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Abstract

In this paper we present a new approach to the study of linear
and nonlinear stability of inviscid multidimensional shock waves under
small viscosity perturbation, yielding optimal estimates and eventually
an extension to the viscous case of the celebrated theorem of Majda
on existence and stability of multidimensional shock waves. More pre-
cisely, given a curved Lax shock solution u0 to a hyperbolic system of
conservation laws, we construct nearby viscous shock solutions uε to
a parabolic viscous perturbation of the hyperbolic system which con-
verge to u0 as viscosity ε → 0 and satisfy an appropriate (conormal)
version of Majda’s stability estimate.

The main new feature of the paper is the derivation of maximal and
optimal estimates for the linearization of the parabolic problem about a
highly singular approximate solution. These estimates are more robust
than the singular estimates obtained in our previous work, and permit
us to remove an earlier assumption limiting how much the inviscid
shock we start with can deviate from flatness.

The key to the new approach is to work with the full linearization
of the parabolic problem, that is, the linearization with respect to both
uε and the unknown viscous front, and to allow variation of the front
at all stages - not only in the construction of the approximate solution
as done in previous work, but also in the final error equation. After
reformulating the problem as a transmission problem, we show that
the linearized problem can be desingularized and optimal estimates
obtained by adding an appropriate extra boundary condition involving
the front. The extra condition determines a local evolution rule for the
viscous front.
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1 Introduction

This paper presents a new approach to the study of the linear and nonlin-
ear stability of inviscid multidimensional shock waves under small viscosity
perturbation. Our goal is to revisit the plane wave analysis and the asso-
ciated Evans’ functions conditions in order to obtain maximal and optimal
estimates. As a consequence of these estimates, we obtain a viscous version
of the celebrated theorem of Majda in the inviscid case, asserting existence
and stability of curved multidimensional viscous shock fronts for sufficiently
small, strictly parabolic viscosity. More, we establish an asymptotic expan-
sion, with rigorous error bounds, to arbitrary order about the inviscid solu-
tion in powers of viscosity strength ε. With some elaboration, the method
may be applied also to the physical case of “real”, or partially parabolic
viscosity; see [GMWZ3]. The method would also apply to the analogous
problem of long time stability for a fixed viscosity, perhaps yielding new
results in this context as well; see the discussions of small viscosity vs. long
time stability in [GMWZ1, GMWZ2].

Consider an N ×N hyperbolic system of conservation laws in R× Rd:

(1.1) ∂tu+
d∑
j=1

∂jfj(u) = 0,

and a given uniformly stable Lax shock u0 with front x = ψ(t, y). Below,
we denote by (y, x) ∈ Rd−1 × R the space variables and y = (y1, . . . , yd−1).
The shock wave solution is u0(t, y, x) = u±0 (t, y, x) on ±(x − ψ(t, y)) > 0,
where u±0 are solutions of (1.1), smooth up to the boundary and satisfying
the Rankine-Hugoniot jump conditions on {x = ψ(t, y)}:

(1.2) ∂tψ
[
u
]
+

d−1∑
j=1

∂jψ
[
fj(u)

]
=
[
fd(u)

]
.
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Such solutions have been constructed by A.Majda [Maj] assuming that a
uniform stability condition is satisfied. This condition is recalled in Section
two below.

Next consider a parabolic viscous perturbation of (1.1):

(1.3) ∂tu+
d∑
j=1

∂jfj(u)− ε
d∑

j,k=1

∂j
(
Bj,k(u)∂ku

)
= 0 .

The problem is to show, under “natural” assumptions, that, first, the given
solution u0 of (1.1) is the limit as ε tends to zero of solutions uε of (1.3),
and, second, the solutions uε satisfy uniform bounded-time stability esti-
mates recovering in the ε→ 0 limit those obtained by Majda in the inviscid
case. The assumptions are twofold: first, there are conditions on the nature
of hyperbolicity of (1.1) and parabolicity of (1.3) and their compatibility;
second, there are (planar) stability conditions. The sharp criterion of stabil-
ity is expressed by an Evans function hypothesis, which implies the uniform
stability of the inviscid shock (see [ZS], [Zu1]).

The first, existence problem was solved in 1-D by J.Goodman and Z.Xin
[GX] for sufficiently weak shocks (see also [GW]) and by F.Rousset [Ro2]
for shocks of arbitrary strength satisfying the Evans function hypothesis.
An analogous result in multi-D has been obtained in [GMWZ2], under the
additional technical assumption that the shock front does not deviate too
much from an hyperplane. Note that the recent works by Freistühler and
Szmolyan [FS] and Plaza and Zumbrun [PZ] show that the Evans condition
holds for sufficiently weak Lax shocks.

However, the “natural” Evans’ function introduced in [ZS], [Zu1] and
used in [Ro1], [GMWZ2] has a singularity at the origin. This reflects the
existence of a pole for the Green function and induces only a weak type of
stability with losses of epsilons in the estimates. As a result, the second, sta-
bility problem has not been solved in any dimension (though see the related
and in some respects stronger results of S.-H. Yu for small-amplitude shocks
in one dimension [Yu]). This is quite unnatural and unsatisfactory, since the
expected estimates should recover the inviscid estimates in the limit ε tends
to zero. In this paper, we propose a modified but equivalent problem, such
that the associated Evans function is not singular at the origin, inducing the
desired maximal and sharp estimates. These not only resolve the stability
problem, but also permit a greatly improved and simplified treatment of
existence, in particular allowing us to drop the artificial assumption made
in [GMWZ2] of approximate flatness of the background inviscid front. The
estimates so obtained are in a class of conormal spaces introduced in [MZ1]

4



that is natural for the study of singular perturbation problems. As ε → 0,
they reduce to the Sobolev estimates of Majda; see Remark 5.7.

Besides their mathematical interest, these results have physical implica-
tions for continuum mechanics and modeling of flow in compressible media.
Both existence of and stability about viscous shock fronts are required to
validate “physicality” of shock wave solutions in the sense of their presence
as persistent features of the flow. The bounded-time version of stability con-
sidered here agrees with the common-sense notion of a coherent “shock-like”
structure that is observable for small but finite time, hence in this sense is
quite satisfactory.

Let us now explain the main features of our approach. The basic idea
is not new. In the inviscid case, we know from [Maj] that the equations
must determine u±0 and the front ψ. The equations (1.1) (1.2) for u±0 form a
free boundary transmission problem. The front is fixed by introducing the
unknown change of variables:

(1.4) x̃ = x− ψ(t, y),

which transforms (1.1) into

(1.5) ∂tu+
d−1∑
j=1

Aj(u)∂ju+Aν(u, dψ)∂x̃u = 0 ,

where Aj(u) := f ′j(u) is the Jacobian matrix of fj and

(1.6) Aν(u, dψ) := Ad(u)−
d−1∑
j=1

∂jψAj(u)− ∂tψId

is the boundary matrix. The equation (1.5) is solved separately on {x̃ > 0}
and {x̃ < 0}, together with the transmission conditions, deduced from (1.2):

(1.7) ∂tψ
[
u
]
+

d−1∑
j=1

∂jψ
[
fj(u)

]
=
[
fd(u)

]
on {x̃ = 0} .

In the viscous case, the front is not defined at all, since the jump is
smoothed out. However, in the limit ε→ 0, the front must become apparent.
The idea is to introduce it by force in the equation, performing the change
of variables (1.4) in the viscous equation too. The new equations read:

(1.8) ∂tu+
d−1∑
j=1

Aj(u)∂ju+Aν(u, dψ)∂x̃u− ε

d∑
j,k=1

Dj

(
Bj,k(u)Dku

)
= 0 ,
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with Dj = ∂j − (∂jψ)∂x̃ when j < d and Dd = ∂x̃. In the viscous case, the
solutions are smooth and have no jumps on x̃ = 0. Thus the only reasonable
transmission conditions are

(1.9)
[
u
]

= 0 ,
[
∂x̃u

]
= 0 on {x̃ = 0}.

For instance, when u is a planar shock, i.e. when u±0 and dψ are constants,
exact stationary solutions of (1.8) are

(1.10) uε(t, y, x) = w(x̃/ε) , ψ = σt+ θy,

with w solving the profile equation

(1.11) ∂zfν(w, dψ) = ∂z
(
Bν(w, dψ)∂zw

)
, lim

z→−∞
= u−0 , lim

z→+∞
= u+

0 ,

where the normal flux and the normal viscosity are respectively

fν(u, dψ) = fd(u)−
d−1∑
j=1

∂jψfj(u)− ∂tψu

Bν(u, dψ) =
d∑
j,k

νjνkBj,k(u), ν = (−∂1ψ, . . . ,−∂d−1ψ, 1).

The formulation (1.8) is used in [GW] to construct asymptotic solutions:

(1.12) uεapp ∼
∑
n≥0

εnUn(t, y, x̃, x̃/ε) , ψεapp ∼
∑
n≥0

εnψn(t, y) .

In this expansion, the first term ψ0 is the inviscid shock front and U0 as a
function of z = x̃/ε is a solution of (1.11) converging to the inviscid solutions
u±0 as z tends to ±∞. Since the only physical front is the inviscid one ψ0,
the first try would be solve (1.8) with ψ = ψ0. A striking fact is that it
does not work, and that introducing a corrector ψ1 is necessary to find U1,
even in 1-D. This indicates strongly the importance of the unknown ψ in
the problem.

The next step is to analyze the linear (and nonlinear) stability of the
planar solutions (1.10) or of the approximate solutions (1.12). In the litera-
ture mentioned above, ([GX], [Ro2], [ZS], [Zu1], [GMWZ1], [GMWZ2]), the
stability analysis concerns only the stability for perturbations in u. This is
the most natural approach since for any fixed ψ and ε > 0, (1.8) (1.9) is
a well posed parabolic problem. Denoting by E(u, ψ) the left hand side of
(1.8), the partially linearized equation has the form

(1.13) E ′u(uεapp, ψεapp)u̇ = ḟ , [u̇(0)] = [∂x̃u̇(0)] = 0 .
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The stability criterion involves an Evans’ function D(p, ζ), where the ζ =
(τ − iγ, η) denote the (rescaled) Fourier-Laplace frequencies and p the rele-
vant parameters (see section 2 below; for instance, if uεapp, ψ

ε
app are given by

(1.10), p = (u±, σ, θ)). A major result in [ZS] is that for small frequencies
ζ (which play a fundamental role due to the rescaling), one has in polar
coordinates: ζ = ρζ̌:

(1.14) D(p, ζ) = ρ
(
β(p)∆(p, ζ̌) + o(1)

)
,

where β measures the stability of the profile equation (1.11) and ∆ is the
Lopatinski determinant of the inviscid problem (1.5) (1.7). The stability
condition reads (see e.g. [Ro2], [Zu1] [GMWZ2]):

(1.15)
D(p, ζ) 6= 0 , for ζ 6= 0, γ ≥ 0,
|D(p, ζ)| ≥ c|ζ| , for ζ small , γ ≥ 0,

for some constant c > 0. Note that D does vanish at ρ = 0 by (1.14). Thus
the condition (1.15) only implies a weak kind of stability and the typical
estimates in [GMWZ2] (see Theorem 9.1 therein) have the form

(1.16)
√
ε‖u̇‖L2 . ‖ḟ‖L2 .

This was sufficient to prove the nonlinear stability in [GMWZ2] since we
applied this estimate to source terms ḟ which were the sum of a very small
error O(εm) and a quadratic term in u̇. The balance is correct and yields
typically u̇ = O(εm−1/2) provided that m is large enough. However, this es-
timate is not satisfactory: the estimates for the viscous perturbation should
improve the inviscid estimates, while (1.16) does not even recover the invis-
cid estimate.

The main idea of this paper is to continue to take advantage of the
unknown ψ and to discuss the stability of the approximate solutions (1.12)
with respect to perturbations in u and ψ. This leads to consider the fully
linearized equations from (1.8)(1.9):

(1.17) E ′u(uεapp, ψεapp)u̇+ E ′ψ(uεapp, ψ
ε
app)ψ̇ = ḟ , [u̇(0)] = [∂du̇(0)] = 0 .

Since the problem (1.13) is well posed, for ε > 0, this new problem is under-
determined. This simply reflects that for ε > 0, the “front” is not uniquely
determined, and indeed there is no front at all. In order to determine a
unique solution, the main idea is to add an extra boundary condition

(1.18) ∂tψ̇ − ε∆yψ̇ + ` · u̇|x̃=0 = 0 .
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The idea of making a good choice of ψ is not new (see Remark 1.1 below).
However, an important feature of our approach is that this extra equation
is local (differential) and simple, while in previous literature the choice was
more hidden and often nonlocal. We also want to emphasize that there is
a large flexibility in the choice of this additional condition, this is discussed
in section 2 below. For instance, the choice of the Laplacian is almost
completely arbitrary. Any second order elliptic with the correct sign and
with the appropriate strength ε in front of it would do. . Similarly, there
are many choices for the coefficient ` in the right hand side. For instance,
when uεapp, ψ

ε
app are given by (1.10), the only restriction is that

(1.19) ` · ∂zw(0) > 0 .

The main objective of this paper is to show that the singular limit of (1.17)
(1.18) is the linearized equation from the inviscid free boundary problem
(1.5) (1.7). In this direction, we give three main results.

• First, in sections 2 and 3 we show that the Evans’ function for (1.17)
(1.18), denoted by Dm(p, ζ) satisfies for low frequencies

(1.20) Dm(p, ζ) = β(p)∆(p, ζ̌) + o(1)

and for ζ away from zero

(1.21) Dm(p, ζ) ≈ D(p, ζ) .

Therefore, the stability condition (1.15) is equivalent to

(1.22)
Dm(p, ζ) 6= 0 , for ζ 6= 0, γ ≥ 0,
|D(p, ζ)| ≥ c , for ζ small , γ ≥ 0.

• Following the analysis of [MZ1] for boundary layers, we show in sec-
tion 5 that this condition implies optimal estimates for (1.17)(1.18). The
precise estimate is given in Theorem 5.5 below. In particular, we show that:

(1.23) ‖u̇‖L2 + ‖∇̇ψ‖L2 . ‖ḟ‖L2 .

Thus, we recover, as expected, estimates for the viscous solutions which are
at least as good as the inviscid estimates of Majda.

• From here, we can repeat the analysis of [MZ1] and deduce the non-
linear stability from the maximal linear stability. This allows to extend the
result of [GMWZ2] to the natural framework, dropping the technical as-
sumption on how much the inviscid shock can deviate from flatness. Indeed,
since the estimate (1.23) is strictly stronger than the typical estimate (1.16)
of [GMWZ2] the analysis is much more robust.
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Remark 1.1. 1. The introduction of the front ψ in the estimate of remain-
ders for the viscous equation was already used in the related analysis in the
long time stability problem. In the 1-D analysis of [Go1, Zu2], the difference
between the exact and the approximate solutions is looked for as

v(t, x) = u(t, x+ δ(t))− uε(t, x) .

The shift δ(t) is the exact analogue of our present front ψ. But the choice
of δ is nonlocal and hidden in the analysis: derived by least-squares fit
in [Go1], by Green-function considerations in [Zu2]. The front ψ has also
been introduced in the analysis of multidimensional scalar conservation laws,
by Goodman, [Go2] Goodman-Miller [GM] and Hoff-Zumbrun [HoZ], its
evolution again prescribed nonlocally. One may think that a simple and
direct condition such as (1.18) could work as well.

2. To understand the relation between (1.18) and the various nonlocal
evolution rules cited above, it may be helpful to consider a simple example
in the one-dimensional case, namely, an initial perturbation consisting of a
translate of the unperturbed shock profile w(x) by distance δ. Least-squares
fit (independent of the time evolution, so equally appropriate for either long-
time or small-viscosity problem) would give the optimal prescription ψ ≡ δ.
The specialization

(1.24) ∂tψ̇ + ` · u̇|x̃=0 = 0

of (1.18) to one dimension, on the other hand, leads, roughly speaking (i.e.,
freely exchanging nonlinear and linear perturbations), to the ODE

(1.25)
∂tψ̇ = −` · (w(x− δ + ψ)− w(x))|x̃=0

∼ −(` · ∂xw)|x̃=0(ψ − δ) = −c(ψ̇ − δ),

where c > 0 by assumption (1.19), whose solution ψ(t) = δ(1 − e−ct) con-
verges exponentially in time to the optimal value δ. The local evolution
scheme (1.18) might thus loosely be described as a relaxation of the non-
local prescription by least squares or other method, all converging time-
asymptotically to a unique value. In the small-viscosity context, the profile
is of form wε = w(x/ε), and we obtain instead ψ(t) = δ(1 − e−ct/ε), which
converges exponentially in ε−1 to δ for each fixed t > 0, with an order ε
initial layer.

3. The extra boundary condition (1.18) is the one appropriate for the
linearized problem. One can also impose the extra boundary condition at
the level of the nonlinear problem. This is done in (7.1).
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We end this introduction with several remarks on the method of adding
unknowns and on the comparison between the partially and fully linearized
equations. First we note that these two problems are closely related.

Lemma 1.2. The fully linearized equations from (1.8) at (u, ψ) is

(1.26) E ′u(u, ψ)u̇+ E ′ψ(u, ψ)ψ̇ = E ′u(u, ψ)(u̇− ψ̇∂x̃u) + ψ̇∂x̃E(u, ψ) .

Proof. This identity can be checked by direct and elementary computations.
It was pointed out by S. Alinhac ([Al]) as well as the role of what he called
“the good unknown” u̇ − ψ̇∂x̃u. Denoting by F(u) the left hand side of
the equation (1.3) in the original coordinates, and by ∗ the substitution
u∗(t, y, x) = u(t, y, x− ψ(t, y)), one has

(1.27) F(u∗) = {E(u, ψ)}∗ .

Through linearization, one has δ(u∗) = (δu − δψ∂x̃u)∗. Moreover, differen-
tiating in u alone, one checks that (E ′u(u, ψ)v)∗ = F ′

u(u
∗)(v)∗. Linearizing

(1.27) implies (1.26).

Consider for simplicity the typical example where uεapp = w(x̃/ε) and
ψεapp = σt + θy as in (1.10), are exact solutions of (1.8) (1.9). In this case,
the error term ∂x̃E(uεapp, ψ

ε
app) is exactly equal to zero in the right hand side

of (1.26) and the transmission conditions for u̇ and u̇− ψ̇∂x̃u
ε
app are equiv-

alent. Hence, the fully linearized equation (1.17) for (u̇, ψ̇) is equivalent to
the partially linearized equation (1.13) for v̇ = u̇ − ψ̇∂x̃u

ε
app. This invari-

ance simply reflects that all the equations (1.8) are equivalent by change of
variables. The extra boundary condition (1.18) reads

(∂t − ε∆y)ψ̇ + ψ̇ (` · ∂x̃uεapp|x̃=0) = −` · v̇

and appears as an artificial way to define a posteriori ψ̇. So the fully lin-
earized equations do not provide new solutions: we use them to understand
how we can get better estimates. In situations for which the partially lin-
earized equations are already well-behaved, for example in the medium and
high frequency regimes here, we may use the good unknown of Alinhac to
work with these simpler equations instead.

Besides providing the maximal estimates (1.23) the consideration of the
fully linearized equations (1.17) also gives an interesting insight in the analy-
sis of the plane wave stability i.e. the stability of the planar solutions (1.10).
In this case, the coefficients of the linearized equations are constant in (t, y).
After a Laplace-Fourier transform in these variables and after rescaling, the
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equations are reduced to transmission problems for ordinary differential sys-
tems, say L(p, ζ, ∂z), depending on parameters (p, ζ). Their well posedness
is equivalent to the nonvanishing of the corresponding Evans’ function at
(p, ζ). When applied to the partially linearized equation, the vanishing of
the Evans functions at the origin reflects that L−1 has a pole at ζ = 0, or
that L at ζ = 0 has a kernel. This comes from the invariance by translation
of the profile equation (1.11). The key point is that the similar analysis for
the fully linearized equations, yields an augmented system Lm, such that
L−1
m has no pole at the origin: it appears as a desingularization of the pole.

Let us explain this idea on a simple example.

Suppose that A = A0+ρA1 is a family of matrices (or operators), invert-
ible when ρ > 0, but such that A0 has a one dimensional kernel generated
by e. Suppose that we look for bounds for the solution of

(1.28) Av = f .

A pole is expected at ρ = 0. Of course, at least in the finite dimensional
case, one can solve the equation, projecting v on the kernel of A0 and on a
supplementary space. But the problem can also be analyzed without explicit
computation of the spectral projectors and reduced to inverting uniformly
nonsingular operators. Consider a linear form ` such that

(1.29) ` · e 6= 0 ,

and suppose that A1e is not in the range of A0. Then, look for the solution
v as

(1.30) v = u− ψe.

The equation reads

(1.31) Au− ρψA1e = f .

Having added the scalar unknown ψ, we add a scalar additional equation:

(1.32) ` · u+ ρaψ = 0 .

When ρ 6= 0, the equations are equivalent to

Av = f , ` · v = −(` · e+ ρa)ψ .

As long as ` · e+ ρa 6= 0, the second equation determines ψ, thus (1.28) and
(1.31) (1.32) are equivalent for ρ > 0.
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The point is that one can expect that the problem (1.31) (1.32) is uni-
formly invertible for the unknowns (u, ψ̌) where ψ̌ = ρψ, and it is certainly
so in the finite dimensional case. Indeed, at ρ = 0, the kernel is given by
the equations

A0u− ψ̌A1e = 0 , ` · u+ aψ̌ = 0 .

Because A1e does not belong to the image of A0, the first equation implies
that ψ̌ = 0 and thus u = λe. With the second equation, λ = 0.

Therefore, to solve (1.28), we can solve the nonsingular equation

(1.33) Au− ψ̌A1e = f , ` · u+ aψ̌ = 0 ,

and recover v = u− ρ−1ψ̌e and in particular its polar part −ρ−1ψ̌e.
Continuing the analogy, let us indicate in the case of finite dimensional

equation (1.28) the difference between weak and maximal estimates. The
weak estimate corresponds to the use of a lower bound for detA and yields

(1.34) ρ|v| . |f | .

On the other hand, the invertibility of (1.31) (1.32) implies

(1.35) |u|+ |ψ̌| . |f | .

With (1.30), this gives a precise description of the polar part of v. It implies
that there is ψ = ρ−1ψ̌ such that

(1.36) |v + ψe|+ ρ|ψ| . |f | .

This is a noticeable improvement of the weak estimate. Of course, this esti-
mate can be deduced from a spectral decomposition of A, but it is precisely
our point that the analysis sketched above does not use the detailed spectral
properties of A.

Let us indicate how the fully linearized equations plus the additional
boundary condition enter the general procedure of desingularization sketched
above. Indeed, the construction is rather going the other way. We have op-
erators A(p, ζ) which combine L(p, ζ, ∂z) and the transmission conditions.
At ζ = 0, we have a kernel of dimension one generated by e := ∂zw. With
ρ = |ζ|, write A(p, ζ) = A0 + ρA1. The fully linearized equations have the
form

(1.37) Au̇+ ψ̇B = ḟ
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and by Lemma 1.2 they are equivalent to

A(u̇− ψ̇e) = ḟ .

Since A(p, 0)e = 0, this means that A(p, ζ)e = ρA1e = −B and therefore
(1.37) is indeed the equation (1.31). After Fourier-Laplace transform and
rescaling, the extra boundary condition (1.18) has the form (1.32).

In our application to the operators L(p, ζ, ∂z), the spectral decomposition
of A would be related to the construction of Green’s functions. It does not
seem easy to use in space dimension larger than one. On the contrary, the
symmetrizer techniques developed in [MZ1] are immediately available to get
maximal estimates for the nonsingular modified problem Lm.

However, let us make it clear that the analogy with finite dimensional
problems sketched above cannot be pushed too far. Indeed, the linearized
operators L(p, ζ, ∂z) have a continuous spectrum which contains the pole 0.
Thus, the maximal estimates for the augmented nonsingular problem Lm
which is analogous to (1.33) are not (1.36) but

(1.38) (γ + ρ2)‖u̇‖L2(R) + (γ + ρ2)1/2|ψ̌| . |f | ,

see [MZ1] (recall that ζ = (τ − iγ, η) and ρ = |ζ| is small in this analysis).
Similarly, the weak estimates proved in [GMWZ1], are not (1.34) but

(1.39) (γ + ρ2)1/2ρ‖v̇‖L2(R) . |f |.

This shows that the loss is more subtle than in (1.34). In accordance with
our analysis above and in particular with Lemma 1.2, we see that if (u̇, ψ̇)
satisfies (1.38), then v̇ = u̇ − ρ−1ψ̌e satisfies (1.39). In addition, note that
when γ = 0, which is used for the long time stability analysis discussed in
[GMWZ1], the estimate (1.38) and (1.39) are equivalent.

On the other hand, for the small viscosity problem discussed in this paper
or in [GMWZ2], scaling back to the original variables (see section 5 below),
the maximal estimates (1.38) imply that the solutions (u̇, ψ̇) of (1.17) (1.18)
satisfy

(1.40) γ‖e−γtu̇‖L2(R1+d) +
√
γ‖e−γt∇t,yψ̇‖L2(Rd) . ‖e−γtḟ‖L2(R1+d) .

This implies (1.23) on any strip [0, T ]. Next, we note that
√
ε‖ψ̇∂x̃e−γtuεapp‖L2(R1+d) . ‖e−γtψ̇‖L2(Rd . γ−1‖e−γt∇ψ̇‖L2 .
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The first inequality comes from the form of ∂x̃uεapp given by (1.10). There-
fore, v̇ = u̇− ψ̇∂x̃u

ε
app satisfies

(1.41) γmin{1,√εγ}‖e−γtv̇‖L2(R1+d) . ‖e−γtḟ‖L2(R1+d),

which explains where the loss of
√
ε in (1.16) comes from. Clearly, (1.40) is

a real improvement and the analysis of these estimates is the main goal of
this paper.

In section 6 we construct high order approximate solutions (uaε , ψ
a
ε ) to

the parabolic system (1.3) which converge in an obvious sense to the given
inviscid shock solution (u0, ψ0) of (1.1) on a time interval [0, T0]. This
solution exhibits the viscous boundary layers on each side of the shock and
also determines the position of the viscous front to arbitrarily high order.

In section 7 we use the main linear estimate given by Theorem 5.5 to
show that the approximate solutions are close to exact solutions (uε, ψε) of
(1.3) on [0, T0]. A precise statement of the relation between (ua, ψa) and
(uε, ψε) is given in Theorem 7.7. This theorem amounts to a demonstration
of the stability of the viscous boundary layers on each side of the shock. As
an immediate corollary of Theorem 7.7 we obtain for example

‖u0 − uε‖L2 = O(
√
ε)

‖u0 − uε‖L∞({|x−ψ0(t,y)|>κ}) = O(ε), κ > 0
(1.42)

on the time interval [0, T0] (Corollary 7.8).

2 The stability conditions

In this section, we formulate the structural assumptions on the system and
give the precise definition of the two Evans functions in play. Next we
compare the different stability conditions.

2.1 Structural assumptions

Consider an N ×N system of conservation laws (1.1) and the viscous per-
turbations (1.3). We denote by Aj = f ′j the Jacobian matrix of fj . We make
the following assumptions:

Assumption 2.1.
(H0) The fj are C∞ functions from U∗ ⊂ RN to RN . The Bj,k are

N ×N real matrices, C∞ in u ∈ U∗.
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(H1) There is c > 0 such that for all u ∈ U∗ and all ξ ∈ Rd the eigen-
values of

∑d
j,k=1 ξjξkBj,k(u) satisfy Reµ ≥ c|ξ|2.

(H2) For u in the open subset U ⊂ U∗ and ξ ∈ Rd \ {0}, the eigenvalues
of
∑
ξjAj(u) are real and semi-simple and have constant multiplicities.

(H3) There is c > 0 such that for all u ∈ U and ξ ∈ Rd the eigenvalues
of i

∑d
j=1 ξjAj(u) +

∑d
j,k=1 ξjξkBj,k(u) satisfy Reµ ≥ c|ξ|2.

We refer to [MZ1] or [Zu1] for comments on these standard and somewhat
minimal assumptions.

2.2 Planar shocks and profiles

Consider a piecewise constant function

u =
{
u− , x < σt+ θy
u+ , x > σt+ θy

where (t, y, x) ∈ R×Rd−1×R denote the variables. The front x = σt+θy is
defined by σ ∈ R and θ ∈ Rd−1. We denote by h = (σ, θ) = (h0, . . . , hd−1).
With some abuse of notation, we refer to such a vector h as a planar front.
The piecewise constant function u above is a weak solution of (1.1) if and
only if the following Rankine-Hugoniot condition is satisfied:

(2.1) fν(u+, h)− fν(u−, h) = 0 ,

with

(2.2) fν(u, h) := fd(u)−
d−1∑
j=1

hjfj(u)− h0Id .

Equivalently,

ũ =
{
u− , x̃ < 0
u+ , x̃ > 0

and ψ(t, y) = σt+ θy form a weak solution of (1.5).

Definition 2.2. A planar shock is a point p = (u−, u+, h) ∈ U×U×Rd such
that u− 6= u+ and which satisfies the Rankine-Hugoniot condition (2.1).

It is a Lax shock if the normal matrices Aν(u±, h) = ∇ufν(u±, h) are in-
vertible and if we let N+ be the number of negative eigenvalues of Aν(u+, h)
and N− be the number of positive eigenvalues of Aν(u−, h) then

(2.3) N+ +N− = N + 1 .
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Note that by Assumption (H2), for u ∈ U and h ∈ Rd, Aν(u, h) has only
real eigenvalues.

