wavelength ε tends to zero. The error
is not O(εα) with α > 0.
The point of departure are the papers [DJMR], [D] where infinitely accurate asymptotic
expansions of the form

uε ∼ εp
∑
j∈Np

εj aj(εx, x, x.β/ε) , (1.1)

are justified. Here x = (t, y) ∈ R1+d, β = (τ, η) ∈ R1+d and the profiles aj(X,x, θ) are
periodic in θ. The exponent p is a critical exponent for which the the time scales for
diffractive and nonlinear effects are equal. Note the three scales, a wavelength of order ε,
variations on the scale ∼ 1 coming from the dependence of the profiles on x and variations
on the long and slow scales ∼ 1/ε from the dependence on εx. This three scale structure is
typical of diffractive geometric optics. In [DJMR] the following key hypotheses guaranteed
that nonlinear interaction did not create nonoscillatory terms,

• the nonlinear terms are odd functions of u, and
• the profiles aj(X,x, θ) in the approximations (1.1) had spectrum contained in Zodd.

The first hypothesis excludes quadratic nonlinearities and the second implies that the pro-
files have vanishing mean value with respect to θ. The main achievement of this paper is
the analysis of solutions when these hypotheses are not made. Note that quadratic inter-
action of oscillatory terms tends to create nonoscillatory sources as the simple identities
eikθ e−ikθ = 1 and sin2 kθ + cos2 kθ = 1 illustrate. The creation of nonoscillatory waves
from highly oscillatory sources is called rectification.
The spatial Fourier Transform of an expression as on the right of (1.1) is roughly localized
at wave numbers ζ ∈ Rd with |ζ − η/ε| = O(1). In the linear case solutions would be
superpositions of plane waves moving with velocities with angular spread O(ε). For times
small compared with 1/ε this angular dispersion is not important. For times O(1/ε) the
angular dispersion becomes important since at those times the accumulated effects are
O(1). This scale t ∼ 1/ε is the time scale of diffractive geometric optics.

1. Example of creation of nonoscillating parts in the principal profile. Consider
the semilinear initial value problem for for u = (u1, u2)

∂u

∂t
+
[

1 0
0 −1

]
∂u

∂y
+
(
u2

1

0

)
= 0 , uε(0, y) = ε (f(y), g(y)) sin y/ε ,

with f, g ∈ C∞0 (R;R). The equations for the uj are decoupled. The linear part is a
first order system which corresponds to the D’Alembert operator 1+1 on R1+1. The
characteristic variety is the union of the two lines τ = ±η. The exact solutions with g = 0
satisfies uε2 = 0 and

uε1(t, y) =
ε f(t− y) sin (t− y)/ε

1 + εt f(t− y) sin (t− y)/ε

=ε
(
f(t− y) sin (t− y)/ε+ εt

(
f(t− y) sin (t− y)/ε

)2 )+O(ε3t) .
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They have p = 1 and profile

a(T, t, y, θ) =
(
f(t− y) sin θ + T f(t− y)2 sin2 θ , 0

)
.

For t ∼ 1/ε the solution has nonoscillatory terms εpεtπf(t− y)2 of the same order as the
oscillating part. The factor π is the mean value of sin2 θ.

2. Example of the principal of nonoverlapping waves. The preceding example
should be contrasted to the behavior of the system where the nonlinear term (u2

1, 0) is
replaced by the nonlinear term (u2

2, 0). To see any effect one must take g 6= 0. The
equation for u1 then reads

∂tu1 + ∂yu1 + ε2 g(t+ y)2 = 0 .

The source term ε2|g(t + y)|2 travels at speed minus one so crosses the integral curves of
∂t + ∂y transversally. The u1 wave and the u2 wave overlap for only a finite period of time
so the influence of the source term is O(ε2) therefore negligible compared to the leading
O(ε) term even for times t ∼ 1/ε. If g were not integrable in y this argument would not
be correct.

In this example and for the remainder of the introduction the principal profiles will depend
only on (T, t, y, θ), there is no dependence on Y .

3. Examples where rectification effects must be analysed. 1. The compressible
Euler equations in fluid dynamics and all more complicated models containing variants
of the Euler equations, have quadratic terms. 2. From nonlinear optics the important
phenomenon of second harmonic generation is a quadratic phenomenon. 3. Even for odd
nonlinearities initial profiles which contain even harmonics are not included in the previous
analysis.

When rectification effects are present, correctors to the leading approximation are required
which do not have the structure of modulated high frequency wave trains. The correctors
can look like typical nonoscillatory solutions of nonlinear or linear wave equations. In
particular they have no reason to follow the rays of the oscillatory parts. They some-
times spread in all directions so are correspondingly smaller than the leading term in the
approximation.

4. Example of the principal of spreading waves. Consider the two dimensional
analogue of the equations in Examples 1 and 2,

Lu+ Φ(u) :=
∂u

∂t
+
[

1 0
0 −1

]
∂u

∂y1
+
[

0 1
1 0

]
∂u

∂y2
+ Φ(u) = 0 ,

3



where Φ is quadratic and uε has oscillations of wavelength ∼ ε. For this problem the
critical exponent p = 1 so critical initial value problem is

uε(0, y) = ε
(
b(y, y1/ε), 0

)
, b ∈ C∞0 (R2 × T) .

Theorem 1.1 shows that the solution is given for t ≤ C/ε by

uε(t, y) = ε a(t, x) + ε
(

a(T, t− y1, y2, . . . , θ) , 0) + o(ε) .

where the oscillatory profile a(T, t, y, θ) has mean zero with respect to θ and is determined
by the initial value problem

∂T a +
1
2

∆y2,...,yd ∂
−1
θ a + Φ

(
(a, 0)

)∗ = 0 , a(0, y, θ) = b(y, θ)∗ ,

where ∗ denontes oscillatory part, that is the function less its mean with respect to θ. The
nonoscillatory part of the profile, a, is determined by the linear hyperbolic dynamics

∂a

∂t
+
[

1 0
0 −1

]
∂a

∂y1
+
[

0 1
1 0

]
∂a

∂y2
= 0 , a(0, x) =

1
2π

∫ 2π

0

b(0, y, θ) dθ .

The function a(t, x) decays to zero in L∞(R2) as t → ∞ but has L2(R2) norm indepen-
dent of time. The conservation is maintained while the waves spread.. The L∞ decay
is responsible for the fact that the mean field does not influence the leading term of the
oscillatory part. The oscillatory and nonosillatory part do not interact to leading order.
If a|t=0 = 0 as in Examples 1 and 2, it remains zero, in contrast to Example 2. However,
even though the principal term in the expansion has mean zero in θ, to prove the accuracy
of the leading term requires correctors which have nonoscillatory parts.

The approximate solutions which we construct are not infinitely accurate and the proof of
accuracy requires a fundamentally different analysis than our earlier papers on diffractive
nonlinear geometric optics. Analogous difficulties arose when studying multiphase non-
linear geometric optics for example in [JMR 2]. For the longer time scales of diffractive
geometric optics, the difficulty occurs for one phase problems. That one does not have a
simple expansion like (1.1) is clear in the next example.

5. Example of a large corrector. Consider the coupled system

1+2u = 0 , 1+2v = |∇t,yu|2 .
With

L :=
∂

∂t
+


0 ∂/∂y1 ∂/∂y2

∂/∂y1 0 0

∂/∂y2 0 0

 ,

this yields the triangular system of equations for u := ∇t,yu and v := ∇t,yv,

Lu = 0 , L v = |u|2 .
Take Cauchy data for vε to be equal to zero. For t ∼ 1/ε one can take uε = O(ε) to be
a linearly diffractive solution and the computation in §7.5 shows that vε = O(ε3/2) is a
corrector but is large compared to the O(ε2) correctors in (1.1).
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Three scale expansions like those discussed in this paper arise in a variety of applied
problems. Several from nonlinear optics are presented in [DR]. Others with origins in
fluid dynamics including a variety of problems in shock diffraction where rigorous error
estimates have yet to be proven can be found in [H]. The latter reference also contains an
interesting historical discussion. We present examples in §7.
We now describe a typical result from our analysis. One must distinguish between hyper-
planes in the characteristic variety and curved sheets since that determines the extent of
the interaction between the mean field and the oscillatory parts.
Consider the constant coefficient semilinear equation

L(∂x)u+ Φ(u) = 0 , L :=
d∑

µ=0

Aµ
∂

∂xµ
(1.2)

where u is a smooth CN or RN valued function and Φ is a polynomial of degree J with
variables (<u,=u). Quasilinear problems are treated in the body of the paper.
The system is assumed to be symmetric hyperbolic, that is

Aµ = A∗µ, A0 = I . (1.3)

In the introduction we suppose that the characteristic variety consists of a finite number
` of smooth nonintersecting sheets τ = τj(η), j = 1, . . . , `. This is the case for strictly
hyperbolic equations, Maxwell’s equations and the linearized Euler equations.
For J th order semilinear problems

p :=
1

J − 1
(1.4)

is the critical exponent for which the time of nonlinear interaction is O(1/ε), which is the
time for the onset of diffractive effects.
In this introduction we consider only profiles a0 which are independent of Y . For β ∈
Char L ⊂ R1+d \ {0} we construct approximate solutions

uε(x) = εp a0(εt, t, y, x.β/ε) , (1.5)

where a0(T, t, y, θ) is smooth, periodic in θ and has derivatives square integrable on [0, T ]×
Rdy × T uniformly for t ∈ R.
Hyperplanes which are contained in the characteristic variety play a crucial role in describ-
ing diffractive nonlinear geometric optics. Decompose the index set

{1, . . . , `} = Af ∪ Ac (1.6)

where Ac are the indices of curved sheets and Af those of flat sheets. Then Af is empty
when there are no hyperplanes. Define a switch ι by ι = 1 when β belongs to a hyperplane
and ι = 0 otherwise. When ι = 1 relabel the sheets so that β belongs to the first hyperplane
τ = τ1(η).
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For ξ ∈ Char L let π(ξ) denote the orthogonal projection of CN onto the kernel of L(ξ).
Define

Eα(η) := π(τα
(
η), η)

)
, α ∈ A . (1.7)

The Fourier multiplication operators Eα(Dy) are orthogonal projections on Hs(Rd) for all
s.
One has β = (τα(η), η) for a unique 1 ≤ α ≤ ` and we associate two differential operators

V (∂x) := ∂t + v.∂y , v := −∇ητα(η) , (1.8)

and

R(∂y) :=
1
2

d∑
j,k=1

∂2τα(η)
∂ηj∂ηk

∂2

∂yj∂yk
. (1.9)

For a periodic function a, the mean value in θ is denoted by either a or 〈a〉. The oscillating
part is a∗ := a− a.
With the above definitions, we can write the equations for a0. The first equation is

L(∂x) a0 = 0 . (1.10)

which allows us to decompose

a0 =
∑
α∈A

a0,α , a0,α := Eα(Dy) a0 , (1.11)

and the elements of this modal decomposition satisfy(
∂t + τα(Dy)

)
a0,α = 0 . (1.12)

Define a switch κ : A → {0, 1} by κ(α) = 1 if and only if α ∈ Af . The dynamics of the
mean values is given by the equations

Eα(Dy)
(
∂T a0,α + κ(α)

〈
Φ(ι δ1,α a∗0 + a0,α)

〉)
= 0 , (1.13)

where Kronecker’s δ1,α has value 1 when α = 1 and vanishes otherwise.
The oscillating part is polarized and has simple dynamics with respect to t,

π(β) a∗0 = a∗0 , V (∂x) a∗0 = 0 . (1.14)

These equations are equivalent to

a∗0(T, t, y, θ) := a(T, y − vt, θ) , a = π(β) a∗ . (1.15)

The reduced profile, a(T, y, θ), has dynamics given by
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∂T a
∗
0 −R(∂y) ∂−1

θ a∗0 +
(
π(β) Φ(a∗0 + ιa0,1)

)∗
= 0 . (1.16)

The ∗ on the last term indicates that the nonoscillating term has been removed so the
constraint a = π a∗ from (1.15) is satisfied as soon as it is satisfied in {T = 0}.
This paper is devoted to the derivation of more general versions of equations (1.10)-(1.16),
the proof of their solvability, and the accuracy of the approximate solution in the limit
ε→ 0.
The nature of equation (1.16) can be understood as follows. The linear part given by the
first two terms acts as ∂T − iR(∂y)/n on the Fourier components â(T, y, n). The operator
R is symmetric so iR/n is antisymmetric so R generates unitary evolutions in Hs. The
semilinear term is roughly of the form aJ .
The next results are a specialization of Theorems 5.1 and 6.1 to the semilinear case and
profiles which do not depend on Y .

Theorem 1.1. If g(y, θ) ∈ ∩sHs(Rd × T) satisfies g∗ = π(β)g∗, then there is T∗ ∈]0,∞]
and unique maximal solutions (a0, a) to the profile equations (1.10-1.16) satisfying

∀ γ ∀T ∈]0, T∗[ , sup
t∈R

∥∥∥ ∂γT,y,θ ( a0(T, t, y, θ) , a(T, t, y)
)∥∥∥
L2([0,T ]×Rdy×T)

<∞ , (1.17)

and the initial condition
a0(0, 0, y) + a(0, y, θ) = g(y, θ) .

Theorem 1.2. With profiles {a0, a} from Theorem 1.1, define a0 = a0 +a∗0 with a∗0 given
by (1.15) and a family of approximate solution uε by (1.5). Let vε ∈ C∞([0, t∗(ε)[×Rd) be
the maximal solutions of the initial value problems

L(∂x) vε + Φ(vε) = 0 , vε|t=0 = uε|t=0 . (1.18)

Then, for any T ∈]0, T∗[, there is an ε0 > 0 so that if ε < ε0, then t∗(ε) > T/ε and

sup
0≤t≤T/ε, y∈Rd

∣∣ vε(t)− uε ∣∣ = o(εp) . (1.19)

Remarks. 1. The discussion before the theorem suggests that a0 = O(1) for 0 ≤ t ≤ T
so that in (1.19) neither of the terms in the difference is o(εp).
2. Typically for fixed t, the solutions uε(t) and vε(t) diverge to infinity in Hs when s is
large. This prevents the application of elementary continuous dependence arguments. In
addition, the residuals L(∂)uε + Φ(uε) , with uε := εpa0, are O(ε1+p) so the accumulated
effect of the residual for times of order 1/ε is crudely estimated to be O(εp) and therefore
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nonnegligible. For the proof of Theorem 1.2 we construct a corrector of size O(εp+1) which
reduces the residual to size o(εp+1).
3. The equations determining the profile a0 are found so that such correctors exist.
4. To derive the equations for a0 requires detailed information about the large time asymp-
totic behavior of solutions of the linear equation (1.10), and related inhomogeneous equa-
tions. For example, all solutions of a linear symmetric hyperbolic equation with C∞0 initial
data tend to zero in sup norm if and only if the characteristic variety contains no hyper-
plane. The proof of such results in §3 is by a nonstationary phase arguments with attention
paid to possible singular points in the characteristic variety.
5. Qualitative information can be gleaned from the profile equations. For example, if β
does not lie on a hyperplane in the characteristic variety then the oscillatory part of the
solution does not influence the nonoscillatory part to leading order. In particular, if a0 = 0
at {t = T = 0}, then it vanishes identically, and the profile equations simplify to the single
equation (1.16). These reductions, applications, and extensions are discussed in §7.

Acknowledgement. Thanks to J.-M. Delort, P. Donnat and J. Hunter for instructive
discussions which were crucially important in carrying out this research.

§2. Formulating the ansatz and the first profile equations.
§2.1. The ansatz and the profile equations.
In this section approximate solutions of the nonlinear symmetric hyperbolic equation

L(u, ∂x)u+ F (u) = 0 . (2.1)

are constructed. The principal part of (2.1) is the quasilinear operator

L(u, ∂x)u :=
d∑

µ=0

Aµ(u) ∂µu (2.2)

Symmetric hyperbolicity assumption. The coefficients Aµ are smooth hermitian
symmetric valued functions of u on a neighborhood of 0 ∈ CN , and, for each u, A0(u) is
positive definite.

Smoothness means that Aµ(u) = Aµ(<u,=u) with Aµ ∈ C∞(RN × RN ; Hom (CN )).

Order of nonlinearity. The quasilinear terms are of order 2 ≤ K ∈ N in the sense that

|α| ≤ K − 2 =⇒ ∂α<u,=u
(
Aµ(u)−Aµ(0)

)∣∣
u=0

= 0 . (2.3)

Then Aµ(u) − Aµ(0) = O(|u|K−1) and so the quasilinear term, (Aµ(u) − Aµ(0))∂µu is of
order K.

The semilinear term F is smooth on a neighborhood of 0 ∈ CN , and is of order J ≥ 2 in
the sense that

|γ| ≤ J − 1 =⇒ ∂γ<u,=uF (0) = 0 . (2.4)

Then F (u) = O(|u|J).

8



Making the change of dependent variable to A0(0)−1/2 u and multiplying the resulting
equations by A0(0)−1/2 u preserves these hypotheses and reduces to the case A0(0) = I.

Convention. A0(0) = I.

If the solutions have amplitude of order εp with derivatives of order εp−1, then the size of
the quasilinear terms is εp(K−1) εp−1 . The accumulated effects after time T are crudely
estimated to be of order TεpK−1. Setting this equal to the order of magnitude of the
solutions, εp, yields the following estimate for the time of nonlinear interaction

Tquasilinear ∼
1

εpK−p−1
.

Similarly, the semilinear terms are of order εpJ , with accumulation TεpJ and time of
interaction estimated by setting this equal to εp,

Tsemilinear ∼
1

εpJ−p
.

The goal is that the time of nonlinear interaction is of order ε−1 which is the time for the
onset of diffractive effects in linear problems with linear phases and wavelengths ∼ ε (see
[DJMR]). Thus one wants pK − p− 1 ≥ 1 and pJ − p ≥ 1 with equality in at least one of
the two.

