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Summary

We study the Cauchy problem for the Landau-Lifschitz model in ferromagnetism without
exchange energy. Once existence of global finite energy solutions is obtained, we study
additional uniqueness and regularity properties of these solutions.

Résumé

On étudie le problème de Cauchy pour le modèle de Landau-Lifshitz en ferromagnétisme
sans énergie d’échange. On démontre l’existence de solutions d’énergie finie globales en
temps ainsi que des propriétés supplémentaires de régularité et d’unicité.

1. Introduction

Recently the Cauchy problem for some nonlinear models in electromagnetics have been
shown to possess large finite energy solutions, by which is meant solutions satisfying
the fundamental physical energy estimates, such as the electromagnetic energy and some
additional conservative or dissipative estimates on new components of the electromagnetic
field such as the polarization P or the magnetization M of the medium.
The physical estimates hinted at are 0-order with respect to derivatives. Hence, from a
mathematical point of view, the above mentioned problems should be called weak Cauchy
problems if one recalls the general Cauchy nonlinear problem is well-posed under stronger
regularity assumptions on data, including L2-control on derivatives up to an order that
depends on the space dimension and is always greater than 0. Instead, due to special
structure of the nonlinearities, the problems we mention obey strong continuity properties
that mix the properties of the nonlinearities and some geometric properties of the differ-
ential operator. It allows a mathematical analysis of the solutions leading to existence,
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uniqueness and regularity properties, which recalls what identifies the so-called strong
Cauchy problem. This is the reason why ”weak solution” is not to be found in the title of
these papers.
The papers mentioned above deal with nonlinear optic in nonmagnetic mediums where
the relation D = E + P involves the polarization P of the electric medium modeling the
interaction between medium and light which, due to large intensity of the electric field E, is
nonlinear. The anharmonic oscillator model is examined in [JMR 1], [DR] being addressed
to the Maxwell-Bloch quantic model which introduces a larger set of components, involving
the density of exited electrons.
In opposite the present work concerns magnetic mediums where, in a suitable system of
units, D = E and the magnetic induction B = H + M involves the magnetization M
which satisfies a differential equation with a source term which is nonlinear in M and
H. The so-called Landau-Lifschitz model (see [LL 1] [LL 2]) for the propagation of the
electromagnetic field in a ferromagnetic medium uses the nonlinear interaction term

(1.1) F (m,h) :=
γ

1 + α2

(
m ∧ h+

α

|m| (m ∧ (m ∧ h))
)
, h,m ∈ R3,

where γ, the gyromagnetic constant, and α, the damping factor, are positive constants.
In (1.1) the variables m and h need to be replaced by, respectively, the polarization M
and the magnetic field H.
The aim of this paper is to prove the existence of global finite energy solutions to the
corresponding Maxwell system

(1.2)


∂tE − curlH = 0
∂tH + curlE = −∂tM

∂tM = F (M,H)

with the usual divergence free conditions for E and B

(1.3) divE = div(H +M) = 0.

Note that the divergence free condition (1.3) is satisfied as soon as it is satisfied at t = 0,
since (1.2) immediately implies that

∂t(divE(t)) = ∂t(div(H(t) +M(t))) = 0 .

Functions E, H and M denote R3-valued functions of the time-space variables (t, x) ∈
R1+3. The electromagnetic field is (E,H) and M is the magnetization of the ferromagnetic
medium. F is given by (1.1) or can be a more general interaction, see §2 below.
We also study the uniqueness and regularity properties of the energy solutions. With
suitable assumptions on the nonlinearity F , we show that if the Cauchy data are smooth,
then the solution remains smooth for all time. Uniqueness is proved for solutions with
(curlE, curlH) in L2. The uniqueness of energy solutions remains an open problem. The
precise results are presented in the next section.
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Before stating the main results let us say more about the model (see [JMR3] for more
complete discussion and bibliography). The nonlinearity we have chosen in (1.1) is far from
complete. A more complete version consists in replacing F (M,H) in the third equation
of (1.2) by F (M,H +Heff ) with

Heff = Hs +Ha +He,

where Hs = Hs(x) is given independent of t, Ha = −k (p ·M) p, k ≥ 0, p a given unit
vector in R3 and He = −k′1Ω 4M , k′ ≥ 0 where Ω is an open subset of R3 such that
Ω = supportM . The case He 6= 0 is completely different [V], [CF]. In particular, the
equations are no longer hyperbolic. In this paper we consider only the hyperbolic case,
and for simplicity we assume that Heff = 0. The terms Hs and Ha can be treated
with minor modifications. Also note that the Cauchy problem for (1.2) is solved in space
dimension one, in [JV1], [JV2].

2. Statement of the main results

First, we detail the properties required for the function F which appears in (1.2).

Assumption 2.1 F is a C∞ function on R3 × R3 with values in R3 , such that

h 7→ F (m,h) is linear, m ∈ R3(2.1)
F (m,h) ·m = 0, m, h ∈ R3(2.2)
F (m,h) · h ≤ 0, m ∈ R3(2.3)

If F satisfies Assumption 2.1 there exists a function C(R) such that for all R > 0,

(2.4)
{ |F (m′, h)− F (m,h)| ≤ C(R) |m′ −m| |h|, |m| ≤ R, |m′| ≤ R

|F (m,h)| ≤ C(R) |h|, |m| ≤ R .

Assumption 2.2 F ∈ C∞(R3\{0}×R3;R3) satisfies (2.1) (2.2) (2.3) and the inequalities
(2.5) hold for m,m′ 6= 0.

The function given by (1.1) with α = 0 or the function

F (m,h) :=
γ

1 + α2

(
m ∧ h+

α√
δ2 + |m|2

(m ∧ (m ∧ h))
)
, h,m ∈ R3, δ > 0

satisfy Assumption 2.1 whereas the function (1.1) with α > 0, which is homogeneous of
degree one in m, is not C1 at m = 0 but satisfies Assumption 2.2.
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Let us now state what we mean by finite energy solution.

Definition 2.3. We say that U = (E,H,M) is a finite energy solution in ΩT = [0, T ]×R3

if all components E,H,M belong to C0
(
[0, T ];L2(R3)

)
, M is in L∞([0, T ]×R3) and if U

is a distributional solution to (1.2) (1.3).

Proposition 2.4. Any finite energy solution satisfies

(2.5)
∫
R3

(|E(t, x)|2 + |H(t, x)|2) dx ≤
∫
R3

(|E(0, x)|2 + |H(0, x)|2) dx

and

(2.6) |M(t, x)| = |M(0, x)| a.e.

Proof. Replacing ∂tM by F (M,H) in the second equation in (1.2) shows that a finite
energy solution (E,H) is the solution of a linear first order symmetric hyperbolic system
with source term in L1

(
[0, T ];L2(R3)

)
hence it satisfies the usual energy identities. With

(2.3) this implies that ∫
R3

(|E(t, x)|2 + |H(t, x)|2) dx , 0 ≤ t ≤ T

decreases in time. Similarly, ∂tM = F (M,H) ∈ L1
(
[0, T ];L2(R3)

)
and ∂tM ·M = 0 by

(2.2). Therefore

|M(t, x)| , 0 ≤ t ≤ T

is time-invariant. Summing up, the quantity

(2.7) n0(t) =
√
‖E(t)‖22 + ‖H(t)‖22 + ‖M(t)‖L2∩L∞ .

satisfies

(2.8) n0(t) ≤ n0(0) , 0 ≤ t ≤ T

Remark. Condition (2.3) is not necessary for the validity of the theorems to be stated
below. It only simplifies some of the estimates. It insures dissipativity as observed in
(2.5). If (2.3) is suppressed in Assumptions 2.1 and 2.2, one has in place of (2.5)∫

R3
(|E(t, x)|2 + |H(t, x)|2) dx ≤ eCt

∫
R3

(|E(0, x)|2 + |H(0, x)|2) dx

with some constant C depending only on ‖M0‖∞.
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Notation. L0 denotes the space of Cauchy data U0 = (E0, H0,M0) ∈ L2(R3) such that
divE0 = div (H0 +M0) = 0 and M0 ∈ L∞(R3).

Theorem 2.5. Suppose that F satisfies Assumption 2.2. Then the Cauchy problem for
(1.2) with initial data U0 ∈ L0 has a finite energy solution on Ω∞ = [0,+∞[×R3.

Moreover, suppose that U0 is a bounded subset of L0 which is compact in (L2(R3)).
Then the set U of finite energy solutions on Ω∞, with Cauchy data in U0 is compact in
(C0([0, T ];L2(R3)))3 for all T > 0.

The solutions are constructed as limits of solutions of reguralized equations. For all λ > 1
define

(2.9) Sλ = ϕ(λ−1Dx)

where ϕ ∈ C∞0 is a cut-off function supported by |ξ| ≤ 2, equal to 1 on |ξ| = 1 and such
that 0 ≤ ϕ ≤ 1. Consider the following approximation of the Cauchy problem for (1.2).

(2.10)


∂tE

λ − curlHλ = 0
∂tH

λ + curlEλ = −Sλ F (Mλ, Hλ)
∂tM

λ = F (Mλ, Hλ)

with initial conditions

(2.11) Eλ0 = SλE0, H
λ
0 = SλH0, M

λ
0 = M0 .

Theorem 2.6. Let F satisfy Assumption 2.2 and U0 ∈ L0. Then, for each λ ≥ 1,
the Cauchy problem (2.10), (2.11) has a unique global solution Uλ which belongs to
C1([0,+∞[;Hs ×Hs ×L∞) for all s. Moreover Uλ has a subsequence which converges in
C0([0, T ];L2 × L2 × L∞) for all T > 0 to a global finite energy solution U∞ of (1.2) with
initial data U0.

The regularized system (2.10) has been chosen so that the two conservations laws (2.5)
and (2.6) hold. This explains why there is no Sλ in front of F in the right hand side of
the third equation. Other regularizations having this property could be considered. Thus
the family of solutions Uλ is bounded in C0([0,∞[;L2(R3)) and Mλ is bounded in L∞.
Therefore there are subsequences which converge weakly. The difficulty is to pass to the
limit in the nonlinear term F (Mλ, Hλ). The main point in the proof is to show that if
a subsequence Uλ converges weakly, then it converges strongly, and therefore the limit is
a finite energy solution. This argument also accounts for the compactness result stated
in Theorem 2.5. Note that Theorems 2.5 and 2.6 do not depend specifically on the space
dimension 3. Analogous results could be proved in higher dimension. The proofs are given
in sections 3 and 4.
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Next we study the smoothness and uniqueness of the finite energy solutions. The com-
ponents of U do not behave all the same : some are propagated at speed 1, some are
propagated at speed 0. Introduce the orthogonal decomposition of L2(R3)

(2.12) L2(R3) = L2
‖(R

3)⊕ L2
⊥(R3).