The travelling wave

(2.4) w ((x− σt− θy)/ε)

is an exact solution of the viscous equation (1.3) if and only if w satisfies
the profile equation

(2.5) P(w, h) := ∂z

(
Bν(w(z), h)∂zw

)
− ∂z

(
fν(w(z), h)

)
= 0 ,

where Bν is the normal viscosity matrix :

Bν(u, h) =
d∑

j,k=1

νjνkBj,k(u)

with ν = (−h1, . . . ,−hd−1, 1). Equivalently, w(x̃/ε) and ψ(t, y) = σt + θy
form a weak solution of (1.8)

Note that the equation is invariant by translation: if w(z) is a solution
of (2.5), then w(z− a) is also a solution. Differentiating implies that ∂zw is
a solution of the linearized equation

(2.6) P ′w∂zw = 0

where

(2.7)
P ′wẇ := ∂z

(
Bν(w, h)∂zẇ

)
+ ∂z

(
ẇ·∇uBν(w, h)∂zw

)
− ∂z

(
Aν(w, h)ẇ

)
.

Definition 2.3. A shock profile associated to the shock p = (u−, u+, h) is a
solution w ∈ C∞(R;U∗) of (2.5) such that

(2.8) lim
z→−∞

w(z) = u− , lim
z→+∞

w(z) = u+ .

The profile w is transversal if the kernel of P ′w in L2(R) has dimension equal
to one.

We recall a few known results about shock profiles. In order to avoid
unnecessary repetition, we introduce the following definition.
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Definition 2.4. i) A profile W is a C∞ mapping from R to U∗, such that:
a) for all k > 0, there are C and δ > 0 such that

(2.9) ∀z ≥ 0 , |∂kzW (z)|+ |∂kzW (−z)| ≤ Ce−δz ,

b) the end states

W (∞) =
∫ ∞

0
∂zW (z)dz +W (0) , W (−∞) = W (0)−

∫ 0

−∞
∂zW (z)dz

belong to U .
ii) A set of profiles is bounded if the constants C and δ above can be

chosen independent of the profile in the set; given parameters q in some
smooth manifold, {W (·, q)} is a smooth family of profiles if the mapping
(z, q) 7→W (z, q) is C∞ and for all k > 0 and α, there are C and δ > 0 such
that

(2.10) ∀z ≥ 0 , |∂kz ∂αqW (z)|+ |∂kz ∂αqW (−z)| ≤ Ce−δz.

The exponential decay of the derivative implies that the integrals in the
definition of W (±∞) converge and the end states are the limits of W (z) as
z tends to ±∞.

Proposition 2.5. Suppose that w is a shock profile associated to a planar
Lax shock p = (u−, u+, h). Then w is a profile in the sense of Definition 2.4,
with end states u±. Moreover, ∂zw(z) 6= 0 for all z ∈ R.

Proof. We can integrate (2.5) once, and it is equivalent to

Bν(w, h)∂zw = fν(w(z), h)− k

where k is a constant. From this, we deduce that if ∂zw(z0) = 0, then w(z0)
is a stationary point of the flux fν(u, h)− k. Thus w(z) is constant. If w is
associated to p, this contradicts that

u− = lim
z→−∞

w(z) 6= lim
z→+∞

w(z) = u+ .

If w is associated to p, then

lim
z→+∞

∂zw =
(
Bν(u+, h)

)−1 (
fν(u+, h)− k

)
.

If the right hand side is not equal to zero, ∂zw has a non vanishing limit and
w has no finite limit. This shows that k = fν(u+, h). Moreover, Assump-
tion 2.1 implies that B−1

ν Aν(u+, h) has no purely imaginary eigenvalues.
Therefore w is in the stable manifold of the ode

Bν(w, h)∂zw = fν(w, h)− fν(u+, h)
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at +∞. From the classical theory of ode, we deduce that ∂zw is exponentially
decaying at infinity.

Proposition 2.6. i) Suppose that p is a planar Lax shock. Then there is a
neighborhood ω of p in U × U × Rd such that the set of shocks in ω form a
smooth manifold C of dimension N + d and all p ∈ C is a Lax shock.

ii) Suppose in addition that w is a shock profile associated to p and that
w is transversal. Then, shrinking ω if necessary, there is a C∞ mapping
W from R × C to U∗ ⊂ RN , such that W (z, p) = w(z) and for all p =
(u−, u+, h) ∈ C, W (·, p) is a shock profile associated to p. This connection
is unique, up to a translation in z by a smooth shift k(p). Moreover, the W
form a smooth family of profiles in the sense of Definition 2.4 above.

For the convenience of the reader, a proof of this proposition is recalled
at the end of section 3.

2.3 The uniform stability condition

Consider a profile W and a planar front h = (σ, θ). We consider the lin-
earized equations from (1.8) around

wε(t, y, x) = W (x/ε) , ψ(t, y) = σt+ θy .

For simplicity, we have changed the notation x̃ to x.
We first compute the partially linearized operator with respect to u. It

has the form

(2.11) Lu̇ := −ε∂x
(
B̃ν∂xu̇

)
+ ∂x(A]u̇) +

1
ε
M ]u̇

where 
A]v = Ãνv −

d−1∑
j=1

(B̃j,ν + B̃ν,j)ε∂jv − (∇̃uBν · v)∂zW ,

M ]v = ε∂tv +
d−1∑
j=1

A]jε∂j −
d−1∑
j=1,k

B̃j,kε
2∂j∂k ,

with

A]jv = Ãj −
(
∇̃uBj,ν · v

)
∂zW +

(
∇̃uBj,ν · ∂zW

)
v ,

Bj,ν(u, h) =
d∑

k=1

νkBj,k(u) , Bν,j(u, h) =
d∑

k=1

νkBk,j(u) ,
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where ν = (−h1, . . . ,−hd−1, 1) as before and Ã stands for the evaluation of
the function A(u, h) at u = W (x/ε). Note that the coefficients are smooth
functions of h and z = x/ε. Moreover, A] and M ] are differential operators
in ε∂t and ε∂y.

Since the coefficients of L depend only on x, one can perform a Fourier-
Laplace transform with respect to the tangential space-time variables (t, y).
This leads to symbols A(z, ζ) and M(z, ζ), depending on z ∈ R and ζ =
(τ, η, γ) ∈ R × Rd−1 × R, obtained by evaluating the coefficients at z and
replacing in the definitions above ∂j and ∂t by iηj , j = 1, . . . , d − 1 and
γ + iτ respectively. Denoting by û [resp. f̂ ] the Fourier-Laplace transform
of u̇ [resp. Lu̇], one has:

(2.12) f̂(x, ζ̂) = −ε∂x(B̃ν∂xû) + ∂x

(
A
(x
ε
, εζ̂
)
û
)

+
1
ε
M
(x
ε
, εζ̂
)
û.

Denote by L̂ the operator in the right hand side acting on û. It is then
natural to rescale the variables. Setting

(2.13) ζ = εζ̂ , z = x/ε , u∗(z, ζ) = û(x, ζ̂) , f∗(z, ζ) = εf̂(x, ζ̂) ,

and

(2.14) L(z, ζ, ∂z)u∗ := −∂z
(
B̃ν(z)∂zu∗

)
+ ∂z (A (z, ζ)u∗) +M (z, ζ)u∗,

the equation (2.12) reads

(2.15) f∗ = L(z, ζ, ∂z)u∗ .

Dropping the stars, we now consider the well posedness of the equation

(2.16) L(z, ζ, ∂z)u = f.

This is a second order differential equation, and the equation is equivalent
to the transmission problem where one looks for solutions u+ and u− on
{z ≥ 0} and {z ≤ 0} separately, which satisfy the transmission conditions

u−(0) = u+(0) , ∂zu
−(0) = ∂zu

+(0) .

All the constructions above depend on the initial choice of profile W
and planar front h. When necessary we indicate this dependence in the
notations and write LW,h and LW,h(z, ζ, ∂z). Note that the coefficients are
smooth functions of h and z.
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Definition 2.7. Given a profile W we denote by E+
W,h(ζ) [resp. E−W,h(ζ)]

the set of initial data (u(0), ∂zu(0)) such that the corresponding solution of
LW,h(z, ζ, ∂z)u = 0 on {z ≥ 0} [resp. {z ≤ 0}] is bounded as z tends to +∞
[resp. −∞].

In the sequel, we denote by Rd+1
+ the set of parameters ζ = (τ, η, γ) ∈

R×Rd−1×R such that γ ≥ 0 and by Rd+1
+ \{0} the set of ζ 6= 0 with γ ≥ 0.

The proof of the next lemma is recalled in the next section.

Lemma 2.8. Under Assumptions (H0) to (H3), E+
W,h(ζ) and E−W,h(ζ) are

smooth vector bundles of dimension N in C2N over Rd+1
+ \{0}.

There are nontrivial bounded solutions of Lu = 0 if and only if E+∩E− 6=
{0}. The distance these two spaces can be measured via the Evans’ function

(2.17) DW,h(ζ) = det
(
E+
W,h(ζ),E

+
W,h(ζ)

)
where the determinant is obtained by taking any orthonormal basis in the
given spaces. Note that, by Lemma 2.8, the function D is smooth on
Rd+1

+ \{0}.
There is an alternate way of computing the Evans function D. Consid-

ering the transmission problem, as a boundary problem, the natural space
of initial data of bounded solutions is E− × E+ ⊂ C2N × C2N . Its dimen-
sion is 2N . The boundary condition can be written Γ(U−, U+) = 0 where
Γ is the mapping (U−, U+) 7→ U+ − U− from C2N × C2N to C2N . Thus
dim ker Γ = 2N and

(2.18) DW,h(ζ) = det
(
E−W,h(ζ)× E+

W,h(ζ) , ker Γ
)
.

The weak stability condition requires that D does not vanish when ζ 6= 0
and γ ≥ 0. The uniform stability condition requires in addition an optimal
control when ζ is small or large. It turns out that for large ζ the uniform
condition follows from the Assumptions (H0) to (H5). For small ζ, we
know from [ZS] that the determinant D is O(|ζ|). Following [ZS], [Zu1], the
uniform stability condition reads:

Definition 2.9 (Stability conditions).
i) The shock profile W associated to a Lax shock p = (u−, u+, h) is weakly

stable if the Evans function DW,h does not vanish for ζ ∈ Rd+1\{0}.
ii) It is uniformly stable if in addition there is a positive constant c such

that for all ζ ∈ Rd+1\{0} with |ζ| ≤ 1,

(2.19) |DW,h(ζ)| ≥ c|ζ|.
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Proposition 2.10 ([ZS]). Suppose that Assumption 2.1 is satisfied and
that W is a shock profile associated to a planar Lax shock p.

i) If W is uniformly stable, then W is transversal and the planar shock
p is uniformly stable in the sense of Majda [Maj].

ii) Conversely, if W is transversal and the shock p is uniformly stable,
then (2.19) holds for ζ ∈ Rd+1\{0} small enough.

The precise definition of Majda’s uniform stability condition will be re-
called in the next section, see Definition 3.9 below. We will also recall a
proof of the proposition, as an introduction to the analysis of the modified
Evans’ function.

Corollary 2.11. Under Assumptions 2.1, a profile W associated to a Lax
shock p is uniformly stable if and only if:

i) it is weakly stable ,
ii) W is transversal,
iii) p is uniformly stable in the sense of Majda.

In the general analysis of parabolic boundary value problems, the uni-
form stability condition for high frequencies (i.e. for |ζ| large) is described
by a rescaled Evans function, see [MZ1]. With Λ = (τ2 + γ2 + |η|4)1/4,
introduce

(2.20) E±,rsW,h (ζ) =
{
(Λu(0), ∂zu(0)) : (u(0), ∂zu(0)) ∈ E±W,h

}
and the scaled Evans function

(2.21) Drs
W,h(ζ) = det

(
E−,rsW,h (ζ) , E+,rs

W,h (ζ)
)
.

Of course, Drs(ζ) vanishes if and only ifD(ζ) = 0. Following [MZ1], the next
result means that the uniform stability condition is automatically satisfied
for large frequencies :

Proposition 2.12. For all profile W and planar front h, there are ρ1 > 0
and c > 0 such that:

∀ζ ∈ R1+d
+ , |ζ| ≥ ρ1 : |Drs

W,h(ζ)| ≥ c .

In particular, DW,h(ζ) 6= 0 for all ζ ∈ R1+d
+ with |ζ| ≥ ρ1.
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2.4 The fully linearized equations

Consider a profile and a planar front h = (σ, θ). The fully linearized equation
from (1.8) around wε = W (x/ε), ψ = σt+ θy reads

(2.22) Lu̇+ L1ψ̇ = ḟ ,

where L is given by (2.11) and

(2.23)

L1ψ̇ =− ∂tψ̇∂xw
ε −

d−1∑
j=1

∂jψ̇∂xfj(wε)

+
d−1∑
j=1

ε∂jψ̇∂x

(
(B̃j,ν + B̃ν,j)∂xwε

)
+ ε

d−1∑
j,k=1

∂j∂kψ̇B̃j,k∂xw
ε

with B̃j,k = Bj,k(wε).
The main idea is to add an extra “boundary” condition to (2.22):

(2.24) ∂tψ̇ − ε∆yψ̇ + ` · u̇|x=0 = 0 .

The special choice of the heat equation in the left hand side has no im-
portance. It can be replaced by any parabolic operator of the same type,
possibly depending on p. There is also a large freedom in the choice of `.
What we assume is that ` such that

(2.25) ` · ∂zW (0) > 0 .

Such a choice is always possible since ∂zW (0) 6= 0 by Proposition 2.5.

The coefficients of L1 depend only on x. Again, we perform a Fourier-
Laplace transform with respect to the tangential space-time variables (t, y).
Denote by ḟ1 the additional term L1ψ̇ and by ψ̂ and f̂1 the Fourier Laplace
transform of ψ and f1 respectively. Parallel to (2.12), there holds

(2.26) f̂1(x, ζ̂) = − 1
ε2
ψ̂(ζ̂)L1(

x

ε
, εζ̂)

where

(2.27)

L1(z, ζ) =(γ + iτ)∂zW +
d−1∑
j=1

iηj∂zfj(W )

−
d−1∑
j=1

iηj∂z

(
(B̃j,ν + B̃ν,j)∂zW

)
+

d−1∑
j,k=1

ηjηkψ̇B̃j,k∂zW
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and the coefficients B̃ are now evaluated at u = W (z). The natural rescaling
for f̂1 and ψ̂, which supplements (2.13), is:

(2.28) (f1)∗(z, ζ) = εf̂1(x, ζ̂) , ψ∗(ζ) =
1
ε
ψ̂(ζ̂) ,

so that
(f1)∗(z, ζ) = −ψ∗(ζ)L1(z, ζ) .

Similarly, the Fourier-Laplace transform of the boundary condition (2.24)
reads

(γ̂ + iτ̂ + ε|η̂|2)ψ̂(ζ̂) = ` · û|x=0(ζ̂) .

Adding up, after Fourier-Laplace transform and rescaling, using (2.13) and
(2.28), we see that the linearized equations read:

(2.29)

{
L(z, ζ, ∂z)u∗ − ψ∗L1(z, ζ) = f∗

c0(ζ)ψ∗ + ` · u∗(0) = 0

with c0(ζ) = γ + iτ + |η|2.

Lemma 2.13. The following identity is satisfied:

L1(z, ζ) = L(z, ζ, ∂z)∂zW (z) + ∂zP(W (z), h) ,

where P is defined in (2.5).

Proof. This is easily checked by direct computation; it can also be deduced
from Lemma 1.2.

For small ζ, it is natural to use polar coordinates:

(2.30) ζ = ρζ̌ , ρ = |ζ| , |ζ̌| = 1 .

The definition (2.27) shows that L1(z, 0) = 0 and therefore,

(2.31) L1(z, ζ) = ρĽ1(z, ζ̌, ρ)

where Ľ1 is smooth with respect to z ∈ R, ζ̌ ∈ Sd and ρ ∈ [0, 1]. Similarly,

(2.32) c0(ζ) = ρč0(ζ̌, ρ).

Thus, it is natural to introduce

(2.33) ϕ = ρψ∗

so that the equation (2.29) reads

(2.34)

{
L(z, ρζ̌, ∂z)u∗ − ϕĽ1(z, ζ̌, ρ) = f∗,

č0(ζ̌, ρ)ϕ+ ` · u∗(0) = 0.
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Definition 2.14. For ρ > 0, denote by ẼW,h(ζ̌, ρ) the set of (u−0 , u
−
1 , u

+
0 , u

+
1 , ϕ) ∈

C4N+1 such that the solutions of

L(z, ρζ̌, ∂z)u± − ϕĽ1(z, ζ̌, ρ) = 0 , u±(0) = u±0 , ∂zu
±(0) = u±1

on {±z ≥ 0} are bounded as z tends to ±∞.

We denote by Sd+ the set of parameters ζ̌ = (τ̌ , η̌, γ̌) ∈ R × Rd−1 × R
such that |ζ̌| = 1 and γ̌ ≥ 0.

Lemma 2.15. Under Assumptions (H0) to (H5), given a profile W and a
planar front h, Ẽ+

W,h(ζ̌, ρ) is a C∞ vector bundle of dimension 2N + 1 in
C4N+1 over Sd+×]0, 1] which has a continuous extension to Sd+ × [0, 1].

The proof is given in the next section. That Ẽ± is smooth for ρ > 0
follows from Lemma 2.8. The continuous extendability to ρ = 0 follows
from [MZ2].

There is a nontrivial solution of (2.34) if and only if there is a nontrivial
solution (u−0 , u

−
1 , u

+
0 , u

+
1 , ϕ) ∈ Ẽ(ζ̌, ρ) to

Γ̃`(u−0 , u
−
1 , u

+
0 , u

+
1 , ϕ) :=

(
u+

0 − u−0 , u
+
1 − u−1 , č0ϕ+ ` · u+

0

)
= 0 .

Note that ker Γ̃` is a smooth linear bundle of dimension 2N in C4N+1. There-
fore, we can form the following determinant in C4N+1, which we call the
modified Evans’ function:

(2.35) D̃W,h,`(ζ̌, ρ) = det
(
ẼW,h(ζ̌, ρ) , ker Γ̃`

)
.

WhenW is a shock profile, Lemma 2.13 shows that for ζ 6= 0 the equation
(2.29) is equivalent to

u∗ = v + ψ∗∂zW with Lv = f∗ , c̃0ψ
∗ + ` · v(0) = 0 ,

with c̃0(ζ) = c0(ζ) + ` · ∂zW (0). By Assumption (2.25), c̃0 does not vanish
for ζ ∈ R1+d

+ . Therefore, the equation (2.29) or equivalently (2.34) with
f∗ = 0 has a nontrivial solution if and only if there is a nontrivial solution
of Lv = 0 on R. Therefore, we have proved:

Proposition 2.16. If W is a shock profile associated to a Lax shock p =
(u−, u+, h), then for all ζ̌ ∈ Sd+ and ρ > 0, D̃W,h(ζ̌, ρ) vanishes if and only
if DW,h(ρζ̌) = 0.
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However, as discussed in the introduction, the detailed behavior of D
and D̃ are quite different as ζ tend to zero. The first main result of this
paper is to give an equivalent formulation of the uniform stability condition
using the modified Evans function D̃.

Theorem 2.17. Under Assumptions 2.1, suppose that W is a shock profile
associated to a Lax shock p = (u−, u+, h) and ` satisfies (2.25). Then W is
uniformly stable if and only if:

i) it is weakly stable,
ii) there is a constant c > 0 such that for all (ζ̌, ρ) ∈ Sd+×]0, 1]

(2.36) |D̃W,h,`(ζ̌, ρ)| ≥ c .

The modified Evans function condition, is stable under perturbations.
Suppose that the profile W associated to the Lax shock p is uniformly stable.
Then it is transversal and by Proposition 2.6 there is a neighborhood ω of p
in U×U×Rd, such that the shocks in ω form a smooth manifold C. Moreover,
there is a smooth family of profiles W (·, p) extending W associated to p ∈ C.
We can also choose a smooth mapping ` from C to RN such that for all p ∈ C,
`(p) · ∂zW (0, p) 6= 0. In this case, one can show that the modified function
D̃W (p,·),h,`(p) extends continuously to C × Sd+ × [0, 1] and therefore:

Theorem 2.18. Suppose that W is a uniformly stable profile associated to
a Lax shock p. Then, with notations as above, there is a neighborhood ω of
p such that all the profiles W (·, p) are uniformly stable when p ∈ C ∩ ω and
there is c > 0 such that (2.36) is satisfied for all p ∈ C and (ζ̌, ρ) ∈ Sd+×]0, 1].

The proofs of these theorems are given in the next section.

3 Analysis of the Evans functions

This section is mainly devoted to the proof of Theorem 2.17 and the related
results stated in section 2.

We assume that we are given a profile W associated to a Lax shock p. To
prepare the construction of symmetrizers, we need to consider neighboring
values of p and we also need some extra parameters p′ ∈ RN ′

. The precise
conditions are summarized in the following assumption, which is supposed
to hold throughout the section.

Assumption 3.1. Q is a smooth manifold and {W (·, q); q ∈ Q} is a smooth
family of profiles in the sense of Definition 2.4. Ψ is a C∞ mapping from

25



Q to Rd, bounded as well as its derivatives. Moreover, at q ∈ Q, W (z) =
W (z, q) is a shock profile associated to a Lax shock p = (u−, u+, h) and
Ψ(q) = h.

3.1 Invariant spaces

We consider the rescaled linearized operators (2.14) associated to the profiles
W (·, q) and normal front Ψ(q):

(3.1)
L(z, q, ζ, ∂z)u = LW (·,q),Ψ(q)(z, ζ, ∂z)

= −∂z(B̃ν(z, q)∂zu) + ∂z (A (z, q, ζ)u) +M (z, q, ζ)u.

The coefficients are polynomial in ζ and smooth functions of W , ∂zW , ∂2
zW

and Ψ(q). Thus B̃ν , A and M are smooth functions of (z, q, ζ) and converge
at an exponential rate at infinity. It is convenient to write the equation

(3.2) L(z, q, ζ, ∂z)u = f

as a first order system. Introducing v = B̃ν∂zu−Au, the equation reads

(3.3) ∂zU = G(z, q, ζ)U + F,

with

U =
(
u
v

)
, G =

(
B̃−1
ν A B̃−1

ν

M 0

)
, F =

(
0
f

)
.

In the analysis of low and medium frequencies, the key remark is that (3.3)
is conjugated to constant coefficients systems at infinity. The Assumption
3.1 implies that for q ∈ ω and ζ in bounded sets, there holds:

(3.4)
∣∣∂αz,q,ζ(G(z, q, ζ)− G±(q, ζ)

)∣∣ . e−δ|z| , ±z ≥ 0,

with

G±(q, ζ) =
(

(B±
ν )−1(q)A±(q, ζ) (B±

ν )−1(q)
M±(q, ζ) 0

)
,

where 
A± = A±ν −

d−1∑
j=1

iηj(B±
j,ν +B±

ν,j) ,

M± = (γ + iτ)Id +
d−1∑
j=1

iηjA
±
j +

d−1∑
j=1,k

ηjηkB
±
j,k ,
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and the matrices A±j , B±
j,k are the corresponding matrices evaluated at the

end states W (±∞, (q); similarly, the normal matrices Aν , Bν , Bj,ν , Bν,k are
evaluated at the end states and normal front Ψ(q).

In (3.4) and below, the notation A(z, q, ζ) . B(z, q, ζ) means that there
is a constant C such that A(z, q, ζ) ≤ CB(z, q, ζ) for all values of (z, q, ζ)
under consideration.

Therefore, Lemma 2.6 from [MZ1] implies

Lemma 3.2 ([MZ1]). For all q0 ∈ Q and ζ0 ∈ R1+d
+ , there is a neighbor-

hood Ω of (q0, ζ0) in Q× R1+d and there are matrices W± defined and C∞

on {±z ≥ 0} × Ω and such that
i) W± and (W±)−1 are uniformly bounded and that for all α > 0 there

is δ1 > 0 such that for (q, ζ) ∈ Ω:∣∣∂αz,q,ζ(W±(z, q, ζ)− Id
)∣∣ . e−δ1|z| , ±z ≥ 0 .

ii) W+ and W− satisfy on {z ≥ 0} and {z ≤ 0} respectively:

∂zW(z, q, ζ) = G(z, q, ζ)W(z, q, ζ)−W(z, q, ζ)G±(q, ζ) .

Recall that R1+d
+ denotes the set of ζ = (τ, η, γ) ∈ R1+d such that γ ≥ 0.

As a corollary, U is a solution of (3.3) on R± := {±z ≥ 0} if and only if
U1 = (W±)−1U satisfies

(3.5) ∂zU1 = G±U1 + F1 , F1 = (W±)−1F .

Next we recall the spectral properties of the matrices G (cf [ZS], [Zu1],
[MZ1] or [GMWZ2]). To deal with the high frequencies, we introduce the
parabolic quasi-norm:

(3.6) 〈ζ〉 =
(
1 + τ2 + γ2 + |η|4

) 1
4 .

Lemma 3.3.
i) For all q0 ∈ Q, there is a neighborhood ω1 of q0 and there are

constants ρ1 and c1 > 0 such that for all q ∈ ω1, all z ∈ R and all ζ ∈ R1+d
+

with |ζ| ≥ ρ1, the matrix G(z, q, ζ) has N eigenvalues counted with their
multiplicities in {Reµ > 0} and N eigenvalues in {Reµ < 0}. They all
satisfy |Reµ| ≥ c1〈ζ〉.

ii) For ζ ∈ R1+d
+ \{0}, the matrices G±(q, ζ) have N eigenvalues counted

with their multiplicities in {Reµ > 0} and N eigenvalues in {Reµ < 0}.
iii) For ζ = 0, the matrices G±(q, 0) have 0 as a semi-simple eigenvalue

of multiplicity N . The nonvanishing eigenvalues are those of (B±
ν )−1A±ν .

N+ eigenvalues of G+ are in {Reµ < 0} and N− eigenvalues of G− in
{Reµ > 0}.
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Consider ζ ∈ R1+d
+ \{0}. The solutions of

∂zU1 = G±U1

which are bounded on R±, are exponentially decaying and given by:

U1(z) = ezG
±
U1(0) , U1(0) ∈ F±1 (q, ζ) ,

where F±1 (q, ζ) denotes the space generated by the eigenvectors associated to
eigenvalues in {±Reµ < 0}. By the lemma above, F±1 (q, ζ)) have dimension
N and depend smoothly on (q, ζ).

Denote by F±(q, ζ) the space of initial data U(0) such that the corre-
sponding solution of

∂zU = GU

is bounded as z tends to ±∞. There holds:

(3.7) F±(q, ζ) = W(0, q, ζ)F±1 (q, ζ) .

Next, we note that the spaces E±(q, ζ) of initial data (u(0), ∂zu(0)) such
that the corresponding solution of (3.2) is bounded on R± is directly linked
to F±(p, ζ):

(3.8) E±(q, ζ) =
(

Id 0
B̃−1
ν A B̃−1

ν

)∣∣z=0

F±(q, ζ).

In particular, the smooth dependence of F±1 (q, ζ) implies the following
result which extends Lemma 2.8:

Lemma 3.4. When ζ 6= 0, one can choose the neighborhood Ω in Lemma 3.2,
such that F±(q, ζ) and E±(q, ζ) are smooth vector bundles of dimension N
in C2N over Ω.

When ζ = 0, F±(q, ζ) and E±(q, ζ) are smooth vector bundles of dimen-
sion N in C2N over Ω ∩ {ζ 6= 0, γ ≥ 0}.

According to the definition (2.17), the Evans function associated to the
profile W (·, q) and the front Ψ(q) is:

(3.9) D(q, ζ) = det(E−(q, ζ),E+(q, ζ) .
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3.2 The low frequency normal form

We now consider small frequencies ζ. Lemma 3.3 implies that there is a
neighborhood Ω0 of (q, 0) in Q×R1+d and there are C∞ invertible matrices
V±(q, ζ) on Ω0 such that

(V±)−1G±V± =
(
P± 0
0 H±

)
:= G±2 (q, ζ) ,

with H(q, 0) = 0, P±(q, 0) = (B±
ν )−1A±ν and

V±(q, 0) =
(

Id −(A±ν )−1

0 Id

)
.

The eigenvalues of P± satisfy |Reµ| ≥ c > 0, for some c independent of
(q, ζ) ∈ Ω0. Moreover (see e.g. [MZ1], Lemma 2.9)

(3.10) H± = −(A±ν )−1
(
(γ + iτ)Id +

d−1∑
j=1

iηjA
±
j

)
+O(|ζ|2) .

We now switch to polar coordinates ζ = ρζ̌, with ρ = |ζ| and ζ̌ ∈ Sd+, the
closed half sphere {|ζ̌| = 1, γ̌ ≥ 0}. In particular, we use the notations

H±(q, ζ) = ρȞ(q, ζ̌, ρ) ,

and note that Ȟ(q, ζ̌, 0), which is the main term in (3.10) evaluated at ζ̌,
is the symbol obtained by Laplace Fourier transform from the hyperbolic
operator

∂x − (A±ν )−1
(
∂t +

d−1∑
j=1

A±j ∂j

)
.

For ρ > 0, let us denote by F+
P (q, ζ) and F+

H(q, ζ̌, ρ) the negative spaces
of the matrices P+(q, ζ) and Ȟ+(q, ζ̌, ρ) respectively, i.e. the spaces gener-
ated by generalized eigenvectors associated with eigenvalues in {Reµ < 0}.
Symmetrically, we denote by F−P (q, ζ) and F−H(q, ζ̌, ρ) the positive spaces of
P−(q, ζ) and Ȟ−(q, ζ̌, ρ). Thus the negative [resp. positive] space of G+

2 (q, ζ)
[resp. G−2 (q, ζ)] are

(3.11)
F+

2 (q, ζ) = F+
P (q, ζ)⊕ F+

H(q, ζ̌, ρ) ,

F−2 (q, ζ) = F−P (q, ζ)⊕ F−H(q, ζ̌, ρ) .
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In addition:

(3.12) F±1 (q, ζ) = V±(p, ζ)F±2 (q, ζ) .