The standard normalization. Consider waves of wavelength of order ε and amplitude
of order εp satisfying

p = max
{

2
K − 1

,
1

J − 1

}
. (2.5)

Examples. The classic case is quadratic nonlinearities. For quadratic quasilinear effects
one has K = 2, and p = 2. A semilinear term with J ≥ 2 will not affect the leading
behavior.
For quadratic semilinear effects one has J = 2, p = 1, and K ≥ 3.
For odd order quasilinear terms, the time of interaction for a semilinear term of order
J = (K + 1)/2 is of the same order as that of the quasilinear term. For even order
quasilinear terms, there is never such agreement.
If K > 3 and J > 2, then p is a fraction with 0 < p < 1.

Definition of leading order nonlinear terms. If p = 2/(K − 1), the degree K − 1
Taylor polynomial of Aµ(u) − Aµ(0) at u = 0 is denoted Λµ(u). If p < 2/(K − 1) set
Λµ := 0 for all µ.

If p = 1/(J − 1), let Φ(u) denote the order J Taylor polynomial of F at u = 0. If
p < 1/(J − 1) set Φ := 0.
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With this definition, the contribution of the quasilinear and semilinear terms to the dy-
namics of the leading term in the approximate solution is given in terms of Λµ and Φ.
Note that Λµ and Φ are homogeneous polynomials of degree 2/p and (p+1)/p respectively
with the convention that if either degree is not an integer, the corresponding polynomial
vanishes identically.
The basic ansatz has three scales

uε(x) = εp a(ε, εx, x, x.β/ε) , (2.6)

where
a(ε,X, x, θ) = a0(X,x, θ) + ε a1(X,x, θ) + ε2 a2(X,x, θ) . (2.7)

This expansion has terms which are chosen so that the leading terms in Luε + F (uε)
vanish.

Example of nonuniqueness of profiles. Different profiles can lead to the same approx-
imate solution when multiple scale expansions are used. For example if a(T, t) ∈ C∞0 (R2)
define g(T, t) ∈ C∞0 (R2) by

a(T, t)− a(0, t) = Tg(T, t) .

Then the profiles a(T, t) and a(0, t) + εtg(T, t) define the same function when T = εt
is injected. This lack of uniqueness means the aj are not determined so that in deriving
equations we are obliged to make choices. We have tried to take a path where these choices
are as natural as possible.

Since the expansion (2.7) is used for times t ∼ 1/ε one must control the growth of the
profiles in t. In order for the corrector a1 in (2.7) to be smaller than the principal term
for such times, it must satisfy

lim
ε→0

sup
[0,T/ε]×Rd×T

∣∣ε a1(εx, x, θ)
∣∣ = lim

ε→0
sup

[0,T ]×Rd×T

∣∣ε a1(X,X/ε, θ)
∣∣ = 0 . (2.8)

Our profiles satisfy the stronger condition of sublinear growth

lim
t→∞

1
t

sup
X,y,θ

∣∣ a1(X, t, y, θ)
∣∣ = 0 . (2.9)

This condition plays a central role in the analysis to follow. The profiles aj(T, Y, x, θ) are
smooth on [0, T∗[×Rd × R1+d × T.

§2.2. Equations for the profiles.
The chain rule implies that

L(uε, ∂x)uε + F (uε) =
[
L(εpaε, ε∂X + ∂x +

β

ε
∂θ ) εp a+ F (εp a)

]
X=εx, θ=x.β/ε

. (2.10)

The strategy is to expand the function of (X,x, θ) in brackets in powers of ε and to choose
a so that the leading terms vanish.
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Lemma 2.1. Suppose that a0, a1, a2 are smooth functions on [0, T ]×Rd ×R1+d × T and
that a is given by (2.7). Then

L(εpaε, ε∂X + ∂x +
β

ε
∂θ ) εp a+ F (εp a) =

εp−1
{
r0(X,x, θ) + εr1(X,x, θ) + ε2r2(X,x, θ) + ε2+min {1,p}h(ε,X, x, θ)

}
,

(2.11)

where the rj(X,x, θ) are given by

r0 = L(0, β) ∂θa0 , r1 = L(0, β) ∂θa1 + L(0, ∂x) a0 , (2.12)

r2 = L(0, β) ∂θa2 + L(0, ∂x) a1 + L(0, ∂X) a0 + Φ(a0) +
d∑

µ=0

βµ Λµ(a0) ∂θa0 . (2.13)

The function h(ε,X, x, θ) depends on the aj , is periodic in θ and each of its derivatives
with respect to X,x, θ is continuous on [−1, 1]× R1+d × R1+d × T .

Remark. For the aj and h which we construct precise estimates are given in Theorem
5.1 and Proposition 5.4.

Proof. Compute

L(0, ε∂X + ∂x +
β

ε
∂θ) εp a = εp−1

(
L(0, β) ∂θa+ εL(0, ∂x) a+ ε2 L(0, ∂X) a

)
. (2.14)

The leading term in the Taylor expansion of Aµ(εp a) − Aµ(0) is Λµ(εp a0) and Λµ is
homogeneous of degree 2/p. Thus,

Aµ(εp a)−Aµ(0) = ε2
(

Λµ(a0(X,x, θ)) + εmin {1,p}h1(ε,X, x, θ)
)
. (2.15)

Similarly, Φ is homogeneous of degree (p+ 1)/p so,

F (εp a) = εp+1
(

Φ(a0(X,x, θ)) + εmin {1,p}h2(ε,X, x, θ)
)
.

This together with equations (2.14), and (2.15) proves the Lemma.

The profiles in (2.7) are chosen so that in (2.11) one has rj = 0 for j = 0, 1, 2. Equations
(2.12-2.13) show that r0, r1, r2 vanish if and only if

L(0, β) ∂θa0 = 0 , (2.16)

L(0, β) ∂θa1 + L(0, ∂x) a0 = 0 . (2.17)

L(0, β) ∂θa2 + L(0, ∂x) a1 + L(0, ∂X) a0 + Φ(a0) +
d∑

µ=0

βµ Λµ(a0) ∂θa0 = 0 . (2.18)

The analysis of these equations is as in [DJMR], with the important exception that the
mean value or zero mode of the periodic functions must be treated. This is more subtle
than meets the eye, and is the essential difficulty of the present paper.
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Notation. Introduce two notations for the mean value with respect to θ

a := 〈a〉 :=
1

2π

∫ 2π

0

a dθ .

The oscillating part is denoted a∗ := a− a .

2.3. Analysis of equation 2.16.
Equation (2.16) holds if and only if a∗ takes values in the kernel of L(0, β). This kernel is
nontrivial if and only if β is characteristic for the linear differential operator L(0, ∂) . The
set of such β is denoted Char L(0, ∂) := {β ∈ Rd+1 \ 0 : det L(0, β) = 0}. There are two
naturally defined matrices which play a central role.

Definition. For β ∈ R1+d, π(β) denotes the linear projection on the kernel of L(0, β)
along the range of L(0, β). Q(β) is the partial inverse defined by

Q(β)π(β) = 0 , and Q(β)L(0, β) = I − π(β) . (2.19)

Symmetric hyperbolicity implies that both π(β) and Q(β) are hermitian symmetric. In
particular π(β) is an orthogonal projector. With this notation, (2.16) is equivalent to

π(β) a∗0 = a∗0 . (2.20)

This asserts that the oscillating part of the principal profile is polarized along the kernel
of L(0, β). Equation (2.16) imposes no constraints on the nonoscillating part a.

§2.4. Analysis of equation 2.17.
Equation (2.17) involves both a0 and a1. Taking the mean value with respect to θ eliminates
a0 and yields a fundamental evolution equation for the nonoscillating part a0(X,x),

L(0, ∂x) a0 = 0 . (2.21)

Multiplying the oscillating part of (2.17) by π(β) annihilates L(0, β) so eliminates the a1

term to give
π(β)L(∂x)π(β) a∗0 = 0 . (2.22)

A vector w ∈ CN vanishes if and only if π(β)w = 0 and Q(β)w = 0. Thus the information
in (2.17) complementary to (2.21-2.22) is obtained by multiplying the oscillatory part of
(2.17) by Q(β). This yields

(I − π(β)) a∗1 = −Q(β)L1(∂x) ∂−1
θ a∗0 . (2.23)

Equations (2.20) and (2.22) are the fundamental equations of linear geometric optics (see
[R]). They determine the dynamics of a∗0 = π(β)a∗0 with respect to the time t. The following
hypothesis guarantees that the linear geometric optics is simple. It excludes for example
β along the optic axis of conical refraction.

12



Smooth characteristic variety hypothesis. β = (τ , η) ∈ Char L(0, ∂) and there is a

neighborhood ω of η in Rd (resp. O of β in R1+d) so that for each η ∈ ω there is exactly
one point (τ(η), η) ∈ O ∩ Char L(0, ∂).

The next proposition is virtually identical to Proposition 3.1 in [DJMR]. The proof proceeds
by differentiating the identity (

∑
Ajξj)π(ξ) = τ(ξ)π(ξ) with respect to ξk. The formula

(2.24) is simpler than in [DJMR] thanks to the convention that A0(0) = I. The traditional
presentation of this identity uses left and right eigenvectors as in §VI.3.11 of [C]. The
eignevectors are not uniquely determined but the projectors π(β) is.

Proposition 2.2. If the smooth characteristic variety hypothesis is satisfied then the
functions, τ(η), π(τ(η), η) and Q(τ(η), η) are real analytic on ω. If A0(0) = I then

π(β)L(0, ∂x)π(β) = π(β)
(
∂

∂t
−

d∑
j=1

∂τ(η)
∂ηj

∂

∂yj

)
. (2.24)

Definitions. If τ , η belongs to the characteristic variety and satisfies the smoothness
assumption, define the transport operator V and group velocity v by

V (τ , η ; ∂x) :=
∂

∂t
−

d∑
j=1

∂τ(η)
∂ηj

∂

∂xj
:= ∂t + v.∂y . (2.25)

The τ , η dependence of π,Q, V , v will often be omitted when there is little risk of confusion.
Equations (2.24) and (2.25) show that (2.22) is equivalent to

V (∂x) a∗0 = 0 . (2.26)

Corollary 2.3 If the smooth characteristic variety hypothesis is satisfied at β = (τ , η)
then Char V (∂x) is the tangent plane to Char L(0, ∂x) at (τ , η).

Proof. Near (τ , η), the characteristic variety of L(0, ∂x) has equation τ = τ(η). Therefore
its tangent plane has equation τ − τ = ∇ητ(η) · (η − η).
Formula (2.25) shows that the characteristic variety of V (∂x) is the codimension 1 linear
subspace with equation τ −∇τ(η) · η = 0. Thus (τ , η) + Char V is the tangent plane to
Char L at (τ , η) . To complete the proof it suffices to show that (τ , η) ∈ Char V .
Since the function τ − τ(η) is homogeneous of degree one in τ, η, Euler’s identity implies
that τ − ∇τ(η).η = τ − τ(η). At (τ , η) , the right hand side vanishes which proves that
(τ , η) ∈ Char V .

13



§2.5. A first look at equation 2.18.
Equation (2.18) involves three profiles because there are three scales in the ansatz.
Taking the mean value with respect to θ eliminates the a2 part and yields an equation for
the nonoscillating part of a1

L(0, ∂x) a1 = −L(0, ∂X) a0 −
〈

Φ(a0) +
∑

βµΛµ(a0)∂θa0

〉
. (2.27)

The last term on the right may be nonzero, even if a0 = 0. This possibility of creating
nonoscillating contributions from oscillating terms is called rectification.
The analysis of equation (2.27) is the main difficulty in the derivation of the profile equa-
tions. The idea is that since a0 must satisfy (2.21) and (2.26) its asymptotics as t→∞ are
quite structured so the form of the source terms on the right of (2.27) can be described.
Requiring that a1 satisfy the sublinear growth condition (2.9) places constraints on a0. To
understand these we must study the asymptotic behavior of solutions of the linear sym-
metric hyperbolic system (2.21) and also the asymptotics of the inhomogeneous equation
L(0, ∂x)u = f where the source term f is constructed from solutions of the homogeneous
equation as in the right hand side of (2.27). The next section is devoted to the study of
these linear problems. In §4 we return to the study of (2.18) and in particular (2.27).

§3. Large time asymptotics for linear symmetric hyperbolic systems.
In this section we suppose that

L(∂x) =
d∑

µ=0

Aµ
∂

∂xµ
, Aµ = A∗µ , A0 = I (3.1)

is a general constant coefficient symmetric hyperbolic operator with coefficient of ∂t equal
to the identity matrix. In our applications, L will be taken to be L(0, ∂x).
Proposition 3.2 decomposes solutions of Lu = 0 into modes which rigidly translate and
modes which spread out in space. The latter decay in sup norm. The analysis is by
stationary and nonstationary phase. Care is needed because the characteristic variety
may have singular points. The basic stratification theorem of real algebraic geometry
implies that these singularities form a lower dimensional variety and this implies that the
contributions of the singular points can be treated as error terms.

Examples. The solutions of the equation

∂v

∂t
+

∂v

∂y1
= 0 (3.2)

in dimension d and the equation

∂v

∂t
+
(

1 0
0 −1

)
∂v

∂y
= 0 (3.3)
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in dimension 1 have only purely translating modes.
In dimension 2, the first order analogue of D’Alembert’s wave equation

∂u

∂t
+
(

1 0
0 −1

)
∂u

∂y1
+
(

0 1
1 0

)
∂u

∂y2
= 0 . (3.4)

has solutions which spread in time and whose L∞ norm decays like t−1/2 while the L2

norm is conserved.

The characteristic variety for (3.2) and (3.3) consist of hyperplanes while for (3.4) the
variety is curved. This dichotomy is crucial as indicated by the following heuristic argument
about the group velocities −∇ητ(η). If the variety is flat with equation τ = −v.η these
velocities do not depend on η and wave packets will translate at this fixed velocity. If the
variety is not flat, the variation of the speed spreads wavepackets leading to their decay in
L∞.

§3.1. Hyperplanes and singularities in the characteristic variety.
The characteristic variety is defined by

Char L := {(τ, η) ∈ R1+d \ 0 : det L(τ, η) = 0 } . (3.5)

For each point (τ, η) in the variety and a ∈ kerL(τ, η), u = ei(τt+η.y)a is a plane wave
solution of Lu = 0.
Since (τ, 0) is noncharacteristic for L, any hyperplane {aτ + b.η = 0} contained in the
characteristic variety must have a 6= 0 so the hyperplane is necessarily a graph {τ = −v.η}.
Since over each η ∈ Rd there are at most N points in the characteristic variety, the variety
contains at most N distinct hyperplanes H1, . . . , HM ,

Hj = { (τ, η) : τ = −vj .η } , j = 1, . . . ,M ≤ N . (3.6)

Examples. 1. When d = 1 the characteristic variety is a union of lines so consists only
of hyperplanes. There are no curved sheets.
2. The operator from (3.4) has characteristic variety is given by τ2 = |η|2 so the variety is
the classical light cone, and there are no hyperplanes.
3. The characteristic varieties of Mawell’s Equations and the the linearization at u = 0
of the compressible Euler equations are the union of a curved light cone and a single
horizontal hyperplane τ = 0.

Definition. A wave number ω ∈ Rd \ {0} is good when there is a neighborhood Ω of
ω and a finite number of smooth real valued functions λ1(η) < λ2(η) < · · · < λm(η) so

that the spectrum of
∑d
j=1Ajηj is {λ1(η), . . . , λm(η)} for η ∈ Ω. The complementary set

consists of bad wave numbers. The set of bad wave numbers is denoted Γ(L).
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Over a good η, the characteristic variety of L is m smooth nonintersecting sheets τ =
−λj(η). The bad points are points where eigenvalues cross and therefore multiplicities
change. The examples above have no bad points.

Examples. Consider the characteristic equation (τ2 − |η|2)(τ − cη1) = 0 with c ∈ R. If
|c| < 1 then the variety is a cone and a hyperplane intersecting only at the origin and all
points are good. If |c| > 1 the plane and cone intersect in a hyperbola whose projection
on η space is the set of bad points

Γ =
{
η : (c2 − 1)η2

1 = η2
2 + . . .+ η2

d

}
.

When |c| = 1 the hyperbola degenerates to a line of tangency.

Proposition 3.1. i. Γ(L) is a closed conic set of measure zero in Rd \ {0}.
ii. The complementary set, Rd \ (Γ ∪ {0}), is the disjoint union of a finite family of conic
connected open sets Ωg ⊂ Rd \ {0}, g ∈ G.

iii. The multiplicity of τ = −vj .η as a root of detL(τ, η) = 0 is independent of η ∈
Rd \ (Γ ∪ {0}).
iv. If λ(η) is an eigenvalue of

∑
Ajηj depending smoothly on η ∈ Ωg, then either there is

j ∈ {1, . . . ,M} such that λ(η) = −vj · η or ∇2λ 6= 0 almost everywhere on Ωg.

Proof. i. Use the basic stratification theorem of real algebraic geometry (see [BR], [CR]).
The characteristic variety is a conic real algebraic variety in R1+d. Since over each η it
contains at least 1 and at most N points the dimension is d. The singular points are
therefore a stratum of dimension at most d − 1. The bad frequencies are exactly the
projection of this singular locus and so is a subvariety of Rd of dimension at most d − 1
and (i) follows.
ii. That there are at most a finite number of components in the complementary set is a
classical theorem of Whitney (see [BR], [CR]).
iii. Denote by m the multiplicity on Ωg and m′ the multiplicity on Ωg′ . By definition of
multiplicity,

η ∈ Ωg =⇒ ∂m−1 detL(τ, η)
∂τm−1

∣∣∣∣∣
τ=−vj .η

= 0 . (3.7)

Then ∂m−1
τ L(−vj .η, η) is a polynomial in η which vanishes on the nonempty open set

Ωg, so must vanish identically. Thus it vanishes on Ωg′ and it follows that m′ ≥ m. By
symmetry one has m ≥ m′.
iv. If λ is a linear function λ = −v.η on Ωg, then detL(−v.η, η) = 0 for η ∈ Ωg so by
analytic continuation, must vanish for all η. It follows that the hyperplane τ = −v.η lies
in the characteristic variety and therefore that λ = −vj .η for some j.
If λ is not a linear function, then the matrix ∇2

ηλ is a real analytic function on Ωg which
is not identically zero and therefore vanishes at most on a set of measure zero in Ωg.
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Definitions. Enumerate the roots of det L(τ, η) = 0 as follows. Let Af := {1, . . . ,M}
denote the indices of the flat parts, and for α ∈ Af , τα(η) := −vα.η. For g ∈ G and η ∈ Ωg,
number the roots other than the {τα : α ∈ Af} in order τg,1(η) < τg,2(η) < · · · < τg,M(g).
Multiple roots are not repeated in this list. Let Ac denote the indices of the curved sheets

Ac :=
{

(g, j) : g ∈ G and 1 ≤ j ≤M(g)
}
. (3.8)

Let A := Af ∪Ac. For α ∈ Af and η ∈ Rd define Eα(η) := π(−vj .η, η). For α ∈ Ac define

Eα(η) :=

π(τα
(
η), η)

)
for η ∈ Ωg

0 for η /∈ Ωg .
(3.9)

The next proposition decomposes an arbitrary solution of Lu = 0 as a finite sum of simpler
waves.