Functions in L2
‖ satisfy curl = 0 whereas those in L2

⊥ are such that div = 0. The corre-
sponding projectors are denoted by P‖ : L2 → L2

‖ and P⊥ : L2 → L2
⊥, the same notation

being used in Lp, 1 ≤ p ≤ +∞. They are Fourier multipliers with symbols 1
|ξ|2 (ξ, · )ξ

and − 1
|ξ|2 ξ ∧ (ξ ∧ · ) respectively. If U = (E,H,M) is a finite energy solution on ΩT

(Definition 2.3), it follows from divE(t) = 0 and div (H(t) + M(t)) = 0 that E‖(t) = 0
and (H(t) +M(t))‖ = 0. Thus, E and H have the orthogonal decomposition

(2.13) E(t) = E⊥(t), H(t) = H⊥(t)−M‖(t) .
The fields M and H‖ are propagated at speed 0, while E⊥ = E and H⊥ satisfy a wave
equation. More precisely one can extract from (1.2) a linear system for (E⊥, H⊥) with
source term and coefficients of the zero-th order term depending on M and M‖. This
point of view is developed in section 5. A remarkable fact is that, for µ ≤ 1, Hµ regularity
for (E⊥, H⊥) is propagated from the initial data, without assuming the same regularity
for M . This is partly due to the fact that ∂tM ∈ L2, while ∂t is not characteristic for the
system satisfied by (E⊥, H⊥). The actual proof relies on the use of Strichartz inequalities,
for which the space dimension 3 is critic.

Theorem 2.7. Let F satisfy Assumption 2.2. Let U0 ∈ L0 be such that E0 and H0⊥
belong to Hµ(R3), where µ ∈]0, 1]. Consider on Ω∞ a finite energy solution U with initial
data U0. Then E and H⊥ belong to C0([0,+∞[;Hµ(R3)).

The next theorem completes Theorem 2.7 when µ = 1. It is proved in section 6.

Theorem 2.8. Let F satisfy Assumption 2.2. Let U0 ∈ L0 be such that curlE0 and
curlH0 belong to L2(R3). Then there exists a unique finite energy solution on Ω∞
satisfying the Cauchy condition U|t=0 = U0. Furthermore curlE et curlH belong to
C0([0,+∞[;L2(R3)).

The propagation of the L2 regularity of curlE and curlH follows from Theorem 2.7. The
uniqueness is a consequence of a stronger result about the L2 stability of such solutions.
When H ∈ L∞, uniqueness and L2 stability are trivial. For general finite energy solution,
it seems difficult to get such an L∞ bound. First, the projector P‖ does not act in L∞,
and all we can insure is that H‖ ∈ Lp for all finite p. Second, H⊥ satisfies a wave
equation, for which L∞ bounds are not an easy matter. However, when (E,H⊥) ∈ H1,
one has H⊥ ∈ L1([0, T ];L2), and estimating the L2(L∞) norm of H⊥ by the L1(L2)
norm of H⊥ is just the forbidden limit case of Strichartz estimates in space dimension 3.
Proposition 6.3 is a substitute for these estimates. It is proved in section 8. Finally, the
conclusion is that H is “almost” L∞ and this is the key for Theorem 2.8.
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In section 7, we study the higher order regularity of solutions.

Theorem 2.9. Let F satisfy Assumption 2.1 and let s ≥ 2. If U0 ∈ L0 ∩ Hs(R3) then
the unique finite energy solution with initial data U0 belongs to C0([0,+∞[;Hs(R3)).

For the nonlinear function F to act in H2, it must be smooth enough . This explains why
Assumption 2.1 is required there.

3. Existence of energy solutions

This section is devoted to the proof of Theorems 2.5 and 2.6. First we prove the existence
and uniqueness of solutions to the approximate equations (2.10).

Proposition 3.1 Let F satisfy Assumption 2.2 and Cauchy data U0 belong to L0. Then,
for all λ ≥ 1, the Cauchy problem (2.10) (2.11) has a unique global solution Uλ which
belongs to C1([0,+∞[;Hs ×Hs ×L∞) for all s. Moreover there exist C > 0 independent
of λ such that, for all λ ≥ 1, the following estimates hold

|Mλ(t, x)| = |M0(x)| , a.e.(3.1)

‖Eλ(t)‖2L2 + ‖Hλ(t)‖2L2 ≤ eCt
(
‖Eλ0 ‖2L2 + ‖Hλ

0 ‖2L2

)
(3.2)

div Eλ(t) = 0(3.3)
div (Hλ(t) + SλMλ(t)) = 0(3.4)

Proof. For U := (E,H,M) define

(3.5) Gλ(U) := (curlH,−curlE − SλF (M,H), F (M,H)),

so that the Cauchy problem (2.10), (2.11) reads

(3.6)
d

dt
Uλ(t) = Gλ(Uλ(t)), U(0) = (Eλ0 , H

λ
0 ,M0).

Let L2
λ denote the closed linear subspace of L2 of functions u satisfying supp û ⊂ {|ξ| ≤

2λ}. One has L2
λ ⊂ Hs for all s. The space L2

λ is equipped with the scalar product of L2

and satisfies L2
λ ⊂ L∞ with a continuous injection

(3.7) ‖u‖L∞ ≤ (2λ)3/2 ‖u‖L2 , u ∈ L2
λ.

1) We first show that Gλ maps L2
λ × L2

λ × L∞ into itself and is locally lipschitzean. It is
true for the first component since curl maps L2

λ linearly into itself with norm less than 2λ.
The second component U 7→ −curlE − SλF (M,H) maps L2

λ × L2
λ × L∞ into L2

λ since

‖F (M,H)‖L2 ≤ C(‖M‖L∞)‖H‖L2

7



and Sλ maps L2 into L2
λ. Moreover, writing F (M,H)−F (M ′, H ′) = F (M,H)−F (M ′, H)+

F (M ′, H −H ′) and using (2.4) and the fact that Sλ is norm one in L2, we get

‖SλF (M,H)− SλF (M ′, H ′)‖L2 ≤ C(R)‖M −M ′‖L∞ + C(R)‖H −H ′‖L2

if ‖M‖L∞ ≤ R, ‖M ′‖L∞ ≤ R, ‖H‖L2 ≤ R. The third component belongs to L∞ since
inequalities (2.4) and (3.7) imply that

‖F (M,H)‖L∞ ≤ C(‖M‖L∞)‖H‖L∞ ≤ (2λ)3/2 C(‖M‖L∞)‖H‖L2 .

Moreover

(3.8) ‖F (M,H)− F (M ′, H ′)‖L∞ ≤ C(R)
(
‖M −M ′‖L∞‖H‖L∞ + ‖H −H ′‖L∞

)
≤ (2λ)3/2

(
RC(R)‖M −M ′‖L∞ + C(R)‖H −H ′‖L2

)
.

for ‖M‖L∞ ≤ R, ‖M ′‖L∞ ≤ R, ‖H‖L2 ≤ R.

2) The usual theorem for ordinary differential equations in Banach spaces applies to (3.6).
There exist T > 0 and Uλ ∈ C1([0, T [;L2

λ×L2
λ×L∞) such that Uλ is the unique maximal

solution of (3.6).

3) The identity (3.1) follows from (2.2), like (2.6). Let R be such that ‖M0‖L∞ ≤ R.
Multiplying the first and second equations in (2.10) by Eλ and Hλ, we get, using (3.1)
and (2.4),

∂t‖Eλ(t)‖2L2 + ∂t‖Hλ(t)‖2L2 ≤ C(R) ‖Hλ(t)‖2L2 ,

from which the second estimate (3.2) follows, with C = C(R). This proves that T = ∞
as claimed.
4) The first equation in (2.10) implies that ∂tdivEλ = 0. The right hand side of the second
equation is −∂tSλMλ and therefore ∂t(divHλ + SλMλ) = 0. Since the initial conditions
satisfy divE0 = div (H0 + M0) = 0, one has divEλ0 = div (Hλ

0 + SλM0) = 0 and (3.3)
(3.4) follow. This ends the proof of Proposition 3.1.

We proceed now with the proof of Theorem 2.6. Because of (3.1), (3.2) the set (Uλ)λ
is weakly relatively compact in L2

loc([0,+∞[;L2(R3)). Extracting a subsequence, we may
suppose that the family (Uλ)λ converges weakly to U∞ in L2

loc([0,+∞[;L2(R3)) thus in
L2([0, T ];L2(R3)), for every T > 0. The proof aims at showing that U∞ is a global finite
energy solution. This involves getting continuity properties of the nonlinear term. A key
step in this process is a weighted L2 estimate on differences Mλ −Mµ with a weight that
depends on the solution U∞. Plugging

F (Mλ, Hλ)− F (Mµ, Hµ) = F (Mλ, H∞)− F (Mµ, H∞)
+F (Mλ, Hλ −H∞)− F (Mµ, Hµ −H∞),
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into the difference of the equations for Mλ and Mµ in (2.10) and using (2.4) and (3.1)
yields the pointwise estimate

(3.9)
1
2
∂t|Mλ −Mµ|2 ≤ C(R)|H∞||Mλ −Mµ|2

+
(
F (Mλ, Hλ −H∞)− F (Mµ, Hµ −H∞)

)
· (Mλ −Mµ),

for some R such that |M0(x)| ≤ R. The weight e−2a(t,x) absorbs the first term in the right
hand side of (3.9) if ∂ta(t, x) = C(R)|H∞(t, x)|. The precise choice

(3.10) a(t, x) = |x|2 +
∫ t

0

C(R)|H∞(s, x)|ds

provides a positive and almost everywhere finite function such that e−2a(t) ∈ Lp(R3) for
all 1 ≤ p ≤ ∞ which will be used later. With a defined by (3.10), (3.9) yields

(3.11)
1
2
∂t(e−2a|Mλ −Mµ|2) ≤

e−2a
(
F (Mλ, Hλ −H∞)− F (Mµ, Hµ −H∞)

)
· (Mλ −Mµ).

Proposition 3.2 There is a constant C(R, T ) such that for all δ > 0 there exist N(δ)
such that for all λ ≥ N(δ) and µ ≥ N(δ) and all t ∈ [0, T ],

(3.12) ‖e−a(t)(Mλ(t)−Mµ(t))‖2L2 ≤ C
(
δ +

∫ t

0

‖e−a(s)(Mλ(s)−M∞(s))‖2L2 ds
)
.

We postpone the proof of Proposition 3.2 until next section and finish the proof of Theorem
2.6. We fix T > 0 and prove that U∞ is a finite energy solution on ΩT .
1) We first show that for all t ∈ [0, T ], Mµ(t) converges weakly in L2 to M∞(t). This
result being independent of Proposition 3.2 can be used for its proof.
The family Mλ is bounded in L∞ and (Eλ, Hλ) is bounded in C0([0, T ];L2), as a conse-
quence of (3.1) (3.2). Therefore, the third equation in (2.10) and the estimate (2.4) imply
that there is a constant K such that for all µ and t ≤ t′ in [0, T ]

‖Mµ(t)−Mµ(t′)‖L2 ≤ K |t− t′|.