By Lemma 3.3, one has

dim F+
P = N+ , dim F+

H = N −N+ ,

dim F−P = N− , dim F−H = N −N− .

With (3.7), (3.12) and (3.11) we see that

(3.13) F±(q, ζ) = T ±(0, q, ζ)
(
F±P (q, ζ)⊕ F±H(q, ζ̌, ρ)

)
where T ± = W±V±. The vector bundles F±P (q, ζ) are smooth for (q, ζ) near
(q, 0). From [MZ2], we know that F±H(q, ζ̌, ρ), which are smooth for ρ > 0
and ζ̌ ∈ Sd+, have continuous extensions to ρ = 0. Thus:

Lemma 3.5. The vector bundles F±(q, ρζ̌) are smooth for q close to q, ρ > 0
small and ζ̌ ∈ Sd+ and have continuous extensions to ρ = 0.

Next, we consider the block decomposition of the matrix T ± into four
N ×N blocks:

(3.14) T ±(z, q, ζ) := W±V±(z, q, ζ) =
(
T ±

1,1 T ±
1,2

T ±
2,1 T ±

2,2

)
.

On one side, the blocks correspond to the splitting of U into u and v and
on the other side to the splitting of U2 into its P and H components.

Lemma 3.6. There holds

T ±
2,2(z, q, 0) = Id ,(3.15)

T ±
2,1(z, q, 0) = 0 on F±P (q, 0) .(3.16)

Proof. At ζ = 0, U = (u, v) is a solution of

∂zu = B̃−1
ν Au+ B̃−1

ν v , ∂zv = 0 ,

if and only if (
u
v

)
=
(
T ±

1,1 T ±
1,2

T ±
2,1 T ±

2,2

)∣∣ζ=0

(
uP
uH

)
and

∂zuP = P±(q, 0)uP , ∂zuH = 0 .
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Choosing uP = 0 and uH any constant vector in CN , one must have ∂zT ±
2,2uH =

0, therefore T ±
2,2 is constant, and since T ± tends to V± at ±∞, this implies

that at ζ = 0, T ±
2,2 = Id.

Similarly, choosing uP (z) = ezP
±(q,0)uP (0) and uH = 0 implies that

T ±
2,1(z, q, 0) = T ±

2,1(0, q, 0)e−zP
±(q,0). Since this matrix tends to zero at ±∞,

it must vanish on the space F±P (p, 0) where e−zP
±(q,0) is exponentially grow-

ing.

By (3.8), there are smooth nonvanishing function c and c′ on Ω0 such
that

(3.17)
D(q, ζ) = c(q, ζ) det

(
F−(q, ζ),F+(q, ζ)

)
= c′(q, ζ) det

(
F−P (q, ζ)⊕ F−H(q, ζ),F+

P (q, ζ)⊕ F+
H(q, ζ)

)
.

3.3 Low frequency analysis of the Evans function

In order to compute the Evans function, we now choose bases in F±(q, ζ).
According to (3.13) we construct separately bases of T ±(0)F±P and T ±(0)F±H .

When ζ = 0, the linear operator L(z, q, 0, ∂z) is equal to the linearized
operator P ′ (2.7) from the profile equation at W :

(3.18) L(z, q, 0, ∂z) = P ′W (z, ∂z) .

Since W is a shock profile, it is an exact solution of (2.5) and (2.6) implies
that

(3.19) L(z, q, 0, ∂z)∂zW = 0 .

Equivalently, this means that

R1(z) =
(
∂zW

0

)
satisfies

(3.20) ∂zR1 = G(z, q, 0)R1 .

Lemma 3.7. Shrinking the neighborhood Ω0 of (q, 0) if necessary, there are
functions R±1 (z, q, ζ) = t(r±1 , s

±
1 ), C∞ on R± ×Ω, exponentially decaying in

z and such that

(3.21) ∂zR
±
1 = GR±1 on± z ≥ 0 , R±1 (z, q, 0) = R1(z) .
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Moreover, s±1 (z, q, 0) = 0 and in polar coordinates ζ = ρζ̌ there holds, uni-
formly for ζ̌ ∈ Sd+:

(3.22) s+1 (0, q, ζ)− s−1 (0, q, ζ) = ρm(p, ζ̌) +O(ρ2) ,

where

(3.23) m(p, ζ) = (γ + iτ)(u+ − u−) +
d−1∑
j=1

iηj
(
fj(u+)− fj(u−)

)
.

Proof. Because R1 is an exponentially decaying solution of (3.20), there are
c±1 ∈ F±P (q, 0) such that

R1(z) = T (z, q, 0)
(
ezP

±(q,0)c±1
0

)
.

Denoting by Π±(q, ζ) the spectral projection on F±(q, ζ), we define

(3.24) R1(z, q, ζ) = T (z, q, ζ)
(
ezP

±(q,ζ)Π±(q, ζ)c±1
0

)
.

Then, R1 satisfies (3.21). Moreover, Lemma 3.6 implies that s1 = 0 when
ζ = 0.

The equation (3.21) implies that

(3.25) ∂zs
±
1 = Mr±1 .

We note that

M(z, q, ζ) = (γ + iτ)Id +
d−1∑
j=1

iηjf
′
j(W ) +O(ρ2).

The definition of R1 shows that |r1(z, q, ζ) − r1(z, q, 0)| . ρe−δ|z| for some
δ > 0. Thus, r1(z, q, ζ) = ∂zW +O(ρe−δ|z|) and therefore

(Mr±1 )(z, q, ζ) = ∂z(f(W (z), ζ) +O(ρ2e−δ|z|)

where

f(u, ζ) = (γ + iτ)u+
d−1∑
j=1

iηjfj(u) .

Therefore, integrating (3.25) on the half line {±z ≥ 0} yields

−s+(0, q, ζ) = f(u+, ζ)− f(W (0), ζ) +O(ρ2) ,

s−(0, q, ζ) = f(W (0), ζ)− f(u−, ζ) +O(ρ2) .

Adding up we get (3.22).
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By (3.24), R±1 (0, q, ζ) is a vector in T ±(0, q, ζ)F±P (q, ζ). We take it as a
first basis vector in this space and also construct bases in T ±(0, q, ζ)F±H(q, ζ).

Lemma 3.8. There are a neighborhood ω0 of q in Q and ρ0 > 0 such that :
i) for j ∈ {2, . . . , N±}, there are C∞ functions R±j (z, q, ζ) = t(r±j , s

±
j )

on {±z ≥ 0}×ω0×{|ζ| ≤ ρ0}, such that, together with R±1 (0, q, ζ) given by
Lemma 3.7,

{
R±j (0, q, ζ)

}
1≤j≤N± form a smooth basis of T ±(0, q, ζ)F±P (q, ζ);

moreover, for all j ≤ N±, s±j (z, q, 0) = 0;
ii) for j ∈ {N± + 1, . . . , N}, there are C∞ functions Ř±j (z, q, ζ̌, ρ) =

t(ř±j , š
±
j ) on {±z ≥ 0} × ω0 × Sd+×]0, ρ0], which extend continuously to

ρ = 0 and such that
{
Ř±j (0, q, ζ̌, ρ)

}
N±<j≤N form a continuous basis of

T ±(0, q, ρζ̌)F±H(q, ζ̌, ρ); moreover,
{
s±j (0, q, ζ̌, ρ)

}
N±<j≤N form a continuous

basis of F±H(q, ζ̌, ρ).

Proof. Consider vectors c±j ∈ F±P (q, 0) for j ∈ {2, . . . , N±} such that {c±j }1≤j≤N±

form a basis of F±P (q, 0). Extend the definition (3.24) ofR1 to j ∈ {2, . . . , N±}

Rj(z, q, ζ) = T (z, q, ζ)
(
ezP

±(q,ζ)Π±(q, ζ)c±j
0

)
.

They satisfy the conditions i).
According to [MZ2], the spaces F±H(q, ζ̌, ρ) have continuous extensions to

ρ = 0. Choose bases {č±j (q, ζ̌, ρ)}N±≤j≤N of F±H(q, ζ̌, ρ) and define

Řj(z, q, ζ̌, ρ) = T (z, q, ρζ̌)

(
0

ezH
±(q,ρζ̌)č±j (q, ζ̌, ρ)

)
.

for N± ≤ j ≤ N . The properties of s±j follow from Lemma 3.6.

We now introduce two important quantities. First, the Lopatinski de-
terminant of the linearized inviscid shock problem: (cf [Maj])

(3.26) ∆(p, ζ̌) = det
(
Cm(q, ζ̌),F−H(q, ζ̌, 0),F+

H(q, ζ̌, 0).
)

Note that dim F−+dim F+ = N−1 so that the determinant above is N×N .
By Lemma 3.8, the sj(ζ̌) := š±j (0, q, ζ̌, 0) for j > N± are continuous bases
of F±H(p, ζ̌, 0). Therefore, there is a nonvanishing function c(ζ̌) on the closed
half sphere Sd+ such that

(3.27)
∆(p, ζ̌) = c(ζ̌)

det
(
m(p, ζ̌), s−

N−+1
(ζ̌), . . . , s−N (ζ̌), s+

N++1
(ζ̌), . . . , s+N (ζ̌)

)
.
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Definition 3.9 (Uniformly stable shocks, [Maj]). The Lax shock p is
uniformly stable if there is c > 0 such that for all ζ̌ ∈ Sd+

|∆(p, ζ̌)| ≥ c .

Next, we introduce the determinant

(3.28) β(q) = det
(
∂zW (0), r−2 , . . . , r

−
N− , r

+
2 , . . . , r

+
N+

)
where r±j = r±j (0, q, 0). Note that ∂zW (0) = r−1 = r+1 . A more intrinsic def-
inition can be given using the spaces C∂zW (0) and orthogonal complements
in the u projection of T ±(0, p, 0)F±P (p, 0).

Lemma 3.10. β(q) 6= 0 if and only if the profile W is transversal in the
sense of Definition 2.3.

Proof. The identity (3.18) implies that ẇ is a L2 solution of the linearized
equation P ′Wẇ = 0 if and only if

U =
(
ẇ
0

)
is an L2 solution of ∂zU = G(z, p, 0)U . Arguing on {±z ≥ 0} separately,
this holds, if and only if ẇ is exponentially decaying and ẇ(0) ∈ P− ∩ P+,
where P± is the space spanned by r±1 , . . . , r

±
N± . By definition, the con-

nection is transversal if and only if dim(P− ∩ P+) = 1. Since dim P− +
dim P+ = N + 1 and r−1 = r+1 , this condition holds if and only if the vectors
r1, r

−
2 , . . . , r

−
N− , r

+
2 , . . . , r

+
N+ are independent.

The next result implies Proposition 2.10, originally due to [ZS].

Proposition 3.11. Shrinking the neigborhood ω0 of q and ρ0 > 0 if neces-
sary, there is a continuous function Dm(q, ζ̌, ρ) up to ρ = 0 on ω×Sd+×[0, ρ0],
such that

(3.29) Dm(q, ζ̌, 0) = β(p)∆(p, ζ̌)

and the Evans function defined for ζ ∈ R1+d
+ \{0} by (3.9) satisfies for q ∈ ω0,

ζ̌ ∈ Sd+ and ρ = |ζ| ∈]0, ρ0]:

(3.30) D(q, ρζ̌) = ρc(q, ζ̌, ρ)Dm(q, ζ̌, ρ) .

where c(q, ζ̌, ρ) is continuous up to ρ = 0 and does not vanish on ω × Sd+ ×
[0, ρ0].
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Proof. By (3.17), there is a function c(q, ζ̌, ρ), continuous up to ρ = 0, such
that D(q, ρζ̌) = c(q, ζ̌, ρ)D′(q, ζ̌, ρ) where

D′ = det
(
{r−j }j≤N− , {r+j }2≤j≤N+ , r+1 , {ř−j }j>N− , {ř+j }j>N+

{s−j }j≤N− , {s+j }2≤j≤N+ , s+1 , {š−j }j>N− , {š+j }j>N+

)
and the functions are evaluated at z = 0. The coefficients in the first N− +
N+ = N + 1 columns are smooth functions of (q, ζ) on a neighborhood of
(q, 0) and the coefficients in the last N−1 columns are are smooth functions
of (q, ζ̌, ρ) for q in a neighborhood of q, ζ̌ ∈ Sd+ and ρ ∈]0, ρ0] which extends
continuously to ρ = 0.

All the coefficients in theN×(N+1) matrix
(
{s−j }j≤N− , {s+j }2≤j≤N+ , s+1

)
are smooth functions of (q, ζ) and vanish at ζ = 0. Thus one can factor out ρ,
writing s±j = ρš±j with š±j smooth on ω×Sd+× [0, ρ0]. Developing the deter-
minant, all terms must contain at least one coefficient from this N × (N +1)
matrix. Thus ρ can be factored out in each term showing that the Evans
function has the form (3.30) with Dm(q, ζ̌, ρ) continuous up to ρ = 0.

Next, we compute the determinant at q = q. We can subtract the first
column from the (N + 1)-th, that is replace R+

1 by R+
1 −R

−
1 . But we know

that at q = q and ζ = 0, R+
1 −R

−
1 = 0. Thus, one can factor out ρ. Writing,

at q = q,

(r+1 − r−1 )(0, q, ζ) = ρr1(ζ̌, ρ) , (s+1 − s−1 )(0, q, ζ) = ρs1(ζ̌, ρ),

we see that D′(q, ζ̌, ρ) = ρD′′(q, ζ̌, ρ), with

D′′ = det
(
{r−j }j≤N− , {r+j }2≤j≤N+ , r1, {ř−j }j>N− , {ř+j }j>N+

{s−j }j≤N− , {s+j }2≤j≤N+ , s1, {š−j }j>N− , {š+j }j>N+

)
.

By Lemmas 3.7 and 3.8, we see that D′′(q, ζ̌, 0) is the determinant(
{r−j }j≤N− , {r+j }2≤j≤N+ , r1, {ř−j (0, q, ζ̌, 0)}j>N− , {ř+j (0, q, ζ̌, 0)}j>N+

0, 0, m, {š−j (0, q, ζ̌, 0)}j>N− , {š+j (0, q, ζ̌, 0)}j>N+

)
that is β(p)∆(p, ζ̌).

3.4 Analysis of the modified Evans function

WithW and Ψ given by Assumption 3.1, we now consider the fully linearized
equations. After rescaling, as in section 2, they read

(3.31) L(z, q, ζ,Dz)u− ψL1(z, q, ζ) = f ,
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with L1(z, q, ζ) = L1
W (·,q),Ψ(q)(z, ζ) given by (2.27). We consider this equa-

tion separately on {z ≥ 0} and {z ≤ 0}, together with the transmission
conditions, see (2.29):

(3.32) u−(0) = u+(0) ∂zu
−(0) = ∂zu

+(0) , `(q) · u(0) + c0(ζ)ψ = 0 ,

where c0(ζ) = γ + iτ + |η|2 and ` is a smooth mapping from Q to RN such
that

(3.33) min
q∈Q

{
`(q) · ∂zW (0, q)

}
> 0 .

In (3.32) and below, u± denotes the restriction of u to the half line {±z ≥ 0}.
We summarize the useful properties of L1 in the next lemma.

Lemma 3.12. i) L1 is a polynomial in ζ, vanishing at ζ = 0, whose coeffi-
cients bα satisfy : for all k ≥ 0 and µ, there are C and δ > 0 such that for
q ∈ Q, there holds

(3.34) |∂kz ∂µq bα(z, q)| ≤ Ce−δ|z|.

ii) At q = q, there holds

(3.35)
∫ +∞

−∞
L1(z, q, ζ) dz = m(p, ζ) +O(|η|2) ,

where m is defined in (3.23). Moreover,

(3.36) L1(z, q, ζ) = L(z, q, ζ, ∂z)∂zW .

Proof. By (2.27), L1, is a polynomial in ζ, vanishing at ζ = 0, with co-
efficients which all involve at least one derivative of W . Thus, they are
exponentially decaying and (3.34) follows from the estimates (2.10) for W .

Integrating (2.27) on R, the convergence at±∞ ofW and the exponential
decay of ∂zW immediately imply (3.35).

Since W is a shock profile, (3.36) follows from Lemma 2.13.

We note that L1 and c0 vanish at ζ = 0. In polar coordinates ζ = ρζ̌,
we use the notations

(3.37) L1(z, q, ζ) = ρĽ1(z, q, ζ̌, ρ) , c0(ζ) = ρč0(ζ̌, ρ).
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Following (2.33), it is natural to introduce ϕ = ρψ so that the transmission
problem (3.31) (3.32) for (u, ψ) is equivalent to:

(3.38)


L(z, q, ζ,Dz)u± − ϕĽ1(z, q, ζ̌, ρ) = f± , on {±z ≥ 0} ,
u−(0) = u+(0), ∂zu

−(0) = ∂zu
+(0),

`(q) · u(0) + č0(ζ̌, ρ)ϕ = 0 .

Following Definition 2.14, Ẽ(q, ζ̌, ρ) denotes the space of triples (U−
0 , U

+
0 , ϕ) ∈

C2N × C2N × C with U±
0 = (u±0 , v

±
0 ), such that the solutions u± of

Lu± − ϕb̌ = 0 , on± z ≥ 0 , u±(0) = u±0 , ∂zu
±(0) = v±0

are bounded at infinity. Moreover, ker Γ̃(q) denotes the set of (U−
0 , U

+
0 , ϕ) ∈

C2N × C2N × C such that

(3.39) U−
0 = U+

0 , `(q) · u−(0) + č0(ζ̌, ρ)ϕ = 0 .

Then, the modified Evans function is

(3.40) D̃(q, ζ̌, ρ) = det
(
Ẽ(q, ζ̌, ρ), ker Γ̃(q)

)
.

The aim of the subsection is to prove the following result which is the
analogue of Proposition 3.11. It implies Lemma 2.15. Moreover, together
with Corollary 2.11 it also implies Theorem 2.17.

Proposition 3.13. The vector bundle Ẽ and the determinant D̃ are C∞

for q in a neighborhood of q, ζ̌ in the closed half sphere Sd+ and ρ > 0 small
enough. They have continuous extensions to ρ = 0.

Moreover,
D̃(q, ζ̌, 0) = c(ζ̌)β(q)∆(q, ζ̌)

where c is continuous and does not vanish.

Before proving this result, we need some preparation. The definition
(2.27) shows that

(3.41) L1(q, ζ) = (iτ + γ)M1
0(q) +

d−1∑
j=1

iηjM1
j (q, η) .

Similarly,

c0(ζ) = (iτ + γ)c0,0 +
d−1∑
j=1

iηjc0,j(ζ) .
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Lemma 3.14. There are a neighborhood Ω of (q, 0) in Q × R1+d and C∞

functions S+
j and S−j on Ω × [0,+∞[, and Ω×] − ∞, 0] respectively, such

that {
L(z, q, ζ,Dz)S±j = M1

j (z, q, ζ) on {±z ≥ 0},
`(q) · S±j (0, q, ζ) = −c0,j(ζ) , S±j (z, q, 0) = 0 .

Moreover, the S±j and all their derivative are exponentially decaying as z
tends to ±∞.

Proof. The source terms M1
j are exponentially decaying. It is sufficient

to show that one when (q, ζ) remains in some small neighborhood of (q, 0)
and b(z, q, η) is exponentially decaying and c(q, ζ) is given, one can find
exponentially decaying solutions of

L(q, ζ, ∂z)r± = b± , r±(0, q, ζ) = c(q, ζ) .

We reduce this equation to a first order system (3.3) for R = t(r, s) with
s = B̃ν∂zr−Ar. Using the conjugation T = WV on a neighborhood of (q, 0),
it is sufficient to solve for R′ = T −1R = t(r′, s′) the constant coefficient
equations (

∂zr
′ − Pr′

∂zs
′ −Hs′

)
= T −1B .

with B = t(0, b) exponentially decaying. Since the spectrum of P is away
form the imaginary axis, there are exponentially decaying solutions of ∂zr′−
Pr′ = O(e−δ|z|) on each side {±z ≥ 0}. Similarly, since H = 0 at ζ = 0 and
there are, for (q, ζ) is some neighborhood of (q, 0), exponentially decaying
solutions of ∂zs′ −Hs′ = O(e−δ|z|).

This shows that there are exponentially decaying r± which satisfy the
equation Lr± = b1j .

Let R±1 = t(r±1 , s
±
1 ) denote the exponentially decaying solutions of the

homogeneous equation (3.21) constructed in Lemma 3.7. Thus Lr±1 = 0 and
at q = q and ζ = 0, r±1 (z, q, 0) = ∂zW . Therefore, by (3.33) `(q)·r±1 (0, q, ζ) >
0 for (q, ζ) close to (q, 0). Thus

a±(q, ζ) =
(
c(q, ζ) + `(q) · r±(0, q, ζ)

)(
`(q) · r±1 (0, q, ζ)

)−1

are smooth on a neighborhood of (q, 0). Therefore,

r̃±(z, q, ζ) = r±(z, q, ζ)− a(q, ζ)r1(z, q, ζ)

satisfies the equation and the boundary condition.
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Adding up, we see that

(3.42) R±(q, ζ) = (iτ + γ)S±0 (q) +
d−1∑
j=1

iηjS±j (q, η)

is exponentially decaying, vanishes at ζ = 0 and satisfies:

(3.43)

{
L(z, q, ζ,Dz)R± = L1(z, q, ζ) on {±z ≥ 0},
`(q) · R±(0, q, ζ) = −c0(ζ) , R±(z, q, 0) = 0 .

Proof of Proposition 3.13. a) With

U = t(u, B̃ν∂zu−Au) ,

the system (3.31)(3.32) is equivalent to

(3.44)

{
∂zU

± − GU± − ϕǦ1 = F± , on ± z ≥ 0 ,
U−(0) = U+(0) , ` · u−(0) + č0ϕ = 0 ,

with

Ǧ1 =
(

0
Ľ1

)
, F± =

(
0
f±

)
.

The initial data U±(0) for (3.44) are linked to the initial data for (3.38) by
the relation

U±(0) = T

(
u±(0)
∂±z (0)

)
, T =

(
Id 0

B̃−1
ν A B̃−1

ν

)
|z=0

.

Note that T (q, ζ) is common to both problems on {z ≥ 0}.
Let F̃ denote the space of (U−

0 , U
+
0 , ϕ) such that the solutions U± of

(∂z −G)U± = ϕǦ1 on {z ≥ 0} with initial data U±
0 are bounded. Thus Ẽ is

the image of F̃ by the mapping

T ′ : (V −, V +, ϕ) 7→ (T−1V −, T−1V +, ϕ) .

Moreover, the space ker Γ̃` in (3.39) is invariant by T ′ and therefore it is
sufficient to study the bundle F̃(q, ζ) and the determinant

(3.45) D̃′(z, ζ) = det(F̃(q, ζ), ker Γ̃`).

b) Next, we eliminate ϕ from the equations. Because R± vanish at
ζ = 0, in polar coordinates there holds

(3.46) R±(z, q, ρζ̌) = ρř±(z, q, ζ̌, ρ)
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with ř± smooth for q close to q, ζ̌ ∈ Sd and |ρ| small. Introducing

š±(z, q, ζ, ρ) = B̃ν(z, q)∂z ř±(z, q, ζ, ρ)−A(z, q, ρζ̌)ř±(z, q, ζ, ρ) ,

Ř± = t(ř±, š±) satisfies

(∂z − G)Ř± = Ǧ1 , ` · ř±|z=0 = −č0 .

Thus, (U±, ϕ) is a bounded solution of (∂z − G)U± = ϕǦ1 if and only if
V ± = U± − ϕŘ± is a bounded solution of (∂z − G)V ± = 0.

Recall that F±(q, ζ) denotes the space of initial data such that the cor-
responding solution of (∂z −G)V = 0 on {±z ≥ 0} is bounded as z tends to
±∞. The analysis above implies that

F̃ = T1

(
F− × F+ × C

)
where

T1(q, ζ̌, ρ) : (V −, V +, ϕ) 7→ (V − + ϕŘ−(0), V + + ϕŘ+(0), ϕ) ,

with Ř±(0) = Ř±(0, q, ζ̌, ρ). Moreover, with ˜̀ denoting the vector (`, 0),
there holds ˜̀· Ř(0) = −č0 and therefore ker Γ̃(q) is the image by T1 of

G1(q, ζ) :=
{
(V −, V +, ϕ) : V + − V − = ϕ(R−(0)−R+(0)) , ˜̀(q) · V + = 0

}
Thus, it is sufficient to study F̃1 = F− × F+ × C and the determinant

(3.47) D̃1(q, ζ̌, ρ) = det(F̃1,G1).

c) By Lemma 3.5, F+ and F− are C∞ vector bundles for q close to q,
ζ̌ ∈ Sd+ and ρ > 0 small and they have continuous extensions to ρ = 0. Thus
F̃1 and F̃ have the same property. In particular, the determinant D̃1(q, ζ̌, ρ)
is C∞ for ρ > 0 and continuous up to ρ = 0.

We compute D1(q, ζ̌, 0), writing this determinant in suitable bases of
F̃1(q, ζ). By (3.13), Lemmas 3.7 and 3.8 provide us with bases R±j (0) of F±.
Elementary computations on the determinant, show that

D̃1(q, ζ̌, 0) = c(ζ̌)D2(ζ̌)

where c does not vanish on the closed half sphere Sd+ and D2(ζ̌) is the
(1 + 2N)× (1 + 2N) determinant

det

 0 {` · r+j }1≤j≤N+ 0 {` · r+j }j>N+ 0
{r−j }j≤N− {r+j }1≤j≤N+ {r−j }j>N− {r+j }j>N+ [ř]
{s−j }j≤N− {s+j }1≤j≤N+ {s−j }j>N− {s+j }j>N+ [š]


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with [ř] = r+ − r−, [š] = s+ − s− and the functions are evaluated at z = 0,
q = q and ρ = 0. By Lemmas 3.7 and 3.8, the left lower hand entries
s±j for j ≤ N± are smooth functions of ζ and vanish at ρ = 0. Therefore
the determinant is equal to the product of the right lower hand N × N
determinant at ρ = 0,

(3.48) det({s−j }j>N− , {s+j }j>N+ , [š]),

and of the (N + 1)× (N + 1) left upper determinant

(3.49) det
(

0 {` · r+j }1≤j≤N+

{r−j }j≤N− {r+j }1≤j≤N+

)
.

The equation for R± implies that

∂zs
± = Mr± + L1 .

Since M and r± vanish at ζ = 0, Mr± = O(|ζ|2). Integrating in z yields

−[s(q, ζ)] =
∫

R
L1(z, q, ζ)dz +O(|ζ|2) .

Therefore, (3.35) implies that the jump of s at z = 0 satisfies

(3.50) [s(q, ζ)] := s+(0, q, ζ)− s−(0, q, ζ) = −m(q, ζ) +O(|ζ|2)

where m is defined at (3.23). Hence,

[š(q, ζ̌, 0)] = š+(0, q, ζ̌, 0)− š−(0, q, ζ̌, 0) = −m(q, ζ̌),

implying that the determinant (3.48) is equal up to a sign to the determinant
in (3.27), thus to c(ζ̌)∆(q, ζ̌), where c does not vanish on Sd+ and ∆ is the
Lopatinski determinant of the inviscid shock problem.

In the second determinant (3.49) we can subtract the first row from the
last one, and since r−1 = r+1 when q = q and ζ = 0, this determinant is
equal, up to the sign, to β(q)(` · r1+) = β(q)∂zW (0). This finishes the proof
of Proposition 3.13.
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3.5 Elimination of the front

To prepare the proof of the energy estimates in the Appendix below, we
make more explicit the argument of part b) of the proof of Proposition 3.13.
The goal is to reduce the equations to problems where ψ appears only in
the boundary conditions and to write the stability condition in terms of the
corresponding Evans function.

Because R± given by (3.42) vanishes at ζ = 0, we factor out ρ and write
R± = ρŘ±. With this notation, the problem (3.38) is equivalent to

(3.51)


u± = v± + ϕŘ±

L(z, q, ζ,Dz)v± = f± , on {±z ≥ 0} ,
[v(0)] + ϕ[Ř(0)] = 0 [∂zv(0)] + ϕ[∂zŘ(0)] = 0,
`(q) · v−(0) = 0 .

For functions u± on {±z ≥ 0}, [u(0)] denotes the jump u+(0)− u−(0). By
Lemma 3.14, ` · [Ř(0)] = 0, and therefore the last condition `(q) · v−(0) = 0
can be equivalently replaced by `(q) · v+(0) = 0. Therefore,

Ẽ(q, ζ̌, ρ) = J
(
E− × E+ × C

)
where

J (q, ζ̌, ρ) : (V −, V +, ϕ) 7→ (V − + ϕR−, V + + ϕR+, ϕ)

with
R±(ζ̌, ρ) = t

(
Ř±(0), ∂zŘ±(0)

)
.

Moreover, ker Γ̃ = JG′ with

G′(q, ζ̌, ρ) =
{
(V −, V +, ϕ) : V + − V − = ϕ(R− − R+), ˜̀· V − = 0

}
where ˜̀= t(`, 0). Therefore, the Evans function of the problem (3.51)

(3.52) D′(q, ζ̌, ρ) = det
(
E− × E+ × C,G′

)
.

satisfies:

(3.53)
1
C
|D(q, ζ̌, ρ)| ≤ |D′(q, ζ̌, ρ)| ≤ C|D̃(q, ρζ̌)|

As before, the vector bundles and determinants are smooth on ω×Sd+×]0, 1]
for some neighborhood ω of q, and they have continuous extensions to ρ = 0.
Note that if R+ − R− = 0, then (0, 0, 1) ∈ E− × E+ × C also belongs to G′.
Therefore, Proposition 3.13 implies:
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Proposition 3.15. If the shock profile W = W (·, q) is uniformly stable,
then there is a neighborhood ω of q and there is c > 0 such that for all

∀(q, ζ̌, ρ) ∈ ω × Sd+ × [0, 1] : |D′(q, ζ̌, ρ)| ≥ c .