Proposition 3.2. 1. For each α ∈ A , Eα(η) ∈ C∞(Rd \ (Γ ∪ {0})) is an orthogonal
projection valued function positive homogeneous of degree zero.

2. For each η ∈ Rd \ (Γ ∪ {0}), CN is equal to the orthogonal direct sum

CN = ⊕α∈A ImageEα(η) . (3.10)

3. The operators Eα(Dy) := F∗E(η)F are orthogonal projectors on Hs(Rd), and for each
s ∈ R, Hs(Rd) is equal to the orthogonal direct sum,

Hs(Rd) = ⊕α∈A ImageEα(Dy) . (3.12)

4. The solution of the initial value problem

L(∂x)u = 0 , u|t=0 = f (3.13)

is given by the formula

û(t, η) =
∑
α∈A

ûα(t, η) :=
∑
α∈A

eiτα(η)Eα(η) f̂(η) . (3.14)

Remarks. 1. The last decomposition is also written

u :=
∑
α∈A

uα :=
∑
α∈A

eiτα(Dy)Eα(Dy)f .

2. Since τα is real valued on the support of Eα(η) the operator eiτα(Dy)Eα(Dy) is a
contraction on Hs(Rd) for all s.
3. If α ∈ Af then τα(Dy) = vα.∂y. For α = (g, j) ∈ Ac, since |τα(η)| ≤ C|η| the operator
τα(Dy)f is continuous from Hs to Hs−1. The mode uα = eiτα(Dy)Eα(Dy)f satisfies
∂tu = iτα(Dy)u.
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§3.2. Large time asymptotics for the homogeneous equation.

Theorem 3.3. L∞ Asymptotics for symmetric systems. Suppose that f̂ ∈ L1(Rd)
and u is the solution of the initial value problem L(∂x)u = 0, u|t=0 = f . Then with the
notation introduced in the preceding definition,

lim
t→∞

∥∥∥u(t)−
∑
α∈Af

(Eα(Dy)f) (y − vαt)
∥∥∥
L∞(Rd)

= 0 . (3.15)

Remarks. 1. This result shows that a general solution of the Cauchy problem is the sum
of M rigidly translating waves, one for each hyperplane in the characteristic variety, plus
a term which tends to zero in sup norm. The last part decays because of the spreading of
waves.
2. The Theorem does not extend to f whose Fourier Transform is a bounded measure.
For example, u :=

(
ei(y1−t), 0

)
is a solution of (3.4) with f̂ equal to a point mass. The

characteristic variety contains no hyperplanes so (3.15) asserts that solutions with f̂ ∈ L1

tend to zero in L∞(Rd) while u(t) has sup norm equal to 1 for all t.

Proof. Step 1. Approximation-decomposition. Define a Banach space A and norm
as the set of tempered distributions whose Fourier transform is in L1(Rd) with

‖f‖A := (2π)−d/2
∫
Rd
|f̂(η)| dη . (3.16)

The Fourier Inversion Formula implies that

‖f‖L∞(Rd) ≤ ‖f‖A . (3.17)

Symmetric hyperbolicity implies that exp
(
it
∑
Ajηj

)
is unitary on CN so the evolution

operator S(t) := exp
(
− t
∑
j Aj∂j

)
is isometric on A. Since the family of linear maps

f 7−→ S(t)f −
∑
α∈Af

(Eα(Dy)f) (y − vαt)

is uniformly bounded from A to L∞(Rd), it suffices to prove (3.15) for a set of f dense in
A.
For α ∈ Ac, Propostion 3.1.iv shows that the matrix of second derivatives, ∇2

ητα can vanish
at most on a set of measure zero. The set of f we choose is those with

f̂ ∈ C∞0
(
Rd \

{
Γ ∪ {0} ∪

⋃
α∈Ac

{η ∈ Ωg : ∇2
ητα(η) = 0 }

} )
,

which is dense since the set removed from Rd has measure zero.
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To prove (3.15) for such f decompose

f =
∑
α∈A

fα :=
∑
α∈A

Eα(Dy) f , u(t) = S(t)f =
∑

uα(t) :=
∑

S(t) fα . (3.18)

For α ∈ Af , uα(t) = (Eα(Dy)f) (y − vαt) which recovers the summands in (3.15). To
prove (3.18) it suffices to show that for α ∈ Ac

lim
t→∞

‖uα(t)‖L∞(Rd) = 0 . (3.19)

Step 2. Stationary and nonstationary phase. Proposition 3.2.4 shows that for
α ∈ Ac,

uα(t, y) =
∫

Ωg

ei(τα(η)t+y.η) f̂α(η) dη , f̂α ∈ C∞0 (Ωg) . (3.20)

For each η in the support of fα, there is a vector r ∈ Rd so that 〈∇2
ητ(η) r, r 〉 6= 0 on a

neighborhood of η. Using a partition of unity we can write f̂α as a finite sum of functions
ĥµ ∈ C∞0 (Ωg) so that for each µ there is a rµ ∈ CN so that on an open ball containing
the support of ĥµ, 〈∇2

ητ(η) rµ, rµ 〉 6= 0. It suffices to show that for each µ

lim
t→∞

∥∥∥ ∫ ei(τα(η)t+y.η) ĥµ(η) dη
∥∥∥
L∞(Rd)

= 0 . (3.22)

To prove (3.22) first make a linear change of variables in η so that rµ = (1, 0, . . . , 0) and
therefore

∂2τα
∂2η1

6= 0 , on supp ĥµ . (3.23)

For
K(t, y, η2, . . . , ηd) :=

∫
ei(τα(η)t+y1.η1) ĥµ(η) dη1

one has the simple estimate

|K(t, y1, η2, . . . , ηd)| ≤
∫
|ĥµ(η1, η2, . . . , ηd) | dη1 ∈ L1(Rd−1) .

Lebegue’s Dominated Convergence Theorem implies that to prove (3.22) it suffices to show
that

∀ η2, . . . , ηd ∈ Rd−1 , lim
t→∞

sup
z∈R

∣∣∣ ∫ eit(τα(η)+z.η1) ĥµ(η) dη1

∣∣∣ = 0 . (3.24)

The one dimensional oscillatory integral in (3.24) is analysed by the method of stationary
phase. The derivative of the phase with respect to η1 is equal to ∂1τα + z. Thus if

|z| ≥ 1 + sup
η∈suppFhµ

|∂1τ |
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the principle of nonstationary phase implies that the integral in (3.24) is o(t−∞). Thus it
suffices to prove (3.24) with z restricted to a compact set. For η2, . . . , ηd fixed, the family
of smooth phases is compactly parametrized by z.

By construction ∂2
1τ 6= 0 on a ball containing the support of ĥµ so for each η2, . . . , ηd there

is at most one stationary point for the phase. The stationary phase theorem then implies
that ∫

eit(τα(η)+z.η) ĥµ(η) dη1 = O(t−1/2)

uniformly for z belonging to the compact set. This proves (3.24) and therefore Theorem
3.3.

Corollary 3.4. If L(∂x) is a constant coefficient symmetric hyperbolic operator, then
the following are equivalent.

1. The characteristic variety of L contains no hyperplanes.

2. For every smooth solution of Lu = 0 with u
∣∣
t=0
∈ C∞0 (Rd),

lim
t→∞

‖u(t)‖L∞(Rd) → 0 . (3.25)

3. For every f ∈ A the solution of the Cauchy problem

Lu = 0 , u|t=0 = f (3.26)

satisfies (3.25).

4. If τ(η) is a smooth solution of detL(τ, η) = 0 defined on a open set of η ∈ Rd then for
every v ∈ Rd, {η ∈ Rd : ∇ητ = −v} has measure zero.

Proof. That ∼ (1) =⇒∼ (4) is immediate. On the other hand if (4) is violated there is
a smooth solution τ so that ∇ητ = −v on a set of positive measure. It follows from the
Fundamental Stratification Theorem (see [BR],[CR]) that ∇ητ = −v on a conic open real
algebraic set of dimension d in Rd \ 0. Then τ = −v.η on this set and we conclude that
the polynomial detL(−v.η, η) vanishes on this set and therefore everywhere. Thus the
hyperplane {τ = −v.η} is contained in the characteristic variety and (1) is violated. Thus
(1) and (4) are equivalent.

That (3) implies (2) is immediate and the converse follows from the fact that C∞0 (Rd) is
dense in A. Thus (2) and (3) are equivalent.

Theorem 3.3 shows that (1) is equivalent to (3).

Remark. Part four of this Corollary shows that for any given velocity v the group velocity
−∇ητ does not take the value v for a set of frequencies η of positive measure.
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§3.3 Asymptotics for the inhomogeneous equation.
Equation (2.27) is a linear inhomogeneous equation for a1 with source term defined in
terms of a0. Since a0 satisfies (2.21) It can be decomposed using Proposition 3.2 which
expresses the first term on the right of (2.27) as a sum of terms of the form eitτα(Dy)fα with
α ∈ A. For large time we will see that the second term in (2.27) is well approximated by
a sum of rigidly translating waves. These can come from terms in a0 or from rectification
of the oscillating parts a∗0 which thanks to (2.26) translates with velocity −∇ητ(η). If this
velocity is equal to one of the vj then the characteristic variety of V is a hyperplane inside
Char L and the source terms are of the form eitτα(Dy)fα. Otherwise, the characteristic
variety of the transport operator V is a hyperplane which is not contained in Char L.

Main Lemma 3.5. Consider the solution of the initial value problem

Lu = f , u|t=0 = 0 , (3.27)

where s ∈ R, and f ∈ C([0,∞[ ; Hs(Rd)).
1. If the spatial Fourier Transform of f vanishes outside Ωg, τα(η) defines one of the
smooth sheets of Char L over Ωg, and ∂tf = iτα(Dy)f , then

lim
t→∞

1
t
‖u(t)− tEα(Dy)f(t) ‖Hs(Rd) = 0 . (3.28)

2. If V (∂x) = ∂t + v.∂y is a constant coefficient vector field whose characteristic variety is
not contained in the characteristic variety of L, and f satisfies V (∂x) f = 0, then

lim
t→∞

1
t
‖u(t)‖Hs(Rd) = 0 . (3.29)

Proof. 1. One has f = exp(iτα(D)) f0 with f0 := f |t=0. Since the family of operators

f0 7−→ 1
t

(
u(t)− tEα(Dy)f(t)

)
, 1 ≤ t <∞

is uniformly bounded from Hs to itself it suffices to prove (3.28) for f0 belonging to the
dense set C∞0 (Ωg).
The Fourier Transform of u is supported in Ωg so parts (2) and (3) of Proposition 3.2.
imply that

u =
∑
γ∈Af

Eγ(Dy)u+
M(g)∑
j=1

E(g,j)(Dy)u .

The proof proceeds by computing the summands on the right. Multiplying equation (3.27)
by Eµ(Dy) yields

L(∂x)Eµ(Dy)u = Eµ(Dy) f .
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Simplifying both sides yields

(∂t − iτµ(Dy))Eµ(Dy)u = eitτα(Dy)Eµ(Dy) f0(y) .

The explicit solution is given by

Eµ(η) û(t, η) =
∫ t

0

ei(t−σ)τµ(η) eiστα(η)Eµ(η) f̂0(η) dσ .

If µ = α the integrand is independent of σ and the integral is equal to the Fourier transform
of tEα(Dy)f showing that

Eα(Dy)u(t) = tEα(Dy)f(t) . (3.30)

On the other hand, if µ 6= α, the integral is equal to

i eitτµ(η) 1− eit(τα(η)−τµ(η))

τα(η)− τµ(η)
f̂0(η) .

Since the denominator is bounded away from zero on the support of f̂0 it follows that

µ 6= α =⇒ lim
t→∞

1
t

∥∥Eµ(Dy)u(t)
∥∥
Hs(Rd)

= 0 . (3.31)

The desired result, (3.28), follows from (3.30) and (3.31).
2. The basic energy estimates for V and L imply that

‖f(t)‖Hs(Rd) = ‖f(0)‖Hs(Rd) and ‖u(t)‖Hs(Rd) ≤
∫ t

0

‖f(s)‖Hs(Rd) ds . (3.32)

It follows that
1
t
‖u(t)‖Hs(Rd) ≤ ‖f(0)‖Hs(Rd) . (3.33)

Thus it suffices to prove (3.29) for f(0) belonging to a dense subset of Hs(Rd).
The real algebraic subvariety Char L∩Char V of the d dimensional hyperplane Char V is
defined by one polynomial equation. Thus (see [BR], [CR]) it is either all of Char V or a
subset of dimension d− 1. By hypothesis the first alternative is ruled out. It follows that
Char L ∩ Char V is a variety of dimension d− 1 so its projection on Rdη,{

η ∈ Rd \ Γ(L) : (−v.η, η) ∈ CharL
}

(3.34)

is of dimension no larger than d− 1 and therefore is of measure zero.
The dense set of f is taken to be functions whose Fourier Transform is smooth and has
compact support disjoint from the union of Γ and the measure zero set (3.34).
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Decompose

u =
∑
α∈A

uα :=
∑
α∈A

Eα(Dy)u , f =
∑
α∈A

fα :=
∑
α∈A

Eα(Dy) f . (3.35)

Then
∂t uα = iτα(Dy)uα + fα , V (∂x) fα = 0 , (3.36)

so
f̂α(t, η) = e−itv.η f̂α(0, η) ,

and

ûα(t, η) =
∫ t

0

eiτα(η)(t−s) f̂α(s, η) ds .

Using these two formulas yields

1
t
ûα(t, η) = eitτm(η) f̂α(0, η)

1
t

∫ t

0

e−is(v.η+τm(η) ) ds . (3.37)

By the choice of f ,
∀m, ∀ η ∈ supp f̂α , −v.η 6= τα(η) . (3.38)

Equation (3.37) shows that f̂α is supported in a set where the factor multiplying s in the
exponent of the integrand is bounded away from zero. Thus the mean value 1

t

∫ t
0

tends
uniformly to zero on the support of f̂α(0). Multiplying the square of (3.37) by 〈ξ〉2s and
integrating, (3.29) follows.

Remark. Considering f whose Fourier Transform is localized where Char L and Char V
are as close together as one likes, shows that there is no rate of convergence in (3.29). This
shows that it is impossible to improve the o(1) in (3.29) to O(1/tσ) or any other such rate.
See also the example in §7.5.

§4. Profile equations, continuation.

In this section we complete the derivation of the profile equations. In §2, the first equations
were derived guaranteeing that the residuals r0 and r1 vanish. In this section we find
equations guaranteeing that r2 = 0.
The equations for a0 are not obvious. One must control the evolution of the mean values
and the interaction between the oscillations and the mean values. This interaction is
negligible in the leading term unless β belongs to a hyperplane in Char L(0, ∂). The
equations encode this dichotomy.
An essential difficulty is to describe the mean values for times t ∼ 1/ε. This is not obvious
even in the absence of oscillations. The mean value satisfies L(0, ∂x) a0 = 0 so that the
dynamics of a0 is not simple except when L is given by uncoupled transport equations as
in the one dimensional case. As soon as there are curved parts of the characteristic variety,
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there is a fundamental complication in the description. As a warmup we will discuss the
dynamics for t ∼ 1/ε of nonoscillatory solutions of semilinear equations. This reveals two
important principles.

§4.1. Nonoscillatory semilinear waves, a warmup problem.

Suppose that Φ(u) is homogeneous of degree J and p = 1/(J − 1) is the critical power
yielding nonlinear interaction time ∼ 1/ε. Consider the family of Cauchy problems

L(∂x)uε + Φ(uε) = 0 , uε|t=0 = εp g(y) ∈ C∞0 (Rd) . (4.1)

Rescale the equation by setting
vε := ε−p uε, (4.2)

to find
L(∂x) vε + εΦ(vε) = 0 , vε|t=0 = g(y) . (4.3)

A first approximation is the solution v0 of the linear problem obtained by setting ε = 0.
Since L is conservative, ‖v0(t)‖Hs(Rd) is independent of time.

Computing ∂v/∂ε|ε=0, or performing one Picard iteration yields the next approximation

vε ≈ v0 − εL−1(Φ(v0)) := v0 − εw

where w is the unique solution of

L(w) = Φ(v0) , w
∣∣
t=0

= 0 . (4.4)

Since Hs norm of v0(t) is independent of t, the Hs norm of Φ(v0(t) is bounded provided
s > d/2. It follows that ‖w(t)‖Hs ≤ cst. The corrector, −εtw, is small compared to the
principal term, v0 for times t = o(1/ε) which verifies again that the nonlinear effects small
for t = o(1/ε).

We find approximate solutions of (4.4) by decomposing v0 into modes and observing that
the nonlinear interaction is simplified using two fundamental principles.

Example illustrating the principle of nonoverlapping waves. Consider the system
of two equations in space of dimension one,

∂v

∂t
+
(

1 0
0 −1

)
∂v

∂y
+ εΦ(v) = 0 . (4.5)

The linear approximation
v0 =

(
v0

1(y − t) , v0
2(y + t)

)
. (4.6)

contains two waves, a v0
1 component which moves to the right with speed one and a v0

2

component moving to the left.
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In the source term in (4.4), products of the waves moving leftward with waves moving
rightward are essentially zero except for a time interval of order 1 so make a contribution
O(ε) to w and are therefore negligible.