Thus {Mµ}µ is equicontinuous in time with value in L2. Ascoli’s Theorem implies that for
all test function ϕ, the family of functions t 7→

∫
Mµ(t, x)ϕ(x) dx, which is bounded and

equicontinuous, has subsequences which converge in C0([0, T ]). Since Uλ → U∞ weakly, it
follows that

∫
ψ(t)ϕ(x)Mµ(t, x) dt dx converges to

∫
ψ(t)ϕ(x)M∞(t, x) dt dx. This shows
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that
∫
Mµ(t, x)ϕ(x) dx converges to

∫
ϕ(x)M∞(t, x) dx uniformly in t. Therefore, for all

t ∈ [0, T ], Mµ(t) converges weakly in L2 to M∞(t).
As a consequence, for all t ∈ [0, T ], we have

‖e−a(t)(Mλ −M∞)(t)‖2L2 ≤ C lim inf
µ
‖e−a(t)(Mλ −Mµ)(t)‖2L2 .

Letting µ tends to infinity in (3.12) implies that that for all λ ≥ N(δ)

(3.13) ‖e−a(t)(Mλ −M∞)(t)‖2L2 ≤ C
(
δ +

∫ t

0

‖e−a(s)(Mλ −M∞)(s)‖2L2 ds
)
.

Gronwall’s Lemma and (3.13) imply that Mλ converge to M∞ in L2(ΩT , e−a(t,x) dtdx)).
Since a is finite almost everywhere, e−a 6= 0 almost everywhere. Thus, from any subse-
quence of Mλ we can extract a subsequence converging pointwise almost everywhere and
thus in L2(ΩT , dtdx) thanks to the pointwise estimate (3.1) and Lebesgue’s Dominated
Convergence Theorem. The limit is M∞, and the convergence holds for the full sequence.
Thus t 7→ ‖Mλ(t) − Mµ(t)‖L2 converges to 0 in L2([0, T ]). Since the sequence Mλ is
equicontinuous in t with value in L2 the above convergence holds in C0([0, T ]). Thus
Mλ →M∞ in C0([0, T ];L2).

2) We show that Sλ(F (Mλ, Hλ)) converges in L1([0, T ];L2) to F (M∞, H∞) and (Eλ, Hλ)
converges to (E∞, H∞) in C0([0, T ];L2 × L2). The Maxwell system for the difference
(Eλ − E∞, Hλ − H∞) involves the source term δF = Sλ(F (Mλ, Hλ)) − F (M∞, H∞)
which we write

(3.14) δF = Sλ(Aλ) + Sλ(Bλ) + (I − Sλ)
(
F (M∞, H∞)

)
.

with
Aλ = F (Mλ, Hλ −H∞) , Bλ = F (Mλ, H∞)− F (M∞, H∞).

The L2 estimate for the Maxwell system implies that

(3.15) ‖(δE(t), δH(t))‖L2 ≤ C
(
‖(δE(0), δH(0))‖L2 +

∫ t

0

‖δF (s)‖L2 , ds
)
.

We need to estimate the L1([0, T ];L2) norm of the 3 terms of the decomposition (3.14).
The uniform estimate of Mλ and (2.4) yield

(3.16)
∫ t

0

‖Sλ(Aλ)(s)‖L2 ds ≤ C
∫ t

0

‖δH(s)‖L2 ds.

Using (2.4), one has the pointwise estimate

(3.17) |Bλ(s, x)| ≤ C(R)|Mλ(s, x)−M∞(s, x)| |H∞(s, x)| ≤ 2RC(R)|H∞(s, x)|,
which proves that Bλ is dominated by a function that belongs to L1([0, T ];L2). Moreover,
since Mλ converges to M∞ in L2(ΩT ), (3.17) also implies that Bλ(s, x) → 0 in L1(ΩT ).
Lebesgue’s Theorem implies that Bλ(s, x) → 0 in L2(ΩT ) thus in L1([0, T ];L2). The
same result holds for the third term since Sλ → I pointwise in L2. Since (δE(0), δH(0))
converges to 0 in L2, estimate (3.15) and Gronwall’s Lemma imply that (δE(t), δH(t))
converges to 0 in L2, uniformly for t ∈ [0, T ].
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3) We have proved that Uλ converges to U∞ in C0([0, T ];L2) for all T > 0. Thus
F (Mλ, Hλ) and Sλ(F (Mλ, Hλ) converge to F (M∞, H∞) and U∞ = (E∞, H∞,M∞)
is a solution to (1.2) in the distribution sense satisfying U∞(0) = U0. The estimates (3.1)
imply that M∞ ∈ L∞(Ω∞). Equalities

divE∞ = div (H∞ +M∞) = 0

follow from (3.3), (3.4) letting λ→∞. This achieves the proof that U∞ is a finite energy
solution of with initial data U0.

The proof of Theorem 2.6 is now complete. It implies the first part of Theorem 2.5. To end
the proof of Theorem 2.5, consider a bounded sequence in L0 of Cauchy data Un0 , such that
Un0 converges to U∞0 in L2. Denote by Un a finite energy solution such that Un|t=0 = Un0 .
We need to show there exists a subsequence, still denoted by Un, which converges strongly
to a finite energy solution U∞ with initial data U∞|t=0 = U∞0 . The proof is quite parallel
to the proof of Theorem 2.6. The a-priori estimates (2.5) (2.6) show that Un is bounded
in C0([0,+∞[;L2) and Mn is bounded in L∞(Ω∞). Therefore, extracting a subsequence,
one can assume that Un converges weakly to U∞ in L2(ΩT ) for all T > 0. With a given
by (3.10), the inequality (3.11) holds for Un and Un

′
and (3.12) is to be replaced by

(3.18)
‖e−a(t)(Mn(t)−Mn′(t))‖2L2 ≤ ‖e−a(0)(Mn

0 −Mn′

0 )‖2L2

+ C
(
δ +

∫ t

0

‖e−a(s)(Mn(s)−M∞(s))‖2L2 ds
)
.

Using this estimate and the equicontinuity of Mn(t), one deduces the strong convergence
Mn →M∞ in C0([0, T ];L2) for all T > 0 as before. The strong convergence (En, Hn)→
(E∞, H∞) follows from the energy estimate (3.15), with the simplification that there is
no Sλ in the analogues of (3.14-16). The strong convergence imply that F (Mn, Hn) →
F (M∞, H∞) which proves that U∞ is a finite energy solution with initial data U0.

4. Proof of Proposition 3.2

Note that Mλ and Mµ have the same initial data M0. Integrating (3.11) in t, x yields

(4.1)

‖e−a(t)(Mλ(t)−Mµ(t))‖2L2 ≤

2
∫ t

0

∫
e−2a(s)

(
F
(
Mλ(s), Hλ(s)−H∞(s)

))
· (Mλ(s)−Mµ(s))ds dx

− 2
∫ t

0

∫
e−2a(s)

(
F (Mµ(s), Hµ(s)−H∞(s)

))
· (Mλ(s)−Mµ(s)) dsdx .

We then write each term F (Mρ, Hρ−H∞) in the right hand side of (4.1), where ρ stands
for λ or µ as the sum of two terms, using the linearity of F with respect to H and the
decomposition (2.12), Hρ = Hρ

⊥ +Hρ
‖ and H∞ = H∞⊥ +H∞‖ . The equation (3.4) implies

that Hρ
‖ = −SρP‖Mρ. Taking weak limits in (3.4) implies that div (H∞ +M∞) = 0 and
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thus H∞‖ = −P‖M∞. Accordingly, the two terms in the right hand side of (4.1) are equal
to

(4.2)
∫ t

0

∫
e−2a(s)

(
F (Mρ(s), Hρ

⊥(s)−H∞⊥ (s)) · (Mλ(s)−Mµ(s)) dxds

(4.3) −
∫ t

0

∫
e−2a(s)

(
F
(
Mρ(s), SρP‖(Mρ(s)−M∞(s))

))
· (Mλ(s)−Mµ(s)) dxds

(4.4)
∫ t

0

∫
e−2a(s)

(
F
(
Mρ(s), (I − Sρ)P‖(M∞(s))

))
· (Mλ(s)−Mµ(s)) dxds.

The linearity of F with respect to H implies that (4.3) is the sum of

(4.5) −
∫ t

0

∫ (
F
(
Mρ(s), SρP‖(e−a(s)(Mρ(s)−M∞(s)))

))
· e−a(s)(Mλ(s)−Mµ(s)) dxds

and

(4.6) −
∫ t

0

∫ (
F
(
Mρ(s), [e−a(s), SρP‖ ](Mρ(s)−M∞(s))

))
·e−a(s)(Mλ(s)−Mµ(s)) dxds

where [A,B ] = AB − BA. The main step in the proof of Proposition 3.2 is to show
that (4.2) and (4.6) are small when λ and µ are large as asserted by the following two
propositions to be proved later.

Proposition 4.1. For all δ > 0 there exists N(δ) > 0 such that for all λ, µ ≥ N(δ) and
for all 0 ≤ t ≤ T ,

(4.7)
∣∣∣ ∫ t

0

∫
e−2a(s)

(
F (Mρ(s), Hρ

⊥(s)−H∞⊥ (s)) · (Mλ(s)−Mµ(s)) dsdx
∣∣∣ ≤ δ.

Proposition 4.2. For all δ > 0 there exists N(T, δ) such that for all λ, µ ≥ N and all
0 ≤ t ≤ T ,

(4.8)
∣∣∣ ∫ t

0

∫
F
(
Mρ(t), [e−a(t), SρP‖] (M∞(t)−Mρ(t))

)
· (Mλ(t)−Mµ(t)) dxdt

∣∣∣ ≤ δ .
Since P‖M∞ ∈ L2(ΩT ), (I − Sρ)P‖M∞ converges to 0 in L2. Together with the uniform
bounds for Mλ, this implies that

(4.9)
∣∣∣ ∫ t

0

∫
e−2a(s)

(
F
(
Mρ(s), Sρ(I − Sρ)P‖M∞(s))

))
· (Mλ(s)−Mµ(s)) dxds

∣∣∣ ≤ δ
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when λ and µ are large enough.
Using (2.4) and that SρP‖ is bounded in L2, the term in (4.5) is estimated by

(4.10)
C(R)

2

(∫ t

0

‖e−a(s)(Mρ(s)−M∞(s))‖2L2 ds+
∫ t

0

‖e−a(s)(Mλ(s)−Mµ(s))‖2L2 ds
)
.

When ρ = µ, we substitute (Mµ −Mλ) + (Mλ −M∞) in place of Mρ −M∞. Therefore,
the sum of the two terms (4.10) is less than or equal to

(4.11) 2C(R)
(∫ t

0

‖e−a(s)(Mλ(s)−M∞(s))‖2L2 ds+
∫ t

0

‖e−a(s)(Mλ(s)−Mµ(s))‖2L2 ds
)
.