In particular, the C2N valued function [R] := R+ − R− does not vanish on
ω × Sd+ × [0, 1].

We can push the analysis a little further. Since [R] 6= 0, one at least
locally, introduce a smooth 2N × 2N matrix K(q, ζ̌, ρ) such that

(3.54) kerK(q, ζ̌, ρ) = C[R(q, ζ̌, ρ)] .

For instance, one can take K to be the orthogonal projector on [R]⊥. In this
case, the boundary condition in (3.51) are equivalent to

K[V (0)] = 0, ` · v−(0) = 0,(3.55)
ϕ = −R · [V (0)]/|R|2,(3.56)

with V = (v, ∂zv) and [V (0)] = V +(0)− V −(0).
Denote by

G′′(q, ζ̌, ρ) =
{
(V −, V +) : K(V + − V −) = 0, ˜̀· V − = 0

}
and introduce the Evans function

(3.57) D′′(q, ζ̌, ρ) = det
(
E− × E+,G′′) .

of the problem

(3.58)

{
Lv± = f± on {±z ≥ 0},
K([v(0)], [∂zv(0)]) = 0 , ` · v−(0) = 0 .

Proposition 3.16. Suppose that the shock profile W = W (·, q) is uniformly
stable and that K satisfies (3.54). Then there is a neighborhood ω of q and
there is c > 0 such that for all

∀(q, ζ̌, ρ) ∈ ω × Sd+ × [0, 1] : |D′′(q, ζ̌, ρ)| ≥ c .

Remark 3.17. The Evans function D is associated to the equation (2.16),
considered as a transmission problem:

(3.59)

{
Lv± = f± on {±z ≥ 0},
[v(0)] = [∂zv(0)] = 0 .

The proposition above shows that the uniform stability condition for low
frequencies is expressed through a natural “uniform lower bound condition”
for a modified problem, for the same equation but with different transmission
conditions.
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3.6 The high frequency stability, proof of Proposition 2.12

We now prove that the transmission problem (3.59) satisfies the uniform
stability condition for large frequencies.

For large ζ, we use the “parabolic polar coordinates”

ζ = Λζ̂ , Λ = (τ2 + γ2 + |η|4)1/4 .

In this case, ζ̂ belongs to the “sphere” Ŝ := {τ2 + γ2 + |η|4 = 1}. We also
use the notations λ = 1/Λ, Ŝ+ = Ŝ ∩ {γ̂ ≥ 0}.

With V ± = t(Λv±, ∂zv±), the homogeneous equation (3.59) is equivalent
to the first order system

(3.60) ∂zV
± = ΛG2(z, q, ζ̂, λ)V ± , V +(0) = V −(0)

where G2 is a matrix of the form

G2(z, q, ζ̂, λ) =
(

0 Id
M2 A2

)
with coefficients depending smoothly on (z, q, ζ̂, λ) in R × Q × Ŝ × [0, 1].
Note that we have factored out the large term Λ in (3.60), to ensure that
G2 is bounded, and indeed continuous and smooth as λ tends to zero. The
parabolicity Assumption (H1) implies that that for λ ≥ 0 small and ζ̂ ∈ Ŝ+,
G2 has N eigenvalues in a compact set {Reµ > 0} and N eigenvalues in a
compact set {Reµ < 0} (see Lemma 2.5 of [MZ1] or Lemma 3.3 above).

According to (2.20), one introduces the spaces E±,rs(q, ζ) of initial data
V ±

0 ∈ C2N such that the solution of

(∂z − ΛG2)V ± = 0 for ± z ≥ 0, V ±(0) = V ±
0

is bounded as z tends to infinity.
Introducing the scaling

V̂ (ẑ) = V (z), z = λẑ

(3.60) is transformed into:

(3.61) ∂ẑV̂
± = Ĝ(ẑ, q, ζ̂, λ)V̂ ± , V̂ +(0) = V̂ −(0),

with Ĝ(ẑ, q, ζ̂, λ) = G2(λẑ, q, ζ̂, λ). The limit equation as λ tends to zero is
the constant coefficient system

(3.62) ∂ẑV̂
± = Ĝ2(0, q, ζ̂, 0)V̂ ± , V̂ +(0) = V̂ −(0) .
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Using the uniform bounds |G2(λẑ, q, ζ̂, λ)− G2(0, q, ζ̂, 0)| ≤ Cλ(1 + |ẑ|) and
the fact that G2(0, q, ζ̂, 0) has no eigenvalues on the imaginary axis, one
easily shows that the vector bundles Ê±(q, ζ̂, λ) = E±(q, λ−1ζ̂) are smooth
in (q, ζ̂, λ) for q ∈ Q, ζ̂ ∈ Ŝ+ and λ ≥ 0 small enough. Moreover, at λ = 0,
Ê±(q, ζ̂, 0) is the set of initial data V ±

0 ∈ C2N such that the solution of

(∂ẑ − G2(0, q, ζ̂, 0)V̂ ± = 0 for ± ẑ ≥ 0, V̂ ±(0) = V ±
0

is bounded, and therefore exponentially decaying. Therefore, this shows that
the rescaled Evans function (2.21), Drs(q, ζ) = det

(
E−,rs(q, ζ),E+,rs(q, ζ)

)
,

satisfies

Drs(q, ζ) = D̂(q, ζ̂, λ) := det
(
Ê−(q, ζ̂, λ), Ê+(q, ζ̂, λ)

)
where D̂(q, ζ̂, λ) is smooth q ∈ Q, ζ̂ ∈ Ŝ+ and λ ≥ 0 small enough.

Moreover, since the limit equation has constant coefficients, Ê+(q, ζ̂, 0)
[resp. Ê−(q, ζ̂, 0)] is the N dimensional space generated by the generalized
eigenvectors of G2(0, q, ζ̂, 0) associated to eigenvalues with negative [resp.
positive] real part. Since G2(0, q, ζ̂, 0) has no eigenvalues on the imaginary
axis, there holds C2N = Ê−(q, ζ̂, 0)⊕ Ê+(q, ζ̂, 0), thus

D̂(q, ζ̂, 0) = det
(
Ê−(q, ζ̂, 0), Ê+(q, ζ̂, 0)

)
6= 0 .

By continuity and compactness this implies Proposition 2.12. More precisely,
we have proved:

Proposition 3.18. For all compact subset Q0 ⊂ Q there there are c > 0
and λ0 > 0 such that |D̂(q, ζ̂, λ)| ≥ c when q ∈ Q0, ζ̂ ∈ Ŝ+ and λ ≤ λ0.

3.7 Proof of Proposition 2.6

Proof. a) If p is a Lax shock, then the implicit function theorem implies
that in a neighborhood ω of p, the Rankine Hugoniot condition can be made
explicit, giving u+ as a smooth function of u− and h. Thus, the set of shocks
in ω is a smooth manifold C of dimension N+d. By continuity, shrinking ω if
necessary, the eigenvalues of Aν(u±, h) do not vanish for p = (u−, u+, h) ∈ C
and the numbers of positive and negative eigenvalues is constant. Thus all
p ∈ C is a Lax shock.

b) Suppose that w is a profile associated to a Lax shock p. For (u+, h)
close to (u+, h) we consider the solutions of (2.2) on the half axis {z ≥ 0}.
The classical theory of stable manifolds implies the following
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Lemma 3.19. There are neighborhoods ω+ ⊂ U × Rd and ω+
1 ⊂ RN+

of
(u+, h) and 0 respectively, and there is a smooth function W+ from ω+ ×
ω+

1 × [0,+∞[ to RN and a constant δ > 0, such that
i) for all (u+, h) ∈ ω+, all a ∈ ω+

1 , W+(u+, h, a, ·) is a solution of (2.2)
such that ∣∣W+(u+, h, a, z)− u+

∣∣+ ∣∣∇aW
+(u+, h, a, z)

∣∣ . e−δz ,

ii) the matrix ∇aW
+(u+, h, 0, 0) has maximal rank equal to N+.

In addition, all the solutions of (2.2) close to w are of this form.

We also apply this lemma to the equation

(3.63) Bν(w, h)∂zw = fν(w, h)− fν(u−, h)

on ] − ∞, 0]. There are neighborhoods ω− ⊂ U × Rd and ω−1 ⊂ RN−
of

(u−, h) and 0 respectively, and there is a smooth function W− from ω− ×
ω+

1 × [0,+∞[ to RN and a constant δ > 0, such that for all (u−, h) ∈ ω−,
all a ∈ ω−1 , W−(u−, h, a, ·) is a solution of (3.63) on {z ≤ 0} such that∣∣W−(u−, h, a, z)− u−

∣∣+ ∣∣∇aW
−(u−, h, a, z)

∣∣ . eδz .

Moreover, the matrix ∇aW
−(u−, h, 0, 0) has rank equal to N−.

To get a solution of (2.5) close to w and associated to p = (u−, u+, h)
with (u−, h) ∈ ω− and (u−, h) ∈ ω−, it is necessary and sufficient that
fν(u−, h) = fν(u+, h), in which case the equations (2.2) and (3.63) are
identical, and to glue together solutions on {±z ≥ 0}. The first condition
means that p satisfies the Rankine-Hugoniot conditions, that is p ∈ C. The
second condition is equivalent to to find a± ∈ ω±1 such that

(3.64) F (p, a−, a+) := W−(u−, h, a−, 0)−W+(u+, h, a+, 0) = 0 .

We denote by ω1 = ω−1 × ω+
1 and by a = (a−, a+) the variable in ω1.

We show that if w is transversal, then ∇aF (p, 0) has rank N . Thus, by the
implicit function theorem, locally near (p, 0), the set of solutions (p, a) ∈
C × ω1 of (3.64) is a manifold of dimension N + d + 1 parametrized by p
and some component a1 ∈ R of a. Thus, locally, (3.64) is equivalent to
a = α(p, a1) for some smooth function α from C×]− δ, δ[ to ω1.

Differentiating (2.2) and (3.63), we see that for all j ≤ N+ [resp. k ≤
N−], the functions ẇ+

j = ∂ajW
+(u+, h, 0, z) [resp. ẇ−k = ∂ak

W−(u−, h, 0, z)
] are solutions of the linearized equation (2.6)

P ′wẇ = 0
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on {z ≥ 0} [resp. {z ≤ 0}], exponentially decaying at +∞ [resp. −∞]. By
Lemma 3.19, the space F+ [resp. F−] generated by the ẇ+

j (0) [resp. ẇ−k (0)]
is of dimension N+ [resp. N−]. If

∑
ȧ+
j ẇ

+
j (0) =

∑
ȧ−k ẇ

−
k (0) ∈ F+ ∩ F−,

then ẇ+ =
∑
ȧ+
j ẇ

+
j and ẇ− =

∑
ȧ−k ẇ

−
k are solutions of (2.6) on {z ≥ 0}

and {z ≤ 0} respectively, exponentially decaying at infinity and piecing
them together gives a solution ẇ of (2.6) on the whole line. Therefore, the
transversality assumption implies that ẇ is proportional to ∂zw. Therefore,
dim(F+ ∩ F−) ≤ 1. Since dim F+ = N+ and dim F− = N−, the Lax shock
condition N+ +N− = N + 1 implies that F+ + F− = CN . This means that
∇aF (p, 0) has rank N , as claimed, thus finishing the proof of Proposition
2.6.

4 Handbook of paradifferential calculus

For the convenience of the reader, we collect in this section the results about
paradifferential calculus which are used to prove the linear stability estimates
in section five. The proofs are omitted, they can be found in the Appendix
of [MZ1].

4.1 The homogeneous calculus

We consider operators on Rd. The variables are denoted ỹ = (t, y) and the
frequency variables η̃ = (τ, η). The symbols and operators also depend on
a parameter γ which plays a distinguished role. We denote by Rd+1

+ the set
of frequencies ζ := (η̃, γ) ∈ Rd+1 \ {0} such that γ ≥ 0 and by Sd+ the set of
(η̃, γ) ∈ Rd+1

+ such that |ζ| = 1.

Definition 4.1 (Symbols). Let µ ∈ R. i) Γµ0 denotes the space of locally
L∞ functions a(ỹ, ζ) on Rd×Rd+1

+ which are C∞ with respect to ζ and such
that for all α ∈ Nd there is a constant Cα such that

(4.1) ∀(ỹ, ζ) , |∂αη̃ a(ỹ, ζ)| ≤ Cα |ζ|µ−|α| .

ii) Γµ1 denotes the space of symbols a ∈ Γµ0 such that for all j, ∂ỹja ∈ Γµ0 .

For example, functions a(ỹ, ζ) which are C∞ and homogeneous of degree
m in (η̃, γ) ∈ Rd+1

+ and bounded on Rd × Sd+, are symbols in Γm0 .
In the applications, we consider families of symbols aε(x) in Γmk , de-

pending on parameters ε ∈ [0, 1[ and x ∈ R. The key point is that they are
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bounded in Γmk . Moreover, we want to study the action of the operators in
conormal spaces. Consider the following set of vector fields on Rd+1:

(4.2) Z0 = ∂t , Zj = ∂yj for 1 ≤ j ≤ d− 1 , Zd =
x√

1 + x2
∂x .

They commute, and for α ∈ Zd+1 we use the notation Zα = Zα0
0 · · ·Zαd

d .

Definition 4.2. For µ ∈ R, m ∈ N and k ∈ {0, 1}, Γµk,m is the set
of functions a(ỹ, x, ζ) such that for all α ∈ Zd+1 with |α| ≤ m, the set
{(Zαa)(·, x, ·) : x ∈ R} is bounded in Γµk .

The spaces Γµk,m are equipped with semi-norms

(4.3) ‖a‖(µ,k,m,N) := sup
|α|≤N

sup
|β|≤k

sup
|σ|≤m

sup
(x,ỹ,ζ)

|ζ||α|−µ |Zσ∂αζ ∂
β
ỹ a(x, ỹ, ζ)| .

A family of symbols is bounded in Γµk,m when for all N , the semi norms are
bounded. For a ∈ Γµk,m we denote by Zαa(x) the symbol (Zαa)(·, x, ·) ∈ Γµk .

The para-differential calculus is a quantization of symbols in a ∈ Γµ0 to
which are associated operators denoted by T γa . This extends the Fourier
multipliers calculus: when a(ζ) is a constant coefficient symbol, then

(4.4) (T γa u)(ỹ) =
1

(2π)d

∫
eiỹη̃a(η̃, γ)û(η̃)dη̃

where û denotes the Fourier transform of u. The T γa act in the scale of
Sobolev spaces Hs(Rd). These spaces are equipped with the family of norms

(4.5)
∣∣u∣∣

0,s,γ
:=
(∫

Rd

(γ2 + |η̃|2)s |û(η̃)|2 dη̃
) 1

2
.

Adding the normal variable x, we introduce the norms

(4.6)
‖u‖0,s,γ =

(∫ ∣∣u(x, ·)∣∣2
0,s,γ

dx
) 1

2
,

‖u‖m,s,γ =
∑
|α|≤m

γm−|α| ‖Zαu‖0,s,γ ,

which are parameter dependent norms on spaces called H0,s and Hm,s re-
spectively.
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When a ∈ Γµ0,m the action of para-differential operators is extended to
x-dependent functions:

(4.7) (T γa u)(x, ·) = T γa(x)u(x, ·).

The paradifferential calculus in Rd, was introduced by J.M.Bony [Bo]
(see also [Mey] , [Hör], [Tay]) with γ fixed, say γ = 1). The parameter
dependent version T γa is introduced in [Mé1] [Mok] and applies in the scale
of spaces H0,s. The extension to the scale Hm,s is immediate since one can
construct the T γ so that

(4.8) ZT γa u = T γa Zu+ T γZau .

Proposition 4.3 (Action). i) When a(ζ) is a symbol independent of ỹ,
the operator T γa is defined by (4.4).

ii) For all a ∈ Γµ0,m, the family of operators {T γa }γ≥1 is of order ≤ µ,
meaning that for γ ≥ 1:

‖T γa u‖m,s,γ ≤ C ‖u‖m,s+µ,γ

where C is independent of γ ≥ 1 and u.

Proposition 4.4 (Symbolic calculus). Consider a ∈ Γµ1,m and b ∈ Γµ
′

1,m.

Then ab ∈ Γµ+µ′

1,m and {T γa ◦ T γb − T γab}γ≥1 is of order ≤ µ+ µ′ − 1, meaning
that for γ ≥ 1:

‖(T γa T
γ
b − T γab)u‖m,s,γ ≤ C ‖u‖m,s+µ+µ′−1,γ

where C is independent of γ ≥ 1 and u.
If b is independent of ỹ, then T γa ◦ T γb = T γab .

These results extend to matrix valued symbols and operators.

Bounded functions of ỹ are particular examples of symbols in the class
Γ0

0, independent of the frequency variables ζ. In this case, T γa is called a
para-product in [Bo]. We introduce the spaces Wm,k of functions a on Rd+1

which belong to Γ0
k,m when considered as symbols independent of ζ:

Definition 4.5. Wm,k denotes the space of functions a on Rd+1 such that
Zα∂βỹ u ∈ L∞(Rd+1

+ ) for all |α| ≤ m and |β| ≤ k, where Zα := ΠjZ
αj

j , with
Zj defined as in (4.2).

When k = 0, we simply denote by Wm the corresponding space.
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These spaces are equipped with the norms

(4.9) ‖a‖Wm,k =
∑
|α|≤m

∑
|β|≤k

‖Zα∂βỹ u‖L∞(Rd+1
+ ) .

A key point in the theory is the comparison between T γa and the multi-
plication by a:

Proposition 4.6 (Para-products). There is a constant C such that for
all a ∈ Wm,1 and all u ∈ Hm,0

‖au− T γa u‖m,1,γ ≤ C ‖a‖Wm,1‖u‖m,0,γ ,
γ‖au− T γa u‖m,0,γ ≤ C ‖a‖Wm,1‖u‖m,0,γ ,

‖a∂ju− T γa ∂ju‖m,0,γ ≤ C ‖a‖Wm,1‖u‖m,0,γ .

4.2 The semi-classical parabolic calculus

In the high frequency regime, the parabolic character of the equations pre-
vails and we need a quasi-homogeneous calculus. In addition, the operators
depend on the parameter ε and appear naturally as operators in ε∂ỹ, leading
to a semi-classical calculus. The parabolic quasi-homogeneity is associated
to the dilations λ·(t, y) = (λ2t, λy) and similarly λ·(τ, γ, η) = (λ2τ, λ2γ, λη).
The corresponding quasi-norm is

(4.10) 〈ζ〉 =
(
γ2 + τ2 + |η|4

) 1
4
.

We also introduce the weight

(4.11) Λ(ζ) = (1 + 〈ζ〉4)
1
4 .

Typical examples of symbols are smooth quasi-homogeneous functions of
degree µ away from the origin. They satisfy

|∂αζ a(ζ)| ≤ Cα〈ζ〉m−〈α〉

where, for α = (ατ , αη) ∈ N× Nd−1:

〈(ατ , αη)〉 := 2|ατ |+ |αη|.
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Definition 4.7 (Symbols). Let µ ∈ R.
i) PΓµ0 denotes the space of locally L∞ functions a(ỹ, ζ) on Rd × Rd+1

+

which are C∞ with respect to ζ and such that for all α ∈ Nd there is a
constant Cα such that

(4.12) ∀(ỹ, ζ) , |∂αη̃ a(ỹ, η̃, γ)| ≤ Cα Λ(ζ)µ−〈α〉 .

ii) PΓµ1 denotes the space of symbols a ∈ PΓµ0 such that for all j, ∂ỹja ∈
PΓµ0 .

iii) For m ∈ N and k ∈ {0, 1}, PΓµk,m is the set of functions a(ỹ, x, ζ)
such that the set {(Zαa)(·, x, ·) : |α| ≤ m, x ∈ R} is bounded in PΓµk .

The spaces PΓµk,m are equipped with semi-norms

(4.13) ‖a‖(µ,k,m,N) := sup
〈α〉≤N

sup
|β|≤k

sup
|σ|≤m

sup
(x,ỹ,ζ)

Λ〈α〉−µ|Zσ∂αζ ∂
β
ỹ a(x, ỹ, ζ)| .

Next we consider a semi-classical quantification of the symbols : when
a(ζ) is independent of ỹ, the associated operator is defined by the the Fourier
multiplier a(εη̃, εγ) :

(4.14) P ε,γa u(ỹ) =
1

(2π)d

∫
eiỹη̃a(εη̃, εγ)û(η̃)dη̃.

Note that we use here the standard multiplication by ε, not the parabolic
dilation ε · η̃.

Similarly, the natural Sobolev spaces associated to the parabolic smooth-
ness are the spaces PHs of functions whose Fourier transform belong to the
L2 space with weight Λ2s. Because we use a semi-classical analysis, this
leads to introduce on PHs the following family of norms

(4.15)
∣∣u∣∣

0,s,ε,γ
:=
(∫

Rd

Λ(εη̃, εγ)2s |û(η̃)|2 dη̃
) 1

2
.

Adding the normal variable x, we introduce the norms

(4.16)
‖u‖0,s,ε,γ =

(∫ ∣∣u(x, ·)∣∣2
0,s,ε,γ

dx
) 1

2
,

‖u‖m,s,ε,γ =
∑
|α|≤m

γm−|α|‖Zαu‖0,s,ε,γ ,

which are parameter dependent norms on spaces called PH0,s and PHm,s

respectively.
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The operators P ε,γa are first constructed for symbols a ∈ PΓµ0 . Next the
action is extended to x dependent symbols:

(4.17) (P ε,γa u)(x, ·) = P ε,γa(x)u(x, ·).

When u ∈ PHm,s and a ∈ PΓµ0,m, the following identity holds:

(4.18) ZP ε,γa u = P ε,γa Zu+ P ε,γZa u .

Proposition 4.8 (Action). i) When a(ζ) is a symbol independent of ỹ,
the operator P ε,γa is defined by (4.14).

ii) For all a ∈ PΓµ0,m and s ∈ R, there is C such that for ε ∈]0, 1], γ ≥ 1
and u ∈ PHm,s :

‖P ε,γa u‖m,s−µ,ε,γ ≤ C ‖u‖m,s,ε,γ .
The constant C is bounded when a remains in a bounded set of PΓµ0,m.

iii) If a ∈ PΓµ0 is supported in Rd × {Λ(ζ) ≤ R}, then, for all u, the
spectrum of P ε,γa u is contained in {Λ(εζ) ≤ 2R}

iv) There is δ > 0, such that If a ∈ PΓµ0 is supported in Rd×{Λ(ζ) ≥ R}
then, for all u, the spectrum of P ε,γa u is contained in {Λ(εζ) ≥ δR}.
Proposition 4.9 (Symbolic calculus). Consider a ∈ PΓµ1,m and b ∈
PΓµ

′

1,m. Then ab ∈ PΓµ+µ′

1,m and there is C such that for ε ∈]0, 1], γ ≥ 1
and u ∈ PHm,s :

‖(P ε,γa ◦ P ε,γb − P ε,γab )u‖m,s−µ−µ′+1,ε,γ ≤ C ε ‖u‖m,s,ε,γ .

The constant C is bounded when a and b remain bounded in PΓµ1,m and PΓµ
′

1,m

respectively.
Moreover, if b is independent of ỹ, then P ε,γa ◦ P ε,γb = P ε,γab .

Next we consider para-products, that is operators associated to symbols
independent of ζ.

Proposition 4.10 (Para-products). For all a ∈ Wm,1, there is a constant
C such that for all u ∈ PHm,1, ε ∈]0, 1], and γ ≥ 1:

(4.19)
‖au− P ε,γa u‖m,1,ε,γ +

∑
|α|=1

ε‖a∂αy u− P ε,γa ∂αy u‖m,0,ε,γ

≤ Cε‖u‖m,0,ε,γ ,

(4.20)
γ‖au− P ε,γa u‖m,0,ε,γ + ‖a∂tu− P ε,γa ∂tu‖m,0,ε,γ

+
∑
|α|=2

ε‖a∂αy u− P ε,γa ∂αy u‖m,0,ε,γ ≤ C‖u‖m,1,ε,γ .
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Corollary 4.11. For all a ∈ Wm,2, there is a constant C such that for all
u ∈ PHm,2, ε ∈]0, 1], and γ ≥ 1:

‖au− P ε,γa u‖m,2,ε,γ ≤ Cε‖u‖m,1,ε,γ ,

4.3 A link between the two calculi

Remark first that for constant coefficient symbols a, T γa and P ε,γa are Fourier
multipliers by a(η̃, γ) and a(εη̃, εγ) respectively. Thus

(4.21) P ε,γa = T γaε with aε(ζ) = a(εζ)

The next result extends this relation to symbols which also depend on the
variables ỹ.

Proposition 4.12. Suppose that b ∈ PΓ0
1,0 has compact support in ζ. Then

the family of symbols

(4.22) bε(ỹ, x, ζ) = b(ỹ, x, εζ)

is bounded in Γ0
1,0 and there is a constant C such that for all u, ε ∈]0, 1] and

γ ≥ 1:

(4.23) γ‖T γbεu− P ε,γb u‖L2 + ‖T γbε∇ỹu− P ε,γb ∇ỹu‖L2 ≤ C‖u‖L2 .

Moreover, in the scale of norms (4.6):

‖T γbεu− P ε,γb u‖0,0,γ ≤ C‖u‖0,−1,γ ,(4.24)
‖T γbεu− P ε,γb u‖0,1,γ ≤ C‖u‖0,0,γ .(4.25)

4.4 Calculi on the boundary and traces

We have stated the theorems above for symbols and functions depending
on x, which indeed are extensions of results on Rd, via the identities (4.7)
and (4.17). We still denote by T γ and P ε,γ , the operators on Rd. We do
not make specific statements, they are in fact particular cases of the results
above, provided that the set of vector fields {Zj} is restricted to the fields
∂ỹj .

However, we will use a specific result on the boundary. Proposition 4.10
and Corollary 4.11 imply that for a ∈Wm+2,∞(Rd) there holds

(4.26) |au− P ε,γa u|m,s+1,ε,γ ≤ Cε|u|m,s,ε,γ

for s = 0 and s = 1. Interpolating implies that the estimate is satisfied for
s ∈ [0, 1] and in particular for s = 1/2.
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Taking traces, (4.7) and (4.17) imply that

(4.27)

{
(T γa u)|x=0 = T γa|x=0

u|x=0 ,

(P ε,γa u)|x=0 = P ε,γa|x=0
u|x=0 .

whenever the traces make sense. When u and a are smooth up to x = 0 on
each side {±x > 0}, we denote by u±|x=0 the two traces and

(4.28)


(T γa u)

±
|x=0 = T γ

a±|x=0

u±|x=0 ,

(P ε,γa u)±|x=0 = P ε,γ
a±|x=0

u±|x=0 .

5 Linear stability

5.1 The main estimate

In this section we study the linear stability of approximate solutions of (1.8).
We start with functions u0(t, y, x) on R1+d and ψ0(t, y) on Rd. The front
ψ0 and the restriction u±0 of u0 to R1+d

± = {±x ≥ 0} are smooth enough
(see Assumption 5.2 below). They are thought to be solutions of (1.5) but
this is not needed in this section. What we require, is that they satisfy the
Rankine-Hugoniot conditions (1.7) and that

(5.1) p(t, y) =
(
u−0 (t, y, 0), u+

0 (t, y, 0), dψ0(t, y)
)

is a Lax shock. In addition, for all point (t, y, 0) in the boundary, we as-
sume that there is a profile associated to p(t, y) which is uniformly stable
in the sense of Definition 2.9. If p(t, y) remains in a small neighborhood of
p = p(t, y), we can apply Proposition 2.6 and Theorem 2.18 to construct a
smooth family of uniformly stable profiles W (p, z). In the large, we have
to assume that the different pieces can be glued together, and this yields to
the following assumption.

Assumption 5.1. We are given a smooth manifold C ⊂ U × U × Rd of
dimension N + d and a smooth function W0 from R× C to U∗ such that:

i) every p = (u−, u+, h) ∈ C is a Lax shock,
ii) for all p ∈ C, the mapping z 7→W0(p, z) is a shock profile associated

to p,
iii) {W0(·, p); p ∈ C} is a smooth family of profiles in the sense of

Definition 2.4,
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iv) for all p ∈ C, the profile W0(·, p) is uniformly stable in the sense
of Definition 2.9.

Moreover, we are given a smooth mapping `0 from C to RN such that

∀p ∈ C, `(p) · ∂zW0(0, p) > 0.

We consider the linearized equations around functions of the form

(5.2) uε(t, y, x) = W0

(x
ε
, p(t, y)

)
+ u1

ε(t, y, x)

and fronts

(5.3) ψε = ψ0 + εψ1
ε ,

with u1
ε small and having bounded derivatives near x = 0. (In particular,

this includes the class of approximate solutions constructed in Section 6; see
(6.40), Remark 6.10.) As in [MZ1], due to the rapid variations in the bound-
ary layer, the natural smoothness for solutions is measured via conormal
estimates. Recall the Definition 4.5 of spaces Wm and Wm,k. In particular,
recall the definition of the norm

(5.4) ‖a‖Wm =
∑
|α|≤m

‖Zαu‖L∞(Rd+1
+ ) .

When necessary we specify Wm(R1+d
± ) to denote the space of functions de-

fined on R1+d
± .