In this way one shows that the corrector w is given by w = (w1, w2) + O(ε) where w is
determined by the uncoupled equations

(∂t + ∂y)w1 + Φ1(v0
1(y − t), 0) = 0 , (∂t − ∂y)w2 + Φ2(0, v0

1(y + t)) = 0 . (4.7)

with initial condition w(0, y) = 0. Then w = O(t) so εw is an appreciable corrector for
times t ∼ 1/ε. In the nonlinear term only products of terms propagating in the same way
through space time need be retained.

Example illustrating the principle of ignoring spreading waves. Consider in two
dimensions the first order analogue of a semilinear wave equation

∂u

∂t
+
(

1 0
0 −1

)
∂u

∂y1
+
(

0 1
1 0

)
∂u

∂y2
+ Φ(u) = 0 , u(0, y) = εp g(y) ∈ C∞0 (R2) . (4.8)

Rescaling yields

∂v

∂t
+
(

1 0
0 −1

)
∂v

∂y1
+
(

0 1
1 0

)
∂v

∂y2
+ εΦ(v) = 0 . (4.9)

This case is strikingly different from the preceding example. The reason is that the solution
v0 of the linear equation is O(t−1/2) in L∞(R2) and has Hs(R2) norm independent of time.
Thus the L2 norm of Φ(v0) is at most O(t−(J−1)/2). More generally the Hs norm is o(1)
as t → ∞. It follows that the corrector w = o(t) so εw makes a small correction even for
times ∼ 1/ε. For modes which decay because they spread over larger and larger regions of
space time, the nonlinear term can be neglected.

The next result is a quantitative result incorporating the two principles.

Proposition 4.1. Suppose that Ψ(u) is a smooth function which vanishes along with its
partial derivatives of order 1 when u = 0. If fk ∈ ∩sHs(Rd) is a finite family of functions,
vk ∈ Rd a family of pairwise distinct velocities, u =

∑
k fk(y − vkt) + ρ(t, y), and ∀ s, α

sup
t∈[0,∞[

‖ ρ(t, y) ‖Hs(Rdy) <∞ , lim
t→∞

‖ ∂αy ρ(t, y) ‖L∞(Rdy) = 0 , (4.10)

then for all s

lim
t→∞

∥∥Ψ(u)−
∑
k

Ψ
(
fk(y − vkt)

) ∥∥
Hs(Rdy)

= 0 . (4.11)
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Proof. Let u1 :=
∑
k fk(y − vkt) . Since the first derivatives of Ψ vanish at the origin,

Taylor’s Theorem expresses

Ψ(u)−Ψ(u1) =
∑
ν

ψν(u1, ρ) `ν(ρ) (4.12)

where the ψν are smooth function which vanish when u1 = ρ = 0 and the `ν are real linear
functions.
Leibniz’ rule expresses derivatives of Ψ(u)−Ψ(u1) as a finite sum of terms `ν(∂µρ) ∂γ(ψν).
Since ψν vanishes at the origin and u1 and ρ are bounded in Hs as t tends to infinity, the L2

norm of the second factor is bounded as t→∞. At the same time, the L∞ norm of the first
factor tends to zero, so the product tends to zero in L2. Thus ‖Ψ(u)−Ψ(u1)‖Hs(Rd) → 0.
For s > d/2, the mapping w 7→ Ψ(w) is uniformly lipshitzean from bounded sets in Hs to
Hs. Given a challenge number ε, one can choose hk ∈ C∞0 (Rd) so that fk − hk is as small
as one likes in Hs, and therefore for all t∥∥Ψ

( ∑
hk(y − vkt)

)
−Ψ

(∑
fk(y − vkt)

) ∥∥
Hs

< ε ,

and ∥∥Ψ(u1)−Ψ
( ∑

hk(y − vkt)
)∥∥

Hs
< ε .

Since the hk have compact support and the speeds vk are distinct it follows that for t
large,

Ψ(
∑

hk(y − vkt)) =
∑
k

Ψ(hk(y − vkt)) .

The triangle inequality yields

lim sup
t→∞

∥∥Ψ(u1)−
∑
k

Ψ(fk(y − vkt))
∥∥
Hs
≤ 2 ε

and the result follows.

§4.2. Profile equations, endgame.
In this section we complete the description of the equations determining the profiles aj
which guarantee that r0, r1, r2 vanish. It remains to analyse r2. The equation r2 = 0 is
split into three pieces, r2 = 0, π(β) r∗2 = 0, and Q(β) r∗2 = 0.

§4.2.1. The equation r2 = 0.
Use (2.21) and Theorem 3.3 to decompose a0 into modes of L(0, ∂x),

a0 = a∗0 + a0 = a∗0 +
∑
α∈A

a0,α , a0,α = Eα(Dy) a0 (4.13)

with ‖a0,α(t)‖L∞ → 0 as t → ∞ if α ∈ Ac and (∂t + vα.∂x)a0,α = 0 if α ∈ Af . This
decomposition is injected into equation (2.27). The constraint (2.9) that a1(T, Y, t, y) must
grow sublinearly in t imposes conditions on a0.
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The key step is to simplify the nonlinear term

〈
Φ(a0) +

d∑
µ=0

βµ Λµ(a0) ∂θa0

〉
using the principles of the last sections. The principle of ignoring spreading terms suggests
that the terms a0,α with α ∈ Ac can be dropped. The other terms involve a∗0 and a0,α with
α ∈ Af each of which satisfies a transport equation. The principle of nonoverlapping waves
suggests that we ignore the interaction of summands which move at different speeds. For
this it is important to know whether the speed of V is equal to one of the vj . The speed
is one of the vj if and only if the hyperplane Char V (∂x) is contained in Char L(0, ∂x).
Since Char V (∂x) is the tangent plane to the variety at β by Corollary 2.3, Char V (∂x) is
contained in Char L(0, ∂x) if and only if β lies on a hyperplane in the variety.
This dichotomy strongly affects the nature of the profile equation since if β belongs to a
hyperplane in the variety, the oscillations travel at exactly the same speed as one of the
nonspreading modes for L. This encourages interaction between the mean field and the
oscillations. For β belonging to a curved sheet in the variety, the interaction is weaker.

Definitions. Suppose that β = (τ , η) satisfies the simple characteristic variety hypothesis.
Define a switch ι by

ι =

 1 if Char V (∂x) ⊂ Char L(0, ∂x)

0 if Char V (∂x) 6⊂ Char L(0, ∂x) .
(4.14)

When Char V ⊂ Char L, enumerate the projections Eα, α ∈ {1, . . . ,M} = Af from the
definition before Proposition 3.2 so that V corresponds to α = 1, that is V = ∂t + v1.∂y.

When Char V 6⊂ Char L the term a∗0 translates at a speed different than the vj . Then the
principle of ignoring spreading waves and the interaction of nonoverlapping waves suggest
the replacement

Φ(a0) 7−→ Φ(a∗0) +
M∑
j=1

Φ(a0,j) .

When Char V (∂x) ⊂ Char L, the term a∗0 translates at the same speed as the term a0,1

and the principles suggest the replacement

Φ(a0) 7−→ Φ(a∗0 + a0,1) +
M∑
j=2

Φ(a0,j) .

This dichotomy is summarized by

Φ(a0) 7−→ (1− ι)Φ(a∗0) + Φ(ι a∗0 + a0,1) +
M∑
j=2

Φ(a0,j) . (4.15)
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For the quasilinear term, reasoning as above suggests the replacement

Λµ(a0) ∂θa0 7−→
(

(1− ι)Λµ(a∗0) + Λµ(ιa∗0 + a0,1) +
M∑
j=2

Λµ(a0,j)
)
∂θa0 .

The factor ∂θa0 = ∂θa
∗ moves with the speed of the vector field V , and each of the sum-

mands in the other factor also translates at constant velocity. The principle of nonover-
lapping waves suggests that only the summands annihilated by V need be retained. When
ι = 0 this is Λµ(a∗0)∂θa0. while when ι = 1 it is Λµ(ιa∗0 + a0,1). These choices are summa-
rized by the simplification

Λµ(a0) ∂θa0 7−→ Λµ(a∗0 + ιa0,1) ∂θa∗0 ,

which generates the quasilinear term

d∑
µ=0

βµ Λµ(a∗0 + ιa0,1) ∂θa∗0 , (4.16)

Adding (4.15) and (4.16) yields

N (a0, ∂θa0) := (1−ι)Φ(a∗0)+Φ(ι a∗0+a0,1)+
M∑
j=2

Φ(a0,j)+
d∑

µ=0

βµΛµ(a∗0 +ιa0,1)∂θa0. (4.17)

With these definitions one has for a0 satisfying (2.21)

Φ(a0) +
∑

βµΛµ(a0)∂θa0 = N (a0, ∂θa0) + o(1) as t→∞ . (4.18)

Here and in succeeding estimates the terms o(1) tend to zero in L∞(Rd) as t → ∞. This
follow from Proposition 4.1 and Main Lemma 3.5. Estimate (5.26) is a more precise version.
Inserting (4.18) in (2.27) yields

L(0, ∂x) a1 =
〈
− L(0, ∂X) a0 −N (a0, ∂θa0)

〉
+ o(1) . (4.19)

Solving with initial data a1

∣∣
t=0

= 0 yields

a1 = L(0, ∂x)−1

(
−
∑
α∈A

L(0, ∂X) a0,α −
〈
N (a0, ∂θa0)

〉)
+ o(t) . (4.20)

Each source term on the right hand side of (4.20) satisfies a differential equation which
allows us to use Main Lemma 3.5. Introduce the switch

κ(α) :=

 1 if α ∈ Af

0 if α ∈ Ac
(4.21)
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Decompose the source term

S :=
∑
α∈A

L(0, ∂X) a0,α +
〈
N (a0, ∂θa0)

〉
= S∗ + S1 +

∑
α∈A\{1}

Sα , (4.22)

where Sα for α = 1 is defined by

S1 := L(0, ∂X)a0,1 +
〈
κ(1) Φ(ιa∗0 + a0,1)

〉
, (4.23)

while
Sα := L(0, ∂X)a0,α + κ(α) Φ(a0,α) for α 6= 1 , (4.24)

S∗ :=
〈

(1− ι)Φ(a∗0) +
d∑

µ=0

βµΛµ(a∗0 + ιa0,1)∂θa0

〉
, (4.25) .

They satisfy
V (∂x)S∗ = 0 ,

(
∂t + τα(Dy)

)
Sα = 0 .

The second part of Main Lemma 3.5 together with Proposition 4.1 yield

L(0, ∂x)−1 Sα = t Eα(Dy)Sα + o(t) ,

L(0, ∂x)−1 S∗ = ι t E1(Dy)S∗ + o(t) .
(4.26)

Note that since ι(1 − ι) = 0 the (1 − ι)Φ(a∗0) term in S∗ does not contribute to the right
hand side of the second equation in (4.26).
Equations (4.20), (4.22), and (4.26) show that a1 is sublinear in time if and only if 0 =
Eα(Dy)Sα = E1(Dy)S∗ that is

E1(Dy)
(
L(0, ∂X) a0,1 +

〈
κ(1) Φ(ι a∗0 +a0,1)+ ι

∑
µ

βµΛµ(a∗0 +a0,1) ∂θa∗0
〉)

= 0 , (4.27)

Eα(Dy)
(
L(0, ∂X) a0,α + κ(α) Φ(a0,α)

)
= 0 , for α ∈ A \ {1} . (4.28)

Equations (4.27), (4.28) determine the dynamics in T of the mean values.

§4.2.2. The equation π(β) r∗2 = 0
Multiplying the expression for r2 on the left of (2.18) by π(β) eliminates the L(0, β)∂θ
term. Taking the oscillatory part yields

π L(0, ∂X)π a∗0 + π L(0, ∂x)a∗1 + π
(

Φ(a0) +
∑

βµΛµ(a0) ∂θa0

)∗
= 0 . (4.29)

Using (2.23) write

a∗1 = π(β) a∗1 + (1− π(β)) a∗1 = π(β) a∗1 −Q(β)L(0, ∂x) ∂−1
θ a∗0 .
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Inserting this into (4.29) yields

π L(0, ∂X)π a∗0−π L(0, ∂x)Q(β)L(0, ∂x)πa∗0

+ π
(

Φ(a0) +
∑

βµΛµ(a0) ∂θa0

)∗
= −π L(0, ∂x)π a∗1 .

Use Proposition 2.2 two times to find

V (∂X)π a∗0−π L(0, ∂x)Q(β)L(0, ∂x)πa∗0

+ π
(

Φ(a0) +
∑

βµΛµ(a0) ∂θa0

)∗
= −V (∂x)π a∗1 .

(4.30)

The constraint that a∗1(T, Y, t, y, θ) grow sublinearly in t places restrictions on the left hand
side of (4.30) which determines our next profile equation. Equation (2.26) shows that the
first two summands on the left are annihilated by V (∂x). Thus,

V (∂x)−1
(
V (∂X)π a∗0 − π L(0, ∂x)Q(β)L(0, ∂x)πa∗0

)
= t
(
V (∂X)π a∗0 − π L(0, ∂x)Q(β)L(0, ∂x)πa∗0

)
.

(4.31)

Equation (4.18) implies that

V (∂x)−1 π
(

Φ(a0) +
∑

βµΛµ(a0) ∂θa0

)∗
= V (∂x)−1 πN (a0, ∂θa0)∗ + o(t) . (4.32)

We next consider the terms from the right hand side of (4.32).
Since Φ(a∗0) and Λµ(a∗0 + ιa0,1)∂θa0 are annihilated by V (∂x) one has

V (∂x)−1
(

(1− ι)πΦ(a∗0) +
1∑

µ=0

βµ Λµ(a∗0 + ιa0,1)∂θa0

)∗
= t
(

(1− ι)πΦ(a∗0) +
d∑

µ=0

βµ Λµ(a∗0 + ιa0,1)∂θa0

)∗
.

(4.33)

Similarly if ι = 1 one has

V (∂x)−1 Φ(ι a∗1 + a0,1)∗ = tΦ(ι a∗1 + a0,1)∗ . (4.34)

If ι = 0, Φ(ι a∗1 + a0,1) is nonoscillatory so the contribution vanishes.
The terms Φ(a0,j) in N are nonoscillating so make no contribution to (4.32). Combined
with (4.30-34) this shows that πa∗1 grows sublinearly in t if and only if

V (∂X)π a∗0 − π L(0,∂x)Q(β)L(0, ∂x)π∂−1
θ a∗0 + (1− ι)πΦ(a∗0)∗

+ ι πΦ(ι a∗1 + a0,1)∗ +
(
π

d∑
µ=0

βµ Λµ(a∗0 + ιa0,1)∂θa0

)∗
= 0 .

(4.35)

When the smooth characteristic variety hypothesis is satisfied, the operator π LQLπ
appearing in (4.35) is essentially scalar. That is the content of the next proposition whose
proof proceeds by differentiating twice the identity (

∑
Ajξj)π(ξ) = τ(ξ)π(ξ) . The details

can be found in [DJMR]. The expression here is simpler than in that reference thanks to
the convention that A0(0) = I.
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Proposition 4.2. If the smooth characteristic variety hypothesis is satisfied at β =
(τ(η), η) and A0(0) = I, then

π(β)L(0, ∂x)Q(β)L1(∂x)π(β) = −1
2
π(β)

∑
j,k

∂2τ(η)
∂ηj∂ηk

∂2

∂yj∂yk

 . (4.36)

Define the scalar differential operator

R(∂y) :=
1
2

d∑
j,k=1

∂2τ(η)
∂ηj∂ηk

∂2

∂yj∂yk
. (4.37)

The dynamics (4.35) of a∗0 = π a∗0 with respect to T simplifies to

V (∂X) a∗0 −R(∂y) ∂−1
θ a∗0 + (1− ι)π(β) Φ(a∗0)∗

+ ι π(β) Φ(a∗0 + a0,1)∗ +
(
π(β)

d∑
µ=0

βµ Λµ(a∗0 + ιa0,1)∂θa0

)∗
= 0 .

(4.38)

Remarks. 1. In all cases V (∂x) a∗0 = 0 and the operator V (∂X) in (4.38) is converted to
∂T by writing a∗0 = a(T, Y − vT, t, y − vt, θ). Then (4.38) is equivalent to

∂T a−R(∂y) ∂−1
θ a + (I − ι)πΦ(a)∗+ ι πΦ(a + a0,1)∗+

(
π

d∑
µ=0

βµ Λµ(a + ιa0,1)∂θa
)∗

= 0 .

2. In the semilinear case, the Λ terms are absent, yielding (1.16) of the introduction.

§4.2.3. The equation Q(β) r∗2 = 0.
The equation in the title is satisfied if and only if

(I−π) a∗2 =

−Q(β) ∂−1
θ

[
L(0, ∂x)a∗1 + L(0, ∂X) a∗0 +

(
Φ(a0) +

∑
βµΛµ(a0) ∂θa0

)∗ ]
.

(4.39)

Summary. The principal profile a0 is determined from its initial data at t = T = 0 from
equations (2.20), (2.21), (2.26), (4.27), (4.28) and (4.38). The parts a1 and π(β) a∗1 of the
second profile are determined by solving (2.27) and (4.30) with initial data vanishing at
t = 0 Finally, (I − π(β))a∗1 and a2 = (I − π)a∗2 are given by (2.23) and (4.39) respectively.

In the next section we verify that the initial value problems referred to in this summary
are in fact well posed locally in time, and the terms expected to be sublinear are in fact
sublinear. That the solutions provide accurate approximate solutions is proved in §6.
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§5. Solvability of the profile equations.

§5.1. Solvability of the equations for the leading profile a0.

Theorem 5.1. Suppose that g(Y, y, θ) belongs to ∩sHs(Rd × Rd × T) and satisfies the
polarization condition π(β) g∗ = g∗. Then there is a T∗ > 0 and a unique a0(T, Y, t, y, θ)
so that for all 0 < T < T∗ and all α ∈ N2d+3

sup
0≤T≤T

sup
t∈R

‖ ∂αT,Y,t,y,θ a0(T, ., t, ., .) ‖L2(Rd
Y
×Rdy×Tθ) < ∞ , (5.1)

a0 satisfies (2.20), (2.21), (2.26), (4.27), (4.28) and (4.38) together with the initial condition

a0(0, Y, 0, y, θ) = g(Y, y, θ) . (5.2)

Proof. The strategy is the following. Equations (4.27), (4.28), and (4.38) involve ∂T,Y,y,θ
but not ∂t. In the plane {t = 0} one solves the quasilinear initial value problem defined by
(4.27), (4.28), (4.38) with time variable T . Then the Cauchy problem defined by equations
(2.21), (2.26) with initial values determined by a0|t=0 extends the solution to all t. The
validity of (4.27), (4.28), (4.38) for all t is proved using a commutation argument together
with uniqueness for hyperbolic initial value problems. The next lemma performs the first
step.