The estimates above show that for all δ > 0, there is N(δ, T ) such that for all λ ≥ N(δ, T ),
µ ≥ N(δ, T ) and t ∈ [0, T ], the right hand side of (4.1) is less than or equal to δ plus twice
the term in (4.11). Using Gronwall’s Lemma, the estimate (3.12) follows

Proof of Proposition 4.1. The linearity of F yields

F (Mρ, Hρ
⊥ −H∞⊥ ) · (Mλ −Mµ) = G(Mλ,Mµ) · (Hρ

⊥ −H∞⊥ ),

where G is lipschitzean so that the function Aλ,µ(s, x) to be integrated in (4.7) reads
Aλ,µ = e−2aG(Mλ,Mµ) ·(Hρ

⊥−H∞⊥ ) and is the product of e−2aG(Mλ,Mµ) by H⊥−H∞⊥ .
We now study the regularity properties of each factor of this product. The Lipschitz
property of G, (3.1), M0 ∈ L2 ∩ L∞ and (3.10) imply that

(4.12) ‖G(Mλ,Mµ)‖C0([0,T ];L2) ≤ C , ‖∂tG(Mλ,Mµ)‖L2(ΩT ) ≤ C.

Here we have used that the Lipschitz regularity ofG is sufficient to differentiateG(Mλ,Mµ)
with respect to t. From (2.10), we get

Hρ
⊥ = −∂2

tM
ρ = −∂t P⊥SρF (Mρ, Hρ) .

Thus Hρ
⊥ is bounded in H−1(ΩT ) and H∞⊥ ∈ H−1(ΩT ). Moreover,

(4.13) ‖H⊥ −H∞⊥ ‖C0([0,T ];L2) ≤ C , ‖ ((H⊥ −H∞⊥ ))‖H−1(ΩT ) ≤ C.

In (4.12), (4.13), C is a constant which only depends on the Cauchy data and ϕ. The a-
priori estimates (4.13) implies that the microlocal defect measures of Hρ−H∞ is contained
in the characteristic variety of , that is C = {τ2 = |ξ|2}\{0}. Similarly, the microlocal
defect measures of G(Mλ,Mµ) is contained in C∂t = {τ = 0}\{0}. Since 0 /∈ C + C∂t ,
this implies that the product G(Mλ, Gµ)(Hρ − H∞) tends to 0 in L1

loc(ΩT ), see [Ta],
[Gé]. This result can also be obtained as a consequence of theorems of multiplications of
distributions with microlocal additional smoothness.
In addition, (4.12) and (4.13) show thatG(Mλ, Gµ)(Hρ−H∞) is bounded in C0([0, T ], L1).
Since the weight e−2a tends to zero as |x| → ∞, we conclude that G(Mλ, Gµ)(Hρ −H∞)
tends to 0 in L1(ΩT ) and Proposition 4.1 is proved.
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The proof of Proposition 4.2 relies on the following lemma.

Lemma 4.3. For all 0 ≤ t ≤ T ,

(4.14) lim
λ→∞

‖[e−a(t), SρP‖] (M∞(t)−Mρ(t))‖L2 = 0

Proof. Fix t ∈ [0, T ]. Write [e−a(t), SρP‖] = [e−a(t) − b, SρP‖] + [b, SρP‖], where b ∈ C∞0 .
Since SρP‖ define a bonded family of continuous operators on L4 and L2 , there exists a
constant C such that

(4.15) ‖[e−a(t) − b, SρP‖](M∞(t)−Mρ(t))‖L2 ≤ C‖e−a(t) − b‖L4‖M∞(t)−Mρ(t)‖L4 .

Fix δ > 0. Estimate (3.1) implies that the sequence M∞(t) −Mρ(t) is bounded in L∞

and L2 hence in L4. We choose b ∈ C∞0 (R3) such that ‖e−a(t) − b‖L4 is so small that the
left hand side of (4.15) is less than δ/3 for ρ ≥ 1.
Choose now ψ1 and ψ2 in C∞0 such that bψ1 = b and ψ1ψ2 = ψ1. The commutators
[b, SρP‖] form a bounded family of pseudodifferential operators of degree −1. Since (Mρ−
M∞)(t) converges weakly to zero in L2, as remarked in the first step of the proof of
Theorem 2.6, this implies that ψ2[b, SρP‖](Mρ(t)−M∞(t) converges strongly to 0 in L2.
On the other hand b(Mρ(t)−M∞(t) converge strongly to 0 in H−1 and (1−ψ2)[b, SρP‖] =
(1− ψ2)SρP‖ψ1b(Mρ(t)−M∞(t) converge strongly to 0 in L2 since (1− ψ2)SρP‖ψ1 is a
bounded family of operators of degree -1.
Remark. Consider m(x) ∈ L∞ and p(D) of order 0. Then [m, p(D)] is not, in general, a
compact operator on L2. What shows Lemma 4.3 is that this commutator is compact when
restricted to bounded subsets of Lp ∩L2 and when m belongs to Lq with 1/p+ 1/q = 1/2,
p > 2. This is the main reason why we introduced the term |x|2 in the definition (3. 10)
of the weight a.

Proof of Proposition 4.2 From (3.1), (2.4) and Cauchy-Shwartz inequality, it follows
that the family t 7→ F

(
Mρ(t), [e−a(t), SρP‖] (M∞(t)−Mρ(t))

)
·(Mλ(t)−Mµ(t)) is bounded

in L∞([0, T ];L1). From Lemma 4.3 it also follows that t 7→ ‖F
(
Mρ(t), [e−a(t), SρP‖] (M∞(t)−

Mρ(t))
)
·(Mλ(t)−Mµ(t))‖1 converges pointwise to 0. Lebesgue’s Dominated Convergence

Theorem implies that∫ T

0

∫
|F
(
Mρ(t), [e−a(t), SρP‖] (M∞(t)−Mρ(t))

)
· (Mλ(t)−Mµ(t))| dxdt→ 0

as λ, µ→∞, thus achieving the proof of Proposition 4.3.

5. Curl estimates for the electromagnetic field

In this section we prove Theorem 2.7. We first consider the case µ < 1 and next use the
H1/2 estimate to prove the H1 regularity. Consider a finite energy solution U = (E,H,M)
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on Ω∞. We show that if the initial data E0 and H0 have curl in the Sobolev space Hµ−1

then the same property holds for all time. We use the projectors P‖ and P⊥ introduced
in (2.12). Apply P⊥ to the first two equations in (1.2). Using (2.13) and the identity
E = E⊥, curlH = curlH⊥, yields

(5.1)
{
∂tE⊥ − curlH⊥ = 0
∂tH⊥ + curlE⊥ = P⊥(AH⊥) + P⊥g

where A is such that F (M,H) = −AH and g := AM‖. We consider (5.1) as a linear
system for u = (E⊥, H⊥),

(5.2) Lu := ∂tu+ Λ(∂x)u = P (au) + Pg ,

with a given coefficient a and a given source term Pg. P = P (Dx) is a Fourier multiplier
with P (ξ) a projector in C6 which is C∞ and homogeneous of degree 0. Λ(ξ) commutes
to P (ξ) and Λ(ξ)P (ξ) has eigenvalues of constant multiplicity ±|ξ|.
We know that M ∈ L∞(Ω∞) and M and H are continuous and bounded in time with
values in L2. Therefore ∂tM = F (M,H) ∈ L∞([0,∞[;L2)∩C0([0,+∞[;Lp) for all p <∞.
The same regularity holds for any Lipschitz function of M and thus a and g satisfy

(5.3) a ∈ L∞(Ω∞) ∩ C0([0,+∞[;L2) , ∂ta ∈ L∞([0,+∞[;L2) ,

(5.4) g ∈ C0([0,+∞[;Lσ) for all σ <∞, ∂tg ∈ L∞([0,+∞[;Lq) for all q < 2 .

Note that L is symmetric hyperbolic. Therefore the Cauchy problem for (5.2), with initial
data in u0 ∈ L2 such that Pu0 = u0 has a unique solution u ∈ C0([0,+∞[;L2) which
satisfies Pu = u . When µ < 1, Theorem 2.7 follows from the next proposition.

Proposition 5.1. Suppose that a and g satisfy (5.3) (5.4), µ ∈]0, 1[ and u0 ∈ Hµ

satisfies Pu0 = u0. Then the unique solution u to (5.2) with initial data u0 belongs to
C0([0,+∞[;Hµ).

For T > 0, introduce the space

(5.5) Y µ(T ) = C0([0, T ], Hµ) ∩ C1([0, T ];Hµ−1) ∩ Lr([0, T ];B0
p,2)

where 2/p = 1−µ, 2/r = µ and Bsp,p′ denotes the scale of Besov spaces in R3 (the definition
is recalled below). Introduce next Zµ(T ), the space of functions f on ΩT which admits
the decomposition f = f1 + f2 with

(5.6) f1 ∈ L1([0, T ], Hµ) ∩ C0([0, T ];L2),

and

(5.7)

{
f2 ∈ C0([0, T ];L2) ∩ Lr([0, T ];B−1

p,2) ,

∂tf2 ∈ L1([0, T ], Hµ−1) + Ls([0, T ];B0
q,2)
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with 2/q = 2−µ and 2/s = 1+µ. These spaces are equipped with the obvious norms. The
main step in the proof of Proposition 5.1 is to prove a local existence theorem in Y µ(T ),
with a control on T . This relies on two estimates.

Lemma 5.2. For T ∈]0, 1], f ∈ Zµ(T ) and u0 ∈ Hµ such that Pu0 = u0, the solution u of

(5.8) Lu = Pf , ut=0 = u0

belongs to Y µ(T ) and satisfies

(5.9) ‖u‖C0([0,T ];L2) ≤ ‖u0‖L2 + 2T ‖f‖C0([0,T ];L2) ,

(5.10) ‖u‖Y µ(T ) ≤ C
(
‖u0‖Hµ + ‖f‖Zµ(T )

)
,

where C only depends on µ.

Lemma 5.3. There is a constant C which only depends on ‖a‖L∞ , ‖∂ta‖L∞(L2) and µ,
such, that for all T ∈]0, 1] and u ∈ Y µ(T ), the product au belongs to Zµ and

(5.11) ‖au‖Zµ(T ) ≤ C Tµ/2‖u0‖Hµ + C ‖u‖C0([0,T ];L2) .

Let K denote the mapping w 7→ u, where u solves (5.8) with f = au and u0 = 0. The
estimates in the two lemmas above show that there is T1, which only depends on the
norms of a, such that K2 is a contraction in Y µ(T ) if T ≤ T1. The estimates (5.4) for g
and the embedding Lp ⊂ B−1

p,2 and Lq ⊂ B0
q,2 for q ≤ 2 (see [Tr]), show that g ∈ C0(L2),

g ∈ Lr(B−1
p,2) and ∂tg ∈ Ls(B0

q,2). Therefore g ∈ Zµ(T ) for all T . Thus, the problem (5.2)
with initial data u0 ∈ Hµ such that Pu0 = u0 has a solution u ∈ Y µ(T1), which satisfies
Pu = u and

(5.12) ‖u(T1)‖Hµ ≤ C (‖u0‖Hµ + ‖g‖Zµ(T1)) .

Since T1 only depends on the norms of a, the solution can be continued to 2T1 and, by
induction, to all time. So, to finish the proof of Proposition 5.1, it remains to prove the
two lemmas above.

Proof of Lemma 5.2.