Given a function u, we denote by u+ and u− its restriction to R1+d
+ =

{x > 0} and R1+d
− = {x < 0} respectively. We make the following regularity

assumptions:

Assumption 5.2. m is a given non negative integer and
i) the restrictions u±0 are Cm+2 up to the boundary and belong to the

Sobolev space Wm+2,∞(R1+d
± ) and ψ0 ∈Wm+3,∞(Rd);

ii) p, defined at (5.1), takes values in a compact subset C0 of C;
iii) the families {u1,±

ε }, {∇t,y,xu
1,±
ε }, {ε∇2

t,y,xu
1,±
ε } for ε ∈]0, 1], are

bounded in Wm(R1+d
± );

iv) the traces u1
ε |x=0 are O(ε) in L∞(Rd) and u±0 (t, y, 0) + u1,±

ε (t, y, x)
take values in a compact subset of U .

v) The family ψ1
ε is bounded in Wm+3,∞(Rd).
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To include the perturbations u1
ε and ψ1

ε , we extend the set of parameters
and consider

(5.5) q = (p, u1, h1) ∈ C × RN × Rd

where u1 is a placeholder for u1
ε and h1 a placeholder for εdψ1

ε : we denote
by qε the mapping

(5.6) qε(t, y, x) =
(
p(t, y), u1

ε(t, y, x), εdψ
1
ε(t, y)

)
.

We denote by W the extended function

(5.7) W (z, q) = W0(z, p) + u1

so that the function (5.2) reads

(5.8) uε(t, y, x) = W
(x
ε
, qε(t, y, x)

)
.

Moreover, introduce the function

(5.9) q = (u−, u+, h, u1, h1) 7→ Ψ(q) = h+ h1 ,

so that

(5.10) dψε = Ψ(qε) .

Similarly, we extend the function `0 to a function of q, setting for instance
`(q) = `0(p), and we define

(5.11) `ε(t, y) = `(qε(t, y, 0)).

With notations as in section two, to the profile W (·, q) and planar front
Ψ(q) we associate the Evans function D(q, ζ), together with its rescaled form
Drs(q, ζ). Associated to W and to the extra boundary associated to `(q),
is the modified Evans function D̃(q, ζ̌, ρ). Proposition 3.18 and Assumption
5.1 imply:

Lemma 5.3. There is a relatively compact neighborhood Q0 of C0×{0}×{0}
in C × RN × Rd such that for all (q, ζ) ∈ Q0 × R1+d

+ \{0}, D(q, ζ) 6= 0.
Moreover, there is c > 0 such that

∀(q, ζ) ∈ Q0 × R1+d
+ , |ζ| ≥ 1 : |Drs(q, ζ)| ≥ c ,(5.12)

∀(q, ζ̌, ρ) ∈ Q0 × Sd+×]0, 1] : |D̃(q, ζ̌, ρ)| ≥ c .(5.13)

56



The Assumption 5.2 immediately implies the following estimates:

Lemma 5.4. i) The families {q±ε } and {u±ε } are bounded in Wm(R1+d
± ).

ii) The families {∇t,y,xq
±
ε }, {ε∇2

t,y,xq
±
ε }, {∇t,yu

±
ε }, {ε∂xu±ε }, {ε∇t,y∂xu

±
ε }

and {ε2∂2
xu

±
ε } are bounded in Wm(R1+d

± ).
iii) For all neighborhood Q of C0 × {0} × {0} in C × RN × Rd, there

are ε0 > 0 and δ > 0 such that for all ε ∈]0, ε0] and all (t, y, x) ∈ R1+d with
|x| ≤ 2δ, there holds qε(t, y, x) ∈ Q.

iv) The family {`ε} is bounded in Wm+2,∞(Rd).

Next, we consider the linearized equation from (1.8) around (uε, ψε).
With ∂0 = ∂t, Dj = ∂j − ∂jψ∂x and f0(u) = u, the equation reads

(5.14) E(u, ψ) :=
d∑
j=0

Djfj(u)− ε

d∑
j,k=1

Dj

(
Bj,k(u)Dku

)
= 0 .

Thus the linearized equation at (u, ψ) are

(5.15) E ′u(u, ψ)u̇+ E ′ψ(u, ψ)ψ̇ = ḟ

with

E ′u(u, ψ)u̇ :=
d∑
j=0

Dj

(
Aj(u)u̇

)
− ε

d∑
j,k=1

Dj

(
Bj,k(u)Dku̇

)
− ε

d∑
j,k=1

Dj

(
u̇ · ∇uBj,k(u)Dku

)
,

E ′ψ(u, ψ)ψ̇ := −
d−1∑
j=0

∂jψ̇ ∂xfj(u) + ε

d∑
j,k=1

∂jψ̇∂x
(
Bj,k(u)Dku

)
+ ε

d∑
j,k=1

Dj

(
Bj,k(u)∂kψ̇∂xu

)
.

where Aj = f ′j . The equation holds on R1+d, but we really think of it as
a transmission problem, where the equations hold on both half space R1+d

±
and the restrictions u̇± satisfy on {x = 0} the transmission conditions

(5.16) [u̇(0)] = [∂xu̇(0)] = 0 .

To (5.15) (5.16), we add the “boundary” condition on {x = 0}:

(5.17) `ε · u̇−(0) + (∂t − ε∆y).ψ̇ = 0
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As in [MZ1] the maximal estimates involve weighted spaces. With ζ =
(τ, η, γ) introduce

(5.18) Λ = Λ(εζ) =
(
1 + (ετ)2 + (εγ)2 + |εη|4

) 1
4

and

(5.19) λ = λε(ζ) =


(
γ + ε|ζ|2

) 1
2 when |εζ| ≤ 1 ,

∼ ε−
1
2 when 1 ≤ |εζ| ≤ 2 ,

Λ√
ε
≈
(
γ + |τ |+ ε|η|2

) 1
2 when |εζ| > 1 .

Note that the three terms are of the same order ε−1/2 when ε|ζ| ≈ 1. Intro-
duce next

(5.20) µ = µε(ζ) =


|ζ|λε(ζ) when |εζ| ≤ 1 ,
∼ ε−

3
2 when 1 ≤ |εζ| ≤ 2 ,(

Λ
ε

)3/2 when |εζ| > 1 .

Given a weight function φ, we use the notation

|u|(φ) =
(∫

Rd

φ(τ, η, γ)2|û(τ, η)|2dτdη
) 1

2

where û is the Fourier transform of u on Rd. When u also depends on the
variable x we denote by ‖u‖(φ) the norm

‖u‖(φ) =
(∫

|u(·, x)|2(φ) dx

) 1
2

.

To be complete, the notation should include the interval where x varies
which is R± or R. It will be clear from the context.

With the vector fields Zj , for m ∈ N, define
(5.21)
‖u‖m,(φ) =

∑
|α|≤m

γm−|α| ‖Zαu‖(φ) , |u|m,(φ) =
∑
|α|≤m

γm−|α|
∣∣∂αt,yu∣∣(φ)

.

They are norms, depending on the parameter γ, and on ε if the weight does
as in (5.19), on spaces called Hm

φ . The L2 norm corresponds to m = 0 and
φ = 1. We denote it by ‖u‖0. More generally, we denote by ‖u‖m the norms
‖u‖m,(1) associated to φ = 1, which are also the norms defined in (4.6).

Because these norms only involve conormal and tangential derivatives,
note that u ∈ Hm

φ (R1+d) if and only the restrictions u± to R1+d
± belong to

Hm
φ (R1+d

± ).
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Theorem 5.5. Under Assumptions 2.1, 5.1 and 5.2 there are constants C,
ε0 > 0 and γ0 > 0 such that for all ε ∈]0, ε0], all u̇± and ḟ±, C∞ with
compact support on R1+d

± , all ψ̇ ∈ C∞
0 (Rd) satisfying the linearized equation

(5.15) for x 6= 0 and the boundary conditions (5.16) (5.17), there holds for
all γ ≥ γ0:

(5.22)

∥∥e−γtu̇∥∥
m,(λ2)

+
√
ε
∥∥e−γt∂xu̇∥∥m,(λ)

+
∣∣e−γtu̇(0)

∣∣
m,(λ

√
Λ)

+ε
∣∣e−γt∂xu̇(0)

∣∣
m,(λ/

√
Λ)

+
∣∣∣e−γtψ̇∣∣∣

m,(µΛ2)
≤ C

∥∥∥e−γtḟ∥∥∥
m
.

Remark 5.6. We prove the estimates for u̇ on both sides R1+d
± . But

the transmission condition (5.16) implies that ∂xu̇ has no Dirac mass on the
boundary and estimations for ∂xu̇ on both side are equivalent to estimations
on the whole space.

Remark 5.7. In particular, (5.22) implies

(5.23)
∥∥e−γtu̇∥∥

m,(λ2)
+
∣∣e−γtu̇(0)

∣∣
m,(λ

√
Λ)

+
∣∣∣e−γtψ̇∣∣∣

m,(µΛ2)
≤ C

∥∥∥e−γtḟ∥∥∥
m
,

which may be viewed as a conormal version of Majda’s estimate
(5.24)∥∥e−γtu̇∥∥

Hm,(γ) +
∣∣e−γtu̇(0)

∣∣
Hm,(

√
γ) +

∣∣∣e−γtψ̇∣∣∣
Hm,(|ζ|√γ)

≤ C
∥∥∥e−γtḟ∥∥∥

Hm
,

where the weighted Sobolev norms |f |Hm,(φ) , ‖f‖Hm,(φ) are defined exactly
as were |f |m,(φ), ‖f‖Hm,(φ) , but with the conormal derivative Zd = x√

1+x2
∂x

replaced by the usual partial derivative ∂x in (5.21). Indeed, away from the
shock layer |x| ≤ ε, (5.23) implies (5.24); thus, we recover the bounds of
Majda in the limit as ε→ 0.

To understand at a heuristic level the appearance of conormal deriva-
tives in (5.23), consider solutions (u0, ψ0), (u0 + u̇0, ψ0 + ψ̇0) of the invis-
cid equations with forcing terms f , f + ḟ supported away from the shock
boundary x̃ = 0, and the associated zero-order viscous corrections (U0, ψ0),
(U0 + U̇0, ψ0 + ψ̇0) obtained by replacing the discontinuity from u− to u+

with viscous shock profile w(x/ε, u−(0), u+(0)). Then, the viscous correc-
tions approximately satisfy the viscous equations (1.8)–(1.9) and (U̇0, ψ̇0)
approximately satisfy the linearized equations (1.17) but not the additional
boundary condition (1.18); rather, ψ̇0 approximately satisfies the lineariza-
tion of Rankine–Hugoniot equations (1.7). However, a calculation similar
to that of (1.25), Remark 1.1.2 shows that (U̇0, ψ̇0) is order ε close to the
approximate solution

(U̇ , ψ̇) :=
(
(U0 + U̇0)(x− δ)− U0, ψ̇0 + δ

)
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of (1.17)–(1.18) determined by the truncated version ψ̇t = ` · U̇|x̃=0 of (1.18)
with δ(y, 0) := 0, which yields (after brief calculation)

(5.25)
δt ∼ O(|u̇0||x̃=0)− δ` · ∂xw(x/ε, u−(0), u+(0))

∼ O(|u̇0||x̃=0)− (c(y, t)/ε)δ,

δ(y, 0) ≡ 0 with c(y, t) > 0, and thereby δ(y, t) = O(ε supt |u̇0(y, t)||x̃=0).
Observing that order |u̇±| perturbations in the trace values (u±0 ) lead

to order |u̇±|ε−ke−θx/ε perturbations in the k-th derivative of the profile, we
obtain from the sharp bound (5.24) a sharp conormal bound
(5.26)∥∥e−γtν(x)u̇∥∥

m,(γ)
+
∣∣e−γtu̇(0)

∣∣
m,(

√
γ)

+
∣∣∣e−γtψ̇∣∣∣

Hm,(|ζ|√γ)
≤ C

∥∥∥e−γtḟ∥∥∥
m
,

on the approximate linearized solution (U̇ , ψ̇) of our construction, where

ν(x) :=
√

1+|x̃|2
γ+|x̃|2 is order one away from the shock layer and order γ−1/2

within. Apart from the difference between weights λ2, λ
√

Λ, µΛ2 and their
ε → 0 limits γ,

√
γ, |ζ|√γ, reflecting the slight smoothing effects of vis-

cosity in the medium and high frequency regimes, and the harmless ν(x)
factor (γ is held fixed in the nonlinear arguments to follow), this is exactly
estimate (5.23). Thus, (5.23) is a natural generalization of (5.24) to the
singular-perturbation context. Note that computation (5.25) gives heuristic
justification of our use of the inviscid shock location in the zero-order vis-
cous approximation, rather than the location prescribed by (1.18) as done
in higher-order approximations.

We set u = e−γtu̇, f = e−γtḟ , ψ = e−γtψ̇ and we prove the estimate

(5.27)

‖u‖m,(λ2) +
√
ε ‖∂xu‖m,(λ) + |u(0)|m,(λ√Λ)

+ ε |∂xu(0)|m,(λ/√Λ) + |ψ|m,(µΛ2)

. ‖f‖m + ‖u‖m,(Λ) + ε ‖∂xu‖m + |u(0)|m,(Λ)

+ ε |∂xu(0)|m + |∇γψ|m,(Λ)

where . means that the left hand side is estimated by constant times the
right hand side, with a constant independent of ε, γ, u, f and ψ. In addition,
∇γψ denotes ((∂t + γ)ψ, ∂1ψ, . . . , ∂d−1ψ).

Indeed, (5.19) implies that λ2 & γ and also that λ2 & γ1/2Λ for γ ≥ 1.
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Similarly, µΛ ≥ (γε )
1
4 |ζ|. Therefore

‖u‖m,(Λ) . γ−1/2‖u‖m,(λ2) , ‖∂xu‖m . γ−1/2‖∂xu‖m,(λ) ,

|u(0)|m,(Λ) . γ−1/4|u(0)|m,(λ√Λ) , |∂xu(0)|m,(Λ) . γ−1/4|∂xu(0)|m,(λ√Λ ,

|∇γψ|m,(Λ) ≈ |ψ|m,(|ζ|Λ) . γ−1/4|ψ|m,(µΛ2) .

Hence, for γ large enough, (5.27) implies the estimate of Theorem 5.5.
The proof of this estimate is parallel to the analysis of [MZ1]. Away from

the boundary, the hyperbolic-parabolic structure of the equation is sufficient
to imply the estimate. So we concentrate on the analysis near the boundary.
There, we first reduce ourselves to a first order system in ∂x, neglecting some
lower order terms in the equation. Next, we replace the differential equation
by a para-differential one, as in [MZ1], [GMWZ2]. This costs only further
admissible error terms. When this is achieved, we make two different choices
of “good unknowns” in the high and low frequency regime respectively, to
get paradifferential equations which have been analyzed in [MZ1].

5.2 Reductions

We compute the linearized operators. It is convenient to introduce the
condensed notations:

B̃j,k(u, h) = Bj,k(u) when j, k < d ,

B̃j,d(u, h) =
d∑

k=1

νkBj,k(u) , B̃d,j(u, h) =
d∑

k=1

νkBk,j(u) when j < d ,

B̃d,d(u, h) =
d∑

j,k=1

νkνjBj,k(u) ,

with ν = (−h1, . . . ,−hd−1, 1), and

Ãj(u, h) = Aj(u) when j < d ,

Ãd(u, h) =
d∑
j=1

νkAj(u)− h0Id .

The matrices Ãd, B̃j,d and B̃d,d were called Aν , Bj,ν and Bν respectively, in
sections one and two. Introduce next

B]
j,k(z, q) = B̃j,k(W (q, z),Ψ(q)) , A]j(z, q) = Ãj(W (q, z),Ψ(q))
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and
Bε
j,k(t, y, x) = B]

j,k(x/ε, qε) = B̃j,k(uε, dψε) ,

Aεk(t, y, x) = A]j(x/ε, qε) = Ãj(uε, dψε) .

Similarly, we consider the first and second derivatives of the coefficients.
Calling ∇uÃj the derivative of Ãj with respect to u, with some abuse of
notation,∇uA

ε
j denotes the function∇uÃj(uε, dψε). We use similar notation

for the derivatives of the Bj,k.
Using these conventions and remarking that ∂xψ = 0, one checks that

the left hand side of (1.8) reads

(5.28) E(u, ψ) = ∂tu+
d∑
j=1

Ãj(u, dψ)∂ju− ε

d∑
j,k

∂j
(
B̃j,k(u, dψ)∂ku

)
.

Therefore
e−γtE ′u(uε, ψε)

(
eγtu

)
= Lε,γ,tu

where

(5.29) Lε,γ,tu = (∂t + γ)u+
d∑
j=1

Aε,t
j ∂ju− ε

d∑
j,k=1

Bε
j,k∂

2
j,ku+

1
ε
Eε,tu

with

Aε,t
j v̇ = Aεj v̇ − ε

∑
k

(∂kBε
k,j)v̇ − ε

∑
k

(v̇ · ∇uB
ε
j,k)∂kuε ,

Eε,tu̇ =ε
∑
j

(u̇ · ∇uA
ε
j)∂juε

− ε2
∑
j,k

(u̇ · ∇uB
ε
j,k)∂

2
j,kuε − ε2

∑
j,k

(
(u̇ · ∂j(∇uB

ε
j,k)
)
)∂kuε ,

The subscript t in Lε,γ,t or Aε,t
j means “total”. We split the coefficients

into their principal part and remainders : remainders are terms which are
smaller by a factor ε, taking into account that the coefficients depend on
uε = W (qε, x/ε) and that

∂xuε = ε−1∂zW (qε, x/ε) + ∂xqε · ∇qW (qε, x/ε) .

Accordingly, we have the splitting:

(5.30) Aε,t
j = Aε

j + εAε,r
j , Eε,t = Eε + εEε,r
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with principal parts given by

Aε
j v̇ = Aεj v̇ − (∂zW · ∇uB

ε
d,j)v̇ − (v̇ · ∇uB

ε
j,d)∂zW ,

Eεu̇ = (u̇ · ∇uA
ε
d)∂zW − (u̇ · ∇uB

ε
d,d)∂

2
zW −∇2

u,uB
ε
d,d(u̇, ∂zW )∂zW .

Here, ∂zW and ∂2
zW are evaluated at q = qε(t, y, x) and z = x/ε. Moreover,

∇2Bε
d,d(·, ·) stands for the second derivative ∇2B̃ε

d,d(u, h)(·, ·) evaluated at
u = uε, h = dψε. With (5.8) (5.10), we note that the principal coefficients
are functions of (qε, x/ε):

(5.31) Bε
j,k = B]

j,k(x/ε, qε) , Aε
j = A]

j(x/ε, qε) , Eε = E](x/ε, qε) ,

with

B]
j,k(z, q) = B̃j,k(W (q, z),Ψ(q))

A]
j(z, q)v̇ = Ãj v̇ − (∂zW · ∇uB̃d,j)v̇ − (v̇ · ∇uB̃j,d)∂zW ,

E](z, q)u̇ = (u̇ · ∇uÃd)∂zW − (u̇ · ∇uB̃d,d)∂2
zW −∇2

u,uB̃d,d(u̇, ∂zW )∂zW .

where the tilded functions are now evaluated at u = W (q, z) and h = Ψ(q),
while ∂zW and ∂2

zW are functions of (q, z).
Thanks to Assumption 5.2, the remainders satisfy :

(5.32) sup
ε
‖Aε,r

j ‖Wm < +∞ , sup
ε
‖Eε,r‖Wm < +∞ .

Substituting the splitting (5.30) of the coefficients in the definition (5.29) of
Lε,γ,t yields

(5.33) Lε,γ,t = Lε,γ + εLε,γ,r .

With (5.32), we obtain that

(5.34) ‖εLε,γ,rv‖m . ‖u‖m + ‖ε∇y,xu‖m .

Similarly,
e−γtE ′ψ(uε, ψε)

(
eγtψ

)
= L1

ε,γ,tψ

with

(5.35) L1
ε,tψ := −1

ε

Cε,t
0 (∂t + γ)ψ +

d−1∑
j=1

Cε,t
j ∂jψ + ε

d−1∑
j,k=1

Cε,t
j,k∂

2
j,kψ


63



and

Cε,t
0 = ε∂xuε ,

Cε,t
j = ε∂xfj(uε)−

d∑
k=1

ε2∂x
(
Bε
j,k∂kuε

)
−

d∑
k=1

ε2∂k
(
Bε
k,j∂xuε

)
,

Cε,t
j,k = −εBε

j,k∂xuε .

We have factored out ε−1 in the right hand side of (5.35) in order to get
bounded coefficients. Again, we split the coefficients into their principal part
plus remainders, getting

(5.36) L1
ε,γ,t = L1

ε,γ + εL1
ε,γ,r .

The coefficients of εL1
ε are

(5.37) Cε
j = C]j(x/ε, qε) , Cε

j,k = C]j,k(x/ε, qε)

with

C]
0(z, q) = ∂zW ,

C]
j(z, q) = ∂zfj(W )− ∂z

(
Bj,d(W,Ψ)∂zW

)
− ∂z

(
Bd,j(W,Ψ)∂zW

)
,

C]
j,k(z, q) = −Bj,k(W )∂zW .

Using Lemma 5.4 and taking account of the decay in x of the coefficients
Cε,rj and Cε,rj,k of εL1

ε,r, we have therefore

(5.38) ‖εL1
ε,rψ̇‖m . |∇t,yψ̇|m + |ε∇2

yψ̇|m .

We remark that all the coefficients of L1
ε,γ involve at least one derivative

in z ofW thus are exponentially decaying in x/ε. Therefore, for all δ > 0 and
κ ∈ C∞

0 (]− δ, δ[) equal to one for |x| ≤ δ/2, the coefficients ε−1(1−κ(x))Cε
∗

decay in x. Hence, there holds:

(5.39) ‖(1− κ)L1
εψ̇‖m . |∇t,yψ̇|m + |ε∇2

y,xψ̇|m .

With (5.34) (5.38) and (5.39), the main estimate (5.27) follows from the
next proposition.

Proposition 5.8. There are δ > 0 and κ ∈ C∞
0 (] − δ, δ[) equal to one for

|x| ≤ δ/2, such that the estimate (5.27) holds for all ε ∈]0, 1], all γ ≥ 1, all
smooth u, f and ψ with compact support satisfying

Lε,γu+ κL1
ε,γψ = f ,(5.40)

[u(0)] = 0 , [∂xu(0)] = 0 ,(5.41)
(∂t + γ − ε∆y)ψ + `ε · u(0) = 0 .(5.42)
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We first prove the estimate for functions u and f supported in the strip
{|x| ≤ 2δ}. There, we reduce the equation to a first order system in ∂x.
According to sections 2 and 3, taking advantage of the conservative form
of the equations, a natural additional unknown would be of the form w =
εBν∂xu−Au. However, the estimates above show an improved smoothness
in v = ε∂xu, since they give control of v/

√
ε, and no improvement for w.

This leads to introduce explicitly v from the beginning and to forget about
the conservative form of the equations.

Thus, with U = t(u, v), the equation (5.40) reads

(5.43) ∂xU −
1
ε
Gε,γ = F − 1

ε
G1
ε∇γψ

with

Gε,γ =
(

0 Id
Mε,γ Aε

)
, G1

ε =
(

0
κM1

ε

)
, F =

(
0

(Bε
d,d)

−1f

)
,

and

Aε = (Bε
d,d)

−1
{

Aε
d −

∑
j<d

(
Bε
j,d +Bε

d,j

)
ε∂j

}
,

Mε,γ,t = (Bε
d,d)

−1
{

Eε + ε(∂t + γ) +
∑
j<d

Aε
jε∂j −

∑
j,k<d

Bε
j,kε

2∂j∂k

}
.

Moreover, ∇γψ =
(
∂t + γ)ψ, ∂y1ψ, . . . , ∂d−1ψ

)
and

(5.44) M1
ε∇γψ = M1

ε,0(∂t + γ)ψ +
d−1∑
j=1

M1
ε,j∂y1ψ

with

M1
ε,0 = (Bε

d,d)
−1Cε

0 , M1
ε,j = (Bε

d,d)
−1
(
Cε
j +

d−1∑
k=1

Cε
j,kε∂k

)
for j ≥ 1 .

The boundary condition (5.41) is replaced by

(5.45) [U(0)] = 0 .

We have to prove that for (U,ψ, F ) satisfying (5.43), (5.45), and (5.42), with
U and F supported in {|x| ≤ 2δ}, there holds

(5.46)
‖u‖m,(λ2) +

1√
ε
‖v‖m,(λ) + |u(0)|m,(λ√Λ)

+ |v(0)|m,(λ/√Λ) + |ψ|m,(µΛ2) . RHS

where RHS denotes the right hand side of (5.27).
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5.3 Paralinearisation

Introduce the symbols of the operators defined after (5.43):

(5.47)

Aε = aε(t, y, x, εDy) ,
Mε = mε(t, y, x, εDt, εDy, εγ)

M1
ε,j = m1

ε,j(t, y, x, εDy) .

The symbols aε(t, y, x, ζ), mε(t, y, x, ζ) and m1
ε,j(t, y, x, ζ) are polynomials

of degree one, two and one respectively in ζ = (τ, η, γ) and Dy = −i∂y,
Dt = −i∂t. With (5.31) (5.37), they are functions of x/ε and qε:

aε(t, y, x, ζ) = A
(x
ε
, qε(t, y, x), ζ

)
mε(t, y, x, ζ) = M

(x
ε
, qε(t, y, x), ζ

)
m1
ε,j(t, y, x, ζ) = κ(x)M1

j

(x
ε
, qε(t, y, x), ζ

)
.

with

A(z, q, ζ) = (B]
d,d)

−1
(
A]
d −

d−1∑
j=1

iηj(B
]
j,d +B]

d,j)
)

M(z, q, ζ) = (B]
d,d)

−1
(
E] + (iτ + γ)Id +

d−1∑
j=1

iηjA
]
j +

d−1∑
j,k=1

ηjηkB
]
j,k

)
M1

0(z, q) = (B]
d,d)

−1C]
0 ,

M1
j (z, q, ζ) = (B]

d,d)
−1
(
C]
j −

d−1∑
k=1

iηkC
]
j,k

)
for j ≥ 1 .

Remark 5.9. The reader should remark that these notations are slightly
different from but parallel to the notations used in section three : the re-
duction to first order (5.43) is different from, but of course equivalent to the
reduction (3.3). The choice made above is better adapted to the formula-
tion of sharp energy estimates, while the reduction used in section three was
better adapted to the computation of Evans functions.

The estimates of Lemma 5.4 implies that

Lemma 5.10. The symbols aε and m1
ε are uniformly bounded in PΓ1

1,m. The
mε are uniformly bounded in PΓ2

1,m.
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Thus, by Proposition 4.10 , we can compare the differential operators
Aε, Mε and M1

ε to their paradifferential quantization P ε,γaε , P ε,γmε , P ε,γ
m1

ε
. We

note that the norms ‖ · ‖m,(Λs) coincide with the norms called ‖ · ‖m,s,ε,γ in
(4.16). Therefore Proposition 4.10 implies:∥∥Aεv − P ε,γaε

v
∥∥
m

. ε‖v‖m ,∥∥Mεu− P ε,γmε
v
∥∥
m

. ε‖u‖m,(Λ) ,∥∥κM1
ε∇γψ − P ε,γ

m1
ε
∇γψ

∥∥
m

. ε|∇γψ|m .

Parallel to (5.44), we have used the notation

(5.48) P ε,γ
m1

ε
∇γψ = P ε,γ

m1
ε,0

(∂t + γ)ψ +
d−1∑
j=1

P ε,γ
m1

ε,j
∂jψ .

Therefore, if (U,F, ψ) satisfy (5.43), there holds

∂xU −
1
ε
P ε,γgε

U = F ′ − 1
ε
P ε,γ
g1ε
∇γψ

with

gε =
(

0 Id
mε aε

)
, g1

ε =
(

0
m1
ε

)
, F ′ =

(
0
f ′

)
and

(5.49) ‖f ′‖m . ‖f‖m + ‖u‖m,(Λ) + ‖v‖m + |∇γψ|m,(Λ)

Consider next a function χ ∈ C∞
0 (Rd+1) supported in the ball |ζ| ≤ 2ρ0

and equal to one on the ball |ζ| ≤ ρ0. Then the commutators of P ε,γχ with
P ε,γgε and P ε,γ

m1
ε

are of order O(ε) and therefore

(5.50) ∂xP
ε,γ
χ U − 1

ε
P ε,γgε

P ε,γχ U = F ′ − 1
ε
P ε,γ
g1ε
∇γP

ε,γ
χ ψ

with a new function F ′ = t(0, f ′) which still satisfies (5.49). Similarly,

(5.51) ∂xP
ε,γ
1−χU −

1
ε
P ε,γgε

P ε,γ1−χU = F ′ − 1
ε
P ε,γ
g1ε
∇γP

ε,γ
1−χψ

with F ′ = t(0, f ′) which satisfies (5.49).
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Next, we paralinearize the boundary conditions. Clearly, the jump con-
ditions are preserved:

(5.52) [P ε,γχ U ] = 0 , [P ε,γ1−χU ] = 0 .

We now investigate the extra boundary condition. By Assumption 5.2, `ε is
bounded in Wm+2,∞ and by (4.26) there holds∣∣`ε · u(0)− P ε,γ`ε u(0)

∣∣
m,(Λ3/2)

. ε
∣∣u(0)

∣∣
m,(Λ1/2)

.

Thus, the extra boundary condition (5.42) implies that

(∂t + γ − ε∆y)ψ + P ε,γ`ε u(0) = e ,

with

(5.53)
∣∣e∣∣

m,(Λ3/2)
. ε
∣∣u(0)

∣∣
m,(Λ1/2)

.

Commuting with P ε,γχ , implies that

(5.54) (∂t + γ − ε∆y)P ε,γχ ψ + P ε,γ`ε P ε,γχ u(0) = e′ ,

(5.55) (∂t + γ − ε∆y)P
ε,γ
1−χψ + P ε,γ`ε P ε,γ1−χu(0) = e′′ .

where e′ and e′′ satisfy (5.53).