Lemma 5.2. Solvability in {t = 0}. There is a T > 0 and unique solution w(T, Y, y, θ) ∈
∩sCs([0, T ] ; Hs(R2d

Y,y × T)) to equations (4.27), (4.28), (4.38) and satisfying the initial
condition w(0, Y, y, θ) = g. In addition, π(β)w∗ = w∗.

Proof. Step 1. Existence follows from a differential inequality.

We construct solutions as limits as h→ 0+ of the nonlinear ordinary differential equations
obtained by replacing ∂Y,y,θ in (4.27), (4.28), and (4.38) by the associated symmetric finite
difference operators, δhY,y,θ. The replacement is not made in the expressions Eα(Dy) and
∂−1
θ which are bounded operators as is. With wα := Eα(Dy)w, the resulting equations

are

E1(Dy)
(
L(0, ∂T , δhY )wh1+

+
〈
κ(1) Φ(wh1 + ι wh,∗) + ι

∑
µ

βµΛµ(wh,∗ + w1) δhθw
h,∗
〉)

= 0 ,

(5.3)

Eα(Dy)
(
L(0, ∂T , δhY )wα + κ(α) Φ(wα)

)
= 0 , for α ∈ A \ {1} , (5.4)
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V (∂T ,δhY )wh,∗ −R(δhy ) ∂−1
θ wh,∗ + (1− ι)π(β) Φ(wh,∗)∗

+ ι π(β) Φ(wh,∗ + w1)∗ +
(
π(β)

d∑
µ=0

βµ Λµ(wh,∗ + ι w1)δhθw
)∗

= 0 .
(5.5)

These three equations together express

∂Tw
h = E1(Dy) ∂T wh1 +

∑
α6=1

Eα(Dy) ∂T whα + ∂Tw
h,∗

as a function Gh(wh).
If s > (2d + 1)/2 and h are fixed, Schauder’s Lemma implies that the nonlinear map Gh
is uniformly lipshitzean from bounded subsets of Hs(R2d × T) to Hs(R2d × T). Picard’s
Fundamental Existence Theorem for ordinary differential equations implies that there is a
T∗(s, h) > 0 and a unique local solution

wh ∈ C1
(

[0, T∗(s, h)[ ; Hs(R2d × T)
)

(5.6)
and that if T∗(s, h) <∞ then

lim
t↗T∗(s,h)

∥∥wh(T, ·, ·, ·)
∥∥
Hs(Rd×Rd×T))

= ∞ . (5.7)

Equations (5.3)-(5.5) imply that ∂T
{

(I − π(β))wh,∗
}

= 0, so the polarization π(β)wh,∗ =
wh,∗ holds as soon as it holds at T = 0.
Lemma 5.2 follows from the following a priori estimate. Fix s > (2d + 3)/2. For each
s ≥ s, there is a continuous function Ks : R+ → R+ independent of h so that the local
solutions satisfy for T < T∗(s, h)

d ‖wh(T )‖2Hs(R2d×T)

d T
≤ Ks

(
‖wh(T ) ‖Hs(R2d×T)

)
‖wh(T )‖2Hs(R2d×T) . (5.8)

To see that this suffices first take s = s. Let ζ(t) ∈ C([0, T1[ ; R) be the maximal solution
of

2
dζ

dT
= Ks(ζ(T )) ζ(T ) , ζ(0) = ||g||Hs(R2d×T) .

Then inequality (5.8) implies that for T < T1

‖wh(T )‖Hs(R2d×T) ≤ ζ(T ) . (5.9)

This proves that T∗(s, h) ≥ T1 which gives an h independent domain of existence for wh.
For any T ∈ [0, T1[ and s ≥ s let

C1 = C1(T ) := sup
0≤T≤T

|ζ(T )| , C2 = C2(s, T ) := sup
|ρ|≤C1(T )

|Ks(ρ)| .

Inequality (5.8) implies that for T ≤ T ,
‖wh(T )‖2Hs(R2d×T) ≤ eC2T ‖g‖2Hs(R2d×T) . (5.10)

Using the differential equation to express time derivatives in terms of space derivatives
implies corresponding estimates

‖∂kTwh(T )‖Hs(R2d×T) ≤ C(s, k, T ) ‖g‖Hs+2k(R2d×T) , 0 ≤ T ≤ T . (5.11)
With these bounds uniform in h it is routine to pass to the limit constructing a solution
in ∩sCs([0, T ] ; Hs(R2d × T). Passing to the limit also yields the polarization identity.
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Step 2. Proof of the differential inequality (5.8).
On T use the measure dθ/2π of total mass equal to one. To prove (5.8) add the results of
taking the real part of the L2(R2d × T) scalar product of

(5.3) with (1−∆Y,y)swh1

(5.4) with (1−∆Y,y)swhα

(5.5) with (1−∆Y,y,θ)swh,∗ .

(5.12)

The symmetry of A(0) and the antisymmetry of δhY show that from (5.3) and (5.4) one
has for all 1 ≤ j ≤ d and α ∈ A

<
(

(1−∆Y,y)swhα , Eα(Dy)Aj(0) δhYj w
h
1α

)
L2(R2d)

= 0 .

Similarly from (5.5)

<
(

(1−∆Y,y,θ)swh,∗ , v.δhY w
h,∗ −R(δhy ) ∂−1

θ wh,∗
)
L2(R2d×T)

= 0 .

Thus summing the real parts from (5.12) yields

1
2

d ‖wh(T )‖2Hs(R2d×T)

d T
= <I1 + ι

d∑
µ=0

βµ<I2,µ , (5.13)

where I1 contains the Φ terms

I1 :=
(

(1−∆Y,y)swh1 ,
〈
κ(1) Φ(wh1 + ι wh,∗)

〉 )
L2(R2d)

+
M∑
j=2

(
(1−∆Y,y)swhj , Φ(wj)

)
L2(R2d)

(5.14)

+
(

(1−∆Y,y,θ)swh,∗ , (1− ι)πΦ(wh,∗)∗ + ι πΦ(ι wh,∗ + w1)
)
L2(R2d×T)

.

The more troublesome terms are the quasilinear terms I2,µ

I2,µ :=
(

(1−∆Y,y)s wh1 , ι
〈

Λµ(w∗0 + w1) δhθ w
h,∗ 〉 )

L2(R2d)

+
(

(1−∆Y,y,θ)swh,∗ ,
(

Λµ(ι wh1 + wh,∗) δhθw
h,∗ )∗ )

L2(R2d×T)
.

(5.15)

Moser’s inequality shows that

|I1| ≤ Ks( {||whα(T )||L∞ : α ∈ A} ) ||wh||2Hs ≤ r.h.s. of (5.8) . (5.16)
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The crucial point for estimating the real part of I2,µ is the identity

I2,µ =
(

(1−∆Y,y,θ)s(wh1 + ι wh,∗) , Λµ(wh1 + ι wh∗) δhθ (wh1 + ι wh,∗)
)
L2(R2d×T)

, (5.17)

which is proved in the next lines.
First consider the case ι = 1. In the scalar product in the first summand on the right in
(5.15), the second factor is a mean value so is orthogonal to purely oscillating terms. Thus
in this summand w1 can be replaced by w1 + wh,∗. Similarly in the second summand on
the right of (5.15) the second factor has mean zero so that in the first factor wh,∗ can be
replaced by w1 + wh,∗. Finally use that δhθw

h,∗ = δhθ (w1 + wh,∗) to find that when ι = 1,

I2,µ :=
(

(1−∆Y,y,θ)s (wh1 + wh,∗) ,
〈

Λµ(w∗0 + w1) δhθ (wh1 + wh,∗)
〉 )

L2(R2d)

+
(

(1−∆Y,y,θ)s(wh1 + wh,∗) ,
(
Λµ(wh1 + wh,∗) δhθ (wh1 + wh,∗)

)∗ )
L2(R2d×T)

.

The first factors in the two scalar products are equal so that the sum simplifies and one
has

I2,µ =
(

(1−∆Y,y,θ)s(wh1 + wh,∗) , Λµ(wh1 + wh∗) δhθ (wh1 + wh,∗)
)
L2(R2d×T)

. (5.18)

This proves (5.17) when ι = 1.
When ι = 0, use the fact that wh,∗ has mean zero to find that

ι = 0 =⇒ I2,µ =
(

(1−∆Y,y,θ)s wh,∗ , Λµ(wh∗) δhθ (wh,∗)
)
L2(R2d×T)

.

This proves (5.17) when ι = 0.
The expression (5.17) is like those encountered in the energy method for quasilinear sym-
metric hyperbolic systems. The crucial fact is that the smooth matrix valued functions
Λµ have hermitian symmetric values. An integration by parts shows that the leading term
in the real part of I2,µ vanishes. Estimating the commutator [Λµ, δh], the Lipshitz norm
of Λµ is needed which explains the lower bound (2d+ 3)/2 on s. In total, the Gagliardo-
Nirenberg inequalities are used to prove < I2,µ ≤ r.h.s. (5.8) . This together with (5.16)
completes the proof of (5.8) and therefore the existence part of Lemma 5.2.
Step 3. Sketch of uniqueness proof.
It suffices to show that the L2(R2d × T) norm of the difference of two solutions satisfies a
differential inequality

d ‖w1 − w2‖2L2(R2d×T)

dt
≤ K(‖ (w1, w2)(T ) ‖Hs ) ‖w1 − w2‖2L2(R2d×T) .

This is done by subtracting the two equations and using multipliers analogous to (5.12)
but without the operator 1−∆. The details are left to the reader.
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End of proof of Theorem 5.1.
Once w is constructed on [0, T∗[×RdY ×Rdy×T, a0 is uniquely determined in [0, T∗[×RdY ×
Rt×Rdy×T by solving the linear initial value problems determined from (2.21) and (2.26),
namely

V (∂x) a∗0 = 0 , a∗0|t=0 = w∗ , (5.19)

L(0, ∂x) a0 = 0 , a0|t=0 = w , (5.20)

The resulting function a0 satisfies (5.1) and (5.2) as well as the constraints π a∗0 = a∗0. This
proves uniqueness of the solution a0, since the values of w were uniquely determined. To
complete the proof of Theorem 5.1, it suffices to show that equations (4.27), (4.28), and
(4.38) are satisfied when t 6= 0.
To verify these three equations it is sufficient to show that

L(0, ∂x)
(

l.h.s. of (4.27) and (4.28)
)

= 0 , V (∂x)
(

l.h.s. of (4.38)
)

= 0 . (5.21)

To see that this suffices note that for each T ∈ [0, T∗[ the restriction of the left hand side
of (4.27) (resp (4.28), and (4.38)) to {T = T} is is annihilated by a first order symmetric
hyperbolic operator with t timelike, and has vanishing initial data at t = 0. It follows that
they vanishe at all points of {T = T}.
The verifications of the three equations in (5.21) rely on the identities

L(0, ∂x)Eα(Dy) = Eα(Dy)L(0, ∂x) = Eα(Dy)
(
∂t + τα(Dy)

)
. (5.22)

For (4.27) compute

L(0, ∂x) (l.h.s. of (4.27)) =L(0, ∂x)E1(Dy)
(
L(0, ∂X)a0,1 (5.23)

+
〈
κ(1)Φ(a0,1 + ι a∗0) + ι

∑
µ

βµΛµ(a∗0 + a0,1) ∂θa∗0
〉)

.

The right hand side of (5.23) is equal to

E1(Dy)
(
∂t+τ1(Dy)

) (
L(0, ∂X) a0,1+

〈
κ(1)Φ(a0,1+ι a∗0)+ι

∑
µ

βµΛµ(a∗0+a0,1) ∂θa∗0
〉)

.

When ι = 1, ∂y+τ1(Dy) = ∂t+v1.∂y = V (∂x) and so (∂t+v1.∂y) a∗0 = (∂t+v1.∂y) a0,1 = 0.
It follows that the right hand side of (5.23) vanishes. When ι = 0, the right hand side
simplifies to

L(0, ∂x)E1(Dy)
(
L(0, ∂X)a0,1 + κ(1)〈Φ(a0,1)〉

)
. (5.241)

For (4.28) one has α 6= 1 and

L(0, ∂x)
(
l.h.s. of (4.28)

)
= L(0, ∂x)E1(Dy)

(
L(0, ∂X)a0,α + κ(α)Φ(a0,α)

)
. (5.242)
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The first term on the right of (5.24) is equal to

E1(Dy) (∂t + τα(Dy))L(0, ∂X) a0,α = E1(Dy)L(0, ∂X) (∂t + τα(Dy)) a0,α = 0 .

The second term can be nonzero only if α ∈ Af , in which case ∂t + τα(Dy) = ∂t + vα.∂y,
and therefore (∂t + τα(Dy))a0,α = 0 implies that (∂t + τα(Dy))Φ(aα) = 0 proving that
(5.24) vanishes.
Reasoning as above shows that V (∂x) annihilates every term on the left hand side of (4.38).
This verifies the final assertion in (5.21) and completes the proof of Theorem 5.1.

§5.2. The correctors a1 and a2.
Recall from the summary at the end of §4, that (I − π)a∗1 is given by (2.23) while a1 and
π a∗1 are defined by solving the hyperbolic initial value problems (2.27) and (4.30) with
time like variable t and initial values equal to zero at t = 0. The corrector a2 = (I − π) a∗2
is given by formula (2.28).

Proposition 5.3. The first corrector a1 grows sublinearly in the sense that for all T ∈
]0, T∗[ and γ ∈ N2d+3,

lim
t→∞

1
t

∥∥ ∂γX,x,θ a1(T, Y, t, y, θ)
∥∥
L2([0,T ]×Rd

Y
×Rdy×T)

= 0 . (5.25)

Proof. We must prove estimate (5.25) for each of the three parts, a1, π(β) a∗1, and (I −
π(β))a∗1. Formula (2.23) together with (5.1) immediately yield the estimate for (I−π(β))a∗1.
It suffices to treat the other two.
Step 1. Estimate (5.25) for a1. Define a0,α := πα(Dy) a0 . Then define ρ by

a0 =
∑
α∈Af

a0,α(x− vαt) + ρ(T, Y, t, y) .

Estimate (5.1) for a0 shows that a0,α and ρ satisfy estimates analogous to (5.1). Theorem
3.3 implies that

lim
t→∞

‖ ρ(T, Y, t, y) ‖L∞([0,T ]×Rd
Y
×Rdy) = 0 .

Using (2.26) for a∗0 one can apply the proof of Proposition 4.1 to find the following quan-
titative version of (4.18). For all T < T∗, and γ ∈ N2d+3

lim
t→∞

∥∥∥ ∂αX,x,θ (Φ(a0) +
∑

βµΛµ(a0)∂θa0 −N (a0, ∂θa0)
)∥∥∥

L2([0,T ]×Rd
Y
×Rdy×T)

= 0 . (5.26)

The quantity estimated to be small here, serves as an error term below so denote

Err := Φ(a0) +
∑

βµΛµ(a0)∂θa0 −N (a0, ∂θa0) .
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Equation (4.20) reads

a1 = L(0, ∂x)−1

(
−
∑
α∈A

L(0, ∂X) a0,α −
〈
N (a0, ∂θa0)

〉)
+ L(0, ∂x)−1 (Err) .

With (5.26) this yields the quantitative version of (4.20)

lim
t→∞

1
t

∥∥∥∥ ∂αX,x,θ ( a1 (5.27)

+ L(0, ∂x)−1
( ∑
α∈A

L(0, ∂X) a0,α +
〈
N (a0, ∂θa0)

〉 ))∥∥∥∥
L2([0,T ]×Rd

Y
×Rdy×T)

= 0 .

Using the notation (4.22-4.25), decompose

L−1S = L−1S∗ +
∑
α

L−1Sα := v∗(T, Y, y, θ) +
∑
α

vα(T, Y, t, y) .

For each T fixed, S∗, Sα are continuous functions of t with values in Hs(RdY × Rdy) and
satisfy (4.26). The profile equations guarantee that Eα(Dy)Sα = 0, and ιE1(Dy)S∗ = 0.
Viewing L(0, ∂x) and ∂t − iτα(Dy) as differential operators in t, Y, y , and applying Main
Lemma 3.5 yields a quantitative version of (4.27)

lim
t→∞

1
t

∥∥ v∗(T, Y, t, y, θ) , vα(T, Y, t, y)
∥∥
L2(Rd

Y
×Rdy×T)

= 0 .

Nearly the same reasoning applies to L−1(∂γX,x{S∗, Sα}) showing that

lim
t→∞

1
t

∥∥L−1(∂γX,x{S∗, Sα})
∥∥
L2(Rd

Y
×Rdy×T)

= 0 . (5.28)

In this derivation, the Main Lemma is applied with source terms f whose initial values at
t = 0 are

f0 := {∂γX,xv∗(T, Y, 0, y) , ∂γX,xvα(T, Y, 0, y)} . (5.29)

These are continuous functions of T with values in L2(R2d) so their values lie in a compact
subset of L2 for 0 ≤ T ≤ T . It follows that the convergence in (5.28) is uniform in T .
Thus,

lim
t→∞

1
t

∥∥L−1(∂γX,x{S∗, Sα})
∥∥
L2([0,T [×R2d

Y,y
×T)

= 0 (5.30)

The difference w := ∂γX,x {v∗, vα} − L−1(∂γX,x{S∗, Sα}) is the solution of Lw = 0 whose
initial data agrees with those of ∂γX,x {v∗, vα}. Thus the L2([0, T ] × R2d) norm of w is
bounded independent of t. Together with (5.30) this shows that

lim
t→∞

1
t

∥∥∥ ∂γX,x {v∗(T, Y, t, y) , vα(T, Y, t, y)}
∥∥∥
L2([0,T ]×R2d

Y,y
×T)

= 0 . (5.31)

38



This together with (5.27) yields (5.25) for a1.
Step 2. Estimate (5.25) for π(β) a∗1. The profile equation (4.38) for a0 is derived
exactly so that

π(β) a∗1 = V (∂x)−1

(
π(β)

(
Φ(a0) +

∑
βµΛµ(a0) ∂θa0 − π(β)N (a0, ∂θa0)

)∗)
.