The linear problem (5.8) has a unique solution which is smooth when the data are smooth.
Thus it is sufficient to prove the estimates (5.9) and (5.10) for smooth solutions. The first
one is the standard energy estimate in L2 for symmetric hyperbolic systems. The main
ingredient to prove (5.10) are Strichartz estimates.
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1) First we recall the definition of Besov spaces. Introduce ϕ ∈ C∞0 (R3), 0 ≤ ϕ ≤ 1,
supported in {|ξ| ≤ 2} and equal to 1 on {|ξ| ≤ 1}. Introduce next

(5.13)
{
ϕk(ξ) := ϕ(2−kξ) for k ≥ 0 ,
ψk(ξ) := ϕ(2−kξ)− ϕ(2−k+1ξ) for k ∈ Z .

Denote by Sk [resp ∆k ] the Fourier multipliers with symbols ϕk [resp ψk]. Recall that
Bsp,2 is the space of temperate distributions u such that

(5.14) ‖S0u‖2Lp +
+∞∑
k=1

2−2ks‖∆ku‖2Lp < ∞ .

Also recall that Hµ = Bµ2,2 ([Tr]). The homogeneous spaces Ḃsp,2 have a similar definition
with

+∞∑
k=−∞

2−2ks‖∆ku‖2Lp < ∞ .

in place of (5.14).

2) Introduce the groups of operators G±(t) of Fourier multipliers e±it|ξ|. Since the eigen-
values of Λ(ξ)P (ξ) are ±|ξ| and have constant multiplicity, the fundamental solution of L,
for data in the kernel of I − P , is

(5.15) G+(t)P+ + G−(t)P− ,

where P± are Fourier multipliers with smooth symbols P±(ξ) which are orthogonal pro-
jectors, with P = P+ + P−. The operators P± act in Lσ and in Bsσ,2 for all s and all
σ ∈]1,+∞[. For G±, we use the Strichartz estimates proved in [GV] (see also [LS]). For
v0 ∈ Ḣµ and f ∈ Ls1([0, T ], Ḃσq1,2), v(t) = G±(t)v0 and w(t) =

∫ t
0
G±(t− t′)f(t′)dt′ belong

to Lr1([0, T ], Ḃρp1,2
) and

(5.16)

 ‖v‖Lr1 ([0,T ],Ḃσp1,2
) ≤ C ‖v0‖Ḣµ

‖w‖Lr1 ([0,T ],Ḃσp1,2
) ≤ C ‖f‖Ls1 ([0,T ],Ḃσq1,2

)

provided that{
µ = ρ+ 1− 2/p1 = σ + 1− 2/q1 ,

1/r1 + 1/p1 = 1/2 , 2 ≤ p1 <∞ , 1/s1 + 1/q1 = 3/2 , 1 < q1 ≤ 2 .

In the case ρ = µ, p1 = 2, r1 =∞, v and w belong C0([0, T ], Ḣµ).

3) To prove (5.10), we use the linearity of (5.8) and split u and the data into several
pieces. First, we note that the low frequencies of u are controlled by the L2 norm. Thus
the estimate (5.10) for S0u immediately follows from (5.9).
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4) Consider the solution of (5.8) with f = 0 and initial data (1−S0)u0 = 0. Then, thanks
to the form (5.13) of the fundamental solution, the estimates (5.16) imply that

‖u‖C0([0,T ];Hµ) + ‖u‖Lr([0,T ];B0
p,2) ≤ C ‖u0‖Hµ .

We have replaced the homogeneous spaces by the inhomogeneous ones, using that the
spectrum of u is contained in |ξ| ≥ 1. The same remark holds below when we use again
(5.16). Moreover, since Lu = 0, one has

‖∂tu‖C0([0,T ];Hµ−1) ≤ C ‖u‖C0([0,T ];Hµ) ,

and (5.10) is satisfied.

5) Split f into f1 + f2 such that (5.6) (5.7) hold. Consider the solution of (5.8) with right
hand side (1− S0)f1 and vanishing initial data. Then (5.16) implies that

‖u‖C0([0,T ];Hµ) + ‖u‖Lr([0,T ];B0
p,2) ≤ C ‖f1‖L1([0,T ];Hµ)

To estimate ∂tu one uses the equation and the inequality ‖f1‖C0([0,T ];Hµ−1 ≤ ‖f1‖C0([0,T ];L2).
This implies (5.10).

6) With f2 satisfying (5.7), consider the solution u of (5.8) with right hand side (1−S0)f2

and vanishing initial data. Using the fundamental solution (5.15), one gets that u =
u+ + u−, whose spatial Fourier transforms are given by

û±(t, ξ) =
∫ t

0

ei(t−s)|ξ| f̂±(s, ξ) ds , f± := (1− S0)P±f2 .

Integrating by parts shows that u+ = v + w with

v̂(t, ξ) =
∫ t

0

ei(t−s)|ξ| ĝ(s, ξ) ds , ĝ(s, ξ) := − i

|ξ| ∂tf̂±(s, ξ)

and
w(t) = −G+(t)h(0) + h(t) , ĥ(t, ξ) :=

i

|ξ| f̂±(s, ξ) .

The assumption (5.7) implies that ∂tf2 is a sum of two terms f ′2 + f ′′2 with the indicated
regularity. Accordingly, one has f+ = f ′+ +f ′′+, g = g′+g′′ and v = v′+v′′. The estimates
(5.16) imply that

‖v′‖C0([0,T ];Hµ)∩Lr([0,T ];B0
p,2) ≤ C ‖g′‖L1([0,T ];Hµ) ≤ C ′ ‖f ′2‖L1([0,T ];Hµ−1)

and

‖v′′‖C0([0,T ];Hµ)∩Lr([0,T ];B0
p,2) ≤ C ‖g′′‖Ls([0,T ];B1

q,2) ≤ C ′ ‖f ′′2 ‖Ls([0,T ];B0
q,2).

For the boundary term w, we have
‖w‖C0([0,T ];Hµ)∩Lr([0,T ];B0

p,2) ≤ 2 ‖h‖C0([0,T ];Hµ)∩Lr([0,T ];B0
p,2)

≤ C‖f2‖C0([0,T ];L2)∩Lr([0,T ];B−1
p,2).

Adding up the different estimates above and using the equation to estimate ∂tu+ yields

‖u+‖Y µ(T ) ≤ C ‖f‖Zµ(T ) .

The estimate for u− is similar and thus (5.10) is satisfied. This finishes the proof of Lemma
5.2.
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Proof of Lemma 5.3.

To simplify notations, we assume that a and u are scalar functions. For smooth functions,
the product au can be split into two pieces (see [Bo])

(5.17) a u = Π̃(a, u) + Π(u, a) :=
+∞∑
k=0

Sk+2a∆ku +
+∞∑
k=3

Sk−3u∆ka .

Here the notations are slightly different from those used in (5.13). From now on, by
definition, ∆0 = S0. We prove that Π̃(a, u) and Π(u, a) extend as bilinear operators
acting on functions a which satisfy (5.3) and u ∈ Y µ, so that they satisfy (5.6) and (5.7)
respectively.

1) For fixed t and σ ≥ 0, let us prove that

(5.18) ‖Π̃(a, u)(t)‖Hσ ≤ C ‖a(t)‖L∞ ‖u(t)‖Hσ .

For σ > 0, (5.18) follows from the estimate ‖Sk+2a∆ku‖L2 ≤ ‖Sk+2a‖L∞ ‖∆ku‖L2 and
the fact that the spectrum of Sk+2a∆ku is contained in the ball {|ξ| ≤ 2k+4}. For σ = 0
the proof is much more delicate. It is a classical result in harmonic analysis which can be
found for instance in [CM].
For all ρ < ∞, (5.3) implies that a ∈ C0([0, T ], Lρ). This implies that for all u ∈
C0([0, T ], Hµ), the series

∑
k Sk+2a∆ku converges in C0([0, T ], Hσ) for all σ < µ and the

partial sums are bounded in C0([0, T ], Hµ). Therefore the sum belongs to C0([0, T ], L2)∩
L∞([0, T ], Hµ). This shows that Π̃(a, u) extends to the a’s which satisfy (5.3) and u ∈
C0([0, T ], Hµ). Moreover, Π̃(a, u) ∈ C0([0, T ], L2)∩L1([0, T ], Hµ) and (5.18) implies that

(5.19) ‖Π̃(a, u)‖C0([0,T ],L2)∩L1([0,T ],Hµ) ≤ C ‖a‖L∞
(
T ‖u‖C0([0,T ];Hµ) + ‖u‖C0([0,T ];L2)

)
.

2) For fixed t and σ ≤ 0, let us show that

(5.20) ‖Π(u, a)(t)‖Hσ ≤ C ‖a(t)‖L∞ ‖u(t)‖Hσ .

The proof for σ < 0 is easy, using that ‖Sk−3u∆ka‖L2 ≤
∑
j≤k−3 ‖∆ju‖L2 ‖∆ka‖L∞ and

the fact that the spectrum of Sk+2a∆ku is contained in the annulus {2k−2 ≤ |ξ| ≤ 2k+2}.
The result for σ = 0 is proved in [CM]. It is equivalent to (5.18) with σ = 0 since
the product au has an obvious estimate in L2. In addition, since a ∈ C0([0, T ], Lρ) for
all ρ < ∞ and u ∈ C0([0, T ], Hµ) ⊂ C0([0, T ], Lρ

′
) for some ρ′ > 2, it follows that

au ∈ C0([0, T ], L2). Thus Π(u, a) = au − Π̃(a, u) extends to a satisfying (5.3) and u ∈
C0([0, T ], Hµ) so that Π(u, a) ∈ C0([0, T ], L2). Moreover, (5.20) implies that

(5.21) ‖Π(u, a)‖C0([0,T ],L2) ≤ C ‖a‖L∞ ‖u‖C0([0,T ],L2).

For p ≥ 2, one has ‖∆ju‖Lp ≤ C23j(1/2−1/p)‖∆ju‖Lp . Thus 1− 2/p = µ yields

‖Sk−3u∆ka‖Lp ≤
∑
j≤k−3

‖∆ju‖Lp ‖∆ka‖L∞ ≤ C ‖a‖L∞
∑
j≤k−3

23jµ/2 ‖∆ju‖L2 .
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Since the spectrum of Sk+2a∆ku is contained in {2k−2 ≤ |ξ| ≤ 2k+2}, it follows that

‖Π(u, a)(t)‖
B
−µ/2
p,2

≤ C ‖a(t)‖L∞ ‖u(t)‖Hµ .

Therefore 1/r = µ/2 yields

(5.22) ‖Π(u, a)‖Lr([0,T ];B−1
p,2) ≤ C Tµ/2 ‖a‖L∞ ‖u‖C0([0,T ];Hµ).

This estimate also holds for the extended definition of Π(u, a), since the space in the left
hand side is a dual and (5.22) provides uniform estimates for approximations of a and u.

3) So far, we have proved that Π(u, a) ∈ C0([0, T ];L2) ∩ Lr([0, T ];B−1
p,2). We now study

∂tΠ(u, a). For smooth a and u, one has

(5.23) ∂tΠ(a u) = Π(∂tu, a) + Π(u, ∂ta) .