5.4 The high and medium frequencies analysis

In this subsection, we prove estimates for P ε,γ1−χU . The strategy is to use
Lemma 1.2 to reduce the fully linearized equation to the partially linearized
equation for u−ψ∂xuε, which is well posed for ε|ζ| ≥ c > 0. Next the front
ψ is recovered from the extra boundary condition.

Consider

P](z, q) = Ãd(W,Ψ)∂zW − ∂z

(
B̃d,d(W,Ψ)∂zW

)
.

Recall from Lemma 2.13 the following identity:

(5.56)
−∂3

zW +A(z, q, ζ)∂2
zW+M(z, q, ζ)∂zW

= L1(z, q, ζ) +
(
B̃d,d(W,Ψ)

)−1
∂zP]
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with

L1(z, q, ζ) = (iτ + γ)M1
0(z, q) +

d−1∑
j=1

iηjM1
j (z, q, ζ) .

When q = (p, 0, 0) and p ∈ C, W is an exact solution of the profile equation
P(z, q) = 0 and therefore ∂zP(z, q) = 0. Thus:

(5.57) E](z, q) :=
(
B̃d,d(W,Ψ)

)−1
∂zP](z, q) = u1W1(z, q) + h1W2(z, q)

where W1 and W2 are smooth functions of their argument with exponential
decay in z. Introduce the symbols

(5.58)
rε = κ(x)∂zW

(
x
ε , qε(t, y, x)

)
,

l1ε = κ(x)L1
(
x
ε , qε(t, y, x), ζ

)
,

e1ε = ε−1κ(x)E]
(
x
ε , qε(t, y, x)

)
.

Lemma 5.11. rε, ε∂xrε and e1ε are bounded families in PΓ0
1,m; the l1ε are

bounded in PΓ2
1,m and

(5.59) e2ε := −ε∂2
xrε + aε∂xrε +

1
ε
mεrε −

1
ε
l1ε

is bounded in PΓ1
1,m. Moreover, rε is smooth across {x = 0}.

Proof. The statement for rε and l1ε are clear. When performing the sub-
stitution q = qε in (5.57), h1 is replaced by εdψ1

ε . Thus the substitution
in ε−1h1W2 yields symbols κ(x)dψ1

ε(t, y)W2(x/ε, qε) which are bounded in
Wm as well as their tangential derivatives.

Next, the placeholder u1 is replaced by u1
ε. Using Taylor expansion,

there holds:
u1
ε(t, y, x) = u1

ε(t, y, 0) + xũ1
ε(t, y, x) .

By Assumption 5.2, ε−1u1
ε(t, y, 0) is bounded and contributes to a bounded

term in Wm.
The ũ1

ε are bounded inWm and the exponential decay of W1 implies that
(x/ε)W1(x/ε, qε) is bounded inWm. Therefore, the symbols κ(x)ũ1

ε(x/ε)W1(x/ε, qε)
are also bounded in Wm as well as their tangential derivatives.

The identity (5.56) implies that the left hand side of (5.59) is e1ε plus
terms which involve derivatives of κ:

−ε(∂xκ)(∂xrε)− ε(∂2
xκ)rε + aε(∂xκ)rε .

This last term is of degree one and bounded in PΓ1
1,m.
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Next we recall from (5.7) that the profile W is of the form W (q, z) =
W0(p, z) + u1 when q = (p, u1, h1) and W0 is given by Assumption 5.1.
Therefore, ∂zW (q, z) = ∂zW0(p, z) implying that

rε(t, y, x) = κ(x)∂zW0(p(t, y), x/ε).

This shows that rε is C∞ in x and the lemma is proved.

Next, we come to the microlocal version of the change of unknowns
u− ψ∂xuε, introduced in section two. Transposed to the first order system,
this would yield to consider U − ψ t(∂xuε, ε∂2

xuε). However, we replace the
multiplication by (∂xuε, ε∂2

xuε) by the corresponding the para-product and
we keep only the main part of uε, that is W (qε, x/ε). This leads to consider

(5.60) U1 =
(
u1

v1

)
:= P ε,γ1−χU − P ε,γRε

P ε,γ1−χθ , θ =
1
ε
ψ , Rε =

(
rε

ε∂xrε

)
.

Introduce next the symbols

(5.61) cε(t, y, ζ) = iτ + γ + |η|2 + `ε · ∂zW (qε(t, y, 0), 0) .

The family {cε} is bounded in PΓ2
m,1.

Proposition 5.12. U1 and θ satisfy

∂xU1 −
1
ε
P ε,γgε

U1 = F ′1 , [U1(0)] = 0 ,(5.62)

P ε,γcε P ε,γ1−χθ + P ε,γ`ε u1(0) = e′(5.63)

where F ′1 = t(0, f ′1) satisfies (5.49) and

(5.64)
∣∣e′∣∣

m,(Λ3/2)
. ε

∣∣u(0)
∣∣
m,(Λ1/2)

+ ε
∣∣∇γψ

∣∣
m,(Λ1/2)

Proof. When ϕ is independent of x, the symbolic calculus implies that

∂xP
ε,γ
rε ϕ = P ε,γ∂xrε

ϕ .

Moreover,

l1ε = m1
ε,0(iτ + η) +

d−1∑
j=1

m1
ε,jiηj .

Since P ε,γ is a semiclassical quantization, P ε,γiτ+γ = ε(∂t+ γ) and P ε,γiηj
= ε∂j .

Therefore,

(5.65) P ε,γ
m1

ε
∇γϕ =

1
ε
P ε,γ
l1ε
ϕ .
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Substituting the definition of U1 in equation (5.51) yields:

∂xU1 −
1
ε
P ε,γgε

U1 = F ′ +
(

0
eε

)
P ε,γ1−χθ

with
eε = −εP ε,γ

∂2
xrε

+ P ε,γaε
P ε,γ∂xrε

+
1
ε
P ε,γmε

P ε,γrε − 1
ε
P ε,γ
l1ε

.

All the symbols are compactly supported in x. Hence, the symbolic calculus
and (5.59) imply that

eε = P ε,γ
e2ε

+ e′ε

where the remainder e′ε satisfies∥∥e′ε(x)ϕ∥∥m . |ϕ|m,(Λ) .

Since P ε,γ
e2ε

satisfies similar estimates, there holds∥∥∥eε(x)P ε,γ1−χθ
∥∥∥
m

.
∣∣∣P ε,γ1−χθ

∣∣∣
m,(Λ)

.
∣∣∣εP ε,γ1−χ∇γθ

∣∣∣
m,(Λ)

= |∇γψ|m,(Λ) .

For the second inequality, we have used that 1− χ is supported away from
the origin, so that |(1 − χ(εζ)| . ε|ζ|. This shows that the right hand side
F ′1 in (5.62) satisfies (5.49).

In addition, by (5.11), rε is continuous across x = 0, as well as its
derivative in x. Therefore, the jump of P ε,γRε

P ε,γ1−χθ is equal to zero. With
(5.51) this implies that [U1(0)] = 0.

Next we note that

P ε,γ1−χu = u1+P ε,γrε P
ε,γ
1−χθ and

(
ε(∂t+γ)−ε2∆yψ

)
P ε,γ1−χ = P ε,γ

iτ+γ+|η|2P
ε,γ
1−χθ .

The symbolic calculus implies that

e′′1 :=
(
P ε,γ`ε P ε,γrε(0) − P ε,γ`εrε(0)

)
P ε,γ1−χθ

satisfies∣∣e′′1∣∣m,(Λ3/2)
. ε
∣∣P ε,γ1−χθ

∣∣
m,(Λ1/2)

=
∣∣P ε,γ1−χψ

∣∣
m,(Λ1/2)

.
∣∣ε∇γψ

∣∣
m,(Λ1/2)

.

Here, rε(0) denotes the symbol rε evaluated at x = 0. The boundary condi-
tion (5.55) and the definitions of rε and cε imply that

P ε,γcε P ε,γ1−χθ + P ε,γ`ε u1(0) = e′′ + e′′1 .

With the estimate (5.53) for e′′, this implies (5.64).
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We now come to the main argument. In [MZ1] it was part of the argu-
ment to reduce the high and medium frequency regimes to problems similar
to (5.62):

∂xP
ε,γ
1−χU −

1
ε
P ε,γgε

P ε,γ1−χU = F ′

on {x ≥ 0}, with Dirichlet boundary condition P ε,γ1−χu(0) = 0, assuming
that the corresponding rescaled Evans function is bounded from below by
a positive constant. The analysis clearly extends to general boundary con-
dition, and to the transmission problem for (5.63) (see [GMWZ2]). By
Assumption 5.2 and (5.12), the problem (5.62) satisfies the uniform stabil-
ity condition for ζ 6= 0, for parameters q in Q0. For |x| and ε small enough,
qε(t, y, x) remains in Q0 and therefore, Propositions 4.6 and 4.10 of [MZ1]
imply the following maximal estimates:

Theorem 5.13. There are δ0 > 0 and ε0 > 0 such that if δ ∈]0, δ0], then
for all ρ0 > 0, all cut off functions κ(x) and χ(ζ) as above, all ε ∈]0, ε0],
and all (u, f, ψ) satisfying (5.40)(5.41) with u and f supported in |x| ≤ 2δ,
the function U1 defined by (5.60) satisfies

(5.66)

1
ε
‖u1‖m,(Λ2) +

1
ε
‖v1‖m,(Λ)

+
1√
ε
|u1(0)|m,(Λ3/2) +

1√
ε
|v1(0)|m,(Λ1/2) . RHS

where RHS denotes the right hand side of (5.27).

Next, knowing U1, we can estimate θ using the extra boundary condition
(5.63).

Proposition 5.14. With assumptions as in Theorem 5.13, for ε is small
enough, there holds

(5.67) ε−3/2
∣∣P ε,γ1−χψ

∣∣
m,(Λ7/2)

= ε−1/2
∣∣P ε,γ1−χθ

∣∣
m,(Λ7/2)

. RHS .

Proof. By Assumptions 5.2, there holds

‖`ε · ∂zW (qε, 0)− `(p(·)) · ∂z(p(·), 0)‖L∞ → 0 as ε→ 0 .

Since the range of p(·) is contained in a compact subset of C, Assumption
5.2 implies that for ε small enough,

(5.68) 1 . `ε · ∂zW (qε, 0)
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and therefore
1 + |τ |+ γ + |η|2 . |cε| .

Thus cε is elliptic and 1/cε ∈ PΓ−2
1,m. We use standard ellipticity arguments

for the equation P ε,γcε ϕ = g : multiplying the equation by P ε,γ1/cε
and using

the symbolic calculus implies that∣∣P ε,γ1−χθ
∣∣
m,(Λ7/2)

.
∣∣P ε,γcε P ε,γ1−χθ

∣∣
m,(Λ3/2)

+ ε
∣∣P ε,γ1−χθ

∣∣
m,(Λ3/2)

.

Together with equation (5.63), this implies∣∣P ε,γ1−χθ
∣∣
m,(Λ7/2)

.
∣∣P ε,γ1−χu1(0)

∣∣
m,(Λ3/2)

+
∣∣e′∣∣

m,(Λ3/2)
+ ε
∣∣P ε,γ1−χθ

∣∣
m,(Λ3/2)

.

By (5.66) and by (5.64) the first two terms in the right hand side are domi-
nated by

√
εRHS and εRHS respectively. Moreover,∣∣P ε,γ1−χθ
∣∣
m,(Λ3/2)

= ε−1
∣∣P ε,γ1−χψ

∣∣
m,(Λ3/2)

.
∣∣∇γψ

∣∣
m,(Λ1/2)

. RHS .

Therefore
∣∣P ε,γ1−χθ

∣∣
m,(Λ7/2)

.
√
εRHS and the proposition is proved.

Knowing bounds U1 and ψ, we can estimate U :

Theorem 5.15. With notations as above, if δ and ε are small enough, then

1
ε

∥∥∥P ε,γ1−χu
∥∥∥
m,(Λ2)

+
1
ε

∥∥∥P ε,γ1−χv
∥∥∥
m,(Λ)

+
1√
ε

∣∣∣P ε,γ1−χu(0)
∣∣∣
m,(Λ3/2)

+
1√
ε

∣∣∣P ε,γ1−χv(0)
∣∣∣
m,(Λ1/2)

+
1
ε3/2

∣∣∣P ε,γ1−χψ
∣∣∣
m,(Λ7/2)

. RHS .

Proof. Adding up the estimates (5.66) and (5.67), one obtains:

1
ε
‖u1‖m,(Λ2) +

1
ε
‖v1‖m,(Λ) +

1√
ε
|u1(0)|m,(Λ3/2)

+
1√
ε
|v1(0)|m,(Λ1/2) +

1
ε3/2

∣∣P ε,γ1−χψ
∣∣
m,(Λ7/2)

. RHS .

Next, we switch back to P ε,γ1−χU = U1 + 1
εP

ε,γ
Rε
P ε,γ1−χψ. The estimate of The-

orem 5.15 follows from the estimate above and

(5.69)
1
ε2
∥∥P ε,γRε

P ε,γ1−χψ
∥∥
m,(Λ2)

.
1
ε3/2

∣∣P ε,γ1−χψ
∣∣
m,(Λ7/2)

.

Indeed, we note that the symbol Rε has the special form

Rε(t, y, x, ζ) = R̃ε(
x

ε
, t, y, x, ζ)
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with R̃ε exponentially decaying in z, as well as all its derivatives. Recall
that in the definition (4.17) of P ε,γ , x is a parameter. Therefore, for all x:∣∣(P ε,γRε

ϕ)(x)
∣∣
0,(Λ2)

. e−δ|x|/ε
∣∣ϕ∣∣

0,(Λ2)
.

Taking the L2 norm in x inplies∥∥P ε,γRε
ϕ
∥∥

0,(Λ2)
.
√
ε
∣∣ϕ∣∣

0,(Λ2)
.

Commuting with Z-derivatives, one obtains:

(5.70)
∥∥P ε,γRε

ϕ
∥∥
m,(Λ2)

.
√
ε
∣∣ϕ∣∣

m,(Λ2)
.

This imples (5.69) and the theorem is proved.

5.5 The low frequency analysis

In this subsection, we prove estimates for P ε,γχ U . Following the analysis of
the modified Evans function in section three, the idea is to use for ζ small, a
new symbol r̃ε(t, y, x, ζ), vanishing at ζ = 0 but still satisfying (5.59), that
is, such that:

ẽε := −ε∂2
xr̃ε + aε∂xr̃ε + ε−1mεr̃ε − ε−1l1ε ∈ PΓ1

0,m .

The choice rε = ∂zW (qε, z) made in the previous subsection satisfied for ε
small (see (5.68)):

(5.71) [rε(0)] := r+ε |x=0 − r−ε |x=0 = 0 , `ε · rε(0) > 0 .

As in section 3.3, we now require that the symbol r̃ε vanishes at ζ = 0,
which forces to relax the jump condition.

Recall that l1ε given by (5.58) satisfies:

(5.72) l1ε = (iτ + γ)m1
ε,0 +

d−1∑
j=1

iηjm
1
ε,j .

It depends upon the choice of a cut-off function κ supported in {|x| ≤ 2δ}.

Lemma 5.16. There are ε0 > 0, ρ0 > 0, δ > 0 such that for κ supported in
{|x| ≤ 2δ} as above, there are bounded families of symbols sε,j ∈ PΓ0

1,m, for
ε ∈]0, ε0], defined for |ζ| ≤ 2ρ0 and supported in {|x| ≤ 2δ}, such that

ẽ±ε,j := −ε∂2
xsε,j + aε∂xsε,j + ε−1mεsε,j − ε−1m1

ε,j
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is bounded in PΓ0
m,0 on both side ±x ≥ 0 and

`ε · s±ε,j |x=0 = −c0,j ,

with c0,0 = 1 and c0,j = −iηj for j ∈ {1, . . . , d− 1}.

Proof. Lemma 3.14 implies that for all q = (p, 0, 0) with p ∈ C, there is
ρ0 > 0 such that for |ζ| ≤ 2ρ0 there are functions S±j (z, q, ζ), defined and
smooth for {±z ≥ 0}, q in a neighborhood of q ∈ Q0, exponentially decaying
at infinity as well as their derivative, and such that{

− ∂2
zS±j +A∂zS±j +MS±j = M1

j (z, q, ζ) on ± z ≥ 0

`(q) · S±j (0, q, ζ) = −c0,j(ζ), Sj(z, q, 0) = 0 .

These identities are linear in S±j . Thus, using a partition of unity and
compactness of C0, we can assume that the S±j are defined for q ∈ Q0 and
ρ ≤ ρ0, with ρ0 small enough.

For δ > 0 small and |x| ≤ 2δ, qε(t, y, x) remains in Q0. With κ(x)
supported in {|x| ≤ 2δ} consider for |ζ| ≤ 2ρ0

(5.73) s±ε,j = κ(x)S±j
(x
ε
, qε(t, y, x), ζ

)
.

The equations for S±j imply that the error term ẽε,j is bounded in PΓ0
m,0 (note

that the order has no significance since we consider bounded frequencies
ζ).

Consider χ ∈ C∞
0 (Rd+1) supported in |ζ| < 2ρ0 and such that χ = 1 for

|ζ| ≤ 1. Introduce next χ1 ∈ C∞
0 (Rd+1) supported in |ζ| < 2ρ0 and such

that χ1χ = χ. Consider the matrices

(5.74) S±ε,j =
(

s±ε,jχ1

ε∂xs
±
ε,jχ1

)
They are bounded families of symbols in PΓ0

1,m, compactly supported in ζ
(so that the order 0 is unessential). Next, we introduce the jumps

(5.75) [Sε,j ](t, y, ζ) = S+
ε,j(t, y, 0, ζ)− S−ε,j(t, y, 0, ζ) .

They are bounded families of symbols in PΓ0
1,m on the boundary, compactly

supported in ζ.

75



Consider again (u, f, ψ) satisfying the equations (5.40), (5.41), and (5.42),
with u and f supported in {|x| ≤ 2δ}. Introduce U = t(u, ε∂xu) and
F = t(0, f) as in (5.43) and

(5.76) U±
1 =

(
u±1
v±1

)
= P ε,γχ U± − P ε,γ

S±ε
P ε,γχ ∇γψ ,

where

P ε,γ
S±ε
P ε,γχ ∇γψ = P ε,γ

S±ε,0

P ε,γχ (∂t + γ)ψ +
d−1∑
j=1

P ε,γ
S±ε,j

P ε,γχ ∂yjψ .

Proposition 5.17. U1 satisfies

(5.77) ∂xU
±
1 − 1

ε
P ε,γgε

U±
1 = F ′± on {±x > 0} ,

where F ′ = t(0, f ′) satisfies (5.49). Moreover, on {x = 0}, there holds

(5.78) [U1(0)] + P ε,γ[Sε]
P ε,γχ ∇γψ = 0 , P ε,γ`ε u−1 (0) = e′′

where

(5.79)
∣∣e′′∣∣

m,(λ)
.
∣∣U(0)

∣∣
m

+
∣∣∇γψ

∣∣
m
.

Proof. The symbolic calculus and Lemma 5.16 imply that

(∂x −
1
ε
P ε,γgε

)P ε,γSε
P ε,γχ ∇γψ +

1
ε
P ε,γ
g1ε
P ε,γχ ∇γψ =

(
0
f ′′

)
with

‖f ′′‖m .
∣∣∇γψ

∣∣
m
.

With (5.50), this implies (5.77).
The first boundary conditions immediately follows from (5.52). Intro-

ducing the matrix C0 = (c0,0, . . . , c0,d−1), there holds

(∂t + γ − ε∆y)P ε,γχ = P ε,γC0
P ε,γχ ∇γψ .

The boundary conditions for sε,j and the symbolic calculus imply that

P ε,γ`ε P ε,γ
S−ε |x=0

P ε,γχ ∇γψ = −(∂t + γ − ε∆y)P ε,γχ ψ + e′1

where |e′1|m ≤ |∇γψ|m. Therefore, P ε,γ`ε u−1 (0) = e′ + e′1 where e′ is the right
hand side of the boundary condition (5.54). Next we remark that both e′
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and e′1 are spectrally supported in a domain where εζ and hence
√
ελ, are

bounded. Therefore,

|e′ + e′1|m,(λ) .
1√
ε
|e′ + e′1|m

and the estimate (5.79) follows from (5.53).

The Evans function for the problem (5.77) with boundary conditions
(5.78) is the determinant called D′ defined at (3.52). Lemma 5.3 and Propo-
sition 3.15 imply that this determinant is bounded from below by a positive
constant for ζ ∈ R1+d

+ with |ζ| ≤ ρ0. In [MZ1] we proves maximal estimates
for the equation (5.77) on {x ≥ 0} with Dirichlet boundary conditions,
u+

1 (0) = 0. In the Appendix we show that the analysis extends to the
present case. The analogue of Propositions 4.14 [MZ1] is:

Proposition 5.18. Suppose that δ and ρ0 > 0 are small enough. Consider
cut off functions κ , χ and χ1 as above and χ′ such that χχ′ = χ and
χ′χ1 = χ′. Then, there holds

(5.80)

∥∥∥P ε,γχ′ u1

∥∥∥
m,(λ2)

+
1√
ε

∥∥∥P ε,γχ′ v1∥∥∥
m,(λ)

+
∣∣∣P ε,γχ′ u1(0)

∣∣∣
m,(λ)

+
∣∣∣P ε,γχ′ v1(0)

∣∣∣
m,(λ)

+
∣∣P ε,γχ ∇γψ

∣∣
m,(λ)

. RHS

where RHS denotes the right hand side of (5.27).

Here, the traces U1(0) stand for the pair
(
U−

1 (0), U+
1 (0)

)
of the traces

from both side ±x > 0.

Knowing bounds for U1 and ∇γψ immediately provides estimates for U .

Theorem 5.19. With notations as above, if δ and ε are small enough, then∥∥P ε,γχ u
∥∥
m,(λ2)

+
1√
ε

∥∥P ε,γχ v
∥∥
m,(λ)

+
∣∣P ε,γχ u(0)

∣∣
m,(λ)

+
∣∣P ε,γχ v(0)

∣∣
m,(λ)

+
∣∣P ε,γχ ∇γψ

∣∣
m,(λ)

. RHS .

Proof. By (5.76),

P ε,γχ U = P ε,γχ′ U1 + P ε,γχ′ P
ε,γ
Sεχ1

θ with θ := P ε,γχ ∇γψ.
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Therefore, it is sufficient to check that∥∥P ε,γsεχ1
θ
∥∥
m,(λ2)

+
1√
ε

∥∥P ε,γε∂xsεχ1
θ
∥∥
m,(λ)

.
∣∣θ∣∣

m,(λ)
,

The spectrum of θ, and thus of P ε,γsεχ1θ is contained in a ball {|εζ| ≤ ρ2}
where

√
ελ ≤ ε−1/2 is bounded. Thus∥∥P ε,γSεχ1

θ
∥∥
m,(λ2)

.
1√
ε

∥∥P ε,γSεχ1
θψ
∥∥
m,(λ)

.

It remains to prove that∥∥P ε,γrε θ∥∥m,(λ)
.
√
ε
∣∣θ∣∣

m,(λ)
.

when rε is either sεχ1 or ε∂xsεχ1. The proof of this estimate is similar to
the proof of (5.70), using that rε is exponentially decaying in |x|/ε.

Proof of Theorem 5.5. We prove Proposition 5.8, as it implies the theorem.
Combining Theorems 5.15 and 5.19, we see that the estimate (5.27) is sat-
isfied when u is supported in a small strip |x| ≤ 2δ. Next, for u supported
in |x| ≥ δ satisfying

Lε(∂t + γ, ∂y, ∂x)u = f

Proposition 5.5 of [MZ1] implies that the estimate (5.27) is also satisfied.

6 Approximate solutions

In this section we adapt the construction of high order approximate solu-
tions in [GW] for the case of Laplacian viscosity to the more general viscosi-
ties considered in this paper. A precise statement of the properties of the
approximate solutions is given in Proposition 6.8. We continue to denote
coordinates by (t, x1, . . . , xd) = (t, y, x).

We seek an approximate solution (uaε , ψ
a
ε ) to the N ×N system

ut +
d∑
j=1

∂jfj(u)− ε
d∑

j,k=1

∂j(Bj,k(u)∂ku) = 0,(6.1)

given a shock solution (u0, ψ0) to the associated hyperbolic system.
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As before we introduce the unknown front x = ψε(t, y), change variables
x̃ = x− ψε(t, y), drop tildes and epsilons, and rewrite (6.1) in the notation
of (5.28)

ut +
d−1∑
j=1

Aj(u)∂ju+ Ãd(u, dψ)∂du− ε
d∑

j,k=1

∂j(B̃j,k(u, dψ)∂ku) = 0.(6.2)

We are also given a leading profile U0(t, y, x, z), which in terms of our
earlier notation is given by

U0(t, y, x, z) = W0(
x

ε
, p(t, y)) + (u0(t, y, x)− u0(t, y, 0)).(6.3)

Recall that we view (6.2) as representing two problems for (u, ψ), one
on x ≥ 0 and one on x ≤ 0 with transmission boundary conditions

[u] = 0, [∂xu] = 0 on x = 0.(6.4)

We add the extra boundary condition on {x = 0}:

∂tψ − ε4yψ + `(t, y) · u|x=0 = ∂tψ
0 − ε4yψ

0 + `(t, y) · U0(t, y, 0, 0)(6.5)

where `(t, y) has been chosen so that

`(t, y) · ∂zU0(t, y, 0, 0) > 0.(6.6)

We seek an approximate solution (uaε , ψ
a
ε ) of the form (dropping epsilons)

ψa = ψ0(t, y) + εψ1(t, y) + · · ·+ εMψM (t, y),(6.7)

ua =
(
U0(t, y, x, z) + εU1(t, y, x, z) + · · ·+ εMUM (t, y, x, z)

)
|z=x

ε
,(6.8)

where
U j(t, y, x, z) = U j(t, y, x) + V j(t, y, z),

U0
±(t, y, x) is the original shock (in the new variables), and the V j

±(t, y, z)
are boundary layer profiles exponentially decreasing to 0 as z → ±∞.

Remark 6.1. More precisely, if (u0(t, y, x), x = ψ0(t, y)) is the inviscid
shock in the original coordinates, then U0(t, y, x) in the above expansion is
u0(t, y, x+ ψ0(t, y)).
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6.1 Interior profile equations

We substitute (6.8) into (6.2) and write the result as

M∑
−1

εjF j(t, y, x, z)|z=x
ε

+ εMRε,M (t, y, x),(6.9)

where

F j(x, z) = F j(x) +Gj(x′, z),(6.10)

and the Gj decrease exponentially to 0 as z → ±∞.
In writing out the F j , Gj we use the following notation.

Notation 6.2.
1. f̃d(u, dφ) ≡ fd(u)−

∑d−1
0 fj(u)∂jφ, where f0(u) = u.

2. H(U0, dψ0)∂ ≡
∑d−1

0 Aj(U0)∂j + Ãd(U0, dψ0)∂d.
3. duÃd(U0, dψ0)(v, w) ≡

∑N
1 vi∂uiÃd(U0, dψ0)w = ∂uÃd(U0, dψ0)(w, v),

by symmetry of hessians.
4. B(u)dφ ≡ −

∑d−1
0 Aj(u)∂jφ.

5. B(u)dφ ≡ −
∑d−1

0 fj(u)∂jφ.
6. [h(u)] ≡ h(u+) − h(u−) on x = 0, where u± denote the limits from

the right/left at xN = 0..
7. ψjk means ∂kψj.

Next we recall our notation for viscosity matrices:

Notation 6.3.
1. Let ν = (−ψ1, . . . ,−ψd−1, 1), ν0 = (−ψ0

1, . . . ,−ψ0
d−1, 1), and ν1 =

(−ψ1
1, . . . ,−ψ1

d−1, 0)
2. B̃j,k(u) = Bj,k(u), if j < d, k < d.
3. B̃j,d(u) =

∑d
k=1Bj,k(u)νk if j < d; B̃d,k(u) =

∑d
j=1Bj,k(u)νj if

k < d.
4. B̃d,d(u) =

∑d
j,k=1Bj,k(u)νjνk.

5. B̃0
j,k is defined just like B̃j,k, except that (U0, ν0) is substituted for

(u, ν). Similarly, B0
j,k = Bj,k(U0).

6. dB̃0
d,d(v, w) =

∑N
1 vi∂uiB̃

0
d,dw.

Observe that in (6.2) we wrote B̃j,k(u, dψ) instead of B̃j,k(u).
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The interior profile equations are obtained by setting the F j , Gj equal
to zero. In the following expressions for Gj(t, y, z), the functions U j(t, y, x)
and their derivatives are evaluated at (t, y, 0). We have

F−1(t, y, x) = 0

G−1(t, y, z) = −∂z(B̃0
d,d∂zU0) + ∂zfν(U0, dψ0),

(6.11)

F 0(t, y, x) = H(U0, dψ0)∂U0,

G0(t, y, z) = −∂z(B̃0
d,d∂zV

1)+

∂z

(
Ãd(U0, dψ0)(U1 + V 1)− dB̃0

d,d(U
1 + V 1, ∂zV

0) + B(U0)dψ1
)

+

Q0(U0, V 0, dψ0, dψ1),

(6.12)

where Q0 = Q0(t, y, z) (for short) is exponentially decaying in z. In fact

Q0 =
d−1∑
0

Aj(U0)∂jV 0+

d−1∑
1

(Aj(U0)−Aj(U0))∂jU0 + (Ãd(U0, dψ0)− Ãd(U0, dψ0))∂dU0−

{
d−1∑
j=1

∂j(B̃0
j,d∂zV

0) +
d−1∑
k=1

∂z(B̃0
d,k∂kU0)+

d∑
j,k=1

ν0
j ν

0
k∂uB

0
j,k(∂zV

0, ∂dU
0) +

d∑
j,k=1

ν0
j ν

0
k∂uB

0
j,k(∂dU

0, ∂zV
0)+

d∑
j,k=1

B0
j,k(ν

0
j ν

1
k + ν0

kν
1
j )∂

2
zV

0 +
d∑

j,k=1

(ν0
j ν

1
k + ν0

kν
1
j )∂uB

0
j,k(∂zV

0, ∂zV
0)}.