That this is sublinear follows from the quantitative version of (4.18) as in the proof of
(5.31).

§5.3. Estimate for the residual.

Once profiles are defined, the approximate solution is given by (2.6) and (2.7). The residual
is computed in (2.10)-(2.11). In the present case, r0 = r1 = r2 = 0. Our estimates for the
profiles a0, a1, a2 yield estimates for the the residual.

Proposition 5.4. With the profiles constructed in this section the residual

k(ε,X, x, θ) := L
(
εpa , ε∂X + ∂x +

β

ε
∂θ
)
εpa+ F (εpa) (5.32)

satisfies the following estimates. For all γ ∈ N2d+3 and T < T∗,

sup
0≤t<T/ε

∥∥ ∂γX,x,θ k(ε,X, x, θ)
∥∥
L2([0,T ]×R2d

Y,y
×T)

= o(εp+1) (5.33)

as ε→ 0.

Proof. Since r0 = r1 = r2 = 0, the calculations of Lemma 2.1 show that

k(ε,X, x, θ) :=L(εpa, ε∂X + ∂x) ε2+pa2 + L(εpa, ε∂X) ε1+pa1

+
(
F (εp a)− Φ

(
εp a0(X,x, θ)

) )
(5.34)

+
∑
µ

(
Aµ(εp a)−

∑
µ

Aµ(0)− Λµ
(
εp a0(X,x, θ)

) ) βµ
ε

∂ εpa0

∂θ
.

Estimates (5.1) and (5.25) imply that

sup
0≤t≤T/ε

∥∥∥ ∂γX,x,θ εjaj ∥∥∥
L2([0,T ]×Rd

Y
×Rdy×T)

≤

 C for j = 0

o(1) for j = 1, 2
(5.35)

as ε→ 0. This suffices to shows that the first two terms in (5.34) contribute terms o(εp+1)
to the left hand side of (5.33).
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To treat the last two expressions on the right of (5.34) use Taylor’s Theorem together with
the definition of p in (2.5) There are smooth functions Hν ,Mκ,µ and Bρ such that

F (u) = Φ(u) +
∑

|ν|=J+1

(<u,=u)ν Hν(u)

F (u)− F (v) =
∑
|ρ|=J−1

Bρ(u, v)(<u,=u,<v,=v)ρ (u− v)
(5.36)

and
Aµ(u)−

∑
µ

Aµ(0)− Λµ(u) =
∑

|κ|=K+1

(<u,=u)κMκ,µ(u) . (5.37)

Write

F (εp a)− Φ
(
εp a0(X,x, θ)

)
=
(
F (εp a)− F (εp a0)

)
+
(
F (εp a0)− Φ

(
εp a0

))
. (5.38)

The first summand on the right of (5.38) is a finite sum of terms

εp+p|ρ|B(εpa, εpa0) (<a,=a,<a0=a0)ρ (εa1 + ε2a2) . (5.39)

Formula (2.5) shows that p|ρ| = p(J − 1) ≥ 1. Denote by ||| |||s the norm

||| · |||s :=
∑
j≤s

sup
0≤t≤T/ε

∥∥∥ ∂jt · ∥∥∥
Hs([0,T ]×Rd

Y
×Rdy×T)

. (5.40)

A variant of Schauder’s Lemma shows that for s > (2d+1)/2 and smooth G with G(0) = 0,

|||G(w) |||s ≤ C(|||w|||s) |||w|||s . (5.41)

Estimate (5.35) shows that the last factor in (5.39) is o(1) in ||| |||s. This together with
the Schauder lemma shows that the summands (5.39) make a contribution o(εp+1) to the
left hand side of (5.33)
The second summand on the right of (5.38) is a finite sum of terms

εp|ν| (<a0,=a0)ν H(εpa0) . (5.42)

Formula (2.5) shows that p|ν| = p(J + 1) = p(J − 1) + 2p ≥ 1 + 2p and (5.35) shows that
this too is o(εp+1).
Finally using (5.37), the quasilinear term in (5.34) is a finite sum of terms

εp|κ|Mκ,µ(εpa) (<a,=a)κ
βµ
ε

∂ εpa0

∂θ
. (5.44)

Formula (2.5) shows that p|κ| = p(K + 1) = p(K − 1) + 2p ≥ 2 + 2p. One power of ε
is sacrificed to the β/ε factor but the remaining ε1+2p suffices to show that the last term
contributes o(ε1+p) to the left hand side of (5.34) and the proof is complete.
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§6. Convergence and stability.

In the last section we constructed a family uε of approximate solutions to (2.1) with
wavelengths of order ε and amplitude of order εp where p given in (2.5) is determined from
the nonlinear terms in such a way that the nonlinearities play an essential role for times
t ∼ 1/ε. The approximate solution is constructed on [0, T∗/ε[×Rd.
In this section we prove that as ε→ 0, exact solutions of (2.1) with initial values converging
to those of the approximate solution exist for times T/ε for any T < T∗ and the relative
error in the approximate solutions tends to zero as ε tends to zero.

Theorem 6.1. Suppose that β = (τ, η) and uε = εp a(ε, εx, x, β.x/ε) is a family of
approximate solutions with profile a = a0 + a1 + a2 constructed in the last section. Let vε

be the exact solution of the initial value problem

L(vε, ∂x) vε + F (vε) = εp+1 `ε(x, y.η/ε) , vε|t=0 = uε|t=0 + εp gε(y, y.η/ε) , (6.1)

where gε → 0 and `ε → 0 in the sense that for all s ∈ R and j ∈ N,∥∥ gε ∥∥
Hs(Rd×T)

→ 0 , sup
0≤t≤T∗/ε

∥∥ (ε∂t)j`ε(t)
∥∥
Hs(Rd×T)

→ 0 .

i. For each T ∈ ]0, T∗[ there is an ε0 > 0 so that for all ε ∈ ]0, ε0] , vε exists and is smooth
on [0, T/ε]× Rd.
ii. There are functions Uε,Vε ∈ ∩s C∞

(
[0, T/ε] ; Hs(Rd × T)

)
with

vε = εp Vε(t, y, y.η/ε) , uε = εp Uε(t, y, y.η/ε) ,

and for all s
lim
ε→0

sup
0≤t≤T/ε

‖Uε(t)− Vε(t) ‖Hs(Rd×T) = 0 .

In particular, for all α

sup
0≤t≤T/ε

∥∥ (ε∂x)α(vε(t)− uε(t))
∥∥
L2(Rd)∩L∞(Rd)

= o(εp) .

Theorem 6.1 shows that the approximate solution is stable. In particular, replacing the
small residual by zero and perturbing the initial data by suitable small terms yields exact
solutions which are close to the approximate solution.

Example. Taking initial values vε(0, y) = εp a0(0, εy, y, y.η/ε) from the leading term
only, corresponds to taking gε(y, θ) = ε a1(0, εy, y, θ) + ε2 a2(0, εy, θ) which satisfies the
hypotheses of the theorem. Thus knowing only a0 one has an exact solution vε so that
vε − εpa0(εX, x, x.β/ε) = o(εp). This is the case described in Theorem 1.2.
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The proof starts by first transforming the problem. The approximate solution has initial
data equal to

εp
(
a0(0, Y, 0, y, y.η/ε) + ε a1(0, Y, 0, y, y.η/ε) + ε2 a2(0, Y, 0, y, y.η/ε)

)
.

The strategy, as in [JMR2], is to find the exact solution in the form

vε = εp Vε(t, y, y.η/ε) , (6.2)

where for all ε, t,
Vε(t, y, θ) ∈ ∩sHs(Rdy × T) , (6.3)

The approximate solution has this form,

uε = εp Uε(t, y, y.η/ε) , (6.4)

where with a from (2.6) and (2.7)

Uε(t, y, θ) := a(ε, εx, x,
τt

ε
+ θ)

= a0(εt, εy, t, y,
τ t

ε
+ θ)+ε a1(εt, εy, t, y,

τ t

ε
+ θ) + ε2 a2(εt, εy, t, y,

τ t

ε
+ θ) .

(6.5)

Note that Uε is a continuous function of t with values in Hs(Rd × T) which is uniformly
bounded for times t ∼ 1/ε but its derivatives with respect to time explode like 1/ε even
for small times. The solution Vε is constructed continuous in time with values in Hs with
the expectation that its time derivatives are also ∼ 1/ε.
In order for vε from (6.2) to satisfy (6.1) it is sufficient that

L( εp Vε, ∂t, ∂y +
η

ε
∂θ ) εpVε + F (εp Vε) = εp+1 `ε(t, y, θ) , for all t, y, θ ,

Vε(0, y, θ) = Uε(0, y, θ) + gε(y) .
(6.6)

The construction of the profiles shows that Uε defined in (6.5) is an approximate solution
of (6.6). Equations (2.10) and (2.11) show that

L( εpUε, ∂t, ∂y +
η

ε
∂θ ) εpUε + F (εpUε) = k(ε, εx, x, tτ/ε+ θ)

with k defined in (5.33). Thus

L( εpUε, ∂t, ∂y +
η

ε
∂θ ) εpUε + F (εp Uε) = εp+1Hε(t, y, θ) , (6.7)

with
Hε(t, y, θ) := ε−p−1 k(ε, εt, εy, t, y,

τ t

ε
+ θ) . (6.8)
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The strategy is to construct the solution Vε as a perturbation of Uε,
Vε = Uε +Wε . (6.9)

It suffices to show that Wε exists for 0 ≤ t ≤ T/ε and converges to zero uniformly on that
interval.
The first step is to show that a combination of the powers of εp and the hypothesis on the
orders of the nonlinearities, simplifies (6.6) and (6.7) and shows why one expects such an
approximation result for times t ∼ 1/ε.
The order of nonlinearity hypothesis as in the proof of Lemma 2.1, implies that

Aµ(εp V)−Aµ(0) = ε2Bµ(ε,V) , F (εp V) = εp+1G(ε,V)

where Bµ and G are smooth functions of V ∈ Cd , G taking values in Cd and Bµ taking
values in the hermitian symmetric N × N matrices. Both depend smoothly on εp and
therefore continuously on ε ∈ [0, 1]. Define a family of quasilinear symmetric hyperbolic
operators by

B(ε,V, ∂)V :=
d∑

µ=0

Bµ(ε,V) ∂µV .

After division by εp, the equation for Vε takes the form

L(0, ∂t, ∂y +
η

ε
∂θ)Vε + εB(ε,Vε, ε∂t, ε∂y + η ∂θ )Vε + εG(ε,Vε) = ε `ε(t, y, θ) . (6.10)

In the first term of (6.10), L(0, ∂t, ∂y + η
ε ∂θ) is a singular constant coefficient symmetric

hyperbolic operator, and the second and third terms have small coefficients. The approx-
imate solution Uε satisfies

L(0, ∂t, ∂y +
η

ε
∂θ)Uε + εB(ε,Uε, ε∂t, ε∂y + η ∂θ )Uε + εG(ε,Uε) = εHε(t, y, θ) . (6.11)

We show that Uε and Vε stay close for times t ∼ 1/ε. There are two singularities in the
problem. First there are the operators in ε−1∂θ, and second we are interested in times
t ∼ 1/ε. The fact that there are two distinct singularities is because we have a three scale
problem rather than a two scale problem as in standard geometric optics. Note that the
factors εp have been removed and the solutions Uε and Vε are O(1).
At this stage the argument is made clearer by passing to a more general framework. In
addition results with several angle variables θ are needed to treat the multiphase case. The
key structure in equation (6.10) is that the zero order term term G and all the quasilinear
terms have a factor ε in front of them and the quasilinear term in ∂t has an ε2 in front.
In fact all the derivatives in x have such a factor but it is only for the ∂t term that it is
needed because the derivatives in time are typically larger by a factor 1/ε.
The spatial variables and angular variables play identical roles in the analysis to follow
even though they arise in different ways. With this in mind, introduce the variable

z := (z1, z2, . . . , zd+m) := (y, θ) ∈ Rd × Tm .
The spacetime variable is still denoted

x := (t, z) = (x0, x1, . . . , xd+m) .

The index µ runs from 0 to d+m, and the index j runs from 1 to d+m.
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Hypotheses. Suppose that

Mε(∂x) =Mε(∂t,z) := A0
∂

∂t
+
d+m∑
j=1

(
Aj +

1
ε
Ãj

) ∂

∂zj
+ L0 (6.12)

is a singular family of constant coefficient dissipative linear symmetric hyperbolic operators
on R1+d × Tm with time variable t = x0. Here symmetry means that the coefficients Aµ
and Ãµ are hermitian symmetric with A0 strictly positive definite. Dissipativity means
that the constant matrix L0 satisfies

L0 + L∗0 ≥ 0 . (6.13)

Suppose that for 0 ≤ µ ≤ d+m and ε ∈ [0, 1] Bµ(ε, V ) is a smooth hermitian symmetric
matrix valued function on CN and G(ε, V ) is smooth with values in CN . The partial
derivatives of these functions with respect to <V,=V are assumed to be continuous on
[0, 1]× CN . Introduce the singular family of quasilinear symmetric hyperbolic operators

Lε(V )V :=Mε(∂t,z)V + ε2B0(ε, V )
∂V

∂t
+ ε

d+m∑
j=1

Bj(ε, V )
∂V

∂zj
+ εG(ε, V ) . (6.14)

With T > 0 a family of solutions

Uε ∈ C∞([0, T/ε]× Rd × Tm)) (6.15)

with residuals
Lε(Uε)Uε := Rε(t, y, θ) (6.16)

is given. Suppose that the family Uε is bounded for times of order 1/ε in the sense that
for all s,

sup
0≤ε≤ε0

sup
t∈[0,T/ε]

∥∥ ε∂tUε(t) , Uε(t)∥∥Hs(Rd×Tm)
< ∞ (6.17)

The next theorem shows that Uε is stable for times of order 1/ε under perturbations of Rε

and initial data. Note that there are strong hypotheses on the size of Uε but other than
that no hypotheses on the size of Rε. The hypotheses are only on the size of Uε and and
the size of the perturbations.

Stability Theorem 6.2. Suppose that Lε is as above and that a family of solutions Uε

satisfies (6.15)-(6.17). Suppose that T > 0 and that for 0 < ε ≤ 1, gε ∈ ∩sHs(Rd × Tm)
and Kε ∈ ∩s L1

(
[0, T/ε] ; Hs(Rd × Tm)

)
are o(1) in the sense that for all s

lim
ε→0

‖ gε(y, θ) ‖Hs(Rd×Tm) = 0 , and lim
ε→0

∫ T/ε

0

‖Kε(σ) ‖Hs(Rd×Tm) dσ = 0 . (6.18)
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Define V ε ∈ ∩s C([0, T∗(ε)[ ; Hs(Rd × Tm) ) to be the unique maximal solutions of the
initial value problems

Lε(V ε)V ε = Rε +Kε , (6.19)

V ε
∣∣
t=0

= Uε
∣∣
t=0

+ gε . (6.20)

Then, there is a 0 < ε1 ≤ 1 so that for 0 < ε ≤ ε1, T∗(ε) ≥ T/ε, and for all s, k

lim
ε→0

sup
0≤t≤T/ε

∥∥ (ε∂t)k
(
V ε(t)− Uε(t)

) ∥∥
Hs(Rd×Tm)

= 0 . (6.21)

Proof of Theorem 6.1 assuming Theorem 6.2. Apply Stability Theorem 6.2 to (6.10)
and (6.11) with Kε = εHε, Rε(t, Y, θ) = −Kε(t, Y, θ)+ε `ε(t, Y, θ) and gε = gε(y, θ). That
Kε = εHε satisfies (6.18) follows from formula (6.18) and estimate (5.33).

Proof of Theorem 6.2. Define W ε = V ε −Uε. To derive an equation for the perturba-
tion, W ε, subtract (6.16) from (6.19). Write

Bµ(ε, V ε) ∂µ V ε − Bµ(ε, Uε) ∂µ Uε = Bµ(ε, V ε) ∂µW ε +
(
Bµ(ε, V ε)− Bµ(ε, Uε)

)
∂µ U

ε .

Use Taylor’s Theorem in the last term to find an equation of the form

Lε(Uε +W ε)W ε + εG
(
ε, Uε, ε∂tU

ε ∂zU
ε,W ε

)
W ε = Kε (6.22)

where G is continuous in ε and smooth in its other arguments. The initial value is given
by

W ε
∣∣
t=0

= gε . (6.23)

Fix an integer s > 1 + (d + m)/2. The standard local existence theory for quasilinear
symmetric hyperbolic systems shows that there is a unique maximal local solution

W ε ∈ ∩k Ck([0, T∗(ε)[ ; Hk(Rd × T))

and if the time of existence T∗(ε) <∞ then

lim
t↗T∗(ε)

‖W ε(t) ‖Hs(Rd×Tm) =∞ . (6.24)

To prove that T∗ ≥ T/ε it suffices to bound the Hs norm of W ε(t) for 0 ≤ t ≤ T/ε.
The next Lemma is the key element in the stability proof. The important fact is that the
amplification factor C is uniform for times t ∼ 1/ε.

Lemma 6.3. Hs(Rd ×Tm) estimate. For s− 1 > (d+m)/2, there is a constant C so if
ε ∈]0, 1], t ∈ [0, T/ε], and W ∈ C1

(
[0, t] ; H1+s(Rd × Tm)

)
satisfies

sup
0≤t≤t/ε

∥∥W (t), ∂zW (t), ε∂tW (t)
∥∥
L∞(Rd×Tm)

≤ 1 , (6.26)

then for 0 ≤ t ≤ t

‖W (t)‖Hs(Rd×Tm) ≤ C
(
‖W (0)‖Hs(Rd×Tm) +

∫ t

0

‖Lε(Uε +W )W (t)‖Hs(Rd×Tm) dt
)
.