The estimate (5.20) shows that

(5.24) ‖Π(∂tu, a)‖L∞([0,T ];Hµ−1) ≤ C ‖a‖L∞ ‖∂tu‖C0([0,T ];Hµ−1).

For the second term, use the relation 1/p+ 1/2 = 1/q to find

‖Sk−3u∆k∂ta‖Lq ≤ ‖Sk−3u‖Lp ‖∆k∂ta‖L2 .

Since p ≥ 2, B0
p,2 ⊂ Lp (see e.g. [Tr]). Thus ‖Sku(t)‖Lp ≤ C‖u(t)‖Lp ≤ C ′‖u(t)‖B0

p,2
.

Since the spectrum of Sk−3u∆ka is contained in {2k−2 ≤ |ξ| ≤ 2k+2}, this shows that

‖Π(u, ∂ta)(t)‖B0
q,2
≤ C ‖∂ta(t)‖L2 ‖u(t)‖B0

p,2

and, with 1/s− 1/r = 1/2, that

(5.25) ‖Π(u, ∂ta)‖Ls([0,T ];B0
q,2) ≤ C T 1/2 ‖∂ta‖L∞([0,T ],L2) ‖u‖Lr([0,T ];B0

p,2).

The spaces in the left hand sides of (5.24) and (5.25) are dual spaces. Thus the bilinear
operators Π(∂u, a) and Π(u, ∂ta) extend to the spaces which occur in the right hand
sides. This shows that for a satisfying (5.3) and u ∈ Y µ(T ), one gets that ∂tΠ(u, a) ∈
L1([0, T ], Hµ−1) + Ls([0, T ], B0

q,2) and

(5.26)
‖∂tΠ(u, a)‖L1([0,T ],Hµ−1)+Ls([0,T ];B0

q,2) ≤ C T ‖a‖L∞ ‖∂tu‖C0([0,T ];Hµ−1)

+C T 1/2 ‖∂ta‖L∞([0,T ],L2) ‖u‖Lr([0,T ];B0
p,2).

Together with (5.19), (5.21) and (5.22), this finishes the proof of Lemma 5.3.
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Proof of Theorem 2.7, when µ = 1.

Consider a solution U of (1.2) (1.3) with Cauchy data E0 ∈ H1 and H0⊥ ∈ H1. The-
orem 2.7 with µ = 1/2 implies that H⊥ ∈ C0([0,+∞[;H1/2). The Sobolev embedding
H1/2 ⊂ L3 implies that

(5.27) ∂tM = F (M,H) = F (M,H⊥)− F (M,M‖) ∈ L∞loc([0,+∞[;L3) .

Therefore, the coefficient a and the source term g in (5.1) or (5.2) satisfy, in addition to
(5.3) (5.4),

(5.28) ∂ta ∈ L∞([0, T ];L3), ∂tg ∈ L∞([0, T ];L2)

for all T > 0. Again, we consider u = (E⊥, H⊥) as the unique solution to the linear
problem (5.2) and prove that if the initial data belong to H1, then there is a solution in
C0([0, T ], H1) for all T > 0.

1) For f ∈ L1([0, T ], L2), the solution to (5.8) satisfies

‖u(t)‖L2 ≤ ‖u(0)‖L2 + 2
∫ t

0

‖f(s)‖L2 ds .

If f ∈ C0([0, T ], L2) and ∂tf ∈ L1([0, T ], L2), then, using the fundamental solution (5.13)
and integrating by parts as in the proof of Lemma 5.2, one obtains

‖∂xu(t)‖L2 ≤ ‖∂xu(0)‖L2 + C
( ∫ t

0

‖∂tf(s)‖L2 ds + ‖f(0)‖L2 + ‖f(t)‖L2

)
.

Moreover
‖∂tu(t)‖L2 ≤ C ‖∂xu(t)‖L2 + ‖u(t)‖L2 .

2) One has
‖a(t)u(t)‖L2 ≤ ‖a‖L∞ ‖u(t)‖L2 .

Using the Sobolev inequality ‖u‖L6 ≤ C‖∂xu‖L2 , one gets

‖∂t(au)(t)‖L2 ≤ ‖a‖L∞‖∂tu(t)‖L2 + ‖∂ta‖L2 ‖∂xu(t)‖L2 .

3) Let K denote the operator v 7→ u, where u is the solution of (5.8) with source term
f = av and vanishing initial data. The estimates above show that K maps C0([0, T ];H1)∩
C1([0, T ], L2) into itself and

(5.29)
‖Kv(t)‖L2 ≤ C

∫ t

0

‖v(s)‖L2 ds ,

‖∂t,xKv(t)‖L2 ≤ C
( ∫ t

0

‖∂t,xv(s)‖L2 ds + ‖v(t)‖L2 + ‖v(0)‖L2

)
.

where C only depends on a.
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4) The first two steps imply that the solution to (5.8), with source term g and initial data
u0, belongs to C0([0, T ];H1)∩C1([0, T ], L2). The third step implies that Picard’s iterates
converge in C0([0, T ];H1) ∩ C1([0, T ], L2), proving that the unique solution to (5.2) also
belongs to C0([0, T ];H1) ∩ C1([0, T ], L2). The proof of Theorem 2.7 is now complete.

6. Uniqueness and L2-stability of the Hcurl solution

In this section we prove Theorem 2.8. It follows from a stronger result on the stability
of finite energy solutions U such that curlE and curlH belong to C0

(
[0,+∞[;L2(R3)

)
.

Before stating the result, we make a few remarks.

Consider two finite energy solutions U and U on ΩT . Then δU = U − U satisfies

(6.1) LδU :=

 0
−δF
δF


where L denotes the first-order system in (1.2) and δF = F (M,H) − F (M, H) =
F (M,H−H)+F (M, H)−F (M, H). Suppose that ‖M(0)‖L∞ ≤ R and ‖M(0)‖L∞ ≤ R.
Then, ‖M‖L∞ ≤ R and ‖M‖L∞ ≤ R. Suppose in addition that

(6.2) ‖H‖L∞(ΩT ) < ∞.

Then |δF | ≤ C|δU |, where C depends on R and ‖H‖L∞(ΩT ). The standard energy
estimate for (6.1) implies that

(6.3) ‖δU(t)‖L2 ≤ eCt ‖δU(0)‖L2

proving that U is the unique finite energy solution with initial data U(0). The uniqueness
of bounded solutions of semilinear equations is well known. Here, we have a-priori bounds
of the L∞ norms of M and M . The interesting point is that (6.2) involves only H.

The main goal of this section is to weaken condition (6.2). The price is the lost of the
Lipschitz dependence of U(t) on U(0).

Theorem 6.1 Let U be a finite energy solution on ΩT such that ‖M(0)‖L∞ ≤ R, curlE
and curlH belong to C0

(
[0, T ];L2(R3)

)
. Then there exist constants C > 0, c > 0 and

ρ > 0, such that for all finite energy solution U on ΩT which satisfies ‖M(0)‖L∞ ≤ R and
‖U(0)− U(0)‖L2 ≤ c, one has for all t ∈ [0, T ]

(6.4) ‖U(t)− U(t)‖L2 ≤ C ‖U(0)− U(0)‖γ(t)
L2 ,

with γ(t) := e−ρt
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The main ingredient is a substitute to the L∞ estimate (6.2).

Lemma 6.2 There is a constant C such that for all λ ≥ e, there is Hλ ∈ L∞(ΩT ) and
functions αλ ∈ L2([0, T ]), βλ ∈ L∞([0, T ]) such that for all t ∈ [0, T ]

(6.5) ‖Hλ(t)‖L∞ ≤ αλ(t) + βλ(t) , ‖(H − Hλ)(t)‖L2 ≤ C/λ ,

(6.6) ‖αλ‖L2([0,T ]) ≤ C
√

lnλ , ‖αλ‖L∞([0,T ]) ≤ C lnλ .

Proof. Using (2.13) we write H = H⊥ − M‖ and study each term separately.
1) The operator P‖ maps Lp in Lp for all finite p, with norm less or equal to C0p, with C0

independent of p (see [St] for instance). Therefore, for all p ∈ [2,+∞[,

‖M‖(t)‖p ≤ C0 p ‖M(t)‖L2∩L∞ ≤ C0 p ‖M(0)‖L2∩L∞ .

Define Mλ
‖(t, x) = M‖(t, x) when |M‖(t, x)| ≤ C lnλ and Mλ

‖(t, x) = 0 otherwise. Then

‖(M‖ − Mλ
‖)(t)‖2L2 ≤ 1

(C lnλ)p−2
‖M‖(t)‖pLp ≤

(C1p)p

(C lnλ)p−2

with C1 = C0 ‖M(0)‖L2∩L∞ . Choose C = 2eC1 and p = 2 lnλ ≥ 2. Then the right hand
side is less than

(C lnλ)2e−p = (C lnλ)2λ−2 ≤ C ′λ−1 .

2) Applying P⊥∂t to the second equation in (1.2) yields

(6.7) H⊥ = −P⊥∂tF (M, H).

Since F is Lipschitzean and (∂tM,∂tH) ∈ L2, one can differentiate F (M, H) with respect
to t. Using (2.4), one obtains that

|∂tF (M, H)| ≤ C (|∂tH| + |H||∂tM |) ≤ C (|∂tH| + |H|2).

We know that ∂tH = −curlE − F (M, H) ∈ L1([0, T ];L2). Moreover, M‖(t) is bounded
in L4 and H⊥(t) is bounded in H1 thus in L4. Therefore H(t) = H⊥(t) − M‖(t) is
bounded in L4 and the right hands side of (6.7) belongs to L1([0, T ];L2). In addition, the
initial values of H⊥ satisfy

H⊥(0) ∈ H1 , ∂tH⊥(0) = −curlE(0)− F (M(0), H(0)) ∈ L2.

One would like to use the Stichartz estimates to control the L2(L∞) norm of H⊥ by the
L1(L2) norm of H⊥. This corresponds to the forbidden limit case p1 = ∞ in (5.16)
for which the inequality is known to be false (see [L] , [KM]). Nevertheless we persist in
following this idea. The Strichartz inequality in the limit case p1 =∞ holds for functions
whose Fourier transform is supported in a ball and it is possible to give a sharp estimate
of the constant involved in term of the radius of the ball. Precisely, recalling the definition
of Sλ in (2.9), we have
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Proposition 6.3 There exists a constant c such that for all λ > 0, all T > 0 and all
u ∈ C0

(
[0,∞[;H2(R3)

)
,

‖Sλu‖L2([0,T ];L∞(R3)) ≤ c
√

log(1 + λT )
(
‖∂t,xu(0)‖L2(R3) + ‖ u‖L1([0,T ];L2(R3))

)
.

The proof is delayed until section 8. A similar idea would be to estimate the constant C
in (5.16) as p1 →∞. It would lead to similar results.
This proposition applies to H⊥. Therefore the function αλ(t) := ‖SλH⊥(t)‖L∞ belongs
to L2([0, T ]) and

(6.8) ‖αλ‖L2([0,T ]) ≤ C
√

ln(1 + λT ) ≤ C ′
√

lnλ

for lnλ ≥ 1. Next, we note that H⊥ − SλH⊥ satisfies

‖(I − Sλ)H⊥(t)‖L2 ≤ 1
2λ
‖H⊥(t)‖H1 ≤ C/λ .