(6.13)

For j ≥ 1

F j(t, y, x) = H(U0, dψ0)∂U j − P j−1(x)

Gj(t, y, z) = −∂z(B̃0
d,d∂zV

j+1)+

∂z

(
Ãd(U0, dψ0)(U j+1 + V j+1)− dB̃0

d,d(U
j+1 + V j+1, ∂zV

0) + B(U0)dψj+1
)

+

Qj(t, y, z),

(6.14)
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where P j , Qj depend only on (Uk, dψk), (Uk, dψk, dψk+1) respectively, and
their derivatives, for k ≤ j.

Remark 6.4. 1. Recall that a term like (Aj(U0) − Aj(U0))∂jU0 in (6.13)
is evaluated at (t, y, x, z) = (t, y, 0, z). This introduces a fast decaying error
which can be incorporated into G1(t, y, z) in view of the fact that x = εxε .
This kind of observation is applied to all such errors.

2. Define Q0(t, y, z) for z ≥ 0 by
∫ z
+∞Q0(t, y, s)ds and for z ≤ 0 by∫ z

−∞Q0(t, y, s)ds. As we’ll see shortly, it is essential that the terms involving
ψ1 do not contribute to the jump of Q0 at z = 0. These terms come from
the last line in (6.13), which can be expressed as

∂z(
d∑

j,k=1

(ν0
j ν

1
k + ν0

kν
1
j )B

0
j,k∂zV

0) ≡ h(t, y, z).

Since this derivative is smooth at z = 0 and
∫ +∞
−∞ h(t, y, z)dz = 0, the desired

conclusion follows. The same remark applies to the terms involving ψj+1 in
the jump of Qj at z = 0.

6.2 Boundary profile equations

In the boundary profile equations (t, y, x, z) is evaluated at (t, y, 0, 0). These
equations are obtained by substituting the expansions into (6.4) and (6.5)
and setting coefficients of the different powers of epsilon equal to 0. Here
U0
± or V 0

± denote limits as x (resp. z) approaches 0±.
From (6.4) and (6.5) we obtain the conditions:

(a)ε0 : U0
+ + V 0

+ = U0
− + V 0

−

(b)ε−1 : ∂zV 0
+ = ∂zV

0
−,

(c)ε0 : ∂tψ
0 − l(t, y) · U0 = ∂tψ

0 − l(t, y) · U0,

(6.15)

(a)ε1 : U1
+ + V 1

+ = U1
− + V 1

−

(b)ε0 : ∂xU
0
+ + ∂zV

1
+ = ∂xU

0
− + ∂zV

1
−,

(c)ε1 : ∂tψ
1 −4yψ

0 + l · U1 = −4yψ
0.

(6.16)

and for j ≥ 2,

(a)εj : U j+ + V j
+ = U j− + V j

−

(b)εj−1 : ∂xU
j−1
+ + ∂zV

j
+ = ∂xU

j−1
− + ∂zV

j
−,

(c)εj : ∂tψ
j −4yψ

j−1 + l · U j = 0.

(6.17)
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6.3 Solution of the profile equations.

We’ll postpone a careful discussion of regularity of solutions until Proposi-
tion 6.8. Here we note simply that we need to assume

U0 ∈ Hs0([−T0, T0]× Rd
±), ψ0 ∈ Hs0+1([−T0, T0]× Rd)(6.18)

for some large enough s0 depending on M .
1. Note that F 0 = 0 already by our assumption that (U0, dψ0) is a shock.

2. Solve for V 0. Recall that G−1 = 0 represents two equations. Define

G−j(t, y, z) =

{∫ z
+∞G−j(t, y, s)ds for z ≥ 0∫ z
−∞G−j(t, y, s)ds for z ≤ 0

.

The equations G−1 = 0 can be written

B̃0
d,d∂zU0 = f̃d(U0, dψ0)− f̃d(U0, dψ0),(6.19)

where we have used the fact that our given profile U0 satisfies

lim
z→±∞

U0(t, y, 0, z) = U0
±(t, y, 0),

so that U0(t, y, 0) in (6.19) means U0
+(t, y, 0) in one equation and U0

−(t, y, 0)
in the other. The Rankine-Hugoniot condition implies the two equations
(6.19) piece together to give one equation on Rz, and our given profile
U0(t, y, 0, z) is a smooth solution, exponentially decaying to its endstates.
Define V 0(t, y, z) = U0(t, y, 0, z)− U0(t, y, 0). Clearly, the boundary condi-
tions (6.15) are satisfied.

3. Compatibility condition for V 1. The equations G0 = 0 can be
written

B̃0
d,d∂zV

1 =Ãd(U0, dψ0)(U1 + V 1)− dB̃0
d,d(U

1 + V 1, ∂zV
0)

+ B(U0)dψ1 − (Ãd(U0, dψ0)U1 + B(U0)dψ1) + Q0.
(6.20)

In step 6 we seek an exponentially decaying solution to (6.20) which satisfies
(6.16). Suppose for a moment V 1 satisfies (6.20) and that (6.16)(a) holds.
Then, since B̃0

d,d is invertible, (6.16)(b) holds if and only if on x = 0, z = 0
we have

[B̃0
d,d∂zV

1] = −[B̃0
d,d∂xU

0].(6.21)

Using (6.20) we see this is equivalent to

[Ãd(U0, dψ0)U1] + [B(U0)dψ1] = [B̃0
d,d∂xU

0] + [Q0].(6.22)

This equation provides the boundary condition in step 4.
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Remark 6.5. (6.16)(b) implies in general that

∂zV
1
+ 6= ∂zV

1
−

at z = 0, so it is not possible to solve (6.20) with the boundary conditions
(6.16) by solving a single ODE on Rz (as was the case for V 0).

4. Solve for (U1, ψ1). These are determined by solving

H(U0, dψ0)∂U1 = P 0(x)

[B(U0)dψ1] + [Ãd(U0, dψ0)U1] = [B̃0
d,d∂xU

0] + [Q0], on x = z = 0.
(6.23)

The right sides in the boundary and interior equations of (6.23) are
initially defined for t ∈ [−T0, T0]. We can modify them to be zero in t ≤
−T0 + δ, say. We thereby obtain a problem for (U1, dψ1) that is forward
well-posed in the sense of Majda [Maj], since (U0, dψ0) is uniformly stable
and ψ1 does not appear on the right side of the boundary equation (Remark
6.4). Thus, we obtain a solution to (6.23) on [−T0

2 , T0].
5. Stable and unstable manifolds Let W s

0 (t, y) and W u
0 (t, y) denote

the stable and unstable manifolds of (6.19) for the rest points U0
±(t, y, 0).

Our assumptions (Lax shock, Evans condition) imply they intersect transver-
sally in a smooth curve containing U0(t, y, 0, 0). The tangent spaces to
W s

0 (t, y) and W u
0 (t, y) at U0(t, y, 0, 0), denoted Ws

0(t, y) and Wu
0(t, y), are

the stable and unstable subspaces for the equations

B̃0
d,d∂zV

1 = Ãd(U0, dψ0)V 1 − dB̃0
d,d(V

1, ∂zV
0).(6.24)

Observe that (6.20) has the form

B̃0
d,d∂zV

1 = Ãd(U0, dψ0)V 1 − dB̃0
d,d(V

1, ∂zV
0) + F(t, y, z),(6.25)

where F is exponentially decreasing to 0 as z → ±∞. Let W s
1 (t, y) and

W u
1 (t, y) be the linear submanifolds of Rm consisting of initial data at z = 0

of solutions to (6.25) that decay as z → ±∞. Standard ODE facts [Co]
imply that W s

1 (t, y) and W u
1 (t, y) are translates of Ws

0(t, y) and Wu
0(t, y).

The sum of the dimensions of W s
1 (t, y) and W u

1 (t, y) is N + 1 and they
intersect transversally, so their intersection is a line in RN with direction
∂zU0(t, y, 0, 0).

6. Solve for V 1. Since the compatibility condition (6.22) holds, to ob-
tain exponentially decaying solutions V 1

± to (6.25) satisfying both (6.16)(a)
and (b), we choose initial data

(V 1
+(t, y, 0), V 1

−(t, y, 0)) ∈ (Ws
1(t, y)×Wu

1(t, y))∩
{(v1, v2) ∈ R2N : v1 − v2 = U1

−(t, y, 0)− U1
+(t, y, 0)},

(6.26)
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The discussion in step 5 implies this is a transversal intersection of linear
submanifolds of R2N of dimensions N + 1 and N respectively. Call this
intersection (which is necessarily nonempty)

L1(t, y), the line of connection initial data for V 1
±(t, y, z).(6.27)

For a given (t, y), any point on this line gives a choice of initial data
for (6.20) corresponding to a decaying solution that satisfies (6.16)(a) and
(b). To arrange (6.16)(c) as well, note that L1 has direction U0(t, y, 0) ≡
(∂zU0(t, y, 0, 0), ∂zU0(t, y, 0, 0)). So

L1(t, y) = {K(t, y) + sU0(t, y, 0), s ∈ R},(6.28)

for some initial point K(t, y). The boundary condition (6.16)(c) holds pro-
vided

∂tψ
0(t, y) + `(t, y) · (U1

+(t, y, 0) + V 1
+(t, y, 0)) = 0.(6.29)

Since `(t, y) · ∂zU0(t, y, 0, 0) 6= 0, there is a unique smooth choice of s(t, y)
that gives V 1

+ satisfying (6.29). We now have exponentially decaying V 1
±

satisfying (6.20) and (6.16).
7. (Continue) The solution of the remaining profile equations follows

the same pattern:

(U1, ψ1) → V 1 → (U2, ψ2) → V 2...(6.30)

The boundary condition for the problem satisfied by (U j , ψj) is always
the compatibility condition for V j . In view of Remark 6.4 the boundary
problems for the (U j , ψj) are all Majda well-posed linearized shock prob-
lems. The line Lj(t, y) of connection initial data for V j

± always has direction
U0(t, y, 0).

6.4 Summary

Let E(u, ψ) be the operator in the left side of (6.2). Our approximate solu-
tion (ua, ψa) as in (6.7), (6.8) satisfies

E(ua, ψa) = εMRε,M (t, y, x) on [−T0

2
, T0]× Rd

±

[ua] = 0; [∂xua] = εMrM (t, y) on x = 0

∂tψ
a−ε4yψ

a + `(t, y) · ua

= ∂tψ
0 − ε4yψ

0 + `(t, y) · U0(t, y, 0, 0) on x = 0,

(6.31)
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with remainders εMRM and εMrM as described in the next step. We can
make [∂xua] = 0 without changing the other conditions in (6.31) by adding
−xρ(x)εMrM (t, y) to ua+, where ρ is a smooth cutoff equal to one near x = 0.

Remark 6.6. 1. The construction does not require the full strength of the
uniform stability assumption on the profile W0(z, p(t, y)). We need only the
properties that follow from this assumption by the Zumbrun-Serre theorem in
the low frequency limit; namely, transversality of the connection and uniform
stability of the inviscid shock (U0, ψ0).

2. Observe that with the extra boundary condition, the higher profiles are
uniquely determined by this construction once the leading profile U0(t, y, 0, z)
and inviscid shock (U0(t, y, x), ψ0(t, y)) are fixed.

In the next Proposition we use the following spaces:

Definition 6.7. 1. Let Hs be the set of functions U(t, y, x) on [−T0, T0]×Rd

such that the restrictions U± belong to Hs([−T0, T0]× Rd
±).

2. Let H̃s be the set of functions V (t, y, z) on [−T0, T0]×Rd−1×R such
that the restrictions V± belong to C∞(R±,H

s(t, y)) and satisfy

|∂kzV (t, y, z)|Hs(t,y) ≤ Ck,se
−δ|z| for all k(6.32)

for some δ > 0.

Proposition 6.8 (Approximate solutions). For given integers m ≥ 0
and M ≥ 1 let

s0 > m+
7
2

+ 2M +
d+ 1

2
.(6.33)

Suppose the given inviscid shock (U0, ψ0) is uniformly stable in the sense
of Majda and satisfies U0 ∈ Hs0, U0

±(t, y, 0) ∈ Hs0(t, y), and ψ0(t, y) ∈
Hs0+1(t, y). Suppose also that the connection given by W0(z, p(t, y)) is
transversal. Then one can construct (ua, ψa) as above,

ψa = ψ0(t, y) + εψ1(t, y) + · · ·+ εMψM (t, y),(6.34)

ua =
(
U0(t, y, x, z) + εU1(t, y, x, z) + · · ·+ εMUM (t, y, x, z)

)
|z=x

ε
,(6.35)
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where now UM+ (t, y, x) is replaced by UM+ (t, y, x)− xρ(x)rM (t, y) for rM as
in (6.31). The approximate solution (ua, ψa) satisfies

E(ua, ψa) = εMRM (t, y, x) on [−T0

2
, T0]× Rd

±

[ua] = 0; [∂xua] = 0 on x = 0

∂tψ
a−ε4yψ

a + `(t, y) · ua

= ∂tψ
0 − ε4yψ

0 + `(t, y) · U0(t, y, 0, 0) on x = 0.

(6.36)

We have

U j(t, y, x) ∈ Hs0−2j , ψj(t, y) ∈ Hs0−2j+1(t, y)

V j(t, y, z) ∈ H̃s0−2j

rM (t, y) ∈ Hs0−2M− 3
2 (t, y),

(6.37)

and RM (t, y, x) satisfies for Z = (Z0, . . . , Zd) as in (4.2)

(a) |(Z, ε∂x)αRM |L2(t,y,x) ≤ Cα for |α| ≤ m+
d+ 1

2
(b) |(Z, ε∂x)αRM |L∞(t,y,x) ≤ Cα for |α| ≤ m.

(6.38)

Definition 6.9. We’ll refer to (ua, ψa) as in Proposition 6.8 as an approx-
imate solution of order M .

Proof of Proposition 6.8. It just remains to check (6.37) and (6.38). (U0, ψ0)
has the given regularity by assumption and V 0 by construction since U0

|x=0

belongs to Hs0 .
In the linearized shock problem (6.23) satisfied by (U1, ψ1), the interior

forcing term P 0(t, y, x) involves terms in which U0 is differentiated twice,
and so belongs to Hs0−2. Similarly, the boundary data lies in Hs0−2(t, y).
Thus, Majda’s estimates for (6.23) imply U1 ∈ Hs0−2, U1

|x=0 ∈ Hs0−2, and
ψ1 ∈ Hs0−1.

V 1(t, y, z) satisfies an ODE in z, (6.20), in which the coefficients and
boundary data at z = 0 depend on (U1, ψ1); so V 1 ∈ H̃s0−2. Following this
pattern establishes the stated regularity of (U j , ψj) and V j for any j.

From the boundary profile equation (6.17) we obtain

rM (t, y) = ∂xU
M
+ − ∂xU

M
− .(6.39)

Since UM (t, y, x) ∈ Hs0−2M , we have rM ∈ Hs0−2M− 3
2 (t, y). This finishes

(6.37).
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Finally, since xρ(x)rM (t, y) ∈ Hs0−2M− 3
2 and the least regular terms in

RM involve two derivatives of xρ(x)rM (t, y), we obtain (6.38). Observe that
we do not deduce (6.38)(b) from (6.38)(a). (6.38)(b) is verified separately
using (6.37) and the Sobolev embedding theorem.

Remark 6.10. 1. Let m and M be given nonnegative integers, and set

u±0 = U0
±(t, y, x)

u1,±
ε = (U0

±(t, y, x)− U0
±(t, y, 0))+

εU1
±(t, y, x,

x

ε
) + · · ·+ εMUM± (t, y, x,

x

ε
)

ψ1
ε = εψ1 + · · ·+ εMψM ,

(6.40)

where the terms on the right in (6.40) are as in Proposition 6.8. It is now
easy to check, using (6.37) and the Sobolev embedding theorem, that u±, ψ0,
u1,±
ε , and ψ1

ε have the regularity stated in Assumption 5.2.

7 Nonlinear stability

In this section we show that the approximate solutions constructed in the
previous section are close for ε small to exact solutions of the parabolic
transmission problem

E(u, ψ) = 0 on [0, T0]× Rd
±

[u] = 0; [∂xu] = 0 on x = 0

∂tψ−ε4yψ + `(t, y) · u
= ∂tψ

0 − ε4yψ
0 + `(t, y) · U0(t, y, 0, 0) on x = 0.

(7.1)

As an immediate corollary we will obtain a precise statement of the sense
in which the original inviscid shock u0 satisfying (1.1) is the limit as ε→ 0
of solutions uε to the associated viscous perturbation problem (1.3).

7.1 The error problem

With (ua, ψa) as in Proposition 6.8 we look for exact solutions to (7.1) of
the form

u = ua + εMv, ψ = ψa + εMφ.(7.2)
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Expanding around (ua, ψa) we find

0 = E(ua + εMv, ψa + εMφ) =

E(ua, ψa) + E ′u(ua, ψa)εMv + E ′ψ(ua, ψa)εMφ+ εMQε(v, φ),
(7.3)

where Qε is a quadratic error that we’ll describe carefully later. Thus, (v, φ)
must satisfy the error transmission problem

E ′u(ua, ψa)v + E ′ψ(ua, ψa)φ = −Qε(v, φ)−RM on [0, T0]× Rd
±,

[v] = 0, [∂xv] = 0 on x = 0
∂tφ− ε4yφ+ `(t, y) · v = 0 on x = 0.

(7.4)

This transmission problem needs some initial conditions in order to be
well-posed. Recall that (ua, ψa) satisfies (6.36) on the time interval [−T0

2 , T0].
Introduce a smooth cutoff function θ(t) such that

θ(t) =

{
1, for t ≥ −T0

4

0 for t ≤ −T0
3

.(7.5)

We will solve (7.4) by solving the following forward problem:

E ′u(ua, ψa)v + E ′ψ(ua, ψa)φ

= −θ(t){Qε(v, φ) +RM} on [−T0, T0]× Rd
±,

[v] = 0, [∂xv] = 0 on x = 0,
∂tφ− ε4yφ+ `(t, y) · v = 0 on x = 0,

v = 0, φ = 0 in t <
−T0

3
.

(7.6)

7.2 Linear estimates

Definition 7.1. 1. For a nonnegative integer m define the conormal spaces

Hm = {u(t, y, x) ∈ L2([−T0, T0]× Rd) :
the restrictions u± satisfy sup

|α|≤m
|ZαU |L2(t,y,x) <∞}(7.7)

and

Wm = {u(t, y, x) ∈ L∞([−T0, T0]× Rd) :
the restrictions u± satisfy sup

|α|≤m
|Zαu|L∞(t,y,x) <∞}.(7.8)
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These spaces are equipped with the obvious norms denoted ‖·‖Hm and ‖·‖Wm,
respectively.

2. Hm = {u(t, y) ∈ L2([−T0, T0] × Rd−1) : sup|α|≤m |∂αt,yu|L2(t,y) < ∞}
and is equipped with the norm | · |Hm.

3. Wm = {u(t, y) ∈ L∞([−T0, T0]× Rd−1) : sup|α|≤m |∂αt,yu|L∞(t,y) <∞}
and is given the usual norm ‖ · ‖Wm.

Our main tool for studying nonlinear stability is the estimate for the
fully linearized transmission problem given by Theorem 5.5. First, we need
to extract from that theorem convenient ‖ · ‖Hm and ‖ · ‖Wm estimates for
the forward linear problem:

E ′u(ua, ψa)v + E ′ψ(ua, ψa)φ = f on [−T0, T0]× Rd
±

[v] = 0, [∂xv] = 0 on x = 0
∂tφ− ε4yφ+ `(t, y) · v = 0 on x = 0

v = 0, φ = 0, f = 0 in t <
−T0

3
.

(7.9)

Theorem 7.2 (Hm estimate). Let m be a nonnegative integer and let
(ua, ψa) be as in Proposition 6.8. There are C > 0 and ε0 such that for
ε ∈ (0, ε0] and all f ∈ Hm vanishing in t < −T0

3 , the solution (v, φ) of (7.9)
is unique and satisfies

‖v‖Hm+
√
ε‖∂x,yv‖Hm + ε

3
2 ‖∂2

x,yv‖Hm

+ |v(0)|Hm + |φ|Hm+1 +
√
ε|∂ydφ|Hm ≤ C‖f‖Hm ,

(7.10)

where dφ = ∇t,yφ.

Proof. We’ll deduce the estimate (7.10) from the weighted norm estimate
for the linearized problem given in Theorem 5.5. We need to examine the
size of the weights λ2, λ, and µΛ2 appearing there and defined in (5.19) and
(5.20).

The weight function λ satisfies

λ2 ≥ C(γ + ε|η|2 + min(ετ2, |τ |)),(7.11)

so

λ2 ≥ C(γ +
√
εγ|η|+ ε|η|2 +

√
ε|τ |),

λ ≥ C(
√
γ +

√
ε|η|).

(7.12)
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Next consider µΛ2. In |εζ| ≤ 1 we have

µΛ2 ≥ µ = |ζ|λ ∼ |ζ|(√γ +
√
ε|τ |+

√
εγ +

√
ε|η|),(7.13)

so

µΛ2 ≥ √
γ|ζ| and µΛ2 ≥

√
ε|ζ|2 in |εζ| ≤ 1.(7.14)

In |εζ| ≥ 1 we have

µΛ2 =
Λ

7
2

ε
3
2

∼ ε−
3
2 + ε

1
4 |τ |

7
4 + ε

1
4γ

7
4 + ε2|η|

7
2 ≥ |ζ|

3
2 .(7.15)

Apply the inequality

a2 + b2 ≥ a
6
7 b

8
7 , for a > 0, b > 0(7.16)

to five pairs of terms in (7.15) to obtain

µΛ2 ≥ ε|τ ||η|
3
2 + εγ|η|

3
2 +

√
ε|η|2 +

|τ |√
ε

+
γ√
ε

≥
√
ε|η||τ |+

√
ε|η|γ +

√
ε|η|2 ∼

√
ε|η||ζ|,

(7.17)

where the second inequality follows by considering separately the cases |η| ≥
1
ε and |η| < 1

ε .
Summarizing we have shown that for arbitrary |εζ|,

µΛ2 ≥ √
γ|ζ| and µΛ2 ≥

√
ε|η||ζ|.(7.18)

For a fixed γ ≥ γ0 we have

e−γt ∼ 1, for t ∈ [−T0, T0],(7.19)

so it follows directly from Theorem 5.5, (7.12), (7.18), and (7.19) that all
terms in the left side of the estimate (7.10), with the exception of the ε

3
2∂2

xv
term, are dominated by C‖f‖Hm . The estimate for the remaining term is
obtained by using the equation (7.9) to express ε

3
2∂2

xv in terms of previously
estimated quantities. Observe that the term ε−

1
2Eεv can be estimated using

‖e−θx/εw‖Hm ≤ C(ε‖∂xw‖Hm +
√
ε|w(0)|Hm).(7.20)
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Remark 7.3. For each fixed ε we can use standard parabolic theory to solve
the (nonstandard) linear problem (7.9) by the following iteration scheme.
Let (v0, φ0) = 0 and for given (vn, φn) define (vn+1, φn+1) by solving the
parabolic problems:

E ′u(ua, ψa)vn+1 = f − E ′ψ(ua, ψa)φn on [−T0, T0]× Rd
±

[vn+1] = 0, [∂xvn+1] = 0 on x = 0

vn+1 = 0 in t <
−T0

3
,

(7.21)

∂tφn+1 − ε4yφn+1 = −`(t, y) · vn = 0 on x = 0

φn+1 = 0 in t <
−T0

3
.

(7.22)

Theorem 7.4 (Wm estimate). Suppose m > 2 + d+1
2 and let (ua, ψa) be

as in Proposition 6.8. There are C > 0 and ε0 such that for ε ∈ (0, ε0] and
all f ∈ Hm vanishing in t < −T0

3 , the solution (v, φ) of (7.9) is unique and
satisfies

‖v‖W2 + ε‖∂x,yv‖W1 + |φ|W 3 ≤ C‖f‖Hm .(7.23)

If in addition f ∈ L∞, then

ε2‖∂2
x,yv‖L∞ ≤ C(‖f‖Hm + ε‖f‖L∞).(7.24)

Proof. The estimate for the terms involving v follows from Theorem 7.2 by
almost exactly the same argument as that used to prove Theorem 5.8 of
[MZ1], with the one difference that the boundary term that appears on the
right in applications of (7.20) does not vanish in our setting.

Since m > 2 + d+1
2 , the estimate for φ is a consequence of

|φ|W 3 ≤ C|φ|Hm+1 .(7.25)

7.3 Nonlinear estimates

In the proof of the next Proposition we’ll need to estimate norms of products
of derivatives of v(t, y, x) with derivatives of dφ(t, y). The fact that φ is
independent of x means that Moser inequalities can’t be applied directly to
estimate the Hm norm of Qε(v, φ) as in (7.6). This minor difficulty is easily
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circumvented by introducing a C∞ cutoff in x. Fix K > 0 arbitrarily large
and let

χK(x) =

{
1, |x| ≤ K

0, |x| ≥ K + 1
.(7.26)

Instead of solving (7.6), we will now solve

E ′u(ua, ψa)v + E ′ψ(ua, ψa)φ

= −θ(t)χK(x){Qε(v, φ) +RM} on [−T0, T0]× Rd
±,

[v] = 0, [∂xv] = 0 on x = 0
∂tφ− ε4yφ+ `(t, y) · v = 0 on x = 0

v = 0, φ = 0 in t <
−T0

3
.

(7.27)

When estimating χK(x)Qε(v, φ), we are now free to replace φ(t, y) by χ(x)φ(t, y)
for any C∞ cutoff χ(x) satisfying

χχK = χK .(7.28)

In writing out the form of Qε it will be convenient to set

w = (v, dφ), where as always dφ = ∂t,yφ,(7.29)

and to let Φ = Φ(ua, dψa, ∂ydψa, εw) denote a C∞ function of the given
arguments which may change from line to line. In what (7.30) and (7.31) ∂
will always denote some spatial derivative.

An examination of the expansions shows that Qε(v, φ) is a sum of terms
of the form

Q1 = εMΦw∂w

Q2 = εMΦww∂ua

Q3 = εM+1∂(Φw∂w)

Q4 = εM+1∂(Φww∂ua)

(7.30)

Here Q1 and Q3 are bilinear in w and ∂w, while Q2 and Q4 are bilinear in
w and linear in ∂ua.
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The terms Q3 and Q4 involve

Q3,1 = εM+1Φw∂2w

Q3,2 = εM+1Φ∂w∂w

Q3,3 = εM+1Φw∂w∂ua

Q4,1 = εM+1Φw∂w∂ua

Q4,2 = εM+1Φww∂ua∂ua

Q4,3 = εM+1Φww∂2ua

(7.31)

It is important to note that there are no terms where ∂2dφ appears,
although Q3,1 would seem to allow such terms.

Introduce the norms

‖f‖Ym := ‖f‖Hm + ε‖f‖L∞ ,(7.32)

‖(v, φ)‖Xm := ‖v‖Hm +
√
ε‖∂x,yv‖Hm + ε

3
2 ‖∂2

x,yv‖Hm + |v(0)|Hm+

|φ|Hm+1 +
√
ε|∂ydφ|Hm+

‖v‖W2 + ε‖∂x,yv‖W1 + ε2‖∂2
x,yv‖L∞ + |φ|W 3 ,

(7.33)

where we’ve suppressed ε dependence in the Xm, Ym notation. Observe that
the Ym and Xm norms are obtained by adding the right (respectively, left)
sides of the estimates (7.10), (7.23), and (7.24). We denote by Ym and Xm

the natural spaces (independent of ε) associated to these norms. Denote by
Ym0 (resp., Xm

0 ) the subspace of (v, φ) ∈ Ym (resp., Xm) which vanish for
t < −T0

3 (resp., vanish for t < −T0
3 and satisfy the boundary conditions in

(7.27)).
Let Pε denote the fully linearized operator on the left side of (7.27).

Theorems 7.2 and 7.4 imply there is a constant C0 such that for all ε ∈ (0, ε0]
and f ∈ Ym0 the problem

Pε(v, φ) = f, (v, φ) ∈ Xm
0(7.34)

has a unique solution which satisfies

‖(v, φ)‖Xm ≤ C0‖f‖Ym .(7.35)

We are now in a position to solve (7.27) by a fixed point argument that
is essentially identical to the nonlinear stability argument in [MZ1], section
6. The main step is to prove the following estimates for the quadratic terms.
The cutoff χK(x) was introduced in (7.26).
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Proposition 7.5. For all M ≥ 0 there is a constant C(M) such that for
all ε ∈ (0, ε0] and all (vi, φi) ∈ Xm

0 , i = 1, 2, χK(x)Qε(vi, φi) belong to Ym0
and

‖χK(x)Qε(v1, φ1)‖Ym ≤ ε
1
4C(M),

‖χK(x)(Qε(v1, φ1)−Qε(v1, φ1))‖Ym

≤ ε
1
4C(M)‖(v1, φ1)− (v2, φ2)‖Xm ,

(7.36)

provided that

ε‖(vi, dφi)‖L∞ ≤ 1, i = 1, 2(7.37)

and

‖(vi, φi)‖Xm ≤M, i = 1, 2.(7.38)

Proof. When estimating χKQε, we are free to replace φ by χ(x)φ for any
smooth cutoff χ such that χχK = χK , so fix such a cutoff function. Since

‖χdφ‖Hm + |χ(0)dφ|Hm ≤ C|φ|Hm+1 ,
√
ε‖∂x,y(χdφ)‖Hm ≤ C

√
ε|∂ydφ|Hm ,

(7.39)

and

‖χdφ‖W2 + ε‖∂x,y(χdφ)‖W1 + ε2‖∂2
x,y(χdφ)‖L∞ ≤ C|φ|W 3 ,(7.40)

for each norm of v or its first derivatives appearing in the definition of Xm,
our linear estimates give control over the same norm of χdφ or its first
derivatives. We do not have control over ε

3
2 ‖∂2

x,y(χdφ)‖Hm , but recall that
no derivatives of the form ∂2(dφ) appear in Qε. Thus, we don’t need control
over second derivatives of dφ. This means that in the proof of Proposition
7.5, terms involving dφ or its first derivatives can be handled exactly like
terms involving v or its first derivatives. Thus, we reduce to the proof of
the analogous proposition in [MZ1], Proposition 6.4, whose proof can be
repeated word for word to establish Proposition 7.5.