(6.27)
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Proof of Theorem 6.2 assuming Lemma 6.3. Equations (6.18), (6.22), and (6.23),
imply that there is a 0 < ε2 ≤ 1 so that for 0 < ε < ε2,∥∥W ε(0), ∂zW ε(0), ε∂tW ε(0)

∥∥
L∞(Rd×Tm)

≤ 1/2 ,

For 0 < ε < ε2 define 0 < t∗(ε) by

t∗(ε) = sup
{
t < min{T∗(ε), T/ε} :

sup
0≤t≤t

∥∥W ε(t), ∂zW ε(t), ε∂tW ε(t)
∥∥
L∞(Rd×Tm)

≤ 1
}
.

(6.28)

Fix N 3 s ≥ 1 + (d+m)/2. Inequality (6.27) then implies that for 0 ≤ t ≤ t∗(ε),

‖W ε(t)‖Hs(Rd×Tm) ≤

C

(
‖W ε(0)‖Hs(Rd×Tm) +

∫ t

0

‖Kε(t)− εG(ε, Uε, ε∂tUε, ∂zUε,W ε)W ε‖Hs(Rd×Tm) dt

)
.

(6.29)
Hypothesis (6.17) bounds Uε and ε∂tU

ε in Hs(Rd × Tm). Then Moser’s inequality shows
that for times no larger than t∗(ε)

‖G(ε, Uε, ε∂tUε, ∂zUε,W ε)W ε ‖Hs(Rd×Tm) ≤ C ‖W ε ‖Hs(Rd×Tm) .

Then (6.29) yields

‖W ε(t)‖Hs(Rd×Tm) ≤ C
(
‖W ε(0)‖Hs(Rd×Tm) +

ε

∫ t

0

‖W ε(t)‖Hs(Rd×Tm) dt+
∫ t

0

‖Kε(t)‖Hs(Rd×Tm) dt
)
.

(6.30)

Hypothesis (6.18) shows that as ε→ 0,

‖W ε(0)‖Hs(Rd×Tm) +
∫ t

0

‖Kε(t)‖Hs(Rd×Tm) dt ≤

‖gε‖Hs(Rd×Tm) +
∫ T/ε

0

‖Kε(t) ‖Hs(Rd×Tm) dt = o(1) .

Inserting this in (6.30) yields

‖W ε(t)‖Hs(Rd×Tm) ≤ C
(
o(1) + ε

∫ t

0

‖W ε(t)‖Hs(Rd×Tm) dt
)
. (6.31)

Gronwall’s lemma yields ‖W ε(t)‖Hs(Rd×Tm) ≤ eCεt o(1) . Since εt ≤ T , this implies

sup
0≤t≤t∗(ε)

‖W ε(t)‖Hs(Rd×Tm) = o(1) . (6.32)
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Then Sobolev’s Lemma shows that

‖W ε(t), ∂z,θW ε(t)‖L∞(Rd×Tm) = o(1) .

Using equation (6.19) to express the time derivative in terms of z derivatives and using
hypothesis (6.15) then shows that ‖ε∂tW (t)‖L∞(Rd×Tm) = o(1). Thus, one can choose
0 < ε3 < ε2 so that for 0 < ε < ε3 and 0 < t ≤ t∗(ε),

sup
0≤t≤t∗(ε)

∥∥W ε(t), ∂zW ε(t), ε∂tW ε(t)
∥∥
L∞(Rd×Tm)

≤ 1/3 .

It follows from the definition (6.28) that for these ε, t∗ = T/ε , and therefore that (6.32)
holds for all 0 ≤ t ≤ T/ε. In particular T∗(ε) > t∗(ε) = T/ε and

sup
0≤t≤T/ε

‖W ε(t), ∂z,θW ε(t) ‖L∞(Rd×T) ≤ 1 .

Next consider larger integer values s. Given the sup norm bound for W ε, ∂z,θW
ε one

can repeat the argument leading to (6.32) to shows that (6.32) holds for the new s and
0 ≤ t ≤ T/ε which proves the desired conclusion (6.21)

Proof of Lemma 6.3. Use the energy method for symmetric hyperbolic systems. There
are three key ingredients in the computation. First is that one estimates z = y, θ deriva-
tives and not t derivatives. Second, the singular terms are dissipative and have constant
coefficients, so commute with ∂z. Third the scales in ε must be carefully followed. They
work but with no margin for error because p is a critical exponent.
Write

L(Uε +W ) =
d+m∑
µ=0

Aε
µ(x) ∂µ + L0 ,

where
Aε

0(x) := A0 + ε2B0

(
ε, Uε(x) +W (x)

)
,

and for j = 1, . . . , d+m

Aε
j(x) := Aj +

1
ε
Ãj + εBj

(
ε, Uε(x) +W (x)

)
.

Step 1. L2(Rd × Tm) energy estimate. The standard energy identity for the linear
operator L(Uε +W ) applied to Z ∈ C1([0, t] ; H1(Rd × Tm) ) reads

∂t (Aε
0Z,Z)L2(Rd) +

∫
Rd×Tm

( (
L0 + L∗0 + 2

d+m∑
µ=0

∂µAε
µ

)
Z , Z

)
dz =

2 Re
∫
Rd×Tm

(
Z , L(Uε +W )Z

)
dz .

(6.33)
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The term on the right is estimated using the Schwartz inequality to give∣∣∣∣ ∫
Rd×Tm

(
Z , L(Uε +W )Z

)
dz

∣∣∣∣ ≤ ‖Z(t) ‖L2 ‖LZ(t) ‖L2 . (6.34)

Hypothesis (6.13) implies that∫
Rd×Tm

( (
L0 + L∗0)W , W

)
dz ≥ 0 . (6.35)

The explicit form of the coefficients A0 shows that

‖ ∂0Aε
0(t, z) ‖L∞(z) ≤ εC(‖Uε +W‖L∞)

∥∥ ε∂0(Uε(t) +W )
∥∥
L∞
≤ Cε , (6.36)

thanks to (6.17) and (6.26). Similarly

‖ ∂jAε
j(t, z) ‖L∞(z) ≤ εC(‖Uε +W‖L∞)

∥∥ ∂j(Uε +W )(t)
∥∥
L∞

≤ Cε . (6.37)

It is important that in (6.36) one has ε∂0 derivatives on the right hand side. The extra
power of ε compared to (6.37) comes from the ε2 in the B0 term in (6.14) as compared to
the ε in the Bj terms.
Combining the last five equations yields a differential inequality

∂t (Aε
0Z,Z)L2(Rd) ≤ C

(
ε‖Z(t) ‖2L2 + ‖Z(t) ‖L2‖L(Uε +W )Z(t) ‖L2

)
. (6.38)

Define
Φ(t) :=

(
Aε

0Z(t) , Z(t)
)1/2
L2(Rd×Tm)

. (6.39)

The symmetric hyperbolicity assumption guarantees that so long as Uε +W is pointwise
bounded, Φ is equivalent to the L2 norm in the sense that

1
C
‖Z(t) ‖L2(Rd×Tm) ≤ Φ(t) ≤ C‖Z(t) ‖L2(Rd×Tm) . (6.40)

Using this in (6.38) yields the differential inequality
d

dt
Φ2(t) ≤ εC Φ(t)2 + C Φ(t) ‖L(Uε +W )Z(t) ‖L2 . (6.41)

As usual this yields

Φ(t) ≤ eεCt Φ(0) +
∫ t

0

eεC(t−σ)‖L(Uε +W )Z(σ) ‖L2 dσ . (6.42)

Since εt ≤ T in our domain this proves the crucial L2 estimate

‖Z(t)‖L2 ≤ C‖Z(0)‖L2 + C

∫ t

0

‖L(Uε +W )Z(σ)‖L2 dσ . (6.43)

The constants in this equation depend on the sup norms of Uε + W , ∂j(Uε + W ), and
ε∂t(Uε +W ).

Step 2. A commutator estimate. The strategy is to apply estimate (6.43) to Z(t) :=
∂αzW with |α| ≤ s. Toward that end write

L(Uε +W ) ∂αzW = ∂αz
(
L(Uε +W )W

)
+
[
L(Uε +W ) , ∂αz

]
W . (6.44)

The next step is to estimate the commutator.
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Commutator estimate. There is a constant C(s, Uε,Lε) so that for all t ≤ T , |α| ≤ s
and W satisfying (6.26) one has for 0 ≤ t ≤ t/ε,∥∥ [L(Uε +W ) , ∂αz

]
W (t)

∥∥
L2(Rd×Tm)

≤

εC
(
‖W (t) ‖Hs(Rd×Tm) + ε ‖Lε

(
Uε(t) +W (t)

)
W (t) ‖Hs(Rd×Tm)

)
.

(6.45)

Proof of the commutator estimate. The commutator on the left of (6.45) is a sum of

ε2
[
B0(Uε +W ) ∂0 , ∂

α
z

]
(6.46)

and the terms
ε
[
Bj(Uε +W ) ∂j , ∂αz

]
, j = 1, 2, . . . , d+m. (6.47)

First consider (6.47). Leibniz’ rule for differentiating a product shows that

∂αz

(
Bj(Uε +W )∂jW

)
= Bj(Uε +W )∂j∂αzW +

∑
0 6=ν=α−γ

cν,γ (∂νzBj) ∂
γ
z ∂jW . (6.48)

Thus (6.47) is a linear combination of terms ε (∂νzBj) ∂
γ
z ∂jW . Leibniz’ rule expresses

∂νzBj(U
ε +W ) as a sum of terms of the form

εG(Uε +W )
∏

∂νkz (Uε +W ) ,
∑

νk = ν .

The G factor and all of ∂νkz U
ε factors are bounded thanks to (6.17) and (6.26). It remains

to estimate the L2(Rd × Tm) norm of

ε
( ∏

∂νkz W
)
∂j∂

γ
zW , |νk| ≥ 1 , 1 ≤ |γ| ≤ s− 1 , |γ|+

∑
k

|νk| ≤ s . (6.49)

Note the total order 1 + |γ| +
∑
k |νk| could be as large as s + 1. We use the Gagliardo-

Nirenberg inequalities together with Hölder’s inequality.
If |νk| = 1 then (6.26) bounds the corresponding factor in L∞ so those factors can be
eliminated. Thus it suffices to consider expressions (6.49) with all |νk| ≥ 2.
For such expressions, let

r := |γ|+
∑
k

(|νk| − 1) ≤ s− 1, so
|γ|
2r

+
∑
k

|νk| − 1
2r

=
1
2
. (6.50)

Interpolating between ∂jW ∈ L∞ and |∂z|r∂jW ∈ L2 one has

‖ ∂γz ∂jW ‖L2r/|γ| ≤ C ‖ ∂jW ‖1− |γ|/rL∞ ‖ |∂z|r∂jW ‖|γ|/rL2 . (6.51)
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Similarly writing ∂νkz as the product of a first order partial and a partial of order |νk| − 1
yields

‖ ∂νkz W ‖L2r/(|νk|−1) ≤ C ‖∇zW ‖1− (|νk|−1)/r
L∞ ‖ |∂z|r+1W ‖(|νk|−1)|/r

L2 . (6.52)

Applying Hölder’s inequality yields

ε
∥∥∥( ∏ ∂νkz W

)
∂j∂

γ
zW

∥∥∥
L2(Rd×Tm)

≤ ε F ( ‖W , ∇zW‖L∞ ) ‖ |∂z|r+1W ‖L2(Rd×Tm) .

(6.53)
This suffices to estimate the terms (6.47) by the the first summand on the right hand side
of (6.45).
The analysis of the terms (6.46) follows the same lines with ∂j replaced by ε∂0 leading to∥∥∥( ε∏ ∂νkz W

)
ε∂0∂

γ
zW

∥∥∥
L2(Rd×Tm)

≤ ε F ( ‖W , ε∂0W , ∇zW‖L∞ ) ‖ ε∂0|∂z|rW ‖L2 .

(6.54)
Expressing the time derivative

ε∂0W = A−1
0

(
εLε(Uε +W )W −

d+m∑
j=1

(
εAj + Ãj

)∂W
∂zj

+ εL0W
)
.

yields

‖ ε∂0W (t) ‖Hs−1(Rd×Tm) ≤ C
(
‖W (t) ‖Hs(Rd×Tm) + ε‖Lε(Uε +W )W ‖Hs(Rd×Tm)

)
.

(6.55)
Estimates (6.54) and (6.55) suffice to estimate the terms (6.46) by the right hand side of
(6.45). This completes the proof of the commutator estimate.

Step 3. Endgame. Applying (6.43) to Z := ∂αzW with |α| ≤ s and using the commutator
estimate (6.45) yields with norms on Rd × T,

‖Z(t)‖L2 ≤ C
(
‖Z(0)‖L2 +

∫ t

0

‖∂αz
(
L(Uε +W )W

)
(σ)‖L2 dσ + ε

∫ t

0

‖W (σ)‖Hs dσ
)
.

Summing over all |α| ≤ s yields

‖W (t)‖Hs ≤ C
(
‖W (0)‖Hs +

∫ t

0

‖
(
L(Uε +W )W

)
(σ)‖Hs dσ + ε

∫ t

0

‖W (σ)‖Hs dσ
)
.

Gronwall’s inequality implies that

‖W (t)‖Hs ≤ C
(
eεCt‖W (0)‖Hs +

∫ t

0

eεC(t−σ) ‖
(
L(Uε +W )W

)
(σ)‖Hs dσ

)
.

Since 0 ≤ σ ≤ t/ε ≤ T/ε on the domain in consideration, this proves (6.27) and completes
the proof of Lemma 6.3, and therefore Stability Theorem 6.2.
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§7. Applications, examples, and extensions.

Once the construction of the approximate solution and the proof of its validity is complete,
it remains to study the structure of the approximate solutions. In this section we present
a selection of qualitative results concerning the dynamics defined by the profile equations.
Several examples show the forms these equations can take. In addition, we describe several
extensions of the results whose proof does not require essentially new ideas. In particular
we discuss nonoscillatory solutions and profiles periodic in Y .

§7.1. Nonoscillatory solutions.
The dynamics of the oscillatory part a∗0 is determined by equations (2.26) and (4.38).
These equations always have the solution a∗0 = 0. The solutions with a∗0 = 0 describe
the behavior for times t ∼ 1/ε of hyperbolic systems with nonoscillatory initial data
u(0, y) = εpa(0, εy, 0, y). We record some features of the result as a Proposition.

Proposition 7.1. If the oscillatory part a∗0(T, Y, y, θ) vanishes for T = t = 0 then it
vanishes for all time, and the nonoscillatory part is determined by the uncoupled system
of equations for a0,α = Eα(Dy) a0,α, α ∈ A(

∂t + τα(Dy)
)
a0,α(T, Y, t, y) = 0 . (7.1)

Eα(Dy)
(
L(0, ∂X)a0,α + κ(α) Φ(a0,α)

)
= 0 . (7.2)

Proof. Equations, (2.21), (2.26), (4.27), (4.28) and (4.38) with initial data a0(0, Y, y, θ) =
a0(0, Y, 0, y) are solved if one takes a∗0 = 0 and a0,α to be the unique solution of (7.1),
(7.2) with initial value a0,α(0, Y, 0, y) = Eα(Dy) a0(0, Y, 0, y). By uniqueness this yields
the solution.

Remarks. 1. The modes are uncoupled.
2. The nonlinear parts of the quasilinear terms do not contribute to the principal term.
3. For curved parts of the characteristic variety, κ(α) = 0 and the equation for aα is linear.
If all sheets of the variety are curved the dynamics is linear.
4. In the one dimensional case, one can diagonalize A1(0)

A1(0) = diag (λ1, λ2, . . . , λN ) .

In this basis we have components

a0 = a0 = (a1, . . . , aN ) , Φ = (Φ1, . . . ,ΦN ) .

The profile equations are uncoupled nonlinear transport equations(
∂t + λn ∂y

)
an = 0 ,

(
∂T + λn ∂Y

)
an + Φn(an) = 0 , n = 1, . . . , N .
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Writing an = bn(T, Y − λnT, y − λnt, θ) with bn = bn(T, Y, y, θ) these equations reduce to

∂T bn + Φn(bn) = 0 , n = 1, . . . , N .

§7.2. Profiles independent of or periodic in Y.
The equations for the profile a0(X,x, θ) are translation invariant in the sense that for any
X,x, θ ∈ R2d+3, a0(X + X,x + x, θ + θ) is a solution if and only if a0 is a solution. This
suggests the following argument. If the initial data a0(0, Y, t, y, θ) is independent of Y ,
then the solution a0 is also independent of Y since a0(T, Y + Y , t, y, θ) is a solution with
the same initial data, so must be equal to a0. The error in the argument is that we have
only studied the initial value problem for data belonging to ∩sHs(RdY × Rdy × T) which
excludes functions independent of Y . However, the arguments which work for Y ∈ Rd
work exactly the same way for Y ∈ Td. In this way a theory exactly analogous to that
we have developed works for modulations on the slow scale which are periodic rather
than square integrable in Y . One finds exactly the same profile equations and perfectly
analogous stability results where Hs(RdY ) is systematically replaced by Hs(TdY ). Once
this is remarked the preceding uniqueness argument is correct and we have the following
important case of profiles independent of Y for which the profile equations simplify.

Proposition 7.2. If the initial data g(y, θ) ∈ ∩sHs(Rd × T) with π(β) g∗ = g∗ is inde-
pendent of Y then there is a unique profile a0(T, t, y, θ) independent of Y determined as
the solution of (2.21), (2.26) and the T dynamic equations

Eα(Dy)
(
∂Ta0,α + κ(α) Φ(a0,α)

)
= 0 , for α ∈ A \ {1} . (7.3)

E1(Dy)
(
∂T a0,1 +

〈
κ(1) Φ(ι a∗0 + a0,1) + ι

∑
µ

βµΛµ(a∗0 + a0,1) ∂θa∗0
〉)

= 0 . (7.4)

∂T a
∗
0 −R(∂y) ∂−1

θ a∗0 + (1− ι)πΦ(a∗0)∗

+ ι πΦ(a∗0 + a0,1)∗ +
(
π

d∑
µ=0

βµ Λµ(a∗0 + ιa0,1)∂θa0

)∗
= 0 .