3) The Lemma 6.2 follows, with Hλ = SλH⊥ − Mλ
‖ , αλ(t) := ‖SλH⊥(t)‖L∞ and

βλ(t) := ‖Mλ
‖(t)‖L∞ .

Proof of Theorem 6.1.

Using the inequalities (2.4) for the function F and the L∞ bounds (2.6) for M and M ,
one obtains that the right hand side δF = F (M, δH) + F (M, H) − F (M, H) in (6.1)
satisfies

(6.9) |δF | ≤ C(R) (|δH|+ |H||δM |).

For all λ ≥ e, choose Hλ as indicated in Lemma 6.2. Then, (6.9) implies that

‖δF (t)‖L2 ≤ C
(
‖δH(t)‖L2 + (αλ(t) + βλ(t)) ‖δM(t)‖L2 +

1
λ
‖δM(t)‖∞

)
.

With the obvious estimate |δM | ≤ |M |+ |M | ≤ 2R, this implies that

(6.10) ‖δF (t)‖L2 ≤ C
(

(1 + αλ(t) + βλ(t)) ‖δU(t)‖L2 +
1
λ

)
.

for some C that depends only on ‖M(0)‖L2∩L∞ , R and ‖curlH‖
C0
(

[0,T ];H1(R3)
). Introduce

δ(t) = ‖δU(t)‖L2 .

The energy estimate for (6.1) together with (6.10) yields

δ(t) ≤ δ(0) + 2C
∫ t

0

((
1 + αλ(s) + βλ(s)

)
δ(s) +

1
λ

)
ds.
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Gronwall’s Lemma implies that for all λ ≥ e and all t ∈ [0, T ]

(6.11) δ(t) ≤ (δ(0) +
Ct

λ
) eAλ(t)

where

Aλ(t) := 2C
∫ t

0

(
1 + αλ(s) + βλ(s)

)
ds.

Lemma 6.2 implies that for all λ ≥ e and 0 ≤ t ≤ T ,

(6.12) Aλ(t) ≤ C
(
t lnλ+

√
t lnλ

)
≤ C1(1 + t lnλ)

Suppose that λ > 1/δ(0). Then (6.11) and (6.12) imply

(6.13) δ(t) ≤ δ(0)(1 + Ct) eC1(1+t lnλ).

Suppose that δ(0) < 1/e. For t ≤ T1 := 1/2C1, one can let λ→ 1/δ(0) to find

δ(t) ≤ eC1(1 + CT1) δ(0)1−tC1 .

Introduce ρ = C1 ln 4. Then 1− tC1 ≥ γ(t) := e−ρt for t ≤ 1/2C1. Summing up, we have
shown that there are constant T1 > 0, C2 and ρ such that, if δ(0) ≤ 1/e, then for t ≤ T1 :

(6.14) δ(t) ≤ C2δ(0)γ(t).

If C2δ(0)γ(T1) ≤ 1/e, one can apply (6.14) to the Cauchy problem with initial time T1 and
prove that (6.14) with another constant C2 holds on [T1, 2T1]. By induction this implies
that for δ(0) small enough, the estimate (6.4) follows.

7. Global smooth solutions

In this section, we prove Theorem 2.9. We therefore assume that F satisfies Assumption
2.1 and in particular is infinitely smooth. Classical results for the semilinear Cauchy
problem in R1+3 with initial data U0 in Hs, s ≥ 2, say that there exists a unique maximal
solution U ∈ C0([0, T [;Hs) of (1.2) satisfying U(0) = U0. Moreover, if T < ∞, then
‖U(t)‖L∞ → ∞, and hence ‖U(t)‖H2 → ∞ as t → T . Therefore, Theorem 2.9 is a
consequence of the following a priori estimate.

Proposition 7.1 Let F satisfy Assumption 2.1. For all T > 0, any finite energy solution
U in ΩT belonging to C0([0, T [;H2(R3)), satisfies

sup
0≤t<T

‖U(t)‖H2(R3) ≤ C

where C depends only on T and ‖U(0)‖H2(R3).
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Let ∂U denote any x-derivative of U . Differentiating twice the equations for U leads to a
system for U , ∂U and ∂2U which reads
(7.1) LU = f0, L∂U = f1, L∂2U = f2.

The nonlinear part of fi, i = 1, 2 involve the first and second order derivatives of F
with respect to m. Assumption 2.1, the chain rule and the uniform bound (2.6) for M
immediately yield the following pointwise estimates which hold almost everywhere on ΩT :

(7.2)

{
|f0| ≤ C|H|, |f1| ≤ C

(
|∂H|+ |H| |∂M |

)
,

|f2| ≤ C
(
|∂2H|+ |∂H| |∂M |+ |H| |∂2M |+ |H| |∂M |2

)
,

where C is some constant that depends on ‖M(0)‖∞ = R. Introduce
(7.3) n2(t) = sup

0≤s≤t
‖U(s)‖H2 .

In order to apply the energy estimate for the large system (7.1) we need to bound from
above the L2-norms of the fi(t) by some functions of n2(t). The linear terms in (7.2) are
trivially bounded by n2(t). Thus it remains to control the quadratic and cubic terms. The
key is to obtain bounds for the L∞ norm of H. For H‖ = −M‖, we use a Judovic-type
inequality.

Lemma 7.2. There exists C depending only on ‖M(0)‖L2∩L∞ such that for all t ∈ [0, T [
(7.4) ‖M‖(t)‖∞ ≤ C

(
1 + ln+(‖M(t)‖H2)

)
.

where ln+ denotes the positive part of ln.

Proof. Introduce a Littlewood-Paley decomposition 1 = ϕ(ξ) +
∑∞
k=1 ψ1(2−kξ) as in

(5.13) and use the notations Sk := ϕ(Dx), ∆k := ψk(Dx). We first prove that for all
k ≥ 1,
(7.5) ‖SkM‖‖L∞ ≤ 2

3
2 ‖M‖L2 + c k‖M‖L∞ ,

where c only depends on ϕ. One has
(7.6) ‖S0M‖‖L∞ ≤ 2

3
2 ‖S0M‖‖L2 ≤ 2

3
2 ‖M‖L2 .

since P‖ is an orthogonal projector on L2 and ϕ is supported in |ξ| ≤ 2. Denote by
p‖(ξ) = 1

|ξ|2 (ξ, ·)ξ the symbol of P‖. Since p‖ψ1 ∈ C∞0 , its Fourier transform χ(x) belongs
to the Schwartz class S. Since p‖ is homogeneous of degree 0, it follows that, for all k ≥ 1,
P‖◦ψ1(2−kDx) is the convolution operator with 23kχ(2kx), whose L1-norm is independent
of k. Thus, for all k ≥ 1,
(7.7) ‖∆kM‖‖L∞ ≤ ‖χ‖L1 ‖M‖L∞
Since Sk = S0 +

∑
j≤k ∆j , (7.6) and (7.7) imply (7.5). To end the proof of the lemma,

note that in R3

(7.8). ‖(I − Sk)(u)‖L∞ ≤ c 2−k/2 ‖∂2u‖L2

Since P‖ is orthogonal and commute with ∂2, this implies

(7.9) ‖M‖ − SkM‖‖L∞ ≤ c 2−k/2 ‖M‖H2 .

Let λ := ‖M(t)‖H2/‖M(t)‖L∞ , noticing that λ ≥
√

8π. Choose k such that 2k/2 ≤ λ ≤
2(k+1)/2. Then (7.5), (7.9) and the inequality ‖M(t)‖L∞∩L2 ≤ ‖M(0)‖L∞∩L2 imply (7.4).
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Lemma 7.3. There are a universal constant c and a constant C1 which depends only
on ‖M(0)‖L∞∩L2 , ‖curl(E,H)(0)‖L2 and T , such that for all λ ≥ e, there is a function
αλ ∈ L2([0, T ]) such that ‖αλ‖L2([0,T ]) ≤ C1

√
lnλ and for all t ∈ [0, T [,

(7.10) ‖H⊥(t)‖L∞ ≤ αλ(t) +
c√
λ
‖H(t)‖H2 .

Proof. By Theorems 2.7 and 2.8, we know that U extends as a finite energy solution
on Ω∞, with (E,H⊥) ∈ C0([0,∞[;H1). Thus the norm of (E,H⊥) in C0([0, T ];H1) is
bounded by a constant C1 which depends only on ‖M(0)‖L∞∩L2 , ‖curl(E,H)(0)‖L2 and
T . As in the proof of Lemma 6.2, this implies that H⊥ ∈ L1([0, T ];L2), H⊥(0) ∈ H1

and ∂tH⊥(0) ∈ L2, with norms less than a similar constant C1. Therefore Proposition 6.3
implies that the function t 7→ ‖Sλ(H⊥(t))‖L∞ belongs to L2([0, T ]) with norm less than
C1

√
lnλ. To prove (7.10) write

‖H⊥(t)‖L∞ ≤ ‖Sλ(H⊥(t))‖L∞ + ‖(I − Sλ)(H⊥(s))‖L∞

and recall (7.8), which implies that

‖(I − Sλ)(H⊥(t))‖L∞ ≤ c ‖H⊥(t)‖H2 ≤ c ‖H(t)‖H2 .

Proof of Proposition 7.1.

Let U ∈ C0([0, T [;H2(R3)) be a finite energy solution in ΩT . We estimate the L2 norms
of the fi(t), using (7.2). Recall the Cagliardo-Nirenberg inequality

‖ |∂u|2‖L2 ≤ 4 ‖u‖L∞‖∂2u‖L2 .

It implies that

‖ |∂H(t)| |∂M(t)| ‖L2 ≤ 4 ‖H(t)‖1/2L∞‖M(t)‖1/2L∞ ‖U(t)‖H2

and
‖ |H(t)| |∂M(t)|2 ‖L2 ≤ 4 ‖H(t)‖L∞‖M(t)‖L∞ ‖M(t)‖H2 .

Therefore, (7.2) implies that

‖fi(t) ‖L2 ≤ C (1 + ‖H(t)‖L∞) ‖U(t)‖H2 .

where C only depends on ‖M0‖L2∩L∞ . Next write H = H⊥ −M‖ and use Lemmas 7.2
and 7.3 to find

(7.11) ‖fi(t) ‖L2 ≤ C
(

1 + αλ(t) +
‖U(t)‖H2√

λ
+ ln+(‖U(t)‖H2)

)
‖U(t)‖H2 .
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Therefore, the energy estimates for the large system (7.1) implies that

(7.12)
‖U(t)‖H2 ≤‖U(0)‖H2+

C

∫ t

0

(
1 + αλ(s) +

‖U(s)‖H2√
λ

+ ln+(‖U(s)‖H2)
)
‖U(s)‖H2 ds.