Remark 7.6. The proof in [MZ1] is designed to handle the case of a first
order approximate solution, M = 1, which is more delicate than the case
M > 1. The argument of [MZ1] applies to any M , but the presence of extra
factors of ε allows a much simpler argument to be given in the case M > 1.
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Theorem 7.7. Let m > 2 + d+1
2 and M ≥ 1 be integers and suppose

s0 > m+
7
2

+ 2M +
d+ 1

2
.(7.41)

Suppose the given inviscid shock (U0, ψ0) satisfies U0 ∈ Hs0, U0
±(t, y, 0) ∈

Hs0(t, y), and ψ0(t, y) ∈ Hs0+1(t, y). Under Assumptions 2.1 and 5.1 an
approximate solution of order M , (ua, ψa), can be constructed as in Propo-
sition 6.8. In addition there is a unique exact solution (v, φ) to the nonlinear
forward error problem (7.27) such that

‖(v, φ)‖Xm <∞.(7.42)

With K > 0 arbitrarily large as in (7.27), let

ΩK = [0, T0]× Rd−1 × [−K,K].(7.43)

The nonlinear transmission problem (7.1) has an exact solution on ΩK

u = ua + εv, ψ = ψa + εMφ(7.44)

such that

‖(u, ψ)− (ua, ψa)‖Xm(ΩK) = O(εM ).(7.45)

Thus, in particular,

‖u− ua‖Hm(ΩK) + ‖u− ua‖L∞(ΩK) = O(εM ),

‖ψ − ψa‖Hm+1([0,T0]×Rd−1) + ‖ψ − ψa‖W 3([0,T0]×Rd−1) = O(εM ).
(7.46)

Proof. We just need to prove that the forward error problem (7.27) has
a unique solution (v, φ) satisfying (7.42). The rest is immediate from the
definitions of the cutoffs and norms.

Theorems 7.2 and 7.4 imply that Pε as in (7.34) is an isomorphism from
Xm

0 onto Ym0 . Thus, the problem (7.27) is equivalent to

(v, φ) = P−1
(
−θ(t)χK(x){Qε(v, φ) +RM}

)
, (v, φ) ∈ Xm

0 .(7.47)

The estimates in Theorems 7.2 and 7.4 and Proposition 6.8 imply there is a
constant C1 such that for all ε ∈ (0, ε0]

‖P−1(θ(t)χK(x)RM )‖Xm ≤ C1.(7.48)
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For all M > 0 introduce

(7.49)
Xm

0 (M, ε) = {(v, φ) ∈ Xm
0 : ε‖(v, dφ)‖L∞ ≤ 1

and ‖(v, φ)‖Xm ≤M}.

Apply Theorems 7.2 and 7.4 and Proposition 7.5 to deduce that for all
M > 0 and ε ∈ (0, ε0]:

(7.50)

‖P−1 (θ(t)χK(x)Qε(v, φ)) ‖Xm ≤ ε
1
4C(M),

‖P−1
(
θ(t)χK(x)(Qε(v1, φ1)−Qε(v1, φ1))

)
‖Xm

≤ ε
1
4C(M)‖(v1, φ1)− (v2, φ2)‖Xm .

Choose M > C1 and apply the above estimates to see that, after shrink-
ing ε0 if necessary, the equation (7.47) has a unique solution (v, φ) in Xm(M, ε)
for all ε ∈ (0, ε0]. In particular,

‖(v, φ)‖Xm ≤M.(7.51)

We have constructed exact solutions (uε, ψε) to the parabolic problem
(1.8) in the new coordinates (t, y, x̃), where x̃ = x − ψε(t, y). Returning to
the original coordinates we set

uεor(t, y, x) = uε(t, y, x− ψε(t, y)).(7.52)

The following corollary is an immediate consequence of Theorem 7.7.

Corollary 7.8. Suppose that the assumptions of Theorem 7.7 hold, and for
K arbitrarily large let ΩK be as in (7.43), but defined in the original coordi-
nates. Let (u0(t, y, x), ψ0(t, y)) be the inviscid shock solution to the system
of hyperbolic conservation laws (1.1) in the original coordinates. There are
smooth exact solutions uεor to the parabolic system (1.3) on ΩK such that

(a)‖u0 − uεor‖L2(ΩK) = O(
√
ε),

(b)‖u0 − uεor‖L∞(ΩK∩{(t,y,x):|x−ψ0(t,y)|≥κ}) = O(ε),

(c)‖u0 − uεor‖L∞(ΩK∩{(t,y,x):|x−ψ0(t,y)|≥−ε log ε}) = O(εmin (δ,1)),

(7.53)

where κ > 0 is arbitrary and δ > 0 satisfies

|V 0(t, y, z)| ≤ Ce−δ|z|.(7.54)
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A Appendix : Proof of Proposition 5.18

Proposition 4.14 in [MZ1] gives estimates similar to (5.80) for solutions of
equations (5.77) on {x ≥ 0] with Dirichlet boundary conditions. The exten-
sion to transmission problems is immediate, but the introduction of bound-
ary conditions like (5.78) requires some care. In this appendix, we go over
the analysis of [MZ1], pointing out the modifications which are necessary to
cover the case of equations (5.77), (5.78).

A.1 The symbolic analysis

We are given matrices

(A.1) G(z, q, ζ) =
(

0 Id
M A

)
on R×Q0×R1+d. They converge at an exponential rate to G±∞(q, ζ) when
z → ±∞. Moreover, we are given matrices S±j (z, q, ζ), and consider the
boundary matrix

(A.2) Γ(q, ζ)(U−, U+, ψ) =

 [u] + ψ[R(0, q, ζ)]
[v] + ψ[∂zR(0, q, ζ)]

`(q) · u−


with U± = t(u±, v±), [U ] = U+ − U− and

(A.3) R± = (iτ + γ)S±0 +
∑

iηjS±j .

The spaces of initial data U(0) such that the associated solution of ∂zU −
GU = 0 is bounded when z → ±∞ are denoted by E±(q, ζ). They are well
defined for ζ 6= 0 with γ ≥ 0. According to Proposition 3.15, a version of
the modified Evans’ function reads

(A.4) D̃(q, ζ) = det
(
E− × E+ × C, ker Γ

)
.

By Lemma 2.6 of [MZ1], there are smooth matrices W± for z ∈ R± =
{±z ≥ 0}, converging at an exponential rate at infinity to the identity matrix
and such that

(A.5) ∂zW± − GW± = W±G±.
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The W±(z, q, ζ) are defined and smooth for z ∈ R±, q ∈ Q0 and ζ in a
neighborhood Z of 0 in R1+d. Next, shrinking Z if necessary, there are
matrices V±(q, ζ) such that

(A.6) G±V± = V±G±2 , G±2 =
(
H± 0
0 P±

)
.

Moreover, at ζ = 0, V has the form

(A.7) V(q, 0) =
(

Id V ±
HP

0 Id

)
.

We consider T ± = W±V±, so that the positive [resp. negative] spaces for
G−2 [resp. G+

2 ] are E−2 = (T −)−1E− [resp. E+
2 = (T +)−1E+]. Similarly, the

boundary conditions are transformed to

(A.8) Γ2(U−
2 , U

+
2 , ψ) = Γ(T −(0)U−

2 , T
+(0)U+

2 , ψ).

The Evans’ function (A.4) is equivalent to

(A.9) D2(q, ζ) = det(E−2 × E+
2 ,×C, ker Γ2).

The diagonal form of G2 implies that

(A.10) E±2 (q, ζ) = E±H(q, ζ)⊕ E±P (q, ζ)

where E±H(q, ζ) and E±P (q, ζ) are the negative space for the + sign and the
positive space for the − sign of H± and P± respectively.

Next, we pass to the construction of symmetrizers. The eigenvalues of
P±(q, ζ) stay away from the imaginary axis. Thus, for all κ > 0 large, there
are smooth symmetric matrices Σ±

2 (q, ζ) smooth matrices Σ±
P (q, ζ) such that:

(A.11) ±Σ±
P (q, ζ) ≥ κ(Π±

P )∗Π±
P − (Id−Π±

P )∗(Id−Π±
P )

where Id− Π±
P (q, ζ) is the spectral projection on E±P (q, ζ). Moreover, there

is cκ > 0 such that for all (q, ζ) ∈ Q0 ×Z:

(A.12) Re(Σ±
PP

±) ≥ cκ.

We refer to [Kr], [Ch-P], [MZ1], [MZ2] for a detailed construction of Σ+
P .

On the side {z ≤ 0}, that is for the minus sign, −Σ−
P is the symmetrizer for

−P− given by this construction.
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The analysis of the hyperbolic-like component H is more delicate. Pass-
ing to polar coordinates ζ = ρζ̌, with ρ = |ζ|, there holds

(A.13) H(q, ζ) = ρȞ(q, ζ̌, ρ).

Following [MZ1] or [MZ2], for all κ > 0 large, there are symmetric matrices
Σ̌±
H(q, ζ̌, ρ) defined for q ∈ Q0, ζ̌ ∈ S

d
+ := {|ζ̌| = 1, γ̌ ≥ 0} and ρ small

enough, such that

(A.14) ±Σ̌±
H(q, ζ̌, ρ) ≥ κ(Π̌±

H)∗Π̌±
H − (Id− Π̌±

H)∗(Id− Π̌±
H)

where Id− Π̌±
P (q, ζ̌, ρ) is a projection on Ě±H(q, ζ̌, ρ) which is the continuous

extension to ρ = 0 of the fiber bundle E±H(q, ρζ̌). We warn the reader that
Id− Π̌±

P (q, ζ̌, ρ) is not a spectral projection near glancing mode. Moreover,
Re(Σ±

HȞ
±) has the special form indicated in Lemma 2.13 of [MZ2]. For the

convenience of the reader, we give here the weak form of this statement: it
implies that there is cκ > 0 such that for all (q, ζ̌, ρ) ∈ Q0 × S

d
+ × [0, ρ0]:

(A.15) Re(Σ±
HȞ

±) ≥ cκ(γ̌ + ρ).

Introduce the matrices

(A.16) Σ̌±(q, ζ̌, ρ) =
(

Σ̌±
H(q, ζ̌, ρ) 0

0 Σ̌±
P (q, ζ̌, ρ)

)
,

where Σ̌±
P (q, ζ̌, ρ) = Σ±

P (q, ρ, ζ̌). As used above, the vector bundles E±H(q, ρζ̌)
and hence E2(q, ρζ̌) have continuous extensions to ρ = 0. We denote the
later by Ě2(q, ζ̌, ρ). By (A.10), (A.11) and (A.14), there holds

(A.17) ±Σ̌±(q, ζ̌, ρ) ≥ κ(Π̌±)∗Π̌± − (Id− Π̌±)∗(Id− Π̌±)

where Id− Π̌±(q, ζ̌, ρ) is a projection on Ě±2 (q, ζ̌, ρ).
Next, we rewrite the boundary conditions:

(A.18) Γ̌(q, ζ̌, ρ)(U−, U+, ϕ) =

 [u] + ϕ[Ř(0, q, ζ̌, ρ)]
[v] + ϕ[∂zŘ(0, q, ζ̌, ρ)]

`(q) · u−


where we have used the the notation

(A.19) R±(z, q, ζ) = ρŘ±(z, q, ζ̌, ρ).

Transformed by T (0), they become

Γ̌2(U−
2 , U

+
2 , ϕ) = Γ̌(T −(0)U−

2 , T
+(0)U+

2 , ϕ).
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By Proposition 3.15, we know that the vector t([Ř(0, q, ζ̌, ρ)], [∂zŘ(0, q, ζ̌, ρ)])
does not vanish and that the Evans’ function D2(q, ρζ̌) extends continuously
as

Ď2(q, ζ̌, ρ) = det
(
Ě−2 × Ě+

2 × C, ker Γ̌2

)
.

The uniform stability condition implies that this function is bounded from
below by a positive constant when q ∈ Q0, ζ̌ ∈ S

d
+ and ρ ∈ [0, ρ0] for some

ρ0 > 0. In particular,(
Ě−2 (q, ζ̌, ρ)× Ě+

2 (q, ζ̌, ρ)× C
)
∩ ker Γ̌2(q, ζ̌, ρ) = {0},

for all (q, ζ̌, ρ) in the compact set Q0 × S
d
+ × [0, ρ0]. Therefore, if κ is

chosen large enough, there are constants C and c > 0 such that for all
(q, ζ̌, ρ) ∈ Q0 × S

d
+ × [0, ρ0] and all (U−, U+, ϕ) ∈ C2N × C2N × C:

(A.20)
(Σ̌+U+, U+)− (Σ̌−U−, U−)+C|Γ̌2(U−, U+, ϕ)|2

≥ c
(
|U−|2 + |U+|2 + |ϕ|2

)
.

On the left hand side, (·, ·) denotes the scalar product in C2N .
Indeed, the construction of Σ̌±

H is made locally near points (q, ζ̌, 0), be-
cause the choice of projectors Π̌±

H is local. Then, by compactness, one can
can find ρ0 > 0 small enough, κ large, constants C and c > 0, a finite cov-
ering ∩Ωk of Q0 × S

d
+ × [0, ρ0] and symmetrizers Σ̌±

H,k such that (A.20) is
satisfied by Σ̌±

k on Ωk. Using a partition of unity, yields Σ̌±
H =

∑
χkΣ̌±

H,k

which satisfy (A.15) and Σ̌± defined by (A.16) satisfies (A.20) globally.

A.2 Symmetrizers and L2 estimates

We fix δ > 0 and ε0 > 0 such that for |x| ≤ 2δ and (t, y) ∈ R1+d, qε(t, y, x) ∈
Q0. Next, we fix ρ0 > 0 such that the symbols introduced in the previous
subsection are defined for |ζ| ≤ 2ρ0 with γ ≥ 0. As indicated in section 5,
we fix cut off functions κ(x) supported in {|x| ≤ 2δ} and equal to one for
|x| ≤ δ, χ(ζ) and χ1(ζ) supported in |ζ| ≤ 2ρ0, with χ1χ = χ. We consider
additional cut-off functions κa, with κaκa′ = κa when a′ > a > 0, supported
in {|x| ≤ 2δ} and equal to one on the support of κ, and χa supported in
|ζ| ≤ 2ρ0, equal to one on the support of χ and such that χaχa′ = χa when
0 < a < a′.

With G2(q, ζ) and T (z, q, ζ) = WV as in the previous subsection, define:

g±2,ε(t, y, x, ζ) = κ3(x)χ1(ζ)G±2 (qε(t, x, y), ζ),

w±ε (t, y, x, ζ) = κ2(x)χ1(ζ)(T ±)−1(
x

ε
, qε(t, x, y, ζ)
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By (A.6), g2,ε is block diagonal and we use the notation

g±2,ε =
(
h±ε 0
0 π±ε

)
They are bounded families of symbols in the class PΓ0

1,m, compactly sup-
ported in ζ. The intertwining relations (A.5) (A.6) imply that

(A.21) ε∂xwε + wεgε = g2,εwε + εrε

with rε bounded in PΓ0
0,m.

With U±
1 defined by (5.76), let

(A.22) U±
2 = P ε,γχ1/2

P ε,γ
w±ε
U±

1 .

The equation (5.77), the identity (A.21) and the symbolic calculus imply
that the components (u2, v2) of U2 satisfy:

∂xu
±
2 =

1
ε
P ε,γ
h±ε
u±2 + f±2 ,(A.23)

∂xv
±
2 =

1
ε
P ε,γ
π±ε
v±2 + g±2 ,(A.24)

where f2 and g2 satisfy (5.49). We refer to [MZ1], section 4, for details.
To the symbols ΣP , we associate the bounded family in PΓ0

1,m:

σ±P,ε(t, y, x, ζ) = κ4(x)χ2(ζ)Σ±
P (qε(t, y, x), ζ)

and the symmetrizers:

S±
P = γReP ε,γ

σ±P,ε

− ε
d−1∑
j=0

∂jReP ε,γ
σ±P,ε

∂j .

In this definition, ∂0 stands for ∂t. We have the identities

−
(
S−
P (0)v−2 (0), v−(0)

)
+ Re

(
S−P P

ε,γ

π−ε
v−2 , v

−
2

)
= −

(
[∂x,S−

P ]v−2 , v
−)− 2Re

(
S−P g

−
2 , v

−
2

)
(
S+
P (0)v+

2 (0), v+(0)
)

+ Re
(
S+
P P

ε,γ

π+
ε
v+
2 , v

+
2

)
= −

(
[∂x,S+

P ]v+
2 , v

+
)
− 2Re

(
S+
P g

+
2 , v

+
2

)
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where (·, ·) denotes the L2 scalar product, on {x ≤ 0}, {x ≥ 0} or {x = 0},
the domain being clear from the context. Using the symbolic calculus and
(A.12) as in [MZ1], one derives the estimates

(A.25)
1
ε
‖v2‖2

0,(λ) + I . ε‖g2‖2
0,(λ) + ‖v2‖2

0,

where

(A.26) I :=
(
S+
P (0)v+

2 (0), v+
2 (0)

)
−
(
S−
P (0)v−2 (0), v−2 (0)

)
.

In (A.25), the norms of v2 are the sum of the norms of v−+ and v+
2 on {x ≥ 0}

and {x ≤ 0} respectively. We use a similar notation for g2.
We proceed in a similar way for the hyperbolic component u2. However,

because the symbolic analysis is made in polar coordinates, we are led to
switch to the homogeneous calculus. Introduce

h±ε (t, y, x, ζ) :=
1
ε
h±ε (t, y, x, εζ) = κ3(x)χ1(εζ)|ζ|Ȟ

(
qε(t, y, x),

ζ

|ζ|
, ε|ζ|

)
where the last equality follows from (A.13). The h±ε are bounded families of
symbols in Γ1

1,m. Using Proposition 4.12 and arguing as in [MZ1], one can
show that ∥∥1

ε
P ε,γ
h±ε
u±2 − T γ

h±ε
u±2
∥∥

0
. ‖u±2 ‖0.

Therefore, we can replace (A.23) by

∂xu
±
2 − T γ

h±ε
u±2 = f̃±2

where ‖f ′2‖0 . ‖f2‖+ ‖u2‖0. Given the symmetrizers Σ̌H(q, ζ̌, ρ), introduce
the symbols:

σ̌±H,ε(t, y, x, ζ) = κ4(x)χ2(εζ)Σ̌±
H

(
qε(t, y, x),

ζ

|ζ|
, ε|ζ|

)
.

They are bounded in Γ0
1,m. Introduce next the symmetrizers

S±
H = γReT γ

σ̌±H,ε

− ε
d−1∑
j=0

∂jReT γ
σ̌±H,ε

∂j .

It yields to the following estimates:

(A.27) ‖u2‖2
0,(λ2) + II . ‖f2‖2

0 + ‖u2‖2
0,(λ),
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where

(A.28) II :=
(
S+
H(0)u+

2 (0), u+
2 (0)

)
−
(
S−
H(0)u−2 (0), u−2 (0)

)
.

For a detailed proof we refer again to the proof of Proposition 4.12 of [MZ1].
Using that λ ≤ αλ2 + 1/4α, we can replace ‖u2‖2

0,(λ) by ‖u2‖2
0 in the right

hand side of (A.27).
We now come to the new part of the proof, which is the analysis of the

boundary terms I+II. With obvious notations, they split into I± and II±,
and

(A.29) II± = γRe
(
T γ
σ̌±H,ε

u±2 (0), u±2 (0)
)

+
d−1∑
j=0

εRe
(
T γ
σ̌±H,ε

∂ju
±
2 (0), ∂ju±2 (0)

)
.

To compare the terms I and II, we use the same quantization T γ for I. On
x = 0, introduce the symbols

σ̌±P,ε(t, y, ζ) = σ±P,ε(t, y, 0, εζ)

which are bounded in Γ0
1,m. Replacing P ε,γσP,ε by T γσ̌P,ε

in the definition of SP ,
and using Proposition 4.12, we see that

(A.30) I± = γRe
(
T γ
σ̌±P,ε

v±2 (0), v±2 (0)
)
+
d−1∑
j=0

εRe
(
T γ
σ̌±P,ε

∂jv
±
2 (0), ∂jv±2 (0)

)
+ e.

where
|e| . |v2(0)|0|v2(0)|0,(1+ε|ζ|) . |v2(0)|0|v2(0)|0,(λ).

The last estimate is the consequence of the inequality 1 + ε|ζ| . λ valid on
support of the Fourier transform of v2(0).

Next, we rewrite the boundary conditions (5.78) for U2 and ψ. Introduce
the symbols

w̆±ε (t, y, ζ) = χ2(ζ)T ±(0, qε(t, y, 0), ζ).

Thus w̆±ε χ1/2w
±
ε |x=0 = χ1/2(ζ) and Proposition 4.9 implies that

(A.31) P ε,γ
w̆±ε
U±

2 (0) = P ε,γχ1/2
U±

1 (0) + e±1

where

(A.32) |e±1 |m,(λ) . |e±1 |m,(Λ/√ε) .
√
ε|U±

1 (0)|m.
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We switch to the homogeneous quantization and introduce

w±
ε (t, y, ζ) = w̆±ε (t, y, εζ).

They are bounded families of symbols in Γ0
1,m on the boundary. By Propo-

sition 4.12,
e±2 := P ε,γ

w̆±ε
U±

2 (0)− T γ
w±

ε
U±

2 (0)

satisfies

(A.33) |e±2 |m,(λ) . |e±2 |m,(|ζ|)) . |U±
2 (0)|m.

Similarly, we replace the P ε,γ[Sj,ε]χ
which act on ∇γψ by T γSj,εχ(εζ) where

Sj(t, y, ζ) = [Sj,ε](t, y, εζ),

to the price of an error e3 which satisfies

|e3|0,(λ) . |∇γψ|0.

Introduce next the bounded family in Γ0
1,m:

Rε =
iτ + γ

|ζ|
S0,ε +

d−1∑
j=1

iηj
|ζ|

Sj,ε.

With

(A.34) ϕ = T γ|ζ|χ(εζ)ψ,

there holds
T γSεχ(εζ)∇γψ = T γRε

ϕ.

The last term in (5.78) is P ε,γ`ε u−1 (0). Since `ε is independent of ζ, we replace
P ε,γ`ε by T γ`ε and u−1 (0) by T γ

w−,1
ε
U−

2 (0) where w−,1
ε denotes the first N rows

of the 2N ×2N matrix w−
ε . Summing up, introduce the (2N +1)× (4N +1)

matrix of zero-th order symbols

(A.35) Υε =
(

−w−
ε w+

ε Rε

`ε · w−,1
ε 0 0

)
.

Applying P ε,γχ1/2
= T γχ1/2(εζ) to the boundary conditions (5.78) implies that

(A.36) T γΥε
Φ = θ
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(A.37) |θ|m,(λ) . |U(0)|m + |∇γψ|m.

where

(A.38) Φ =

U−
2 (0)

U+
2 (0)
ϕ

 .

Similarly, introduce the self adjoint matrix of symbols

Jε =

−σ̌−ε 0 0
0 σ̌+

ε 0
0 0 0

 with σ̌±ε =
(
σ̌±H,ε 0

0 σ̌±P,ε

)
.

The condition (A.20) implies that Jε + CΥεΥε is definite positive for εζ in
the support of χ1/2. Now, we are again in a situation studied in [MZ1], proof
of Proposition 4.12. Since U2 and ϕ are spectrally supported in the support
of χ1/2(εζ), G̊arding’s inequality implies that∣∣T γχ1/2(εζ)Φ

∣∣2
0

.
(
T γJε

Φ,Φ
)

+ C
∣∣T γΥε

Φ
∣∣2
0

+ |Φ|20,(|ζ|−1).

Commuting with ε∂j , one obtains similar estimates for the derivatives. Since
λ2 ≈ γ + ε(τ2 + |η|2) on the support of χ1/2(εζ), this implies the following
estimate:

∣∣T γχ1/2(εζ)Φ
∣∣2
0,(λ)

. γ
(
T γJε

Φ,Φ
)

+
d−1∑
j=0

(
T γJε

∂jΦ, ∂jΦ
)

+
∣∣T γΥε

Φ
∣∣2
0,(λ)

+ |Φ|20.

Adding up, with (A.25), (A.27), (A.33), (A.30), one proves the following
estimates:

Proposition A.1. The solution (U2, ϕ) of (A.23), (A.24), (A.36) satisfies

‖u2‖0,(λ2)+
1√
ε
‖v2‖0,(λ) + |U2(0)|0,(λ) + |ϕ|0,(λ) . ‖f2‖0

+
√
ε‖g2‖0,(λ) + ‖u2‖0,(λ) + ‖v2‖0 + |U2(0)|0 + |ϕ|0.

The norms ‖u‖ stand for the sum of the norms ‖u+‖ and ‖u−, taken on
the half space {x ≥ 0} and {x ≤ 0} respectively. Similarly, the trace U2(0)
denotes the couple (U−

2 (0), U+
2 (0)).
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A.3 End of proof

The proposition above is the exact analogue of Proposition 4.12 of [MZ1].
Commuting the equations (A.23), (A.24), (A.36) with the vector fields Zj
yields:

Proposition A.2. The solution (U2, ϕ) of (A.23), (A.24), (A.36) satisfies

‖u2‖m,(λ2)+
1√
ε
‖v2‖m,(λ2) + |U2(0)|m,(λ) + |ϕ|m,(λ) . ‖f2‖m

+
√
ε‖g2‖m,(λ) + ‖u2‖m,(λ) + ‖v2‖m + |U2(0)|m + |ϕ|m.

The proof, which is by induction on m, is identical to the proof of
Proposition 4.13 of [MZ1], and we do not repeat the details. Using that
λ ≤ αλ2 +1/(4α) with α small enough, the error term ‖u2‖m,(λ) in the right
hand side can be changed to ‖u2‖m.

Next, we come back to U1 and ψ. First, we note that (A.34) immediately
implies that

|P ε,γχ ∇γψ|m,(λ) . |ϕ|m,(λ).

Next, we extend the previous definition of the symbols w̆ε to x 6= 0, setting:

w̆±ε (t, y, x, ζ) = κ3(x)χ2(ζ)T ±(
x

ε
, qε(t, y, x), ζ).

Thus w̆±ε χ1/2w
±
ε |x=0 = χ1/2(ζ) and Proposition 4.9 implies that

P ε,γ
w̆±ε
U±

2 = P ε,γχ1/2
U±

1 + εe±

where
‖εe±‖m,(λ2) . |e±|m .

√
ε|U±

1 |m.

(For the first inequality, we have used that the U1 and U2 are spectrally sup-
ported in a domain where εζ is bounded). Repeating the proof of Proposition
4.14 of [MZ1], which takes into account the exponential decay of W − Id at
infinity and the special form of the matrices V(q, 0), yields the estimates:

‖P ε,γχ1/2
u1‖0,(λ2) +

1√
ε
‖P ε,γχ1/2

v1‖0,(λ2) + |P ε,γχ1/2
U1(0)|0,(λ)

+ |P ε,γχ ∇γψ|0,(λ) . ‖F ′‖m + ‖u‖m + ‖v‖m + |U1(0)|m + |∇γψ|m,

where F ′ is the right hand side of the equation (5.77) for U1. With the
estimate (5.49) of F ′, this implies (5.80), finishing the proof of Proposition
5.18.
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Comm. in Part.Diff.Equ., 15 (1990), 595–645.

[GMWZ1] O.Guès-G.Métivier-M.Williams-K.Zumbrun Multi-
dimensional viscous shocks I: Degenerate symmetriz-
ers and long time stability , submitted, available at
http://www.math.unc.edu/Faculty/williams/

[GMWZ2] O.Guès-G.Métivier-M.Williams-K.Zumbrun Multidimen-
sional viscous shocks II: The small viscosity limit , to
appear in Comm. Pure Appl. Math., 2004, available at
http://www.math.unc.edu/Faculty/williams/

[GMWZ3] O.Guès-G.Métivier-M.Williams-K.Zumbrun Navier–Stokes regu-
larization of multidimensional Euler shocks, in preparation.

[GW] O.Guès and M. Williams, Curved shocks as viscous limits: a bound-
ary problem approach, Indiana Univ. Math. J. 51. 2002, 421-450.

[HoZ] D. Hoff-K. Zumbrun, Multi-dimensional diffusion waves for the
Navier-Stokes equations of compressible flow. Indiana Univ. Math.
J. 44 (1995), 603–676.
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[Mé2] G. Métivier, Stability of multidimensional shocks. Advances in the
theory of shock waves, 25–103, Progr. Nonlinear Differential Equa-
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[Mé3] G.Métivier. The Block Structure Condition for Symmetric Hyperbolic
Problems, Bull. London Math.Soc., 32 (2000), 689–702

[MZ1] G.Métivier-K.Zumbrun, Viscous Boundary Layers for Noncharacter-
istic Nonlinear Hyperbolic Problems, preprint.

[MZ2] G.Métivier-K.Zumbrun, Symmetrizers and continuity of stable sub-
spaces for parabolic-hyperbolic boundary value problems, to appear in
Disc. Cont. Dyn. Syst.

[Mey] Y.Meyer,. Remarques sur un théorème de J.M.Bony, Supplemento al
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