(7.5)

which are formally identical to equations (4.28), (4.27) and (4.38) for Y independent func-
tions.

Combining the simplifications of §7.1 and §7.2 yields the situation of the warmup problem
in §4.1.
Profiles independent of Y arise in another natural way. Whenever one has a principal
profile which is rapidly decreasing in y, the asymptotic description can be achieved with
a principal profile which is independent of Y . In particular this is the case of the profiles
constructed in the published (as opposed to internet) version of [DJMR]. The argument is
the following. Write

a0(T, Y, t, y, θ) = a0(T, 0, y, θ) + Y.b(T, Y, t, y, θ) , b :=
∫ 1

0

∇Y a(T, σY, t, y, θ) dσ .
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Let c(T, Y, t, y, θ) := y.b(T, Y, t, y, θ). When profiles are used one substitutes Y = εy so
that the profile

a0(T, 0, t, y, θ) + εc(T, Y, t, y, θ)

describes the same asymptotic behavior as a0 and has principal profile a0(T, 0, t, y, θ) which
is independent of Y . In order that c be suitably square integrable in y requires that y∇Y a0

be square integrable in y which is a decay condition on ∇Y a0.
If the initial values a0(0, Y, 0, y, θ) are rapidly decaying in the sense that

yγa0(0, Y, 0, y, θ) ∈ ∩sHs(Rd × Rd × T)

then the process can be repeated yielding an expansion

a0(0, Y, 0, y, θ) ∼ a0(0, 0, 0, y, θ) +
∞∑
j=1

εj cj(y, θ)

all of whose profiles are independent of y. Solving the profile equations with the initial
data for a1, π(β) a∗1 changed from zero to

a1

∣∣
t=T=0

= c1(y) , π(β) a∗1
∣∣
t=T=0

= π(β) c∗1

yields an asymptotic description with profiles independent of Y .

Summary. If a0 is rapidly decaying in y, the above recipe constructs an asymptotic
description of the solution with profiles independent of Y .

§7.3. Curved sheet implies that a∗0 does not influence a0.

Proposition 7.3. If β satisfies the smooth variety hypothesis and belongs to a sheet of the
characteristic variety which is not a hyperplane, then the evolution of the nonoscillating
part a0 is not influenced by the oscillating part a∗0. For such β if a0 vanishes at T = t = 0
then it vanishes identically.

For solutions with a0 = 0, the profile equations simplify appreciably which makes this
Proposition particularly interesting.

Proof. The condition on β is equivalent to ι = 0. In that case the profile equations for a0

are (
∂t + τα(Dy)

)
aα = 0 , (7.6)

Eα(Dy)
(
L(0, ∂X) aα + κ(α)Φ(a0,j)

)
= 0 , (7.7)

These equations do not involve a∗0 proving the first assertion of the Proposition.
If the initial data vanishes at T = t = 0 then (7.6) implies that aα vanishes in {T = 0}.
Then the second equation implies that it vanishes for all T .
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This result shows that creation of nonoscillating contributions from oscillating terms is
restricted to the case of β belonging to hyperplanes in the characteristic variety.

Examples of hyperplanes in the variety. 1. When d = 1 all sheets of the characteristic
variety are hyperplanes. For this reason the one dimensional case is not a good guide to
the general case.
2. The characteristic varieties of both the compressible Euler equations and Maxwell’s
Equations are the union of a light cone and the horizontal plane τ = 0. For the Eu-
ler equation the hyperplane corresponds to entropy waves. For the Maxwell equations,
the hyperplane in the characteristic variety correspond to unphysical solutions which are
eliminated by the constraints divE = divB = 0.
3. It is possible that in a conic neighborhood of β the characteristic variety contains a
curved sheet and its tangent plane. An example is the characteristic equation

(τ2 − |η|2)(τ + η1) = 0 with β = (1,−1, 0, . . . , 0) .

In such cases the simple characteristic variety hypothesis is violated and our construction
of approximate solutions does not apply.

§7.4. Two examples with a0 = 0.
We compute the form taken by the profile equations for two examples satisfying the hy-
potheses of Proposition 7.3 and for which the mean value a0 vanishes identically.

Example 7.1. Consider the semilinear system
∂u

∂t
+
[

1 0
0 −1

]
∂u

∂y1
+
[

0 1
1 0

]
∂u

∂y2
+ Φ(u) = 0 , (7.8)

where Φ(u1, u2) = (Φ1,Φ2) is homogeneous of degree J . The standard normalization is
then p = 1/(J−1). For quadratic (resp. cubic) nonlinearity one has p = 1 (resp. p = 1/2).
The characteristic variety is given by τ2 = |η|2 so the simple characteristic variety and
curved characteristic variety hypotheses are satisfied at all β. Take β = (1,−1, 0, 0) then

L(β) =
[

0 0
0 −2

]
, and, π(β) =

[
1 0
0 0

]
.

The transport operator is V (∂x) = ∂t + ∂1. The principal profile satisfies π(β)a∗0 = a0 so
has vanishing second component. Risking confusion write (a(T, Y1 − T, Y2, y1 − t, y2, θ), 0)
for the leading profile. Then (4.38) shows that the scalar valued function a(T, Y, y, θ) is
determined from its values at T = 0 by the equation

∂ a
∂T

+
1
2

∆y ∂
−1
θ a + Φ1(a, 0)∗ = 0 . (7.9)

If p is an odd integer and Φ1(a, 0) = φ(|a|p−1)a, there are monochromatic solutions
a(T, Y, y, θ) =
eikθ v(T, Y, y) whose profile v is determined as a solution of the classical Nonlinear Schrödinger
Equation

∂ v

∂T
+

1
2ik

∆y v + φ(|v|p−1) v = 0 .
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Example 7.2. The inviscid compressible Euler equations.

The isentropic inviscid 2d compressible Euler equations describe flows with negligible heat
conduction.* The unknowns are the velocity v = (v1(t, y), v2(t, y)) and the density ρ(t, y).
The dynamics is governed by the system of equations( ∂

∂t
+ v1

∂

∂y1
+ v2

∂

∂y2

)
v1 +

p′(ρ)
ρ

∂

∂y1
ρ = 0 . (7.10)

( ∂

∂t
+ v1

∂

∂y1
+ v2

∂

∂y2

)
v2 +

p′(ρ)
ρ

∂

∂y2
ρ = 0 . (7.11)

( ∂

∂t
+ v1

∂

∂y1
+ v2

∂

∂y2

)
ρ+ ρ

(∂v1

∂y1
+
∂v2

∂y2

)
= 0 , (7.12)

where p = p(ρ) gives the pressure as a function of the density. This system is of the form∑
Bµ(v, ρ)∂µ(v, ρ) = 0 with coefficients

B0 = I , B1 =

 v1 0 p′(ρ)/ρ
0 v1 0
ρ 0 v1

 , B2 =

 v2 0 p′(ρ)/ρ
0 v2 0
ρ 0 v2

 . (7.13)

The system is symmetrized by multiplying by B̃0 yielding coefficients

B̃0 :=

 ρ2/p′(ρ) 0 0
0 1 0
0 0 1

 , B̃j =

 ρ2vj/p
′(ρ) 0 ρ

0 vj 0
ρ 0 vj

 . (7.14)

The background state is v = 0, ρ = ρ > 0 with constant density. Introduce

u := B̃
1/2
0 (0, ρ) (v, ρ− ρ) =

( ρv1

c
, v2, ρ− ρ

)
, c :=

√
p′(ρ)

to find an equivalent system with coefficients

Aµ(u) = B̃
−1/2
0 (0, ρ) B̃µ

( c
ρ
u1, u2, u3 + ρ

)
B̃
−1/2
0 (0, ρ) .

satisfying the conventions that the background state is u = 0 and the coefficient of ∂t is
equal to I when u = 0. This is usually a simple zero so the nonlinearity is of order K = 2
and the critical exponent for diffractive nonlinear geometric optics is p = 2/(K − 1) = 2.
The system is strictly hyperbolic with characteristic equation

τ
(
τ2 − c2|η|2

)
= 0 . (7.15)

* The nonisentropic, and 3d equations can be analysed in the same manner.
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For β = (c,−1, 0) = (τ, η) the basic operators are

V (∂x) =
∂

∂t
+ c

∂

∂y1
, R(∂y) = ∆y , π(β) =

 1/
√

2 0 1/
√

2
0 0 0

1/
√

2 0 1/
√

2

 . (7.16)

The last is orthogonal projection on R(1, 0, 1).
Since the variety is curved, Proposition 7.3 yields profiles with vanishing nonoscillatory
part. In that case, the principal profiles

a0 = a∗(T, Y1 − cT, Y2, y1 − ct, y2, θ)
(
1/
√

2, 0, 1/
√

2
)

with scalar valued amplitude a(T, Y, y, θ) are determined as solutions of the quasilinear
evolution equations

∂T a + ∆y∂
−1
θ a + σ a ∂θa = 0 , (7.17)

with σ ∈ R determined from the identity

π(β)
(∑

βµA
′
µ(0)

)
π(β) = π(β)

(
cA′0(0)−A′1(0)

)
π(β) = σπ(β) .

§7.5. An example of a large corrector.
We present the computations for Example 5 of the introduction. In the notation of that
example, either by analysing the exact solution with oscillatory initial data as in [DJMR],
or by applying Theorem 1.1 in the absence of nonlinear terms one finds solutions uε with

uε ∼ ε ei(y1−t)/ε
∞∑
j=0

εj aj(εt, y1 − t, y2) .

with a0(T, y) determined as the solution of the Schrödinger equation

2i ∂Ta0 + ∆y a0 = 0 .

Consider gaussian initial data, a0(0, y) = e−y
2
. Then |a(t, y| is a spreading gaussian with

maximum at the origin. Thus for c > 0 sufficiently small, and 0 ≤ T ≤ 1,

−(sgn y1)
∂

∂y1

∣∣a0(T, y)|2 ≥ c e−y2/c := g(y) .

Take Cauchy data for vε to be equal to zero. The for t ∼ 1/ε

vε ∼ ε2 −1|a0(εt, y1 − t, y2)|2 , vε = (vε0, v
ε
1, v

ε
2) = ∇t,yvε .

Then in {y1 ≥ t},

−vε1 = −∂vε

∂y1
= ε2 −1 ∂|a0(εt, y1 − t, y2)|2

∂y1
≥ ε2 w .
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where w is the solution of the intial value problem

1+2w = g(y1 − t, y2) , wε|t=0 = wεt |t=0 = 0 ,

whose source term is a pulse moving at speed 1. Define G(t, y) to be the solution of

1+2G = g(t, y) , G|t=0 = Gt|t=0 = 0 .

Then

w(t, y) =
∫ t

0

G(t− s, y1 − s, y2) ds ,

so

w(t, t, 0) =
∫ t

0

G(t, t, 0) ds ,

For t > 0,

G(t, t, 0) =
1

2π

∫
D(t;(t,0))

g(y)√
t2 − (y1 − t)2 + y2

2

dy

where D(r; z) denotes the disc of center z and radius r.
Let d2 := (y1 − t)2 + y2

2 so in the intersection of the disc and supp g,

t2 − (y1 − t)2 − y2
2 = t2 − d2 = (t+ d)(t− d) = 2t(t− d)− (t− d)2

= 2tdist (y, ∂D(t; (t, 0))− dist (y, ∂D(t; (t, 0))2 = 2tdist (y, ∂D(t; (t, 0)) +O(1) ,

as t→∞. For t large, D(t; (t, 0))∩ supp g approaches the intersection supp g ∩{y1 ≥ 0} .
In particular

dist (y, ∂D(t; (t, 0)) = y1 +O(1/t) ,

on D(t; (t, 0)) ∩ supp g, so

G(t, t, 0) =
1

2π
√

2t

∫
y1>0

g(y)√
y1

dy +O(t−1)

and therefore

w(t, t, 0) =
√
t

π
√

2

∫
y1>0

g(y)√
y1

dy +O(log t) .

In the same way

∂w(t, t, 0)
∂y1

=
√
t

π
√

2

∫
y1>0

∂g(y)/∂y1√
y1

dy +O(log t) .

Thus, for t ∼ 1/ε, vε1(t, t, 0) = ε2∂w(t, t, 0)/∂y1 ∼ ε3/2. Thus vε is small compared to the
O(ε) principal term which is uε, but vε large compared the O(ε2) correctors in (1.1).

§7.6. A scalar higher order equation.
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An analysis like that for first order systems applies to equations of higher order. One
has the option of reducing to a first order system or to start from scratch deriving profile
equations. The equations for the profiles for scalar equations are a little easier to find
because there are no polarizations and projectors π. There are two changes which should
be born in mind for higher order equations.
For an equation of order m, nonlinearities can be present in derivatives of all orders between
0 and m. Each nonlinear term must have a time of interaction no smaller than O(1/ε)
For a linear mth order equation with source term oscillating with wavelength ε the response
will be of size εm if the phase has noncharacteristic differential. The response is O(εm−1)
in the characteristic case, that is when the phase satisfies the eikonal equation. Our phases
fall in the latter category. In the applied literature phases of this sort are sometimes called
phase matched.

Example 7.3. Consider the equation

t,y u+ Φ(∂t,yu) = 0 , (7.18)

where Φ is a homogeneous polynomial of degree J . The characteristic variety is τ2 = |η|2
so is everywhere simple and curved.
The equation can be converted to the semilinear symmetric hyperbolic system

∂twj − ∂jw0 = 0 , j = 1, . . . , d ,

∂tw0 −
d∑
j=1

∂jwj − Φ(w) = 0 ,

for w = ∇t,yu. Since Φ is of order J the critical exponent is q = 1/(J − 1) and have
solutions

wε = εq w0(εx, x, β.x/ε) + h.o.t.

The characteristic variety is given by the equation τd−1(τ2−|η|2) = 0 with the extraneous
hyperplane {τ = 0} of multiplicity d−1. These roots are easily understood since solutions
of the system satisfy

∂t d
(
w1dx1 + . . .+ wddxd

)
= 0 ,

and the solutions of interest are those in the invariant subspace defined by d(w1dx1 +
. . . + wddxd) = 0. The L2(Rd)-orthogonal complement of these solutions are stationary
solutions satisfying div (w1, . . . ,wd) = 0. These correspond to the extraneous roots.
If one chooses β = (1,−1, 0, . . . , 0), then

π(β) =
|(1, 1, 0 . . . , 0)〉〈(1, 1, 0 . . . , 0)|

2
, V (∂) = ∂0 + ∂1 , R(∂y) =

1
2

∆y ,

and for profiles whose mean value is initially zero and independent of Y it remains so for
positive time by Propositions 7.2 and 7.3. Profiles with vanishing mean and independent
of Y are given

a0(T, t, y, θ) = a∗0(T, t, y, θ) = a(T, t− y1, y2, . . . , yd, θ)
( 1√

2
,

1√
2
, 0 . . . , 0

)
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with scalar valued a satisfying

∂T a +
1
2

∆y∂
−1
θ a +

( 1√
2
,

1√
2
, 0 . . . , 0

)
·Φ
(

a
( 1√

2
,

1√
2
, 0 . . . , 0

))
= 0 .

An alternate approach is to reason directly on the scalar equation seeking approximate
solution of the form (2.6-2.7). To compute the critical exponent p one must estimate the
accumulated effect of the nonlinear term Φ(∂u). For u of wavelength ∼ ε and amplitude
∼ εp as in (2.6), ∂u ∼ εp−1 so Φ(∂u) ∼ ε(p−1)J . The phase will satisfy the eikonal
equation, and then linear geometric optics shows that the effect of the oscillatory part is
−1 (Φ(∂u)∗) ∼ tε ε(p−1)J . Setting this equal to εp for times t ∼ 1/ε yields p(J − 1) = p so
p = J/(J − 1). Note that p+ 1 = q is the critical power for a semilinear first order system
with nonlinearity of degree J .
Inject the ansatz (2.6-2.7) into the differential equation and insist that the nonlinear term
contribute at the same power in ε that yields linear diffractive effects. A first computation
yields

uε = εp−2
(
β2

0 − β2
1 − . . .− β2

d

) ∂2a0

∂2θ
+O(εp−1) .

This forces the eikonal equation β2
0 = β2

1 + . . .+ β2
d . Then one has

uε = 2εp−1

(
β0

∂

∂t
−

d∑
j=1

βj
∂

∂yj

)
∂a0

∂θ
+O(εp) ,

which yields

β0
∂a∗0
∂t
−
∑
j

βj
∂a∗0
∂yj

= 0 . (7.19)

The nonlinear term should appear in the next term which gives the laws of diffractive
geometric optics. The next term is of order εp and the nonlinear term is of order ε(p−1)J .
Equating these orders gives again the critical exponent p = J/(J − 1).
Choosing β = (1,−1, 0, . . . , 0), yields the vector field V (∂x) = ∂t + ∂1. With the choice of
p above one finds

uε+Φ(∇t,yuε) = εp
(

2V (∂X)
∂a0

∂θ
+ x a0+Φ

(
β
∂a0

∂θ

)
+2V (∂x)

∂a1

∂θ

)
+O(εp+1) . (7.20)

This suggests imposing the equation

2V (∂X)
∂a0

∂θ
+ x a0 + Φ

(
β
∂a0

∂θ

)
+ 2V (∂x)

∂a1

∂θ
= 0 . (7.21)

Thanks to (7.19), applying V (∂x) to the oscillating part of (7.21) yields V (∂x)2a∗1 = 0. In
order that a1 grow sublinearly in x one must have V (∂x)a∗1 = 0 and one finds the profile
equation

2V (∂X)
∂a0

∂θ
+ x a

∗
0 + Φ

(
β
∂a0

∂θ

)∗
= 0 . (7.22)
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Equations (7.19) and (7.22) suffice to determine the oscillating part a∗0 from its initial
values at {t = T = 0}. Note that the mean values of a0 do not enter in this determination,
and that the profile equation just derived is equivalent to the equation found from reducing
to a first order system with the identification w0 = ∂a0/∂θ = β∂a0/∂θ. Differentiating
one has

∇uε = εp−1 ∂a0(εx, x, β.x/ε)
∂θ

+O(εp) ,

and one recovers the answer from the first order system computation.
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