Since the function n 7→ n+αλn+ n ln+(n) + n2√
λ

is positive and increasing in n the same

inequality is true for n2(t) = sup0≤s≤t ‖U(t)‖H2 , that is

(7.13) n2(t) ≤ n2(0) + C

∫ t

0

(
1 + αλ(s) +

n2(s)√
λ

+ ln+(n2(s))
)
n2(s) ds.

This family of inequalities hold for all t ∈ [0, T [ and λ ≥ e. The constant C only depends
on ‖M0‖L2∩L∞ and the family of functions αλ satisfy

(7.14) ‖αλ‖L2([0,T ]) ≤ C1

√
lnλ,

where C1 only depends on ‖M(0)‖L∞∩L2 , ‖curl(E,H)(0)‖L2 and T .

To complete the proof of Proposition 7.1 consider T1 < T and choose λ such that
√
λ =

n2(T1) so that inequality (7.14) implies that, for 0 ≤ t ≤ T1,

(7.15) n2(t) ≤ ν(t) := n2(0) + C

∫ t

0

(
(2 + αλ(s))n2(s) + n2(s) ln+ n2(s)

)
ds.

The function ν(t) is absolutely continuous on [0, T1] and its derivative is

(7.16) ν′(t) = C
(
2 + αλ(t) + ln+ n2(t)

)
n2(t) ≤ C

(
2 + αλ(t) + ln+ ν(t)

)
ν(t).

In (7.13) and (7.15) one can increase n2(0) and therefore assume that n2(0) > 1, so that
ν(t) > 1. Then the function ln ν is absolutely continuous and its derivative is

(7.16) (ln ν)′(t) =
ν′(t)
ν(t)

≤ C
(
2 + αλ(t) + ln ν(t)

)
.

Therefore, for t ≤ T1, one gets

(7.17) ln ν(t) ≤ eCt ln ν(0) +
∫ t

0

et−s(2 + αλ(s))ds.

Take t = T1 in this estimate. Using (7.14) and recalling the choice λ = n2(T1)2, (7.15)
and (7.17) imply

(7.18) lnn2(T1) ≤ ln ν(T1) ≤ eCT lnn2(0) + eCT C1

√
2T lnn2(T1).

Therefore

(7.19) lnn2(T1) ≤ 2 eCT lnn2(0) + 2Te2CT C2
1

and Proposition 7.1 follows.
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8. Limit Strichartz-type estimates

In this section we prove Proposition 6.3. Recall that the space dimension is equal to 3.
The proof follows the methods in [GV] or [LS], but we give the details to obtain the sharp
bound

√
ln(1 + λT ).

Consider v ∈ C∞(R;S(R3)) such that

(8.1) v = g , v|t=0 = 0 , ∂tv|t=0 = 0,

Lemma 8.1. Suppose that the support of the spatial Fourier transform ĝ(t, ξ) of g is
contained in the ball {|ξ| ≤ λ}. Then for all t ≥ 0,

(8.2)


‖ v(t) ‖2L2 ≤ 5

2π2
ln(1 + λt)

∫ t

0

‖g(s)‖2L1 dt,

‖∂tv(t)‖2
Ḣ−1 ≤

5
2π2

ln(1 + λt)
∫ t

0

‖g(s)‖2L1 dt.

Proof. We consider first the case λ = 1. The general case follows using dilations.
1) Suppose that

(8.3) support ĝ(t, ξ) ⊂ {|ξ| ≤ 1}.

The solution to (8.1) satisfies

v̂(t, ξ) =
∫ t

0

sin
(
(t− s)|ξ|

)
ĝ(s, ξ)

ds

|ξ| ,

and
∂tv̂(t, ξ)
|ξ| =

∫ t

0

cos
(
(t− s)|ξ|

)
ĝ(s, ξ)

ds

|ξ| .

Thus

(8.4) ‖ v(t) ‖2L2 =
∫ t

0

∫ t

0

∫
R3×R3

K−(τ, σ, x− y) g(σ, y)g(τ, x) dx dy dτ dσ

where, taking the support condition (8.3) into account,

(8.5) (2π)3K−(τ, σ, z) :=
∫
|ξ|≤1

sin
(
(t− σ)|ξ|

)
sin
(
(t− τ)|ξ|

)
e−i z·ξ

dξ

|ξ|2 .

Similarly,

(8.6) ‖ ∂tv(t)
|ξ| ‖

2
L2 =

∫ t

0

∫ t

0

∫
R3×R3

K+(τ, σ, x− y) g(σ, y)g(τ, x) dx dy dτ dσ
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with

(8.7) (2π)3K+(τ, σ, z) :=
∫
|ξ|≤1

cos
(
(t− σ)|ξ|

)
cos
(
(t− τ)|ξ|

)
e−i z·ξ

dξ

|ξ|2 .

Introduce

(8.8) M(λ, z) =
∫
|ξ|≤1

cos(λ|ξ|) e−i z·ξ dξ

|ξ|2 .

It follows that

(8.9) (2π)3K±(τ, σ, z) =
1
2

(
M(τ − σ, z)±M(2t− σ − τ, z)

)
.

In order to apply Schur’s Lemma to (8.4) and (8.6), we need sharp bounds for supz |K±(τ, σ, z)|,
hence, in view of (8.9), of supz |M(λ, z)|. From (8.8) one gets first that, for all λ, z,

(8.10) |M(λ, z)| ≤ 4π.

Note that M is real and rotation invariant in z. Taking polar coordinates for ξ, one obtains
that

(8.11) M(λ, z) = 2π
∫ 1

0

∫ 1

−1

cos(λr)ei |z|rω drdω = π

∫ 1

−1

sin(|z|ω + λ)
|z|ω + λ

+
sin(|z|ω − λ)
|z|ω − λ dω.

Writing ∫ 1

−1

sin(|z|ω ± λ)
|z|ω ± λ dω =

1
|z|

∫ |z|±λ
−|z|±λ

sin(a)
a

da,

it follows that

(8.12) |M(λ, z)| ≤ 4πSi(π)
|z| <

8π
|z|

since the function Si(x) =
∫ x

0
sin(a)
a da satisfies |Si(x)| ≤ Si(π) < 2, x ∈ R. From (8.11)

one also gets

(8.13) sup
|z|≤ |λ|2

|M(λ, z)| ≤ 8π
|λ|

which, with (8.12) and (8.10), yields

(8.14) sup
z
|M(λ, z)| ≤ 20π

1 + |λ| .
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To estimate (8.4) and (8.6) we note that

(8.15)

∣∣∣ ∫ t

0

∫ t

0

∫
R3×R3

K±(τ,σ, x− y) g(σ, y)g(τ, x) dx dy dτ dσ
∣∣∣ ≤(

sup
τ

∫ t

0

sup
z
|K±(τ, σ, z)|dσ

)∫ t

0

‖g(s)‖2L1ds.

Using (8.9) and (8.14), one has

(2π)3 sup
z
|K±(τ, σ, z)| ≤ 10π

1 + |τ − σ| +
10π

1 + |2t− τ − σ| .

Hence

(2π)3

∫ t

0

sup
z
|K±(τ, σ, z)| ≤ 10π

(
ln(1 + τ) + ln(1 + 2t− τ)

)
and

sup
τ

∫ t

0

sup
z
|K±(τ, σ, z)|dσ ≤ 5

2π2
log(1 + t).

Substituting this estimate in (8.15), equalities (8.4) and (8.6) yield

(8.16) ‖∂tv(t)‖2
Ḣ−1 ≤

5
2π2

ln(1 + t)
∫ t

0

‖ g(s) ‖2L1 ds,

and

(8.17) ‖v(t)‖2L2 ≤ 5
2π2

ln(1 + t)
∫ t

0

‖ g(s) ‖2L1 ds.

2) Suppose next that ĝ(t, ξ) is supported in {|ξ| ≤ λ}. Introduce

gλ(t, x) :=
1
λ2

g(
t

λ
,
x

λ
) , vλ(t, x) := v(

t

λ
,
x

λ
) .

Then
vλ = gλ , vλ|t=0 = 0 , ∂tvλ|t=0 = 0 ,

and ĝλ(t, ξ) = λ ĝ(t/λ, λξ) is supported in {|ξ| ≤ 1}. Thus (8.16) (8.17) apply to vλ and
gλ and (8.2) follows.

Proof of Proposition 6.3.

Consider f ∈ C∞(R;S(R3)), u0 ∈ S(R3) and u1 ∈ S(R3). Let u ∈ L∞loc(R+;L2(R3) denote
the solution to

(8.19) u = f , u|t=0 = u0 , ∂tu|t=0 = u1.
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Recall from (2.9) that Sλ = ϕ(λ−1Dx) where ϕ ∈ C∞0 (R3)) is real, equal to 1 on |ξ| ≤ 1
and is supported in |ξ| ≤ 2. We show now there is a constant C, depending on ϕ but not
on T and u, such that

(8.20)

√∫ T

0

‖Sλ(u)(t)‖2∞ dt ≤ C
√

log(1 + 2λT )
(
‖u0‖Ḣ1 + ‖u1‖2 +

∫ T

0

‖f(t)‖L2dt
)
.

Note that the left hand side of (8.20) is well defined. One has

(8.21) ‖Sλ(u)(t)‖L2([0,T ];L∞) = sup
‖g‖L2([0,T ];L1)≤1

∫
ΩT

Sλ(u) g dxdt ,

where ΩT = [0, T ] × R3 and the functions g are supposed smooth. To any such g corre-
sponds a unique v solution on {t ≤ T} × R3 to

(8.22) v = g , v|t=T = 0 , ∂tv|t=T = 0.

Since ϕ is real, we get ∫
ΩT

Sλ(u) g dxdt =
∫

ΩT

uSλ(g) dxdt.

Commuting Sλ and yields

Sλv = Sλg , Sλv|t=T = 0 , ∂tS
λv|t=T = 0.

Thus, integrating by part, one obtains

(8.23)

∣∣∣ ∫
ΩT

Sλ(u) g dxdt
∣∣∣ ≤ ‖f‖L1([0,T ];L2)‖Sλ(v)‖L∞([0,T ];L2)+

‖u0‖Ḣ1‖∂tSλ(v)(0)‖Ḣ−1 + ‖u1‖L2‖∂tSλ(v)(0)‖L2 .

Using (8.2) for Sλ(v) whose spectrum belongs to |ξ| ≤ 2λ, it follows that

(8.24)

∣∣∣ ∫
ΩT

Sλ(u) g dxdt
∣∣∣ ≤

‖Sλ(g)‖L2([0,T ];L1)

√
5

2π2
log(1 + 2λT )

(
‖u0‖Ḣ1 + ‖u1‖L2 + ‖f‖L1([0,T ];L2)

)
.

To conclude note that the operators Sλ are uniformly bounded from L1(R3) to L1(R3).
Thus ‖Sλ(g)‖L2([0,T ];L1) ≤ C‖(g)‖L2([0,T ];L1) ≤ C for some C that only depends on ϕ.
With (8.21), (8.24) implies (8.20) and Proposition 6.3.

32



References

[Bo] Bony J-M., Calcul symbolique et propagation des singularités pour les équations aux
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